gcov: make profile merging smarter
[official-gcc.git] / gcc / hard-reg-set.h
blobf116dbd330037592177c8a1fa9c43f56bf0f04d4
1 /* Sets (bit vectors) of hard registers, and operations on them.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
4 This file is part of GCC
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef GCC_HARD_REG_SET_H
21 #define GCC_HARD_REG_SET_H
23 #include "array-traits.h"
25 /* Define the type of a set of hard registers. */
27 /* HARD_REG_ELT_TYPE is a typedef of the unsigned integral type which
28 will be used for hard reg sets, either alone or in an array.
30 If HARD_REG_SET is a macro, its definition is HARD_REG_ELT_TYPE,
31 and it has enough bits to represent all the target machine's hard
32 registers. Otherwise, it is a typedef for a suitably sized array
33 of HARD_REG_ELT_TYPEs. HARD_REG_SET_LONGS is defined as how many.
35 Note that lots of code assumes that the first part of a regset is
36 the same format as a HARD_REG_SET. To help make sure this is true,
37 we only try the widest fast integer mode (HOST_WIDEST_FAST_INT)
38 instead of all the smaller types. This approach loses only if
39 there are very few registers and then only in the few cases where
40 we have an array of HARD_REG_SETs, so it needn't be as complex as
41 it used to be. */
43 typedef unsigned HOST_WIDEST_FAST_INT HARD_REG_ELT_TYPE;
45 #if FIRST_PSEUDO_REGISTER <= HOST_BITS_PER_WIDEST_FAST_INT
47 typedef HARD_REG_ELT_TYPE HARD_REG_SET;
48 typedef const HARD_REG_SET const_hard_reg_set;
50 #else
52 #define HARD_REG_SET_LONGS \
53 ((FIRST_PSEUDO_REGISTER + HOST_BITS_PER_WIDEST_FAST_INT - 1) \
54 / HOST_BITS_PER_WIDEST_FAST_INT)
56 struct HARD_REG_SET
58 HARD_REG_SET
59 operator~ () const
61 HARD_REG_SET res;
62 for (unsigned int i = 0; i < ARRAY_SIZE (elts); ++i)
63 res.elts[i] = ~elts[i];
64 return res;
67 HARD_REG_SET
68 operator& (const HARD_REG_SET &other) const
70 HARD_REG_SET res;
71 for (unsigned int i = 0; i < ARRAY_SIZE (elts); ++i)
72 res.elts[i] = elts[i] & other.elts[i];
73 return res;
76 HARD_REG_SET &
77 operator&= (const HARD_REG_SET &other)
79 for (unsigned int i = 0; i < ARRAY_SIZE (elts); ++i)
80 elts[i] &= other.elts[i];
81 return *this;
84 HARD_REG_SET
85 operator| (const HARD_REG_SET &other) const
87 HARD_REG_SET res;
88 for (unsigned int i = 0; i < ARRAY_SIZE (elts); ++i)
89 res.elts[i] = elts[i] | other.elts[i];
90 return res;
93 HARD_REG_SET &
94 operator|= (const HARD_REG_SET &other)
96 for (unsigned int i = 0; i < ARRAY_SIZE (elts); ++i)
97 elts[i] |= other.elts[i];
98 return *this;
101 bool
102 operator== (const HARD_REG_SET &other) const
104 HARD_REG_ELT_TYPE bad = 0;
105 for (unsigned int i = 0; i < ARRAY_SIZE (elts); ++i)
106 bad |= (elts[i] ^ other.elts[i]);
107 return bad == 0;
110 bool
111 operator!= (const HARD_REG_SET &other) const
113 return !operator== (other);
116 HARD_REG_ELT_TYPE elts[HARD_REG_SET_LONGS];
118 typedef const HARD_REG_SET &const_hard_reg_set;
120 template<>
121 struct array_traits<HARD_REG_SET>
123 typedef HARD_REG_ELT_TYPE element_type;
124 static const bool has_constant_size = true;
125 static const size_t constant_size = HARD_REG_SET_LONGS;
126 static const element_type *base (const HARD_REG_SET &x) { return x.elts; }
127 static size_t size (const HARD_REG_SET &) { return HARD_REG_SET_LONGS; }
130 #endif
132 /* HARD_REG_SET wrapped into a structure, to make it possible to
133 use HARD_REG_SET even in APIs that should not include
134 hard-reg-set.h. */
135 struct hard_reg_set_container
137 HARD_REG_SET set;
140 /* HARD_CONST is used to cast a constant to the appropriate type
141 for use with a HARD_REG_SET. */
143 #define HARD_CONST(X) ((HARD_REG_ELT_TYPE) (X))
145 /* Define macros SET_HARD_REG_BIT, CLEAR_HARD_REG_BIT and TEST_HARD_REG_BIT
146 to set, clear or test one bit in a hard reg set of type HARD_REG_SET.
147 All three take two arguments: the set and the register number.
149 In the case where sets are arrays of longs, the first argument
150 is actually a pointer to a long.
152 Define two macros for initializing a set:
153 CLEAR_HARD_REG_SET and SET_HARD_REG_SET.
154 These take just one argument.
156 Also define:
158 hard_reg_set_subset_p (X, Y), which returns true if X is a subset of Y.
159 hard_reg_set_intersect_p (X, Y), which returns true if X and Y intersect.
160 hard_reg_set_empty_p (X), which returns true if X is empty. */
162 #define UHOST_BITS_PER_WIDE_INT ((unsigned) HOST_BITS_PER_WIDEST_FAST_INT)
164 #if FIRST_PSEUDO_REGISTER <= HOST_BITS_PER_WIDEST_FAST_INT
166 #define SET_HARD_REG_BIT(SET, BIT) \
167 ((SET) |= HARD_CONST (1) << (BIT))
168 #define CLEAR_HARD_REG_BIT(SET, BIT) \
169 ((SET) &= ~(HARD_CONST (1) << (BIT)))
170 #define TEST_HARD_REG_BIT(SET, BIT) \
171 (!!((SET) & (HARD_CONST (1) << (BIT))))
173 #define CLEAR_HARD_REG_SET(TO) ((TO) = HARD_CONST (0))
174 #define SET_HARD_REG_SET(TO) ((TO) = ~ HARD_CONST (0))
176 static inline bool
177 hard_reg_set_subset_p (const_hard_reg_set x, const_hard_reg_set y)
179 return (x & ~y) == HARD_CONST (0);
182 static inline bool
183 hard_reg_set_intersect_p (const_hard_reg_set x, const_hard_reg_set y)
185 return (x & y) != HARD_CONST (0);
188 static inline bool
189 hard_reg_set_empty_p (const_hard_reg_set x)
191 return x == HARD_CONST (0);
194 #else
196 inline void
197 SET_HARD_REG_BIT (HARD_REG_SET &set, unsigned int bit)
199 set.elts[bit / UHOST_BITS_PER_WIDE_INT]
200 |= HARD_CONST (1) << (bit % UHOST_BITS_PER_WIDE_INT);
203 inline void
204 CLEAR_HARD_REG_BIT (HARD_REG_SET &set, unsigned int bit)
206 set.elts[bit / UHOST_BITS_PER_WIDE_INT]
207 &= ~(HARD_CONST (1) << (bit % UHOST_BITS_PER_WIDE_INT));
210 inline bool
211 TEST_HARD_REG_BIT (const_hard_reg_set set, unsigned int bit)
213 return (set.elts[bit / UHOST_BITS_PER_WIDE_INT]
214 & (HARD_CONST (1) << (bit % UHOST_BITS_PER_WIDE_INT)));
217 inline void
218 CLEAR_HARD_REG_SET (HARD_REG_SET &set)
220 for (unsigned int i = 0; i < ARRAY_SIZE (set.elts); ++i)
221 set.elts[i] = 0;
224 inline void
225 SET_HARD_REG_SET (HARD_REG_SET &set)
227 for (unsigned int i = 0; i < ARRAY_SIZE (set.elts); ++i)
228 set.elts[i] = -1;
231 static inline bool
232 hard_reg_set_subset_p (const_hard_reg_set x, const_hard_reg_set y)
234 HARD_REG_ELT_TYPE bad = 0;
235 for (unsigned int i = 0; i < ARRAY_SIZE (x.elts); ++i)
236 bad |= (x.elts[i] & ~y.elts[i]);
237 return bad == 0;
240 static inline bool
241 hard_reg_set_intersect_p (const_hard_reg_set x, const_hard_reg_set y)
243 HARD_REG_ELT_TYPE good = 0;
244 for (unsigned int i = 0; i < ARRAY_SIZE (x.elts); ++i)
245 good |= (x.elts[i] & y.elts[i]);
246 return good != 0;
249 static inline bool
250 hard_reg_set_empty_p (const_hard_reg_set x)
252 HARD_REG_ELT_TYPE bad = 0;
253 for (unsigned int i = 0; i < ARRAY_SIZE (x.elts); ++i)
254 bad |= x.elts[i];
255 return bad == 0;
257 #endif
259 /* Iterator for hard register sets. */
261 struct hard_reg_set_iterator
263 /* Pointer to the current element. */
264 const HARD_REG_ELT_TYPE *pelt;
266 /* The length of the set. */
267 unsigned short length;
269 /* Word within the current element. */
270 unsigned short word_no;
272 /* Contents of the actually processed word. When finding next bit
273 it is shifted right, so that the actual bit is always the least
274 significant bit of ACTUAL. */
275 HARD_REG_ELT_TYPE bits;
278 #define HARD_REG_ELT_BITS UHOST_BITS_PER_WIDE_INT
280 /* The implementation of the iterator functions is fully analogous to
281 the bitmap iterators. */
282 static inline void
283 hard_reg_set_iter_init (hard_reg_set_iterator *iter, const_hard_reg_set set,
284 unsigned min, unsigned *regno)
286 #ifdef HARD_REG_SET_LONGS
287 iter->pelt = set.elts;
288 iter->length = HARD_REG_SET_LONGS;
289 #else
290 iter->pelt = &set;
291 iter->length = 1;
292 #endif
293 iter->word_no = min / HARD_REG_ELT_BITS;
294 if (iter->word_no < iter->length)
296 iter->bits = iter->pelt[iter->word_no];
297 iter->bits >>= min % HARD_REG_ELT_BITS;
299 /* This is required for correct search of the next bit. */
300 min += !iter->bits;
302 *regno = min;
305 static inline bool
306 hard_reg_set_iter_set (hard_reg_set_iterator *iter, unsigned *regno)
308 while (1)
310 /* Return false when we're advanced past the end of the set. */
311 if (iter->word_no >= iter->length)
312 return false;
314 if (iter->bits)
316 /* Find the correct bit and return it. */
317 while (!(iter->bits & 1))
319 iter->bits >>= 1;
320 *regno += 1;
322 return (*regno < FIRST_PSEUDO_REGISTER);
325 /* Round to the beginning of the next word. */
326 *regno = (*regno + HARD_REG_ELT_BITS - 1);
327 *regno -= *regno % HARD_REG_ELT_BITS;
329 /* Find the next non-zero word. */
330 while (++iter->word_no < iter->length)
332 iter->bits = iter->pelt[iter->word_no];
333 if (iter->bits)
334 break;
335 *regno += HARD_REG_ELT_BITS;
340 static inline void
341 hard_reg_set_iter_next (hard_reg_set_iterator *iter, unsigned *regno)
343 iter->bits >>= 1;
344 *regno += 1;
347 #define EXECUTE_IF_SET_IN_HARD_REG_SET(SET, MIN, REGNUM, ITER) \
348 for (hard_reg_set_iter_init (&(ITER), (SET), (MIN), &(REGNUM)); \
349 hard_reg_set_iter_set (&(ITER), &(REGNUM)); \
350 hard_reg_set_iter_next (&(ITER), &(REGNUM)))
353 /* Define some standard sets of registers. */
355 /* Indexed by hard register number, contains 1 for registers
356 that are being used for global register decls.
357 These must be exempt from ordinary flow analysis
358 and are also considered fixed. */
360 extern char global_regs[FIRST_PSEUDO_REGISTER];
362 extern HARD_REG_SET global_reg_set;
364 class simplifiable_subreg;
365 class subreg_shape;
367 struct simplifiable_subregs_hasher : nofree_ptr_hash <simplifiable_subreg>
369 typedef const subreg_shape *compare_type;
371 static inline hashval_t hash (const simplifiable_subreg *);
372 static inline bool equal (const simplifiable_subreg *, const subreg_shape *);
375 struct target_hard_regs {
376 void finalize ();
378 /* The set of registers that actually exist on the current target. */
379 HARD_REG_SET x_accessible_reg_set;
381 /* The set of registers that should be considered to be register
382 operands. It is a subset of x_accessible_reg_set. */
383 HARD_REG_SET x_operand_reg_set;
385 /* Indexed by hard register number, contains 1 for registers
386 that are fixed use (stack pointer, pc, frame pointer, etc.;.
387 These are the registers that cannot be used to allocate
388 a pseudo reg whose life does not cross calls. */
389 char x_fixed_regs[FIRST_PSEUDO_REGISTER];
391 /* The same info as a HARD_REG_SET. */
392 HARD_REG_SET x_fixed_reg_set;
394 /* Indexed by hard register number, contains 1 for registers
395 that are fixed use or are clobbered by function calls.
396 These are the registers that cannot be used to allocate
397 a pseudo reg whose life crosses calls. */
398 char x_call_used_regs[FIRST_PSEUDO_REGISTER];
400 /* For targets that use reload rather than LRA, this is the set
401 of registers that we are able to save and restore around calls
402 (i.e. those for which we know a suitable mode and set of
403 load/store instructions exist). For LRA targets it contains
404 all registers.
406 This is legacy information and should be removed if all targets
407 switch to LRA. */
408 HARD_REG_SET x_savable_regs;
410 /* Contains registers that are fixed use -- i.e. in fixed_reg_set -- but
411 only if they are not merely part of that set because they are global
412 regs. Global regs that are not otherwise fixed can still take part
413 in register allocation. */
414 HARD_REG_SET x_fixed_nonglobal_reg_set;
416 /* Contains 1 for registers that are set or clobbered by calls. */
417 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
418 for someone's bright idea to have call_used_regs strictly include
419 fixed_regs. Which leaves us guessing as to the set of fixed_regs
420 that are actually preserved. We know for sure that those associated
421 with the local stack frame are safe, but scant others. */
422 HARD_REG_SET x_regs_invalidated_by_call;
424 /* Table of register numbers in the order in which to try to use them. */
425 int x_reg_alloc_order[FIRST_PSEUDO_REGISTER];
427 /* The inverse of reg_alloc_order. */
428 int x_inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
430 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
431 HARD_REG_SET x_reg_class_contents[N_REG_CLASSES];
433 /* For each reg class, a boolean saying whether the class contains only
434 fixed registers. */
435 bool x_class_only_fixed_regs[N_REG_CLASSES];
437 /* For each reg class, number of regs it contains. */
438 unsigned int x_reg_class_size[N_REG_CLASSES];
440 /* For each reg class, table listing all the classes contained in it. */
441 enum reg_class x_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
443 /* For each pair of reg classes,
444 a largest reg class contained in their union. */
445 enum reg_class x_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
447 /* For each pair of reg classes,
448 the smallest reg class that contains their union. */
449 enum reg_class x_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
451 /* Vector indexed by hardware reg giving its name. */
452 const char *x_reg_names[FIRST_PSEUDO_REGISTER];
454 /* Records which registers can form a particular subreg, with the subreg
455 being identified by its outer mode, inner mode and offset. */
456 hash_table <simplifiable_subregs_hasher> *x_simplifiable_subregs;
459 extern struct target_hard_regs default_target_hard_regs;
460 #if SWITCHABLE_TARGET
461 extern struct target_hard_regs *this_target_hard_regs;
462 #else
463 #define this_target_hard_regs (&default_target_hard_regs)
464 #endif
466 #define accessible_reg_set \
467 (this_target_hard_regs->x_accessible_reg_set)
468 #define operand_reg_set \
469 (this_target_hard_regs->x_operand_reg_set)
470 #define fixed_regs \
471 (this_target_hard_regs->x_fixed_regs)
472 #define fixed_reg_set \
473 (this_target_hard_regs->x_fixed_reg_set)
474 #define fixed_nonglobal_reg_set \
475 (this_target_hard_regs->x_fixed_nonglobal_reg_set)
476 #ifdef IN_TARGET_CODE
477 #define call_used_regs \
478 (this_target_hard_regs->x_call_used_regs)
479 #endif
480 #define savable_regs \
481 (this_target_hard_regs->x_savable_regs)
482 #ifdef IN_TARGET_CODE
483 #define regs_invalidated_by_call \
484 (this_target_hard_regs->x_regs_invalidated_by_call)
485 #define call_used_or_fixed_regs \
486 (regs_invalidated_by_call | fixed_reg_set)
487 #endif
488 #define reg_alloc_order \
489 (this_target_hard_regs->x_reg_alloc_order)
490 #define inv_reg_alloc_order \
491 (this_target_hard_regs->x_inv_reg_alloc_order)
492 #define reg_class_contents \
493 (this_target_hard_regs->x_reg_class_contents)
494 #define class_only_fixed_regs \
495 (this_target_hard_regs->x_class_only_fixed_regs)
496 #define reg_class_size \
497 (this_target_hard_regs->x_reg_class_size)
498 #define reg_class_subclasses \
499 (this_target_hard_regs->x_reg_class_subclasses)
500 #define reg_class_subunion \
501 (this_target_hard_regs->x_reg_class_subunion)
502 #define reg_class_superunion \
503 (this_target_hard_regs->x_reg_class_superunion)
504 #define reg_names \
505 (this_target_hard_regs->x_reg_names)
507 /* Vector indexed by reg class giving its name. */
509 extern const char * reg_class_names[];
511 /* Given a hard REGN a FROM mode and a TO mode, return true if
512 REGN can change from mode FROM to mode TO. */
513 #define REG_CAN_CHANGE_MODE_P(REGN, FROM, TO) \
514 (targetm.can_change_mode_class (FROM, TO, REGNO_REG_CLASS (REGN)))
516 #ifdef IN_TARGET_CODE
517 /* Return true if register REGNO is either fixed or call-used
518 (aka call-clobbered). */
520 inline bool
521 call_used_or_fixed_reg_p (unsigned int regno)
523 return fixed_regs[regno] || this_target_hard_regs->x_call_used_regs[regno];
525 #endif
527 #endif /* ! GCC_HARD_REG_SET_H */