1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 - reordering of memory allocation and freeing to be more space efficient
23 - do rough calc of how many regs are needed in each block, and a rough
24 calc of how many regs are available in each class and use that to
25 throttle back the code in cases where RTX_COST is minimal.
26 - a store to the same address as a load does not kill the load if the
27 source of the store is also the destination of the load. Handling this
28 allows more load motion, particularly out of loops.
32 /* References searched while implementing this.
34 Compilers Principles, Techniques and Tools
38 Global Optimization by Suppression of Partial Redundancies
40 communications of the acm, Vol. 22, Num. 2, Feb. 1979
42 A Portable Machine-Independent Global Optimizer - Design and Measurements
44 Stanford Ph.D. thesis, Dec. 1983
46 A Fast Algorithm for Code Movement Optimization
48 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
50 A Solution to a Problem with Morel and Renvoise's
51 Global Optimization by Suppression of Partial Redundancies
52 K-H Drechsler, M.P. Stadel
53 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
55 Practical Adaptation of the Global Optimization
56 Algorithm of Morel and Renvoise
58 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
60 Efficiently Computing Static Single Assignment Form and the Control
62 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
63 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
66 J. Knoop, O. Ruthing, B. Steffen
67 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
69 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
70 Time for Reducible Flow Control
72 ACM Letters on Programming Languages and Systems,
73 Vol. 2, Num. 1-4, Mar-Dec 1993
75 An Efficient Representation for Sparse Sets
76 Preston Briggs, Linda Torczon
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
81 K-H Drechsler, M.P. Stadel
82 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
84 Partial Dead Code Elimination
85 J. Knoop, O. Ruthing, B. Steffen
86 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
88 Effective Partial Redundancy Elimination
89 P. Briggs, K.D. Cooper
90 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
92 The Program Structure Tree: Computing Control Regions in Linear Time
93 R. Johnson, D. Pearson, K. Pingali
94 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
96 Optimal Code Motion: Theory and Practice
97 J. Knoop, O. Ruthing, B. Steffen
98 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
100 The power of assignment motion
101 J. Knoop, O. Ruthing, B. Steffen
102 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
104 Global code motion / global value numbering
106 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
108 Value Driven Redundancy Elimination
110 Rice University Ph.D. thesis, Apr. 1996
114 Massively Scalar Compiler Project, Rice University, Sep. 1996
116 High Performance Compilers for Parallel Computing
120 Advanced Compiler Design and Implementation
122 Morgan Kaufmann, 1997
124 Building an Optimizing Compiler
128 People wishing to speed up the code here should read:
129 Elimination Algorithms for Data Flow Analysis
130 B.G. Ryder, M.C. Paull
131 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
133 How to Analyze Large Programs Efficiently and Informatively
134 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
135 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
137 People wishing to do something different can find various possibilities
138 in the above papers and elsewhere.
143 #include "coretypes.h"
145 #include "diagnostic-core.h"
152 #include "hard-reg-set.h"
154 #include "insn-config.h"
156 #include "basic-block.h"
158 #include "function.h"
167 #include "tree-pass.h"
174 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
175 are a superset of those done by classic GCSE.
177 Two passes of copy/constant propagation are done around PRE or hoisting
178 because the first one enables more GCSE and the second one helps to clean
179 up the copies that PRE and HOIST create. This is needed more for PRE than
180 for HOIST because code hoisting will try to use an existing register
181 containing the common subexpression rather than create a new one. This is
182 harder to do for PRE because of the code motion (which HOIST doesn't do).
184 Expressions we are interested in GCSE-ing are of the form
185 (set (pseudo-reg) (expression)).
186 Function want_to_gcse_p says what these are.
188 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
189 This allows PRE to hoist expressions that are expressed in multiple insns,
190 such as complex address calculations (e.g. for PIC code, or loads with a
191 high part and a low part).
193 PRE handles moving invariant expressions out of loops (by treating them as
194 partially redundant).
196 **********************
198 We used to support multiple passes but there are diminishing returns in
199 doing so. The first pass usually makes 90% of the changes that are doable.
200 A second pass can make a few more changes made possible by the first pass.
201 Experiments show any further passes don't make enough changes to justify
204 A study of spec92 using an unlimited number of passes:
205 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
206 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
207 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
209 It was found doing copy propagation between each pass enables further
212 This study was done before expressions in REG_EQUAL notes were added as
213 candidate expressions for optimization, and before the GIMPLE optimizers
214 were added. Probably, multiple passes is even less efficient now than
215 at the time when the study was conducted.
217 PRE is quite expensive in complicated functions because the DFA can take
218 a while to converge. Hence we only perform one pass.
220 **********************
222 The steps for PRE are:
224 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
226 2) Perform the data flow analysis for PRE.
228 3) Delete the redundant instructions
230 4) Insert the required copies [if any] that make the partially
231 redundant instructions fully redundant.
233 5) For other reaching expressions, insert an instruction to copy the value
234 to a newly created pseudo that will reach the redundant instruction.
236 The deletion is done first so that when we do insertions we
237 know which pseudo reg to use.
239 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
240 argue it is not. The number of iterations for the algorithm to converge
241 is typically 2-4 so I don't view it as that expensive (relatively speaking).
243 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
244 we create. To make an expression reach the place where it's redundant,
245 the result of the expression is copied to a new register, and the redundant
246 expression is deleted by replacing it with this new register. Classic GCSE
247 doesn't have this problem as much as it computes the reaching defs of
248 each register in each block and thus can try to use an existing
251 /* GCSE global vars. */
253 struct target_gcse default_target_gcse
;
254 #if SWITCHABLE_TARGET
255 struct target_gcse
*this_target_gcse
= &default_target_gcse
;
258 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
259 int flag_rerun_cse_after_global_opts
;
261 /* An obstack for our working variables. */
262 static struct obstack gcse_obstack
;
264 struct reg_use
{rtx reg_rtx
; };
266 /* Hash table of expressions. */
270 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
272 /* Index in the available expression bitmaps. */
274 /* Next entry with the same hash. */
275 struct expr
*next_same_hash
;
276 /* List of anticipatable occurrences in basic blocks in the function.
277 An "anticipatable occurrence" is one that is the first occurrence in the
278 basic block, the operands are not modified in the basic block prior
279 to the occurrence and the output is not used between the start of
280 the block and the occurrence. */
281 struct occr
*antic_occr
;
282 /* List of available occurrence in basic blocks in the function.
283 An "available occurrence" is one that is the last occurrence in the
284 basic block and the operands are not modified by following statements in
285 the basic block [including this insn]. */
286 struct occr
*avail_occr
;
287 /* Non-null if the computation is PRE redundant.
288 The value is the newly created pseudo-reg to record a copy of the
289 expression in all the places that reach the redundant copy. */
291 /* Maximum distance in instructions this expression can travel.
292 We avoid moving simple expressions for more than a few instructions
293 to keep register pressure under control.
294 A value of "0" removes restrictions on how far the expression can
299 /* Occurrence of an expression.
300 There is one per basic block. If a pattern appears more than once the
301 last appearance is used [or first for anticipatable expressions]. */
305 /* Next occurrence of this expression. */
307 /* The insn that computes the expression. */
309 /* Nonzero if this [anticipatable] occurrence has been deleted. */
311 /* Nonzero if this [available] occurrence has been copied to
313 /* ??? This is mutually exclusive with deleted_p, so they could share
318 typedef struct occr
*occr_t
;
320 DEF_VEC_ALLOC_P (occr_t
, heap
);
322 /* Expression hash tables.
323 Each hash table is an array of buckets.
324 ??? It is known that if it were an array of entries, structure elements
325 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
326 not clear whether in the final analysis a sufficient amount of memory would
327 be saved as the size of the available expression bitmaps would be larger
328 [one could build a mapping table without holes afterwards though].
329 Someday I'll perform the computation and figure it out. */
334 This is an array of `expr_hash_table_size' elements. */
337 /* Size of the hash table, in elements. */
340 /* Number of hash table elements. */
341 unsigned int n_elems
;
344 /* Expression hash table. */
345 static struct hash_table_d expr_hash_table
;
347 /* This is a list of expressions which are MEMs and will be used by load
349 Load motion tracks MEMs which aren't killed by
350 anything except itself. (i.e., loads and stores to a single location).
351 We can then allow movement of these MEM refs with a little special
352 allowance. (all stores copy the same value to the reaching reg used
353 for the loads). This means all values used to store into memory must have
354 no side effects so we can re-issue the setter value.
355 Store Motion uses this structure as an expression table to track stores
356 which look interesting, and might be moveable towards the exit block. */
360 struct expr
* expr
; /* Gcse expression reference for LM. */
361 rtx pattern
; /* Pattern of this mem. */
362 rtx pattern_regs
; /* List of registers mentioned by the mem. */
363 rtx loads
; /* INSN list of loads seen. */
364 rtx stores
; /* INSN list of stores seen. */
365 struct ls_expr
* next
; /* Next in the list. */
366 int invalid
; /* Invalid for some reason. */
367 int index
; /* If it maps to a bitmap index. */
368 unsigned int hash_index
; /* Index when in a hash table. */
369 rtx reaching_reg
; /* Register to use when re-writing. */
372 /* Head of the list of load/store memory refs. */
373 static struct ls_expr
* pre_ldst_mems
= NULL
;
375 /* Hashtable for the load/store memory refs. */
376 static htab_t pre_ldst_table
= NULL
;
378 /* Bitmap containing one bit for each register in the program.
379 Used when performing GCSE to track which registers have been set since
380 the start of the basic block. */
381 static regset reg_set_bitmap
;
383 /* Array, indexed by basic block number for a list of insns which modify
384 memory within that block. */
385 static VEC (rtx
,heap
) **modify_mem_list
;
386 static bitmap modify_mem_list_set
;
388 typedef struct modify_pair_s
390 rtx dest
; /* A MEM. */
391 rtx dest_addr
; /* The canonical address of `dest'. */
394 DEF_VEC_O(modify_pair
);
395 DEF_VEC_ALLOC_O(modify_pair
,heap
);
397 /* This array parallels modify_mem_list, except that it stores MEMs
398 being set and their canonicalized memory addresses. */
399 static VEC (modify_pair
,heap
) **canon_modify_mem_list
;
401 /* Bitmap indexed by block numbers to record which blocks contain
403 static bitmap blocks_with_calls
;
405 /* Various variables for statistics gathering. */
407 /* Memory used in a pass.
408 This isn't intended to be absolutely precise. Its intent is only
409 to keep an eye on memory usage. */
410 static int bytes_used
;
412 /* GCSE substitutions made. */
413 static int gcse_subst_count
;
414 /* Number of copy instructions created. */
415 static int gcse_create_count
;
417 /* Doing code hoisting. */
418 static bool doing_code_hoisting_p
= false;
420 /* For available exprs */
421 static sbitmap
*ae_kill
;
423 static void compute_can_copy (void);
424 static void *gmalloc (size_t) ATTRIBUTE_MALLOC
;
425 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC
;
426 static void *gcse_alloc (unsigned long);
427 static void alloc_gcse_mem (void);
428 static void free_gcse_mem (void);
429 static void hash_scan_insn (rtx
, struct hash_table_d
*);
430 static void hash_scan_set (rtx
, rtx
, struct hash_table_d
*);
431 static void hash_scan_clobber (rtx
, rtx
, struct hash_table_d
*);
432 static void hash_scan_call (rtx
, rtx
, struct hash_table_d
*);
433 static int want_to_gcse_p (rtx
, int *);
434 static int oprs_unchanged_p (const_rtx
, const_rtx
, int);
435 static int oprs_anticipatable_p (const_rtx
, const_rtx
);
436 static int oprs_available_p (const_rtx
, const_rtx
);
437 static void insert_expr_in_table (rtx
, enum machine_mode
, rtx
, int, int, int,
438 struct hash_table_d
*);
439 static unsigned int hash_expr (const_rtx
, enum machine_mode
, int *, int);
440 static int expr_equiv_p (const_rtx
, const_rtx
);
441 static void record_last_reg_set_info (rtx
, int);
442 static void record_last_mem_set_info (rtx
);
443 static void record_last_set_info (rtx
, const_rtx
, void *);
444 static void compute_hash_table (struct hash_table_d
*);
445 static void alloc_hash_table (struct hash_table_d
*);
446 static void free_hash_table (struct hash_table_d
*);
447 static void compute_hash_table_work (struct hash_table_d
*);
448 static void dump_hash_table (FILE *, const char *, struct hash_table_d
*);
449 static void compute_transp (const_rtx
, int, sbitmap
*);
450 static void compute_local_properties (sbitmap
*, sbitmap
*, sbitmap
*,
451 struct hash_table_d
*);
452 static void mems_conflict_for_gcse_p (rtx
, const_rtx
, void *);
453 static int load_killed_in_block_p (const_basic_block
, int, const_rtx
, int);
454 static void canon_list_insert (rtx
, const_rtx
, void *);
455 static void alloc_pre_mem (int, int);
456 static void free_pre_mem (void);
457 static void compute_pre_data (void);
458 static int pre_expr_reaches_here_p (basic_block
, struct expr
*,
460 static void insert_insn_end_basic_block (struct expr
*, basic_block
);
461 static void pre_insert_copy_insn (struct expr
*, rtx
);
462 static void pre_insert_copies (void);
463 static int pre_delete (void);
464 static int pre_gcse (void);
465 static int one_pre_gcse_pass (void);
466 static void add_label_notes (rtx
, rtx
);
467 static void alloc_code_hoist_mem (int, int);
468 static void free_code_hoist_mem (void);
469 static void compute_code_hoist_vbeinout (void);
470 static void compute_code_hoist_data (void);
471 static int hoist_expr_reaches_here_p (basic_block
, int, basic_block
, char *,
473 static int hoist_code (void);
474 static int one_code_hoisting_pass (void);
475 static rtx
process_insert_insn (struct expr
*);
476 static int pre_edge_insert (struct edge_list
*, struct expr
**);
477 static int pre_expr_reaches_here_p_work (basic_block
, struct expr
*,
478 basic_block
, char *);
479 static struct ls_expr
* ldst_entry (rtx
);
480 static void free_ldst_entry (struct ls_expr
*);
481 static void free_ldst_mems (void);
482 static void print_ldst_list (FILE *);
483 static struct ls_expr
* find_rtx_in_ldst (rtx
);
484 static inline struct ls_expr
* first_ls_expr (void);
485 static inline struct ls_expr
* next_ls_expr (struct ls_expr
*);
486 static int simple_mem (const_rtx
);
487 static void invalidate_any_buried_refs (rtx
);
488 static void compute_ld_motion_mems (void);
489 static void trim_ld_motion_mems (void);
490 static void update_ld_motion_stores (struct expr
*);
491 static void clear_modify_mem_tables (void);
492 static void free_modify_mem_tables (void);
493 static rtx
gcse_emit_move_after (rtx
, rtx
, rtx
);
494 static bool is_too_expensive (const char *);
496 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
497 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
499 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
500 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
502 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
503 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
505 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
506 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
508 /* Misc. utilities. */
511 (this_target_gcse->x_can_copy)
512 #define can_copy_init_p \
513 (this_target_gcse->x_can_copy_init_p)
515 /* Compute which modes support reg/reg copy operations. */
518 compute_can_copy (void)
521 #ifndef AVOID_CCMODE_COPIES
524 memset (can_copy
, 0, NUM_MACHINE_MODES
);
527 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
528 if (GET_MODE_CLASS (i
) == MODE_CC
)
530 #ifdef AVOID_CCMODE_COPIES
533 reg
= gen_rtx_REG ((enum machine_mode
) i
, LAST_VIRTUAL_REGISTER
+ 1);
534 insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, reg
));
535 if (recog (PATTERN (insn
), insn
, NULL
) >= 0)
545 /* Returns whether the mode supports reg/reg copy operations. */
548 can_copy_p (enum machine_mode mode
)
550 if (! can_copy_init_p
)
553 can_copy_init_p
= true;
556 return can_copy
[mode
] != 0;
560 /* Cover function to xmalloc to record bytes allocated. */
563 gmalloc (size_t size
)
566 return xmalloc (size
);
569 /* Cover function to xcalloc to record bytes allocated. */
572 gcalloc (size_t nelem
, size_t elsize
)
574 bytes_used
+= nelem
* elsize
;
575 return xcalloc (nelem
, elsize
);
578 /* Cover function to obstack_alloc. */
581 gcse_alloc (unsigned long size
)
584 return obstack_alloc (&gcse_obstack
, size
);
587 /* Allocate memory for the reg/memory set tracking tables.
588 This is called at the start of each pass. */
591 alloc_gcse_mem (void)
593 /* Allocate vars to track sets of regs. */
594 reg_set_bitmap
= ALLOC_REG_SET (NULL
);
596 /* Allocate array to keep a list of insns which modify memory in each
598 modify_mem_list
= GCNEWVEC (VEC (rtx
,heap
) *, last_basic_block
);
599 canon_modify_mem_list
= GCNEWVEC (VEC (modify_pair
,heap
) *,
601 modify_mem_list_set
= BITMAP_ALLOC (NULL
);
602 blocks_with_calls
= BITMAP_ALLOC (NULL
);
605 /* Free memory allocated by alloc_gcse_mem. */
610 FREE_REG_SET (reg_set_bitmap
);
612 free_modify_mem_tables ();
613 BITMAP_FREE (modify_mem_list_set
);
614 BITMAP_FREE (blocks_with_calls
);
617 /* Compute the local properties of each recorded expression.
619 Local properties are those that are defined by the block, irrespective of
622 An expression is transparent in a block if its operands are not modified
625 An expression is computed (locally available) in a block if it is computed
626 at least once and expression would contain the same value if the
627 computation was moved to the end of the block.
629 An expression is locally anticipatable in a block if it is computed at
630 least once and expression would contain the same value if the computation
631 was moved to the beginning of the block.
633 We call this routine for pre and code hoisting. They all compute
634 basically the same information and thus can easily share this code.
636 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
637 properties. If NULL, then it is not necessary to compute or record that
640 TABLE controls which hash table to look at. */
643 compute_local_properties (sbitmap
*transp
, sbitmap
*comp
, sbitmap
*antloc
,
644 struct hash_table_d
*table
)
648 /* Initialize any bitmaps that were passed in. */
651 sbitmap_vector_ones (transp
, last_basic_block
);
655 sbitmap_vector_zero (comp
, last_basic_block
);
657 sbitmap_vector_zero (antloc
, last_basic_block
);
659 for (i
= 0; i
< table
->size
; i
++)
663 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
665 int indx
= expr
->bitmap_index
;
668 /* The expression is transparent in this block if it is not killed.
669 We start by assuming all are transparent [none are killed], and
670 then reset the bits for those that are. */
672 compute_transp (expr
->expr
, indx
, transp
);
674 /* The occurrences recorded in antic_occr are exactly those that
675 we want to set to nonzero in ANTLOC. */
677 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
679 SET_BIT (antloc
[BLOCK_FOR_INSN (occr
->insn
)->index
], indx
);
681 /* While we're scanning the table, this is a good place to
686 /* The occurrences recorded in avail_occr are exactly those that
687 we want to set to nonzero in COMP. */
689 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
691 SET_BIT (comp
[BLOCK_FOR_INSN (occr
->insn
)->index
], indx
);
693 /* While we're scanning the table, this is a good place to
698 /* While we're scanning the table, this is a good place to
700 expr
->reaching_reg
= 0;
705 /* Hash table support. */
707 struct reg_avail_info
714 static struct reg_avail_info
*reg_avail_info
;
715 static basic_block current_bb
;
718 /* See whether X, the source of a set, is something we want to consider for
722 want_to_gcse_p (rtx x
, int *max_distance_ptr
)
725 /* On register stack architectures, don't GCSE constants from the
726 constant pool, as the benefits are often swamped by the overhead
727 of shuffling the register stack between basic blocks. */
728 if (IS_STACK_MODE (GET_MODE (x
)))
729 x
= avoid_constant_pool_reference (x
);
732 /* GCSE'ing constants:
734 We do not specifically distinguish between constant and non-constant
735 expressions in PRE and Hoist. We use rtx_cost below to limit
736 the maximum distance simple expressions can travel.
738 Nevertheless, constants are much easier to GCSE, and, hence,
739 it is easy to overdo the optimizations. Usually, excessive PRE and
740 Hoisting of constant leads to increased register pressure.
742 RA can deal with this by rematerialing some of the constants.
743 Therefore, it is important that the back-end generates sets of constants
744 in a way that allows reload rematerialize them under high register
745 pressure, i.e., a pseudo register with REG_EQUAL to constant
746 is set only once. Failing to do so will result in IRA/reload
747 spilling such constants under high register pressure instead of
748 rematerializing them. */
750 switch (GET_CODE (x
))
761 if (!doing_code_hoisting_p
)
762 /* Do not PRE constants. */
768 if (doing_code_hoisting_p
)
769 /* PRE doesn't implement max_distance restriction. */
774 gcc_assert (!optimize_function_for_speed_p (cfun
)
775 && optimize_function_for_size_p (cfun
));
776 cost
= rtx_cost (x
, SET
, 0);
778 if (cost
< COSTS_N_INSNS (GCSE_UNRESTRICTED_COST
))
780 max_distance
= (GCSE_COST_DISTANCE_RATIO
* cost
) / 10;
781 if (max_distance
== 0)
784 gcc_assert (max_distance
> 0);
789 if (max_distance_ptr
)
790 *max_distance_ptr
= max_distance
;
793 return can_assign_to_reg_without_clobbers_p (x
);
797 /* Used internally by can_assign_to_reg_without_clobbers_p. */
799 static GTY(()) rtx test_insn
;
801 /* Return true if we can assign X to a pseudo register such that the
802 resulting insn does not result in clobbering a hard register as a
805 Additionally, if the target requires it, check that the resulting insn
806 can be copied. If it cannot, this means that X is special and probably
807 has hidden side-effects we don't want to mess with.
809 This function is typically used by code motion passes, to verify
810 that it is safe to insert an insn without worrying about clobbering
811 maybe live hard regs. */
814 can_assign_to_reg_without_clobbers_p (rtx x
)
816 int num_clobbers
= 0;
819 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
820 if (general_operand (x
, GET_MODE (x
)))
822 else if (GET_MODE (x
) == VOIDmode
)
825 /* Otherwise, check if we can make a valid insn from it. First initialize
826 our test insn if we haven't already. */
830 = make_insn_raw (gen_rtx_SET (VOIDmode
,
831 gen_rtx_REG (word_mode
,
832 FIRST_PSEUDO_REGISTER
* 2),
834 NEXT_INSN (test_insn
) = PREV_INSN (test_insn
) = 0;
837 /* Now make an insn like the one we would make when GCSE'ing and see if
839 PUT_MODE (SET_DEST (PATTERN (test_insn
)), GET_MODE (x
));
840 SET_SRC (PATTERN (test_insn
)) = x
;
842 icode
= recog (PATTERN (test_insn
), test_insn
, &num_clobbers
);
846 if (num_clobbers
> 0 && added_clobbers_hard_reg_p (icode
))
849 if (targetm
.cannot_copy_insn_p
&& targetm
.cannot_copy_insn_p (test_insn
))
855 /* Return nonzero if the operands of expression X are unchanged from the
856 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
857 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
860 oprs_unchanged_p (const_rtx x
, const_rtx insn
, int avail_p
)
874 struct reg_avail_info
*info
= ®_avail_info
[REGNO (x
)];
876 if (info
->last_bb
!= current_bb
)
879 return info
->last_set
< DF_INSN_LUID (insn
);
881 return info
->first_set
>= DF_INSN_LUID (insn
);
885 if (load_killed_in_block_p (current_bb
, DF_INSN_LUID (insn
),
889 return oprs_unchanged_p (XEXP (x
, 0), insn
, avail_p
);
916 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
920 /* If we are about to do the last recursive call needed at this
921 level, change it into iteration. This function is called enough
924 return oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
);
926 else if (! oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
))
929 else if (fmt
[i
] == 'E')
930 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
931 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, avail_p
))
938 /* Used for communication between mems_conflict_for_gcse_p and
939 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
940 conflict between two memory references. */
941 static int gcse_mems_conflict_p
;
943 /* Used for communication between mems_conflict_for_gcse_p and
944 load_killed_in_block_p. A memory reference for a load instruction,
945 mems_conflict_for_gcse_p will see if a memory store conflicts with
947 static const_rtx gcse_mem_operand
;
949 /* DEST is the output of an instruction. If it is a memory reference, and
950 possibly conflicts with the load found in gcse_mem_operand, then set
951 gcse_mems_conflict_p to a nonzero value. */
954 mems_conflict_for_gcse_p (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
,
955 void *data ATTRIBUTE_UNUSED
)
957 while (GET_CODE (dest
) == SUBREG
958 || GET_CODE (dest
) == ZERO_EXTRACT
959 || GET_CODE (dest
) == STRICT_LOW_PART
)
960 dest
= XEXP (dest
, 0);
962 /* If DEST is not a MEM, then it will not conflict with the load. Note
963 that function calls are assumed to clobber memory, but are handled
968 /* If we are setting a MEM in our list of specially recognized MEMs,
969 don't mark as killed this time. */
971 if (expr_equiv_p (dest
, gcse_mem_operand
) && pre_ldst_mems
!= NULL
)
973 if (!find_rtx_in_ldst (dest
))
974 gcse_mems_conflict_p
= 1;
978 if (true_dependence (dest
, GET_MODE (dest
), gcse_mem_operand
,
980 gcse_mems_conflict_p
= 1;
983 /* Return nonzero if the expression in X (a memory reference) is killed
984 in block BB before or after the insn with the LUID in UID_LIMIT.
985 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
988 To check the entire block, set UID_LIMIT to max_uid + 1 and
992 load_killed_in_block_p (const_basic_block bb
, int uid_limit
, const_rtx x
, int avail_p
)
994 VEC (rtx
,heap
) *list
= modify_mem_list
[bb
->index
];
998 /* If this is a readonly then we aren't going to be changing it. */
999 if (MEM_READONLY_P (x
))
1002 FOR_EACH_VEC_ELT_REVERSE (rtx
, list
, ix
, setter
)
1004 /* Ignore entries in the list that do not apply. */
1006 && DF_INSN_LUID (setter
) < uid_limit
)
1008 && DF_INSN_LUID (setter
) > uid_limit
))
1011 /* If SETTER is a call everything is clobbered. Note that calls
1012 to pure functions are never put on the list, so we need not
1013 worry about them. */
1014 if (CALL_P (setter
))
1017 /* SETTER must be an INSN of some kind that sets memory. Call
1018 note_stores to examine each hunk of memory that is modified.
1020 The note_stores interface is pretty limited, so we have to
1021 communicate via global variables. Yuk. */
1022 gcse_mem_operand
= x
;
1023 gcse_mems_conflict_p
= 0;
1024 note_stores (PATTERN (setter
), mems_conflict_for_gcse_p
, NULL
);
1025 if (gcse_mems_conflict_p
)
1031 /* Return nonzero if the operands of expression X are unchanged from
1032 the start of INSN's basic block up to but not including INSN. */
1035 oprs_anticipatable_p (const_rtx x
, const_rtx insn
)
1037 return oprs_unchanged_p (x
, insn
, 0);
1040 /* Return nonzero if the operands of expression X are unchanged from
1041 INSN to the end of INSN's basic block. */
1044 oprs_available_p (const_rtx x
, const_rtx insn
)
1046 return oprs_unchanged_p (x
, insn
, 1);
1049 /* Hash expression X.
1051 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1052 indicating if a volatile operand is found or if the expression contains
1053 something we don't want to insert in the table. HASH_TABLE_SIZE is
1054 the current size of the hash table to be probed. */
1057 hash_expr (const_rtx x
, enum machine_mode mode
, int *do_not_record_p
,
1058 int hash_table_size
)
1062 *do_not_record_p
= 0;
1064 hash
= hash_rtx (x
, mode
, do_not_record_p
,
1065 NULL
, /*have_reg_qty=*/false);
1066 return hash
% hash_table_size
;
1069 /* Return nonzero if exp1 is equivalent to exp2. */
1072 expr_equiv_p (const_rtx x
, const_rtx y
)
1074 return exp_equiv_p (x
, y
, 0, true);
1077 /* Insert expression X in INSN in the hash TABLE.
1078 If it is already present, record it as the last occurrence in INSN's
1081 MODE is the mode of the value X is being stored into.
1082 It is only used if X is a CONST_INT.
1084 ANTIC_P is nonzero if X is an anticipatable expression.
1085 AVAIL_P is nonzero if X is an available expression.
1087 MAX_DISTANCE is the maximum distance in instructions this expression can
1091 insert_expr_in_table (rtx x
, enum machine_mode mode
, rtx insn
, int antic_p
,
1092 int avail_p
, int max_distance
, struct hash_table_d
*table
)
1094 int found
, do_not_record_p
;
1096 struct expr
*cur_expr
, *last_expr
= NULL
;
1097 struct occr
*antic_occr
, *avail_occr
;
1099 hash
= hash_expr (x
, mode
, &do_not_record_p
, table
->size
);
1101 /* Do not insert expression in table if it contains volatile operands,
1102 or if hash_expr determines the expression is something we don't want
1103 to or can't handle. */
1104 if (do_not_record_p
)
1107 cur_expr
= table
->table
[hash
];
1110 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1112 /* If the expression isn't found, save a pointer to the end of
1114 last_expr
= cur_expr
;
1115 cur_expr
= cur_expr
->next_same_hash
;
1120 cur_expr
= GOBNEW (struct expr
);
1121 bytes_used
+= sizeof (struct expr
);
1122 if (table
->table
[hash
] == NULL
)
1123 /* This is the first pattern that hashed to this index. */
1124 table
->table
[hash
] = cur_expr
;
1126 /* Add EXPR to end of this hash chain. */
1127 last_expr
->next_same_hash
= cur_expr
;
1129 /* Set the fields of the expr element. */
1131 cur_expr
->bitmap_index
= table
->n_elems
++;
1132 cur_expr
->next_same_hash
= NULL
;
1133 cur_expr
->antic_occr
= NULL
;
1134 cur_expr
->avail_occr
= NULL
;
1135 gcc_assert (max_distance
>= 0);
1136 cur_expr
->max_distance
= max_distance
;
1139 gcc_assert (cur_expr
->max_distance
== max_distance
);
1141 /* Now record the occurrence(s). */
1144 antic_occr
= cur_expr
->antic_occr
;
1147 && BLOCK_FOR_INSN (antic_occr
->insn
) != BLOCK_FOR_INSN (insn
))
1151 /* Found another instance of the expression in the same basic block.
1152 Prefer the currently recorded one. We want the first one in the
1153 block and the block is scanned from start to end. */
1154 ; /* nothing to do */
1157 /* First occurrence of this expression in this basic block. */
1158 antic_occr
= GOBNEW (struct occr
);
1159 bytes_used
+= sizeof (struct occr
);
1160 antic_occr
->insn
= insn
;
1161 antic_occr
->next
= cur_expr
->antic_occr
;
1162 antic_occr
->deleted_p
= 0;
1163 cur_expr
->antic_occr
= antic_occr
;
1169 avail_occr
= cur_expr
->avail_occr
;
1172 && BLOCK_FOR_INSN (avail_occr
->insn
) == BLOCK_FOR_INSN (insn
))
1174 /* Found another instance of the expression in the same basic block.
1175 Prefer this occurrence to the currently recorded one. We want
1176 the last one in the block and the block is scanned from start
1178 avail_occr
->insn
= insn
;
1182 /* First occurrence of this expression in this basic block. */
1183 avail_occr
= GOBNEW (struct occr
);
1184 bytes_used
+= sizeof (struct occr
);
1185 avail_occr
->insn
= insn
;
1186 avail_occr
->next
= cur_expr
->avail_occr
;
1187 avail_occr
->deleted_p
= 0;
1188 cur_expr
->avail_occr
= avail_occr
;
1193 /* Scan pattern PAT of INSN and add an entry to the hash TABLE. */
1196 hash_scan_set (rtx pat
, rtx insn
, struct hash_table_d
*table
)
1198 rtx src
= SET_SRC (pat
);
1199 rtx dest
= SET_DEST (pat
);
1202 if (GET_CODE (src
) == CALL
)
1203 hash_scan_call (src
, insn
, table
);
1205 else if (REG_P (dest
))
1207 unsigned int regno
= REGNO (dest
);
1208 int max_distance
= 0;
1210 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1212 This allows us to do a single GCSE pass and still eliminate
1213 redundant constants, addresses or other expressions that are
1214 constructed with multiple instructions.
1216 However, keep the original SRC if INSN is a simple reg-reg move.
1217 In this case, there will almost always be a REG_EQUAL note on the
1218 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1219 for INSN, we miss copy propagation opportunities and we perform the
1220 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1221 do more than one PRE GCSE pass.
1223 Note that this does not impede profitable constant propagations. We
1224 "look through" reg-reg sets in lookup_avail_set. */
1225 note
= find_reg_equal_equiv_note (insn
);
1227 && REG_NOTE_KIND (note
) == REG_EQUAL
1229 && want_to_gcse_p (XEXP (note
, 0), NULL
))
1230 src
= XEXP (note
, 0), pat
= gen_rtx_SET (VOIDmode
, dest
, src
);
1232 /* Only record sets of pseudo-regs in the hash table. */
1233 if (regno
>= FIRST_PSEUDO_REGISTER
1234 /* Don't GCSE something if we can't do a reg/reg copy. */
1235 && can_copy_p (GET_MODE (dest
))
1236 /* GCSE commonly inserts instruction after the insn. We can't
1237 do that easily for EH edges so disable GCSE on these for now. */
1238 /* ??? We can now easily create new EH landing pads at the
1239 gimple level, for splitting edges; there's no reason we
1240 can't do the same thing at the rtl level. */
1241 && !can_throw_internal (insn
)
1242 /* Is SET_SRC something we want to gcse? */
1243 && want_to_gcse_p (src
, &max_distance
)
1244 /* Don't CSE a nop. */
1245 && ! set_noop_p (pat
)
1246 /* Don't GCSE if it has attached REG_EQUIV note.
1247 At this point this only function parameters should have
1248 REG_EQUIV notes and if the argument slot is used somewhere
1249 explicitly, it means address of parameter has been taken,
1250 so we should not extend the lifetime of the pseudo. */
1251 && (note
== NULL_RTX
|| ! MEM_P (XEXP (note
, 0))))
1253 /* An expression is not anticipatable if its operands are
1254 modified before this insn or if this is not the only SET in
1255 this insn. The latter condition does not have to mean that
1256 SRC itself is not anticipatable, but we just will not be
1257 able to handle code motion of insns with multiple sets. */
1258 int antic_p
= oprs_anticipatable_p (src
, insn
)
1259 && !multiple_sets (insn
);
1260 /* An expression is not available if its operands are
1261 subsequently modified, including this insn. It's also not
1262 available if this is a branch, because we can't insert
1263 a set after the branch. */
1264 int avail_p
= (oprs_available_p (src
, insn
)
1265 && ! JUMP_P (insn
));
1267 insert_expr_in_table (src
, GET_MODE (dest
), insn
, antic_p
, avail_p
,
1268 max_distance
, table
);
1271 /* In case of store we want to consider the memory value as available in
1272 the REG stored in that memory. This makes it possible to remove
1273 redundant loads from due to stores to the same location. */
1274 else if (flag_gcse_las
&& REG_P (src
) && MEM_P (dest
))
1276 unsigned int regno
= REGNO (src
);
1277 int max_distance
= 0;
1279 /* Only record sets of pseudo-regs in the hash table. */
1280 if (regno
>= FIRST_PSEUDO_REGISTER
1281 /* Don't GCSE something if we can't do a reg/reg copy. */
1282 && can_copy_p (GET_MODE (src
))
1283 /* GCSE commonly inserts instruction after the insn. We can't
1284 do that easily for EH edges so disable GCSE on these for now. */
1285 && !can_throw_internal (insn
)
1286 /* Is SET_DEST something we want to gcse? */
1287 && want_to_gcse_p (dest
, &max_distance
)
1288 /* Don't CSE a nop. */
1289 && ! set_noop_p (pat
)
1290 /* Don't GCSE if it has attached REG_EQUIV note.
1291 At this point this only function parameters should have
1292 REG_EQUIV notes and if the argument slot is used somewhere
1293 explicitly, it means address of parameter has been taken,
1294 so we should not extend the lifetime of the pseudo. */
1295 && ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) == 0
1296 || ! MEM_P (XEXP (note
, 0))))
1298 /* Stores are never anticipatable. */
1300 /* An expression is not available if its operands are
1301 subsequently modified, including this insn. It's also not
1302 available if this is a branch, because we can't insert
1303 a set after the branch. */
1304 int avail_p
= oprs_available_p (dest
, insn
)
1307 /* Record the memory expression (DEST) in the hash table. */
1308 insert_expr_in_table (dest
, GET_MODE (dest
), insn
,
1309 antic_p
, avail_p
, max_distance
, table
);
1315 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
1316 struct hash_table_d
*table ATTRIBUTE_UNUSED
)
1318 /* Currently nothing to do. */
1322 hash_scan_call (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
1323 struct hash_table_d
*table ATTRIBUTE_UNUSED
)
1325 /* Currently nothing to do. */
1328 /* Process INSN and add hash table entries as appropriate.
1330 Only available expressions that set a single pseudo-reg are recorded.
1332 Single sets in a PARALLEL could be handled, but it's an extra complication
1333 that isn't dealt with right now. The trick is handling the CLOBBERs that
1334 are also in the PARALLEL. Later.
1336 If SET_P is nonzero, this is for the assignment hash table,
1337 otherwise it is for the expression hash table. */
1340 hash_scan_insn (rtx insn
, struct hash_table_d
*table
)
1342 rtx pat
= PATTERN (insn
);
1345 /* Pick out the sets of INSN and for other forms of instructions record
1346 what's been modified. */
1348 if (GET_CODE (pat
) == SET
)
1349 hash_scan_set (pat
, insn
, table
);
1350 else if (GET_CODE (pat
) == PARALLEL
)
1351 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1353 rtx x
= XVECEXP (pat
, 0, i
);
1355 if (GET_CODE (x
) == SET
)
1356 hash_scan_set (x
, insn
, table
);
1357 else if (GET_CODE (x
) == CLOBBER
)
1358 hash_scan_clobber (x
, insn
, table
);
1359 else if (GET_CODE (x
) == CALL
)
1360 hash_scan_call (x
, insn
, table
);
1363 else if (GET_CODE (pat
) == CLOBBER
)
1364 hash_scan_clobber (pat
, insn
, table
);
1365 else if (GET_CODE (pat
) == CALL
)
1366 hash_scan_call (pat
, insn
, table
);
1370 dump_hash_table (FILE *file
, const char *name
, struct hash_table_d
*table
)
1373 /* Flattened out table, so it's printed in proper order. */
1374 struct expr
**flat_table
;
1375 unsigned int *hash_val
;
1378 flat_table
= XCNEWVEC (struct expr
*, table
->n_elems
);
1379 hash_val
= XNEWVEC (unsigned int, table
->n_elems
);
1381 for (i
= 0; i
< (int) table
->size
; i
++)
1382 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1384 flat_table
[expr
->bitmap_index
] = expr
;
1385 hash_val
[expr
->bitmap_index
] = i
;
1388 fprintf (file
, "%s hash table (%d buckets, %d entries)\n",
1389 name
, table
->size
, table
->n_elems
);
1391 for (i
= 0; i
< (int) table
->n_elems
; i
++)
1392 if (flat_table
[i
] != 0)
1394 expr
= flat_table
[i
];
1395 fprintf (file
, "Index %d (hash value %d; max distance %d)\n ",
1396 expr
->bitmap_index
, hash_val
[i
], expr
->max_distance
);
1397 print_rtl (file
, expr
->expr
);
1398 fprintf (file
, "\n");
1401 fprintf (file
, "\n");
1407 /* Record register first/last/block set information for REGNO in INSN.
1409 first_set records the first place in the block where the register
1410 is set and is used to compute "anticipatability".
1412 last_set records the last place in the block where the register
1413 is set and is used to compute "availability".
1415 last_bb records the block for which first_set and last_set are
1416 valid, as a quick test to invalidate them. */
1419 record_last_reg_set_info (rtx insn
, int regno
)
1421 struct reg_avail_info
*info
= ®_avail_info
[regno
];
1422 int luid
= DF_INSN_LUID (insn
);
1424 info
->last_set
= luid
;
1425 if (info
->last_bb
!= current_bb
)
1427 info
->last_bb
= current_bb
;
1428 info
->first_set
= luid
;
1433 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1434 Note we store a pair of elements in the list, so they have to be
1435 taken off pairwise. */
1438 canon_list_insert (rtx dest ATTRIBUTE_UNUSED
, const_rtx unused1 ATTRIBUTE_UNUSED
,
1441 rtx dest_addr
, insn
;
1445 while (GET_CODE (dest
) == SUBREG
1446 || GET_CODE (dest
) == ZERO_EXTRACT
1447 || GET_CODE (dest
) == STRICT_LOW_PART
)
1448 dest
= XEXP (dest
, 0);
1450 /* If DEST is not a MEM, then it will not conflict with a load. Note
1451 that function calls are assumed to clobber memory, but are handled
1457 dest_addr
= get_addr (XEXP (dest
, 0));
1458 dest_addr
= canon_rtx (dest_addr
);
1459 insn
= (rtx
) v_insn
;
1460 bb
= BLOCK_FOR_INSN (insn
)->index
;
1462 pair
= VEC_safe_push (modify_pair
, heap
, canon_modify_mem_list
[bb
], NULL
);
1464 pair
->dest_addr
= dest_addr
;
1467 /* Record memory modification information for INSN. We do not actually care
1468 about the memory location(s) that are set, or even how they are set (consider
1469 a CALL_INSN). We merely need to record which insns modify memory. */
1472 record_last_mem_set_info (rtx insn
)
1474 int bb
= BLOCK_FOR_INSN (insn
)->index
;
1476 /* load_killed_in_block_p will handle the case of calls clobbering
1478 VEC_safe_push (rtx
, heap
, modify_mem_list
[bb
], insn
);
1479 bitmap_set_bit (modify_mem_list_set
, bb
);
1482 bitmap_set_bit (blocks_with_calls
, bb
);
1484 note_stores (PATTERN (insn
), canon_list_insert
, (void*) insn
);
1487 /* Called from compute_hash_table via note_stores to handle one
1488 SET or CLOBBER in an insn. DATA is really the instruction in which
1489 the SET is taking place. */
1492 record_last_set_info (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
, void *data
)
1494 rtx last_set_insn
= (rtx
) data
;
1496 if (GET_CODE (dest
) == SUBREG
)
1497 dest
= SUBREG_REG (dest
);
1500 record_last_reg_set_info (last_set_insn
, REGNO (dest
));
1501 else if (MEM_P (dest
)
1502 /* Ignore pushes, they clobber nothing. */
1503 && ! push_operand (dest
, GET_MODE (dest
)))
1504 record_last_mem_set_info (last_set_insn
);
1507 /* Top level function to create an expression hash table.
1509 Expression entries are placed in the hash table if
1510 - they are of the form (set (pseudo-reg) src),
1511 - src is something we want to perform GCSE on,
1512 - none of the operands are subsequently modified in the block
1514 Currently src must be a pseudo-reg or a const_int.
1516 TABLE is the table computed. */
1519 compute_hash_table_work (struct hash_table_d
*table
)
1523 /* re-Cache any INSN_LIST nodes we have allocated. */
1524 clear_modify_mem_tables ();
1525 /* Some working arrays used to track first and last set in each block. */
1526 reg_avail_info
= GNEWVEC (struct reg_avail_info
, max_reg_num ());
1528 for (i
= 0; i
< max_reg_num (); ++i
)
1529 reg_avail_info
[i
].last_bb
= NULL
;
1531 FOR_EACH_BB (current_bb
)
1536 /* First pass over the instructions records information used to
1537 determine when registers and memory are first and last set. */
1538 FOR_BB_INSNS (current_bb
, insn
)
1540 if (!NONDEBUG_INSN_P (insn
))
1545 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
1546 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
1547 record_last_reg_set_info (insn
, regno
);
1549 if (! RTL_CONST_OR_PURE_CALL_P (insn
))
1550 record_last_mem_set_info (insn
);
1553 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
1556 /* The next pass builds the hash table. */
1557 FOR_BB_INSNS (current_bb
, insn
)
1558 if (NONDEBUG_INSN_P (insn
))
1559 hash_scan_insn (insn
, table
);
1562 free (reg_avail_info
);
1563 reg_avail_info
= NULL
;
1566 /* Allocate space for the set/expr hash TABLE.
1567 It is used to determine the number of buckets to use. */
1570 alloc_hash_table (struct hash_table_d
*table
)
1574 n
= get_max_insn_count ();
1576 table
->size
= n
/ 4;
1577 if (table
->size
< 11)
1580 /* Attempt to maintain efficient use of hash table.
1581 Making it an odd number is simplest for now.
1582 ??? Later take some measurements. */
1584 n
= table
->size
* sizeof (struct expr
*);
1585 table
->table
= GNEWVAR (struct expr
*, n
);
1588 /* Free things allocated by alloc_hash_table. */
1591 free_hash_table (struct hash_table_d
*table
)
1593 free (table
->table
);
1596 /* Compute the expression hash table TABLE. */
1599 compute_hash_table (struct hash_table_d
*table
)
1601 /* Initialize count of number of entries in hash table. */
1603 memset (table
->table
, 0, table
->size
* sizeof (struct expr
*));
1605 compute_hash_table_work (table
);
1608 /* Expression tracking support. */
1610 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1612 clear_modify_mem_tables (void)
1617 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set
, 0, i
, bi
)
1619 VEC_free (rtx
, heap
, modify_mem_list
[i
]);
1620 VEC_free (modify_pair
, heap
, canon_modify_mem_list
[i
]);
1622 bitmap_clear (modify_mem_list_set
);
1623 bitmap_clear (blocks_with_calls
);
1626 /* Release memory used by modify_mem_list_set. */
1629 free_modify_mem_tables (void)
1631 clear_modify_mem_tables ();
1632 free (modify_mem_list
);
1633 free (canon_modify_mem_list
);
1634 modify_mem_list
= 0;
1635 canon_modify_mem_list
= 0;
1639 /* For each block, compute whether X is transparent. X is either an
1640 expression or an assignment [though we don't care which, for this context
1641 an assignment is treated as an expression]. For each block where an
1642 element of X is modified, reset the INDX bit in BMAP. */
1645 compute_transp (const_rtx x
, int indx
, sbitmap
*bmap
)
1651 /* repeat is used to turn tail-recursion into iteration since GCC
1652 can't do it when there's no return value. */
1658 code
= GET_CODE (x
);
1664 for (def
= DF_REG_DEF_CHAIN (REGNO (x
));
1666 def
= DF_REF_NEXT_REG (def
))
1667 RESET_BIT (bmap
[DF_REF_BB (def
)->index
], indx
);
1673 if (! MEM_READONLY_P (x
))
1678 /* First handle all the blocks with calls. We don't need to
1679 do any list walking for them. */
1680 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls
, 0, bb_index
, bi
)
1682 RESET_BIT (bmap
[bb_index
], indx
);
1685 /* Now iterate over the blocks which have memory modifications
1686 but which do not have any calls. */
1687 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set
,
1691 VEC (modify_pair
,heap
) *list
1692 = canon_modify_mem_list
[bb_index
];
1696 FOR_EACH_VEC_ELT_REVERSE (modify_pair
, list
, ix
, pair
)
1698 rtx dest
= pair
->dest
;
1699 rtx dest_addr
= pair
->dest_addr
;
1701 if (canon_true_dependence (dest
, GET_MODE (dest
), dest_addr
,
1702 x
, NULL_RTX
, rtx_addr_varies_p
))
1703 RESET_BIT (bmap
[bb_index
], indx
);
1728 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
1732 /* If we are about to do the last recursive call
1733 needed at this level, change it into iteration.
1734 This function is called enough to be worth it. */
1741 compute_transp (XEXP (x
, i
), indx
, bmap
);
1743 else if (fmt
[i
] == 'E')
1744 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1745 compute_transp (XVECEXP (x
, i
, j
), indx
, bmap
);
1750 /* Compute PRE+LCM working variables. */
1752 /* Local properties of expressions. */
1753 /* Nonzero for expressions that are transparent in the block. */
1754 static sbitmap
*transp
;
1756 /* Nonzero for expressions that are computed (available) in the block. */
1757 static sbitmap
*comp
;
1759 /* Nonzero for expressions that are locally anticipatable in the block. */
1760 static sbitmap
*antloc
;
1762 /* Nonzero for expressions where this block is an optimal computation
1764 static sbitmap
*pre_optimal
;
1766 /* Nonzero for expressions which are redundant in a particular block. */
1767 static sbitmap
*pre_redundant
;
1769 /* Nonzero for expressions which should be inserted on a specific edge. */
1770 static sbitmap
*pre_insert_map
;
1772 /* Nonzero for expressions which should be deleted in a specific block. */
1773 static sbitmap
*pre_delete_map
;
1775 /* Contains the edge_list returned by pre_edge_lcm. */
1776 static struct edge_list
*edge_list
;
1778 /* Allocate vars used for PRE analysis. */
1781 alloc_pre_mem (int n_blocks
, int n_exprs
)
1783 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
1784 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
1785 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
1788 pre_redundant
= NULL
;
1789 pre_insert_map
= NULL
;
1790 pre_delete_map
= NULL
;
1791 ae_kill
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
1793 /* pre_insert and pre_delete are allocated later. */
1796 /* Free vars used for PRE analysis. */
1801 sbitmap_vector_free (transp
);
1802 sbitmap_vector_free (comp
);
1804 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1807 sbitmap_vector_free (pre_optimal
);
1809 sbitmap_vector_free (pre_redundant
);
1811 sbitmap_vector_free (pre_insert_map
);
1813 sbitmap_vector_free (pre_delete_map
);
1815 transp
= comp
= NULL
;
1816 pre_optimal
= pre_redundant
= pre_insert_map
= pre_delete_map
= NULL
;
1819 /* Remove certain expressions from anticipatable and transparent
1820 sets of basic blocks that have incoming abnormal edge.
1821 For PRE remove potentially trapping expressions to avoid placing
1822 them on abnormal edges. For hoisting remove memory references that
1823 can be clobbered by calls. */
1826 prune_expressions (bool pre_p
)
1828 sbitmap prune_exprs
;
1832 prune_exprs
= sbitmap_alloc (expr_hash_table
.n_elems
);
1833 sbitmap_zero (prune_exprs
);
1834 for (ui
= 0; ui
< expr_hash_table
.size
; ui
++)
1837 for (e
= expr_hash_table
.table
[ui
]; e
!= NULL
; e
= e
->next_same_hash
)
1839 /* Note potentially trapping expressions. */
1840 if (may_trap_p (e
->expr
))
1842 SET_BIT (prune_exprs
, e
->bitmap_index
);
1846 if (!pre_p
&& MEM_P (e
->expr
))
1847 /* Note memory references that can be clobbered by a call.
1848 We do not split abnormal edges in hoisting, so would
1849 a memory reference get hoisted along an abnormal edge,
1850 it would be placed /before/ the call. Therefore, only
1851 constant memory references can be hoisted along abnormal
1854 if (GET_CODE (XEXP (e
->expr
, 0)) == SYMBOL_REF
1855 && CONSTANT_POOL_ADDRESS_P (XEXP (e
->expr
, 0)))
1858 if (MEM_READONLY_P (e
->expr
)
1859 && !MEM_VOLATILE_P (e
->expr
)
1860 && MEM_NOTRAP_P (e
->expr
))
1861 /* Constant memory reference, e.g., a PIC address. */
1864 /* ??? Optimally, we would use interprocedural alias
1865 analysis to determine if this mem is actually killed
1868 SET_BIT (prune_exprs
, e
->bitmap_index
);
1878 /* If the current block is the destination of an abnormal edge, we
1879 kill all trapping (for PRE) and memory (for hoist) expressions
1880 because we won't be able to properly place the instruction on
1881 the edge. So make them neither anticipatable nor transparent.
1882 This is fairly conservative.
1884 ??? For hoisting it may be necessary to check for set-and-jump
1885 instructions here, not just for abnormal edges. The general problem
1886 is that when an expression cannot not be placed right at the end of
1887 a basic block we should account for any side-effects of a subsequent
1888 jump instructions that could clobber the expression. It would
1889 be best to implement this check along the lines of
1890 hoist_expr_reaches_here_p where the target block is already known
1891 and, hence, there's no need to conservatively prune expressions on
1892 "intermediate" set-and-jump instructions. */
1893 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1894 if ((e
->flags
& EDGE_ABNORMAL
)
1895 && (pre_p
|| CALL_P (BB_END (e
->src
))))
1897 sbitmap_difference (antloc
[bb
->index
],
1898 antloc
[bb
->index
], prune_exprs
);
1899 sbitmap_difference (transp
[bb
->index
],
1900 transp
[bb
->index
], prune_exprs
);
1905 sbitmap_free (prune_exprs
);
1908 /* It may be necessary to insert a large number of insns on edges to
1909 make the existing occurrences of expressions fully redundant. This
1910 routine examines the set of insertions and deletions and if the ratio
1911 of insertions to deletions is too high for a particular expression, then
1912 the expression is removed from the insertion/deletion sets.
1914 N_ELEMS is the number of elements in the hash table. */
1917 prune_insertions_deletions (int n_elems
)
1919 sbitmap_iterator sbi
;
1920 sbitmap prune_exprs
;
1922 /* We always use I to iterate over blocks/edges and J to iterate over
1926 /* Counts for the number of times an expression needs to be inserted and
1927 number of times an expression can be removed as a result. */
1928 int *insertions
= GCNEWVEC (int, n_elems
);
1929 int *deletions
= GCNEWVEC (int, n_elems
);
1931 /* Set of expressions which require too many insertions relative to
1932 the number of deletions achieved. We will prune these out of the
1933 insertion/deletion sets. */
1934 prune_exprs
= sbitmap_alloc (n_elems
);
1935 sbitmap_zero (prune_exprs
);
1937 /* Iterate over the edges counting the number of times each expression
1938 needs to be inserted. */
1939 for (i
= 0; i
< (unsigned) n_edges
; i
++)
1941 EXECUTE_IF_SET_IN_SBITMAP (pre_insert_map
[i
], 0, j
, sbi
)
1945 /* Similarly for deletions, but those occur in blocks rather than on
1947 for (i
= 0; i
< (unsigned) last_basic_block
; i
++)
1949 EXECUTE_IF_SET_IN_SBITMAP (pre_delete_map
[i
], 0, j
, sbi
)
1953 /* Now that we have accurate counts, iterate over the elements in the
1954 hash table and see if any need too many insertions relative to the
1955 number of evaluations that can be removed. If so, mark them in
1957 for (j
= 0; j
< (unsigned) n_elems
; j
++)
1959 && ((unsigned) insertions
[j
] / deletions
[j
]) > MAX_GCSE_INSERTION_RATIO
)
1960 SET_BIT (prune_exprs
, j
);
1962 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1963 EXECUTE_IF_SET_IN_SBITMAP (prune_exprs
, 0, j
, sbi
)
1965 for (i
= 0; i
< (unsigned) n_edges
; i
++)
1966 RESET_BIT (pre_insert_map
[i
], j
);
1968 for (i
= 0; i
< (unsigned) last_basic_block
; i
++)
1969 RESET_BIT (pre_delete_map
[i
], j
);
1972 sbitmap_free (prune_exprs
);
1977 /* Top level routine to do the dataflow analysis needed by PRE. */
1980 compute_pre_data (void)
1984 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
1985 prune_expressions (true);
1986 sbitmap_vector_zero (ae_kill
, last_basic_block
);
1988 /* Compute ae_kill for each basic block using:
1995 sbitmap_a_or_b (ae_kill
[bb
->index
], transp
[bb
->index
], comp
[bb
->index
]);
1996 sbitmap_not (ae_kill
[bb
->index
], ae_kill
[bb
->index
]);
1999 edge_list
= pre_edge_lcm (expr_hash_table
.n_elems
, transp
, comp
, antloc
,
2000 ae_kill
, &pre_insert_map
, &pre_delete_map
);
2001 sbitmap_vector_free (antloc
);
2003 sbitmap_vector_free (ae_kill
);
2006 prune_insertions_deletions (expr_hash_table
.n_elems
);
2011 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
2014 VISITED is a pointer to a working buffer for tracking which BB's have
2015 been visited. It is NULL for the top-level call.
2017 We treat reaching expressions that go through blocks containing the same
2018 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2019 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2020 2 as not reaching. The intent is to improve the probability of finding
2021 only one reaching expression and to reduce register lifetimes by picking
2022 the closest such expression. */
2025 pre_expr_reaches_here_p_work (basic_block occr_bb
, struct expr
*expr
, basic_block bb
, char *visited
)
2030 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
2032 basic_block pred_bb
= pred
->src
;
2034 if (pred
->src
== ENTRY_BLOCK_PTR
2035 /* Has predecessor has already been visited? */
2036 || visited
[pred_bb
->index
])
2037 ;/* Nothing to do. */
2039 /* Does this predecessor generate this expression? */
2040 else if (TEST_BIT (comp
[pred_bb
->index
], expr
->bitmap_index
))
2042 /* Is this the occurrence we're looking for?
2043 Note that there's only one generating occurrence per block
2044 so we just need to check the block number. */
2045 if (occr_bb
== pred_bb
)
2048 visited
[pred_bb
->index
] = 1;
2050 /* Ignore this predecessor if it kills the expression. */
2051 else if (! TEST_BIT (transp
[pred_bb
->index
], expr
->bitmap_index
))
2052 visited
[pred_bb
->index
] = 1;
2054 /* Neither gen nor kill. */
2057 visited
[pred_bb
->index
] = 1;
2058 if (pre_expr_reaches_here_p_work (occr_bb
, expr
, pred_bb
, visited
))
2063 /* All paths have been checked. */
2067 /* The wrapper for pre_expr_reaches_here_work that ensures that any
2068 memory allocated for that function is returned. */
2071 pre_expr_reaches_here_p (basic_block occr_bb
, struct expr
*expr
, basic_block bb
)
2074 char *visited
= XCNEWVEC (char, last_basic_block
);
2076 rval
= pre_expr_reaches_here_p_work (occr_bb
, expr
, bb
, visited
);
2083 /* Given an expr, generate RTL which we can insert at the end of a BB,
2084 or on an edge. Set the block number of any insns generated to
2088 process_insert_insn (struct expr
*expr
)
2090 rtx reg
= expr
->reaching_reg
;
2091 rtx exp
= copy_rtx (expr
->expr
);
2096 /* If the expression is something that's an operand, like a constant,
2097 just copy it to a register. */
2098 if (general_operand (exp
, GET_MODE (reg
)))
2099 emit_move_insn (reg
, exp
);
2101 /* Otherwise, make a new insn to compute this expression and make sure the
2102 insn will be recognized (this also adds any needed CLOBBERs). Copy the
2103 expression to make sure we don't have any sharing issues. */
2106 rtx insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, exp
));
2108 if (insn_invalid_p (insn
))
2119 /* Add EXPR to the end of basic block BB.
2121 This is used by both the PRE and code hoisting. */
2124 insert_insn_end_basic_block (struct expr
*expr
, basic_block bb
)
2126 rtx insn
= BB_END (bb
);
2128 rtx reg
= expr
->reaching_reg
;
2129 int regno
= REGNO (reg
);
2132 pat
= process_insert_insn (expr
);
2133 gcc_assert (pat
&& INSN_P (pat
));
2136 while (NEXT_INSN (pat_end
) != NULL_RTX
)
2137 pat_end
= NEXT_INSN (pat_end
);
2139 /* If the last insn is a jump, insert EXPR in front [taking care to
2140 handle cc0, etc. properly]. Similarly we need to care trapping
2141 instructions in presence of non-call exceptions. */
2144 || (NONJUMP_INSN_P (insn
)
2145 && (!single_succ_p (bb
)
2146 || single_succ_edge (bb
)->flags
& EDGE_ABNORMAL
)))
2152 /* If this is a jump table, then we can't insert stuff here. Since
2153 we know the previous real insn must be the tablejump, we insert
2154 the new instruction just before the tablejump. */
2155 if (GET_CODE (PATTERN (insn
)) == ADDR_VEC
2156 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
2157 insn
= prev_active_insn (insn
);
2160 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2161 if cc0 isn't set. */
2162 note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2164 insn
= XEXP (note
, 0);
2167 rtx maybe_cc0_setter
= prev_nonnote_insn (insn
);
2168 if (maybe_cc0_setter
2169 && INSN_P (maybe_cc0_setter
)
2170 && sets_cc0_p (PATTERN (maybe_cc0_setter
)))
2171 insn
= maybe_cc0_setter
;
2174 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2175 new_insn
= emit_insn_before_noloc (pat
, insn
, bb
);
2178 /* Likewise if the last insn is a call, as will happen in the presence
2179 of exception handling. */
2180 else if (CALL_P (insn
)
2181 && (!single_succ_p (bb
)
2182 || single_succ_edge (bb
)->flags
& EDGE_ABNORMAL
))
2184 /* Keeping in mind targets with small register classes and parameters
2185 in registers, we search backward and place the instructions before
2186 the first parameter is loaded. Do this for everyone for consistency
2187 and a presumption that we'll get better code elsewhere as well. */
2189 /* Since different machines initialize their parameter registers
2190 in different orders, assume nothing. Collect the set of all
2191 parameter registers. */
2192 insn
= find_first_parameter_load (insn
, BB_HEAD (bb
));
2194 /* If we found all the parameter loads, then we want to insert
2195 before the first parameter load.
2197 If we did not find all the parameter loads, then we might have
2198 stopped on the head of the block, which could be a CODE_LABEL.
2199 If we inserted before the CODE_LABEL, then we would be putting
2200 the insn in the wrong basic block. In that case, put the insn
2201 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2202 while (LABEL_P (insn
)
2203 || NOTE_INSN_BASIC_BLOCK_P (insn
))
2204 insn
= NEXT_INSN (insn
);
2206 new_insn
= emit_insn_before_noloc (pat
, insn
, bb
);
2209 new_insn
= emit_insn_after_noloc (pat
, insn
, bb
);
2214 add_label_notes (PATTERN (pat
), new_insn
);
2217 pat
= NEXT_INSN (pat
);
2220 gcse_create_count
++;
2224 fprintf (dump_file
, "PRE/HOIST: end of bb %d, insn %d, ",
2225 bb
->index
, INSN_UID (new_insn
));
2226 fprintf (dump_file
, "copying expression %d to reg %d\n",
2227 expr
->bitmap_index
, regno
);
2231 /* Insert partially redundant expressions on edges in the CFG to make
2232 the expressions fully redundant. */
2235 pre_edge_insert (struct edge_list
*edge_list
, struct expr
**index_map
)
2237 int e
, i
, j
, num_edges
, set_size
, did_insert
= 0;
2240 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2241 if it reaches any of the deleted expressions. */
2243 set_size
= pre_insert_map
[0]->size
;
2244 num_edges
= NUM_EDGES (edge_list
);
2245 inserted
= sbitmap_vector_alloc (num_edges
, expr_hash_table
.n_elems
);
2246 sbitmap_vector_zero (inserted
, num_edges
);
2248 for (e
= 0; e
< num_edges
; e
++)
2251 basic_block bb
= INDEX_EDGE_PRED_BB (edge_list
, e
);
2253 for (i
= indx
= 0; i
< set_size
; i
++, indx
+= SBITMAP_ELT_BITS
)
2255 SBITMAP_ELT_TYPE insert
= pre_insert_map
[e
]->elms
[i
];
2257 for (j
= indx
; insert
&& j
< (int) expr_hash_table
.n_elems
; j
++, insert
>>= 1)
2258 if ((insert
& 1) != 0 && index_map
[j
]->reaching_reg
!= NULL_RTX
)
2260 struct expr
*expr
= index_map
[j
];
2263 /* Now look at each deleted occurrence of this expression. */
2264 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
2266 if (! occr
->deleted_p
)
2269 /* Insert this expression on this edge if it would
2270 reach the deleted occurrence in BB. */
2271 if (!TEST_BIT (inserted
[e
], j
))
2274 edge eg
= INDEX_EDGE (edge_list
, e
);
2276 /* We can't insert anything on an abnormal and
2277 critical edge, so we insert the insn at the end of
2278 the previous block. There are several alternatives
2279 detailed in Morgans book P277 (sec 10.5) for
2280 handling this situation. This one is easiest for
2283 if (eg
->flags
& EDGE_ABNORMAL
)
2284 insert_insn_end_basic_block (index_map
[j
], bb
);
2287 insn
= process_insert_insn (index_map
[j
]);
2288 insert_insn_on_edge (insn
, eg
);
2293 fprintf (dump_file
, "PRE: edge (%d,%d), ",
2295 INDEX_EDGE_SUCC_BB (edge_list
, e
)->index
);
2296 fprintf (dump_file
, "copy expression %d\n",
2297 expr
->bitmap_index
);
2300 update_ld_motion_stores (expr
);
2301 SET_BIT (inserted
[e
], j
);
2303 gcse_create_count
++;
2310 sbitmap_vector_free (inserted
);
2314 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2315 Given "old_reg <- expr" (INSN), instead of adding after it
2316 reaching_reg <- old_reg
2317 it's better to do the following:
2318 reaching_reg <- expr
2319 old_reg <- reaching_reg
2320 because this way copy propagation can discover additional PRE
2321 opportunities. But if this fails, we try the old way.
2322 When "expr" is a store, i.e.
2323 given "MEM <- old_reg", instead of adding after it
2324 reaching_reg <- old_reg
2325 it's better to add it before as follows:
2326 reaching_reg <- old_reg
2327 MEM <- reaching_reg. */
2330 pre_insert_copy_insn (struct expr
*expr
, rtx insn
)
2332 rtx reg
= expr
->reaching_reg
;
2333 int regno
= REGNO (reg
);
2334 int indx
= expr
->bitmap_index
;
2335 rtx pat
= PATTERN (insn
);
2336 rtx set
, first_set
, new_insn
;
2340 /* This block matches the logic in hash_scan_insn. */
2341 switch (GET_CODE (pat
))
2348 /* Search through the parallel looking for the set whose
2349 source was the expression that we're interested in. */
2350 first_set
= NULL_RTX
;
2352 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
2354 rtx x
= XVECEXP (pat
, 0, i
);
2355 if (GET_CODE (x
) == SET
)
2357 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2358 may not find an equivalent expression, but in this
2359 case the PARALLEL will have a single set. */
2360 if (first_set
== NULL_RTX
)
2362 if (expr_equiv_p (SET_SRC (x
), expr
->expr
))
2370 gcc_assert (first_set
);
2371 if (set
== NULL_RTX
)
2379 if (REG_P (SET_DEST (set
)))
2381 old_reg
= SET_DEST (set
);
2382 /* Check if we can modify the set destination in the original insn. */
2383 if (validate_change (insn
, &SET_DEST (set
), reg
, 0))
2385 new_insn
= gen_move_insn (old_reg
, reg
);
2386 new_insn
= emit_insn_after (new_insn
, insn
);
2390 new_insn
= gen_move_insn (reg
, old_reg
);
2391 new_insn
= emit_insn_after (new_insn
, insn
);
2394 else /* This is possible only in case of a store to memory. */
2396 old_reg
= SET_SRC (set
);
2397 new_insn
= gen_move_insn (reg
, old_reg
);
2399 /* Check if we can modify the set source in the original insn. */
2400 if (validate_change (insn
, &SET_SRC (set
), reg
, 0))
2401 new_insn
= emit_insn_before (new_insn
, insn
);
2403 new_insn
= emit_insn_after (new_insn
, insn
);
2406 gcse_create_count
++;
2410 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2411 BLOCK_FOR_INSN (insn
)->index
, INSN_UID (new_insn
), indx
,
2412 INSN_UID (insn
), regno
);
2415 /* Copy available expressions that reach the redundant expression
2416 to `reaching_reg'. */
2419 pre_insert_copies (void)
2421 unsigned int i
, added_copy
;
2426 /* For each available expression in the table, copy the result to
2427 `reaching_reg' if the expression reaches a deleted one.
2429 ??? The current algorithm is rather brute force.
2430 Need to do some profiling. */
2432 for (i
= 0; i
< expr_hash_table
.size
; i
++)
2433 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
2435 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2436 we don't want to insert a copy here because the expression may not
2437 really be redundant. So only insert an insn if the expression was
2438 deleted. This test also avoids further processing if the
2439 expression wasn't deleted anywhere. */
2440 if (expr
->reaching_reg
== NULL
)
2443 /* Set when we add a copy for that expression. */
2446 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
2448 if (! occr
->deleted_p
)
2451 for (avail
= expr
->avail_occr
; avail
!= NULL
; avail
= avail
->next
)
2453 rtx insn
= avail
->insn
;
2455 /* No need to handle this one if handled already. */
2456 if (avail
->copied_p
)
2459 /* Don't handle this one if it's a redundant one. */
2460 if (INSN_DELETED_P (insn
))
2463 /* Or if the expression doesn't reach the deleted one. */
2464 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail
->insn
),
2466 BLOCK_FOR_INSN (occr
->insn
)))
2471 /* Copy the result of avail to reaching_reg. */
2472 pre_insert_copy_insn (expr
, insn
);
2473 avail
->copied_p
= 1;
2478 update_ld_motion_stores (expr
);
2482 /* Emit move from SRC to DEST noting the equivalence with expression computed
2485 gcse_emit_move_after (rtx src
, rtx dest
, rtx insn
)
2488 rtx set
= single_set (insn
), set2
;
2492 /* This should never fail since we're creating a reg->reg copy
2493 we've verified to be valid. */
2495 new_rtx
= emit_insn_after (gen_move_insn (dest
, src
), insn
);
2497 /* Note the equivalence for local CSE pass. */
2498 set2
= single_set (new_rtx
);
2499 if (!set2
|| !rtx_equal_p (SET_DEST (set2
), dest
))
2501 if ((note
= find_reg_equal_equiv_note (insn
)))
2502 eqv
= XEXP (note
, 0);
2504 eqv
= SET_SRC (set
);
2506 set_unique_reg_note (new_rtx
, REG_EQUAL
, copy_insn_1 (eqv
));
2511 /* Delete redundant computations.
2512 Deletion is done by changing the insn to copy the `reaching_reg' of
2513 the expression into the result of the SET. It is left to later passes
2514 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
2516 Returns nonzero if a change is made. */
2527 for (i
= 0; i
< expr_hash_table
.size
; i
++)
2528 for (expr
= expr_hash_table
.table
[i
];
2530 expr
= expr
->next_same_hash
)
2532 int indx
= expr
->bitmap_index
;
2534 /* We only need to search antic_occr since we require
2537 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
2539 rtx insn
= occr
->insn
;
2541 basic_block bb
= BLOCK_FOR_INSN (insn
);
2543 /* We only delete insns that have a single_set. */
2544 if (TEST_BIT (pre_delete_map
[bb
->index
], indx
)
2545 && (set
= single_set (insn
)) != 0
2546 && dbg_cnt (pre_insn
))
2548 /* Create a pseudo-reg to store the result of reaching
2549 expressions into. Get the mode for the new pseudo from
2550 the mode of the original destination pseudo. */
2551 if (expr
->reaching_reg
== NULL
)
2552 expr
->reaching_reg
= gen_reg_rtx_and_attrs (SET_DEST (set
));
2554 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
2556 occr
->deleted_p
= 1;
2563 "PRE: redundant insn %d (expression %d) in ",
2564 INSN_UID (insn
), indx
);
2565 fprintf (dump_file
, "bb %d, reaching reg is %d\n",
2566 bb
->index
, REGNO (expr
->reaching_reg
));
2575 /* Perform GCSE optimizations using PRE.
2576 This is called by one_pre_gcse_pass after all the dataflow analysis
2579 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2580 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2581 Compiler Design and Implementation.
2583 ??? A new pseudo reg is created to hold the reaching expression. The nice
2584 thing about the classical approach is that it would try to use an existing
2585 reg. If the register can't be adequately optimized [i.e. we introduce
2586 reload problems], one could add a pass here to propagate the new register
2589 ??? We don't handle single sets in PARALLELs because we're [currently] not
2590 able to copy the rest of the parallel when we insert copies to create full
2591 redundancies from partial redundancies. However, there's no reason why we
2592 can't handle PARALLELs in the cases where there are no partial
2599 int did_insert
, changed
;
2600 struct expr
**index_map
;
2603 /* Compute a mapping from expression number (`bitmap_index') to
2604 hash table entry. */
2606 index_map
= XCNEWVEC (struct expr
*, expr_hash_table
.n_elems
);
2607 for (i
= 0; i
< expr_hash_table
.size
; i
++)
2608 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
2609 index_map
[expr
->bitmap_index
] = expr
;
2611 /* Delete the redundant insns first so that
2612 - we know what register to use for the new insns and for the other
2613 ones with reaching expressions
2614 - we know which insns are redundant when we go to create copies */
2616 changed
= pre_delete ();
2617 did_insert
= pre_edge_insert (edge_list
, index_map
);
2619 /* In other places with reaching expressions, copy the expression to the
2620 specially allocated pseudo-reg that reaches the redundant expr. */
2621 pre_insert_copies ();
2624 commit_edge_insertions ();
2632 /* Top level routine to perform one PRE GCSE pass.
2634 Return nonzero if a change was made. */
2637 one_pre_gcse_pass (void)
2641 gcse_subst_count
= 0;
2642 gcse_create_count
= 0;
2644 /* Return if there's nothing to do, or it is too expensive. */
2645 if (n_basic_blocks
<= NUM_FIXED_BLOCKS
+ 1
2646 || is_too_expensive (_("PRE disabled")))
2649 /* We need alias. */
2650 init_alias_analysis ();
2653 gcc_obstack_init (&gcse_obstack
);
2656 alloc_hash_table (&expr_hash_table
);
2657 add_noreturn_fake_exit_edges ();
2659 compute_ld_motion_mems ();
2661 compute_hash_table (&expr_hash_table
);
2662 trim_ld_motion_mems ();
2664 dump_hash_table (dump_file
, "Expression", &expr_hash_table
);
2666 if (expr_hash_table
.n_elems
> 0)
2668 alloc_pre_mem (last_basic_block
, expr_hash_table
.n_elems
);
2669 compute_pre_data ();
2670 changed
|= pre_gcse ();
2671 free_edge_list (edge_list
);
2676 remove_fake_exit_edges ();
2677 free_hash_table (&expr_hash_table
);
2680 obstack_free (&gcse_obstack
, NULL
);
2682 /* We are finished with alias. */
2683 end_alias_analysis ();
2687 fprintf (dump_file
, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2688 current_function_name (), n_basic_blocks
, bytes_used
);
2689 fprintf (dump_file
, "%d substs, %d insns created\n",
2690 gcse_subst_count
, gcse_create_count
);
2696 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2697 to INSN. If such notes are added to an insn which references a
2698 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2699 that note, because the following loop optimization pass requires
2702 /* ??? If there was a jump optimization pass after gcse and before loop,
2703 then we would not need to do this here, because jump would add the
2704 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2707 add_label_notes (rtx x
, rtx insn
)
2709 enum rtx_code code
= GET_CODE (x
);
2713 if (code
== LABEL_REF
&& !LABEL_REF_NONLOCAL_P (x
))
2715 /* This code used to ignore labels that referred to dispatch tables to
2716 avoid flow generating (slightly) worse code.
2718 We no longer ignore such label references (see LABEL_REF handling in
2719 mark_jump_label for additional information). */
2721 /* There's no reason for current users to emit jump-insns with
2722 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2724 gcc_assert (!JUMP_P (insn
));
2725 add_reg_note (insn
, REG_LABEL_OPERAND
, XEXP (x
, 0));
2727 if (LABEL_P (XEXP (x
, 0)))
2728 LABEL_NUSES (XEXP (x
, 0))++;
2733 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2736 add_label_notes (XEXP (x
, i
), insn
);
2737 else if (fmt
[i
] == 'E')
2738 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2739 add_label_notes (XVECEXP (x
, i
, j
), insn
);
2743 /* Code Hoisting variables and subroutines. */
2745 /* Very busy expressions. */
2746 static sbitmap
*hoist_vbein
;
2747 static sbitmap
*hoist_vbeout
;
2749 /* ??? We could compute post dominators and run this algorithm in
2750 reverse to perform tail merging, doing so would probably be
2751 more effective than the tail merging code in jump.c.
2753 It's unclear if tail merging could be run in parallel with
2754 code hoisting. It would be nice. */
2756 /* Allocate vars used for code hoisting analysis. */
2759 alloc_code_hoist_mem (int n_blocks
, int n_exprs
)
2761 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
2762 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
2763 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
2765 hoist_vbein
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
2766 hoist_vbeout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
2769 /* Free vars used for code hoisting analysis. */
2772 free_code_hoist_mem (void)
2774 sbitmap_vector_free (antloc
);
2775 sbitmap_vector_free (transp
);
2776 sbitmap_vector_free (comp
);
2778 sbitmap_vector_free (hoist_vbein
);
2779 sbitmap_vector_free (hoist_vbeout
);
2781 free_dominance_info (CDI_DOMINATORS
);
2784 /* Compute the very busy expressions at entry/exit from each block.
2786 An expression is very busy if all paths from a given point
2787 compute the expression. */
2790 compute_code_hoist_vbeinout (void)
2792 int changed
, passes
;
2795 sbitmap_vector_zero (hoist_vbeout
, last_basic_block
);
2796 sbitmap_vector_zero (hoist_vbein
, last_basic_block
);
2805 /* We scan the blocks in the reverse order to speed up
2807 FOR_EACH_BB_REVERSE (bb
)
2809 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
2811 sbitmap_intersection_of_succs (hoist_vbeout
[bb
->index
],
2812 hoist_vbein
, bb
->index
);
2814 /* Include expressions in VBEout that are calculated
2815 in BB and available at its end. */
2816 sbitmap_a_or_b (hoist_vbeout
[bb
->index
],
2817 hoist_vbeout
[bb
->index
], comp
[bb
->index
]);
2820 changed
|= sbitmap_a_or_b_and_c_cg (hoist_vbein
[bb
->index
],
2822 hoist_vbeout
[bb
->index
],
2831 fprintf (dump_file
, "hoisting vbeinout computation: %d passes\n", passes
);
2835 fprintf (dump_file
, "vbein (%d): ", bb
->index
);
2836 dump_sbitmap_file (dump_file
, hoist_vbein
[bb
->index
]);
2837 fprintf (dump_file
, "vbeout(%d): ", bb
->index
);
2838 dump_sbitmap_file (dump_file
, hoist_vbeout
[bb
->index
]);
2843 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2846 compute_code_hoist_data (void)
2848 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
2849 prune_expressions (false);
2850 compute_code_hoist_vbeinout ();
2851 calculate_dominance_info (CDI_DOMINATORS
);
2853 fprintf (dump_file
, "\n");
2856 /* Determine if the expression identified by EXPR_INDEX would
2857 reach BB unimpared if it was placed at the end of EXPR_BB.
2858 Stop the search if the expression would need to be moved more
2859 than DISTANCE instructions.
2861 It's unclear exactly what Muchnick meant by "unimpared". It seems
2862 to me that the expression must either be computed or transparent in
2863 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2864 would allow the expression to be hoisted out of loops, even if
2865 the expression wasn't a loop invariant.
2867 Contrast this to reachability for PRE where an expression is
2868 considered reachable if *any* path reaches instead of *all*
2872 hoist_expr_reaches_here_p (basic_block expr_bb
, int expr_index
, basic_block bb
,
2873 char *visited
, int distance
, int *bb_size
)
2877 int visited_allocated_locally
= 0;
2879 /* Terminate the search if distance, for which EXPR is allowed to move,
2883 distance
-= bb_size
[bb
->index
];
2889 gcc_assert (distance
== 0);
2891 if (visited
== NULL
)
2893 visited_allocated_locally
= 1;
2894 visited
= XCNEWVEC (char, last_basic_block
);
2897 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
2899 basic_block pred_bb
= pred
->src
;
2901 if (pred
->src
== ENTRY_BLOCK_PTR
)
2903 else if (pred_bb
== expr_bb
)
2905 else if (visited
[pred_bb
->index
])
2908 else if (! TEST_BIT (transp
[pred_bb
->index
], expr_index
))
2914 visited
[pred_bb
->index
] = 1;
2915 if (! hoist_expr_reaches_here_p (expr_bb
, expr_index
, pred_bb
,
2916 visited
, distance
, bb_size
))
2920 if (visited_allocated_locally
)
2923 return (pred
== NULL
);
2926 /* Find occurence in BB. */
2927 static struct occr
*
2928 find_occr_in_bb (struct occr
*occr
, basic_block bb
)
2930 /* Find the right occurrence of this expression. */
2931 while (occr
&& BLOCK_FOR_INSN (occr
->insn
) != bb
)
2937 /* Actually perform code hoisting. */
2942 basic_block bb
, dominated
;
2943 VEC (basic_block
, heap
) *dom_tree_walk
;
2944 unsigned int dom_tree_walk_index
;
2945 VEC (basic_block
, heap
) *domby
;
2947 struct expr
**index_map
;
2953 /* Compute a mapping from expression number (`bitmap_index') to
2954 hash table entry. */
2956 index_map
= XCNEWVEC (struct expr
*, expr_hash_table
.n_elems
);
2957 for (i
= 0; i
< expr_hash_table
.size
; i
++)
2958 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
2959 index_map
[expr
->bitmap_index
] = expr
;
2961 /* Calculate sizes of basic blocks and note how far
2962 each instruction is from the start of its block. We then use this
2963 data to restrict distance an expression can travel. */
2965 to_bb_head
= XCNEWVEC (int, get_max_uid ());
2966 bb_size
= XCNEWVEC (int, last_basic_block
);
2974 FOR_BB_INSNS (bb
, insn
)
2976 /* Don't count debug instructions to avoid them affecting
2977 decision choices. */
2978 if (NONDEBUG_INSN_P (insn
))
2979 to_bb_head
[INSN_UID (insn
)] = to_head
++;
2982 bb_size
[bb
->index
] = to_head
;
2985 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR
->succs
) == 1
2986 && (EDGE_SUCC (ENTRY_BLOCK_PTR
, 0)->dest
2987 == ENTRY_BLOCK_PTR
->next_bb
));
2989 dom_tree_walk
= get_all_dominated_blocks (CDI_DOMINATORS
,
2990 ENTRY_BLOCK_PTR
->next_bb
);
2992 /* Walk over each basic block looking for potentially hoistable
2993 expressions, nothing gets hoisted from the entry block. */
2994 FOR_EACH_VEC_ELT (basic_block
, dom_tree_walk
, dom_tree_walk_index
, bb
)
2996 domby
= get_dominated_to_depth (CDI_DOMINATORS
, bb
, MAX_HOIST_DEPTH
);
2998 if (VEC_length (basic_block
, domby
) == 0)
3001 /* Examine each expression that is very busy at the exit of this
3002 block. These are the potentially hoistable expressions. */
3003 for (i
= 0; i
< hoist_vbeout
[bb
->index
]->n_bits
; i
++)
3005 if (TEST_BIT (hoist_vbeout
[bb
->index
], i
))
3007 /* Current expression. */
3008 struct expr
*expr
= index_map
[i
];
3009 /* Number of occurences of EXPR that can be hoisted to BB. */
3011 /* Basic blocks that have occurences reachable from BB. */
3012 bitmap_head _from_bbs
, *from_bbs
= &_from_bbs
;
3013 /* Occurences reachable from BB. */
3014 VEC (occr_t
, heap
) *occrs_to_hoist
= NULL
;
3015 /* We want to insert the expression into BB only once, so
3016 note when we've inserted it. */
3017 int insn_inserted_p
;
3020 bitmap_initialize (from_bbs
, 0);
3022 /* If an expression is computed in BB and is available at end of
3023 BB, hoist all occurences dominated by BB to BB. */
3024 if (TEST_BIT (comp
[bb
->index
], i
))
3026 occr
= find_occr_in_bb (expr
->antic_occr
, bb
);
3030 /* An occurence might've been already deleted
3031 while processing a dominator of BB. */
3032 if (!occr
->deleted_p
)
3034 gcc_assert (NONDEBUG_INSN_P (occr
->insn
));
3042 /* We've found a potentially hoistable expression, now
3043 we look at every block BB dominates to see if it
3044 computes the expression. */
3045 FOR_EACH_VEC_ELT (basic_block
, domby
, j
, dominated
)
3049 /* Ignore self dominance. */
3050 if (bb
== dominated
)
3052 /* We've found a dominated block, now see if it computes
3053 the busy expression and whether or not moving that
3054 expression to the "beginning" of that block is safe. */
3055 if (!TEST_BIT (antloc
[dominated
->index
], i
))
3058 occr
= find_occr_in_bb (expr
->antic_occr
, dominated
);
3061 /* An occurence might've been already deleted
3062 while processing a dominator of BB. */
3063 if (occr
->deleted_p
)
3065 gcc_assert (NONDEBUG_INSN_P (occr
->insn
));
3067 max_distance
= expr
->max_distance
;
3068 if (max_distance
> 0)
3069 /* Adjust MAX_DISTANCE to account for the fact that
3070 OCCR won't have to travel all of DOMINATED, but
3072 max_distance
+= (bb_size
[dominated
->index
]
3073 - to_bb_head
[INSN_UID (occr
->insn
)]);
3075 /* Note if the expression would reach the dominated block
3076 unimpared if it was placed at the end of BB.
3078 Keep track of how many times this expression is hoistable
3079 from a dominated block into BB. */
3080 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
,
3081 max_distance
, bb_size
))
3084 VEC_safe_push (occr_t
, heap
,
3085 occrs_to_hoist
, occr
);
3086 bitmap_set_bit (from_bbs
, dominated
->index
);
3090 /* If we found more than one hoistable occurrence of this
3091 expression, then note it in the vector of expressions to
3092 hoist. It makes no sense to hoist things which are computed
3093 in only one BB, and doing so tends to pessimize register
3094 allocation. One could increase this value to try harder
3095 to avoid any possible code expansion due to register
3096 allocation issues; however experiments have shown that
3097 the vast majority of hoistable expressions are only movable
3098 from two successors, so raising this threshold is likely
3099 to nullify any benefit we get from code hoisting. */
3100 if (hoistable
> 1 && dbg_cnt (hoist_insn
))
3102 /* If (hoistable != VEC_length), then there is
3103 an occurence of EXPR in BB itself. Don't waste
3104 time looking for LCA in this case. */
3105 if ((unsigned) hoistable
3106 == VEC_length (occr_t
, occrs_to_hoist
))
3110 lca
= nearest_common_dominator_for_set (CDI_DOMINATORS
,
3113 /* Punt, it's better to hoist these occurences to
3115 VEC_free (occr_t
, heap
, occrs_to_hoist
);
3119 /* Punt, no point hoisting a single occurence. */
3120 VEC_free (occr_t
, heap
, occrs_to_hoist
);
3122 insn_inserted_p
= 0;
3124 /* Walk through occurences of I'th expressions we want
3125 to hoist to BB and make the transformations. */
3126 FOR_EACH_VEC_ELT (occr_t
, occrs_to_hoist
, j
, occr
)
3131 gcc_assert (!occr
->deleted_p
);
3134 set
= single_set (insn
);
3137 /* Create a pseudo-reg to store the result of reaching
3138 expressions into. Get the mode for the new pseudo
3139 from the mode of the original destination pseudo.
3141 It is important to use new pseudos whenever we
3142 emit a set. This will allow reload to use
3143 rematerialization for such registers. */
3144 if (!insn_inserted_p
)
3146 = gen_reg_rtx_and_attrs (SET_DEST (set
));
3148 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
),
3151 occr
->deleted_p
= 1;
3155 if (!insn_inserted_p
)
3157 insert_insn_end_basic_block (expr
, bb
);
3158 insn_inserted_p
= 1;
3162 VEC_free (occr_t
, heap
, occrs_to_hoist
);
3163 bitmap_clear (from_bbs
);
3166 VEC_free (basic_block
, heap
, domby
);
3169 VEC_free (basic_block
, heap
, dom_tree_walk
);
3177 /* Top level routine to perform one code hoisting (aka unification) pass
3179 Return nonzero if a change was made. */
3182 one_code_hoisting_pass (void)
3186 gcse_subst_count
= 0;
3187 gcse_create_count
= 0;
3189 /* Return if there's nothing to do, or it is too expensive. */
3190 if (n_basic_blocks
<= NUM_FIXED_BLOCKS
+ 1
3191 || is_too_expensive (_("GCSE disabled")))
3194 doing_code_hoisting_p
= true;
3196 /* We need alias. */
3197 init_alias_analysis ();
3200 gcc_obstack_init (&gcse_obstack
);
3203 alloc_hash_table (&expr_hash_table
);
3204 compute_hash_table (&expr_hash_table
);
3206 dump_hash_table (dump_file
, "Code Hosting Expressions", &expr_hash_table
);
3208 if (expr_hash_table
.n_elems
> 0)
3210 alloc_code_hoist_mem (last_basic_block
, expr_hash_table
.n_elems
);
3211 compute_code_hoist_data ();
3212 changed
= hoist_code ();
3213 free_code_hoist_mem ();
3216 free_hash_table (&expr_hash_table
);
3218 obstack_free (&gcse_obstack
, NULL
);
3220 /* We are finished with alias. */
3221 end_alias_analysis ();
3225 fprintf (dump_file
, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3226 current_function_name (), n_basic_blocks
, bytes_used
);
3227 fprintf (dump_file
, "%d substs, %d insns created\n",
3228 gcse_subst_count
, gcse_create_count
);
3231 doing_code_hoisting_p
= false;
3236 /* Here we provide the things required to do store motion towards
3237 the exit. In order for this to be effective, gcse also needed to
3238 be taught how to move a load when it is kill only by a store to itself.
3243 void foo(float scale)
3245 for (i=0; i<10; i++)
3249 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3250 the load out since its live around the loop, and stored at the bottom
3253 The 'Load Motion' referred to and implemented in this file is
3254 an enhancement to gcse which when using edge based lcm, recognizes
3255 this situation and allows gcse to move the load out of the loop.
3257 Once gcse has hoisted the load, store motion can then push this
3258 load towards the exit, and we end up with no loads or stores of 'i'
3262 pre_ldst_expr_hash (const void *p
)
3264 int do_not_record_p
= 0;
3265 const struct ls_expr
*const x
= (const struct ls_expr
*) p
;
3266 return hash_rtx (x
->pattern
, GET_MODE (x
->pattern
), &do_not_record_p
, NULL
, false);
3270 pre_ldst_expr_eq (const void *p1
, const void *p2
)
3272 const struct ls_expr
*const ptr1
= (const struct ls_expr
*) p1
,
3273 *const ptr2
= (const struct ls_expr
*) p2
;
3274 return expr_equiv_p (ptr1
->pattern
, ptr2
->pattern
);
3277 /* This will search the ldst list for a matching expression. If it
3278 doesn't find one, we create one and initialize it. */
3280 static struct ls_expr
*
3283 int do_not_record_p
= 0;
3284 struct ls_expr
* ptr
;
3289 hash
= hash_rtx (x
, GET_MODE (x
), &do_not_record_p
,
3290 NULL
, /*have_reg_qty=*/false);
3293 slot
= htab_find_slot_with_hash (pre_ldst_table
, &e
, hash
, INSERT
);
3295 return (struct ls_expr
*)*slot
;
3297 ptr
= XNEW (struct ls_expr
);
3299 ptr
->next
= pre_ldst_mems
;
3302 ptr
->pattern_regs
= NULL_RTX
;
3303 ptr
->loads
= NULL_RTX
;
3304 ptr
->stores
= NULL_RTX
;
3305 ptr
->reaching_reg
= NULL_RTX
;
3308 ptr
->hash_index
= hash
;
3309 pre_ldst_mems
= ptr
;
3315 /* Free up an individual ldst entry. */
3318 free_ldst_entry (struct ls_expr
* ptr
)
3320 free_INSN_LIST_list (& ptr
->loads
);
3321 free_INSN_LIST_list (& ptr
->stores
);
3326 /* Free up all memory associated with the ldst list. */
3329 free_ldst_mems (void)
3332 htab_delete (pre_ldst_table
);
3333 pre_ldst_table
= NULL
;
3335 while (pre_ldst_mems
)
3337 struct ls_expr
* tmp
= pre_ldst_mems
;
3339 pre_ldst_mems
= pre_ldst_mems
->next
;
3341 free_ldst_entry (tmp
);
3344 pre_ldst_mems
= NULL
;
3347 /* Dump debugging info about the ldst list. */
3350 print_ldst_list (FILE * file
)
3352 struct ls_expr
* ptr
;
3354 fprintf (file
, "LDST list: \n");
3356 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
3358 fprintf (file
, " Pattern (%3d): ", ptr
->index
);
3360 print_rtl (file
, ptr
->pattern
);
3362 fprintf (file
, "\n Loads : ");
3365 print_rtl (file
, ptr
->loads
);
3367 fprintf (file
, "(nil)");
3369 fprintf (file
, "\n Stores : ");
3372 print_rtl (file
, ptr
->stores
);
3374 fprintf (file
, "(nil)");
3376 fprintf (file
, "\n\n");
3379 fprintf (file
, "\n");
3382 /* Returns 1 if X is in the list of ldst only expressions. */
3384 static struct ls_expr
*
3385 find_rtx_in_ldst (rtx x
)
3389 if (!pre_ldst_table
)
3392 slot
= htab_find_slot (pre_ldst_table
, &e
, NO_INSERT
);
3393 if (!slot
|| ((struct ls_expr
*)*slot
)->invalid
)
3395 return (struct ls_expr
*) *slot
;
3398 /* Return first item in the list. */
3400 static inline struct ls_expr
*
3401 first_ls_expr (void)
3403 return pre_ldst_mems
;
3406 /* Return the next item in the list after the specified one. */
3408 static inline struct ls_expr
*
3409 next_ls_expr (struct ls_expr
* ptr
)
3414 /* Load Motion for loads which only kill themselves. */
3416 /* Return true if x is a simple MEM operation, with no registers or
3417 side effects. These are the types of loads we consider for the
3418 ld_motion list, otherwise we let the usual aliasing take care of it. */
3421 simple_mem (const_rtx x
)
3426 if (MEM_VOLATILE_P (x
))
3429 if (GET_MODE (x
) == BLKmode
)
3432 /* If we are handling exceptions, we must be careful with memory references
3433 that may trap. If we are not, the behavior is undefined, so we may just
3435 if (cfun
->can_throw_non_call_exceptions
&& may_trap_p (x
))
3438 if (side_effects_p (x
))
3441 /* Do not consider function arguments passed on stack. */
3442 if (reg_mentioned_p (stack_pointer_rtx
, x
))
3445 if (flag_float_store
&& FLOAT_MODE_P (GET_MODE (x
)))
3451 /* Make sure there isn't a buried reference in this pattern anywhere.
3452 If there is, invalidate the entry for it since we're not capable
3453 of fixing it up just yet.. We have to be sure we know about ALL
3454 loads since the aliasing code will allow all entries in the
3455 ld_motion list to not-alias itself. If we miss a load, we will get
3456 the wrong value since gcse might common it and we won't know to
3460 invalidate_any_buried_refs (rtx x
)
3464 struct ls_expr
* ptr
;
3466 /* Invalidate it in the list. */
3467 if (MEM_P (x
) && simple_mem (x
))
3469 ptr
= ldst_entry (x
);
3473 /* Recursively process the insn. */
3474 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
3476 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
3479 invalidate_any_buried_refs (XEXP (x
, i
));
3480 else if (fmt
[i
] == 'E')
3481 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3482 invalidate_any_buried_refs (XVECEXP (x
, i
, j
));
3486 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3487 being defined as MEM loads and stores to symbols, with no side effects
3488 and no registers in the expression. For a MEM destination, we also
3489 check that the insn is still valid if we replace the destination with a
3490 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3491 which don't match this criteria, they are invalidated and trimmed out
3495 compute_ld_motion_mems (void)
3497 struct ls_expr
* ptr
;
3501 pre_ldst_mems
= NULL
;
3502 pre_ldst_table
= htab_create (13, pre_ldst_expr_hash
,
3503 pre_ldst_expr_eq
, NULL
);
3507 FOR_BB_INSNS (bb
, insn
)
3509 if (NONDEBUG_INSN_P (insn
))
3511 if (GET_CODE (PATTERN (insn
)) == SET
)
3513 rtx src
= SET_SRC (PATTERN (insn
));
3514 rtx dest
= SET_DEST (PATTERN (insn
));
3516 /* Check for a simple LOAD... */
3517 if (MEM_P (src
) && simple_mem (src
))
3519 ptr
= ldst_entry (src
);
3521 ptr
->loads
= alloc_INSN_LIST (insn
, ptr
->loads
);
3527 /* Make sure there isn't a buried load somewhere. */
3528 invalidate_any_buried_refs (src
);
3531 /* Check for stores. Don't worry about aliased ones, they
3532 will block any movement we might do later. We only care
3533 about this exact pattern since those are the only
3534 circumstance that we will ignore the aliasing info. */
3535 if (MEM_P (dest
) && simple_mem (dest
))
3537 ptr
= ldst_entry (dest
);
3540 && GET_CODE (src
) != ASM_OPERANDS
3541 /* Check for REG manually since want_to_gcse_p
3542 returns 0 for all REGs. */
3543 && can_assign_to_reg_without_clobbers_p (src
))
3544 ptr
->stores
= alloc_INSN_LIST (insn
, ptr
->stores
);
3550 invalidate_any_buried_refs (PATTERN (insn
));
3556 /* Remove any references that have been either invalidated or are not in the
3557 expression list for pre gcse. */
3560 trim_ld_motion_mems (void)
3562 struct ls_expr
* * last
= & pre_ldst_mems
;
3563 struct ls_expr
* ptr
= pre_ldst_mems
;
3569 /* Delete if entry has been made invalid. */
3572 /* Delete if we cannot find this mem in the expression list. */
3573 unsigned int hash
= ptr
->hash_index
% expr_hash_table
.size
;
3575 for (expr
= expr_hash_table
.table
[hash
];
3577 expr
= expr
->next_same_hash
)
3578 if (expr_equiv_p (expr
->expr
, ptr
->pattern
))
3582 expr
= (struct expr
*) 0;
3586 /* Set the expression field if we are keeping it. */
3594 htab_remove_elt_with_hash (pre_ldst_table
, ptr
, ptr
->hash_index
);
3595 free_ldst_entry (ptr
);
3600 /* Show the world what we've found. */
3601 if (dump_file
&& pre_ldst_mems
!= NULL
)
3602 print_ldst_list (dump_file
);
3605 /* This routine will take an expression which we are replacing with
3606 a reaching register, and update any stores that are needed if
3607 that expression is in the ld_motion list. Stores are updated by
3608 copying their SRC to the reaching register, and then storing
3609 the reaching register into the store location. These keeps the
3610 correct value in the reaching register for the loads. */
3613 update_ld_motion_stores (struct expr
* expr
)
3615 struct ls_expr
* mem_ptr
;
3617 if ((mem_ptr
= find_rtx_in_ldst (expr
->expr
)))
3619 /* We can try to find just the REACHED stores, but is shouldn't
3620 matter to set the reaching reg everywhere... some might be
3621 dead and should be eliminated later. */
3623 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3624 where reg is the reaching reg used in the load. We checked in
3625 compute_ld_motion_mems that we can replace (set mem expr) with
3626 (set reg expr) in that insn. */
3627 rtx list
= mem_ptr
->stores
;
3629 for ( ; list
!= NULL_RTX
; list
= XEXP (list
, 1))
3631 rtx insn
= XEXP (list
, 0);
3632 rtx pat
= PATTERN (insn
);
3633 rtx src
= SET_SRC (pat
);
3634 rtx reg
= expr
->reaching_reg
;
3637 /* If we've already copied it, continue. */
3638 if (expr
->reaching_reg
== src
)
3643 fprintf (dump_file
, "PRE: store updated with reaching reg ");
3644 print_rtl (dump_file
, expr
->reaching_reg
);
3645 fprintf (dump_file
, ":\n ");
3646 print_inline_rtx (dump_file
, insn
, 8);
3647 fprintf (dump_file
, "\n");
3650 copy
= gen_move_insn (reg
, copy_rtx (SET_SRC (pat
)));
3651 emit_insn_before (copy
, insn
);
3652 SET_SRC (pat
) = reg
;
3653 df_insn_rescan (insn
);
3655 /* un-recognize this pattern since it's probably different now. */
3656 INSN_CODE (insn
) = -1;
3657 gcse_create_count
++;
3662 /* Return true if the graph is too expensive to optimize. PASS is the
3663 optimization about to be performed. */
3666 is_too_expensive (const char *pass
)
3668 /* Trying to perform global optimizations on flow graphs which have
3669 a high connectivity will take a long time and is unlikely to be
3670 particularly useful.
3672 In normal circumstances a cfg should have about twice as many
3673 edges as blocks. But we do not want to punish small functions
3674 which have a couple switch statements. Rather than simply
3675 threshold the number of blocks, uses something with a more
3676 graceful degradation. */
3677 if (n_edges
> 20000 + n_basic_blocks
* 4)
3679 warning (OPT_Wdisabled_optimization
,
3680 "%s: %d basic blocks and %d edges/basic block",
3681 pass
, n_basic_blocks
, n_edges
/ n_basic_blocks
);
3686 /* If allocating memory for the dataflow bitmaps would take up too much
3687 storage it's better just to disable the optimization. */
3689 * SBITMAP_SET_SIZE (max_reg_num ())
3690 * sizeof (SBITMAP_ELT_TYPE
)) > MAX_GCSE_MEMORY
)
3692 warning (OPT_Wdisabled_optimization
,
3693 "%s: %d basic blocks and %d registers",
3694 pass
, n_basic_blocks
, max_reg_num ());
3703 /* All the passes implemented in this file. Each pass has its
3704 own gate and execute function, and at the end of the file a
3705 pass definition for passes.c.
3707 We do not construct an accurate cfg in functions which call
3708 setjmp, so none of these passes runs if the function calls
3710 FIXME: Should just handle setjmp via REG_SETJMP notes. */
3715 return optimize
> 0 && flag_gcse
3716 && !cfun
->calls_setjmp
3717 && optimize_function_for_speed_p (cfun
)
3722 execute_rtl_pre (void)
3725 delete_unreachable_blocks ();
3727 changed
= one_pre_gcse_pass ();
3728 flag_rerun_cse_after_global_opts
|= changed
;
3735 gate_rtl_hoist (void)
3737 return optimize
> 0 && flag_gcse
3738 && !cfun
->calls_setjmp
3739 /* It does not make sense to run code hoisting unless we are optimizing
3740 for code size -- it rarely makes programs faster, and can make then
3741 bigger if we did PRE (when optimizing for space, we don't run PRE). */
3742 && optimize_function_for_size_p (cfun
)
3747 execute_rtl_hoist (void)
3750 delete_unreachable_blocks ();
3752 changed
= one_code_hoisting_pass ();
3753 flag_rerun_cse_after_global_opts
|= changed
;
3759 struct rtl_opt_pass pass_rtl_pre
=
3763 "rtl pre", /* name */
3764 gate_rtl_pre
, /* gate */
3765 execute_rtl_pre
, /* execute */
3768 0, /* static_pass_number */
3770 PROP_cfglayout
, /* properties_required */
3771 0, /* properties_provided */
3772 0, /* properties_destroyed */
3773 0, /* todo_flags_start */
3774 TODO_df_finish
| TODO_verify_rtl_sharing
|
3776 TODO_verify_flow
| TODO_ggc_collect
/* todo_flags_finish */
3780 struct rtl_opt_pass pass_rtl_hoist
=
3785 gate_rtl_hoist
, /* gate */
3786 execute_rtl_hoist
, /* execute */
3789 0, /* static_pass_number */
3790 TV_HOIST
, /* tv_id */
3791 PROP_cfglayout
, /* properties_required */
3792 0, /* properties_provided */
3793 0, /* properties_destroyed */
3794 0, /* todo_flags_start */
3795 TODO_df_finish
| TODO_verify_rtl_sharing
|
3797 TODO_verify_flow
| TODO_ggc_collect
/* todo_flags_finish */
3801 #include "gt-gcse.h"