2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Loop Vectorization Pass.
23 This pass tries to vectorize loops. This first implementation focuses on
24 simple inner-most loops, with no conditional control flow, and a set of
25 simple operations which vector form can be expressed using existing
26 tree codes (PLUS, MULT etc).
28 For example, the vectorizer transforms the following simple loop:
30 short a[N]; short b[N]; short c[N]; int i;
36 as if it was manually vectorized by rewriting the source code into:
38 typedef int __attribute__((mode(V8HI))) v8hi;
39 short a[N]; short b[N]; short c[N]; int i;
40 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
43 for (i=0; i<N/8; i++){
50 The main entry to this pass is vectorize_loops(), in which
51 the vectorizer applies a set of analyses on a given set of loops,
52 followed by the actual vectorization transformation for the loops that
53 had successfully passed the analysis phase.
55 Throughout this pass we make a distinction between two types of
56 data: scalars (which are represented by SSA_NAMES), and memory references
57 ("data-refs"). These two types of data require different handling both
58 during analysis and transformation. The types of data-refs that the
59 vectorizer currently supports are ARRAY_REFS which base is an array DECL
60 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
61 accesses are required to have a simple (consecutive) access pattern.
65 The driver for the analysis phase is vect_analyze_loop_nest().
66 It applies a set of analyses, some of which rely on the scalar evolution
67 analyzer (scev) developed by Sebastian Pop.
69 During the analysis phase the vectorizer records some information
70 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
71 loop, as well as general information about the loop as a whole, which is
72 recorded in a "loop_vec_info" struct attached to each loop.
76 The loop transformation phase scans all the stmts in the loop, and
77 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
78 the loop that needs to be vectorized. It insert the vector code sequence
79 just before the scalar stmt S, and records a pointer to the vector code
80 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
81 attached to S). This pointer will be used for the vectorization of following
82 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
83 otherwise, we rely on dead code elimination for removing it.
85 For example, say stmt S1 was vectorized into stmt VS1:
88 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
91 To vectorize stmt S2, the vectorizer first finds the stmt that defines
92 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
93 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
94 resulting sequence would be:
97 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
99 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
101 Operands that are not SSA_NAMEs, are data-refs that appear in
102 load/store operations (like 'x[i]' in S1), and are handled differently.
106 Currently the only target specific information that is used is the
107 size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can
108 support different sizes of vectors, for now will need to specify one value
109 for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.
111 Since we only vectorize operations which vector form can be
112 expressed using existing tree codes, to verify that an operation is
113 supported, the vectorizer checks the relevant optab at the relevant
114 machine_mode (e.g, optab_handler (add_optab, V8HImode)->insn_code). If
115 the value found is CODE_FOR_nothing, then there's no target support, and
116 we can't vectorize the stmt.
118 For additional information on this project see:
119 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
124 #include "coretypes.h"
130 #include "basic-block.h"
131 #include "diagnostic.h"
132 #include "tree-flow.h"
133 #include "tree-dump.h"
136 #include "cfglayout.h"
142 #include "tree-chrec.h"
143 #include "tree-data-ref.h"
144 #include "tree-scalar-evolution.h"
146 #include "tree-vectorizer.h"
147 #include "tree-pass.h"
149 /*************************************************************************
150 Simple Loop Peeling Utilities
151 *************************************************************************/
152 static void slpeel_update_phis_for_duplicate_loop
153 (struct loop
*, struct loop
*, bool after
);
154 static void slpeel_update_phi_nodes_for_guard1
155 (edge
, struct loop
*, bool, basic_block
*, bitmap
*);
156 static void slpeel_update_phi_nodes_for_guard2
157 (edge
, struct loop
*, bool, basic_block
*);
158 static edge
slpeel_add_loop_guard (basic_block
, tree
, basic_block
, basic_block
);
160 static void rename_use_op (use_operand_p
);
161 static void rename_variables_in_bb (basic_block
);
162 static void rename_variables_in_loop (struct loop
*);
164 /*************************************************************************
165 General Vectorization Utilities
166 *************************************************************************/
167 static void vect_set_dump_settings (void);
169 /* vect_dump will be set to stderr or dump_file if exist. */
172 /* vect_verbosity_level set to an invalid value
173 to mark that it's uninitialized. */
174 enum verbosity_levels vect_verbosity_level
= MAX_VERBOSITY_LEVEL
;
177 static LOC vect_loop_location
;
179 /* Bitmap of virtual variables to be renamed. */
180 bitmap vect_memsyms_to_rename
;
182 /*************************************************************************
183 Simple Loop Peeling Utilities
185 Utilities to support loop peeling for vectorization purposes.
186 *************************************************************************/
189 /* Renames the use *OP_P. */
192 rename_use_op (use_operand_p op_p
)
196 if (TREE_CODE (USE_FROM_PTR (op_p
)) != SSA_NAME
)
199 new_name
= get_current_def (USE_FROM_PTR (op_p
));
201 /* Something defined outside of the loop. */
205 /* An ordinary ssa name defined in the loop. */
207 SET_USE (op_p
, new_name
);
211 /* Renames the variables in basic block BB. */
214 rename_variables_in_bb (basic_block bb
)
217 block_stmt_iterator bsi
;
223 struct loop
*loop
= bb
->loop_father
;
225 for (bsi
= bsi_start (bb
); !bsi_end_p (bsi
); bsi_next (&bsi
))
227 stmt
= bsi_stmt (bsi
);
228 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
, SSA_OP_ALL_USES
)
229 rename_use_op (use_p
);
232 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
234 if (!flow_bb_inside_loop_p (loop
, e
->dest
))
236 for (phi
= phi_nodes (e
->dest
); phi
; phi
= PHI_CHAIN (phi
))
237 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (phi
, e
));
242 /* Renames variables in new generated LOOP. */
245 rename_variables_in_loop (struct loop
*loop
)
250 bbs
= get_loop_body (loop
);
252 for (i
= 0; i
< loop
->num_nodes
; i
++)
253 rename_variables_in_bb (bbs
[i
]);
259 /* Update the PHI nodes of NEW_LOOP.
261 NEW_LOOP is a duplicate of ORIG_LOOP.
262 AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
263 AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
264 executes before it. */
267 slpeel_update_phis_for_duplicate_loop (struct loop
*orig_loop
,
268 struct loop
*new_loop
, bool after
)
271 tree phi_new
, phi_orig
;
273 edge orig_loop_latch
= loop_latch_edge (orig_loop
);
274 edge orig_entry_e
= loop_preheader_edge (orig_loop
);
275 edge new_loop_exit_e
= single_exit (new_loop
);
276 edge new_loop_entry_e
= loop_preheader_edge (new_loop
);
277 edge entry_arg_e
= (after
? orig_loop_latch
: orig_entry_e
);
280 step 1. For each loop-header-phi:
281 Add the first phi argument for the phi in NEW_LOOP
282 (the one associated with the entry of NEW_LOOP)
284 step 2. For each loop-header-phi:
285 Add the second phi argument for the phi in NEW_LOOP
286 (the one associated with the latch of NEW_LOOP)
288 step 3. Update the phis in the successor block of NEW_LOOP.
290 case 1: NEW_LOOP was placed before ORIG_LOOP:
291 The successor block of NEW_LOOP is the header of ORIG_LOOP.
292 Updating the phis in the successor block can therefore be done
293 along with the scanning of the loop header phis, because the
294 header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
295 phi nodes, organized in the same order.
297 case 2: NEW_LOOP was placed after ORIG_LOOP:
298 The successor block of NEW_LOOP is the original exit block of
299 ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
300 We postpone updating these phis to a later stage (when
301 loop guards are added).
305 /* Scan the phis in the headers of the old and new loops
306 (they are organized in exactly the same order). */
308 for (phi_new
= phi_nodes (new_loop
->header
),
309 phi_orig
= phi_nodes (orig_loop
->header
);
311 phi_new
= PHI_CHAIN (phi_new
), phi_orig
= PHI_CHAIN (phi_orig
))
314 def
= PHI_ARG_DEF_FROM_EDGE (phi_orig
, entry_arg_e
);
315 add_phi_arg (phi_new
, def
, new_loop_entry_e
);
318 def
= PHI_ARG_DEF_FROM_EDGE (phi_orig
, orig_loop_latch
);
319 if (TREE_CODE (def
) != SSA_NAME
)
322 new_ssa_name
= get_current_def (def
);
325 /* This only happens if there are no definitions
326 inside the loop. use the phi_result in this case. */
327 new_ssa_name
= PHI_RESULT (phi_new
);
330 /* An ordinary ssa name defined in the loop. */
331 add_phi_arg (phi_new
, new_ssa_name
, loop_latch_edge (new_loop
));
333 /* step 3 (case 1). */
336 gcc_assert (new_loop_exit_e
== orig_entry_e
);
337 SET_PHI_ARG_DEF (phi_orig
,
338 new_loop_exit_e
->dest_idx
,
345 /* Update PHI nodes for a guard of the LOOP.
348 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
349 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
350 originates from the guard-bb, skips LOOP and reaches the (unique) exit
351 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
352 We denote this bb NEW_MERGE_BB because before the guard code was added
353 it had a single predecessor (the LOOP header), and now it became a merge
354 point of two paths - the path that ends with the LOOP exit-edge, and
355 the path that ends with GUARD_EDGE.
356 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
357 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
359 ===> The CFG before the guard-code was added:
362 if (exit_loop) goto update_bb
363 else goto LOOP_header_bb
366 ==> The CFG after the guard-code was added:
368 if (LOOP_guard_condition) goto new_merge_bb
369 else goto LOOP_header_bb
372 if (exit_loop_condition) goto new_merge_bb
373 else goto LOOP_header_bb
378 ==> The CFG after this function:
380 if (LOOP_guard_condition) goto new_merge_bb
381 else goto LOOP_header_bb
384 if (exit_loop_condition) goto new_exit_bb
385 else goto LOOP_header_bb
392 1. creates and updates the relevant phi nodes to account for the new
393 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
394 1.1. Create phi nodes at NEW_MERGE_BB.
395 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
396 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
397 2. preserves loop-closed-ssa-form by creating the required phi nodes
398 at the exit of LOOP (i.e, in NEW_EXIT_BB).
400 There are two flavors to this function:
402 slpeel_update_phi_nodes_for_guard1:
403 Here the guard controls whether we enter or skip LOOP, where LOOP is a
404 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
405 for variables that have phis in the loop header.
407 slpeel_update_phi_nodes_for_guard2:
408 Here the guard controls whether we enter or skip LOOP, where LOOP is an
409 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
410 for variables that have phis in the loop exit.
412 I.E., the overall structure is:
415 guard1 (goto loop1/merg1_bb)
418 guard2 (goto merge1_bb/merge2_bb)
425 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
426 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
427 that have phis in loop1->header).
429 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
430 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
431 that have phis in next_bb). It also adds some of these phis to
434 slpeel_update_phi_nodes_for_guard1 is always called before
435 slpeel_update_phi_nodes_for_guard2. They are both needed in order
436 to create correct data-flow and loop-closed-ssa-form.
438 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
439 that change between iterations of a loop (and therefore have a phi-node
440 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
441 phis for variables that are used out of the loop (and therefore have
442 loop-closed exit phis). Some variables may be both updated between
443 iterations and used after the loop. This is why in loop1_exit_bb we
444 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
445 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
447 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
448 an original loop. i.e., we have:
451 guard_bb (goto LOOP/new_merge)
457 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
461 guard_bb (goto LOOP/new_merge)
467 The SSA names defined in the original loop have a current
468 reaching definition that that records the corresponding new
469 ssa-name used in the new duplicated loop copy.
472 /* Function slpeel_update_phi_nodes_for_guard1
475 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
476 - DEFS - a bitmap of ssa names to mark new names for which we recorded
479 In the context of the overall structure, we have:
482 guard1 (goto loop1/merg1_bb)
485 guard2 (goto merge1_bb/merge2_bb)
492 For each name updated between loop iterations (i.e - for each name that has
493 an entry (loop-header) phi in LOOP) we create a new phi in:
494 1. merge1_bb (to account for the edge from guard1)
495 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
499 slpeel_update_phi_nodes_for_guard1 (edge guard_edge
, struct loop
*loop
,
500 bool is_new_loop
, basic_block
*new_exit_bb
,
503 tree orig_phi
, new_phi
;
504 tree update_phi
, update_phi2
;
505 tree guard_arg
, loop_arg
;
506 basic_block new_merge_bb
= guard_edge
->dest
;
507 edge e
= EDGE_SUCC (new_merge_bb
, 0);
508 basic_block update_bb
= e
->dest
;
509 basic_block orig_bb
= loop
->header
;
511 tree current_new_name
;
514 /* Create new bb between loop and new_merge_bb. */
515 *new_exit_bb
= split_edge (single_exit (loop
));
517 new_exit_e
= EDGE_SUCC (*new_exit_bb
, 0);
519 for (orig_phi
= phi_nodes (orig_bb
), update_phi
= phi_nodes (update_bb
);
520 orig_phi
&& update_phi
;
521 orig_phi
= PHI_CHAIN (orig_phi
), update_phi
= PHI_CHAIN (update_phi
))
523 /* Virtual phi; Mark it for renaming. We actually want to call
524 mar_sym_for_renaming, but since all ssa renaming datastructures
525 are going to be freed before we get to call ssa_upate, we just
526 record this name for now in a bitmap, and will mark it for
528 name
= PHI_RESULT (orig_phi
);
529 if (!is_gimple_reg (SSA_NAME_VAR (name
)))
530 bitmap_set_bit (vect_memsyms_to_rename
, DECL_UID (SSA_NAME_VAR (name
)));
532 /** 1. Handle new-merge-point phis **/
534 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
535 new_phi
= create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi
)),
538 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
539 of LOOP. Set the two phi args in NEW_PHI for these edges: */
540 loop_arg
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, EDGE_SUCC (loop
->latch
, 0));
541 guard_arg
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, loop_preheader_edge (loop
));
543 add_phi_arg (new_phi
, loop_arg
, new_exit_e
);
544 add_phi_arg (new_phi
, guard_arg
, guard_edge
);
546 /* 1.3. Update phi in successor block. */
547 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi
, e
) == loop_arg
548 || PHI_ARG_DEF_FROM_EDGE (update_phi
, e
) == guard_arg
);
549 SET_PHI_ARG_DEF (update_phi
, e
->dest_idx
, PHI_RESULT (new_phi
));
550 update_phi2
= new_phi
;
553 /** 2. Handle loop-closed-ssa-form phis **/
555 if (!is_gimple_reg (PHI_RESULT (orig_phi
)))
558 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
559 new_phi
= create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi
)),
562 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
563 add_phi_arg (new_phi
, loop_arg
, single_exit (loop
));
565 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
566 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2
, new_exit_e
) == loop_arg
);
567 SET_PHI_ARG_DEF (update_phi2
, new_exit_e
->dest_idx
, PHI_RESULT (new_phi
));
569 /* 2.4. Record the newly created name with set_current_def.
570 We want to find a name such that
571 name = get_current_def (orig_loop_name)
572 and to set its current definition as follows:
573 set_current_def (name, new_phi_name)
575 If LOOP is a new loop then loop_arg is already the name we're
576 looking for. If LOOP is the original loop, then loop_arg is
577 the orig_loop_name and the relevant name is recorded in its
578 current reaching definition. */
580 current_new_name
= loop_arg
;
583 current_new_name
= get_current_def (loop_arg
);
584 /* current_def is not available only if the variable does not
585 change inside the loop, in which case we also don't care
586 about recording a current_def for it because we won't be
587 trying to create loop-exit-phis for it. */
588 if (!current_new_name
)
591 gcc_assert (get_current_def (current_new_name
) == NULL_TREE
);
593 set_current_def (current_new_name
, PHI_RESULT (new_phi
));
594 bitmap_set_bit (*defs
, SSA_NAME_VERSION (current_new_name
));
597 set_phi_nodes (new_merge_bb
, phi_reverse (phi_nodes (new_merge_bb
)));
601 /* Function slpeel_update_phi_nodes_for_guard2
604 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
606 In the context of the overall structure, we have:
609 guard1 (goto loop1/merg1_bb)
612 guard2 (goto merge1_bb/merge2_bb)
619 For each name used out side the loop (i.e - for each name that has an exit
620 phi in next_bb) we create a new phi in:
621 1. merge2_bb (to account for the edge from guard_bb)
622 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
623 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
624 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
628 slpeel_update_phi_nodes_for_guard2 (edge guard_edge
, struct loop
*loop
,
629 bool is_new_loop
, basic_block
*new_exit_bb
)
631 tree orig_phi
, new_phi
;
632 tree update_phi
, update_phi2
;
633 tree guard_arg
, loop_arg
;
634 basic_block new_merge_bb
= guard_edge
->dest
;
635 edge e
= EDGE_SUCC (new_merge_bb
, 0);
636 basic_block update_bb
= e
->dest
;
638 tree orig_def
, orig_def_new_name
;
639 tree new_name
, new_name2
;
642 /* Create new bb between loop and new_merge_bb. */
643 *new_exit_bb
= split_edge (single_exit (loop
));
645 new_exit_e
= EDGE_SUCC (*new_exit_bb
, 0);
647 for (update_phi
= phi_nodes (update_bb
); update_phi
;
648 update_phi
= PHI_CHAIN (update_phi
))
650 orig_phi
= update_phi
;
651 orig_def
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, e
);
652 /* This loop-closed-phi actually doesn't represent a use
653 out of the loop - the phi arg is a constant. */
654 if (TREE_CODE (orig_def
) != SSA_NAME
)
656 orig_def_new_name
= get_current_def (orig_def
);
659 /** 1. Handle new-merge-point phis **/
661 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
662 new_phi
= create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi
)),
665 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
666 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
668 new_name2
= NULL_TREE
;
669 if (orig_def_new_name
)
671 new_name
= orig_def_new_name
;
672 /* Some variables have both loop-entry-phis and loop-exit-phis.
673 Such variables were given yet newer names by phis placed in
674 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
675 new_name2 = get_current_def (get_current_def (orig_name)). */
676 new_name2
= get_current_def (new_name
);
681 guard_arg
= orig_def
;
686 guard_arg
= new_name
;
690 guard_arg
= new_name2
;
692 add_phi_arg (new_phi
, loop_arg
, new_exit_e
);
693 add_phi_arg (new_phi
, guard_arg
, guard_edge
);
695 /* 1.3. Update phi in successor block. */
696 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi
, e
) == orig_def
);
697 SET_PHI_ARG_DEF (update_phi
, e
->dest_idx
, PHI_RESULT (new_phi
));
698 update_phi2
= new_phi
;
701 /** 2. Handle loop-closed-ssa-form phis **/
703 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
704 new_phi
= create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi
)),
707 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
708 add_phi_arg (new_phi
, loop_arg
, single_exit (loop
));
710 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
711 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2
, new_exit_e
) == loop_arg
);
712 SET_PHI_ARG_DEF (update_phi2
, new_exit_e
->dest_idx
, PHI_RESULT (new_phi
));
715 /** 3. Handle loop-closed-ssa-form phis for first loop **/
717 /* 3.1. Find the relevant names that need an exit-phi in
718 GUARD_BB, i.e. names for which
719 slpeel_update_phi_nodes_for_guard1 had not already created a
720 phi node. This is the case for names that are used outside
721 the loop (and therefore need an exit phi) but are not updated
722 across loop iterations (and therefore don't have a
725 slpeel_update_phi_nodes_for_guard1 is responsible for
726 creating loop-exit phis in GUARD_BB for names that have a
727 loop-header-phi. When such a phi is created we also record
728 the new name in its current definition. If this new name
729 exists, then guard_arg was set to this new name (see 1.2
730 above). Therefore, if guard_arg is not this new name, this
731 is an indication that an exit-phi in GUARD_BB was not yet
732 created, so we take care of it here. */
733 if (guard_arg
== new_name2
)
737 /* 3.2. Generate new phi node in GUARD_BB: */
738 new_phi
= create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi
)),
741 /* 3.3. GUARD_BB has one incoming edge: */
742 gcc_assert (EDGE_COUNT (guard_edge
->src
->preds
) == 1);
743 add_phi_arg (new_phi
, arg
, EDGE_PRED (guard_edge
->src
, 0));
745 /* 3.4. Update phi in successor of GUARD_BB: */
746 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2
, guard_edge
)
748 SET_PHI_ARG_DEF (update_phi2
, guard_edge
->dest_idx
, PHI_RESULT (new_phi
));
751 set_phi_nodes (new_merge_bb
, phi_reverse (phi_nodes (new_merge_bb
)));
755 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
756 that starts at zero, increases by one and its limit is NITERS.
758 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
761 slpeel_make_loop_iterate_ntimes (struct loop
*loop
, tree niters
)
763 tree indx_before_incr
, indx_after_incr
, cond_stmt
, cond
;
765 edge exit_edge
= single_exit (loop
);
766 block_stmt_iterator loop_cond_bsi
;
767 block_stmt_iterator incr_bsi
;
769 tree init
= build_int_cst (TREE_TYPE (niters
), 0);
770 tree step
= build_int_cst (TREE_TYPE (niters
), 1);
773 orig_cond
= get_loop_exit_condition (loop
);
774 gcc_assert (orig_cond
);
775 loop_cond_bsi
= bsi_for_stmt (orig_cond
);
777 standard_iv_increment_position (loop
, &incr_bsi
, &insert_after
);
778 create_iv (init
, step
, NULL_TREE
, loop
,
779 &incr_bsi
, insert_after
, &indx_before_incr
, &indx_after_incr
);
781 if (exit_edge
->flags
& EDGE_TRUE_VALUE
) /* 'then' edge exits the loop. */
782 cond
= build2 (GE_EXPR
, boolean_type_node
, indx_after_incr
, niters
);
783 else /* 'then' edge loops back. */
784 cond
= build2 (LT_EXPR
, boolean_type_node
, indx_after_incr
, niters
);
786 cond_stmt
= build3 (COND_EXPR
, TREE_TYPE (orig_cond
), cond
,
787 NULL_TREE
, NULL_TREE
);
788 bsi_insert_before (&loop_cond_bsi
, cond_stmt
, BSI_SAME_STMT
);
790 /* Remove old loop exit test: */
791 bsi_remove (&loop_cond_bsi
, true);
793 loop_loc
= find_loop_location (loop
);
794 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
796 if (loop_loc
!= UNKNOWN_LOC
)
797 fprintf (dump_file
, "\nloop at %s:%d: ",
798 LOC_FILE (loop_loc
), LOC_LINE (loop_loc
));
799 print_generic_expr (dump_file
, cond_stmt
, TDF_SLIM
);
802 loop
->nb_iterations
= niters
;
806 /* Given LOOP this function generates a new copy of it and puts it
807 on E which is either the entry or exit of LOOP. */
810 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop
*loop
, edge e
)
812 struct loop
*new_loop
;
813 basic_block
*new_bbs
, *bbs
;
816 basic_block exit_dest
;
820 at_exit
= (e
== single_exit (loop
));
821 if (!at_exit
&& e
!= loop_preheader_edge (loop
))
824 bbs
= get_loop_body (loop
);
826 /* Check whether duplication is possible. */
827 if (!can_copy_bbs_p (bbs
, loop
->num_nodes
))
833 /* Generate new loop structure. */
834 new_loop
= duplicate_loop (loop
, loop_outer (loop
));
841 exit_dest
= single_exit (loop
)->dest
;
842 was_imm_dom
= (get_immediate_dominator (CDI_DOMINATORS
,
843 exit_dest
) == loop
->header
?
846 new_bbs
= XNEWVEC (basic_block
, loop
->num_nodes
);
848 exit
= single_exit (loop
);
849 copy_bbs (bbs
, loop
->num_nodes
, new_bbs
,
850 &exit
, 1, &new_exit
, NULL
,
853 /* Duplicating phi args at exit bbs as coming
854 also from exit of duplicated loop. */
855 for (phi
= phi_nodes (exit_dest
); phi
; phi
= PHI_CHAIN (phi
))
857 phi_arg
= PHI_ARG_DEF_FROM_EDGE (phi
, single_exit (loop
));
860 edge new_loop_exit_edge
;
862 if (EDGE_SUCC (new_loop
->header
, 0)->dest
== new_loop
->latch
)
863 new_loop_exit_edge
= EDGE_SUCC (new_loop
->header
, 1);
865 new_loop_exit_edge
= EDGE_SUCC (new_loop
->header
, 0);
867 add_phi_arg (phi
, phi_arg
, new_loop_exit_edge
);
871 if (at_exit
) /* Add the loop copy at exit. */
873 redirect_edge_and_branch_force (e
, new_loop
->header
);
874 set_immediate_dominator (CDI_DOMINATORS
, new_loop
->header
, e
->src
);
876 set_immediate_dominator (CDI_DOMINATORS
, exit_dest
, new_loop
->header
);
878 else /* Add the copy at entry. */
881 edge entry_e
= loop_preheader_edge (loop
);
882 basic_block preheader
= entry_e
->src
;
884 if (!flow_bb_inside_loop_p (new_loop
,
885 EDGE_SUCC (new_loop
->header
, 0)->dest
))
886 new_exit_e
= EDGE_SUCC (new_loop
->header
, 0);
888 new_exit_e
= EDGE_SUCC (new_loop
->header
, 1);
890 redirect_edge_and_branch_force (new_exit_e
, loop
->header
);
891 set_immediate_dominator (CDI_DOMINATORS
, loop
->header
,
894 /* We have to add phi args to the loop->header here as coming
895 from new_exit_e edge. */
896 for (phi
= phi_nodes (loop
->header
); phi
; phi
= PHI_CHAIN (phi
))
898 phi_arg
= PHI_ARG_DEF_FROM_EDGE (phi
, entry_e
);
900 add_phi_arg (phi
, phi_arg
, new_exit_e
);
903 redirect_edge_and_branch_force (entry_e
, new_loop
->header
);
904 set_immediate_dominator (CDI_DOMINATORS
, new_loop
->header
, preheader
);
914 /* Given the condition statement COND, put it as the last statement
915 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
916 Assumes that this is the single exit of the guarded loop.
917 Returns the skip edge. */
920 slpeel_add_loop_guard (basic_block guard_bb
, tree cond
, basic_block exit_bb
,
923 block_stmt_iterator bsi
;
927 enter_e
= EDGE_SUCC (guard_bb
, 0);
928 enter_e
->flags
&= ~EDGE_FALLTHRU
;
929 enter_e
->flags
|= EDGE_FALSE_VALUE
;
930 bsi
= bsi_last (guard_bb
);
932 cond_stmt
= build3 (COND_EXPR
, void_type_node
, cond
,
933 NULL_TREE
, NULL_TREE
);
934 bsi_insert_after (&bsi
, cond_stmt
, BSI_NEW_STMT
);
935 /* Add new edge to connect guard block to the merge/loop-exit block. */
936 new_e
= make_edge (guard_bb
, exit_bb
, EDGE_TRUE_VALUE
);
937 set_immediate_dominator (CDI_DOMINATORS
, exit_bb
, dom_bb
);
942 /* This function verifies that the following restrictions apply to LOOP:
944 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
945 (3) it is single entry, single exit
946 (4) its exit condition is the last stmt in the header
947 (5) E is the entry/exit edge of LOOP.
951 slpeel_can_duplicate_loop_p (const struct loop
*loop
, const_edge e
)
953 edge exit_e
= single_exit (loop
);
954 edge entry_e
= loop_preheader_edge (loop
);
955 tree orig_cond
= get_loop_exit_condition (loop
);
956 block_stmt_iterator loop_exit_bsi
= bsi_last (exit_e
->src
);
958 if (need_ssa_update_p ())
962 /* All loops have an outer scope; the only case loop->outer is NULL is for
963 the function itself. */
964 || !loop_outer (loop
)
965 || loop
->num_nodes
!= 2
966 || !empty_block_p (loop
->latch
)
967 || !single_exit (loop
)
968 /* Verify that new loop exit condition can be trivially modified. */
969 || (!orig_cond
|| orig_cond
!= bsi_stmt (loop_exit_bsi
))
970 || (e
!= exit_e
&& e
!= entry_e
))
976 #ifdef ENABLE_CHECKING
978 slpeel_verify_cfg_after_peeling (struct loop
*first_loop
,
979 struct loop
*second_loop
)
981 basic_block loop1_exit_bb
= single_exit (first_loop
)->dest
;
982 basic_block loop2_entry_bb
= loop_preheader_edge (second_loop
)->src
;
983 basic_block loop1_entry_bb
= loop_preheader_edge (first_loop
)->src
;
985 /* A guard that controls whether the second_loop is to be executed or skipped
986 is placed in first_loop->exit. first_loopt->exit therefore has two
987 successors - one is the preheader of second_loop, and the other is a bb
990 gcc_assert (EDGE_COUNT (loop1_exit_bb
->succs
) == 2);
992 /* 1. Verify that one of the successors of first_loopt->exit is the preheader
995 /* The preheader of new_loop is expected to have two predecessors:
996 first_loop->exit and the block that precedes first_loop. */
998 gcc_assert (EDGE_COUNT (loop2_entry_bb
->preds
) == 2
999 && ((EDGE_PRED (loop2_entry_bb
, 0)->src
== loop1_exit_bb
1000 && EDGE_PRED (loop2_entry_bb
, 1)->src
== loop1_entry_bb
)
1001 || (EDGE_PRED (loop2_entry_bb
, 1)->src
== loop1_exit_bb
1002 && EDGE_PRED (loop2_entry_bb
, 0)->src
== loop1_entry_bb
)));
1004 /* Verify that the other successor of first_loopt->exit is after the
1010 /* Function slpeel_tree_peel_loop_to_edge.
1012 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1013 that is placed on the entry (exit) edge E of LOOP. After this transformation
1014 we have two loops one after the other - first-loop iterates FIRST_NITERS
1015 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1018 - LOOP: the loop to be peeled.
1019 - E: the exit or entry edge of LOOP.
1020 If it is the entry edge, we peel the first iterations of LOOP. In this
1021 case first-loop is LOOP, and second-loop is the newly created loop.
1022 If it is the exit edge, we peel the last iterations of LOOP. In this
1023 case, first-loop is the newly created loop, and second-loop is LOOP.
1024 - NITERS: the number of iterations that LOOP iterates.
1025 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1026 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1027 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1028 is false, the caller of this function may want to take care of this
1029 (this can be useful if we don't want new stmts added to first-loop).
1032 The function returns a pointer to the new loop-copy, or NULL if it failed
1033 to perform the transformation.
1035 The function generates two if-then-else guards: one before the first loop,
1036 and the other before the second loop:
1038 if (FIRST_NITERS == 0) then skip the first loop,
1039 and go directly to the second loop.
1040 The second guard is:
1041 if (FIRST_NITERS == NITERS) then skip the second loop.
1043 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1044 FORNOW the resulting code will not be in loop-closed-ssa form.
1048 slpeel_tree_peel_loop_to_edge (struct loop
*loop
,
1049 edge e
, tree first_niters
,
1050 tree niters
, bool update_first_loop_count
,
1053 struct loop
*new_loop
= NULL
, *first_loop
, *second_loop
;
1057 basic_block bb_before_second_loop
, bb_after_second_loop
;
1058 basic_block bb_before_first_loop
;
1059 basic_block bb_between_loops
;
1060 basic_block new_exit_bb
;
1061 edge exit_e
= single_exit (loop
);
1064 if (!slpeel_can_duplicate_loop_p (loop
, e
))
1067 /* We have to initialize cfg_hooks. Then, when calling
1068 cfg_hooks->split_edge, the function tree_split_edge
1069 is actually called and, when calling cfg_hooks->duplicate_block,
1070 the function tree_duplicate_bb is called. */
1071 tree_register_cfg_hooks ();
1074 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1075 Resulting CFG would be:
1088 if (!(new_loop
= slpeel_tree_duplicate_loop_to_edge_cfg (loop
, e
)))
1090 loop_loc
= find_loop_location (loop
);
1091 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1093 if (loop_loc
!= UNKNOWN_LOC
)
1094 fprintf (dump_file
, "\n%s:%d: note: ",
1095 LOC_FILE (loop_loc
), LOC_LINE (loop_loc
));
1096 fprintf (dump_file
, "tree_duplicate_loop_to_edge_cfg failed.\n");
1103 /* NEW_LOOP was placed after LOOP. */
1105 second_loop
= new_loop
;
1109 /* NEW_LOOP was placed before LOOP. */
1110 first_loop
= new_loop
;
1114 definitions
= ssa_names_to_replace ();
1115 slpeel_update_phis_for_duplicate_loop (loop
, new_loop
, e
== exit_e
);
1116 rename_variables_in_loop (new_loop
);
1119 /* 2. Add the guard that controls whether the first loop is executed.
1120 Resulting CFG would be:
1122 bb_before_first_loop:
1123 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1130 bb_before_second_loop:
1139 bb_before_first_loop
= split_edge (loop_preheader_edge (first_loop
));
1140 bb_before_second_loop
= split_edge (single_exit (first_loop
));
1143 fold_build2 (LE_EXPR
, boolean_type_node
, first_niters
,
1144 build_int_cst (TREE_TYPE (first_niters
), th
));
1146 skip_e
= slpeel_add_loop_guard (bb_before_first_loop
, pre_condition
,
1147 bb_before_second_loop
, bb_before_first_loop
);
1148 slpeel_update_phi_nodes_for_guard1 (skip_e
, first_loop
,
1149 first_loop
== new_loop
,
1150 &new_exit_bb
, &definitions
);
1153 /* 3. Add the guard that controls whether the second loop is executed.
1154 Resulting CFG would be:
1156 bb_before_first_loop:
1157 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1165 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1166 GOTO bb_before_second_loop
1168 bb_before_second_loop:
1174 bb_after_second_loop:
1179 bb_between_loops
= new_exit_bb
;
1180 bb_after_second_loop
= split_edge (single_exit (second_loop
));
1183 fold_build2 (EQ_EXPR
, boolean_type_node
, first_niters
, niters
);
1184 skip_e
= slpeel_add_loop_guard (bb_between_loops
, pre_condition
,
1185 bb_after_second_loop
, bb_before_first_loop
);
1186 slpeel_update_phi_nodes_for_guard2 (skip_e
, second_loop
,
1187 second_loop
== new_loop
, &new_exit_bb
);
1189 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1191 if (update_first_loop_count
)
1192 slpeel_make_loop_iterate_ntimes (first_loop
, first_niters
);
1194 BITMAP_FREE (definitions
);
1195 delete_update_ssa ();
1200 /* Function vect_get_loop_location.
1202 Extract the location of the loop in the source code.
1203 If the loop is not well formed for vectorization, an estimated
1204 location is calculated.
1205 Return the loop location if succeed and NULL if not. */
1208 find_loop_location (struct loop
*loop
)
1210 tree node
= NULL_TREE
;
1212 block_stmt_iterator si
;
1217 node
= get_loop_exit_condition (loop
);
1219 if (node
&& CAN_HAVE_LOCATION_P (node
) && EXPR_HAS_LOCATION (node
)
1220 && EXPR_FILENAME (node
) && EXPR_LINENO (node
))
1221 return EXPR_LOC (node
);
1223 /* If we got here the loop is probably not "well formed",
1224 try to estimate the loop location */
1231 for (si
= bsi_start (bb
); !bsi_end_p (si
); bsi_next (&si
))
1233 node
= bsi_stmt (si
);
1234 if (node
&& CAN_HAVE_LOCATION_P (node
) && EXPR_HAS_LOCATION (node
))
1235 return EXPR_LOC (node
);
1242 /*************************************************************************
1243 Vectorization Debug Information.
1244 *************************************************************************/
1246 /* Function vect_set_verbosity_level.
1248 Called from toplev.c upon detection of the
1249 -ftree-vectorizer-verbose=N option. */
1252 vect_set_verbosity_level (const char *val
)
1257 if (vl
< MAX_VERBOSITY_LEVEL
)
1258 vect_verbosity_level
= vl
;
1260 vect_verbosity_level
= MAX_VERBOSITY_LEVEL
- 1;
1264 /* Function vect_set_dump_settings.
1266 Fix the verbosity level of the vectorizer if the
1267 requested level was not set explicitly using the flag
1268 -ftree-vectorizer-verbose=N.
1269 Decide where to print the debugging information (dump_file/stderr).
1270 If the user defined the verbosity level, but there is no dump file,
1271 print to stderr, otherwise print to the dump file. */
1274 vect_set_dump_settings (void)
1276 vect_dump
= dump_file
;
1278 /* Check if the verbosity level was defined by the user: */
1279 if (vect_verbosity_level
!= MAX_VERBOSITY_LEVEL
)
1281 /* If there is no dump file, print to stderr. */
1287 /* User didn't specify verbosity level: */
1288 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1289 vect_verbosity_level
= REPORT_DETAILS
;
1290 else if (dump_file
&& (dump_flags
& TDF_STATS
))
1291 vect_verbosity_level
= REPORT_UNVECTORIZED_LOOPS
;
1293 vect_verbosity_level
= REPORT_NONE
;
1295 gcc_assert (dump_file
|| vect_verbosity_level
== REPORT_NONE
);
1299 /* Function debug_loop_details.
1301 For vectorization debug dumps. */
1304 vect_print_dump_info (enum verbosity_levels vl
)
1306 if (vl
> vect_verbosity_level
)
1309 if (!current_function_decl
|| !vect_dump
)
1312 if (vect_loop_location
== UNKNOWN_LOC
)
1313 fprintf (vect_dump
, "\n%s:%d: note: ",
1314 DECL_SOURCE_FILE (current_function_decl
),
1315 DECL_SOURCE_LINE (current_function_decl
));
1317 fprintf (vect_dump
, "\n%s:%d: note: ",
1318 LOC_FILE (vect_loop_location
), LOC_LINE (vect_loop_location
));
1324 /*************************************************************************
1325 Vectorization Utilities.
1326 *************************************************************************/
1328 /* Function new_stmt_vec_info.
1330 Create and initialize a new stmt_vec_info struct for STMT. */
1333 new_stmt_vec_info (tree stmt
, loop_vec_info loop_vinfo
)
1336 res
= (stmt_vec_info
) xcalloc (1, sizeof (struct _stmt_vec_info
));
1338 STMT_VINFO_TYPE (res
) = undef_vec_info_type
;
1339 STMT_VINFO_STMT (res
) = stmt
;
1340 STMT_VINFO_LOOP_VINFO (res
) = loop_vinfo
;
1341 STMT_VINFO_RELEVANT (res
) = 0;
1342 STMT_VINFO_LIVE_P (res
) = false;
1343 STMT_VINFO_VECTYPE (res
) = NULL
;
1344 STMT_VINFO_VEC_STMT (res
) = NULL
;
1345 STMT_VINFO_IN_PATTERN_P (res
) = false;
1346 STMT_VINFO_RELATED_STMT (res
) = NULL
;
1347 STMT_VINFO_DATA_REF (res
) = NULL
;
1349 STMT_VINFO_DR_BASE_ADDRESS (res
) = NULL
;
1350 STMT_VINFO_DR_OFFSET (res
) = NULL
;
1351 STMT_VINFO_DR_INIT (res
) = NULL
;
1352 STMT_VINFO_DR_STEP (res
) = NULL
;
1353 STMT_VINFO_DR_ALIGNED_TO (res
) = NULL
;
1355 if (TREE_CODE (stmt
) == PHI_NODE
&& is_loop_header_bb_p (bb_for_stmt (stmt
)))
1356 STMT_VINFO_DEF_TYPE (res
) = vect_unknown_def_type
;
1358 STMT_VINFO_DEF_TYPE (res
) = vect_loop_def
;
1359 STMT_VINFO_SAME_ALIGN_REFS (res
) = VEC_alloc (dr_p
, heap
, 5);
1360 STMT_VINFO_INSIDE_OF_LOOP_COST (res
) = 0;
1361 STMT_VINFO_OUTSIDE_OF_LOOP_COST (res
) = 0;
1362 STMT_SLP_TYPE (res
) = 0;
1363 DR_GROUP_FIRST_DR (res
) = NULL_TREE
;
1364 DR_GROUP_NEXT_DR (res
) = NULL_TREE
;
1365 DR_GROUP_SIZE (res
) = 0;
1366 DR_GROUP_STORE_COUNT (res
) = 0;
1367 DR_GROUP_GAP (res
) = 0;
1368 DR_GROUP_SAME_DR_STMT (res
) = NULL_TREE
;
1369 DR_GROUP_READ_WRITE_DEPENDENCE (res
) = false;
1375 /* Function bb_in_loop_p
1377 Used as predicate for dfs order traversal of the loop bbs. */
1380 bb_in_loop_p (const_basic_block bb
, const void *data
)
1382 const struct loop
*const loop
= (const struct loop
*)data
;
1383 if (flow_bb_inside_loop_p (loop
, bb
))
1389 /* Function new_loop_vec_info.
1391 Create and initialize a new loop_vec_info struct for LOOP, as well as
1392 stmt_vec_info structs for all the stmts in LOOP. */
1395 new_loop_vec_info (struct loop
*loop
)
1399 block_stmt_iterator si
;
1400 unsigned int i
, nbbs
;
1402 res
= (loop_vec_info
) xcalloc (1, sizeof (struct _loop_vec_info
));
1403 LOOP_VINFO_LOOP (res
) = loop
;
1405 bbs
= get_loop_body (loop
);
1407 /* Create/Update stmt_info for all stmts in the loop. */
1408 for (i
= 0; i
< loop
->num_nodes
; i
++)
1410 basic_block bb
= bbs
[i
];
1413 /* BBs in a nested inner-loop will have been already processed (because
1414 we will have called vect_analyze_loop_form for any nested inner-loop).
1415 Therefore, for stmts in an inner-loop we just want to update the
1416 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
1417 loop_info of the outer-loop we are currently considering to vectorize
1418 (instead of the loop_info of the inner-loop).
1419 For stmts in other BBs we need to create a stmt_info from scratch. */
1420 if (bb
->loop_father
!= loop
)
1422 /* Inner-loop bb. */
1423 gcc_assert (loop
->inner
&& bb
->loop_father
== loop
->inner
);
1424 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
1426 stmt_vec_info stmt_info
= vinfo_for_stmt (phi
);
1427 loop_vec_info inner_loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
1428 gcc_assert (loop
->inner
== LOOP_VINFO_LOOP (inner_loop_vinfo
));
1429 STMT_VINFO_LOOP_VINFO (stmt_info
) = res
;
1431 for (si
= bsi_start (bb
); !bsi_end_p (si
); bsi_next (&si
))
1433 tree stmt
= bsi_stmt (si
);
1434 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
1435 loop_vec_info inner_loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
1436 gcc_assert (loop
->inner
== LOOP_VINFO_LOOP (inner_loop_vinfo
));
1437 STMT_VINFO_LOOP_VINFO (stmt_info
) = res
;
1442 /* bb in current nest. */
1443 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
1445 stmt_ann_t ann
= get_stmt_ann (phi
);
1446 set_stmt_info (ann
, new_stmt_vec_info (phi
, res
));
1449 for (si
= bsi_start (bb
); !bsi_end_p (si
); bsi_next (&si
))
1451 tree stmt
= bsi_stmt (si
);
1452 stmt_ann_t ann
= stmt_ann (stmt
);
1453 set_stmt_info (ann
, new_stmt_vec_info (stmt
, res
));
1458 /* CHECKME: We want to visit all BBs before their successors (except for
1459 latch blocks, for which this assertion wouldn't hold). In the simple
1460 case of the loop forms we allow, a dfs order of the BBs would the same
1461 as reversed postorder traversal, so we are safe. */
1464 bbs
= XCNEWVEC (basic_block
, loop
->num_nodes
);
1465 nbbs
= dfs_enumerate_from (loop
->header
, 0, bb_in_loop_p
,
1466 bbs
, loop
->num_nodes
, loop
);
1467 gcc_assert (nbbs
== loop
->num_nodes
);
1469 LOOP_VINFO_BBS (res
) = bbs
;
1470 LOOP_VINFO_NITERS (res
) = NULL
;
1471 LOOP_VINFO_COST_MODEL_MIN_ITERS (res
) = 0;
1472 LOOP_VINFO_VECTORIZABLE_P (res
) = 0;
1473 LOOP_PEELING_FOR_ALIGNMENT (res
) = 0;
1474 LOOP_VINFO_VECT_FACTOR (res
) = 0;
1475 LOOP_VINFO_DATAREFS (res
) = VEC_alloc (data_reference_p
, heap
, 10);
1476 LOOP_VINFO_DDRS (res
) = VEC_alloc (ddr_p
, heap
, 10 * 10);
1477 LOOP_VINFO_UNALIGNED_DR (res
) = NULL
;
1478 LOOP_VINFO_MAY_MISALIGN_STMTS (res
) =
1479 VEC_alloc (tree
, heap
, PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS
));
1480 LOOP_VINFO_MAY_ALIAS_DDRS (res
) =
1481 VEC_alloc (ddr_p
, heap
, PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS
));
1482 LOOP_VINFO_STRIDED_STORES (res
) = VEC_alloc (tree
, heap
, 10);
1483 LOOP_VINFO_SLP_INSTANCES (res
) = VEC_alloc (slp_instance
, heap
, 10);
1484 LOOP_VINFO_SLP_UNROLLING_FACTOR (res
) = 1;
1490 /* Function destroy_loop_vec_info.
1492 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
1493 stmts in the loop. */
1496 destroy_loop_vec_info (loop_vec_info loop_vinfo
, bool clean_stmts
)
1501 block_stmt_iterator si
;
1503 VEC (slp_instance
, heap
) *slp_instances
;
1504 slp_instance instance
;
1509 loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1511 bbs
= LOOP_VINFO_BBS (loop_vinfo
);
1512 nbbs
= loop
->num_nodes
;
1516 free (LOOP_VINFO_BBS (loop_vinfo
));
1517 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo
));
1518 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo
));
1519 VEC_free (tree
, heap
, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo
));
1526 for (j
= 0; j
< nbbs
; j
++)
1528 basic_block bb
= bbs
[j
];
1530 stmt_vec_info stmt_info
;
1532 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
1534 stmt_ann_t ann
= stmt_ann (phi
);
1536 stmt_info
= vinfo_for_stmt (phi
);
1538 set_stmt_info (ann
, NULL
);
1541 for (si
= bsi_start (bb
); !bsi_end_p (si
); )
1543 tree stmt
= bsi_stmt (si
);
1544 stmt_ann_t ann
= stmt_ann (stmt
);
1545 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
1549 /* Check if this is a "pattern stmt" (introduced by the
1550 vectorizer during the pattern recognition pass). */
1551 bool remove_stmt_p
= false;
1552 tree orig_stmt
= STMT_VINFO_RELATED_STMT (stmt_info
);
1555 stmt_vec_info orig_stmt_info
= vinfo_for_stmt (orig_stmt
);
1557 && STMT_VINFO_IN_PATTERN_P (orig_stmt_info
))
1558 remove_stmt_p
= true;
1561 /* Free stmt_vec_info. */
1562 VEC_free (dr_p
, heap
, STMT_VINFO_SAME_ALIGN_REFS (stmt_info
));
1564 set_stmt_info (ann
, NULL
);
1566 /* Remove dead "pattern stmts". */
1568 bsi_remove (&si
, true);
1574 free (LOOP_VINFO_BBS (loop_vinfo
));
1575 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo
));
1576 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo
));
1577 VEC_free (tree
, heap
, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo
));
1578 VEC_free (ddr_p
, heap
, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo
));
1579 slp_instances
= LOOP_VINFO_SLP_INSTANCES (loop_vinfo
);
1580 for (j
= 0; VEC_iterate (slp_instance
, slp_instances
, j
, instance
); j
++)
1581 vect_free_slp_tree (SLP_INSTANCE_TREE (instance
));
1582 VEC_free (slp_instance
, heap
, LOOP_VINFO_SLP_INSTANCES (loop_vinfo
));
1589 /* Function vect_force_dr_alignment_p.
1591 Returns whether the alignment of a DECL can be forced to be aligned
1592 on ALIGNMENT bit boundary. */
1595 vect_can_force_dr_alignment_p (const_tree decl
, unsigned int alignment
)
1597 if (TREE_CODE (decl
) != VAR_DECL
)
1600 if (DECL_EXTERNAL (decl
))
1603 if (TREE_ASM_WRITTEN (decl
))
1606 if (TREE_STATIC (decl
))
1607 return (alignment
<= MAX_OFILE_ALIGNMENT
);
1609 /* This is not 100% correct. The absolute correct stack alignment
1610 is STACK_BOUNDARY. We're supposed to hope, but not assume, that
1611 PREFERRED_STACK_BOUNDARY is honored by all translation units.
1612 However, until someone implements forced stack alignment, SSE
1613 isn't really usable without this. */
1614 return (alignment
<= PREFERRED_STACK_BOUNDARY
);
1618 /* Function get_vectype_for_scalar_type.
1620 Returns the vector type corresponding to SCALAR_TYPE as supported
1624 get_vectype_for_scalar_type (tree scalar_type
)
1626 enum machine_mode inner_mode
= TYPE_MODE (scalar_type
);
1627 int nbytes
= GET_MODE_SIZE (inner_mode
);
1631 if (nbytes
== 0 || nbytes
>= UNITS_PER_SIMD_WORD
)
1634 /* FORNOW: Only a single vector size per target (UNITS_PER_SIMD_WORD)
1636 nunits
= UNITS_PER_SIMD_WORD
/ nbytes
;
1638 vectype
= build_vector_type (scalar_type
, nunits
);
1639 if (vect_print_dump_info (REPORT_DETAILS
))
1641 fprintf (vect_dump
, "get vectype with %d units of type ", nunits
);
1642 print_generic_expr (vect_dump
, scalar_type
, TDF_SLIM
);
1648 if (vect_print_dump_info (REPORT_DETAILS
))
1650 fprintf (vect_dump
, "vectype: ");
1651 print_generic_expr (vect_dump
, vectype
, TDF_SLIM
);
1654 if (!VECTOR_MODE_P (TYPE_MODE (vectype
))
1655 && !INTEGRAL_MODE_P (TYPE_MODE (vectype
)))
1657 if (vect_print_dump_info (REPORT_DETAILS
))
1658 fprintf (vect_dump
, "mode not supported by target.");
1666 /* Function vect_supportable_dr_alignment
1668 Return whether the data reference DR is supported with respect to its
1671 enum dr_alignment_support
1672 vect_supportable_dr_alignment (struct data_reference
*dr
)
1674 tree stmt
= DR_STMT (dr
);
1675 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
1676 tree vectype
= STMT_VINFO_VECTYPE (stmt_info
);
1677 enum machine_mode mode
= (int) TYPE_MODE (vectype
);
1678 struct loop
*vect_loop
= LOOP_VINFO_LOOP (STMT_VINFO_LOOP_VINFO (stmt_info
));
1679 bool nested_in_vect_loop
= nested_in_vect_loop_p (vect_loop
, stmt
);
1680 bool invariant_in_outerloop
= false;
1682 if (aligned_access_p (dr
))
1685 if (nested_in_vect_loop
)
1687 tree outerloop_step
= STMT_VINFO_DR_STEP (stmt_info
);
1688 invariant_in_outerloop
=
1689 (tree_int_cst_compare (outerloop_step
, size_zero_node
) == 0);
1692 /* Possibly unaligned access. */
1694 /* We can choose between using the implicit realignment scheme (generating
1695 a misaligned_move stmt) and the explicit realignment scheme (generating
1696 aligned loads with a REALIGN_LOAD). There are two variants to the explicit
1697 realignment scheme: optimized, and unoptimized.
1698 We can optimize the realignment only if the step between consecutive
1699 vector loads is equal to the vector size. Since the vector memory
1700 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
1701 is guaranteed that the misalignment amount remains the same throughout the
1702 execution of the vectorized loop. Therefore, we can create the
1703 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
1704 at the loop preheader.
1706 However, in the case of outer-loop vectorization, when vectorizing a
1707 memory access in the inner-loop nested within the LOOP that is now being
1708 vectorized, while it is guaranteed that the misalignment of the
1709 vectorized memory access will remain the same in different outer-loop
1710 iterations, it is *not* guaranteed that is will remain the same throughout
1711 the execution of the inner-loop. This is because the inner-loop advances
1712 with the original scalar step (and not in steps of VS). If the inner-loop
1713 step happens to be a multiple of VS, then the misalignment remains fixed
1714 and we can use the optimized realignment scheme. For example:
1720 When vectorizing the i-loop in the above example, the step between
1721 consecutive vector loads is 1, and so the misalignment does not remain
1722 fixed across the execution of the inner-loop, and the realignment cannot
1723 be optimized (as illustrated in the following pseudo vectorized loop):
1725 for (i=0; i<N; i+=4)
1726 for (j=0; j<M; j++){
1727 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
1728 // when j is {0,1,2,3,4,5,6,7,...} respectively.
1729 // (assuming that we start from an aligned address).
1732 We therefore have to use the unoptimized realignment scheme:
1734 for (i=0; i<N; i+=4)
1735 for (j=k; j<M; j+=4)
1736 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
1737 // that the misalignment of the initial address is
1740 The loop can then be vectorized as follows:
1742 for (k=0; k<4; k++){
1743 rt = get_realignment_token (&vp[k]);
1744 for (i=0; i<N; i+=4){
1746 for (j=k; j<M; j+=4){
1748 va = REALIGN_LOAD <v1,v2,rt>;
1755 if (DR_IS_READ (dr
))
1757 if (optab_handler (vec_realign_load_optab
, mode
)->insn_code
!=
1759 && (!targetm
.vectorize
.builtin_mask_for_load
1760 || targetm
.vectorize
.builtin_mask_for_load ()))
1762 if (nested_in_vect_loop
1763 && TREE_INT_CST_LOW (DR_STEP (dr
)) != UNITS_PER_SIMD_WORD
)
1764 return dr_explicit_realign
;
1766 return dr_explicit_realign_optimized
;
1769 if (optab_handler (movmisalign_optab
, mode
)->insn_code
!=
1771 /* Can't software pipeline the loads, but can at least do them. */
1772 return dr_unaligned_supported
;
1776 return dr_unaligned_unsupported
;
1780 /* Function vect_is_simple_use.
1783 LOOP - the loop that is being vectorized.
1784 OPERAND - operand of a stmt in LOOP.
1785 DEF - the defining stmt in case OPERAND is an SSA_NAME.
1787 Returns whether a stmt with OPERAND can be vectorized.
1788 Supportable operands are constants, loop invariants, and operands that are
1789 defined by the current iteration of the loop. Unsupportable operands are
1790 those that are defined by a previous iteration of the loop (as is the case
1791 in reduction/induction computations). */
1794 vect_is_simple_use (tree operand
, loop_vec_info loop_vinfo
, tree
*def_stmt
,
1795 tree
*def
, enum vect_def_type
*dt
)
1798 stmt_vec_info stmt_vinfo
;
1799 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1801 *def_stmt
= NULL_TREE
;
1804 if (vect_print_dump_info (REPORT_DETAILS
))
1806 fprintf (vect_dump
, "vect_is_simple_use: operand ");
1807 print_generic_expr (vect_dump
, operand
, TDF_SLIM
);
1810 if (TREE_CODE (operand
) == INTEGER_CST
|| TREE_CODE (operand
) == REAL_CST
)
1812 *dt
= vect_constant_def
;
1815 if (is_gimple_min_invariant (operand
))
1818 *dt
= vect_invariant_def
;
1822 if (TREE_CODE (operand
) != SSA_NAME
)
1824 if (vect_print_dump_info (REPORT_DETAILS
))
1825 fprintf (vect_dump
, "not ssa-name.");
1829 *def_stmt
= SSA_NAME_DEF_STMT (operand
);
1830 if (*def_stmt
== NULL_TREE
)
1832 if (vect_print_dump_info (REPORT_DETAILS
))
1833 fprintf (vect_dump
, "no def_stmt.");
1837 if (vect_print_dump_info (REPORT_DETAILS
))
1839 fprintf (vect_dump
, "def_stmt: ");
1840 print_generic_expr (vect_dump
, *def_stmt
, TDF_SLIM
);
1843 /* empty stmt is expected only in case of a function argument.
1844 (Otherwise - we expect a phi_node or a GIMPLE_MODIFY_STMT). */
1845 if (IS_EMPTY_STMT (*def_stmt
))
1847 tree arg
= TREE_OPERAND (*def_stmt
, 0);
1848 if (is_gimple_min_invariant (arg
))
1851 *dt
= vect_invariant_def
;
1855 if (vect_print_dump_info (REPORT_DETAILS
))
1856 fprintf (vect_dump
, "Unexpected empty stmt.");
1860 bb
= bb_for_stmt (*def_stmt
);
1861 if (!flow_bb_inside_loop_p (loop
, bb
))
1862 *dt
= vect_invariant_def
;
1865 stmt_vinfo
= vinfo_for_stmt (*def_stmt
);
1866 *dt
= STMT_VINFO_DEF_TYPE (stmt_vinfo
);
1869 if (*dt
== vect_unknown_def_type
)
1871 if (vect_print_dump_info (REPORT_DETAILS
))
1872 fprintf (vect_dump
, "Unsupported pattern.");
1876 if (vect_print_dump_info (REPORT_DETAILS
))
1877 fprintf (vect_dump
, "type of def: %d.",*dt
);
1879 switch (TREE_CODE (*def_stmt
))
1882 *def
= PHI_RESULT (*def_stmt
);
1885 case GIMPLE_MODIFY_STMT
:
1886 *def
= GIMPLE_STMT_OPERAND (*def_stmt
, 0);
1890 if (vect_print_dump_info (REPORT_DETAILS
))
1891 fprintf (vect_dump
, "unsupported defining stmt: ");
1899 /* Function supportable_widening_operation
1901 Check whether an operation represented by the code CODE is a
1902 widening operation that is supported by the target platform in
1903 vector form (i.e., when operating on arguments of type VECTYPE).
1905 Widening operations we currently support are NOP (CONVERT), FLOAT
1906 and WIDEN_MULT. This function checks if these operations are supported
1907 by the target platform either directly (via vector tree-codes), or via
1911 - CODE1 and CODE2 are codes of vector operations to be used when
1912 vectorizing the operation, if available.
1913 - DECL1 and DECL2 are decls of target builtin functions to be used
1914 when vectorizing the operation, if available. In this case,
1915 CODE1 and CODE2 are CALL_EXPR. */
1918 supportable_widening_operation (enum tree_code code
, tree stmt
, tree vectype
,
1919 tree
*decl1
, tree
*decl2
,
1920 enum tree_code
*code1
, enum tree_code
*code2
)
1922 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
1923 loop_vec_info loop_info
= STMT_VINFO_LOOP_VINFO (stmt_info
);
1924 struct loop
*vect_loop
= LOOP_VINFO_LOOP (loop_info
);
1926 enum machine_mode vec_mode
;
1927 enum insn_code icode1
, icode2
;
1928 optab optab1
, optab2
;
1929 tree expr
= GIMPLE_STMT_OPERAND (stmt
, 1);
1930 tree type
= TREE_TYPE (expr
);
1931 tree wide_vectype
= get_vectype_for_scalar_type (type
);
1932 enum tree_code c1
, c2
;
1934 /* The result of a vectorized widening operation usually requires two vectors
1935 (because the widened results do not fit int one vector). The generated
1936 vector results would normally be expected to be generated in the same
1937 order as in the original scalar computation. i.e. if 8 results are
1938 generated in each vector iteration, they are to be organized as follows:
1939 vect1: [res1,res2,res3,res4], vect2: [res5,res6,res7,res8].
1941 However, in the special case that the result of the widening operation is
1942 used in a reduction computation only, the order doesn't matter (because
1943 when vectorizing a reduction we change the order of the computation).
1944 Some targets can take advantage of this and generate more efficient code.
1945 For example, targets like Altivec, that support widen_mult using a sequence
1946 of {mult_even,mult_odd} generate the following vectors:
1947 vect1: [res1,res3,res5,res7], vect2: [res2,res4,res6,res8].
1949 When vectorizaing outer-loops, we execute the inner-loop sequentially
1950 (each vectorized inner-loop iteration contributes to VF outer-loop
1951 iterations in parallel). We therefore don't allow to change the order
1952 of the computation in the inner-loop during outer-loop vectorization. */
1954 if (STMT_VINFO_RELEVANT (stmt_info
) == vect_used_by_reduction
1955 && !nested_in_vect_loop_p (vect_loop
, stmt
))
1961 && code
== WIDEN_MULT_EXPR
1962 && targetm
.vectorize
.builtin_mul_widen_even
1963 && targetm
.vectorize
.builtin_mul_widen_even (vectype
)
1964 && targetm
.vectorize
.builtin_mul_widen_odd
1965 && targetm
.vectorize
.builtin_mul_widen_odd (vectype
))
1967 if (vect_print_dump_info (REPORT_DETAILS
))
1968 fprintf (vect_dump
, "Unordered widening operation detected.");
1970 *code1
= *code2
= CALL_EXPR
;
1971 *decl1
= targetm
.vectorize
.builtin_mul_widen_even (vectype
);
1972 *decl2
= targetm
.vectorize
.builtin_mul_widen_odd (vectype
);
1978 case WIDEN_MULT_EXPR
:
1979 if (BYTES_BIG_ENDIAN
)
1981 c1
= VEC_WIDEN_MULT_HI_EXPR
;
1982 c2
= VEC_WIDEN_MULT_LO_EXPR
;
1986 c2
= VEC_WIDEN_MULT_HI_EXPR
;
1987 c1
= VEC_WIDEN_MULT_LO_EXPR
;
1993 if (BYTES_BIG_ENDIAN
)
1995 c1
= VEC_UNPACK_HI_EXPR
;
1996 c2
= VEC_UNPACK_LO_EXPR
;
2000 c2
= VEC_UNPACK_HI_EXPR
;
2001 c1
= VEC_UNPACK_LO_EXPR
;
2006 if (BYTES_BIG_ENDIAN
)
2008 c1
= VEC_UNPACK_FLOAT_HI_EXPR
;
2009 c2
= VEC_UNPACK_FLOAT_LO_EXPR
;
2013 c2
= VEC_UNPACK_FLOAT_HI_EXPR
;
2014 c1
= VEC_UNPACK_FLOAT_LO_EXPR
;
2018 case FIX_TRUNC_EXPR
:
2019 /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
2020 VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
2021 computing the operation. */
2028 if (code
== FIX_TRUNC_EXPR
)
2030 /* The signedness is determined from output operand. */
2031 optab1
= optab_for_tree_code (c1
, type
);
2032 optab2
= optab_for_tree_code (c2
, type
);
2036 optab1
= optab_for_tree_code (c1
, vectype
);
2037 optab2
= optab_for_tree_code (c2
, vectype
);
2040 if (!optab1
|| !optab2
)
2043 vec_mode
= TYPE_MODE (vectype
);
2044 if ((icode1
= optab_handler (optab1
, vec_mode
)->insn_code
) == CODE_FOR_nothing
2045 || insn_data
[icode1
].operand
[0].mode
!= TYPE_MODE (wide_vectype
)
2046 || (icode2
= optab_handler (optab2
, vec_mode
)->insn_code
)
2048 || insn_data
[icode2
].operand
[0].mode
!= TYPE_MODE (wide_vectype
))
2057 /* Function supportable_narrowing_operation
2059 Check whether an operation represented by the code CODE is a
2060 narrowing operation that is supported by the target platform in
2061 vector form (i.e., when operating on arguments of type VECTYPE).
2063 Narrowing operations we currently support are NOP (CONVERT) and
2064 FIX_TRUNC. This function checks if these operations are supported by
2065 the target platform directly via vector tree-codes.
2068 - CODE1 is the code of a vector operation to be used when
2069 vectorizing the operation, if available. */
2072 supportable_narrowing_operation (enum tree_code code
,
2073 const_tree stmt
, const_tree vectype
,
2074 enum tree_code
*code1
)
2076 enum machine_mode vec_mode
;
2077 enum insn_code icode1
;
2079 tree expr
= GIMPLE_STMT_OPERAND (stmt
, 1);
2080 tree type
= TREE_TYPE (expr
);
2081 tree narrow_vectype
= get_vectype_for_scalar_type (type
);
2088 c1
= VEC_PACK_TRUNC_EXPR
;
2091 case FIX_TRUNC_EXPR
:
2092 c1
= VEC_PACK_FIX_TRUNC_EXPR
;
2096 /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
2097 tree code and optabs used for computing the operation. */
2104 if (code
== FIX_TRUNC_EXPR
)
2105 /* The signedness is determined from output operand. */
2106 optab1
= optab_for_tree_code (c1
, type
);
2108 optab1
= optab_for_tree_code (c1
, vectype
);
2113 vec_mode
= TYPE_MODE (vectype
);
2114 if ((icode1
= optab_handler (optab1
, vec_mode
)->insn_code
) == CODE_FOR_nothing
2115 || insn_data
[icode1
].operand
[0].mode
!= TYPE_MODE (narrow_vectype
))
2123 /* Function reduction_code_for_scalar_code
2126 CODE - tree_code of a reduction operations.
2129 REDUC_CODE - the corresponding tree-code to be used to reduce the
2130 vector of partial results into a single scalar result (which
2131 will also reside in a vector).
2133 Return TRUE if a corresponding REDUC_CODE was found, FALSE otherwise. */
2136 reduction_code_for_scalar_code (enum tree_code code
,
2137 enum tree_code
*reduc_code
)
2142 *reduc_code
= REDUC_MAX_EXPR
;
2146 *reduc_code
= REDUC_MIN_EXPR
;
2150 *reduc_code
= REDUC_PLUS_EXPR
;
2159 /* Function vect_is_simple_reduction
2161 Detect a cross-iteration def-use cucle that represents a simple
2162 reduction computation. We look for the following pattern:
2167 a2 = operation (a3, a1)
2170 1. operation is commutative and associative and it is safe to
2171 change the order of the computation.
2172 2. no uses for a2 in the loop (a2 is used out of the loop)
2173 3. no uses of a1 in the loop besides the reduction operation.
2175 Condition 1 is tested here.
2176 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized. */
2179 vect_is_simple_reduction (loop_vec_info loop_info
, tree phi
)
2181 struct loop
*loop
= (bb_for_stmt (phi
))->loop_father
;
2182 struct loop
*vect_loop
= LOOP_VINFO_LOOP (loop_info
);
2183 edge latch_e
= loop_latch_edge (loop
);
2184 tree loop_arg
= PHI_ARG_DEF_FROM_EDGE (phi
, latch_e
);
2185 tree def_stmt
, def1
, def2
;
2186 enum tree_code code
;
2188 tree operation
, op1
, op2
;
2192 imm_use_iterator imm_iter
;
2193 use_operand_p use_p
;
2195 gcc_assert (loop
== vect_loop
|| flow_loop_nested_p (vect_loop
, loop
));
2197 name
= PHI_RESULT (phi
);
2199 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, name
)
2201 tree use_stmt
= USE_STMT (use_p
);
2202 if (flow_bb_inside_loop_p (loop
, bb_for_stmt (use_stmt
))
2203 && vinfo_for_stmt (use_stmt
)
2204 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt
)))
2208 if (vect_print_dump_info (REPORT_DETAILS
))
2209 fprintf (vect_dump
, "reduction used in loop.");
2214 if (TREE_CODE (loop_arg
) != SSA_NAME
)
2216 if (vect_print_dump_info (REPORT_DETAILS
))
2218 fprintf (vect_dump
, "reduction: not ssa_name: ");
2219 print_generic_expr (vect_dump
, loop_arg
, TDF_SLIM
);
2224 def_stmt
= SSA_NAME_DEF_STMT (loop_arg
);
2227 if (vect_print_dump_info (REPORT_DETAILS
))
2228 fprintf (vect_dump
, "reduction: no def_stmt.");
2232 if (TREE_CODE (def_stmt
) != GIMPLE_MODIFY_STMT
)
2234 if (vect_print_dump_info (REPORT_DETAILS
))
2235 print_generic_expr (vect_dump
, def_stmt
, TDF_SLIM
);
2239 name
= GIMPLE_STMT_OPERAND (def_stmt
, 0);
2241 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, name
)
2243 tree use_stmt
= USE_STMT (use_p
);
2244 if (flow_bb_inside_loop_p (loop
, bb_for_stmt (use_stmt
))
2245 && vinfo_for_stmt (use_stmt
)
2246 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt
)))
2250 if (vect_print_dump_info (REPORT_DETAILS
))
2251 fprintf (vect_dump
, "reduction used in loop.");
2256 operation
= GIMPLE_STMT_OPERAND (def_stmt
, 1);
2257 code
= TREE_CODE (operation
);
2258 if (!commutative_tree_code (code
) || !associative_tree_code (code
))
2260 if (vect_print_dump_info (REPORT_DETAILS
))
2262 fprintf (vect_dump
, "reduction: not commutative/associative: ");
2263 print_generic_expr (vect_dump
, operation
, TDF_SLIM
);
2268 op_type
= TREE_OPERAND_LENGTH (operation
);
2269 if (op_type
!= binary_op
)
2271 if (vect_print_dump_info (REPORT_DETAILS
))
2273 fprintf (vect_dump
, "reduction: not binary operation: ");
2274 print_generic_expr (vect_dump
, operation
, TDF_SLIM
);
2279 op1
= TREE_OPERAND (operation
, 0);
2280 op2
= TREE_OPERAND (operation
, 1);
2281 if (TREE_CODE (op1
) != SSA_NAME
|| TREE_CODE (op2
) != SSA_NAME
)
2283 if (vect_print_dump_info (REPORT_DETAILS
))
2285 fprintf (vect_dump
, "reduction: uses not ssa_names: ");
2286 print_generic_expr (vect_dump
, operation
, TDF_SLIM
);
2291 /* Check that it's ok to change the order of the computation. */
2292 type
= TREE_TYPE (operation
);
2293 if (TYPE_MAIN_VARIANT (type
) != TYPE_MAIN_VARIANT (TREE_TYPE (op1
))
2294 || TYPE_MAIN_VARIANT (type
) != TYPE_MAIN_VARIANT (TREE_TYPE (op2
)))
2296 if (vect_print_dump_info (REPORT_DETAILS
))
2298 fprintf (vect_dump
, "reduction: multiple types: operation type: ");
2299 print_generic_expr (vect_dump
, type
, TDF_SLIM
);
2300 fprintf (vect_dump
, ", operands types: ");
2301 print_generic_expr (vect_dump
, TREE_TYPE (op1
), TDF_SLIM
);
2302 fprintf (vect_dump
, ",");
2303 print_generic_expr (vect_dump
, TREE_TYPE (op2
), TDF_SLIM
);
2308 /* Generally, when vectorizing a reduction we change the order of the
2309 computation. This may change the behavior of the program in some
2310 cases, so we need to check that this is ok. One exception is when
2311 vectorizing an outer-loop: the inner-loop is executed sequentially,
2312 and therefore vectorizing reductions in the inner-loop durint
2313 outer-loop vectorization is safe. */
2315 /* CHECKME: check for !flag_finite_math_only too? */
2316 if (SCALAR_FLOAT_TYPE_P (type
) && !flag_associative_math
2317 && !nested_in_vect_loop_p (vect_loop
, def_stmt
))
2319 /* Changing the order of operations changes the semantics. */
2320 if (vect_print_dump_info (REPORT_DETAILS
))
2322 fprintf (vect_dump
, "reduction: unsafe fp math optimization: ");
2323 print_generic_expr (vect_dump
, operation
, TDF_SLIM
);
2327 else if (INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_TRAPS (type
)
2328 && !nested_in_vect_loop_p (vect_loop
, def_stmt
))
2330 /* Changing the order of operations changes the semantics. */
2331 if (vect_print_dump_info (REPORT_DETAILS
))
2333 fprintf (vect_dump
, "reduction: unsafe int math optimization: ");
2334 print_generic_expr (vect_dump
, operation
, TDF_SLIM
);
2338 else if (SAT_FIXED_POINT_TYPE_P (type
))
2340 /* Changing the order of operations changes the semantics. */
2341 if (vect_print_dump_info (REPORT_DETAILS
))
2343 fprintf (vect_dump
, "reduction: unsafe fixed-point math optimization: ");
2344 print_generic_expr (vect_dump
, operation
, TDF_SLIM
);
2349 /* reduction is safe. we're dealing with one of the following:
2350 1) integer arithmetic and no trapv
2351 2) floating point arithmetic, and special flags permit this optimization.
2353 def1
= SSA_NAME_DEF_STMT (op1
);
2354 def2
= SSA_NAME_DEF_STMT (op2
);
2355 if (!def1
|| !def2
|| IS_EMPTY_STMT (def1
) || IS_EMPTY_STMT (def2
))
2357 if (vect_print_dump_info (REPORT_DETAILS
))
2359 fprintf (vect_dump
, "reduction: no defs for operands: ");
2360 print_generic_expr (vect_dump
, operation
, TDF_SLIM
);
2366 /* Check that one def is the reduction def, defined by PHI,
2367 the other def is either defined in the loop ("vect_loop_def"),
2368 or it's an induction (defined by a loop-header phi-node). */
2371 && flow_bb_inside_loop_p (loop
, bb_for_stmt (def1
))
2372 && (TREE_CODE (def1
) == GIMPLE_MODIFY_STMT
2373 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1
)) == vect_induction_def
2374 || (TREE_CODE (def1
) == PHI_NODE
2375 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1
)) == vect_loop_def
2376 && !is_loop_header_bb_p (bb_for_stmt (def1
)))))
2378 if (vect_print_dump_info (REPORT_DETAILS
))
2380 fprintf (vect_dump
, "detected reduction:");
2381 print_generic_expr (vect_dump
, operation
, TDF_SLIM
);
2385 else if (def1
== phi
2386 && flow_bb_inside_loop_p (loop
, bb_for_stmt (def2
))
2387 && (TREE_CODE (def2
) == GIMPLE_MODIFY_STMT
2388 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2
)) == vect_induction_def
2389 || (TREE_CODE (def2
) == PHI_NODE
2390 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2
)) == vect_loop_def
2391 && !is_loop_header_bb_p (bb_for_stmt (def2
)))))
2393 /* Swap operands (just for simplicity - so that the rest of the code
2394 can assume that the reduction variable is always the last (second)
2396 if (vect_print_dump_info (REPORT_DETAILS
))
2398 fprintf (vect_dump
, "detected reduction: need to swap operands:");
2399 print_generic_expr (vect_dump
, operation
, TDF_SLIM
);
2401 swap_tree_operands (def_stmt
, &TREE_OPERAND (operation
, 0),
2402 &TREE_OPERAND (operation
, 1));
2407 if (vect_print_dump_info (REPORT_DETAILS
))
2409 fprintf (vect_dump
, "reduction: unknown pattern.");
2410 print_generic_expr (vect_dump
, operation
, TDF_SLIM
);
2417 /* Function vect_is_simple_iv_evolution.
2419 FORNOW: A simple evolution of an induction variables in the loop is
2420 considered a polynomial evolution with constant step. */
2423 vect_is_simple_iv_evolution (unsigned loop_nb
, tree access_fn
, tree
* init
,
2428 tree evolution_part
= evolution_part_in_loop_num (access_fn
, loop_nb
);
2430 /* When there is no evolution in this loop, the evolution function
2432 if (evolution_part
== NULL_TREE
)
2435 /* When the evolution is a polynomial of degree >= 2
2436 the evolution function is not "simple". */
2437 if (tree_is_chrec (evolution_part
))
2440 step_expr
= evolution_part
;
2441 init_expr
= unshare_expr (initial_condition_in_loop_num (access_fn
, loop_nb
));
2443 if (vect_print_dump_info (REPORT_DETAILS
))
2445 fprintf (vect_dump
, "step: ");
2446 print_generic_expr (vect_dump
, step_expr
, TDF_SLIM
);
2447 fprintf (vect_dump
, ", init: ");
2448 print_generic_expr (vect_dump
, init_expr
, TDF_SLIM
);
2454 if (TREE_CODE (step_expr
) != INTEGER_CST
)
2456 if (vect_print_dump_info (REPORT_DETAILS
))
2457 fprintf (vect_dump
, "step unknown.");
2465 /* Function vectorize_loops.
2467 Entry Point to loop vectorization phase. */
2470 vectorize_loops (void)
2473 unsigned int num_vectorized_loops
= 0;
2474 unsigned int vect_loops_num
;
2478 vect_loops_num
= number_of_loops ();
2480 /* Bail out if there are no loops. */
2481 if (vect_loops_num
<= 1)
2484 /* Fix the verbosity level if not defined explicitly by the user. */
2485 vect_set_dump_settings ();
2487 /* Allocate the bitmap that records which virtual variables that
2488 need to be renamed. */
2489 vect_memsyms_to_rename
= BITMAP_ALLOC (NULL
);
2491 /* ----------- Analyze loops. ----------- */
2493 /* If some loop was duplicated, it gets bigger number
2494 than all previously defined loops. This fact allows us to run
2495 only over initial loops skipping newly generated ones. */
2496 FOR_EACH_LOOP (li
, loop
, 0)
2498 loop_vec_info loop_vinfo
;
2500 vect_loop_location
= find_loop_location (loop
);
2501 loop_vinfo
= vect_analyze_loop (loop
);
2502 loop
->aux
= loop_vinfo
;
2504 if (!loop_vinfo
|| !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo
))
2507 vect_transform_loop (loop_vinfo
);
2508 num_vectorized_loops
++;
2510 vect_loop_location
= UNKNOWN_LOC
;
2512 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
)
2513 || (vect_print_dump_info (REPORT_VECTORIZED_LOOPS
)
2514 && num_vectorized_loops
> 0))
2515 fprintf (vect_dump
, "vectorized %u loops in function.\n",
2516 num_vectorized_loops
);
2518 /* ----------- Finalize. ----------- */
2520 BITMAP_FREE (vect_memsyms_to_rename
);
2522 for (i
= 1; i
< vect_loops_num
; i
++)
2524 loop_vec_info loop_vinfo
;
2526 loop
= get_loop (i
);
2529 loop_vinfo
= loop
->aux
;
2530 destroy_loop_vec_info (loop_vinfo
, true);
2534 return num_vectorized_loops
> 0 ? TODO_cleanup_cfg
: 0;
2537 /* Increase alignment of global arrays to improve vectorization potential.
2539 - Consider also structs that have an array field.
2540 - Use ipa analysis to prune arrays that can't be vectorized?
2541 This should involve global alignment analysis and in the future also
2545 increase_alignment (void)
2547 struct varpool_node
*vnode
;
2549 /* Increase the alignment of all global arrays for vectorization. */
2550 for (vnode
= varpool_nodes_queue
;
2552 vnode
= vnode
->next_needed
)
2554 tree vectype
, decl
= vnode
->decl
;
2555 unsigned int alignment
;
2557 if (TREE_CODE (TREE_TYPE (decl
)) != ARRAY_TYPE
)
2559 vectype
= get_vectype_for_scalar_type (TREE_TYPE (TREE_TYPE (decl
)));
2562 alignment
= TYPE_ALIGN (vectype
);
2563 if (DECL_ALIGN (decl
) >= alignment
)
2566 if (vect_can_force_dr_alignment_p (decl
, alignment
))
2568 DECL_ALIGN (decl
) = TYPE_ALIGN (vectype
);
2569 DECL_USER_ALIGN (decl
) = 1;
2572 fprintf (dump_file
, "Increasing alignment of decl: ");
2573 print_generic_expr (dump_file
, decl
, TDF_SLIM
);
2581 gate_increase_alignment (void)
2583 return flag_section_anchors
&& flag_tree_vectorize
;
2586 struct tree_opt_pass pass_ipa_increase_alignment
=
2588 "increase_alignment", /* name */
2589 gate_increase_alignment
, /* gate */
2590 increase_alignment
, /* execute */
2593 0, /* static_pass_number */
2595 0, /* properties_required */
2596 0, /* properties_provided */
2597 0, /* properties_destroyed */
2598 0, /* todo_flags_start */
2599 0, /* todo_flags_finish */