./:
[official-gcc.git] / gcc / tree-flow-inline.h
blob71e607bddce0d4cb2e5bfabfa369939584bddf9a
1 /* Inline functions for tree-flow.h
2 Copyright (C) 2001, 2003, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef _TREE_FLOW_INLINE_H
22 #define _TREE_FLOW_INLINE_H 1
24 /* Inline functions for manipulating various data structures defined in
25 tree-flow.h. See tree-flow.h for documentation. */
27 /* Return true when gimple SSA form was built.
28 gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
29 infrastructure is initialized. Check for presence of the datastructures
30 at first place. */
31 static inline bool
32 gimple_in_ssa_p (const struct function *fun)
34 return fun && fun->gimple_df && fun->gimple_df->in_ssa_p;
37 /* 'true' after aliases have been computed (see compute_may_aliases). */
38 static inline bool
39 gimple_aliases_computed_p (const struct function *fun)
41 gcc_assert (fun && fun->gimple_df);
42 return fun->gimple_df->aliases_computed_p;
45 /* Addressable variables in the function. If bit I is set, then
46 REFERENCED_VARS (I) has had its address taken. Note that
47 CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An
48 addressable variable is not necessarily call-clobbered (e.g., a
49 local addressable whose address does not escape) and not all
50 call-clobbered variables are addressable (e.g., a local static
51 variable). */
52 static inline bitmap
53 gimple_addressable_vars (const struct function *fun)
55 gcc_assert (fun && fun->gimple_df);
56 return fun->gimple_df->addressable_vars;
59 /* Call clobbered variables in the function. If bit I is set, then
60 REFERENCED_VARS (I) is call-clobbered. */
61 static inline bitmap
62 gimple_call_clobbered_vars (const struct function *fun)
64 gcc_assert (fun && fun->gimple_df);
65 return fun->gimple_df->call_clobbered_vars;
68 /* Array of all variables referenced in the function. */
69 static inline htab_t
70 gimple_referenced_vars (const struct function *fun)
72 if (!fun->gimple_df)
73 return NULL;
74 return fun->gimple_df->referenced_vars;
77 /* Artificial variable used to model the effects of function calls. */
78 static inline tree
79 gimple_global_var (const struct function *fun)
81 gcc_assert (fun && fun->gimple_df);
82 return fun->gimple_df->global_var;
85 /* Artificial variable used to model the effects of nonlocal
86 variables. */
87 static inline tree
88 gimple_nonlocal_all (const struct function *fun)
90 gcc_assert (fun && fun->gimple_df);
91 return fun->gimple_df->nonlocal_all;
94 /* Hashtable of variables annotations. Used for static variables only;
95 local variables have direct pointer in the tree node. */
96 static inline htab_t
97 gimple_var_anns (const struct function *fun)
99 return fun->gimple_df->var_anns;
102 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
104 static inline void *
105 first_htab_element (htab_iterator *hti, htab_t table)
107 hti->htab = table;
108 hti->slot = table->entries;
109 hti->limit = hti->slot + htab_size (table);
112 PTR x = *(hti->slot);
113 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
114 break;
115 } while (++(hti->slot) < hti->limit);
117 if (hti->slot < hti->limit)
118 return *(hti->slot);
119 return NULL;
122 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
123 or NULL if we have reached the end. */
125 static inline bool
126 end_htab_p (const htab_iterator *hti)
128 if (hti->slot >= hti->limit)
129 return true;
130 return false;
133 /* Advance the hashtable iterator pointed to by HTI to the next element of the
134 hashtable. */
136 static inline void *
137 next_htab_element (htab_iterator *hti)
139 while (++(hti->slot) < hti->limit)
141 PTR x = *(hti->slot);
142 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
143 return x;
145 return NULL;
148 /* Initialize ITER to point to the first referenced variable in the
149 referenced_vars hashtable, and return that variable. */
151 static inline tree
152 first_referenced_var (referenced_var_iterator *iter)
154 struct int_tree_map *itm;
155 itm = (struct int_tree_map *) first_htab_element (&iter->hti,
156 gimple_referenced_vars
157 (cfun));
158 if (!itm)
159 return NULL;
160 return itm->to;
163 /* Return true if we have hit the end of the referenced variables ITER is
164 iterating through. */
166 static inline bool
167 end_referenced_vars_p (const referenced_var_iterator *iter)
169 return end_htab_p (&iter->hti);
172 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
173 and return that variable. */
175 static inline tree
176 next_referenced_var (referenced_var_iterator *iter)
178 struct int_tree_map *itm;
179 itm = (struct int_tree_map *) next_htab_element (&iter->hti);
180 if (!itm)
181 return NULL;
182 return itm->to;
185 /* Fill up VEC with the variables in the referenced vars hashtable. */
187 static inline void
188 fill_referenced_var_vec (VEC (tree, heap) **vec)
190 referenced_var_iterator rvi;
191 tree var;
192 *vec = NULL;
193 FOR_EACH_REFERENCED_VAR (var, rvi)
194 VEC_safe_push (tree, heap, *vec, var);
197 /* Return the variable annotation for T, which must be a _DECL node.
198 Return NULL if the variable annotation doesn't already exist. */
199 static inline var_ann_t
200 var_ann (const_tree t)
202 gcc_assert (t);
203 gcc_assert (DECL_P (t));
204 gcc_assert (TREE_CODE (t) != FUNCTION_DECL);
205 if (!MTAG_P (t) && (TREE_STATIC (t) || DECL_EXTERNAL (t)))
207 struct static_var_ann_d *sann
208 = ((struct static_var_ann_d *)
209 htab_find_with_hash (gimple_var_anns (cfun), t, DECL_UID (t)));
210 if (!sann)
211 return NULL;
212 gcc_assert (sann->ann.common.type == VAR_ANN);
213 return &sann->ann;
215 gcc_assert (!t->base.ann
216 || t->base.ann->common.type == VAR_ANN);
218 return (var_ann_t) t->base.ann;
221 /* Return the variable annotation for T, which must be a _DECL node.
222 Create the variable annotation if it doesn't exist. */
223 static inline var_ann_t
224 get_var_ann (tree var)
226 var_ann_t ann = var_ann (var);
227 return (ann) ? ann : create_var_ann (var);
230 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
231 Return NULL if the function annotation doesn't already exist. */
232 static inline function_ann_t
233 function_ann (const_tree t)
235 gcc_assert (t);
236 gcc_assert (TREE_CODE (t) == FUNCTION_DECL);
237 gcc_assert (!t->base.ann
238 || t->base.ann->common.type == FUNCTION_ANN);
240 return (function_ann_t) t->base.ann;
243 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
244 Create the function annotation if it doesn't exist. */
245 static inline function_ann_t
246 get_function_ann (tree var)
248 function_ann_t ann = function_ann (var);
249 gcc_assert (!var->base.ann || var->base.ann->common.type == FUNCTION_ANN);
250 return (ann) ? ann : create_function_ann (var);
253 /* Return true if T has a statement annotation attached to it. */
255 static inline bool
256 has_stmt_ann (tree t)
258 #ifdef ENABLE_CHECKING
259 gcc_assert (is_gimple_stmt (t));
260 #endif
261 return t->base.ann && t->base.ann->common.type == STMT_ANN;
264 /* Return the statement annotation for T, which must be a statement
265 node. Return NULL if the statement annotation doesn't exist. */
266 static inline stmt_ann_t
267 stmt_ann (tree t)
269 #ifdef ENABLE_CHECKING
270 gcc_assert (is_gimple_stmt (t));
271 #endif
272 gcc_assert (!t->base.ann || t->base.ann->common.type == STMT_ANN);
273 return (stmt_ann_t) t->base.ann;
276 /* Return the statement annotation for T, which must be a statement
277 node. Create the statement annotation if it doesn't exist. */
278 static inline stmt_ann_t
279 get_stmt_ann (tree stmt)
281 stmt_ann_t ann = stmt_ann (stmt);
282 return (ann) ? ann : create_stmt_ann (stmt);
285 /* Return the annotation type for annotation ANN. */
286 static inline enum tree_ann_type
287 ann_type (tree_ann_t ann)
289 return ann->common.type;
292 /* Return the basic block for statement T. */
293 static inline basic_block
294 bb_for_stmt (tree t)
296 stmt_ann_t ann;
298 if (TREE_CODE (t) == PHI_NODE)
299 return PHI_BB (t);
301 ann = stmt_ann (t);
302 return ann ? ann->bb : NULL;
305 /* Return the may_aliases bitmap for variable VAR, or NULL if it has
306 no may aliases. */
307 static inline bitmap
308 may_aliases (const_tree var)
310 return MTAG_ALIASES (var);
313 /* Return the line number for EXPR, or return -1 if we have no line
314 number information for it. */
315 static inline int
316 get_lineno (const_tree expr)
318 if (expr == NULL_TREE)
319 return -1;
321 if (TREE_CODE (expr) == COMPOUND_EXPR)
322 expr = TREE_OPERAND (expr, 0);
324 if (! EXPR_HAS_LOCATION (expr))
325 return -1;
327 return EXPR_LINENO (expr);
330 /* Return true if T is a noreturn call. */
331 static inline bool
332 noreturn_call_p (tree t)
334 tree call = get_call_expr_in (t);
335 return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0;
338 /* Mark statement T as modified. */
339 static inline void
340 mark_stmt_modified (tree t)
342 stmt_ann_t ann;
343 if (TREE_CODE (t) == PHI_NODE)
344 return;
346 ann = stmt_ann (t);
347 if (ann == NULL)
348 ann = create_stmt_ann (t);
349 else if (noreturn_call_p (t) && cfun->gimple_df)
350 VEC_safe_push (tree, gc, MODIFIED_NORETURN_CALLS (cfun), t);
351 ann->modified = 1;
354 /* Mark statement T as modified, and update it. */
355 static inline void
356 update_stmt (tree t)
358 if (TREE_CODE (t) == PHI_NODE)
359 return;
360 mark_stmt_modified (t);
361 update_stmt_operands (t);
364 static inline void
365 update_stmt_if_modified (tree t)
367 if (stmt_modified_p (t))
368 update_stmt_operands (t);
371 /* Return true if T is marked as modified, false otherwise. */
372 static inline bool
373 stmt_modified_p (tree t)
375 stmt_ann_t ann = stmt_ann (t);
377 /* Note that if the statement doesn't yet have an annotation, we consider it
378 modified. This will force the next call to update_stmt_operands to scan
379 the statement. */
380 return ann ? ann->modified : true;
383 /* Delink an immediate_uses node from its chain. */
384 static inline void
385 delink_imm_use (ssa_use_operand_t *linknode)
387 /* Return if this node is not in a list. */
388 if (linknode->prev == NULL)
389 return;
391 linknode->prev->next = linknode->next;
392 linknode->next->prev = linknode->prev;
393 linknode->prev = NULL;
394 linknode->next = NULL;
397 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
398 static inline void
399 link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
401 /* Link the new node at the head of the list. If we are in the process of
402 traversing the list, we won't visit any new nodes added to it. */
403 linknode->prev = list;
404 linknode->next = list->next;
405 list->next->prev = linknode;
406 list->next = linknode;
409 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
410 static inline void
411 link_imm_use (ssa_use_operand_t *linknode, tree def)
413 ssa_use_operand_t *root;
415 if (!def || TREE_CODE (def) != SSA_NAME)
416 linknode->prev = NULL;
417 else
419 root = &(SSA_NAME_IMM_USE_NODE (def));
420 #ifdef ENABLE_CHECKING
421 if (linknode->use)
422 gcc_assert (*(linknode->use) == def);
423 #endif
424 link_imm_use_to_list (linknode, root);
428 /* Set the value of a use pointed to by USE to VAL. */
429 static inline void
430 set_ssa_use_from_ptr (use_operand_p use, tree val)
432 delink_imm_use (use);
433 *(use->use) = val;
434 link_imm_use (use, val);
437 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
438 in STMT. */
439 static inline void
440 link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, tree stmt)
442 if (stmt)
443 link_imm_use (linknode, def);
444 else
445 link_imm_use (linknode, NULL);
446 linknode->stmt = stmt;
449 /* Relink a new node in place of an old node in the list. */
450 static inline void
451 relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
453 /* The node one had better be in the same list. */
454 gcc_assert (*(old->use) == *(node->use));
455 node->prev = old->prev;
456 node->next = old->next;
457 if (old->prev)
459 old->prev->next = node;
460 old->next->prev = node;
461 /* Remove the old node from the list. */
462 old->prev = NULL;
466 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
467 in STMT. */
468 static inline void
469 relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree stmt)
471 if (stmt)
472 relink_imm_use (linknode, old);
473 else
474 link_imm_use (linknode, NULL);
475 linknode->stmt = stmt;
479 /* Return true is IMM has reached the end of the immediate use list. */
480 static inline bool
481 end_readonly_imm_use_p (const imm_use_iterator *imm)
483 return (imm->imm_use == imm->end_p);
486 /* Initialize iterator IMM to process the list for VAR. */
487 static inline use_operand_p
488 first_readonly_imm_use (imm_use_iterator *imm, tree var)
490 gcc_assert (TREE_CODE (var) == SSA_NAME);
492 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
493 imm->imm_use = imm->end_p->next;
494 #ifdef ENABLE_CHECKING
495 imm->iter_node.next = imm->imm_use->next;
496 #endif
497 if (end_readonly_imm_use_p (imm))
498 return NULL_USE_OPERAND_P;
499 return imm->imm_use;
502 /* Bump IMM to the next use in the list. */
503 static inline use_operand_p
504 next_readonly_imm_use (imm_use_iterator *imm)
506 use_operand_p old = imm->imm_use;
508 #ifdef ENABLE_CHECKING
509 /* If this assertion fails, it indicates the 'next' pointer has changed
510 since we the last bump. This indicates that the list is being modified
511 via stmt changes, or SET_USE, or somesuch thing, and you need to be
512 using the SAFE version of the iterator. */
513 gcc_assert (imm->iter_node.next == old->next);
514 imm->iter_node.next = old->next->next;
515 #endif
517 imm->imm_use = old->next;
518 if (end_readonly_imm_use_p (imm))
519 return old;
520 return imm->imm_use;
523 /* Return true if VAR has no uses. */
524 static inline bool
525 has_zero_uses (const_tree var)
527 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
528 /* A single use means there is no items in the list. */
529 return (ptr == ptr->next);
532 /* Return true if VAR has a single use. */
533 static inline bool
534 has_single_use (const_tree var)
536 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
537 /* A single use means there is one item in the list. */
538 return (ptr != ptr->next && ptr == ptr->next->next);
542 /* If VAR has only a single immediate use, return true, and set USE_P and STMT
543 to the use pointer and stmt of occurrence. */
544 static inline bool
545 single_imm_use (const_tree var, use_operand_p *use_p, tree *stmt)
547 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
548 if (ptr != ptr->next && ptr == ptr->next->next)
550 *use_p = ptr->next;
551 *stmt = ptr->next->stmt;
552 return true;
554 *use_p = NULL_USE_OPERAND_P;
555 *stmt = NULL_TREE;
556 return false;
559 /* Return the number of immediate uses of VAR. */
560 static inline unsigned int
561 num_imm_uses (const_tree var)
563 const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var));
564 const ssa_use_operand_t *ptr;
565 unsigned int num = 0;
567 for (ptr = start->next; ptr != start; ptr = ptr->next)
568 num++;
570 return num;
573 /* Return the tree pointer to by USE. */
574 static inline tree
575 get_use_from_ptr (use_operand_p use)
577 return *(use->use);
580 /* Return the tree pointer to by DEF. */
581 static inline tree
582 get_def_from_ptr (def_operand_p def)
584 return *def;
587 /* Return a def_operand_p pointer for the result of PHI. */
588 static inline def_operand_p
589 get_phi_result_ptr (tree phi)
591 return &(PHI_RESULT_TREE (phi));
594 /* Return a use_operand_p pointer for argument I of phinode PHI. */
595 static inline use_operand_p
596 get_phi_arg_def_ptr (tree phi, int i)
598 return &(PHI_ARG_IMM_USE_NODE (phi,i));
602 /* Return the bitmap of addresses taken by STMT, or NULL if it takes
603 no addresses. */
604 static inline bitmap
605 addresses_taken (tree stmt)
607 stmt_ann_t ann = stmt_ann (stmt);
608 return ann ? ann->addresses_taken : NULL;
611 /* Return the PHI nodes for basic block BB, or NULL if there are no
612 PHI nodes. */
613 static inline tree
614 phi_nodes (const_basic_block bb)
616 gcc_assert (!(bb->flags & BB_RTL));
617 if (!bb->il.tree)
618 return NULL;
619 return bb->il.tree->phi_nodes;
622 /* Return pointer to the list of PHI nodes for basic block BB. */
624 static inline tree *
625 phi_nodes_ptr (basic_block bb)
627 gcc_assert (!(bb->flags & BB_RTL));
628 return &bb->il.tree->phi_nodes;
631 /* Set list of phi nodes of a basic block BB to L. */
633 static inline void
634 set_phi_nodes (basic_block bb, tree l)
636 tree phi;
638 gcc_assert (!(bb->flags & BB_RTL));
639 bb->il.tree->phi_nodes = l;
640 for (phi = l; phi; phi = PHI_CHAIN (phi))
641 set_bb_for_stmt (phi, bb);
644 /* Return the phi argument which contains the specified use. */
646 static inline int
647 phi_arg_index_from_use (use_operand_p use)
649 struct phi_arg_d *element, *root;
650 int index;
651 tree phi;
653 /* Since the use is the first thing in a PHI argument element, we can
654 calculate its index based on casting it to an argument, and performing
655 pointer arithmetic. */
657 phi = USE_STMT (use);
658 gcc_assert (TREE_CODE (phi) == PHI_NODE);
660 element = (struct phi_arg_d *)use;
661 root = &(PHI_ARG_ELT (phi, 0));
662 index = element - root;
664 #ifdef ENABLE_CHECKING
665 /* Make sure the calculation doesn't have any leftover bytes. If it does,
666 then imm_use is likely not the first element in phi_arg_d. */
667 gcc_assert (
668 (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
669 gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi));
670 #endif
672 return index;
675 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
677 static inline void
678 set_is_used (tree var)
680 var_ann_t ann = get_var_ann (var);
681 ann->used = 1;
685 /* Return true if T (assumed to be a DECL) is a global variable. */
687 static inline bool
688 is_global_var (const_tree t)
690 if (MTAG_P (t))
691 return (TREE_STATIC (t) || MTAG_GLOBAL (t));
692 else
693 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
696 /* PHI nodes should contain only ssa_names and invariants. A test
697 for ssa_name is definitely simpler; don't let invalid contents
698 slip in in the meantime. */
700 static inline bool
701 phi_ssa_name_p (const_tree t)
703 if (TREE_CODE (t) == SSA_NAME)
704 return true;
705 #ifdef ENABLE_CHECKING
706 gcc_assert (is_gimple_min_invariant (t));
707 #endif
708 return false;
711 /* ----------------------------------------------------------------------- */
713 /* Returns the list of statements in BB. */
715 static inline tree
716 bb_stmt_list (const_basic_block bb)
718 gcc_assert (!(bb->flags & BB_RTL));
719 return bb->il.tree->stmt_list;
722 /* Sets the list of statements in BB to LIST. */
724 static inline void
725 set_bb_stmt_list (basic_block bb, tree list)
727 gcc_assert (!(bb->flags & BB_RTL));
728 bb->il.tree->stmt_list = list;
731 /* Return a block_stmt_iterator that points to beginning of basic
732 block BB. */
733 static inline block_stmt_iterator
734 bsi_start (basic_block bb)
736 block_stmt_iterator bsi;
737 if (bb->index < NUM_FIXED_BLOCKS)
739 bsi.tsi.ptr = NULL;
740 bsi.tsi.container = NULL;
742 else
743 bsi.tsi = tsi_start (bb_stmt_list (bb));
744 bsi.bb = bb;
745 return bsi;
748 /* Return a block statement iterator that points to the first non-label
749 statement in block BB. */
751 static inline block_stmt_iterator
752 bsi_after_labels (basic_block bb)
754 block_stmt_iterator bsi = bsi_start (bb);
756 while (!bsi_end_p (bsi) && TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
757 bsi_next (&bsi);
759 return bsi;
762 /* Return a block statement iterator that points to the end of basic
763 block BB. */
764 static inline block_stmt_iterator
765 bsi_last (basic_block bb)
767 block_stmt_iterator bsi;
769 if (bb->index < NUM_FIXED_BLOCKS)
771 bsi.tsi.ptr = NULL;
772 bsi.tsi.container = NULL;
774 else
775 bsi.tsi = tsi_last (bb_stmt_list (bb));
776 bsi.bb = bb;
777 return bsi;
780 /* Return true if block statement iterator I has reached the end of
781 the basic block. */
782 static inline bool
783 bsi_end_p (block_stmt_iterator i)
785 return tsi_end_p (i.tsi);
788 /* Modify block statement iterator I so that it is at the next
789 statement in the basic block. */
790 static inline void
791 bsi_next (block_stmt_iterator *i)
793 tsi_next (&i->tsi);
796 /* Modify block statement iterator I so that it is at the previous
797 statement in the basic block. */
798 static inline void
799 bsi_prev (block_stmt_iterator *i)
801 tsi_prev (&i->tsi);
804 /* Return the statement that block statement iterator I is currently
805 at. */
806 static inline tree
807 bsi_stmt (block_stmt_iterator i)
809 return tsi_stmt (i.tsi);
812 /* Return a pointer to the statement that block statement iterator I
813 is currently at. */
814 static inline tree *
815 bsi_stmt_ptr (block_stmt_iterator i)
817 return tsi_stmt_ptr (i.tsi);
820 /* Returns the loop of the statement STMT. */
822 static inline struct loop *
823 loop_containing_stmt (tree stmt)
825 basic_block bb = bb_for_stmt (stmt);
826 if (!bb)
827 return NULL;
829 return bb->loop_father;
833 /* Return the memory partition tag associated with symbol SYM. */
835 static inline tree
836 memory_partition (tree sym)
838 tree tag;
840 /* MPTs belong to their own partition. */
841 if (TREE_CODE (sym) == MEMORY_PARTITION_TAG)
842 return sym;
844 gcc_assert (!is_gimple_reg (sym));
845 tag = get_var_ann (sym)->mpt;
847 #if defined ENABLE_CHECKING
848 if (tag)
849 gcc_assert (TREE_CODE (tag) == MEMORY_PARTITION_TAG);
850 #endif
852 return tag;
855 /* Return true if NAME is a memory factoring SSA name (i.e., an SSA
856 name for a memory partition. */
858 static inline bool
859 factoring_name_p (const_tree name)
861 return TREE_CODE (SSA_NAME_VAR (name)) == MEMORY_PARTITION_TAG;
864 /* Return true if VAR is a clobbered by function calls. */
865 static inline bool
866 is_call_clobbered (const_tree var)
868 if (!MTAG_P (var))
869 return var_ann (var)->call_clobbered;
870 else
871 return bitmap_bit_p (gimple_call_clobbered_vars (cfun), DECL_UID (var));
874 /* Mark variable VAR as being clobbered by function calls. */
875 static inline void
876 mark_call_clobbered (tree var, unsigned int escape_type)
878 var_ann (var)->escape_mask |= escape_type;
879 if (!MTAG_P (var))
880 var_ann (var)->call_clobbered = true;
881 bitmap_set_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var));
884 /* Clear the call-clobbered attribute from variable VAR. */
885 static inline void
886 clear_call_clobbered (tree var)
888 var_ann_t ann = var_ann (var);
889 ann->escape_mask = 0;
890 if (MTAG_P (var) && TREE_CODE (var) != STRUCT_FIELD_TAG)
891 MTAG_GLOBAL (var) = 0;
892 if (!MTAG_P (var))
893 var_ann (var)->call_clobbered = false;
894 bitmap_clear_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var));
897 /* Return the common annotation for T. Return NULL if the annotation
898 doesn't already exist. */
899 static inline tree_ann_common_t
900 tree_common_ann (const_tree t)
902 /* Watch out static variables with unshared annotations. */
903 if (DECL_P (t) && TREE_CODE (t) == VAR_DECL)
904 return &var_ann (t)->common;
905 return &t->base.ann->common;
908 /* Return a common annotation for T. Create the constant annotation if it
909 doesn't exist. */
910 static inline tree_ann_common_t
911 get_tree_common_ann (tree t)
913 tree_ann_common_t ann = tree_common_ann (t);
914 return (ann) ? ann : create_tree_common_ann (t);
917 /* ----------------------------------------------------------------------- */
919 /* The following set of routines are used to iterator over various type of
920 SSA operands. */
922 /* Return true if PTR is finished iterating. */
923 static inline bool
924 op_iter_done (const ssa_op_iter *ptr)
926 return ptr->done;
929 /* Get the next iterator use value for PTR. */
930 static inline use_operand_p
931 op_iter_next_use (ssa_op_iter *ptr)
933 use_operand_p use_p;
934 #ifdef ENABLE_CHECKING
935 gcc_assert (ptr->iter_type == ssa_op_iter_use);
936 #endif
937 if (ptr->uses)
939 use_p = USE_OP_PTR (ptr->uses);
940 ptr->uses = ptr->uses->next;
941 return use_p;
943 if (ptr->vuses)
945 use_p = VUSE_OP_PTR (ptr->vuses, ptr->vuse_index);
946 if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses))
948 ptr->vuse_index = 0;
949 ptr->vuses = ptr->vuses->next;
951 return use_p;
953 if (ptr->mayuses)
955 use_p = VDEF_OP_PTR (ptr->mayuses, ptr->mayuse_index);
956 if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses))
958 ptr->mayuse_index = 0;
959 ptr->mayuses = ptr->mayuses->next;
961 return use_p;
963 if (ptr->phi_i < ptr->num_phi)
965 return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
967 ptr->done = true;
968 return NULL_USE_OPERAND_P;
971 /* Get the next iterator def value for PTR. */
972 static inline def_operand_p
973 op_iter_next_def (ssa_op_iter *ptr)
975 def_operand_p def_p;
976 #ifdef ENABLE_CHECKING
977 gcc_assert (ptr->iter_type == ssa_op_iter_def);
978 #endif
979 if (ptr->defs)
981 def_p = DEF_OP_PTR (ptr->defs);
982 ptr->defs = ptr->defs->next;
983 return def_p;
985 if (ptr->vdefs)
987 def_p = VDEF_RESULT_PTR (ptr->vdefs);
988 ptr->vdefs = ptr->vdefs->next;
989 return def_p;
991 ptr->done = true;
992 return NULL_DEF_OPERAND_P;
995 /* Get the next iterator tree value for PTR. */
996 static inline tree
997 op_iter_next_tree (ssa_op_iter *ptr)
999 tree val;
1000 #ifdef ENABLE_CHECKING
1001 gcc_assert (ptr->iter_type == ssa_op_iter_tree);
1002 #endif
1003 if (ptr->uses)
1005 val = USE_OP (ptr->uses);
1006 ptr->uses = ptr->uses->next;
1007 return val;
1009 if (ptr->vuses)
1011 val = VUSE_OP (ptr->vuses, ptr->vuse_index);
1012 if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses))
1014 ptr->vuse_index = 0;
1015 ptr->vuses = ptr->vuses->next;
1017 return val;
1019 if (ptr->mayuses)
1021 val = VDEF_OP (ptr->mayuses, ptr->mayuse_index);
1022 if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses))
1024 ptr->mayuse_index = 0;
1025 ptr->mayuses = ptr->mayuses->next;
1027 return val;
1029 if (ptr->defs)
1031 val = DEF_OP (ptr->defs);
1032 ptr->defs = ptr->defs->next;
1033 return val;
1035 if (ptr->vdefs)
1037 val = VDEF_RESULT (ptr->vdefs);
1038 ptr->vdefs = ptr->vdefs->next;
1039 return val;
1042 ptr->done = true;
1043 return NULL_TREE;
1048 /* This functions clears the iterator PTR, and marks it done. This is normally
1049 used to prevent warnings in the compile about might be uninitialized
1050 components. */
1052 static inline void
1053 clear_and_done_ssa_iter (ssa_op_iter *ptr)
1055 ptr->defs = NULL;
1056 ptr->uses = NULL;
1057 ptr->vuses = NULL;
1058 ptr->vdefs = NULL;
1059 ptr->mayuses = NULL;
1060 ptr->iter_type = ssa_op_iter_none;
1061 ptr->phi_i = 0;
1062 ptr->num_phi = 0;
1063 ptr->phi_stmt = NULL_TREE;
1064 ptr->done = true;
1065 ptr->vuse_index = 0;
1066 ptr->mayuse_index = 0;
1069 /* Initialize the iterator PTR to the virtual defs in STMT. */
1070 static inline void
1071 op_iter_init (ssa_op_iter *ptr, tree stmt, int flags)
1073 #ifdef ENABLE_CHECKING
1074 gcc_assert (stmt_ann (stmt));
1075 #endif
1077 ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL;
1078 ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL;
1079 ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL;
1080 ptr->vdefs = (flags & SSA_OP_VDEF) ? VDEF_OPS (stmt) : NULL;
1081 ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? VDEF_OPS (stmt) : NULL;
1082 ptr->done = false;
1084 ptr->phi_i = 0;
1085 ptr->num_phi = 0;
1086 ptr->phi_stmt = NULL_TREE;
1087 ptr->vuse_index = 0;
1088 ptr->mayuse_index = 0;
1091 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
1092 the first use. */
1093 static inline use_operand_p
1094 op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags)
1096 gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0);
1097 op_iter_init (ptr, stmt, flags);
1098 ptr->iter_type = ssa_op_iter_use;
1099 return op_iter_next_use (ptr);
1102 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
1103 the first def. */
1104 static inline def_operand_p
1105 op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags)
1107 gcc_assert ((flags & SSA_OP_ALL_USES) == 0);
1108 op_iter_init (ptr, stmt, flags);
1109 ptr->iter_type = ssa_op_iter_def;
1110 return op_iter_next_def (ptr);
1113 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
1114 the first operand as a tree. */
1115 static inline tree
1116 op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags)
1118 op_iter_init (ptr, stmt, flags);
1119 ptr->iter_type = ssa_op_iter_tree;
1120 return op_iter_next_tree (ptr);
1123 /* Get the next iterator mustdef value for PTR, returning the mustdef values in
1124 KILL and DEF. */
1125 static inline void
1126 op_iter_next_vdef (vuse_vec_p *use, def_operand_p *def,
1127 ssa_op_iter *ptr)
1129 #ifdef ENABLE_CHECKING
1130 gcc_assert (ptr->iter_type == ssa_op_iter_vdef);
1131 #endif
1132 if (ptr->mayuses)
1134 *def = VDEF_RESULT_PTR (ptr->mayuses);
1135 *use = VDEF_VECT (ptr->mayuses);
1136 ptr->mayuses = ptr->mayuses->next;
1137 return;
1140 *def = NULL_DEF_OPERAND_P;
1141 *use = NULL;
1142 ptr->done = true;
1143 return;
1147 static inline void
1148 op_iter_next_mustdef (use_operand_p *use, def_operand_p *def,
1149 ssa_op_iter *ptr)
1151 vuse_vec_p vp;
1152 op_iter_next_vdef (&vp, def, ptr);
1153 if (vp != NULL)
1155 gcc_assert (VUSE_VECT_NUM_ELEM (*vp) == 1);
1156 *use = VUSE_ELEMENT_PTR (*vp, 0);
1158 else
1159 *use = NULL_USE_OPERAND_P;
1162 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1163 in USE and DEF. */
1164 static inline void
1165 op_iter_init_vdef (ssa_op_iter *ptr, tree stmt, vuse_vec_p *use,
1166 def_operand_p *def)
1168 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1170 op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
1171 ptr->iter_type = ssa_op_iter_vdef;
1172 op_iter_next_vdef (use, def, ptr);
1176 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1177 return NULL. */
1178 static inline tree
1179 single_ssa_tree_operand (tree stmt, int flags)
1181 tree var;
1182 ssa_op_iter iter;
1184 var = op_iter_init_tree (&iter, stmt, flags);
1185 if (op_iter_done (&iter))
1186 return NULL_TREE;
1187 op_iter_next_tree (&iter);
1188 if (op_iter_done (&iter))
1189 return var;
1190 return NULL_TREE;
1194 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1195 return NULL. */
1196 static inline use_operand_p
1197 single_ssa_use_operand (tree stmt, int flags)
1199 use_operand_p var;
1200 ssa_op_iter iter;
1202 var = op_iter_init_use (&iter, stmt, flags);
1203 if (op_iter_done (&iter))
1204 return NULL_USE_OPERAND_P;
1205 op_iter_next_use (&iter);
1206 if (op_iter_done (&iter))
1207 return var;
1208 return NULL_USE_OPERAND_P;
1213 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1214 return NULL. */
1215 static inline def_operand_p
1216 single_ssa_def_operand (tree stmt, int flags)
1218 def_operand_p var;
1219 ssa_op_iter iter;
1221 var = op_iter_init_def (&iter, stmt, flags);
1222 if (op_iter_done (&iter))
1223 return NULL_DEF_OPERAND_P;
1224 op_iter_next_def (&iter);
1225 if (op_iter_done (&iter))
1226 return var;
1227 return NULL_DEF_OPERAND_P;
1231 /* Return true if there are zero operands in STMT matching the type
1232 given in FLAGS. */
1233 static inline bool
1234 zero_ssa_operands (tree stmt, int flags)
1236 ssa_op_iter iter;
1238 op_iter_init_tree (&iter, stmt, flags);
1239 return op_iter_done (&iter);
1243 /* Return the number of operands matching FLAGS in STMT. */
1244 static inline int
1245 num_ssa_operands (tree stmt, int flags)
1247 ssa_op_iter iter;
1248 tree t;
1249 int num = 0;
1251 FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
1252 num++;
1253 return num;
1257 /* Delink all immediate_use information for STMT. */
1258 static inline void
1259 delink_stmt_imm_use (tree stmt)
1261 ssa_op_iter iter;
1262 use_operand_p use_p;
1264 if (ssa_operands_active ())
1265 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1266 delink_imm_use (use_p);
1270 /* This routine will compare all the operands matching FLAGS in STMT1 to those
1271 in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */
1272 static inline bool
1273 compare_ssa_operands_equal (tree stmt1, tree stmt2, int flags)
1275 ssa_op_iter iter1, iter2;
1276 tree op1 = NULL_TREE;
1277 tree op2 = NULL_TREE;
1278 bool look1, look2;
1280 if (stmt1 == stmt2)
1281 return true;
1283 look1 = stmt1 && stmt_ann (stmt1);
1284 look2 = stmt2 && stmt_ann (stmt2);
1286 if (look1)
1288 op1 = op_iter_init_tree (&iter1, stmt1, flags);
1289 if (!look2)
1290 return op_iter_done (&iter1);
1292 else
1293 clear_and_done_ssa_iter (&iter1);
1295 if (look2)
1297 op2 = op_iter_init_tree (&iter2, stmt2, flags);
1298 if (!look1)
1299 return op_iter_done (&iter2);
1301 else
1302 clear_and_done_ssa_iter (&iter2);
1304 while (!op_iter_done (&iter1) && !op_iter_done (&iter2))
1306 if (op1 != op2)
1307 return false;
1308 op1 = op_iter_next_tree (&iter1);
1309 op2 = op_iter_next_tree (&iter2);
1312 return (op_iter_done (&iter1) && op_iter_done (&iter2));
1316 /* If there is a single DEF in the PHI node which matches FLAG, return it.
1317 Otherwise return NULL_DEF_OPERAND_P. */
1318 static inline tree
1319 single_phi_def (tree stmt, int flags)
1321 tree def = PHI_RESULT (stmt);
1322 if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
1323 return def;
1324 if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
1325 return def;
1326 return NULL_TREE;
1329 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
1330 be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
1331 static inline use_operand_p
1332 op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags)
1334 tree phi_def = PHI_RESULT (phi);
1335 int comp;
1337 clear_and_done_ssa_iter (ptr);
1338 ptr->done = false;
1340 gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
1342 comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1344 /* If the PHI node doesn't the operand type we care about, we're done. */
1345 if ((flags & comp) == 0)
1347 ptr->done = true;
1348 return NULL_USE_OPERAND_P;
1351 ptr->phi_stmt = phi;
1352 ptr->num_phi = PHI_NUM_ARGS (phi);
1353 ptr->iter_type = ssa_op_iter_use;
1354 return op_iter_next_use (ptr);
1358 /* Start an iterator for a PHI definition. */
1360 static inline def_operand_p
1361 op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags)
1363 tree phi_def = PHI_RESULT (phi);
1364 int comp;
1366 clear_and_done_ssa_iter (ptr);
1367 ptr->done = false;
1369 gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
1371 comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
1373 /* If the PHI node doesn't the operand type we care about, we're done. */
1374 if ((flags & comp) == 0)
1376 ptr->done = true;
1377 return NULL_USE_OPERAND_P;
1380 ptr->iter_type = ssa_op_iter_def;
1381 /* The first call to op_iter_next_def will terminate the iterator since
1382 all the fields are NULL. Simply return the result here as the first and
1383 therefore only result. */
1384 return PHI_RESULT_PTR (phi);
1387 /* Return true is IMM has reached the end of the immediate use stmt list. */
1389 static inline bool
1390 end_imm_use_stmt_p (const imm_use_iterator *imm)
1392 return (imm->imm_use == imm->end_p);
1395 /* Finished the traverse of an immediate use stmt list IMM by removing the
1396 placeholder node from the list. */
1398 static inline void
1399 end_imm_use_stmt_traverse (imm_use_iterator *imm)
1401 delink_imm_use (&(imm->iter_node));
1404 /* Immediate use traversal of uses within a stmt require that all the
1405 uses on a stmt be sequentially listed. This routine is used to build up
1406 this sequential list by adding USE_P to the end of the current list
1407 currently delimited by HEAD and LAST_P. The new LAST_P value is
1408 returned. */
1410 static inline use_operand_p
1411 move_use_after_head (use_operand_p use_p, use_operand_p head,
1412 use_operand_p last_p)
1414 gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
1415 /* Skip head when we find it. */
1416 if (use_p != head)
1418 /* If use_p is already linked in after last_p, continue. */
1419 if (last_p->next == use_p)
1420 last_p = use_p;
1421 else
1423 /* Delink from current location, and link in at last_p. */
1424 delink_imm_use (use_p);
1425 link_imm_use_to_list (use_p, last_p);
1426 last_p = use_p;
1429 return last_p;
1433 /* This routine will relink all uses with the same stmt as HEAD into the list
1434 immediately following HEAD for iterator IMM. */
1436 static inline void
1437 link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
1439 use_operand_p use_p;
1440 use_operand_p last_p = head;
1441 tree head_stmt = USE_STMT (head);
1442 tree use = USE_FROM_PTR (head);
1443 ssa_op_iter op_iter;
1444 int flag;
1446 /* Only look at virtual or real uses, depending on the type of HEAD. */
1447 flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1449 if (TREE_CODE (head_stmt) == PHI_NODE)
1451 FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
1452 if (USE_FROM_PTR (use_p) == use)
1453 last_p = move_use_after_head (use_p, head, last_p);
1455 else
1457 FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
1458 if (USE_FROM_PTR (use_p) == use)
1459 last_p = move_use_after_head (use_p, head, last_p);
1461 /* LInk iter node in after last_p. */
1462 if (imm->iter_node.prev != NULL)
1463 delink_imm_use (&imm->iter_node);
1464 link_imm_use_to_list (&(imm->iter_node), last_p);
1467 /* Initialize IMM to traverse over uses of VAR. Return the first statement. */
1468 static inline tree
1469 first_imm_use_stmt (imm_use_iterator *imm, tree var)
1471 gcc_assert (TREE_CODE (var) == SSA_NAME);
1473 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
1474 imm->imm_use = imm->end_p->next;
1475 imm->next_imm_name = NULL_USE_OPERAND_P;
1477 /* iter_node is used as a marker within the immediate use list to indicate
1478 where the end of the current stmt's uses are. Initialize it to NULL
1479 stmt and use, which indicates a marker node. */
1480 imm->iter_node.prev = NULL_USE_OPERAND_P;
1481 imm->iter_node.next = NULL_USE_OPERAND_P;
1482 imm->iter_node.stmt = NULL_TREE;
1483 imm->iter_node.use = NULL_USE_OPERAND_P;
1485 if (end_imm_use_stmt_p (imm))
1486 return NULL_TREE;
1488 link_use_stmts_after (imm->imm_use, imm);
1490 return USE_STMT (imm->imm_use);
1493 /* Bump IMM to the next stmt which has a use of var. */
1495 static inline tree
1496 next_imm_use_stmt (imm_use_iterator *imm)
1498 imm->imm_use = imm->iter_node.next;
1499 if (end_imm_use_stmt_p (imm))
1501 if (imm->iter_node.prev != NULL)
1502 delink_imm_use (&imm->iter_node);
1503 return NULL_TREE;
1506 link_use_stmts_after (imm->imm_use, imm);
1507 return USE_STMT (imm->imm_use);
1510 /* This routine will return the first use on the stmt IMM currently refers
1511 to. */
1513 static inline use_operand_p
1514 first_imm_use_on_stmt (imm_use_iterator *imm)
1516 imm->next_imm_name = imm->imm_use->next;
1517 return imm->imm_use;
1520 /* Return TRUE if the last use on the stmt IMM refers to has been visited. */
1522 static inline bool
1523 end_imm_use_on_stmt_p (const imm_use_iterator *imm)
1525 return (imm->imm_use == &(imm->iter_node));
1528 /* Bump to the next use on the stmt IMM refers to, return NULL if done. */
1530 static inline use_operand_p
1531 next_imm_use_on_stmt (imm_use_iterator *imm)
1533 imm->imm_use = imm->next_imm_name;
1534 if (end_imm_use_on_stmt_p (imm))
1535 return NULL_USE_OPERAND_P;
1536 else
1538 imm->next_imm_name = imm->imm_use->next;
1539 return imm->imm_use;
1543 /* Return true if VAR cannot be modified by the program. */
1545 static inline bool
1546 unmodifiable_var_p (const_tree var)
1548 if (TREE_CODE (var) == SSA_NAME)
1549 var = SSA_NAME_VAR (var);
1551 if (MTAG_P (var))
1552 return TREE_READONLY (var) && (TREE_STATIC (var) || MTAG_GLOBAL (var));
1554 return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
1557 /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
1559 static inline bool
1560 array_ref_contains_indirect_ref (const_tree ref)
1562 gcc_assert (TREE_CODE (ref) == ARRAY_REF);
1564 do {
1565 ref = TREE_OPERAND (ref, 0);
1566 } while (handled_component_p (ref));
1568 return TREE_CODE (ref) == INDIRECT_REF;
1571 /* Return true if REF, a handled component reference, has an ARRAY_REF
1572 somewhere in it. */
1574 static inline bool
1575 ref_contains_array_ref (const_tree ref)
1577 gcc_assert (handled_component_p (ref));
1579 do {
1580 if (TREE_CODE (ref) == ARRAY_REF)
1581 return true;
1582 ref = TREE_OPERAND (ref, 0);
1583 } while (handled_component_p (ref));
1585 return false;
1588 /* Given a variable VAR, lookup and return a pointer to the list of
1589 subvariables for it. */
1591 static inline subvar_t *
1592 lookup_subvars_for_var (const_tree var)
1594 var_ann_t ann = var_ann (var);
1595 gcc_assert (ann);
1596 return &ann->subvars;
1599 /* Given a variable VAR, return a linked list of subvariables for VAR, or
1600 NULL, if there are no subvariables. */
1602 static inline subvar_t
1603 get_subvars_for_var (tree var)
1605 subvar_t subvars;
1607 gcc_assert (SSA_VAR_P (var));
1609 if (TREE_CODE (var) == SSA_NAME)
1610 subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var)));
1611 else
1612 subvars = *(lookup_subvars_for_var (var));
1613 return subvars;
1616 /* Return the subvariable of VAR at offset OFFSET. */
1618 static inline tree
1619 get_subvar_at (tree var, unsigned HOST_WIDE_INT offset)
1621 subvar_t sv;
1623 for (sv = get_subvars_for_var (var); sv; sv = sv->next)
1624 if (SFT_OFFSET (sv->var) == offset)
1625 return sv->var;
1627 return NULL_TREE;
1630 /* Return true if V is a tree that we can have subvars for.
1631 Normally, this is any aggregate type. Also complex
1632 types which are not gimple registers can have subvars. */
1634 static inline bool
1635 var_can_have_subvars (const_tree v)
1637 /* Volatile variables should never have subvars. */
1638 if (TREE_THIS_VOLATILE (v))
1639 return false;
1641 /* Non decls or memory tags can never have subvars. */
1642 if (!DECL_P (v) || MTAG_P (v))
1643 return false;
1645 /* Aggregates can have subvars. */
1646 if (AGGREGATE_TYPE_P (TREE_TYPE (v)))
1647 return true;
1649 /* Complex types variables which are not also a gimple register can
1650 have subvars. */
1651 if (TREE_CODE (TREE_TYPE (v)) == COMPLEX_TYPE
1652 && !DECL_GIMPLE_REG_P (v))
1653 return true;
1655 return false;
1659 /* Return true if OFFSET and SIZE define a range that overlaps with some
1660 portion of the range of SV, a subvar. If there was an exact overlap,
1661 *EXACT will be set to true upon return. */
1663 static inline bool
1664 overlap_subvar (unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size,
1665 const_tree sv, bool *exact)
1667 /* There are three possible cases of overlap.
1668 1. We can have an exact overlap, like so:
1669 |offset, offset + size |
1670 |sv->offset, sv->offset + sv->size |
1672 2. We can have offset starting after sv->offset, like so:
1674 |offset, offset + size |
1675 |sv->offset, sv->offset + sv->size |
1677 3. We can have offset starting before sv->offset, like so:
1679 |offset, offset + size |
1680 |sv->offset, sv->offset + sv->size|
1683 if (exact)
1684 *exact = false;
1685 if (offset == SFT_OFFSET (sv) && size == SFT_SIZE (sv))
1687 if (exact)
1688 *exact = true;
1689 return true;
1691 else if (offset >= SFT_OFFSET (sv)
1692 && offset < (SFT_OFFSET (sv) + SFT_SIZE (sv)))
1694 return true;
1696 else if (offset < SFT_OFFSET (sv)
1697 && (size > SFT_OFFSET (sv) - offset))
1699 return true;
1701 return false;
1705 /* Return the memory tag associated with symbol SYM. */
1707 static inline tree
1708 symbol_mem_tag (tree sym)
1710 tree tag = get_var_ann (sym)->symbol_mem_tag;
1712 #if defined ENABLE_CHECKING
1713 if (tag)
1714 gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG);
1715 #endif
1717 return tag;
1721 /* Set the memory tag associated with symbol SYM. */
1723 static inline void
1724 set_symbol_mem_tag (tree sym, tree tag)
1726 #if defined ENABLE_CHECKING
1727 if (tag)
1728 gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG);
1729 #endif
1731 get_var_ann (sym)->symbol_mem_tag = tag;
1734 /* Get the value handle of EXPR. This is the only correct way to get
1735 the value handle for a "thing". If EXPR does not have a value
1736 handle associated, it returns NULL_TREE.
1737 NB: If EXPR is min_invariant, this function is *required* to return
1738 EXPR. */
1740 static inline tree
1741 get_value_handle (tree expr)
1743 if (TREE_CODE (expr) == SSA_NAME)
1744 return SSA_NAME_VALUE (expr);
1745 else if (DECL_P (expr) || TREE_CODE (expr) == TREE_LIST
1746 || TREE_CODE (expr) == CONSTRUCTOR)
1748 tree_ann_common_t ann = tree_common_ann (expr);
1749 return ((ann) ? ann->value_handle : NULL_TREE);
1751 else if (is_gimple_min_invariant (expr))
1752 return expr;
1753 else if (EXPR_P (expr))
1755 tree_ann_common_t ann = tree_common_ann (expr);
1756 return ((ann) ? ann->value_handle : NULL_TREE);
1758 else
1759 gcc_unreachable ();
1762 /* Accessor to tree-ssa-operands.c caches. */
1763 static inline struct ssa_operands *
1764 gimple_ssa_operands (const struct function *fun)
1766 return &fun->gimple_df->ssa_operands;
1769 /* Map describing reference statistics for function FN. */
1770 static inline struct mem_ref_stats_d *
1771 gimple_mem_ref_stats (const struct function *fn)
1773 return &fn->gimple_df->mem_ref_stats;
1775 #endif /* _TREE_FLOW_INLINE_H */