1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
31 #include "insn-config.h"
35 #include "basic-block.h"
40 #include "tree-pass.h"
43 /* This pass does simple forward propagation and simplification when an
44 operand of an insn can only come from a single def. This pass uses
45 df.c, so it is global. However, we only do limited analysis of
46 available expressions.
48 1) The pass tries to propagate the source of the def into the use,
49 and checks if the result is independent of the substituted value.
50 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
51 zero, independent of the source register.
53 In particular, we propagate constants into the use site. Sometimes
54 RTL expansion did not put the constant in the same insn on purpose,
55 to satisfy a predicate, and the result will fail to be recognized;
56 but this happens rarely and in this case we can still create a
57 REG_EQUAL note. For multi-word operations, this
59 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
60 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
61 (set (subreg:SI (reg:DI 122) 0)
62 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
63 (set (subreg:SI (reg:DI 122) 4)
64 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
66 can be simplified to the much simpler
68 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
69 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
71 This particular propagation is also effective at putting together
72 complex addressing modes. We are more aggressive inside MEMs, in
73 that all definitions are propagated if the use is in a MEM; if the
74 result is a valid memory address we check address_cost to decide
75 whether the substitution is worthwhile.
77 2) The pass propagates register copies. This is not as effective as
78 the copy propagation done by CSE's canon_reg, which works by walking
79 the instruction chain, it can help the other transformations.
81 We should consider removing this optimization, and instead reorder the
82 RTL passes, because GCSE does this transformation too. With some luck,
83 the CSE pass at the end of rest_of_handle_gcse could also go away.
85 3) The pass looks for paradoxical subregs that are actually unnecessary.
88 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
89 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
90 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
91 (subreg:SI (reg:QI 121) 0)))
93 are very common on machines that can only do word-sized operations.
94 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
95 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
96 we can replace the paradoxical subreg with simply (reg:WIDE M). The
97 above will simplify this to
99 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
100 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
101 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
103 where the first two insns are now dead. */
106 static int num_changes
;
109 /* Do not try to replace constant addresses or addresses of local and
110 argument slots. These MEM expressions are made only once and inserted
111 in many instructions, as well as being used to control symbol table
112 output. It is not safe to clobber them.
114 There are some uncommon cases where the address is already in a register
115 for some reason, but we cannot take advantage of that because we have
116 no easy way to unshare the MEM. In addition, looking up all stack
117 addresses is costly. */
120 can_simplify_addr (rtx addr
)
124 if (CONSTANT_ADDRESS_P (addr
))
127 if (GET_CODE (addr
) == PLUS
)
128 reg
= XEXP (addr
, 0);
133 || (REGNO (reg
) != FRAME_POINTER_REGNUM
134 && REGNO (reg
) != HARD_FRAME_POINTER_REGNUM
135 && REGNO (reg
) != ARG_POINTER_REGNUM
));
138 /* Returns a canonical version of X for the address, from the point of view,
139 that all multiplications are represented as MULT instead of the multiply
140 by a power of 2 being represented as ASHIFT.
142 Every ASHIFT we find has been made by simplify_gen_binary and was not
143 there before, so it is not shared. So we can do this in place. */
146 canonicalize_address (rtx x
)
149 switch (GET_CODE (x
))
152 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
153 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (GET_MODE (x
))
154 && INTVAL (XEXP (x
, 1)) >= 0)
156 HOST_WIDE_INT shift
= INTVAL (XEXP (x
, 1));
158 XEXP (x
, 1) = gen_int_mode ((HOST_WIDE_INT
) 1 << shift
,
166 if (GET_CODE (XEXP (x
, 0)) == PLUS
167 || GET_CODE (XEXP (x
, 0)) == ASHIFT
168 || GET_CODE (XEXP (x
, 0)) == CONST
)
169 canonicalize_address (XEXP (x
, 0));
183 /* OLD is a memory address. Return whether it is good to use NEW instead,
184 for a memory access in the given MODE. */
187 should_replace_address (rtx old
, rtx
new, enum machine_mode mode
)
191 if (rtx_equal_p (old
, new) || !memory_address_p (mode
, new))
194 /* Copy propagation is always ok. */
195 if (REG_P (old
) && REG_P (new))
198 /* Prefer the new address if it is less expensive. */
199 gain
= address_cost (old
, mode
) - address_cost (new, mode
);
201 /* If the addresses have equivalent cost, prefer the new address
202 if it has the highest `rtx_cost'. That has the potential of
203 eliminating the most insns without additional costs, and it
204 is the same that cse.c used to do. */
206 gain
= rtx_cost (new, SET
) - rtx_cost (old
, SET
);
211 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
212 resulting expression. Replace *PX with a new RTL expression if an
213 occurrence of OLD was found.
215 If CAN_APPEAR is true, we always return true; if it is false, we
216 can return false if, for at least one occurrence OLD, we failed to
217 collapse the result to a constant. For example, (mult:M (reg:M A)
218 (minus:M (reg:M B) (reg:M A))) may collapse to zero if replacing
219 (reg:M B) with (reg:M A).
221 CAN_APPEAR is disregarded inside MEMs: in that case, we always return
222 true if the simplification is a cheaper and valid memory address.
224 This is only a wrapper around simplify-rtx.c: do not add any pattern
225 matching code here. (The sole exception is the handling of LO_SUM, but
226 that is because there is no simplify_gen_* function for LO_SUM). */
229 propagate_rtx_1 (rtx
*px
, rtx old
, rtx
new, bool can_appear
)
231 rtx x
= *px
, tem
= NULL_RTX
, op0
, op1
, op2
;
232 enum rtx_code code
= GET_CODE (x
);
233 enum machine_mode mode
= GET_MODE (x
);
234 enum machine_mode op_mode
;
235 bool valid_ops
= true;
237 /* If X is OLD_RTX, return NEW_RTX. Otherwise, if this is an expression,
238 try to build a new expression from recursive substitution. */
246 switch (GET_RTX_CLASS (code
))
250 op_mode
= GET_MODE (op0
);
251 valid_ops
&= propagate_rtx_1 (&op0
, old
, new, can_appear
);
252 if (op0
== XEXP (x
, 0))
254 tem
= simplify_gen_unary (code
, mode
, op0
, op_mode
);
261 valid_ops
&= propagate_rtx_1 (&op0
, old
, new, can_appear
);
262 valid_ops
&= propagate_rtx_1 (&op1
, old
, new, can_appear
);
263 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
265 tem
= simplify_gen_binary (code
, mode
, op0
, op1
);
269 case RTX_COMM_COMPARE
:
272 op_mode
= GET_MODE (op0
) != VOIDmode
? GET_MODE (op0
) : GET_MODE (op1
);
273 valid_ops
&= propagate_rtx_1 (&op0
, old
, new, can_appear
);
274 valid_ops
&= propagate_rtx_1 (&op1
, old
, new, can_appear
);
275 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
277 tem
= simplify_gen_relational (code
, mode
, op_mode
, op0
, op1
);
281 case RTX_BITFIELD_OPS
:
285 op_mode
= GET_MODE (op0
);
286 valid_ops
&= propagate_rtx_1 (&op0
, old
, new, can_appear
);
287 valid_ops
&= propagate_rtx_1 (&op1
, old
, new, can_appear
);
288 valid_ops
&= propagate_rtx_1 (&op2
, old
, new, can_appear
);
289 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1) && op2
== XEXP (x
, 2))
291 if (op_mode
== VOIDmode
)
292 op_mode
= GET_MODE (op0
);
293 tem
= simplify_gen_ternary (code
, mode
, op_mode
, op0
, op1
, op2
);
297 /* The only case we try to handle is a SUBREG. */
301 valid_ops
&= propagate_rtx_1 (&op0
, old
, new, can_appear
);
302 if (op0
== XEXP (x
, 0))
304 tem
= simplify_gen_subreg (mode
, op0
, GET_MODE (SUBREG_REG (x
)),
310 if (code
== MEM
&& x
!= new)
315 /* There are some addresses that we cannot work on. */
316 if (!can_simplify_addr (op0
))
319 op0
= new_op0
= targetm
.delegitimize_address (op0
);
320 valid_ops
&= propagate_rtx_1 (&new_op0
, old
, new, true);
322 /* Dismiss transformation that we do not want to carry on. */
325 || !(GET_MODE (new_op0
) == GET_MODE (op0
)
326 || GET_MODE (new_op0
) == VOIDmode
))
329 canonicalize_address (new_op0
);
331 /* Copy propagations are always ok. Otherwise check the costs. */
332 if (!(REG_P (old
) && REG_P (new))
333 && !should_replace_address (op0
, new_op0
, GET_MODE (x
)))
336 tem
= replace_equiv_address_nv (x
, new_op0
);
339 else if (code
== LO_SUM
)
344 /* The only simplification we do attempts to remove references to op0
345 or make it constant -- in both cases, op0's invalidity will not
346 make the result invalid. */
347 propagate_rtx_1 (&op0
, old
, new, true);
348 valid_ops
&= propagate_rtx_1 (&op1
, old
, new, can_appear
);
349 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
352 /* (lo_sum (high x) x) -> x */
353 if (GET_CODE (op0
) == HIGH
&& rtx_equal_p (XEXP (op0
, 0), op1
))
356 tem
= gen_rtx_LO_SUM (mode
, op0
, op1
);
358 /* OP1 is likely not a legitimate address, otherwise there would have
359 been no LO_SUM. We want it to disappear if it is invalid, return
360 false in that case. */
361 return memory_address_p (mode
, tem
);
364 else if (code
== REG
)
366 if (rtx_equal_p (x
, old
))
378 /* No change, no trouble. */
384 /* The replacement we made so far is valid, if all of the recursive
385 replacements were valid, or we could simplify everything to
387 return valid_ops
|| can_appear
|| CONSTANT_P (tem
);
390 /* Replace all occurrences of OLD in X with NEW and try to simplify the
391 resulting expression (in mode MODE). Return a new expression if it is
392 a constant, otherwise X.
394 Simplifications where occurrences of NEW collapse to a constant are always
395 accepted. All simplifications are accepted if NEW is a pseudo too.
396 Otherwise, we accept simplifications that have a lower or equal cost. */
399 propagate_rtx (rtx x
, enum machine_mode mode
, rtx old
, rtx
new)
404 if (REG_P (new) && REGNO (new) < FIRST_PSEUDO_REGISTER
)
407 new = copy_rtx (new);
410 collapsed
= propagate_rtx_1 (&tem
, old
, new, REG_P (new) || CONSTANT_P (new));
411 if (tem
== x
|| !collapsed
)
414 /* gen_lowpart_common will not be able to process VOIDmode entities other
416 if (GET_MODE (tem
) == VOIDmode
&& GET_CODE (tem
) != CONST_INT
)
419 if (GET_MODE (tem
) == VOIDmode
)
420 tem
= rtl_hooks
.gen_lowpart_no_emit (mode
, tem
);
422 gcc_assert (GET_MODE (tem
) == mode
);
430 /* Return true if the register from reference REF is killed
431 between FROM to (but not including) TO. */
434 local_ref_killed_between_p (struct df_ref
* ref
, rtx from
, rtx to
)
438 for (insn
= from
; insn
!= to
; insn
= NEXT_INSN (insn
))
440 struct df_ref
**def_rec
;
444 for (def_rec
= DF_INSN_DEFS (insn
); *def_rec
; def_rec
++)
446 struct df_ref
*def
= *def_rec
;
447 if (DF_REF_REGNO (ref
) == DF_REF_REGNO (def
))
455 /* Check if the given DEF is available in INSN. This would require full
456 computation of available expressions; we check only restricted conditions:
457 - if DEF is the sole definition of its register, go ahead;
458 - in the same basic block, we check for no definitions killing the
459 definition of DEF_INSN;
460 - if USE's basic block has DEF's basic block as the sole predecessor,
461 we check if the definition is killed after DEF_INSN or before
462 TARGET_INSN insn, in their respective basic blocks. */
464 use_killed_between (struct df_ref
*use
, rtx def_insn
, rtx target_insn
)
466 basic_block def_bb
= BLOCK_FOR_INSN (def_insn
);
467 basic_block target_bb
= BLOCK_FOR_INSN (target_insn
);
471 /* In some obscure situations we can have a def reaching a use
472 that is _before_ the def. In other words the def does not
473 dominate the use even though the use and def are in the same
474 basic block. This can happen when a register may be used
475 uninitialized in a loop. In such cases, we must assume that
476 DEF is not available. */
477 if (def_bb
== target_bb
478 ? DF_INSN_LUID (def_insn
) >= DF_INSN_LUID (target_insn
)
479 : !dominated_by_p (CDI_DOMINATORS
, target_bb
, def_bb
))
482 /* Check if the reg in USE has only one definition. We already
483 know that this definition reaches use, or we wouldn't be here. */
484 regno
= DF_REF_REGNO (use
);
485 def
= DF_REG_DEF_CHAIN (regno
);
486 if (def
&& (def
->next_reg
== NULL
))
489 /* Check locally if we are in the same basic block. */
490 if (def_bb
== target_bb
)
491 return local_ref_killed_between_p (use
, def_insn
, target_insn
);
493 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
494 if (single_pred_p (target_bb
)
495 && single_pred (target_bb
) == def_bb
)
499 /* See if USE is killed between DEF_INSN and the last insn in the
500 basic block containing DEF_INSN. */
501 x
= df_bb_regno_last_def_find (def_bb
, regno
);
502 if (x
&& DF_INSN_LUID (x
->insn
) >= DF_INSN_LUID (def_insn
))
505 /* See if USE is killed between TARGET_INSN and the first insn in the
506 basic block containing TARGET_INSN. */
507 x
= df_bb_regno_first_def_find (target_bb
, regno
);
508 if (x
&& DF_INSN_LUID (x
->insn
) < DF_INSN_LUID (target_insn
))
514 /* Otherwise assume the worst case. */
519 /* for_each_rtx traversal function that returns 1 if BODY points to
520 a non-constant mem. */
523 varying_mem_p (rtx
*body
, void *data ATTRIBUTE_UNUSED
)
526 return MEM_P (x
) && !MEM_READONLY_P (x
);
529 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
530 would require full computation of available expressions;
531 we check only restricted conditions, see use_killed_between. */
533 all_uses_available_at (rtx def_insn
, rtx target_insn
)
535 struct df_ref
**use_rec
;
536 rtx def_set
= single_set (def_insn
);
538 gcc_assert (def_set
);
540 /* If target_insn comes right after def_insn, which is very common
541 for addresses, we can use a quicker test. */
542 if (NEXT_INSN (def_insn
) == target_insn
543 && REG_P (SET_DEST (def_set
)))
545 rtx def_reg
= SET_DEST (def_set
);
547 /* If the insn uses the reg that it defines, the substitution is
549 for (use_rec
= DF_INSN_USES (def_insn
); *use_rec
; use_rec
++)
551 struct df_ref
*use
= *use_rec
;
552 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
555 for (use_rec
= DF_INSN_EQ_USES (def_insn
); *use_rec
; use_rec
++)
557 struct df_ref
*use
= *use_rec
;
558 if (rtx_equal_p (use
->reg
, def_reg
))
564 /* Look at all the uses of DEF_INSN, and see if they are not
565 killed between DEF_INSN and TARGET_INSN. */
566 for (use_rec
= DF_INSN_USES (def_insn
); *use_rec
; use_rec
++)
568 struct df_ref
*use
= *use_rec
;
569 if (use_killed_between (use
, def_insn
, target_insn
))
572 for (use_rec
= DF_INSN_EQ_USES (def_insn
); *use_rec
; use_rec
++)
574 struct df_ref
*use
= *use_rec
;
575 if (use_killed_between (use
, def_insn
, target_insn
))
580 /* We don't do any analysis of memories or aliasing. Reject any
581 instruction that involves references to non-constant memory. */
582 return !for_each_rtx (&SET_SRC (def_set
), varying_mem_p
, NULL
);
586 struct find_occurrence_data
592 /* Callback for for_each_rtx, used in find_occurrence.
593 See if PX is the rtx we have to find. Return 1 to stop for_each_rtx
594 if successful, or 0 to continue traversing otherwise. */
597 find_occurrence_callback (rtx
*px
, void *data
)
599 struct find_occurrence_data
*fod
= (struct find_occurrence_data
*) data
;
601 rtx find
= fod
->find
;
612 /* Return a pointer to one of the occurrences of register FIND in *PX. */
615 find_occurrence (rtx
*px
, rtx find
)
617 struct find_occurrence_data data
;
619 gcc_assert (REG_P (find
)
620 || (GET_CODE (find
) == SUBREG
621 && REG_P (SUBREG_REG (find
))));
625 for_each_rtx (px
, find_occurrence_callback
, &data
);
630 /* Inside INSN, the expression rooted at *LOC has been changed, moving some
631 uses from USE_VEC. Find those that are present, and create new items
632 in the data flow object of the pass. Mark any new uses as having the
635 update_df (rtx insn
, rtx
*loc
, struct df_ref
**use_rec
, enum df_ref_type type
,
638 bool changed
= false;
640 /* Add a use for the registers that were propagated. */
643 struct df_ref
*use
= *use_rec
;
644 struct df_ref
*orig_use
= use
, *new_use
;
645 rtx
*new_loc
= find_occurrence (loc
, DF_REF_REG (orig_use
));
651 /* Add a new insn use. Use the original type, because it says if the
652 use was within a MEM. */
653 new_use
= df_ref_create (DF_REF_REG (orig_use
), new_loc
,
654 insn
, BLOCK_FOR_INSN (insn
),
655 type
, DF_REF_FLAGS (orig_use
) | new_flags
);
657 /* Set up the use-def chain. */
658 df_chain_copy (new_use
, DF_REF_CHAIN (orig_use
));
662 df_insn_rescan (insn
);
666 /* Try substituting NEW into LOC, which originated from forward propagation
667 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
668 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
669 new insn is not recognized. Return whether the substitution was
673 try_fwprop_subst (struct df_ref
*use
, rtx
*loc
, rtx
new, rtx def_insn
, bool set_reg_equal
)
675 rtx insn
= DF_REF_INSN (use
);
676 enum df_ref_type type
= DF_REF_TYPE (use
);
677 int flags
= DF_REF_FLAGS (use
);
681 fprintf (dump_file
, "\nIn insn %d, replacing\n ", INSN_UID (insn
));
682 print_inline_rtx (dump_file
, *loc
, 2);
683 fprintf (dump_file
, "\n with ");
684 print_inline_rtx (dump_file
, new, 2);
685 fprintf (dump_file
, "\n");
688 if (validate_unshare_change (insn
, loc
, new, false))
692 fprintf (dump_file
, "Changed insn %d\n", INSN_UID (insn
));
695 if (!CONSTANT_P (new))
697 update_df (insn
, loc
, DF_INSN_USES (def_insn
), type
, flags
);
698 update_df (insn
, loc
, DF_INSN_EQ_USES (def_insn
), type
, flags
);
705 fprintf (dump_file
, "Changes to insn %d not recognized\n",
708 /* Can also record a simplified value in a REG_EQUAL note, making a
709 new one if one does not already exist. */
713 fprintf (dump_file
, " Setting REG_EQUAL note\n");
715 set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (new));
717 /* ??? Is this still necessary if we add the note through
718 set_unique_reg_note? */
719 if (!CONSTANT_P (new))
721 update_df (insn
, loc
, DF_INSN_USES (def_insn
),
722 type
, DF_REF_IN_NOTE
);
723 update_df (insn
, loc
, DF_INSN_EQ_USES (def_insn
),
724 type
, DF_REF_IN_NOTE
);
733 /* If USE is a paradoxical subreg, see if it can be replaced by a pseudo. */
736 forward_propagate_subreg (struct df_ref
*use
, rtx def_insn
, rtx def_set
)
738 rtx use_reg
= DF_REF_REG (use
);
741 /* Only consider paradoxical subregs... */
742 enum machine_mode use_mode
= GET_MODE (use_reg
);
743 if (GET_CODE (use_reg
) != SUBREG
744 || !REG_P (SET_DEST (def_set
))
745 || GET_MODE_SIZE (use_mode
)
746 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg
))))
749 /* If this is a paradoxical SUBREG, we have no idea what value the
750 extra bits would have. However, if the operand is equivalent to
751 a SUBREG whose operand is the same as our mode, and all the modes
752 are within a word, we can just use the inner operand because
753 these SUBREGs just say how to treat the register. */
754 use_insn
= DF_REF_INSN (use
);
755 src
= SET_SRC (def_set
);
756 if (GET_CODE (src
) == SUBREG
757 && REG_P (SUBREG_REG (src
))
758 && GET_MODE (SUBREG_REG (src
)) == use_mode
759 && subreg_lowpart_p (src
)
760 && all_uses_available_at (def_insn
, use_insn
))
761 return try_fwprop_subst (use
, DF_REF_LOC (use
), SUBREG_REG (src
),
767 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
771 forward_propagate_and_simplify (struct df_ref
*use
, rtx def_insn
, rtx def_set
)
773 rtx use_insn
= DF_REF_INSN (use
);
774 rtx use_set
= single_set (use_insn
);
775 rtx src
, reg
, new, *loc
;
777 enum machine_mode mode
;
782 /* Do not propagate into PC, CC0, etc. */
783 if (GET_MODE (SET_DEST (use_set
)) == VOIDmode
)
786 /* If def and use are subreg, check if they match. */
787 reg
= DF_REF_REG (use
);
788 if (GET_CODE (reg
) == SUBREG
789 && GET_CODE (SET_DEST (def_set
)) == SUBREG
790 && (SUBREG_BYTE (SET_DEST (def_set
)) != SUBREG_BYTE (reg
)
791 || GET_MODE (SET_DEST (def_set
)) != GET_MODE (reg
)))
794 /* Check if the def had a subreg, but the use has the whole reg. */
795 if (REG_P (reg
) && GET_CODE (SET_DEST (def_set
)) == SUBREG
)
798 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
799 previous case, the optimization is possible and often useful indeed. */
800 if (GET_CODE (reg
) == SUBREG
&& REG_P (SET_DEST (def_set
)))
801 reg
= SUBREG_REG (reg
);
803 /* Check if the substitution is valid (last, because it's the most
804 expensive check!). */
805 src
= SET_SRC (def_set
);
806 if (!CONSTANT_P (src
) && !all_uses_available_at (def_insn
, use_insn
))
809 /* Check if the def is loading something from the constant pool; in this
810 case we would undo optimization such as compress_float_constant.
811 Still, we can set a REG_EQUAL note. */
812 if (MEM_P (src
) && MEM_READONLY_P (src
))
814 rtx x
= avoid_constant_pool_reference (src
);
817 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
818 rtx old
= note
? XEXP (note
, 0) : SET_SRC (use_set
);
819 rtx
new = simplify_replace_rtx (old
, src
, x
);
821 set_unique_reg_note (use_insn
, REG_EQUAL
, copy_rtx (new));
826 /* Else try simplifying. */
828 if (DF_REF_TYPE (use
) == DF_REF_REG_MEM_STORE
)
830 loc
= &SET_DEST (use_set
);
831 set_reg_equal
= false;
835 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
836 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
837 loc
= &XEXP (note
, 0);
839 loc
= &SET_SRC (use_set
);
841 /* Do not replace an existing REG_EQUAL note if the insn is not
842 recognized. Either we're already replacing in the note, or
843 we'll separately try plugging the definition in the note and
845 set_reg_equal
= (note
== NULL_RTX
);
848 if (GET_MODE (*loc
) == VOIDmode
)
849 mode
= GET_MODE (SET_DEST (use_set
));
851 mode
= GET_MODE (*loc
);
853 new = propagate_rtx (*loc
, mode
, reg
, src
);
858 return try_fwprop_subst (use
, loc
, new, def_insn
, set_reg_equal
);
862 /* Given a use USE of an insn, if it has a single reaching
863 definition, try to forward propagate it into that insn. */
866 forward_propagate_into (struct df_ref
*use
)
868 struct df_link
*defs
;
870 rtx def_insn
, def_set
, use_insn
;
873 if (DF_REF_FLAGS (use
) & DF_REF_READ_WRITE
)
875 if (DF_REF_IS_ARTIFICIAL (use
))
878 /* Only consider uses that have a single definition. */
879 defs
= DF_REF_CHAIN (use
);
880 if (!defs
|| defs
->next
)
884 if (DF_REF_FLAGS (def
) & DF_REF_READ_WRITE
)
886 if (DF_REF_IS_ARTIFICIAL (def
))
889 /* Do not propagate loop invariant definitions inside the loop. */
890 if (DF_REF_BB (def
)->loop_father
!= DF_REF_BB (use
)->loop_father
)
893 /* Check if the use is still present in the insn! */
894 use_insn
= DF_REF_INSN (use
);
895 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
896 parent
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
898 parent
= PATTERN (use_insn
);
900 if (!loc_mentioned_in_p (DF_REF_LOC (use
), parent
))
903 def_insn
= DF_REF_INSN (def
);
904 if (multiple_sets (def_insn
))
906 def_set
= single_set (def_insn
);
910 /* Only try one kind of propagation. If two are possible, we'll
911 do it on the following iterations. */
912 if (!forward_propagate_and_simplify (use
, def_insn
, def_set
))
913 forward_propagate_subreg (use
, def_insn
, def_set
);
921 calculate_dominance_info (CDI_DOMINATORS
);
923 /* We do not always want to propagate into loops, so we have to find
924 loops and be careful about them. But we have to call flow_loops_find
925 before df_analyze, because flow_loops_find may introduce new jump
926 insns (sadly) if we are not working in cfglayout mode. */
927 loop_optimizer_init (0);
929 /* Now set up the dataflow problem (we only want use-def chains) and
930 put the dataflow solver to work. */
931 df_set_flags (DF_EQ_NOTES
);
932 df_chain_add_problem (DF_UD_CHAIN
);
934 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES
);
935 df_set_flags (DF_DEFER_INSN_RESCAN
);
941 loop_optimizer_finalize ();
943 free_dominance_info (CDI_DOMINATORS
);
945 delete_trivially_dead_insns (get_insns (), max_reg_num ());
949 "\nNumber of successful forward propagations: %d\n\n",
955 /* Main entry point. */
960 return optimize
> 0 && flag_forward_propagate
;
970 /* Go through all the uses. update_df will create new ones at the
971 end, and we'll go through them as well.
973 Do not forward propagate addresses into loops until after unrolling.
974 CSE did so because it was able to fix its own mess, but we are not. */
976 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
978 struct df_ref
*use
= DF_USES_GET (i
);
980 if (DF_REF_TYPE (use
) == DF_REF_REG_USE
981 || DF_REF_BB (use
)->loop_father
== NULL
)
982 forward_propagate_into (use
);
989 struct tree_opt_pass pass_rtl_fwprop
=
991 "fwprop1", /* name */
992 gate_fwprop
, /* gate */
993 fwprop
, /* execute */
996 0, /* static_pass_number */
997 TV_FWPROP
, /* tv_id */
998 0, /* properties_required */
999 0, /* properties_provided */
1000 0, /* properties_destroyed */
1001 0, /* todo_flags_start */
1002 TODO_df_finish
| TODO_verify_rtl_sharing
|
1003 TODO_dump_func
, /* todo_flags_finish */
1013 /* Go through all the uses. update_df will create new ones at the
1014 end, and we'll go through them as well. */
1015 df_set_flags (DF_DEFER_INSN_RESCAN
);
1017 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1019 struct df_ref
*use
= DF_USES_GET (i
);
1021 if (DF_REF_TYPE (use
) != DF_REF_REG_USE
1022 && DF_REF_BB (use
)->loop_father
!= NULL
)
1023 forward_propagate_into (use
);
1031 struct tree_opt_pass pass_rtl_fwprop_addr
=
1033 "fwprop2", /* name */
1034 gate_fwprop
, /* gate */
1035 fwprop_addr
, /* execute */
1038 0, /* static_pass_number */
1039 TV_FWPROP
, /* tv_id */
1040 0, /* properties_required */
1041 0, /* properties_provided */
1042 0, /* properties_destroyed */
1043 0, /* todo_flags_start */
1044 TODO_df_finish
| TODO_verify_rtl_sharing
|
1045 TODO_dump_func
, /* todo_flags_finish */