./:
[official-gcc.git] / gcc / expr.c
blobff3258d746eb5096c78d9c12273eaa2443e82c95
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "real.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "flags.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "except.h"
34 #include "function.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "output.h"
44 #include "typeclass.h"
45 #include "toplev.h"
46 #include "ggc.h"
47 #include "langhooks.h"
48 #include "intl.h"
49 #include "tm_p.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
53 #include "target.h"
54 #include "timevar.h"
55 #include "df.h"
57 /* Decide whether a function's arguments should be processed
58 from first to last or from last to first.
60 They should if the stack and args grow in opposite directions, but
61 only if we have push insns. */
63 #ifdef PUSH_ROUNDING
65 #ifndef PUSH_ARGS_REVERSED
66 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
67 #define PUSH_ARGS_REVERSED /* If it's last to first. */
68 #endif
69 #endif
71 #endif
73 #ifndef STACK_PUSH_CODE
74 #ifdef STACK_GROWS_DOWNWARD
75 #define STACK_PUSH_CODE PRE_DEC
76 #else
77 #define STACK_PUSH_CODE PRE_INC
78 #endif
79 #endif
82 /* If this is nonzero, we do not bother generating VOLATILE
83 around volatile memory references, and we are willing to
84 output indirect addresses. If cse is to follow, we reject
85 indirect addresses so a useful potential cse is generated;
86 if it is used only once, instruction combination will produce
87 the same indirect address eventually. */
88 int cse_not_expected;
90 /* This structure is used by move_by_pieces to describe the move to
91 be performed. */
92 struct move_by_pieces
94 rtx to;
95 rtx to_addr;
96 int autinc_to;
97 int explicit_inc_to;
98 rtx from;
99 rtx from_addr;
100 int autinc_from;
101 int explicit_inc_from;
102 unsigned HOST_WIDE_INT len;
103 HOST_WIDE_INT offset;
104 int reverse;
107 /* This structure is used by store_by_pieces to describe the clear to
108 be performed. */
110 struct store_by_pieces
112 rtx to;
113 rtx to_addr;
114 int autinc_to;
115 int explicit_inc_to;
116 unsigned HOST_WIDE_INT len;
117 HOST_WIDE_INT offset;
118 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
119 void *constfundata;
120 int reverse;
123 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
124 unsigned int,
125 unsigned int);
126 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
127 struct move_by_pieces *);
128 static bool block_move_libcall_safe_for_call_parm (void);
129 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
130 static tree emit_block_move_libcall_fn (int);
131 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
132 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
133 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
134 static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
135 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
136 struct store_by_pieces *);
137 static tree clear_storage_libcall_fn (int);
138 static rtx compress_float_constant (rtx, rtx);
139 static rtx get_subtarget (rtx);
140 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
141 HOST_WIDE_INT, enum machine_mode,
142 tree, tree, int, alias_set_type);
143 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
144 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
145 tree, tree, alias_set_type, bool);
147 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
149 static int is_aligning_offset (const_tree, const_tree);
150 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
151 enum expand_modifier);
152 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
153 static rtx do_store_flag (tree, rtx, enum machine_mode, int);
154 #ifdef PUSH_ROUNDING
155 static void emit_single_push_insn (enum machine_mode, rtx, tree);
156 #endif
157 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
158 static rtx const_vector_from_tree (tree);
159 static void write_complex_part (rtx, rtx, bool);
161 /* Record for each mode whether we can move a register directly to or
162 from an object of that mode in memory. If we can't, we won't try
163 to use that mode directly when accessing a field of that mode. */
165 static char direct_load[NUM_MACHINE_MODES];
166 static char direct_store[NUM_MACHINE_MODES];
168 /* Record for each mode whether we can float-extend from memory. */
170 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
172 /* This macro is used to determine whether move_by_pieces should be called
173 to perform a structure copy. */
174 #ifndef MOVE_BY_PIECES_P
175 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
176 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
177 < (unsigned int) MOVE_RATIO)
178 #endif
180 /* This macro is used to determine whether clear_by_pieces should be
181 called to clear storage. */
182 #ifndef CLEAR_BY_PIECES_P
183 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
184 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
185 < (unsigned int) CLEAR_RATIO)
186 #endif
188 /* This macro is used to determine whether store_by_pieces should be
189 called to "memset" storage with byte values other than zero. */
190 #ifndef SET_BY_PIECES_P
191 #define SET_BY_PIECES_P(SIZE, ALIGN) \
192 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
193 < (unsigned int) SET_RATIO)
194 #endif
196 /* This macro is used to determine whether store_by_pieces should be
197 called to "memcpy" storage when the source is a constant string. */
198 #ifndef STORE_BY_PIECES_P
199 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
200 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
201 < (unsigned int) MOVE_RATIO)
202 #endif
204 /* This array records the insn_code of insns to perform block moves. */
205 enum insn_code movmem_optab[NUM_MACHINE_MODES];
207 /* This array records the insn_code of insns to perform block sets. */
208 enum insn_code setmem_optab[NUM_MACHINE_MODES];
210 /* These arrays record the insn_code of three different kinds of insns
211 to perform block compares. */
212 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
213 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
214 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
216 /* Synchronization primitives. */
217 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
218 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
219 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
231 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
232 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
233 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
234 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
235 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
236 enum insn_code sync_compare_and_swap_cc[NUM_MACHINE_MODES];
237 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
238 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
240 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
242 #ifndef SLOW_UNALIGNED_ACCESS
243 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
244 #endif
246 /* This is run to set up which modes can be used
247 directly in memory and to initialize the block move optab. It is run
248 at the beginning of compilation and when the target is reinitialized. */
250 void
251 init_expr_target (void)
253 rtx insn, pat;
254 enum machine_mode mode;
255 int num_clobbers;
256 rtx mem, mem1;
257 rtx reg;
259 /* Try indexing by frame ptr and try by stack ptr.
260 It is known that on the Convex the stack ptr isn't a valid index.
261 With luck, one or the other is valid on any machine. */
262 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
263 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
265 /* A scratch register we can modify in-place below to avoid
266 useless RTL allocations. */
267 reg = gen_rtx_REG (VOIDmode, -1);
269 insn = rtx_alloc (INSN);
270 pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
271 PATTERN (insn) = pat;
273 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
274 mode = (enum machine_mode) ((int) mode + 1))
276 int regno;
278 direct_load[(int) mode] = direct_store[(int) mode] = 0;
279 PUT_MODE (mem, mode);
280 PUT_MODE (mem1, mode);
281 PUT_MODE (reg, mode);
283 /* See if there is some register that can be used in this mode and
284 directly loaded or stored from memory. */
286 if (mode != VOIDmode && mode != BLKmode)
287 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
288 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
289 regno++)
291 if (! HARD_REGNO_MODE_OK (regno, mode))
292 continue;
294 SET_REGNO (reg, regno);
296 SET_SRC (pat) = mem;
297 SET_DEST (pat) = reg;
298 if (recog (pat, insn, &num_clobbers) >= 0)
299 direct_load[(int) mode] = 1;
301 SET_SRC (pat) = mem1;
302 SET_DEST (pat) = reg;
303 if (recog (pat, insn, &num_clobbers) >= 0)
304 direct_load[(int) mode] = 1;
306 SET_SRC (pat) = reg;
307 SET_DEST (pat) = mem;
308 if (recog (pat, insn, &num_clobbers) >= 0)
309 direct_store[(int) mode] = 1;
311 SET_SRC (pat) = reg;
312 SET_DEST (pat) = mem1;
313 if (recog (pat, insn, &num_clobbers) >= 0)
314 direct_store[(int) mode] = 1;
318 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
320 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
321 mode = GET_MODE_WIDER_MODE (mode))
323 enum machine_mode srcmode;
324 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
325 srcmode = GET_MODE_WIDER_MODE (srcmode))
327 enum insn_code ic;
329 ic = can_extend_p (mode, srcmode, 0);
330 if (ic == CODE_FOR_nothing)
331 continue;
333 PUT_MODE (mem, srcmode);
335 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
336 float_extend_from_mem[mode][srcmode] = true;
341 /* This is run at the start of compiling a function. */
343 void
344 init_expr (void)
346 cfun->expr = ggc_alloc_cleared (sizeof (struct expr_status));
349 /* Copy data from FROM to TO, where the machine modes are not the same.
350 Both modes may be integer, or both may be floating, or both may be
351 fixed-point.
352 UNSIGNEDP should be nonzero if FROM is an unsigned type.
353 This causes zero-extension instead of sign-extension. */
355 void
356 convert_move (rtx to, rtx from, int unsignedp)
358 enum machine_mode to_mode = GET_MODE (to);
359 enum machine_mode from_mode = GET_MODE (from);
360 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
361 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
362 enum insn_code code;
363 rtx libcall;
365 /* rtx code for making an equivalent value. */
366 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
367 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
370 gcc_assert (to_real == from_real);
371 gcc_assert (to_mode != BLKmode);
372 gcc_assert (from_mode != BLKmode);
374 /* If the source and destination are already the same, then there's
375 nothing to do. */
376 if (to == from)
377 return;
379 /* If FROM is a SUBREG that indicates that we have already done at least
380 the required extension, strip it. We don't handle such SUBREGs as
381 TO here. */
383 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
384 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
385 >= GET_MODE_SIZE (to_mode))
386 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
387 from = gen_lowpart (to_mode, from), from_mode = to_mode;
389 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
391 if (to_mode == from_mode
392 || (from_mode == VOIDmode && CONSTANT_P (from)))
394 emit_move_insn (to, from);
395 return;
398 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
400 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
402 if (VECTOR_MODE_P (to_mode))
403 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
404 else
405 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
407 emit_move_insn (to, from);
408 return;
411 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
413 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
414 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
415 return;
418 if (to_real)
420 rtx value, insns;
421 convert_optab tab;
423 gcc_assert ((GET_MODE_PRECISION (from_mode)
424 != GET_MODE_PRECISION (to_mode))
425 || (DECIMAL_FLOAT_MODE_P (from_mode)
426 != DECIMAL_FLOAT_MODE_P (to_mode)));
428 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
429 /* Conversion between decimal float and binary float, same size. */
430 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
431 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
432 tab = sext_optab;
433 else
434 tab = trunc_optab;
436 /* Try converting directly if the insn is supported. */
438 code = convert_optab_handler (tab, to_mode, from_mode)->insn_code;
439 if (code != CODE_FOR_nothing)
441 emit_unop_insn (code, to, from,
442 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
443 return;
446 /* Otherwise use a libcall. */
447 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
449 /* Is this conversion implemented yet? */
450 gcc_assert (libcall);
452 start_sequence ();
453 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
454 1, from, from_mode);
455 insns = get_insns ();
456 end_sequence ();
457 emit_libcall_block (insns, to, value,
458 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
459 from)
460 : gen_rtx_FLOAT_EXTEND (to_mode, from));
461 return;
464 /* Handle pointer conversion. */ /* SPEE 900220. */
465 /* Targets are expected to provide conversion insns between PxImode and
466 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
467 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
469 enum machine_mode full_mode
470 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
472 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code
473 != CODE_FOR_nothing);
475 if (full_mode != from_mode)
476 from = convert_to_mode (full_mode, from, unsignedp);
477 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code,
478 to, from, UNKNOWN);
479 return;
481 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
483 rtx new_from;
484 enum machine_mode full_mode
485 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
487 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code
488 != CODE_FOR_nothing);
490 if (to_mode == full_mode)
492 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
493 to, from, UNKNOWN);
494 return;
497 new_from = gen_reg_rtx (full_mode);
498 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
499 new_from, from, UNKNOWN);
501 /* else proceed to integer conversions below. */
502 from_mode = full_mode;
503 from = new_from;
506 /* Make sure both are fixed-point modes or both are not. */
507 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
508 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
509 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
511 /* If we widen from_mode to to_mode and they are in the same class,
512 we won't saturate the result.
513 Otherwise, always saturate the result to play safe. */
514 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
515 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
516 expand_fixed_convert (to, from, 0, 0);
517 else
518 expand_fixed_convert (to, from, 0, 1);
519 return;
522 /* Now both modes are integers. */
524 /* Handle expanding beyond a word. */
525 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
526 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
528 rtx insns;
529 rtx lowpart;
530 rtx fill_value;
531 rtx lowfrom;
532 int i;
533 enum machine_mode lowpart_mode;
534 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
536 /* Try converting directly if the insn is supported. */
537 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
538 != CODE_FOR_nothing)
540 /* If FROM is a SUBREG, put it into a register. Do this
541 so that we always generate the same set of insns for
542 better cse'ing; if an intermediate assignment occurred,
543 we won't be doing the operation directly on the SUBREG. */
544 if (optimize > 0 && GET_CODE (from) == SUBREG)
545 from = force_reg (from_mode, from);
546 emit_unop_insn (code, to, from, equiv_code);
547 return;
549 /* Next, try converting via full word. */
550 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
551 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
552 != CODE_FOR_nothing))
554 if (REG_P (to))
556 if (reg_overlap_mentioned_p (to, from))
557 from = force_reg (from_mode, from);
558 emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
560 convert_move (gen_lowpart (word_mode, to), from, unsignedp);
561 emit_unop_insn (code, to,
562 gen_lowpart (word_mode, to), equiv_code);
563 return;
566 /* No special multiword conversion insn; do it by hand. */
567 start_sequence ();
569 /* Since we will turn this into a no conflict block, we must ensure
570 that the source does not overlap the target. */
572 if (reg_overlap_mentioned_p (to, from))
573 from = force_reg (from_mode, from);
575 /* Get a copy of FROM widened to a word, if necessary. */
576 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
577 lowpart_mode = word_mode;
578 else
579 lowpart_mode = from_mode;
581 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
583 lowpart = gen_lowpart (lowpart_mode, to);
584 emit_move_insn (lowpart, lowfrom);
586 /* Compute the value to put in each remaining word. */
587 if (unsignedp)
588 fill_value = const0_rtx;
589 else
591 #ifdef HAVE_slt
592 if (HAVE_slt
593 && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
594 && STORE_FLAG_VALUE == -1)
596 emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
597 lowpart_mode, 0);
598 fill_value = gen_reg_rtx (word_mode);
599 emit_insn (gen_slt (fill_value));
601 else
602 #endif
604 fill_value
605 = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
606 size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
607 NULL_RTX, 0);
608 fill_value = convert_to_mode (word_mode, fill_value, 1);
612 /* Fill the remaining words. */
613 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
615 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
616 rtx subword = operand_subword (to, index, 1, to_mode);
618 gcc_assert (subword);
620 if (fill_value != subword)
621 emit_move_insn (subword, fill_value);
624 insns = get_insns ();
625 end_sequence ();
627 emit_no_conflict_block (insns, to, from, NULL_RTX,
628 gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
629 return;
632 /* Truncating multi-word to a word or less. */
633 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
634 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
636 if (!((MEM_P (from)
637 && ! MEM_VOLATILE_P (from)
638 && direct_load[(int) to_mode]
639 && ! mode_dependent_address_p (XEXP (from, 0)))
640 || REG_P (from)
641 || GET_CODE (from) == SUBREG))
642 from = force_reg (from_mode, from);
643 convert_move (to, gen_lowpart (word_mode, from), 0);
644 return;
647 /* Now follow all the conversions between integers
648 no more than a word long. */
650 /* For truncation, usually we can just refer to FROM in a narrower mode. */
651 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
652 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
653 GET_MODE_BITSIZE (from_mode)))
655 if (!((MEM_P (from)
656 && ! MEM_VOLATILE_P (from)
657 && direct_load[(int) to_mode]
658 && ! mode_dependent_address_p (XEXP (from, 0)))
659 || REG_P (from)
660 || GET_CODE (from) == SUBREG))
661 from = force_reg (from_mode, from);
662 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
663 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
664 from = copy_to_reg (from);
665 emit_move_insn (to, gen_lowpart (to_mode, from));
666 return;
669 /* Handle extension. */
670 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
672 /* Convert directly if that works. */
673 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
674 != CODE_FOR_nothing)
676 emit_unop_insn (code, to, from, equiv_code);
677 return;
679 else
681 enum machine_mode intermediate;
682 rtx tmp;
683 tree shift_amount;
685 /* Search for a mode to convert via. */
686 for (intermediate = from_mode; intermediate != VOIDmode;
687 intermediate = GET_MODE_WIDER_MODE (intermediate))
688 if (((can_extend_p (to_mode, intermediate, unsignedp)
689 != CODE_FOR_nothing)
690 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
691 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
692 GET_MODE_BITSIZE (intermediate))))
693 && (can_extend_p (intermediate, from_mode, unsignedp)
694 != CODE_FOR_nothing))
696 convert_move (to, convert_to_mode (intermediate, from,
697 unsignedp), unsignedp);
698 return;
701 /* No suitable intermediate mode.
702 Generate what we need with shifts. */
703 shift_amount = build_int_cst (NULL_TREE,
704 GET_MODE_BITSIZE (to_mode)
705 - GET_MODE_BITSIZE (from_mode));
706 from = gen_lowpart (to_mode, force_reg (from_mode, from));
707 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
708 to, unsignedp);
709 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
710 to, unsignedp);
711 if (tmp != to)
712 emit_move_insn (to, tmp);
713 return;
717 /* Support special truncate insns for certain modes. */
718 if (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code != CODE_FOR_nothing)
720 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code,
721 to, from, UNKNOWN);
722 return;
725 /* Handle truncation of volatile memrefs, and so on;
726 the things that couldn't be truncated directly,
727 and for which there was no special instruction.
729 ??? Code above formerly short-circuited this, for most integer
730 mode pairs, with a force_reg in from_mode followed by a recursive
731 call to this routine. Appears always to have been wrong. */
732 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
734 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
735 emit_move_insn (to, temp);
736 return;
739 /* Mode combination is not recognized. */
740 gcc_unreachable ();
743 /* Return an rtx for a value that would result
744 from converting X to mode MODE.
745 Both X and MODE may be floating, or both integer.
746 UNSIGNEDP is nonzero if X is an unsigned value.
747 This can be done by referring to a part of X in place
748 or by copying to a new temporary with conversion. */
751 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
753 return convert_modes (mode, VOIDmode, x, unsignedp);
756 /* Return an rtx for a value that would result
757 from converting X from mode OLDMODE to mode MODE.
758 Both modes may be floating, or both integer.
759 UNSIGNEDP is nonzero if X is an unsigned value.
761 This can be done by referring to a part of X in place
762 or by copying to a new temporary with conversion.
764 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
767 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
769 rtx temp;
771 /* If FROM is a SUBREG that indicates that we have already done at least
772 the required extension, strip it. */
774 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
775 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
776 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
777 x = gen_lowpart (mode, x);
779 if (GET_MODE (x) != VOIDmode)
780 oldmode = GET_MODE (x);
782 if (mode == oldmode)
783 return x;
785 /* There is one case that we must handle specially: If we are converting
786 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
787 we are to interpret the constant as unsigned, gen_lowpart will do
788 the wrong if the constant appears negative. What we want to do is
789 make the high-order word of the constant zero, not all ones. */
791 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
792 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
793 && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
795 HOST_WIDE_INT val = INTVAL (x);
797 if (oldmode != VOIDmode
798 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
800 int width = GET_MODE_BITSIZE (oldmode);
802 /* We need to zero extend VAL. */
803 val &= ((HOST_WIDE_INT) 1 << width) - 1;
806 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
809 /* We can do this with a gen_lowpart if both desired and current modes
810 are integer, and this is either a constant integer, a register, or a
811 non-volatile MEM. Except for the constant case where MODE is no
812 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
814 if ((GET_CODE (x) == CONST_INT
815 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
816 || (GET_MODE_CLASS (mode) == MODE_INT
817 && GET_MODE_CLASS (oldmode) == MODE_INT
818 && (GET_CODE (x) == CONST_DOUBLE
819 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
820 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
821 && direct_load[(int) mode])
822 || (REG_P (x)
823 && (! HARD_REGISTER_P (x)
824 || HARD_REGNO_MODE_OK (REGNO (x), mode))
825 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
826 GET_MODE_BITSIZE (GET_MODE (x)))))))))
828 /* ?? If we don't know OLDMODE, we have to assume here that
829 X does not need sign- or zero-extension. This may not be
830 the case, but it's the best we can do. */
831 if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
832 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
834 HOST_WIDE_INT val = INTVAL (x);
835 int width = GET_MODE_BITSIZE (oldmode);
837 /* We must sign or zero-extend in this case. Start by
838 zero-extending, then sign extend if we need to. */
839 val &= ((HOST_WIDE_INT) 1 << width) - 1;
840 if (! unsignedp
841 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
842 val |= (HOST_WIDE_INT) (-1) << width;
844 return gen_int_mode (val, mode);
847 return gen_lowpart (mode, x);
850 /* Converting from integer constant into mode is always equivalent to an
851 subreg operation. */
852 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
854 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
855 return simplify_gen_subreg (mode, x, oldmode, 0);
858 temp = gen_reg_rtx (mode);
859 convert_move (temp, x, unsignedp);
860 return temp;
863 /* STORE_MAX_PIECES is the number of bytes at a time that we can
864 store efficiently. Due to internal GCC limitations, this is
865 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
866 for an immediate constant. */
868 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
870 /* Determine whether the LEN bytes can be moved by using several move
871 instructions. Return nonzero if a call to move_by_pieces should
872 succeed. */
875 can_move_by_pieces (unsigned HOST_WIDE_INT len,
876 unsigned int align ATTRIBUTE_UNUSED)
878 return MOVE_BY_PIECES_P (len, align);
881 /* Generate several move instructions to copy LEN bytes from block FROM to
882 block TO. (These are MEM rtx's with BLKmode).
884 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
885 used to push FROM to the stack.
887 ALIGN is maximum stack alignment we can assume.
889 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
890 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
891 stpcpy. */
894 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
895 unsigned int align, int endp)
897 struct move_by_pieces data;
898 rtx to_addr, from_addr = XEXP (from, 0);
899 unsigned int max_size = MOVE_MAX_PIECES + 1;
900 enum machine_mode mode = VOIDmode, tmode;
901 enum insn_code icode;
903 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
905 data.offset = 0;
906 data.from_addr = from_addr;
907 if (to)
909 to_addr = XEXP (to, 0);
910 data.to = to;
911 data.autinc_to
912 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
913 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
914 data.reverse
915 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
917 else
919 to_addr = NULL_RTX;
920 data.to = NULL_RTX;
921 data.autinc_to = 1;
922 #ifdef STACK_GROWS_DOWNWARD
923 data.reverse = 1;
924 #else
925 data.reverse = 0;
926 #endif
928 data.to_addr = to_addr;
929 data.from = from;
930 data.autinc_from
931 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
932 || GET_CODE (from_addr) == POST_INC
933 || GET_CODE (from_addr) == POST_DEC);
935 data.explicit_inc_from = 0;
936 data.explicit_inc_to = 0;
937 if (data.reverse) data.offset = len;
938 data.len = len;
940 /* If copying requires more than two move insns,
941 copy addresses to registers (to make displacements shorter)
942 and use post-increment if available. */
943 if (!(data.autinc_from && data.autinc_to)
944 && move_by_pieces_ninsns (len, align, max_size) > 2)
946 /* Find the mode of the largest move... */
947 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
948 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
949 if (GET_MODE_SIZE (tmode) < max_size)
950 mode = tmode;
952 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
954 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
955 data.autinc_from = 1;
956 data.explicit_inc_from = -1;
958 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
960 data.from_addr = copy_addr_to_reg (from_addr);
961 data.autinc_from = 1;
962 data.explicit_inc_from = 1;
964 if (!data.autinc_from && CONSTANT_P (from_addr))
965 data.from_addr = copy_addr_to_reg (from_addr);
966 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
968 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
969 data.autinc_to = 1;
970 data.explicit_inc_to = -1;
972 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
974 data.to_addr = copy_addr_to_reg (to_addr);
975 data.autinc_to = 1;
976 data.explicit_inc_to = 1;
978 if (!data.autinc_to && CONSTANT_P (to_addr))
979 data.to_addr = copy_addr_to_reg (to_addr);
982 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
983 if (align >= GET_MODE_ALIGNMENT (tmode))
984 align = GET_MODE_ALIGNMENT (tmode);
985 else
987 enum machine_mode xmode;
989 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
990 tmode != VOIDmode;
991 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
992 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
993 || SLOW_UNALIGNED_ACCESS (tmode, align))
994 break;
996 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
999 /* First move what we can in the largest integer mode, then go to
1000 successively smaller modes. */
1002 while (max_size > 1)
1004 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1005 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1006 if (GET_MODE_SIZE (tmode) < max_size)
1007 mode = tmode;
1009 if (mode == VOIDmode)
1010 break;
1012 icode = optab_handler (mov_optab, mode)->insn_code;
1013 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1014 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
1016 max_size = GET_MODE_SIZE (mode);
1019 /* The code above should have handled everything. */
1020 gcc_assert (!data.len);
1022 if (endp)
1024 rtx to1;
1026 gcc_assert (!data.reverse);
1027 if (data.autinc_to)
1029 if (endp == 2)
1031 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1032 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1033 else
1034 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
1035 -1));
1037 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1038 data.offset);
1040 else
1042 if (endp == 2)
1043 --data.offset;
1044 to1 = adjust_address (data.to, QImode, data.offset);
1046 return to1;
1048 else
1049 return data.to;
1052 /* Return number of insns required to move L bytes by pieces.
1053 ALIGN (in bits) is maximum alignment we can assume. */
1055 static unsigned HOST_WIDE_INT
1056 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1057 unsigned int max_size)
1059 unsigned HOST_WIDE_INT n_insns = 0;
1060 enum machine_mode tmode;
1062 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1063 if (align >= GET_MODE_ALIGNMENT (tmode))
1064 align = GET_MODE_ALIGNMENT (tmode);
1065 else
1067 enum machine_mode tmode, xmode;
1069 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1070 tmode != VOIDmode;
1071 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1072 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1073 || SLOW_UNALIGNED_ACCESS (tmode, align))
1074 break;
1076 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1079 while (max_size > 1)
1081 enum machine_mode mode = VOIDmode;
1082 enum insn_code icode;
1084 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1085 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1086 if (GET_MODE_SIZE (tmode) < max_size)
1087 mode = tmode;
1089 if (mode == VOIDmode)
1090 break;
1092 icode = optab_handler (mov_optab, mode)->insn_code;
1093 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1094 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1096 max_size = GET_MODE_SIZE (mode);
1099 gcc_assert (!l);
1100 return n_insns;
1103 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1104 with move instructions for mode MODE. GENFUN is the gen_... function
1105 to make a move insn for that mode. DATA has all the other info. */
1107 static void
1108 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1109 struct move_by_pieces *data)
1111 unsigned int size = GET_MODE_SIZE (mode);
1112 rtx to1 = NULL_RTX, from1;
1114 while (data->len >= size)
1116 if (data->reverse)
1117 data->offset -= size;
1119 if (data->to)
1121 if (data->autinc_to)
1122 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1123 data->offset);
1124 else
1125 to1 = adjust_address (data->to, mode, data->offset);
1128 if (data->autinc_from)
1129 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1130 data->offset);
1131 else
1132 from1 = adjust_address (data->from, mode, data->offset);
1134 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1135 emit_insn (gen_add2_insn (data->to_addr,
1136 GEN_INT (-(HOST_WIDE_INT)size)));
1137 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1138 emit_insn (gen_add2_insn (data->from_addr,
1139 GEN_INT (-(HOST_WIDE_INT)size)));
1141 if (data->to)
1142 emit_insn ((*genfun) (to1, from1));
1143 else
1145 #ifdef PUSH_ROUNDING
1146 emit_single_push_insn (mode, from1, NULL);
1147 #else
1148 gcc_unreachable ();
1149 #endif
1152 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1153 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1154 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1155 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1157 if (! data->reverse)
1158 data->offset += size;
1160 data->len -= size;
1164 /* Emit code to move a block Y to a block X. This may be done with
1165 string-move instructions, with multiple scalar move instructions,
1166 or with a library call.
1168 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1169 SIZE is an rtx that says how long they are.
1170 ALIGN is the maximum alignment we can assume they have.
1171 METHOD describes what kind of copy this is, and what mechanisms may be used.
1173 Return the address of the new block, if memcpy is called and returns it,
1174 0 otherwise. */
1177 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1178 unsigned int expected_align, HOST_WIDE_INT expected_size)
1180 bool may_use_call;
1181 rtx retval = 0;
1182 unsigned int align;
1184 switch (method)
1186 case BLOCK_OP_NORMAL:
1187 case BLOCK_OP_TAILCALL:
1188 may_use_call = true;
1189 break;
1191 case BLOCK_OP_CALL_PARM:
1192 may_use_call = block_move_libcall_safe_for_call_parm ();
1194 /* Make inhibit_defer_pop nonzero around the library call
1195 to force it to pop the arguments right away. */
1196 NO_DEFER_POP;
1197 break;
1199 case BLOCK_OP_NO_LIBCALL:
1200 may_use_call = false;
1201 break;
1203 default:
1204 gcc_unreachable ();
1207 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1209 gcc_assert (MEM_P (x));
1210 gcc_assert (MEM_P (y));
1211 gcc_assert (size);
1213 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1214 block copy is more efficient for other large modes, e.g. DCmode. */
1215 x = adjust_address (x, BLKmode, 0);
1216 y = adjust_address (y, BLKmode, 0);
1218 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1219 can be incorrect is coming from __builtin_memcpy. */
1220 if (GET_CODE (size) == CONST_INT)
1222 if (INTVAL (size) == 0)
1223 return 0;
1225 x = shallow_copy_rtx (x);
1226 y = shallow_copy_rtx (y);
1227 set_mem_size (x, size);
1228 set_mem_size (y, size);
1231 if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1232 move_by_pieces (x, y, INTVAL (size), align, 0);
1233 else if (emit_block_move_via_movmem (x, y, size, align,
1234 expected_align, expected_size))
1236 else if (may_use_call)
1237 retval = emit_block_move_via_libcall (x, y, size,
1238 method == BLOCK_OP_TAILCALL);
1239 else
1240 emit_block_move_via_loop (x, y, size, align);
1242 if (method == BLOCK_OP_CALL_PARM)
1243 OK_DEFER_POP;
1245 return retval;
1249 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1251 return emit_block_move_hints (x, y, size, method, 0, -1);
1254 /* A subroutine of emit_block_move. Returns true if calling the
1255 block move libcall will not clobber any parameters which may have
1256 already been placed on the stack. */
1258 static bool
1259 block_move_libcall_safe_for_call_parm (void)
1261 /* If arguments are pushed on the stack, then they're safe. */
1262 if (PUSH_ARGS)
1263 return true;
1265 /* If registers go on the stack anyway, any argument is sure to clobber
1266 an outgoing argument. */
1267 #if defined (REG_PARM_STACK_SPACE)
1268 if (OUTGOING_REG_PARM_STACK_SPACE)
1270 tree fn;
1271 fn = emit_block_move_libcall_fn (false);
1272 if (REG_PARM_STACK_SPACE (fn) != 0)
1273 return false;
1275 #endif
1277 /* If any argument goes in memory, then it might clobber an outgoing
1278 argument. */
1280 CUMULATIVE_ARGS args_so_far;
1281 tree fn, arg;
1283 fn = emit_block_move_libcall_fn (false);
1284 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1286 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1287 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1289 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1290 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1291 if (!tmp || !REG_P (tmp))
1292 return false;
1293 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1294 return false;
1295 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1298 return true;
1301 /* A subroutine of emit_block_move. Expand a movmem pattern;
1302 return true if successful. */
1304 static bool
1305 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1306 unsigned int expected_align, HOST_WIDE_INT expected_size)
1308 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1309 int save_volatile_ok = volatile_ok;
1310 enum machine_mode mode;
1312 if (expected_align < align)
1313 expected_align = align;
1315 /* Since this is a move insn, we don't care about volatility. */
1316 volatile_ok = 1;
1318 /* Try the most limited insn first, because there's no point
1319 including more than one in the machine description unless
1320 the more limited one has some advantage. */
1322 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1323 mode = GET_MODE_WIDER_MODE (mode))
1325 enum insn_code code = movmem_optab[(int) mode];
1326 insn_operand_predicate_fn pred;
1328 if (code != CODE_FOR_nothing
1329 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1330 here because if SIZE is less than the mode mask, as it is
1331 returned by the macro, it will definitely be less than the
1332 actual mode mask. */
1333 && ((GET_CODE (size) == CONST_INT
1334 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1335 <= (GET_MODE_MASK (mode) >> 1)))
1336 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1337 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1338 || (*pred) (x, BLKmode))
1339 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1340 || (*pred) (y, BLKmode))
1341 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1342 || (*pred) (opalign, VOIDmode)))
1344 rtx op2;
1345 rtx last = get_last_insn ();
1346 rtx pat;
1348 op2 = convert_to_mode (mode, size, 1);
1349 pred = insn_data[(int) code].operand[2].predicate;
1350 if (pred != 0 && ! (*pred) (op2, mode))
1351 op2 = copy_to_mode_reg (mode, op2);
1353 /* ??? When called via emit_block_move_for_call, it'd be
1354 nice if there were some way to inform the backend, so
1355 that it doesn't fail the expansion because it thinks
1356 emitting the libcall would be more efficient. */
1358 if (insn_data[(int) code].n_operands == 4)
1359 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1360 else
1361 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1362 GEN_INT (expected_align),
1363 GEN_INT (expected_size));
1364 if (pat)
1366 emit_insn (pat);
1367 volatile_ok = save_volatile_ok;
1368 return true;
1370 else
1371 delete_insns_since (last);
1375 volatile_ok = save_volatile_ok;
1376 return false;
1379 /* A subroutine of emit_block_move. Expand a call to memcpy.
1380 Return the return value from memcpy, 0 otherwise. */
1383 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1385 rtx dst_addr, src_addr;
1386 tree call_expr, fn, src_tree, dst_tree, size_tree;
1387 enum machine_mode size_mode;
1388 rtx retval;
1390 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1391 pseudos. We can then place those new pseudos into a VAR_DECL and
1392 use them later. */
1394 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1395 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1397 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1398 src_addr = convert_memory_address (ptr_mode, src_addr);
1400 dst_tree = make_tree (ptr_type_node, dst_addr);
1401 src_tree = make_tree (ptr_type_node, src_addr);
1403 size_mode = TYPE_MODE (sizetype);
1405 size = convert_to_mode (size_mode, size, 1);
1406 size = copy_to_mode_reg (size_mode, size);
1408 /* It is incorrect to use the libcall calling conventions to call
1409 memcpy in this context. This could be a user call to memcpy and
1410 the user may wish to examine the return value from memcpy. For
1411 targets where libcalls and normal calls have different conventions
1412 for returning pointers, we could end up generating incorrect code. */
1414 size_tree = make_tree (sizetype, size);
1416 fn = emit_block_move_libcall_fn (true);
1417 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1418 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1420 retval = expand_normal (call_expr);
1422 return retval;
1425 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1426 for the function we use for block copies. The first time FOR_CALL
1427 is true, we call assemble_external. */
1429 static GTY(()) tree block_move_fn;
1431 void
1432 init_block_move_fn (const char *asmspec)
1434 if (!block_move_fn)
1436 tree args, fn;
1438 fn = get_identifier ("memcpy");
1439 args = build_function_type_list (ptr_type_node, ptr_type_node,
1440 const_ptr_type_node, sizetype,
1441 NULL_TREE);
1443 fn = build_decl (FUNCTION_DECL, fn, args);
1444 DECL_EXTERNAL (fn) = 1;
1445 TREE_PUBLIC (fn) = 1;
1446 DECL_ARTIFICIAL (fn) = 1;
1447 TREE_NOTHROW (fn) = 1;
1448 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1449 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1451 block_move_fn = fn;
1454 if (asmspec)
1455 set_user_assembler_name (block_move_fn, asmspec);
1458 static tree
1459 emit_block_move_libcall_fn (int for_call)
1461 static bool emitted_extern;
1463 if (!block_move_fn)
1464 init_block_move_fn (NULL);
1466 if (for_call && !emitted_extern)
1468 emitted_extern = true;
1469 make_decl_rtl (block_move_fn);
1470 assemble_external (block_move_fn);
1473 return block_move_fn;
1476 /* A subroutine of emit_block_move. Copy the data via an explicit
1477 loop. This is used only when libcalls are forbidden. */
1478 /* ??? It'd be nice to copy in hunks larger than QImode. */
1480 static void
1481 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1482 unsigned int align ATTRIBUTE_UNUSED)
1484 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1485 enum machine_mode iter_mode;
1487 iter_mode = GET_MODE (size);
1488 if (iter_mode == VOIDmode)
1489 iter_mode = word_mode;
1491 top_label = gen_label_rtx ();
1492 cmp_label = gen_label_rtx ();
1493 iter = gen_reg_rtx (iter_mode);
1495 emit_move_insn (iter, const0_rtx);
1497 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1498 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1499 do_pending_stack_adjust ();
1501 emit_jump (cmp_label);
1502 emit_label (top_label);
1504 tmp = convert_modes (Pmode, iter_mode, iter, true);
1505 x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
1506 y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
1507 x = change_address (x, QImode, x_addr);
1508 y = change_address (y, QImode, y_addr);
1510 emit_move_insn (x, y);
1512 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1513 true, OPTAB_LIB_WIDEN);
1514 if (tmp != iter)
1515 emit_move_insn (iter, tmp);
1517 emit_label (cmp_label);
1519 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1520 true, top_label);
1523 /* Copy all or part of a value X into registers starting at REGNO.
1524 The number of registers to be filled is NREGS. */
1526 void
1527 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1529 int i;
1530 #ifdef HAVE_load_multiple
1531 rtx pat;
1532 rtx last;
1533 #endif
1535 if (nregs == 0)
1536 return;
1538 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1539 x = validize_mem (force_const_mem (mode, x));
1541 /* See if the machine can do this with a load multiple insn. */
1542 #ifdef HAVE_load_multiple
1543 if (HAVE_load_multiple)
1545 last = get_last_insn ();
1546 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1547 GEN_INT (nregs));
1548 if (pat)
1550 emit_insn (pat);
1551 return;
1553 else
1554 delete_insns_since (last);
1556 #endif
1558 for (i = 0; i < nregs; i++)
1559 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1560 operand_subword_force (x, i, mode));
1563 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1564 The number of registers to be filled is NREGS. */
1566 void
1567 move_block_from_reg (int regno, rtx x, int nregs)
1569 int i;
1571 if (nregs == 0)
1572 return;
1574 /* See if the machine can do this with a store multiple insn. */
1575 #ifdef HAVE_store_multiple
1576 if (HAVE_store_multiple)
1578 rtx last = get_last_insn ();
1579 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1580 GEN_INT (nregs));
1581 if (pat)
1583 emit_insn (pat);
1584 return;
1586 else
1587 delete_insns_since (last);
1589 #endif
1591 for (i = 0; i < nregs; i++)
1593 rtx tem = operand_subword (x, i, 1, BLKmode);
1595 gcc_assert (tem);
1597 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1601 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1602 ORIG, where ORIG is a non-consecutive group of registers represented by
1603 a PARALLEL. The clone is identical to the original except in that the
1604 original set of registers is replaced by a new set of pseudo registers.
1605 The new set has the same modes as the original set. */
1608 gen_group_rtx (rtx orig)
1610 int i, length;
1611 rtx *tmps;
1613 gcc_assert (GET_CODE (orig) == PARALLEL);
1615 length = XVECLEN (orig, 0);
1616 tmps = alloca (sizeof (rtx) * length);
1618 /* Skip a NULL entry in first slot. */
1619 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1621 if (i)
1622 tmps[0] = 0;
1624 for (; i < length; i++)
1626 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1627 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1629 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1632 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1635 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1636 except that values are placed in TMPS[i], and must later be moved
1637 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1639 static void
1640 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1642 rtx src;
1643 int start, i;
1644 enum machine_mode m = GET_MODE (orig_src);
1646 gcc_assert (GET_CODE (dst) == PARALLEL);
1648 if (m != VOIDmode
1649 && !SCALAR_INT_MODE_P (m)
1650 && !MEM_P (orig_src)
1651 && GET_CODE (orig_src) != CONCAT)
1653 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1654 if (imode == BLKmode)
1655 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1656 else
1657 src = gen_reg_rtx (imode);
1658 if (imode != BLKmode)
1659 src = gen_lowpart (GET_MODE (orig_src), src);
1660 emit_move_insn (src, orig_src);
1661 /* ...and back again. */
1662 if (imode != BLKmode)
1663 src = gen_lowpart (imode, src);
1664 emit_group_load_1 (tmps, dst, src, type, ssize);
1665 return;
1668 /* Check for a NULL entry, used to indicate that the parameter goes
1669 both on the stack and in registers. */
1670 if (XEXP (XVECEXP (dst, 0, 0), 0))
1671 start = 0;
1672 else
1673 start = 1;
1675 /* Process the pieces. */
1676 for (i = start; i < XVECLEN (dst, 0); i++)
1678 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1679 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1680 unsigned int bytelen = GET_MODE_SIZE (mode);
1681 int shift = 0;
1683 /* Handle trailing fragments that run over the size of the struct. */
1684 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1686 /* Arrange to shift the fragment to where it belongs.
1687 extract_bit_field loads to the lsb of the reg. */
1688 if (
1689 #ifdef BLOCK_REG_PADDING
1690 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1691 == (BYTES_BIG_ENDIAN ? upward : downward)
1692 #else
1693 BYTES_BIG_ENDIAN
1694 #endif
1696 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1697 bytelen = ssize - bytepos;
1698 gcc_assert (bytelen > 0);
1701 /* If we won't be loading directly from memory, protect the real source
1702 from strange tricks we might play; but make sure that the source can
1703 be loaded directly into the destination. */
1704 src = orig_src;
1705 if (!MEM_P (orig_src)
1706 && (!CONSTANT_P (orig_src)
1707 || (GET_MODE (orig_src) != mode
1708 && GET_MODE (orig_src) != VOIDmode)))
1710 if (GET_MODE (orig_src) == VOIDmode)
1711 src = gen_reg_rtx (mode);
1712 else
1713 src = gen_reg_rtx (GET_MODE (orig_src));
1715 emit_move_insn (src, orig_src);
1718 /* Optimize the access just a bit. */
1719 if (MEM_P (src)
1720 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1721 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1722 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1723 && bytelen == GET_MODE_SIZE (mode))
1725 tmps[i] = gen_reg_rtx (mode);
1726 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1728 else if (COMPLEX_MODE_P (mode)
1729 && GET_MODE (src) == mode
1730 && bytelen == GET_MODE_SIZE (mode))
1731 /* Let emit_move_complex do the bulk of the work. */
1732 tmps[i] = src;
1733 else if (GET_CODE (src) == CONCAT)
1735 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1736 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1738 if ((bytepos == 0 && bytelen == slen0)
1739 || (bytepos != 0 && bytepos + bytelen <= slen))
1741 /* The following assumes that the concatenated objects all
1742 have the same size. In this case, a simple calculation
1743 can be used to determine the object and the bit field
1744 to be extracted. */
1745 tmps[i] = XEXP (src, bytepos / slen0);
1746 if (! CONSTANT_P (tmps[i])
1747 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1748 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1749 (bytepos % slen0) * BITS_PER_UNIT,
1750 1, NULL_RTX, mode, mode);
1752 else
1754 rtx mem;
1756 gcc_assert (!bytepos);
1757 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1758 emit_move_insn (mem, src);
1759 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1760 0, 1, NULL_RTX, mode, mode);
1763 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1764 SIMD register, which is currently broken. While we get GCC
1765 to emit proper RTL for these cases, let's dump to memory. */
1766 else if (VECTOR_MODE_P (GET_MODE (dst))
1767 && REG_P (src))
1769 int slen = GET_MODE_SIZE (GET_MODE (src));
1770 rtx mem;
1772 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1773 emit_move_insn (mem, src);
1774 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1776 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1777 && XVECLEN (dst, 0) > 1)
1778 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1779 else if (CONSTANT_P (src)
1780 || (REG_P (src) && GET_MODE (src) == mode))
1781 tmps[i] = src;
1782 else
1783 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1784 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1785 mode, mode);
1787 if (shift)
1788 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1789 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1793 /* Emit code to move a block SRC of type TYPE to a block DST,
1794 where DST is non-consecutive registers represented by a PARALLEL.
1795 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1796 if not known. */
1798 void
1799 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1801 rtx *tmps;
1802 int i;
1804 tmps = alloca (sizeof (rtx) * XVECLEN (dst, 0));
1805 emit_group_load_1 (tmps, dst, src, type, ssize);
1807 /* Copy the extracted pieces into the proper (probable) hard regs. */
1808 for (i = 0; i < XVECLEN (dst, 0); i++)
1810 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1811 if (d == NULL)
1812 continue;
1813 emit_move_insn (d, tmps[i]);
1817 /* Similar, but load SRC into new pseudos in a format that looks like
1818 PARALLEL. This can later be fed to emit_group_move to get things
1819 in the right place. */
1822 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1824 rtvec vec;
1825 int i;
1827 vec = rtvec_alloc (XVECLEN (parallel, 0));
1828 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1830 /* Convert the vector to look just like the original PARALLEL, except
1831 with the computed values. */
1832 for (i = 0; i < XVECLEN (parallel, 0); i++)
1834 rtx e = XVECEXP (parallel, 0, i);
1835 rtx d = XEXP (e, 0);
1837 if (d)
1839 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1840 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1842 RTVEC_ELT (vec, i) = e;
1845 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1848 /* Emit code to move a block SRC to block DST, where SRC and DST are
1849 non-consecutive groups of registers, each represented by a PARALLEL. */
1851 void
1852 emit_group_move (rtx dst, rtx src)
1854 int i;
1856 gcc_assert (GET_CODE (src) == PARALLEL
1857 && GET_CODE (dst) == PARALLEL
1858 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1860 /* Skip first entry if NULL. */
1861 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1862 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1863 XEXP (XVECEXP (src, 0, i), 0));
1866 /* Move a group of registers represented by a PARALLEL into pseudos. */
1869 emit_group_move_into_temps (rtx src)
1871 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1872 int i;
1874 for (i = 0; i < XVECLEN (src, 0); i++)
1876 rtx e = XVECEXP (src, 0, i);
1877 rtx d = XEXP (e, 0);
1879 if (d)
1880 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1881 RTVEC_ELT (vec, i) = e;
1884 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1887 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1888 where SRC is non-consecutive registers represented by a PARALLEL.
1889 SSIZE represents the total size of block ORIG_DST, or -1 if not
1890 known. */
1892 void
1893 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1895 rtx *tmps, dst;
1896 int start, finish, i;
1897 enum machine_mode m = GET_MODE (orig_dst);
1899 gcc_assert (GET_CODE (src) == PARALLEL);
1901 if (!SCALAR_INT_MODE_P (m)
1902 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1904 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1905 if (imode == BLKmode)
1906 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1907 else
1908 dst = gen_reg_rtx (imode);
1909 emit_group_store (dst, src, type, ssize);
1910 if (imode != BLKmode)
1911 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1912 emit_move_insn (orig_dst, dst);
1913 return;
1916 /* Check for a NULL entry, used to indicate that the parameter goes
1917 both on the stack and in registers. */
1918 if (XEXP (XVECEXP (src, 0, 0), 0))
1919 start = 0;
1920 else
1921 start = 1;
1922 finish = XVECLEN (src, 0);
1924 tmps = alloca (sizeof (rtx) * finish);
1926 /* Copy the (probable) hard regs into pseudos. */
1927 for (i = start; i < finish; i++)
1929 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1930 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1932 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1933 emit_move_insn (tmps[i], reg);
1935 else
1936 tmps[i] = reg;
1939 /* If we won't be storing directly into memory, protect the real destination
1940 from strange tricks we might play. */
1941 dst = orig_dst;
1942 if (GET_CODE (dst) == PARALLEL)
1944 rtx temp;
1946 /* We can get a PARALLEL dst if there is a conditional expression in
1947 a return statement. In that case, the dst and src are the same,
1948 so no action is necessary. */
1949 if (rtx_equal_p (dst, src))
1950 return;
1952 /* It is unclear if we can ever reach here, but we may as well handle
1953 it. Allocate a temporary, and split this into a store/load to/from
1954 the temporary. */
1956 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1957 emit_group_store (temp, src, type, ssize);
1958 emit_group_load (dst, temp, type, ssize);
1959 return;
1961 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1963 enum machine_mode outer = GET_MODE (dst);
1964 enum machine_mode inner;
1965 HOST_WIDE_INT bytepos;
1966 bool done = false;
1967 rtx temp;
1969 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1970 dst = gen_reg_rtx (outer);
1972 /* Make life a bit easier for combine. */
1973 /* If the first element of the vector is the low part
1974 of the destination mode, use a paradoxical subreg to
1975 initialize the destination. */
1976 if (start < finish)
1978 inner = GET_MODE (tmps[start]);
1979 bytepos = subreg_lowpart_offset (inner, outer);
1980 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1982 temp = simplify_gen_subreg (outer, tmps[start],
1983 inner, 0);
1984 if (temp)
1986 emit_move_insn (dst, temp);
1987 done = true;
1988 start++;
1993 /* If the first element wasn't the low part, try the last. */
1994 if (!done
1995 && start < finish - 1)
1997 inner = GET_MODE (tmps[finish - 1]);
1998 bytepos = subreg_lowpart_offset (inner, outer);
1999 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2001 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2002 inner, 0);
2003 if (temp)
2005 emit_move_insn (dst, temp);
2006 done = true;
2007 finish--;
2012 /* Otherwise, simply initialize the result to zero. */
2013 if (!done)
2014 emit_move_insn (dst, CONST0_RTX (outer));
2017 /* Process the pieces. */
2018 for (i = start; i < finish; i++)
2020 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2021 enum machine_mode mode = GET_MODE (tmps[i]);
2022 unsigned int bytelen = GET_MODE_SIZE (mode);
2023 rtx dest = dst;
2025 /* Handle trailing fragments that run over the size of the struct. */
2026 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2028 /* store_bit_field always takes its value from the lsb.
2029 Move the fragment to the lsb if it's not already there. */
2030 if (
2031 #ifdef BLOCK_REG_PADDING
2032 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2033 == (BYTES_BIG_ENDIAN ? upward : downward)
2034 #else
2035 BYTES_BIG_ENDIAN
2036 #endif
2039 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2040 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2041 build_int_cst (NULL_TREE, shift),
2042 tmps[i], 0);
2044 bytelen = ssize - bytepos;
2047 if (GET_CODE (dst) == CONCAT)
2049 if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2050 dest = XEXP (dst, 0);
2051 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2053 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2054 dest = XEXP (dst, 1);
2056 else
2058 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2059 dest = assign_stack_temp (GET_MODE (dest),
2060 GET_MODE_SIZE (GET_MODE (dest)), 0);
2061 emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos),
2062 tmps[i]);
2063 dst = dest;
2064 break;
2068 /* Optimize the access just a bit. */
2069 if (MEM_P (dest)
2070 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2071 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2072 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2073 && bytelen == GET_MODE_SIZE (mode))
2074 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2075 else
2076 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2077 mode, tmps[i]);
2080 /* Copy from the pseudo into the (probable) hard reg. */
2081 if (orig_dst != dst)
2082 emit_move_insn (orig_dst, dst);
2085 /* Generate code to copy a BLKmode object of TYPE out of a
2086 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2087 is null, a stack temporary is created. TGTBLK is returned.
2089 The purpose of this routine is to handle functions that return
2090 BLKmode structures in registers. Some machines (the PA for example)
2091 want to return all small structures in registers regardless of the
2092 structure's alignment. */
2095 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2097 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2098 rtx src = NULL, dst = NULL;
2099 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2100 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2102 if (tgtblk == 0)
2104 tgtblk = assign_temp (build_qualified_type (type,
2105 (TYPE_QUALS (type)
2106 | TYPE_QUAL_CONST)),
2107 0, 1, 1);
2108 preserve_temp_slots (tgtblk);
2111 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2112 into a new pseudo which is a full word. */
2114 if (GET_MODE (srcreg) != BLKmode
2115 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2116 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2118 /* If the structure doesn't take up a whole number of words, see whether
2119 SRCREG is padded on the left or on the right. If it's on the left,
2120 set PADDING_CORRECTION to the number of bits to skip.
2122 In most ABIs, the structure will be returned at the least end of
2123 the register, which translates to right padding on little-endian
2124 targets and left padding on big-endian targets. The opposite
2125 holds if the structure is returned at the most significant
2126 end of the register. */
2127 if (bytes % UNITS_PER_WORD != 0
2128 && (targetm.calls.return_in_msb (type)
2129 ? !BYTES_BIG_ENDIAN
2130 : BYTES_BIG_ENDIAN))
2131 padding_correction
2132 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2134 /* Copy the structure BITSIZE bites at a time.
2136 We could probably emit more efficient code for machines which do not use
2137 strict alignment, but it doesn't seem worth the effort at the current
2138 time. */
2139 for (bitpos = 0, xbitpos = padding_correction;
2140 bitpos < bytes * BITS_PER_UNIT;
2141 bitpos += bitsize, xbitpos += bitsize)
2143 /* We need a new source operand each time xbitpos is on a
2144 word boundary and when xbitpos == padding_correction
2145 (the first time through). */
2146 if (xbitpos % BITS_PER_WORD == 0
2147 || xbitpos == padding_correction)
2148 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2149 GET_MODE (srcreg));
2151 /* We need a new destination operand each time bitpos is on
2152 a word boundary. */
2153 if (bitpos % BITS_PER_WORD == 0)
2154 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2156 /* Use xbitpos for the source extraction (right justified) and
2157 xbitpos for the destination store (left justified). */
2158 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
2159 extract_bit_field (src, bitsize,
2160 xbitpos % BITS_PER_WORD, 1,
2161 NULL_RTX, word_mode, word_mode));
2164 return tgtblk;
2167 /* Add a USE expression for REG to the (possibly empty) list pointed
2168 to by CALL_FUSAGE. REG must denote a hard register. */
2170 void
2171 use_reg (rtx *call_fusage, rtx reg)
2173 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2175 *call_fusage
2176 = gen_rtx_EXPR_LIST (VOIDmode,
2177 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2180 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2181 starting at REGNO. All of these registers must be hard registers. */
2183 void
2184 use_regs (rtx *call_fusage, int regno, int nregs)
2186 int i;
2188 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2190 for (i = 0; i < nregs; i++)
2191 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2194 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2195 PARALLEL REGS. This is for calls that pass values in multiple
2196 non-contiguous locations. The Irix 6 ABI has examples of this. */
2198 void
2199 use_group_regs (rtx *call_fusage, rtx regs)
2201 int i;
2203 for (i = 0; i < XVECLEN (regs, 0); i++)
2205 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2207 /* A NULL entry means the parameter goes both on the stack and in
2208 registers. This can also be a MEM for targets that pass values
2209 partially on the stack and partially in registers. */
2210 if (reg != 0 && REG_P (reg))
2211 use_reg (call_fusage, reg);
2216 /* Determine whether the LEN bytes generated by CONSTFUN can be
2217 stored to memory using several move instructions. CONSTFUNDATA is
2218 a pointer which will be passed as argument in every CONSTFUN call.
2219 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2220 a memset operation and false if it's a copy of a constant string.
2221 Return nonzero if a call to store_by_pieces should succeed. */
2224 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2225 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2226 void *constfundata, unsigned int align, bool memsetp)
2228 unsigned HOST_WIDE_INT l;
2229 unsigned int max_size;
2230 HOST_WIDE_INT offset = 0;
2231 enum machine_mode mode, tmode;
2232 enum insn_code icode;
2233 int reverse;
2234 rtx cst;
2236 if (len == 0)
2237 return 1;
2239 if (! (memsetp
2240 ? SET_BY_PIECES_P (len, align)
2241 : STORE_BY_PIECES_P (len, align)))
2242 return 0;
2244 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2245 if (align >= GET_MODE_ALIGNMENT (tmode))
2246 align = GET_MODE_ALIGNMENT (tmode);
2247 else
2249 enum machine_mode xmode;
2251 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2252 tmode != VOIDmode;
2253 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2254 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2255 || SLOW_UNALIGNED_ACCESS (tmode, align))
2256 break;
2258 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2261 /* We would first store what we can in the largest integer mode, then go to
2262 successively smaller modes. */
2264 for (reverse = 0;
2265 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2266 reverse++)
2268 l = len;
2269 mode = VOIDmode;
2270 max_size = STORE_MAX_PIECES + 1;
2271 while (max_size > 1)
2273 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2274 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2275 if (GET_MODE_SIZE (tmode) < max_size)
2276 mode = tmode;
2278 if (mode == VOIDmode)
2279 break;
2281 icode = optab_handler (mov_optab, mode)->insn_code;
2282 if (icode != CODE_FOR_nothing
2283 && align >= GET_MODE_ALIGNMENT (mode))
2285 unsigned int size = GET_MODE_SIZE (mode);
2287 while (l >= size)
2289 if (reverse)
2290 offset -= size;
2292 cst = (*constfun) (constfundata, offset, mode);
2293 if (!LEGITIMATE_CONSTANT_P (cst))
2294 return 0;
2296 if (!reverse)
2297 offset += size;
2299 l -= size;
2303 max_size = GET_MODE_SIZE (mode);
2306 /* The code above should have handled everything. */
2307 gcc_assert (!l);
2310 return 1;
2313 /* Generate several move instructions to store LEN bytes generated by
2314 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2315 pointer which will be passed as argument in every CONSTFUN call.
2316 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2317 a memset operation and false if it's a copy of a constant string.
2318 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2319 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2320 stpcpy. */
2323 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2324 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2325 void *constfundata, unsigned int align, bool memsetp, int endp)
2327 struct store_by_pieces data;
2329 if (len == 0)
2331 gcc_assert (endp != 2);
2332 return to;
2335 gcc_assert (memsetp
2336 ? SET_BY_PIECES_P (len, align)
2337 : STORE_BY_PIECES_P (len, align));
2338 data.constfun = constfun;
2339 data.constfundata = constfundata;
2340 data.len = len;
2341 data.to = to;
2342 store_by_pieces_1 (&data, align);
2343 if (endp)
2345 rtx to1;
2347 gcc_assert (!data.reverse);
2348 if (data.autinc_to)
2350 if (endp == 2)
2352 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2353 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2354 else
2355 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
2356 -1));
2358 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2359 data.offset);
2361 else
2363 if (endp == 2)
2364 --data.offset;
2365 to1 = adjust_address (data.to, QImode, data.offset);
2367 return to1;
2369 else
2370 return data.to;
2373 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2374 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2376 static void
2377 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2379 struct store_by_pieces data;
2381 if (len == 0)
2382 return;
2384 data.constfun = clear_by_pieces_1;
2385 data.constfundata = NULL;
2386 data.len = len;
2387 data.to = to;
2388 store_by_pieces_1 (&data, align);
2391 /* Callback routine for clear_by_pieces.
2392 Return const0_rtx unconditionally. */
2394 static rtx
2395 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2396 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2397 enum machine_mode mode ATTRIBUTE_UNUSED)
2399 return const0_rtx;
2402 /* Subroutine of clear_by_pieces and store_by_pieces.
2403 Generate several move instructions to store LEN bytes of block TO. (A MEM
2404 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2406 static void
2407 store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
2408 unsigned int align ATTRIBUTE_UNUSED)
2410 rtx to_addr = XEXP (data->to, 0);
2411 unsigned int max_size = STORE_MAX_PIECES + 1;
2412 enum machine_mode mode = VOIDmode, tmode;
2413 enum insn_code icode;
2415 data->offset = 0;
2416 data->to_addr = to_addr;
2417 data->autinc_to
2418 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2419 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2421 data->explicit_inc_to = 0;
2422 data->reverse
2423 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2424 if (data->reverse)
2425 data->offset = data->len;
2427 /* If storing requires more than two move insns,
2428 copy addresses to registers (to make displacements shorter)
2429 and use post-increment if available. */
2430 if (!data->autinc_to
2431 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2433 /* Determine the main mode we'll be using. */
2434 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2435 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2436 if (GET_MODE_SIZE (tmode) < max_size)
2437 mode = tmode;
2439 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2441 data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2442 data->autinc_to = 1;
2443 data->explicit_inc_to = -1;
2446 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2447 && ! data->autinc_to)
2449 data->to_addr = copy_addr_to_reg (to_addr);
2450 data->autinc_to = 1;
2451 data->explicit_inc_to = 1;
2454 if ( !data->autinc_to && CONSTANT_P (to_addr))
2455 data->to_addr = copy_addr_to_reg (to_addr);
2458 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2459 if (align >= GET_MODE_ALIGNMENT (tmode))
2460 align = GET_MODE_ALIGNMENT (tmode);
2461 else
2463 enum machine_mode xmode;
2465 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2466 tmode != VOIDmode;
2467 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2468 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2469 || SLOW_UNALIGNED_ACCESS (tmode, align))
2470 break;
2472 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2475 /* First store what we can in the largest integer mode, then go to
2476 successively smaller modes. */
2478 while (max_size > 1)
2480 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2481 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2482 if (GET_MODE_SIZE (tmode) < max_size)
2483 mode = tmode;
2485 if (mode == VOIDmode)
2486 break;
2488 icode = optab_handler (mov_optab, mode)->insn_code;
2489 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2490 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2492 max_size = GET_MODE_SIZE (mode);
2495 /* The code above should have handled everything. */
2496 gcc_assert (!data->len);
2499 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2500 with move instructions for mode MODE. GENFUN is the gen_... function
2501 to make a move insn for that mode. DATA has all the other info. */
2503 static void
2504 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2505 struct store_by_pieces *data)
2507 unsigned int size = GET_MODE_SIZE (mode);
2508 rtx to1, cst;
2510 while (data->len >= size)
2512 if (data->reverse)
2513 data->offset -= size;
2515 if (data->autinc_to)
2516 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2517 data->offset);
2518 else
2519 to1 = adjust_address (data->to, mode, data->offset);
2521 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2522 emit_insn (gen_add2_insn (data->to_addr,
2523 GEN_INT (-(HOST_WIDE_INT) size)));
2525 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2526 emit_insn ((*genfun) (to1, cst));
2528 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2529 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2531 if (! data->reverse)
2532 data->offset += size;
2534 data->len -= size;
2538 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2539 its length in bytes. */
2542 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2543 unsigned int expected_align, HOST_WIDE_INT expected_size)
2545 enum machine_mode mode = GET_MODE (object);
2546 unsigned int align;
2548 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2550 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2551 just move a zero. Otherwise, do this a piece at a time. */
2552 if (mode != BLKmode
2553 && GET_CODE (size) == CONST_INT
2554 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2556 rtx zero = CONST0_RTX (mode);
2557 if (zero != NULL)
2559 emit_move_insn (object, zero);
2560 return NULL;
2563 if (COMPLEX_MODE_P (mode))
2565 zero = CONST0_RTX (GET_MODE_INNER (mode));
2566 if (zero != NULL)
2568 write_complex_part (object, zero, 0);
2569 write_complex_part (object, zero, 1);
2570 return NULL;
2575 if (size == const0_rtx)
2576 return NULL;
2578 align = MEM_ALIGN (object);
2580 if (GET_CODE (size) == CONST_INT
2581 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2582 clear_by_pieces (object, INTVAL (size), align);
2583 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2584 expected_align, expected_size))
2586 else
2587 return set_storage_via_libcall (object, size, const0_rtx,
2588 method == BLOCK_OP_TAILCALL);
2590 return NULL;
2594 clear_storage (rtx object, rtx size, enum block_op_methods method)
2596 return clear_storage_hints (object, size, method, 0, -1);
2600 /* A subroutine of clear_storage. Expand a call to memset.
2601 Return the return value of memset, 0 otherwise. */
2604 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2606 tree call_expr, fn, object_tree, size_tree, val_tree;
2607 enum machine_mode size_mode;
2608 rtx retval;
2610 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2611 place those into new pseudos into a VAR_DECL and use them later. */
2613 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2615 size_mode = TYPE_MODE (sizetype);
2616 size = convert_to_mode (size_mode, size, 1);
2617 size = copy_to_mode_reg (size_mode, size);
2619 /* It is incorrect to use the libcall calling conventions to call
2620 memset in this context. This could be a user call to memset and
2621 the user may wish to examine the return value from memset. For
2622 targets where libcalls and normal calls have different conventions
2623 for returning pointers, we could end up generating incorrect code. */
2625 object_tree = make_tree (ptr_type_node, object);
2626 if (GET_CODE (val) != CONST_INT)
2627 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2628 size_tree = make_tree (sizetype, size);
2629 val_tree = make_tree (integer_type_node, val);
2631 fn = clear_storage_libcall_fn (true);
2632 call_expr = build_call_expr (fn, 3,
2633 object_tree, integer_zero_node, size_tree);
2634 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2636 retval = expand_normal (call_expr);
2638 return retval;
2641 /* A subroutine of set_storage_via_libcall. Create the tree node
2642 for the function we use for block clears. The first time FOR_CALL
2643 is true, we call assemble_external. */
2645 static GTY(()) tree block_clear_fn;
2647 void
2648 init_block_clear_fn (const char *asmspec)
2650 if (!block_clear_fn)
2652 tree fn, args;
2654 fn = get_identifier ("memset");
2655 args = build_function_type_list (ptr_type_node, ptr_type_node,
2656 integer_type_node, sizetype,
2657 NULL_TREE);
2659 fn = build_decl (FUNCTION_DECL, fn, args);
2660 DECL_EXTERNAL (fn) = 1;
2661 TREE_PUBLIC (fn) = 1;
2662 DECL_ARTIFICIAL (fn) = 1;
2663 TREE_NOTHROW (fn) = 1;
2664 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2665 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2667 block_clear_fn = fn;
2670 if (asmspec)
2671 set_user_assembler_name (block_clear_fn, asmspec);
2674 static tree
2675 clear_storage_libcall_fn (int for_call)
2677 static bool emitted_extern;
2679 if (!block_clear_fn)
2680 init_block_clear_fn (NULL);
2682 if (for_call && !emitted_extern)
2684 emitted_extern = true;
2685 make_decl_rtl (block_clear_fn);
2686 assemble_external (block_clear_fn);
2689 return block_clear_fn;
2692 /* Expand a setmem pattern; return true if successful. */
2694 bool
2695 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2696 unsigned int expected_align, HOST_WIDE_INT expected_size)
2698 /* Try the most limited insn first, because there's no point
2699 including more than one in the machine description unless
2700 the more limited one has some advantage. */
2702 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2703 enum machine_mode mode;
2705 if (expected_align < align)
2706 expected_align = align;
2708 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2709 mode = GET_MODE_WIDER_MODE (mode))
2711 enum insn_code code = setmem_optab[(int) mode];
2712 insn_operand_predicate_fn pred;
2714 if (code != CODE_FOR_nothing
2715 /* We don't need MODE to be narrower than
2716 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2717 the mode mask, as it is returned by the macro, it will
2718 definitely be less than the actual mode mask. */
2719 && ((GET_CODE (size) == CONST_INT
2720 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2721 <= (GET_MODE_MASK (mode) >> 1)))
2722 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2723 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2724 || (*pred) (object, BLKmode))
2725 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2726 || (*pred) (opalign, VOIDmode)))
2728 rtx opsize, opchar;
2729 enum machine_mode char_mode;
2730 rtx last = get_last_insn ();
2731 rtx pat;
2733 opsize = convert_to_mode (mode, size, 1);
2734 pred = insn_data[(int) code].operand[1].predicate;
2735 if (pred != 0 && ! (*pred) (opsize, mode))
2736 opsize = copy_to_mode_reg (mode, opsize);
2738 opchar = val;
2739 char_mode = insn_data[(int) code].operand[2].mode;
2740 if (char_mode != VOIDmode)
2742 opchar = convert_to_mode (char_mode, opchar, 1);
2743 pred = insn_data[(int) code].operand[2].predicate;
2744 if (pred != 0 && ! (*pred) (opchar, char_mode))
2745 opchar = copy_to_mode_reg (char_mode, opchar);
2748 if (insn_data[(int) code].n_operands == 4)
2749 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2750 else
2751 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2752 GEN_INT (expected_align),
2753 GEN_INT (expected_size));
2754 if (pat)
2756 emit_insn (pat);
2757 return true;
2759 else
2760 delete_insns_since (last);
2764 return false;
2768 /* Write to one of the components of the complex value CPLX. Write VAL to
2769 the real part if IMAG_P is false, and the imaginary part if its true. */
2771 static void
2772 write_complex_part (rtx cplx, rtx val, bool imag_p)
2774 enum machine_mode cmode;
2775 enum machine_mode imode;
2776 unsigned ibitsize;
2778 if (GET_CODE (cplx) == CONCAT)
2780 emit_move_insn (XEXP (cplx, imag_p), val);
2781 return;
2784 cmode = GET_MODE (cplx);
2785 imode = GET_MODE_INNER (cmode);
2786 ibitsize = GET_MODE_BITSIZE (imode);
2788 /* For MEMs simplify_gen_subreg may generate an invalid new address
2789 because, e.g., the original address is considered mode-dependent
2790 by the target, which restricts simplify_subreg from invoking
2791 adjust_address_nv. Instead of preparing fallback support for an
2792 invalid address, we call adjust_address_nv directly. */
2793 if (MEM_P (cplx))
2795 emit_move_insn (adjust_address_nv (cplx, imode,
2796 imag_p ? GET_MODE_SIZE (imode) : 0),
2797 val);
2798 return;
2801 /* If the sub-object is at least word sized, then we know that subregging
2802 will work. This special case is important, since store_bit_field
2803 wants to operate on integer modes, and there's rarely an OImode to
2804 correspond to TCmode. */
2805 if (ibitsize >= BITS_PER_WORD
2806 /* For hard regs we have exact predicates. Assume we can split
2807 the original object if it spans an even number of hard regs.
2808 This special case is important for SCmode on 64-bit platforms
2809 where the natural size of floating-point regs is 32-bit. */
2810 || (REG_P (cplx)
2811 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2812 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2814 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2815 imag_p ? GET_MODE_SIZE (imode) : 0);
2816 if (part)
2818 emit_move_insn (part, val);
2819 return;
2821 else
2822 /* simplify_gen_subreg may fail for sub-word MEMs. */
2823 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2826 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2829 /* Extract one of the components of the complex value CPLX. Extract the
2830 real part if IMAG_P is false, and the imaginary part if it's true. */
2832 static rtx
2833 read_complex_part (rtx cplx, bool imag_p)
2835 enum machine_mode cmode, imode;
2836 unsigned ibitsize;
2838 if (GET_CODE (cplx) == CONCAT)
2839 return XEXP (cplx, imag_p);
2841 cmode = GET_MODE (cplx);
2842 imode = GET_MODE_INNER (cmode);
2843 ibitsize = GET_MODE_BITSIZE (imode);
2845 /* Special case reads from complex constants that got spilled to memory. */
2846 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2848 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2849 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2851 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2852 if (CONSTANT_CLASS_P (part))
2853 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2857 /* For MEMs simplify_gen_subreg may generate an invalid new address
2858 because, e.g., the original address is considered mode-dependent
2859 by the target, which restricts simplify_subreg from invoking
2860 adjust_address_nv. Instead of preparing fallback support for an
2861 invalid address, we call adjust_address_nv directly. */
2862 if (MEM_P (cplx))
2863 return adjust_address_nv (cplx, imode,
2864 imag_p ? GET_MODE_SIZE (imode) : 0);
2866 /* If the sub-object is at least word sized, then we know that subregging
2867 will work. This special case is important, since extract_bit_field
2868 wants to operate on integer modes, and there's rarely an OImode to
2869 correspond to TCmode. */
2870 if (ibitsize >= BITS_PER_WORD
2871 /* For hard regs we have exact predicates. Assume we can split
2872 the original object if it spans an even number of hard regs.
2873 This special case is important for SCmode on 64-bit platforms
2874 where the natural size of floating-point regs is 32-bit. */
2875 || (REG_P (cplx)
2876 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2877 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2879 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2880 imag_p ? GET_MODE_SIZE (imode) : 0);
2881 if (ret)
2882 return ret;
2883 else
2884 /* simplify_gen_subreg may fail for sub-word MEMs. */
2885 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2888 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2889 true, NULL_RTX, imode, imode);
2892 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2893 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2894 represented in NEW_MODE. If FORCE is true, this will never happen, as
2895 we'll force-create a SUBREG if needed. */
2897 static rtx
2898 emit_move_change_mode (enum machine_mode new_mode,
2899 enum machine_mode old_mode, rtx x, bool force)
2901 rtx ret;
2903 if (push_operand (x, GET_MODE (x)))
2905 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2906 MEM_COPY_ATTRIBUTES (ret, x);
2908 else if (MEM_P (x))
2910 /* We don't have to worry about changing the address since the
2911 size in bytes is supposed to be the same. */
2912 if (reload_in_progress)
2914 /* Copy the MEM to change the mode and move any
2915 substitutions from the old MEM to the new one. */
2916 ret = adjust_address_nv (x, new_mode, 0);
2917 copy_replacements (x, ret);
2919 else
2920 ret = adjust_address (x, new_mode, 0);
2922 else
2924 /* Note that we do want simplify_subreg's behavior of validating
2925 that the new mode is ok for a hard register. If we were to use
2926 simplify_gen_subreg, we would create the subreg, but would
2927 probably run into the target not being able to implement it. */
2928 /* Except, of course, when FORCE is true, when this is exactly what
2929 we want. Which is needed for CCmodes on some targets. */
2930 if (force)
2931 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2932 else
2933 ret = simplify_subreg (new_mode, x, old_mode, 0);
2936 return ret;
2939 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2940 an integer mode of the same size as MODE. Returns the instruction
2941 emitted, or NULL if such a move could not be generated. */
2943 static rtx
2944 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2946 enum machine_mode imode;
2947 enum insn_code code;
2949 /* There must exist a mode of the exact size we require. */
2950 imode = int_mode_for_mode (mode);
2951 if (imode == BLKmode)
2952 return NULL_RTX;
2954 /* The target must support moves in this mode. */
2955 code = optab_handler (mov_optab, imode)->insn_code;
2956 if (code == CODE_FOR_nothing)
2957 return NULL_RTX;
2959 x = emit_move_change_mode (imode, mode, x, force);
2960 if (x == NULL_RTX)
2961 return NULL_RTX;
2962 y = emit_move_change_mode (imode, mode, y, force);
2963 if (y == NULL_RTX)
2964 return NULL_RTX;
2965 return emit_insn (GEN_FCN (code) (x, y));
2968 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2969 Return an equivalent MEM that does not use an auto-increment. */
2971 static rtx
2972 emit_move_resolve_push (enum machine_mode mode, rtx x)
2974 enum rtx_code code = GET_CODE (XEXP (x, 0));
2975 HOST_WIDE_INT adjust;
2976 rtx temp;
2978 adjust = GET_MODE_SIZE (mode);
2979 #ifdef PUSH_ROUNDING
2980 adjust = PUSH_ROUNDING (adjust);
2981 #endif
2982 if (code == PRE_DEC || code == POST_DEC)
2983 adjust = -adjust;
2984 else if (code == PRE_MODIFY || code == POST_MODIFY)
2986 rtx expr = XEXP (XEXP (x, 0), 1);
2987 HOST_WIDE_INT val;
2989 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
2990 gcc_assert (GET_CODE (XEXP (expr, 1)) == CONST_INT);
2991 val = INTVAL (XEXP (expr, 1));
2992 if (GET_CODE (expr) == MINUS)
2993 val = -val;
2994 gcc_assert (adjust == val || adjust == -val);
2995 adjust = val;
2998 /* Do not use anti_adjust_stack, since we don't want to update
2999 stack_pointer_delta. */
3000 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3001 GEN_INT (adjust), stack_pointer_rtx,
3002 0, OPTAB_LIB_WIDEN);
3003 if (temp != stack_pointer_rtx)
3004 emit_move_insn (stack_pointer_rtx, temp);
3006 switch (code)
3008 case PRE_INC:
3009 case PRE_DEC:
3010 case PRE_MODIFY:
3011 temp = stack_pointer_rtx;
3012 break;
3013 case POST_INC:
3014 case POST_DEC:
3015 case POST_MODIFY:
3016 temp = plus_constant (stack_pointer_rtx, -adjust);
3017 break;
3018 default:
3019 gcc_unreachable ();
3022 return replace_equiv_address (x, temp);
3025 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3026 X is known to satisfy push_operand, and MODE is known to be complex.
3027 Returns the last instruction emitted. */
3030 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3032 enum machine_mode submode = GET_MODE_INNER (mode);
3033 bool imag_first;
3035 #ifdef PUSH_ROUNDING
3036 unsigned int submodesize = GET_MODE_SIZE (submode);
3038 /* In case we output to the stack, but the size is smaller than the
3039 machine can push exactly, we need to use move instructions. */
3040 if (PUSH_ROUNDING (submodesize) != submodesize)
3042 x = emit_move_resolve_push (mode, x);
3043 return emit_move_insn (x, y);
3045 #endif
3047 /* Note that the real part always precedes the imag part in memory
3048 regardless of machine's endianness. */
3049 switch (GET_CODE (XEXP (x, 0)))
3051 case PRE_DEC:
3052 case POST_DEC:
3053 imag_first = true;
3054 break;
3055 case PRE_INC:
3056 case POST_INC:
3057 imag_first = false;
3058 break;
3059 default:
3060 gcc_unreachable ();
3063 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3064 read_complex_part (y, imag_first));
3065 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3066 read_complex_part (y, !imag_first));
3069 /* A subroutine of emit_move_complex. Perform the move from Y to X
3070 via two moves of the parts. Returns the last instruction emitted. */
3073 emit_move_complex_parts (rtx x, rtx y)
3075 /* Show the output dies here. This is necessary for SUBREGs
3076 of pseudos since we cannot track their lifetimes correctly;
3077 hard regs shouldn't appear here except as return values. */
3078 if (!reload_completed && !reload_in_progress
3079 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3080 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3082 write_complex_part (x, read_complex_part (y, false), false);
3083 write_complex_part (x, read_complex_part (y, true), true);
3085 return get_last_insn ();
3088 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3089 MODE is known to be complex. Returns the last instruction emitted. */
3091 static rtx
3092 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3094 bool try_int;
3096 /* Need to take special care for pushes, to maintain proper ordering
3097 of the data, and possibly extra padding. */
3098 if (push_operand (x, mode))
3099 return emit_move_complex_push (mode, x, y);
3101 /* See if we can coerce the target into moving both values at once. */
3103 /* Move floating point as parts. */
3104 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3105 && optab_handler (mov_optab, GET_MODE_INNER (mode))->insn_code != CODE_FOR_nothing)
3106 try_int = false;
3107 /* Not possible if the values are inherently not adjacent. */
3108 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3109 try_int = false;
3110 /* Is possible if both are registers (or subregs of registers). */
3111 else if (register_operand (x, mode) && register_operand (y, mode))
3112 try_int = true;
3113 /* If one of the operands is a memory, and alignment constraints
3114 are friendly enough, we may be able to do combined memory operations.
3115 We do not attempt this if Y is a constant because that combination is
3116 usually better with the by-parts thing below. */
3117 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3118 && (!STRICT_ALIGNMENT
3119 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3120 try_int = true;
3121 else
3122 try_int = false;
3124 if (try_int)
3126 rtx ret;
3128 /* For memory to memory moves, optimal behavior can be had with the
3129 existing block move logic. */
3130 if (MEM_P (x) && MEM_P (y))
3132 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3133 BLOCK_OP_NO_LIBCALL);
3134 return get_last_insn ();
3137 ret = emit_move_via_integer (mode, x, y, true);
3138 if (ret)
3139 return ret;
3142 return emit_move_complex_parts (x, y);
3145 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3146 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3148 static rtx
3149 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3151 rtx ret;
3153 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3154 if (mode != CCmode)
3156 enum insn_code code = optab_handler (mov_optab, CCmode)->insn_code;
3157 if (code != CODE_FOR_nothing)
3159 x = emit_move_change_mode (CCmode, mode, x, true);
3160 y = emit_move_change_mode (CCmode, mode, y, true);
3161 return emit_insn (GEN_FCN (code) (x, y));
3165 /* Otherwise, find the MODE_INT mode of the same width. */
3166 ret = emit_move_via_integer (mode, x, y, false);
3167 gcc_assert (ret != NULL);
3168 return ret;
3171 /* Return true if word I of OP lies entirely in the
3172 undefined bits of a paradoxical subreg. */
3174 static bool
3175 undefined_operand_subword_p (const_rtx op, int i)
3177 enum machine_mode innermode, innermostmode;
3178 int offset;
3179 if (GET_CODE (op) != SUBREG)
3180 return false;
3181 innermode = GET_MODE (op);
3182 innermostmode = GET_MODE (SUBREG_REG (op));
3183 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3184 /* The SUBREG_BYTE represents offset, as if the value were stored in
3185 memory, except for a paradoxical subreg where we define
3186 SUBREG_BYTE to be 0; undo this exception as in
3187 simplify_subreg. */
3188 if (SUBREG_BYTE (op) == 0
3189 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3191 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3192 if (WORDS_BIG_ENDIAN)
3193 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3194 if (BYTES_BIG_ENDIAN)
3195 offset += difference % UNITS_PER_WORD;
3197 if (offset >= GET_MODE_SIZE (innermostmode)
3198 || offset <= -GET_MODE_SIZE (word_mode))
3199 return true;
3200 return false;
3203 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3204 MODE is any multi-word or full-word mode that lacks a move_insn
3205 pattern. Note that you will get better code if you define such
3206 patterns, even if they must turn into multiple assembler instructions. */
3208 static rtx
3209 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3211 rtx last_insn = 0;
3212 rtx seq, inner;
3213 bool need_clobber;
3214 int i;
3216 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3218 /* If X is a push on the stack, do the push now and replace
3219 X with a reference to the stack pointer. */
3220 if (push_operand (x, mode))
3221 x = emit_move_resolve_push (mode, x);
3223 /* If we are in reload, see if either operand is a MEM whose address
3224 is scheduled for replacement. */
3225 if (reload_in_progress && MEM_P (x)
3226 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3227 x = replace_equiv_address_nv (x, inner);
3228 if (reload_in_progress && MEM_P (y)
3229 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3230 y = replace_equiv_address_nv (y, inner);
3232 start_sequence ();
3234 need_clobber = false;
3235 for (i = 0;
3236 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3237 i++)
3239 rtx xpart = operand_subword (x, i, 1, mode);
3240 rtx ypart;
3242 /* Do not generate code for a move if it would come entirely
3243 from the undefined bits of a paradoxical subreg. */
3244 if (undefined_operand_subword_p (y, i))
3245 continue;
3247 ypart = operand_subword (y, i, 1, mode);
3249 /* If we can't get a part of Y, put Y into memory if it is a
3250 constant. Otherwise, force it into a register. Then we must
3251 be able to get a part of Y. */
3252 if (ypart == 0 && CONSTANT_P (y))
3254 y = use_anchored_address (force_const_mem (mode, y));
3255 ypart = operand_subword (y, i, 1, mode);
3257 else if (ypart == 0)
3258 ypart = operand_subword_force (y, i, mode);
3260 gcc_assert (xpart && ypart);
3262 need_clobber |= (GET_CODE (xpart) == SUBREG);
3264 last_insn = emit_move_insn (xpart, ypart);
3267 seq = get_insns ();
3268 end_sequence ();
3270 /* Show the output dies here. This is necessary for SUBREGs
3271 of pseudos since we cannot track their lifetimes correctly;
3272 hard regs shouldn't appear here except as return values.
3273 We never want to emit such a clobber after reload. */
3274 if (x != y
3275 && ! (reload_in_progress || reload_completed)
3276 && need_clobber != 0)
3277 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3279 emit_insn (seq);
3281 return last_insn;
3284 /* Low level part of emit_move_insn.
3285 Called just like emit_move_insn, but assumes X and Y
3286 are basically valid. */
3289 emit_move_insn_1 (rtx x, rtx y)
3291 enum machine_mode mode = GET_MODE (x);
3292 enum insn_code code;
3294 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3296 code = optab_handler (mov_optab, mode)->insn_code;
3297 if (code != CODE_FOR_nothing)
3298 return emit_insn (GEN_FCN (code) (x, y));
3300 /* Expand complex moves by moving real part and imag part. */
3301 if (COMPLEX_MODE_P (mode))
3302 return emit_move_complex (mode, x, y);
3304 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3305 || ALL_FIXED_POINT_MODE_P (mode))
3307 rtx result = emit_move_via_integer (mode, x, y, true);
3309 /* If we can't find an integer mode, use multi words. */
3310 if (result)
3311 return result;
3312 else
3313 return emit_move_multi_word (mode, x, y);
3316 if (GET_MODE_CLASS (mode) == MODE_CC)
3317 return emit_move_ccmode (mode, x, y);
3319 /* Try using a move pattern for the corresponding integer mode. This is
3320 only safe when simplify_subreg can convert MODE constants into integer
3321 constants. At present, it can only do this reliably if the value
3322 fits within a HOST_WIDE_INT. */
3323 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3325 rtx ret = emit_move_via_integer (mode, x, y, false);
3326 if (ret)
3327 return ret;
3330 return emit_move_multi_word (mode, x, y);
3333 /* Generate code to copy Y into X.
3334 Both Y and X must have the same mode, except that
3335 Y can be a constant with VOIDmode.
3336 This mode cannot be BLKmode; use emit_block_move for that.
3338 Return the last instruction emitted. */
3341 emit_move_insn (rtx x, rtx y)
3343 enum machine_mode mode = GET_MODE (x);
3344 rtx y_cst = NULL_RTX;
3345 rtx last_insn, set;
3347 gcc_assert (mode != BLKmode
3348 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3350 if (CONSTANT_P (y))
3352 if (optimize
3353 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3354 && (last_insn = compress_float_constant (x, y)))
3355 return last_insn;
3357 y_cst = y;
3359 if (!LEGITIMATE_CONSTANT_P (y))
3361 y = force_const_mem (mode, y);
3363 /* If the target's cannot_force_const_mem prevented the spill,
3364 assume that the target's move expanders will also take care
3365 of the non-legitimate constant. */
3366 if (!y)
3367 y = y_cst;
3368 else
3369 y = use_anchored_address (y);
3373 /* If X or Y are memory references, verify that their addresses are valid
3374 for the machine. */
3375 if (MEM_P (x)
3376 && ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
3377 && ! push_operand (x, GET_MODE (x)))
3378 || (flag_force_addr
3379 && CONSTANT_ADDRESS_P (XEXP (x, 0)))))
3380 x = validize_mem (x);
3382 if (MEM_P (y)
3383 && (! memory_address_p (GET_MODE (y), XEXP (y, 0))
3384 || (flag_force_addr
3385 && CONSTANT_ADDRESS_P (XEXP (y, 0)))))
3386 y = validize_mem (y);
3388 gcc_assert (mode != BLKmode);
3390 last_insn = emit_move_insn_1 (x, y);
3392 if (y_cst && REG_P (x)
3393 && (set = single_set (last_insn)) != NULL_RTX
3394 && SET_DEST (set) == x
3395 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3396 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3398 return last_insn;
3401 /* If Y is representable exactly in a narrower mode, and the target can
3402 perform the extension directly from constant or memory, then emit the
3403 move as an extension. */
3405 static rtx
3406 compress_float_constant (rtx x, rtx y)
3408 enum machine_mode dstmode = GET_MODE (x);
3409 enum machine_mode orig_srcmode = GET_MODE (y);
3410 enum machine_mode srcmode;
3411 REAL_VALUE_TYPE r;
3412 int oldcost, newcost;
3414 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3416 if (LEGITIMATE_CONSTANT_P (y))
3417 oldcost = rtx_cost (y, SET);
3418 else
3419 oldcost = rtx_cost (force_const_mem (dstmode, y), SET);
3421 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3422 srcmode != orig_srcmode;
3423 srcmode = GET_MODE_WIDER_MODE (srcmode))
3425 enum insn_code ic;
3426 rtx trunc_y, last_insn;
3428 /* Skip if the target can't extend this way. */
3429 ic = can_extend_p (dstmode, srcmode, 0);
3430 if (ic == CODE_FOR_nothing)
3431 continue;
3433 /* Skip if the narrowed value isn't exact. */
3434 if (! exact_real_truncate (srcmode, &r))
3435 continue;
3437 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3439 if (LEGITIMATE_CONSTANT_P (trunc_y))
3441 /* Skip if the target needs extra instructions to perform
3442 the extension. */
3443 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3444 continue;
3445 /* This is valid, but may not be cheaper than the original. */
3446 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3447 if (oldcost < newcost)
3448 continue;
3450 else if (float_extend_from_mem[dstmode][srcmode])
3452 trunc_y = force_const_mem (srcmode, trunc_y);
3453 /* This is valid, but may not be cheaper than the original. */
3454 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3455 if (oldcost < newcost)
3456 continue;
3457 trunc_y = validize_mem (trunc_y);
3459 else
3460 continue;
3462 /* For CSE's benefit, force the compressed constant pool entry
3463 into a new pseudo. This constant may be used in different modes,
3464 and if not, combine will put things back together for us. */
3465 trunc_y = force_reg (srcmode, trunc_y);
3466 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3467 last_insn = get_last_insn ();
3469 if (REG_P (x))
3470 set_unique_reg_note (last_insn, REG_EQUAL, y);
3472 return last_insn;
3475 return NULL_RTX;
3478 /* Pushing data onto the stack. */
3480 /* Push a block of length SIZE (perhaps variable)
3481 and return an rtx to address the beginning of the block.
3482 The value may be virtual_outgoing_args_rtx.
3484 EXTRA is the number of bytes of padding to push in addition to SIZE.
3485 BELOW nonzero means this padding comes at low addresses;
3486 otherwise, the padding comes at high addresses. */
3489 push_block (rtx size, int extra, int below)
3491 rtx temp;
3493 size = convert_modes (Pmode, ptr_mode, size, 1);
3494 if (CONSTANT_P (size))
3495 anti_adjust_stack (plus_constant (size, extra));
3496 else if (REG_P (size) && extra == 0)
3497 anti_adjust_stack (size);
3498 else
3500 temp = copy_to_mode_reg (Pmode, size);
3501 if (extra != 0)
3502 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3503 temp, 0, OPTAB_LIB_WIDEN);
3504 anti_adjust_stack (temp);
3507 #ifndef STACK_GROWS_DOWNWARD
3508 if (0)
3509 #else
3510 if (1)
3511 #endif
3513 temp = virtual_outgoing_args_rtx;
3514 if (extra != 0 && below)
3515 temp = plus_constant (temp, extra);
3517 else
3519 if (GET_CODE (size) == CONST_INT)
3520 temp = plus_constant (virtual_outgoing_args_rtx,
3521 -INTVAL (size) - (below ? 0 : extra));
3522 else if (extra != 0 && !below)
3523 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3524 negate_rtx (Pmode, plus_constant (size, extra)));
3525 else
3526 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3527 negate_rtx (Pmode, size));
3530 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3533 #ifdef PUSH_ROUNDING
3535 /* Emit single push insn. */
3537 static void
3538 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3540 rtx dest_addr;
3541 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3542 rtx dest;
3543 enum insn_code icode;
3544 insn_operand_predicate_fn pred;
3546 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3547 /* If there is push pattern, use it. Otherwise try old way of throwing
3548 MEM representing push operation to move expander. */
3549 icode = optab_handler (push_optab, mode)->insn_code;
3550 if (icode != CODE_FOR_nothing)
3552 if (((pred = insn_data[(int) icode].operand[0].predicate)
3553 && !((*pred) (x, mode))))
3554 x = force_reg (mode, x);
3555 emit_insn (GEN_FCN (icode) (x));
3556 return;
3558 if (GET_MODE_SIZE (mode) == rounded_size)
3559 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3560 /* If we are to pad downward, adjust the stack pointer first and
3561 then store X into the stack location using an offset. This is
3562 because emit_move_insn does not know how to pad; it does not have
3563 access to type. */
3564 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3566 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3567 HOST_WIDE_INT offset;
3569 emit_move_insn (stack_pointer_rtx,
3570 expand_binop (Pmode,
3571 #ifdef STACK_GROWS_DOWNWARD
3572 sub_optab,
3573 #else
3574 add_optab,
3575 #endif
3576 stack_pointer_rtx,
3577 GEN_INT (rounded_size),
3578 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3580 offset = (HOST_WIDE_INT) padding_size;
3581 #ifdef STACK_GROWS_DOWNWARD
3582 if (STACK_PUSH_CODE == POST_DEC)
3583 /* We have already decremented the stack pointer, so get the
3584 previous value. */
3585 offset += (HOST_WIDE_INT) rounded_size;
3586 #else
3587 if (STACK_PUSH_CODE == POST_INC)
3588 /* We have already incremented the stack pointer, so get the
3589 previous value. */
3590 offset -= (HOST_WIDE_INT) rounded_size;
3591 #endif
3592 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3594 else
3596 #ifdef STACK_GROWS_DOWNWARD
3597 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3598 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3599 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3600 #else
3601 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3602 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3603 GEN_INT (rounded_size));
3604 #endif
3605 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3608 dest = gen_rtx_MEM (mode, dest_addr);
3610 if (type != 0)
3612 set_mem_attributes (dest, type, 1);
3614 if (flag_optimize_sibling_calls)
3615 /* Function incoming arguments may overlap with sibling call
3616 outgoing arguments and we cannot allow reordering of reads
3617 from function arguments with stores to outgoing arguments
3618 of sibling calls. */
3619 set_mem_alias_set (dest, 0);
3621 emit_move_insn (dest, x);
3623 #endif
3625 /* Generate code to push X onto the stack, assuming it has mode MODE and
3626 type TYPE.
3627 MODE is redundant except when X is a CONST_INT (since they don't
3628 carry mode info).
3629 SIZE is an rtx for the size of data to be copied (in bytes),
3630 needed only if X is BLKmode.
3632 ALIGN (in bits) is maximum alignment we can assume.
3634 If PARTIAL and REG are both nonzero, then copy that many of the first
3635 bytes of X into registers starting with REG, and push the rest of X.
3636 The amount of space pushed is decreased by PARTIAL bytes.
3637 REG must be a hard register in this case.
3638 If REG is zero but PARTIAL is not, take any all others actions for an
3639 argument partially in registers, but do not actually load any
3640 registers.
3642 EXTRA is the amount in bytes of extra space to leave next to this arg.
3643 This is ignored if an argument block has already been allocated.
3645 On a machine that lacks real push insns, ARGS_ADDR is the address of
3646 the bottom of the argument block for this call. We use indexing off there
3647 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3648 argument block has not been preallocated.
3650 ARGS_SO_FAR is the size of args previously pushed for this call.
3652 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3653 for arguments passed in registers. If nonzero, it will be the number
3654 of bytes required. */
3656 void
3657 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3658 unsigned int align, int partial, rtx reg, int extra,
3659 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3660 rtx alignment_pad)
3662 rtx xinner;
3663 enum direction stack_direction
3664 #ifdef STACK_GROWS_DOWNWARD
3665 = downward;
3666 #else
3667 = upward;
3668 #endif
3670 /* Decide where to pad the argument: `downward' for below,
3671 `upward' for above, or `none' for don't pad it.
3672 Default is below for small data on big-endian machines; else above. */
3673 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3675 /* Invert direction if stack is post-decrement.
3676 FIXME: why? */
3677 if (STACK_PUSH_CODE == POST_DEC)
3678 if (where_pad != none)
3679 where_pad = (where_pad == downward ? upward : downward);
3681 xinner = x;
3683 if (mode == BLKmode
3684 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3686 /* Copy a block into the stack, entirely or partially. */
3688 rtx temp;
3689 int used;
3690 int offset;
3691 int skip;
3693 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3694 used = partial - offset;
3696 if (mode != BLKmode)
3698 /* A value is to be stored in an insufficiently aligned
3699 stack slot; copy via a suitably aligned slot if
3700 necessary. */
3701 size = GEN_INT (GET_MODE_SIZE (mode));
3702 if (!MEM_P (xinner))
3704 temp = assign_temp (type, 0, 1, 1);
3705 emit_move_insn (temp, xinner);
3706 xinner = temp;
3710 gcc_assert (size);
3712 /* USED is now the # of bytes we need not copy to the stack
3713 because registers will take care of them. */
3715 if (partial != 0)
3716 xinner = adjust_address (xinner, BLKmode, used);
3718 /* If the partial register-part of the arg counts in its stack size,
3719 skip the part of stack space corresponding to the registers.
3720 Otherwise, start copying to the beginning of the stack space,
3721 by setting SKIP to 0. */
3722 skip = (reg_parm_stack_space == 0) ? 0 : used;
3724 #ifdef PUSH_ROUNDING
3725 /* Do it with several push insns if that doesn't take lots of insns
3726 and if there is no difficulty with push insns that skip bytes
3727 on the stack for alignment purposes. */
3728 if (args_addr == 0
3729 && PUSH_ARGS
3730 && GET_CODE (size) == CONST_INT
3731 && skip == 0
3732 && MEM_ALIGN (xinner) >= align
3733 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3734 /* Here we avoid the case of a structure whose weak alignment
3735 forces many pushes of a small amount of data,
3736 and such small pushes do rounding that causes trouble. */
3737 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3738 || align >= BIGGEST_ALIGNMENT
3739 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3740 == (align / BITS_PER_UNIT)))
3741 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3743 /* Push padding now if padding above and stack grows down,
3744 or if padding below and stack grows up.
3745 But if space already allocated, this has already been done. */
3746 if (extra && args_addr == 0
3747 && where_pad != none && where_pad != stack_direction)
3748 anti_adjust_stack (GEN_INT (extra));
3750 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3752 else
3753 #endif /* PUSH_ROUNDING */
3755 rtx target;
3757 /* Otherwise make space on the stack and copy the data
3758 to the address of that space. */
3760 /* Deduct words put into registers from the size we must copy. */
3761 if (partial != 0)
3763 if (GET_CODE (size) == CONST_INT)
3764 size = GEN_INT (INTVAL (size) - used);
3765 else
3766 size = expand_binop (GET_MODE (size), sub_optab, size,
3767 GEN_INT (used), NULL_RTX, 0,
3768 OPTAB_LIB_WIDEN);
3771 /* Get the address of the stack space.
3772 In this case, we do not deal with EXTRA separately.
3773 A single stack adjust will do. */
3774 if (! args_addr)
3776 temp = push_block (size, extra, where_pad == downward);
3777 extra = 0;
3779 else if (GET_CODE (args_so_far) == CONST_INT)
3780 temp = memory_address (BLKmode,
3781 plus_constant (args_addr,
3782 skip + INTVAL (args_so_far)));
3783 else
3784 temp = memory_address (BLKmode,
3785 plus_constant (gen_rtx_PLUS (Pmode,
3786 args_addr,
3787 args_so_far),
3788 skip));
3790 if (!ACCUMULATE_OUTGOING_ARGS)
3792 /* If the source is referenced relative to the stack pointer,
3793 copy it to another register to stabilize it. We do not need
3794 to do this if we know that we won't be changing sp. */
3796 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3797 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3798 temp = copy_to_reg (temp);
3801 target = gen_rtx_MEM (BLKmode, temp);
3803 /* We do *not* set_mem_attributes here, because incoming arguments
3804 may overlap with sibling call outgoing arguments and we cannot
3805 allow reordering of reads from function arguments with stores
3806 to outgoing arguments of sibling calls. We do, however, want
3807 to record the alignment of the stack slot. */
3808 /* ALIGN may well be better aligned than TYPE, e.g. due to
3809 PARM_BOUNDARY. Assume the caller isn't lying. */
3810 set_mem_align (target, align);
3812 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3815 else if (partial > 0)
3817 /* Scalar partly in registers. */
3819 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3820 int i;
3821 int not_stack;
3822 /* # bytes of start of argument
3823 that we must make space for but need not store. */
3824 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3825 int args_offset = INTVAL (args_so_far);
3826 int skip;
3828 /* Push padding now if padding above and stack grows down,
3829 or if padding below and stack grows up.
3830 But if space already allocated, this has already been done. */
3831 if (extra && args_addr == 0
3832 && where_pad != none && where_pad != stack_direction)
3833 anti_adjust_stack (GEN_INT (extra));
3835 /* If we make space by pushing it, we might as well push
3836 the real data. Otherwise, we can leave OFFSET nonzero
3837 and leave the space uninitialized. */
3838 if (args_addr == 0)
3839 offset = 0;
3841 /* Now NOT_STACK gets the number of words that we don't need to
3842 allocate on the stack. Convert OFFSET to words too. */
3843 not_stack = (partial - offset) / UNITS_PER_WORD;
3844 offset /= UNITS_PER_WORD;
3846 /* If the partial register-part of the arg counts in its stack size,
3847 skip the part of stack space corresponding to the registers.
3848 Otherwise, start copying to the beginning of the stack space,
3849 by setting SKIP to 0. */
3850 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3852 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3853 x = validize_mem (force_const_mem (mode, x));
3855 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3856 SUBREGs of such registers are not allowed. */
3857 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3858 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3859 x = copy_to_reg (x);
3861 /* Loop over all the words allocated on the stack for this arg. */
3862 /* We can do it by words, because any scalar bigger than a word
3863 has a size a multiple of a word. */
3864 #ifndef PUSH_ARGS_REVERSED
3865 for (i = not_stack; i < size; i++)
3866 #else
3867 for (i = size - 1; i >= not_stack; i--)
3868 #endif
3869 if (i >= not_stack + offset)
3870 emit_push_insn (operand_subword_force (x, i, mode),
3871 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3872 0, args_addr,
3873 GEN_INT (args_offset + ((i - not_stack + skip)
3874 * UNITS_PER_WORD)),
3875 reg_parm_stack_space, alignment_pad);
3877 else
3879 rtx addr;
3880 rtx dest;
3882 /* Push padding now if padding above and stack grows down,
3883 or if padding below and stack grows up.
3884 But if space already allocated, this has already been done. */
3885 if (extra && args_addr == 0
3886 && where_pad != none && where_pad != stack_direction)
3887 anti_adjust_stack (GEN_INT (extra));
3889 #ifdef PUSH_ROUNDING
3890 if (args_addr == 0 && PUSH_ARGS)
3891 emit_single_push_insn (mode, x, type);
3892 else
3893 #endif
3895 if (GET_CODE (args_so_far) == CONST_INT)
3896 addr
3897 = memory_address (mode,
3898 plus_constant (args_addr,
3899 INTVAL (args_so_far)));
3900 else
3901 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3902 args_so_far));
3903 dest = gen_rtx_MEM (mode, addr);
3905 /* We do *not* set_mem_attributes here, because incoming arguments
3906 may overlap with sibling call outgoing arguments and we cannot
3907 allow reordering of reads from function arguments with stores
3908 to outgoing arguments of sibling calls. We do, however, want
3909 to record the alignment of the stack slot. */
3910 /* ALIGN may well be better aligned than TYPE, e.g. due to
3911 PARM_BOUNDARY. Assume the caller isn't lying. */
3912 set_mem_align (dest, align);
3914 emit_move_insn (dest, x);
3918 /* If part should go in registers, copy that part
3919 into the appropriate registers. Do this now, at the end,
3920 since mem-to-mem copies above may do function calls. */
3921 if (partial > 0 && reg != 0)
3923 /* Handle calls that pass values in multiple non-contiguous locations.
3924 The Irix 6 ABI has examples of this. */
3925 if (GET_CODE (reg) == PARALLEL)
3926 emit_group_load (reg, x, type, -1);
3927 else
3929 gcc_assert (partial % UNITS_PER_WORD == 0);
3930 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3934 if (extra && args_addr == 0 && where_pad == stack_direction)
3935 anti_adjust_stack (GEN_INT (extra));
3937 if (alignment_pad && args_addr == 0)
3938 anti_adjust_stack (alignment_pad);
3941 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3942 operations. */
3944 static rtx
3945 get_subtarget (rtx x)
3947 return (optimize
3948 || x == 0
3949 /* Only registers can be subtargets. */
3950 || !REG_P (x)
3951 /* Don't use hard regs to avoid extending their life. */
3952 || REGNO (x) < FIRST_PSEUDO_REGISTER
3953 ? 0 : x);
3956 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3957 FIELD is a bitfield. Returns true if the optimization was successful,
3958 and there's nothing else to do. */
3960 static bool
3961 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3962 unsigned HOST_WIDE_INT bitpos,
3963 enum machine_mode mode1, rtx str_rtx,
3964 tree to, tree src)
3966 enum machine_mode str_mode = GET_MODE (str_rtx);
3967 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
3968 tree op0, op1;
3969 rtx value, result;
3970 optab binop;
3972 if (mode1 != VOIDmode
3973 || bitsize >= BITS_PER_WORD
3974 || str_bitsize > BITS_PER_WORD
3975 || TREE_SIDE_EFFECTS (to)
3976 || TREE_THIS_VOLATILE (to))
3977 return false;
3979 STRIP_NOPS (src);
3980 if (!BINARY_CLASS_P (src)
3981 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
3982 return false;
3984 op0 = TREE_OPERAND (src, 0);
3985 op1 = TREE_OPERAND (src, 1);
3986 STRIP_NOPS (op0);
3988 if (!operand_equal_p (to, op0, 0))
3989 return false;
3991 if (MEM_P (str_rtx))
3993 unsigned HOST_WIDE_INT offset1;
3995 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
3996 str_mode = word_mode;
3997 str_mode = get_best_mode (bitsize, bitpos,
3998 MEM_ALIGN (str_rtx), str_mode, 0);
3999 if (str_mode == VOIDmode)
4000 return false;
4001 str_bitsize = GET_MODE_BITSIZE (str_mode);
4003 offset1 = bitpos;
4004 bitpos %= str_bitsize;
4005 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4006 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4008 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4009 return false;
4011 /* If the bit field covers the whole REG/MEM, store_field
4012 will likely generate better code. */
4013 if (bitsize >= str_bitsize)
4014 return false;
4016 /* We can't handle fields split across multiple entities. */
4017 if (bitpos + bitsize > str_bitsize)
4018 return false;
4020 if (BYTES_BIG_ENDIAN)
4021 bitpos = str_bitsize - bitpos - bitsize;
4023 switch (TREE_CODE (src))
4025 case PLUS_EXPR:
4026 case MINUS_EXPR:
4027 /* For now, just optimize the case of the topmost bitfield
4028 where we don't need to do any masking and also
4029 1 bit bitfields where xor can be used.
4030 We might win by one instruction for the other bitfields
4031 too if insv/extv instructions aren't used, so that
4032 can be added later. */
4033 if (bitpos + bitsize != str_bitsize
4034 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4035 break;
4037 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4038 value = convert_modes (str_mode,
4039 TYPE_MODE (TREE_TYPE (op1)), value,
4040 TYPE_UNSIGNED (TREE_TYPE (op1)));
4042 /* We may be accessing data outside the field, which means
4043 we can alias adjacent data. */
4044 if (MEM_P (str_rtx))
4046 str_rtx = shallow_copy_rtx (str_rtx);
4047 set_mem_alias_set (str_rtx, 0);
4048 set_mem_expr (str_rtx, 0);
4051 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4052 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4054 value = expand_and (str_mode, value, const1_rtx, NULL);
4055 binop = xor_optab;
4057 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4058 build_int_cst (NULL_TREE, bitpos),
4059 NULL_RTX, 1);
4060 result = expand_binop (str_mode, binop, str_rtx,
4061 value, str_rtx, 1, OPTAB_WIDEN);
4062 if (result != str_rtx)
4063 emit_move_insn (str_rtx, result);
4064 return true;
4066 case BIT_IOR_EXPR:
4067 case BIT_XOR_EXPR:
4068 if (TREE_CODE (op1) != INTEGER_CST)
4069 break;
4070 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4071 value = convert_modes (GET_MODE (str_rtx),
4072 TYPE_MODE (TREE_TYPE (op1)), value,
4073 TYPE_UNSIGNED (TREE_TYPE (op1)));
4075 /* We may be accessing data outside the field, which means
4076 we can alias adjacent data. */
4077 if (MEM_P (str_rtx))
4079 str_rtx = shallow_copy_rtx (str_rtx);
4080 set_mem_alias_set (str_rtx, 0);
4081 set_mem_expr (str_rtx, 0);
4084 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4085 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4087 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4088 - 1);
4089 value = expand_and (GET_MODE (str_rtx), value, mask,
4090 NULL_RTX);
4092 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4093 build_int_cst (NULL_TREE, bitpos),
4094 NULL_RTX, 1);
4095 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4096 value, str_rtx, 1, OPTAB_WIDEN);
4097 if (result != str_rtx)
4098 emit_move_insn (str_rtx, result);
4099 return true;
4101 default:
4102 break;
4105 return false;
4109 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4110 is true, try generating a nontemporal store. */
4112 void
4113 expand_assignment (tree to, tree from, bool nontemporal)
4115 rtx to_rtx = 0;
4116 rtx result;
4118 /* Don't crash if the lhs of the assignment was erroneous. */
4119 if (TREE_CODE (to) == ERROR_MARK)
4121 result = expand_normal (from);
4122 return;
4125 /* Optimize away no-op moves without side-effects. */
4126 if (operand_equal_p (to, from, 0))
4127 return;
4129 /* Assignment of a structure component needs special treatment
4130 if the structure component's rtx is not simply a MEM.
4131 Assignment of an array element at a constant index, and assignment of
4132 an array element in an unaligned packed structure field, has the same
4133 problem. */
4134 if (handled_component_p (to)
4135 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4137 enum machine_mode mode1;
4138 HOST_WIDE_INT bitsize, bitpos;
4139 tree offset;
4140 int unsignedp;
4141 int volatilep = 0;
4142 tree tem;
4144 push_temp_slots ();
4145 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4146 &unsignedp, &volatilep, true);
4148 /* If we are going to use store_bit_field and extract_bit_field,
4149 make sure to_rtx will be safe for multiple use. */
4151 to_rtx = expand_normal (tem);
4153 if (offset != 0)
4155 rtx offset_rtx;
4157 if (!MEM_P (to_rtx))
4159 /* We can get constant negative offsets into arrays with broken
4160 user code. Translate this to a trap instead of ICEing. */
4161 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4162 expand_builtin_trap ();
4163 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4166 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4167 #ifdef POINTERS_EXTEND_UNSIGNED
4168 if (GET_MODE (offset_rtx) != Pmode)
4169 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4170 #else
4171 if (GET_MODE (offset_rtx) != ptr_mode)
4172 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4173 #endif
4175 /* A constant address in TO_RTX can have VOIDmode, we must not try
4176 to call force_reg for that case. Avoid that case. */
4177 if (MEM_P (to_rtx)
4178 && GET_MODE (to_rtx) == BLKmode
4179 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4180 && bitsize > 0
4181 && (bitpos % bitsize) == 0
4182 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4183 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4185 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4186 bitpos = 0;
4189 to_rtx = offset_address (to_rtx, offset_rtx,
4190 highest_pow2_factor_for_target (to,
4191 offset));
4194 /* Handle expand_expr of a complex value returning a CONCAT. */
4195 if (GET_CODE (to_rtx) == CONCAT)
4197 if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
4199 gcc_assert (bitpos == 0);
4200 result = store_expr (from, to_rtx, false, nontemporal);
4202 else
4204 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4205 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4206 nontemporal);
4209 else
4211 if (MEM_P (to_rtx))
4213 /* If the field is at offset zero, we could have been given the
4214 DECL_RTX of the parent struct. Don't munge it. */
4215 to_rtx = shallow_copy_rtx (to_rtx);
4217 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4219 /* Deal with volatile and readonly fields. The former is only
4220 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4221 if (volatilep)
4222 MEM_VOLATILE_P (to_rtx) = 1;
4223 if (component_uses_parent_alias_set (to))
4224 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4227 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4228 to_rtx, to, from))
4229 result = NULL;
4230 else
4231 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4232 TREE_TYPE (tem), get_alias_set (to),
4233 nontemporal);
4236 if (result)
4237 preserve_temp_slots (result);
4238 free_temp_slots ();
4239 pop_temp_slots ();
4240 return;
4243 /* If the rhs is a function call and its value is not an aggregate,
4244 call the function before we start to compute the lhs.
4245 This is needed for correct code for cases such as
4246 val = setjmp (buf) on machines where reference to val
4247 requires loading up part of an address in a separate insn.
4249 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4250 since it might be a promoted variable where the zero- or sign- extension
4251 needs to be done. Handling this in the normal way is safe because no
4252 computation is done before the call. */
4253 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4254 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4255 && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4256 && REG_P (DECL_RTL (to))))
4258 rtx value;
4260 push_temp_slots ();
4261 value = expand_normal (from);
4262 if (to_rtx == 0)
4263 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4265 /* Handle calls that return values in multiple non-contiguous locations.
4266 The Irix 6 ABI has examples of this. */
4267 if (GET_CODE (to_rtx) == PARALLEL)
4268 emit_group_load (to_rtx, value, TREE_TYPE (from),
4269 int_size_in_bytes (TREE_TYPE (from)));
4270 else if (GET_MODE (to_rtx) == BLKmode)
4271 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4272 else
4274 if (POINTER_TYPE_P (TREE_TYPE (to)))
4275 value = convert_memory_address (GET_MODE (to_rtx), value);
4276 emit_move_insn (to_rtx, value);
4278 preserve_temp_slots (to_rtx);
4279 free_temp_slots ();
4280 pop_temp_slots ();
4281 return;
4284 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4285 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4287 if (to_rtx == 0)
4288 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4290 /* Don't move directly into a return register. */
4291 if (TREE_CODE (to) == RESULT_DECL
4292 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4294 rtx temp;
4296 push_temp_slots ();
4297 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4299 if (GET_CODE (to_rtx) == PARALLEL)
4300 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4301 int_size_in_bytes (TREE_TYPE (from)));
4302 else
4303 emit_move_insn (to_rtx, temp);
4305 preserve_temp_slots (to_rtx);
4306 free_temp_slots ();
4307 pop_temp_slots ();
4308 return;
4311 /* In case we are returning the contents of an object which overlaps
4312 the place the value is being stored, use a safe function when copying
4313 a value through a pointer into a structure value return block. */
4314 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
4315 && current_function_returns_struct
4316 && !current_function_returns_pcc_struct)
4318 rtx from_rtx, size;
4320 push_temp_slots ();
4321 size = expr_size (from);
4322 from_rtx = expand_normal (from);
4324 emit_library_call (memmove_libfunc, LCT_NORMAL,
4325 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4326 XEXP (from_rtx, 0), Pmode,
4327 convert_to_mode (TYPE_MODE (sizetype),
4328 size, TYPE_UNSIGNED (sizetype)),
4329 TYPE_MODE (sizetype));
4331 preserve_temp_slots (to_rtx);
4332 free_temp_slots ();
4333 pop_temp_slots ();
4334 return;
4337 /* Compute FROM and store the value in the rtx we got. */
4339 push_temp_slots ();
4340 result = store_expr (from, to_rtx, 0, nontemporal);
4341 preserve_temp_slots (result);
4342 free_temp_slots ();
4343 pop_temp_slots ();
4344 return;
4347 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4348 succeeded, false otherwise. */
4350 static bool
4351 emit_storent_insn (rtx to, rtx from)
4353 enum machine_mode mode = GET_MODE (to), imode;
4354 enum insn_code code = optab_handler (storent_optab, mode)->insn_code;
4355 rtx pattern;
4357 if (code == CODE_FOR_nothing)
4358 return false;
4360 imode = insn_data[code].operand[0].mode;
4361 if (!insn_data[code].operand[0].predicate (to, imode))
4362 return false;
4364 imode = insn_data[code].operand[1].mode;
4365 if (!insn_data[code].operand[1].predicate (from, imode))
4367 from = copy_to_mode_reg (imode, from);
4368 if (!insn_data[code].operand[1].predicate (from, imode))
4369 return false;
4372 pattern = GEN_FCN (code) (to, from);
4373 if (pattern == NULL_RTX)
4374 return false;
4376 emit_insn (pattern);
4377 return true;
4380 /* Generate code for computing expression EXP,
4381 and storing the value into TARGET.
4383 If the mode is BLKmode then we may return TARGET itself.
4384 It turns out that in BLKmode it doesn't cause a problem.
4385 because C has no operators that could combine two different
4386 assignments into the same BLKmode object with different values
4387 with no sequence point. Will other languages need this to
4388 be more thorough?
4390 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4391 stack, and block moves may need to be treated specially.
4393 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4396 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4398 rtx temp;
4399 rtx alt_rtl = NULL_RTX;
4400 int dont_return_target = 0;
4402 if (VOID_TYPE_P (TREE_TYPE (exp)))
4404 /* C++ can generate ?: expressions with a throw expression in one
4405 branch and an rvalue in the other. Here, we resolve attempts to
4406 store the throw expression's nonexistent result. */
4407 gcc_assert (!call_param_p);
4408 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4409 return NULL_RTX;
4411 if (TREE_CODE (exp) == COMPOUND_EXPR)
4413 /* Perform first part of compound expression, then assign from second
4414 part. */
4415 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4416 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4417 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4418 nontemporal);
4420 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4422 /* For conditional expression, get safe form of the target. Then
4423 test the condition, doing the appropriate assignment on either
4424 side. This avoids the creation of unnecessary temporaries.
4425 For non-BLKmode, it is more efficient not to do this. */
4427 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4429 do_pending_stack_adjust ();
4430 NO_DEFER_POP;
4431 jumpifnot (TREE_OPERAND (exp, 0), lab1);
4432 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4433 nontemporal);
4434 emit_jump_insn (gen_jump (lab2));
4435 emit_barrier ();
4436 emit_label (lab1);
4437 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4438 nontemporal);
4439 emit_label (lab2);
4440 OK_DEFER_POP;
4442 return NULL_RTX;
4444 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4445 /* If this is a scalar in a register that is stored in a wider mode
4446 than the declared mode, compute the result into its declared mode
4447 and then convert to the wider mode. Our value is the computed
4448 expression. */
4450 rtx inner_target = 0;
4452 /* We can do the conversion inside EXP, which will often result
4453 in some optimizations. Do the conversion in two steps: first
4454 change the signedness, if needed, then the extend. But don't
4455 do this if the type of EXP is a subtype of something else
4456 since then the conversion might involve more than just
4457 converting modes. */
4458 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4459 && TREE_TYPE (TREE_TYPE (exp)) == 0
4460 && (!lang_hooks.reduce_bit_field_operations
4461 || (GET_MODE_PRECISION (GET_MODE (target))
4462 == TYPE_PRECISION (TREE_TYPE (exp)))))
4464 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4465 != SUBREG_PROMOTED_UNSIGNED_P (target))
4467 /* Some types, e.g. Fortran's logical*4, won't have a signed
4468 version, so use the mode instead. */
4469 tree ntype
4470 = (signed_or_unsigned_type_for
4471 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4472 if (ntype == NULL)
4473 ntype = lang_hooks.types.type_for_mode
4474 (TYPE_MODE (TREE_TYPE (exp)),
4475 SUBREG_PROMOTED_UNSIGNED_P (target));
4477 exp = fold_convert (ntype, exp);
4480 exp = fold_convert (lang_hooks.types.type_for_mode
4481 (GET_MODE (SUBREG_REG (target)),
4482 SUBREG_PROMOTED_UNSIGNED_P (target)),
4483 exp);
4485 inner_target = SUBREG_REG (target);
4488 temp = expand_expr (exp, inner_target, VOIDmode,
4489 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4491 /* If TEMP is a VOIDmode constant, use convert_modes to make
4492 sure that we properly convert it. */
4493 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4495 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4496 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4497 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4498 GET_MODE (target), temp,
4499 SUBREG_PROMOTED_UNSIGNED_P (target));
4502 convert_move (SUBREG_REG (target), temp,
4503 SUBREG_PROMOTED_UNSIGNED_P (target));
4505 return NULL_RTX;
4507 else if (TREE_CODE (exp) == STRING_CST
4508 && !nontemporal && !call_param_p
4509 && TREE_STRING_LENGTH (exp) > 0
4510 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4512 /* Optimize initialization of an array with a STRING_CST. */
4513 HOST_WIDE_INT exp_len, str_copy_len;
4514 rtx dest_mem;
4516 exp_len = int_expr_size (exp);
4517 if (exp_len <= 0)
4518 goto normal_expr;
4520 str_copy_len = strlen (TREE_STRING_POINTER (exp));
4521 if (str_copy_len < TREE_STRING_LENGTH (exp) - 1)
4522 goto normal_expr;
4524 str_copy_len = TREE_STRING_LENGTH (exp);
4525 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4527 str_copy_len += STORE_MAX_PIECES - 1;
4528 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4530 str_copy_len = MIN (str_copy_len, exp_len);
4531 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4532 (void *) TREE_STRING_POINTER (exp),
4533 MEM_ALIGN (target), false))
4534 goto normal_expr;
4536 dest_mem = target;
4538 dest_mem = store_by_pieces (dest_mem,
4539 str_copy_len, builtin_strncpy_read_str,
4540 (void *) TREE_STRING_POINTER (exp),
4541 MEM_ALIGN (target), false,
4542 exp_len > str_copy_len ? 1 : 0);
4543 if (exp_len > str_copy_len)
4544 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4545 GEN_INT (exp_len - str_copy_len),
4546 BLOCK_OP_NORMAL);
4547 return NULL_RTX;
4549 else
4551 rtx tmp_target;
4553 normal_expr:
4554 /* If we want to use a nontemporal store, force the value to
4555 register first. */
4556 tmp_target = nontemporal ? NULL_RTX : target;
4557 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4558 (call_param_p
4559 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4560 &alt_rtl);
4561 /* Return TARGET if it's a specified hardware register.
4562 If TARGET is a volatile mem ref, either return TARGET
4563 or return a reg copied *from* TARGET; ANSI requires this.
4565 Otherwise, if TEMP is not TARGET, return TEMP
4566 if it is constant (for efficiency),
4567 or if we really want the correct value. */
4568 if (!(target && REG_P (target)
4569 && REGNO (target) < FIRST_PSEUDO_REGISTER)
4570 && !(MEM_P (target) && MEM_VOLATILE_P (target))
4571 && ! rtx_equal_p (temp, target)
4572 && CONSTANT_P (temp))
4573 dont_return_target = 1;
4576 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4577 the same as that of TARGET, adjust the constant. This is needed, for
4578 example, in case it is a CONST_DOUBLE and we want only a word-sized
4579 value. */
4580 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4581 && TREE_CODE (exp) != ERROR_MARK
4582 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4583 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4584 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4586 /* If value was not generated in the target, store it there.
4587 Convert the value to TARGET's type first if necessary and emit the
4588 pending incrementations that have been queued when expanding EXP.
4589 Note that we cannot emit the whole queue blindly because this will
4590 effectively disable the POST_INC optimization later.
4592 If TEMP and TARGET compare equal according to rtx_equal_p, but
4593 one or both of them are volatile memory refs, we have to distinguish
4594 two cases:
4595 - expand_expr has used TARGET. In this case, we must not generate
4596 another copy. This can be detected by TARGET being equal according
4597 to == .
4598 - expand_expr has not used TARGET - that means that the source just
4599 happens to have the same RTX form. Since temp will have been created
4600 by expand_expr, it will compare unequal according to == .
4601 We must generate a copy in this case, to reach the correct number
4602 of volatile memory references. */
4604 if ((! rtx_equal_p (temp, target)
4605 || (temp != target && (side_effects_p (temp)
4606 || side_effects_p (target))))
4607 && TREE_CODE (exp) != ERROR_MARK
4608 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4609 but TARGET is not valid memory reference, TEMP will differ
4610 from TARGET although it is really the same location. */
4611 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4612 /* If there's nothing to copy, don't bother. Don't call
4613 expr_size unless necessary, because some front-ends (C++)
4614 expr_size-hook must not be given objects that are not
4615 supposed to be bit-copied or bit-initialized. */
4616 && expr_size (exp) != const0_rtx)
4618 if (GET_MODE (temp) != GET_MODE (target)
4619 && GET_MODE (temp) != VOIDmode)
4621 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4622 if (dont_return_target)
4624 /* In this case, we will return TEMP,
4625 so make sure it has the proper mode.
4626 But don't forget to store the value into TARGET. */
4627 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4628 emit_move_insn (target, temp);
4630 else if (GET_MODE (target) == BLKmode)
4631 emit_block_move (target, temp, expr_size (exp),
4632 (call_param_p
4633 ? BLOCK_OP_CALL_PARM
4634 : BLOCK_OP_NORMAL));
4635 else
4636 convert_move (target, temp, unsignedp);
4639 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4641 /* Handle copying a string constant into an array. The string
4642 constant may be shorter than the array. So copy just the string's
4643 actual length, and clear the rest. First get the size of the data
4644 type of the string, which is actually the size of the target. */
4645 rtx size = expr_size (exp);
4647 if (GET_CODE (size) == CONST_INT
4648 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4649 emit_block_move (target, temp, size,
4650 (call_param_p
4651 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4652 else
4654 /* Compute the size of the data to copy from the string. */
4655 tree copy_size
4656 = size_binop (MIN_EXPR,
4657 make_tree (sizetype, size),
4658 size_int (TREE_STRING_LENGTH (exp)));
4659 rtx copy_size_rtx
4660 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4661 (call_param_p
4662 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4663 rtx label = 0;
4665 /* Copy that much. */
4666 copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
4667 TYPE_UNSIGNED (sizetype));
4668 emit_block_move (target, temp, copy_size_rtx,
4669 (call_param_p
4670 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4672 /* Figure out how much is left in TARGET that we have to clear.
4673 Do all calculations in ptr_mode. */
4674 if (GET_CODE (copy_size_rtx) == CONST_INT)
4676 size = plus_constant (size, -INTVAL (copy_size_rtx));
4677 target = adjust_address (target, BLKmode,
4678 INTVAL (copy_size_rtx));
4680 else
4682 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4683 copy_size_rtx, NULL_RTX, 0,
4684 OPTAB_LIB_WIDEN);
4686 #ifdef POINTERS_EXTEND_UNSIGNED
4687 if (GET_MODE (copy_size_rtx) != Pmode)
4688 copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
4689 TYPE_UNSIGNED (sizetype));
4690 #endif
4692 target = offset_address (target, copy_size_rtx,
4693 highest_pow2_factor (copy_size));
4694 label = gen_label_rtx ();
4695 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4696 GET_MODE (size), 0, label);
4699 if (size != const0_rtx)
4700 clear_storage (target, size, BLOCK_OP_NORMAL);
4702 if (label)
4703 emit_label (label);
4706 /* Handle calls that return values in multiple non-contiguous locations.
4707 The Irix 6 ABI has examples of this. */
4708 else if (GET_CODE (target) == PARALLEL)
4709 emit_group_load (target, temp, TREE_TYPE (exp),
4710 int_size_in_bytes (TREE_TYPE (exp)));
4711 else if (GET_MODE (temp) == BLKmode)
4712 emit_block_move (target, temp, expr_size (exp),
4713 (call_param_p
4714 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4715 else if (nontemporal
4716 && emit_storent_insn (target, temp))
4717 /* If we managed to emit a nontemporal store, there is nothing else to
4718 do. */
4720 else
4722 temp = force_operand (temp, target);
4723 if (temp != target)
4724 emit_move_insn (target, temp);
4728 return NULL_RTX;
4731 /* Helper for categorize_ctor_elements. Identical interface. */
4733 static bool
4734 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4735 HOST_WIDE_INT *p_elt_count,
4736 bool *p_must_clear)
4738 unsigned HOST_WIDE_INT idx;
4739 HOST_WIDE_INT nz_elts, elt_count;
4740 tree value, purpose;
4742 /* Whether CTOR is a valid constant initializer, in accordance with what
4743 initializer_constant_valid_p does. If inferred from the constructor
4744 elements, true until proven otherwise. */
4745 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4746 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4748 nz_elts = 0;
4749 elt_count = 0;
4751 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4753 HOST_WIDE_INT mult;
4755 mult = 1;
4756 if (TREE_CODE (purpose) == RANGE_EXPR)
4758 tree lo_index = TREE_OPERAND (purpose, 0);
4759 tree hi_index = TREE_OPERAND (purpose, 1);
4761 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4762 mult = (tree_low_cst (hi_index, 1)
4763 - tree_low_cst (lo_index, 1) + 1);
4766 switch (TREE_CODE (value))
4768 case CONSTRUCTOR:
4770 HOST_WIDE_INT nz = 0, ic = 0;
4772 bool const_elt_p
4773 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4775 nz_elts += mult * nz;
4776 elt_count += mult * ic;
4778 if (const_from_elts_p && const_p)
4779 const_p = const_elt_p;
4781 break;
4783 case INTEGER_CST:
4784 case REAL_CST:
4785 case FIXED_CST:
4786 if (!initializer_zerop (value))
4787 nz_elts += mult;
4788 elt_count += mult;
4789 break;
4791 case STRING_CST:
4792 nz_elts += mult * TREE_STRING_LENGTH (value);
4793 elt_count += mult * TREE_STRING_LENGTH (value);
4794 break;
4796 case COMPLEX_CST:
4797 if (!initializer_zerop (TREE_REALPART (value)))
4798 nz_elts += mult;
4799 if (!initializer_zerop (TREE_IMAGPART (value)))
4800 nz_elts += mult;
4801 elt_count += mult;
4802 break;
4804 case VECTOR_CST:
4806 tree v;
4807 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4809 if (!initializer_zerop (TREE_VALUE (v)))
4810 nz_elts += mult;
4811 elt_count += mult;
4814 break;
4816 default:
4817 nz_elts += mult;
4818 elt_count += mult;
4820 if (const_from_elts_p && const_p)
4821 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4822 != NULL_TREE;
4823 break;
4827 if (!*p_must_clear
4828 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4829 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4831 tree init_sub_type;
4832 bool clear_this = true;
4834 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4836 /* We don't expect more than one element of the union to be
4837 initialized. Not sure what we should do otherwise... */
4838 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4839 == 1);
4841 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4842 CONSTRUCTOR_ELTS (ctor),
4843 0)->value);
4845 /* ??? We could look at each element of the union, and find the
4846 largest element. Which would avoid comparing the size of the
4847 initialized element against any tail padding in the union.
4848 Doesn't seem worth the effort... */
4849 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4850 TYPE_SIZE (init_sub_type)) == 1)
4852 /* And now we have to find out if the element itself is fully
4853 constructed. E.g. for union { struct { int a, b; } s; } u
4854 = { .s = { .a = 1 } }. */
4855 if (elt_count == count_type_elements (init_sub_type, false))
4856 clear_this = false;
4860 *p_must_clear = clear_this;
4863 *p_nz_elts += nz_elts;
4864 *p_elt_count += elt_count;
4866 return const_p;
4869 /* Examine CTOR to discover:
4870 * how many scalar fields are set to nonzero values,
4871 and place it in *P_NZ_ELTS;
4872 * how many scalar fields in total are in CTOR,
4873 and place it in *P_ELT_COUNT.
4874 * if a type is a union, and the initializer from the constructor
4875 is not the largest element in the union, then set *p_must_clear.
4877 Return whether or not CTOR is a valid static constant initializer, the same
4878 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4880 bool
4881 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4882 HOST_WIDE_INT *p_elt_count,
4883 bool *p_must_clear)
4885 *p_nz_elts = 0;
4886 *p_elt_count = 0;
4887 *p_must_clear = false;
4889 return
4890 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
4893 /* Count the number of scalars in TYPE. Return -1 on overflow or
4894 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4895 array member at the end of the structure. */
4897 HOST_WIDE_INT
4898 count_type_elements (const_tree type, bool allow_flexarr)
4900 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4901 switch (TREE_CODE (type))
4903 case ARRAY_TYPE:
4905 tree telts = array_type_nelts (type);
4906 if (telts && host_integerp (telts, 1))
4908 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4909 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
4910 if (n == 0)
4911 return 0;
4912 else if (max / n > m)
4913 return n * m;
4915 return -1;
4918 case RECORD_TYPE:
4920 HOST_WIDE_INT n = 0, t;
4921 tree f;
4923 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
4924 if (TREE_CODE (f) == FIELD_DECL)
4926 t = count_type_elements (TREE_TYPE (f), false);
4927 if (t < 0)
4929 /* Check for structures with flexible array member. */
4930 tree tf = TREE_TYPE (f);
4931 if (allow_flexarr
4932 && TREE_CHAIN (f) == NULL
4933 && TREE_CODE (tf) == ARRAY_TYPE
4934 && TYPE_DOMAIN (tf)
4935 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
4936 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
4937 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
4938 && int_size_in_bytes (type) >= 0)
4939 break;
4941 return -1;
4943 n += t;
4946 return n;
4949 case UNION_TYPE:
4950 case QUAL_UNION_TYPE:
4952 /* Ho hum. How in the world do we guess here? Clearly it isn't
4953 right to count the fields. Guess based on the number of words. */
4954 HOST_WIDE_INT n = int_size_in_bytes (type);
4955 if (n < 0)
4956 return -1;
4957 return n / UNITS_PER_WORD;
4960 case COMPLEX_TYPE:
4961 return 2;
4963 case VECTOR_TYPE:
4964 return TYPE_VECTOR_SUBPARTS (type);
4966 case INTEGER_TYPE:
4967 case REAL_TYPE:
4968 case FIXED_POINT_TYPE:
4969 case ENUMERAL_TYPE:
4970 case BOOLEAN_TYPE:
4971 case POINTER_TYPE:
4972 case OFFSET_TYPE:
4973 case REFERENCE_TYPE:
4974 return 1;
4976 case VOID_TYPE:
4977 case METHOD_TYPE:
4978 case FUNCTION_TYPE:
4979 case LANG_TYPE:
4980 default:
4981 gcc_unreachable ();
4985 /* Return 1 if EXP contains mostly (3/4) zeros. */
4987 static int
4988 mostly_zeros_p (const_tree exp)
4990 if (TREE_CODE (exp) == CONSTRUCTOR)
4993 HOST_WIDE_INT nz_elts, count, elts;
4994 bool must_clear;
4996 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
4997 if (must_clear)
4998 return 1;
5000 elts = count_type_elements (TREE_TYPE (exp), false);
5002 return nz_elts < elts / 4;
5005 return initializer_zerop (exp);
5008 /* Return 1 if EXP contains all zeros. */
5010 static int
5011 all_zeros_p (const_tree exp)
5013 if (TREE_CODE (exp) == CONSTRUCTOR)
5016 HOST_WIDE_INT nz_elts, count;
5017 bool must_clear;
5019 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5020 return nz_elts == 0;
5023 return initializer_zerop (exp);
5026 /* Helper function for store_constructor.
5027 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5028 TYPE is the type of the CONSTRUCTOR, not the element type.
5029 CLEARED is as for store_constructor.
5030 ALIAS_SET is the alias set to use for any stores.
5032 This provides a recursive shortcut back to store_constructor when it isn't
5033 necessary to go through store_field. This is so that we can pass through
5034 the cleared field to let store_constructor know that we may not have to
5035 clear a substructure if the outer structure has already been cleared. */
5037 static void
5038 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5039 HOST_WIDE_INT bitpos, enum machine_mode mode,
5040 tree exp, tree type, int cleared,
5041 alias_set_type alias_set)
5043 if (TREE_CODE (exp) == CONSTRUCTOR
5044 /* We can only call store_constructor recursively if the size and
5045 bit position are on a byte boundary. */
5046 && bitpos % BITS_PER_UNIT == 0
5047 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5048 /* If we have a nonzero bitpos for a register target, then we just
5049 let store_field do the bitfield handling. This is unlikely to
5050 generate unnecessary clear instructions anyways. */
5051 && (bitpos == 0 || MEM_P (target)))
5053 if (MEM_P (target))
5054 target
5055 = adjust_address (target,
5056 GET_MODE (target) == BLKmode
5057 || 0 != (bitpos
5058 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5059 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5062 /* Update the alias set, if required. */
5063 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5064 && MEM_ALIAS_SET (target) != 0)
5066 target = copy_rtx (target);
5067 set_mem_alias_set (target, alias_set);
5070 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5072 else
5073 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5076 /* Store the value of constructor EXP into the rtx TARGET.
5077 TARGET is either a REG or a MEM; we know it cannot conflict, since
5078 safe_from_p has been called.
5079 CLEARED is true if TARGET is known to have been zero'd.
5080 SIZE is the number of bytes of TARGET we are allowed to modify: this
5081 may not be the same as the size of EXP if we are assigning to a field
5082 which has been packed to exclude padding bits. */
5084 static void
5085 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5087 tree type = TREE_TYPE (exp);
5088 #ifdef WORD_REGISTER_OPERATIONS
5089 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5090 #endif
5092 switch (TREE_CODE (type))
5094 case RECORD_TYPE:
5095 case UNION_TYPE:
5096 case QUAL_UNION_TYPE:
5098 unsigned HOST_WIDE_INT idx;
5099 tree field, value;
5101 /* If size is zero or the target is already cleared, do nothing. */
5102 if (size == 0 || cleared)
5103 cleared = 1;
5104 /* We either clear the aggregate or indicate the value is dead. */
5105 else if ((TREE_CODE (type) == UNION_TYPE
5106 || TREE_CODE (type) == QUAL_UNION_TYPE)
5107 && ! CONSTRUCTOR_ELTS (exp))
5108 /* If the constructor is empty, clear the union. */
5110 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5111 cleared = 1;
5114 /* If we are building a static constructor into a register,
5115 set the initial value as zero so we can fold the value into
5116 a constant. But if more than one register is involved,
5117 this probably loses. */
5118 else if (REG_P (target) && TREE_STATIC (exp)
5119 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5121 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5122 cleared = 1;
5125 /* If the constructor has fewer fields than the structure or
5126 if we are initializing the structure to mostly zeros, clear
5127 the whole structure first. Don't do this if TARGET is a
5128 register whose mode size isn't equal to SIZE since
5129 clear_storage can't handle this case. */
5130 else if (size > 0
5131 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5132 != fields_length (type))
5133 || mostly_zeros_p (exp))
5134 && (!REG_P (target)
5135 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5136 == size)))
5138 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5139 cleared = 1;
5142 if (REG_P (target) && !cleared)
5143 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
5145 /* Store each element of the constructor into the
5146 corresponding field of TARGET. */
5147 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5149 enum machine_mode mode;
5150 HOST_WIDE_INT bitsize;
5151 HOST_WIDE_INT bitpos = 0;
5152 tree offset;
5153 rtx to_rtx = target;
5155 /* Just ignore missing fields. We cleared the whole
5156 structure, above, if any fields are missing. */
5157 if (field == 0)
5158 continue;
5160 if (cleared && initializer_zerop (value))
5161 continue;
5163 if (host_integerp (DECL_SIZE (field), 1))
5164 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5165 else
5166 bitsize = -1;
5168 mode = DECL_MODE (field);
5169 if (DECL_BIT_FIELD (field))
5170 mode = VOIDmode;
5172 offset = DECL_FIELD_OFFSET (field);
5173 if (host_integerp (offset, 0)
5174 && host_integerp (bit_position (field), 0))
5176 bitpos = int_bit_position (field);
5177 offset = 0;
5179 else
5180 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5182 if (offset)
5184 rtx offset_rtx;
5186 offset
5187 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5188 make_tree (TREE_TYPE (exp),
5189 target));
5191 offset_rtx = expand_normal (offset);
5192 gcc_assert (MEM_P (to_rtx));
5194 #ifdef POINTERS_EXTEND_UNSIGNED
5195 if (GET_MODE (offset_rtx) != Pmode)
5196 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
5197 #else
5198 if (GET_MODE (offset_rtx) != ptr_mode)
5199 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
5200 #endif
5202 to_rtx = offset_address (to_rtx, offset_rtx,
5203 highest_pow2_factor (offset));
5206 #ifdef WORD_REGISTER_OPERATIONS
5207 /* If this initializes a field that is smaller than a
5208 word, at the start of a word, try to widen it to a full
5209 word. This special case allows us to output C++ member
5210 function initializations in a form that the optimizers
5211 can understand. */
5212 if (REG_P (target)
5213 && bitsize < BITS_PER_WORD
5214 && bitpos % BITS_PER_WORD == 0
5215 && GET_MODE_CLASS (mode) == MODE_INT
5216 && TREE_CODE (value) == INTEGER_CST
5217 && exp_size >= 0
5218 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5220 tree type = TREE_TYPE (value);
5222 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5224 type = lang_hooks.types.type_for_size
5225 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5226 value = fold_convert (type, value);
5229 if (BYTES_BIG_ENDIAN)
5230 value
5231 = fold_build2 (LSHIFT_EXPR, type, value,
5232 build_int_cst (type,
5233 BITS_PER_WORD - bitsize));
5234 bitsize = BITS_PER_WORD;
5235 mode = word_mode;
5237 #endif
5239 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5240 && DECL_NONADDRESSABLE_P (field))
5242 to_rtx = copy_rtx (to_rtx);
5243 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5246 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5247 value, type, cleared,
5248 get_alias_set (TREE_TYPE (field)));
5250 break;
5252 case ARRAY_TYPE:
5254 tree value, index;
5255 unsigned HOST_WIDE_INT i;
5256 int need_to_clear;
5257 tree domain;
5258 tree elttype = TREE_TYPE (type);
5259 int const_bounds_p;
5260 HOST_WIDE_INT minelt = 0;
5261 HOST_WIDE_INT maxelt = 0;
5263 domain = TYPE_DOMAIN (type);
5264 const_bounds_p = (TYPE_MIN_VALUE (domain)
5265 && TYPE_MAX_VALUE (domain)
5266 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5267 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5269 /* If we have constant bounds for the range of the type, get them. */
5270 if (const_bounds_p)
5272 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5273 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5276 /* If the constructor has fewer elements than the array, clear
5277 the whole array first. Similarly if this is static
5278 constructor of a non-BLKmode object. */
5279 if (cleared)
5280 need_to_clear = 0;
5281 else if (REG_P (target) && TREE_STATIC (exp))
5282 need_to_clear = 1;
5283 else
5285 unsigned HOST_WIDE_INT idx;
5286 tree index, value;
5287 HOST_WIDE_INT count = 0, zero_count = 0;
5288 need_to_clear = ! const_bounds_p;
5290 /* This loop is a more accurate version of the loop in
5291 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5292 is also needed to check for missing elements. */
5293 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5295 HOST_WIDE_INT this_node_count;
5297 if (need_to_clear)
5298 break;
5300 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5302 tree lo_index = TREE_OPERAND (index, 0);
5303 tree hi_index = TREE_OPERAND (index, 1);
5305 if (! host_integerp (lo_index, 1)
5306 || ! host_integerp (hi_index, 1))
5308 need_to_clear = 1;
5309 break;
5312 this_node_count = (tree_low_cst (hi_index, 1)
5313 - tree_low_cst (lo_index, 1) + 1);
5315 else
5316 this_node_count = 1;
5318 count += this_node_count;
5319 if (mostly_zeros_p (value))
5320 zero_count += this_node_count;
5323 /* Clear the entire array first if there are any missing
5324 elements, or if the incidence of zero elements is >=
5325 75%. */
5326 if (! need_to_clear
5327 && (count < maxelt - minelt + 1
5328 || 4 * zero_count >= 3 * count))
5329 need_to_clear = 1;
5332 if (need_to_clear && size > 0)
5334 if (REG_P (target))
5335 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5336 else
5337 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5338 cleared = 1;
5341 if (!cleared && REG_P (target))
5342 /* Inform later passes that the old value is dead. */
5343 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
5345 /* Store each element of the constructor into the
5346 corresponding element of TARGET, determined by counting the
5347 elements. */
5348 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5350 enum machine_mode mode;
5351 HOST_WIDE_INT bitsize;
5352 HOST_WIDE_INT bitpos;
5353 int unsignedp;
5354 rtx xtarget = target;
5356 if (cleared && initializer_zerop (value))
5357 continue;
5359 unsignedp = TYPE_UNSIGNED (elttype);
5360 mode = TYPE_MODE (elttype);
5361 if (mode == BLKmode)
5362 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5363 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5364 : -1);
5365 else
5366 bitsize = GET_MODE_BITSIZE (mode);
5368 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5370 tree lo_index = TREE_OPERAND (index, 0);
5371 tree hi_index = TREE_OPERAND (index, 1);
5372 rtx index_r, pos_rtx;
5373 HOST_WIDE_INT lo, hi, count;
5374 tree position;
5376 /* If the range is constant and "small", unroll the loop. */
5377 if (const_bounds_p
5378 && host_integerp (lo_index, 0)
5379 && host_integerp (hi_index, 0)
5380 && (lo = tree_low_cst (lo_index, 0),
5381 hi = tree_low_cst (hi_index, 0),
5382 count = hi - lo + 1,
5383 (!MEM_P (target)
5384 || count <= 2
5385 || (host_integerp (TYPE_SIZE (elttype), 1)
5386 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5387 <= 40 * 8)))))
5389 lo -= minelt; hi -= minelt;
5390 for (; lo <= hi; lo++)
5392 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5394 if (MEM_P (target)
5395 && !MEM_KEEP_ALIAS_SET_P (target)
5396 && TREE_CODE (type) == ARRAY_TYPE
5397 && TYPE_NONALIASED_COMPONENT (type))
5399 target = copy_rtx (target);
5400 MEM_KEEP_ALIAS_SET_P (target) = 1;
5403 store_constructor_field
5404 (target, bitsize, bitpos, mode, value, type, cleared,
5405 get_alias_set (elttype));
5408 else
5410 rtx loop_start = gen_label_rtx ();
5411 rtx loop_end = gen_label_rtx ();
5412 tree exit_cond;
5414 expand_normal (hi_index);
5415 unsignedp = TYPE_UNSIGNED (domain);
5417 index = build_decl (VAR_DECL, NULL_TREE, domain);
5419 index_r
5420 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
5421 &unsignedp, 0));
5422 SET_DECL_RTL (index, index_r);
5423 store_expr (lo_index, index_r, 0, false);
5425 /* Build the head of the loop. */
5426 do_pending_stack_adjust ();
5427 emit_label (loop_start);
5429 /* Assign value to element index. */
5430 position =
5431 fold_convert (ssizetype,
5432 fold_build2 (MINUS_EXPR,
5433 TREE_TYPE (index),
5434 index,
5435 TYPE_MIN_VALUE (domain)));
5437 position =
5438 size_binop (MULT_EXPR, position,
5439 fold_convert (ssizetype,
5440 TYPE_SIZE_UNIT (elttype)));
5442 pos_rtx = expand_normal (position);
5443 xtarget = offset_address (target, pos_rtx,
5444 highest_pow2_factor (position));
5445 xtarget = adjust_address (xtarget, mode, 0);
5446 if (TREE_CODE (value) == CONSTRUCTOR)
5447 store_constructor (value, xtarget, cleared,
5448 bitsize / BITS_PER_UNIT);
5449 else
5450 store_expr (value, xtarget, 0, false);
5452 /* Generate a conditional jump to exit the loop. */
5453 exit_cond = build2 (LT_EXPR, integer_type_node,
5454 index, hi_index);
5455 jumpif (exit_cond, loop_end);
5457 /* Update the loop counter, and jump to the head of
5458 the loop. */
5459 expand_assignment (index,
5460 build2 (PLUS_EXPR, TREE_TYPE (index),
5461 index, integer_one_node),
5462 false);
5464 emit_jump (loop_start);
5466 /* Build the end of the loop. */
5467 emit_label (loop_end);
5470 else if ((index != 0 && ! host_integerp (index, 0))
5471 || ! host_integerp (TYPE_SIZE (elttype), 1))
5473 tree position;
5475 if (index == 0)
5476 index = ssize_int (1);
5478 if (minelt)
5479 index = fold_convert (ssizetype,
5480 fold_build2 (MINUS_EXPR,
5481 TREE_TYPE (index),
5482 index,
5483 TYPE_MIN_VALUE (domain)));
5485 position =
5486 size_binop (MULT_EXPR, index,
5487 fold_convert (ssizetype,
5488 TYPE_SIZE_UNIT (elttype)));
5489 xtarget = offset_address (target,
5490 expand_normal (position),
5491 highest_pow2_factor (position));
5492 xtarget = adjust_address (xtarget, mode, 0);
5493 store_expr (value, xtarget, 0, false);
5495 else
5497 if (index != 0)
5498 bitpos = ((tree_low_cst (index, 0) - minelt)
5499 * tree_low_cst (TYPE_SIZE (elttype), 1));
5500 else
5501 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5503 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5504 && TREE_CODE (type) == ARRAY_TYPE
5505 && TYPE_NONALIASED_COMPONENT (type))
5507 target = copy_rtx (target);
5508 MEM_KEEP_ALIAS_SET_P (target) = 1;
5510 store_constructor_field (target, bitsize, bitpos, mode, value,
5511 type, cleared, get_alias_set (elttype));
5514 break;
5517 case VECTOR_TYPE:
5519 unsigned HOST_WIDE_INT idx;
5520 constructor_elt *ce;
5521 int i;
5522 int need_to_clear;
5523 int icode = 0;
5524 tree elttype = TREE_TYPE (type);
5525 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5526 enum machine_mode eltmode = TYPE_MODE (elttype);
5527 HOST_WIDE_INT bitsize;
5528 HOST_WIDE_INT bitpos;
5529 rtvec vector = NULL;
5530 unsigned n_elts;
5532 gcc_assert (eltmode != BLKmode);
5534 n_elts = TYPE_VECTOR_SUBPARTS (type);
5535 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5537 enum machine_mode mode = GET_MODE (target);
5539 icode = (int) optab_handler (vec_init_optab, mode)->insn_code;
5540 if (icode != CODE_FOR_nothing)
5542 unsigned int i;
5544 vector = rtvec_alloc (n_elts);
5545 for (i = 0; i < n_elts; i++)
5546 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5550 /* If the constructor has fewer elements than the vector,
5551 clear the whole array first. Similarly if this is static
5552 constructor of a non-BLKmode object. */
5553 if (cleared)
5554 need_to_clear = 0;
5555 else if (REG_P (target) && TREE_STATIC (exp))
5556 need_to_clear = 1;
5557 else
5559 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5560 tree value;
5562 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5564 int n_elts_here = tree_low_cst
5565 (int_const_binop (TRUNC_DIV_EXPR,
5566 TYPE_SIZE (TREE_TYPE (value)),
5567 TYPE_SIZE (elttype), 0), 1);
5569 count += n_elts_here;
5570 if (mostly_zeros_p (value))
5571 zero_count += n_elts_here;
5574 /* Clear the entire vector first if there are any missing elements,
5575 or if the incidence of zero elements is >= 75%. */
5576 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5579 if (need_to_clear && size > 0 && !vector)
5581 if (REG_P (target))
5582 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5583 else
5584 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5585 cleared = 1;
5588 /* Inform later passes that the old value is dead. */
5589 if (!cleared && !vector && REG_P (target))
5590 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5592 /* Store each element of the constructor into the corresponding
5593 element of TARGET, determined by counting the elements. */
5594 for (idx = 0, i = 0;
5595 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5596 idx++, i += bitsize / elt_size)
5598 HOST_WIDE_INT eltpos;
5599 tree value = ce->value;
5601 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5602 if (cleared && initializer_zerop (value))
5603 continue;
5605 if (ce->index)
5606 eltpos = tree_low_cst (ce->index, 1);
5607 else
5608 eltpos = i;
5610 if (vector)
5612 /* Vector CONSTRUCTORs should only be built from smaller
5613 vectors in the case of BLKmode vectors. */
5614 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5615 RTVEC_ELT (vector, eltpos)
5616 = expand_normal (value);
5618 else
5620 enum machine_mode value_mode =
5621 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5622 ? TYPE_MODE (TREE_TYPE (value))
5623 : eltmode;
5624 bitpos = eltpos * elt_size;
5625 store_constructor_field (target, bitsize, bitpos,
5626 value_mode, value, type,
5627 cleared, get_alias_set (elttype));
5631 if (vector)
5632 emit_insn (GEN_FCN (icode)
5633 (target,
5634 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5635 break;
5638 default:
5639 gcc_unreachable ();
5643 /* Store the value of EXP (an expression tree)
5644 into a subfield of TARGET which has mode MODE and occupies
5645 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5646 If MODE is VOIDmode, it means that we are storing into a bit-field.
5648 Always return const0_rtx unless we have something particular to
5649 return.
5651 TYPE is the type of the underlying object,
5653 ALIAS_SET is the alias set for the destination. This value will
5654 (in general) be different from that for TARGET, since TARGET is a
5655 reference to the containing structure.
5657 If NONTEMPORAL is true, try generating a nontemporal store. */
5659 static rtx
5660 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5661 enum machine_mode mode, tree exp, tree type,
5662 alias_set_type alias_set, bool nontemporal)
5664 HOST_WIDE_INT width_mask = 0;
5666 if (TREE_CODE (exp) == ERROR_MARK)
5667 return const0_rtx;
5669 /* If we have nothing to store, do nothing unless the expression has
5670 side-effects. */
5671 if (bitsize == 0)
5672 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5673 else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5674 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5676 /* If we are storing into an unaligned field of an aligned union that is
5677 in a register, we may have the mode of TARGET being an integer mode but
5678 MODE == BLKmode. In that case, get an aligned object whose size and
5679 alignment are the same as TARGET and store TARGET into it (we can avoid
5680 the store if the field being stored is the entire width of TARGET). Then
5681 call ourselves recursively to store the field into a BLKmode version of
5682 that object. Finally, load from the object into TARGET. This is not
5683 very efficient in general, but should only be slightly more expensive
5684 than the otherwise-required unaligned accesses. Perhaps this can be
5685 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5686 twice, once with emit_move_insn and once via store_field. */
5688 if (mode == BLKmode
5689 && (REG_P (target) || GET_CODE (target) == SUBREG))
5691 rtx object = assign_temp (type, 0, 1, 1);
5692 rtx blk_object = adjust_address (object, BLKmode, 0);
5694 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5695 emit_move_insn (object, target);
5697 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5698 nontemporal);
5700 emit_move_insn (target, object);
5702 /* We want to return the BLKmode version of the data. */
5703 return blk_object;
5706 if (GET_CODE (target) == CONCAT)
5708 /* We're storing into a struct containing a single __complex. */
5710 gcc_assert (!bitpos);
5711 return store_expr (exp, target, 0, nontemporal);
5714 /* If the structure is in a register or if the component
5715 is a bit field, we cannot use addressing to access it.
5716 Use bit-field techniques or SUBREG to store in it. */
5718 if (mode == VOIDmode
5719 || (mode != BLKmode && ! direct_store[(int) mode]
5720 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5721 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5722 || REG_P (target)
5723 || GET_CODE (target) == SUBREG
5724 /* If the field isn't aligned enough to store as an ordinary memref,
5725 store it as a bit field. */
5726 || (mode != BLKmode
5727 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5728 || bitpos % GET_MODE_ALIGNMENT (mode))
5729 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5730 || (bitpos % BITS_PER_UNIT != 0)))
5731 /* If the RHS and field are a constant size and the size of the
5732 RHS isn't the same size as the bitfield, we must use bitfield
5733 operations. */
5734 || (bitsize >= 0
5735 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5736 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5738 rtx temp;
5740 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5741 implies a mask operation. If the precision is the same size as
5742 the field we're storing into, that mask is redundant. This is
5743 particularly common with bit field assignments generated by the
5744 C front end. */
5745 if (TREE_CODE (exp) == NOP_EXPR)
5747 tree type = TREE_TYPE (exp);
5748 if (INTEGRAL_TYPE_P (type)
5749 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5750 && bitsize == TYPE_PRECISION (type))
5752 type = TREE_TYPE (TREE_OPERAND (exp, 0));
5753 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5754 exp = TREE_OPERAND (exp, 0);
5758 temp = expand_normal (exp);
5760 /* If BITSIZE is narrower than the size of the type of EXP
5761 we will be narrowing TEMP. Normally, what's wanted are the
5762 low-order bits. However, if EXP's type is a record and this is
5763 big-endian machine, we want the upper BITSIZE bits. */
5764 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5765 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5766 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5767 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5768 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5769 - bitsize),
5770 NULL_RTX, 1);
5772 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5773 MODE. */
5774 if (mode != VOIDmode && mode != BLKmode
5775 && mode != TYPE_MODE (TREE_TYPE (exp)))
5776 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5778 /* If the modes of TARGET and TEMP are both BLKmode, both
5779 must be in memory and BITPOS must be aligned on a byte
5780 boundary. If so, we simply do a block copy. */
5781 if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
5783 gcc_assert (MEM_P (target) && MEM_P (temp)
5784 && !(bitpos % BITS_PER_UNIT));
5786 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5787 emit_block_move (target, temp,
5788 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5789 / BITS_PER_UNIT),
5790 BLOCK_OP_NORMAL);
5792 return const0_rtx;
5795 /* Store the value in the bitfield. */
5796 store_bit_field (target, bitsize, bitpos, mode, temp);
5798 return const0_rtx;
5800 else
5802 /* Now build a reference to just the desired component. */
5803 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5805 if (to_rtx == target)
5806 to_rtx = copy_rtx (to_rtx);
5808 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5809 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5810 set_mem_alias_set (to_rtx, alias_set);
5812 return store_expr (exp, to_rtx, 0, nontemporal);
5816 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5817 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5818 codes and find the ultimate containing object, which we return.
5820 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5821 bit position, and *PUNSIGNEDP to the signedness of the field.
5822 If the position of the field is variable, we store a tree
5823 giving the variable offset (in units) in *POFFSET.
5824 This offset is in addition to the bit position.
5825 If the position is not variable, we store 0 in *POFFSET.
5827 If any of the extraction expressions is volatile,
5828 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5830 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5831 is a mode that can be used to access the field. In that case, *PBITSIZE
5832 is redundant.
5834 If the field describes a variable-sized object, *PMODE is set to
5835 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5836 this case, but the address of the object can be found.
5838 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5839 look through nodes that serve as markers of a greater alignment than
5840 the one that can be deduced from the expression. These nodes make it
5841 possible for front-ends to prevent temporaries from being created by
5842 the middle-end on alignment considerations. For that purpose, the
5843 normal operating mode at high-level is to always pass FALSE so that
5844 the ultimate containing object is really returned; moreover, the
5845 associated predicate handled_component_p will always return TRUE
5846 on these nodes, thus indicating that they are essentially handled
5847 by get_inner_reference. TRUE should only be passed when the caller
5848 is scanning the expression in order to build another representation
5849 and specifically knows how to handle these nodes; as such, this is
5850 the normal operating mode in the RTL expanders. */
5852 tree
5853 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5854 HOST_WIDE_INT *pbitpos, tree *poffset,
5855 enum machine_mode *pmode, int *punsignedp,
5856 int *pvolatilep, bool keep_aligning)
5858 tree size_tree = 0;
5859 enum machine_mode mode = VOIDmode;
5860 tree offset = size_zero_node;
5861 tree bit_offset = bitsize_zero_node;
5863 /* First get the mode, signedness, and size. We do this from just the
5864 outermost expression. */
5865 if (TREE_CODE (exp) == COMPONENT_REF)
5867 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
5868 if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
5869 mode = DECL_MODE (TREE_OPERAND (exp, 1));
5871 *punsignedp = DECL_UNSIGNED (TREE_OPERAND (exp, 1));
5873 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5875 size_tree = TREE_OPERAND (exp, 1);
5876 *punsignedp = BIT_FIELD_REF_UNSIGNED (exp);
5878 /* For vector types, with the correct size of access, use the mode of
5879 inner type. */
5880 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
5881 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
5882 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
5883 mode = TYPE_MODE (TREE_TYPE (exp));
5885 else
5887 mode = TYPE_MODE (TREE_TYPE (exp));
5888 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5890 if (mode == BLKmode)
5891 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5892 else
5893 *pbitsize = GET_MODE_BITSIZE (mode);
5896 if (size_tree != 0)
5898 if (! host_integerp (size_tree, 1))
5899 mode = BLKmode, *pbitsize = -1;
5900 else
5901 *pbitsize = tree_low_cst (size_tree, 1);
5904 *pmode = mode;
5906 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5907 and find the ultimate containing object. */
5908 while (1)
5910 switch (TREE_CODE (exp))
5912 case BIT_FIELD_REF:
5913 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5914 TREE_OPERAND (exp, 2));
5915 break;
5917 case COMPONENT_REF:
5919 tree field = TREE_OPERAND (exp, 1);
5920 tree this_offset = component_ref_field_offset (exp);
5922 /* If this field hasn't been filled in yet, don't go past it.
5923 This should only happen when folding expressions made during
5924 type construction. */
5925 if (this_offset == 0)
5926 break;
5928 offset = size_binop (PLUS_EXPR, offset, this_offset);
5929 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5930 DECL_FIELD_BIT_OFFSET (field));
5932 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5934 break;
5936 case ARRAY_REF:
5937 case ARRAY_RANGE_REF:
5939 tree index = TREE_OPERAND (exp, 1);
5940 tree low_bound = array_ref_low_bound (exp);
5941 tree unit_size = array_ref_element_size (exp);
5943 /* We assume all arrays have sizes that are a multiple of a byte.
5944 First subtract the lower bound, if any, in the type of the
5945 index, then convert to sizetype and multiply by the size of
5946 the array element. */
5947 if (! integer_zerop (low_bound))
5948 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
5949 index, low_bound);
5951 offset = size_binop (PLUS_EXPR, offset,
5952 size_binop (MULT_EXPR,
5953 fold_convert (sizetype, index),
5954 unit_size));
5956 break;
5958 case REALPART_EXPR:
5959 break;
5961 case IMAGPART_EXPR:
5962 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5963 bitsize_int (*pbitsize));
5964 break;
5966 case VIEW_CONVERT_EXPR:
5967 if (keep_aligning && STRICT_ALIGNMENT
5968 && (TYPE_ALIGN (TREE_TYPE (exp))
5969 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
5970 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
5971 < BIGGEST_ALIGNMENT)
5972 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
5973 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
5974 goto done;
5975 break;
5977 default:
5978 goto done;
5981 /* If any reference in the chain is volatile, the effect is volatile. */
5982 if (TREE_THIS_VOLATILE (exp))
5983 *pvolatilep = 1;
5985 exp = TREE_OPERAND (exp, 0);
5987 done:
5989 /* If OFFSET is constant, see if we can return the whole thing as a
5990 constant bit position. Make sure to handle overflow during
5991 this conversion. */
5992 if (host_integerp (offset, 0))
5994 double_int tem = double_int_mul (tree_to_double_int (offset),
5995 uhwi_to_double_int (BITS_PER_UNIT));
5996 tem = double_int_add (tem, tree_to_double_int (bit_offset));
5997 if (double_int_fits_in_shwi_p (tem))
5999 *pbitpos = double_int_to_shwi (tem);
6000 *poffset = NULL_TREE;
6001 return exp;
6005 /* Otherwise, split it up. */
6006 *pbitpos = tree_low_cst (bit_offset, 0);
6007 *poffset = offset;
6009 return exp;
6012 /* Given an expression EXP that may be a COMPONENT_REF or an ARRAY_REF,
6013 look for whether EXP or any nested component-refs within EXP is marked
6014 as PACKED. */
6016 bool
6017 contains_packed_reference (const_tree exp)
6019 bool packed_p = false;
6021 while (1)
6023 switch (TREE_CODE (exp))
6025 case COMPONENT_REF:
6027 tree field = TREE_OPERAND (exp, 1);
6028 packed_p = DECL_PACKED (field)
6029 || TYPE_PACKED (TREE_TYPE (field))
6030 || TYPE_PACKED (TREE_TYPE (exp));
6031 if (packed_p)
6032 goto done;
6034 break;
6036 case BIT_FIELD_REF:
6037 case ARRAY_REF:
6038 case ARRAY_RANGE_REF:
6039 case REALPART_EXPR:
6040 case IMAGPART_EXPR:
6041 case VIEW_CONVERT_EXPR:
6042 break;
6044 default:
6045 goto done;
6047 exp = TREE_OPERAND (exp, 0);
6049 done:
6050 return packed_p;
6053 /* Return a tree of sizetype representing the size, in bytes, of the element
6054 of EXP, an ARRAY_REF. */
6056 tree
6057 array_ref_element_size (tree exp)
6059 tree aligned_size = TREE_OPERAND (exp, 3);
6060 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6062 /* If a size was specified in the ARRAY_REF, it's the size measured
6063 in alignment units of the element type. So multiply by that value. */
6064 if (aligned_size)
6066 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6067 sizetype from another type of the same width and signedness. */
6068 if (TREE_TYPE (aligned_size) != sizetype)
6069 aligned_size = fold_convert (sizetype, aligned_size);
6070 return size_binop (MULT_EXPR, aligned_size,
6071 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6074 /* Otherwise, take the size from that of the element type. Substitute
6075 any PLACEHOLDER_EXPR that we have. */
6076 else
6077 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6080 /* Return a tree representing the lower bound of the array mentioned in
6081 EXP, an ARRAY_REF. */
6083 tree
6084 array_ref_low_bound (tree exp)
6086 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6088 /* If a lower bound is specified in EXP, use it. */
6089 if (TREE_OPERAND (exp, 2))
6090 return TREE_OPERAND (exp, 2);
6092 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6093 substituting for a PLACEHOLDER_EXPR as needed. */
6094 if (domain_type && TYPE_MIN_VALUE (domain_type))
6095 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6097 /* Otherwise, return a zero of the appropriate type. */
6098 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6101 /* Return a tree representing the upper bound of the array mentioned in
6102 EXP, an ARRAY_REF. */
6104 tree
6105 array_ref_up_bound (tree exp)
6107 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6109 /* If there is a domain type and it has an upper bound, use it, substituting
6110 for a PLACEHOLDER_EXPR as needed. */
6111 if (domain_type && TYPE_MAX_VALUE (domain_type))
6112 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6114 /* Otherwise fail. */
6115 return NULL_TREE;
6118 /* Return a tree representing the offset, in bytes, of the field referenced
6119 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6121 tree
6122 component_ref_field_offset (tree exp)
6124 tree aligned_offset = TREE_OPERAND (exp, 2);
6125 tree field = TREE_OPERAND (exp, 1);
6127 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6128 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6129 value. */
6130 if (aligned_offset)
6132 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6133 sizetype from another type of the same width and signedness. */
6134 if (TREE_TYPE (aligned_offset) != sizetype)
6135 aligned_offset = fold_convert (sizetype, aligned_offset);
6136 return size_binop (MULT_EXPR, aligned_offset,
6137 size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
6140 /* Otherwise, take the offset from that of the field. Substitute
6141 any PLACEHOLDER_EXPR that we have. */
6142 else
6143 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6146 /* Return 1 if T is an expression that get_inner_reference handles. */
6149 handled_component_p (const_tree t)
6151 switch (TREE_CODE (t))
6153 case BIT_FIELD_REF:
6154 case COMPONENT_REF:
6155 case ARRAY_REF:
6156 case ARRAY_RANGE_REF:
6157 case VIEW_CONVERT_EXPR:
6158 case REALPART_EXPR:
6159 case IMAGPART_EXPR:
6160 return 1;
6162 default:
6163 return 0;
6167 /* Given an rtx VALUE that may contain additions and multiplications, return
6168 an equivalent value that just refers to a register, memory, or constant.
6169 This is done by generating instructions to perform the arithmetic and
6170 returning a pseudo-register containing the value.
6172 The returned value may be a REG, SUBREG, MEM or constant. */
6175 force_operand (rtx value, rtx target)
6177 rtx op1, op2;
6178 /* Use subtarget as the target for operand 0 of a binary operation. */
6179 rtx subtarget = get_subtarget (target);
6180 enum rtx_code code = GET_CODE (value);
6182 /* Check for subreg applied to an expression produced by loop optimizer. */
6183 if (code == SUBREG
6184 && !REG_P (SUBREG_REG (value))
6185 && !MEM_P (SUBREG_REG (value)))
6187 value
6188 = simplify_gen_subreg (GET_MODE (value),
6189 force_reg (GET_MODE (SUBREG_REG (value)),
6190 force_operand (SUBREG_REG (value),
6191 NULL_RTX)),
6192 GET_MODE (SUBREG_REG (value)),
6193 SUBREG_BYTE (value));
6194 code = GET_CODE (value);
6197 /* Check for a PIC address load. */
6198 if ((code == PLUS || code == MINUS)
6199 && XEXP (value, 0) == pic_offset_table_rtx
6200 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6201 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6202 || GET_CODE (XEXP (value, 1)) == CONST))
6204 if (!subtarget)
6205 subtarget = gen_reg_rtx (GET_MODE (value));
6206 emit_move_insn (subtarget, value);
6207 return subtarget;
6210 if (ARITHMETIC_P (value))
6212 op2 = XEXP (value, 1);
6213 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6214 subtarget = 0;
6215 if (code == MINUS && GET_CODE (op2) == CONST_INT)
6217 code = PLUS;
6218 op2 = negate_rtx (GET_MODE (value), op2);
6221 /* Check for an addition with OP2 a constant integer and our first
6222 operand a PLUS of a virtual register and something else. In that
6223 case, we want to emit the sum of the virtual register and the
6224 constant first and then add the other value. This allows virtual
6225 register instantiation to simply modify the constant rather than
6226 creating another one around this addition. */
6227 if (code == PLUS && GET_CODE (op2) == CONST_INT
6228 && GET_CODE (XEXP (value, 0)) == PLUS
6229 && REG_P (XEXP (XEXP (value, 0), 0))
6230 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6231 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6233 rtx temp = expand_simple_binop (GET_MODE (value), code,
6234 XEXP (XEXP (value, 0), 0), op2,
6235 subtarget, 0, OPTAB_LIB_WIDEN);
6236 return expand_simple_binop (GET_MODE (value), code, temp,
6237 force_operand (XEXP (XEXP (value,
6238 0), 1), 0),
6239 target, 0, OPTAB_LIB_WIDEN);
6242 op1 = force_operand (XEXP (value, 0), subtarget);
6243 op2 = force_operand (op2, NULL_RTX);
6244 switch (code)
6246 case MULT:
6247 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6248 case DIV:
6249 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6250 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6251 target, 1, OPTAB_LIB_WIDEN);
6252 else
6253 return expand_divmod (0,
6254 FLOAT_MODE_P (GET_MODE (value))
6255 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6256 GET_MODE (value), op1, op2, target, 0);
6257 case MOD:
6258 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6259 target, 0);
6260 case UDIV:
6261 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6262 target, 1);
6263 case UMOD:
6264 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6265 target, 1);
6266 case ASHIFTRT:
6267 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6268 target, 0, OPTAB_LIB_WIDEN);
6269 default:
6270 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6271 target, 1, OPTAB_LIB_WIDEN);
6274 if (UNARY_P (value))
6276 if (!target)
6277 target = gen_reg_rtx (GET_MODE (value));
6278 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6279 switch (code)
6281 case ZERO_EXTEND:
6282 case SIGN_EXTEND:
6283 case TRUNCATE:
6284 case FLOAT_EXTEND:
6285 case FLOAT_TRUNCATE:
6286 convert_move (target, op1, code == ZERO_EXTEND);
6287 return target;
6289 case FIX:
6290 case UNSIGNED_FIX:
6291 expand_fix (target, op1, code == UNSIGNED_FIX);
6292 return target;
6294 case FLOAT:
6295 case UNSIGNED_FLOAT:
6296 expand_float (target, op1, code == UNSIGNED_FLOAT);
6297 return target;
6299 default:
6300 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6304 #ifdef INSN_SCHEDULING
6305 /* On machines that have insn scheduling, we want all memory reference to be
6306 explicit, so we need to deal with such paradoxical SUBREGs. */
6307 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6308 && (GET_MODE_SIZE (GET_MODE (value))
6309 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6310 value
6311 = simplify_gen_subreg (GET_MODE (value),
6312 force_reg (GET_MODE (SUBREG_REG (value)),
6313 force_operand (SUBREG_REG (value),
6314 NULL_RTX)),
6315 GET_MODE (SUBREG_REG (value)),
6316 SUBREG_BYTE (value));
6317 #endif
6319 return value;
6322 /* Subroutine of expand_expr: return nonzero iff there is no way that
6323 EXP can reference X, which is being modified. TOP_P is nonzero if this
6324 call is going to be used to determine whether we need a temporary
6325 for EXP, as opposed to a recursive call to this function.
6327 It is always safe for this routine to return zero since it merely
6328 searches for optimization opportunities. */
6331 safe_from_p (const_rtx x, tree exp, int top_p)
6333 rtx exp_rtl = 0;
6334 int i, nops;
6336 if (x == 0
6337 /* If EXP has varying size, we MUST use a target since we currently
6338 have no way of allocating temporaries of variable size
6339 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6340 So we assume here that something at a higher level has prevented a
6341 clash. This is somewhat bogus, but the best we can do. Only
6342 do this when X is BLKmode and when we are at the top level. */
6343 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6344 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6345 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6346 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6347 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6348 != INTEGER_CST)
6349 && GET_MODE (x) == BLKmode)
6350 /* If X is in the outgoing argument area, it is always safe. */
6351 || (MEM_P (x)
6352 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6353 || (GET_CODE (XEXP (x, 0)) == PLUS
6354 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6355 return 1;
6357 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6358 find the underlying pseudo. */
6359 if (GET_CODE (x) == SUBREG)
6361 x = SUBREG_REG (x);
6362 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6363 return 0;
6366 /* Now look at our tree code and possibly recurse. */
6367 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6369 case tcc_declaration:
6370 exp_rtl = DECL_RTL_IF_SET (exp);
6371 break;
6373 case tcc_constant:
6374 return 1;
6376 case tcc_exceptional:
6377 if (TREE_CODE (exp) == TREE_LIST)
6379 while (1)
6381 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6382 return 0;
6383 exp = TREE_CHAIN (exp);
6384 if (!exp)
6385 return 1;
6386 if (TREE_CODE (exp) != TREE_LIST)
6387 return safe_from_p (x, exp, 0);
6390 else if (TREE_CODE (exp) == CONSTRUCTOR)
6392 constructor_elt *ce;
6393 unsigned HOST_WIDE_INT idx;
6395 for (idx = 0;
6396 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6397 idx++)
6398 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6399 || !safe_from_p (x, ce->value, 0))
6400 return 0;
6401 return 1;
6403 else if (TREE_CODE (exp) == ERROR_MARK)
6404 return 1; /* An already-visited SAVE_EXPR? */
6405 else
6406 return 0;
6408 case tcc_statement:
6409 /* The only case we look at here is the DECL_INITIAL inside a
6410 DECL_EXPR. */
6411 return (TREE_CODE (exp) != DECL_EXPR
6412 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6413 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6414 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6416 case tcc_binary:
6417 case tcc_comparison:
6418 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6419 return 0;
6420 /* Fall through. */
6422 case tcc_unary:
6423 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6425 case tcc_expression:
6426 case tcc_reference:
6427 case tcc_vl_exp:
6428 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6429 the expression. If it is set, we conflict iff we are that rtx or
6430 both are in memory. Otherwise, we check all operands of the
6431 expression recursively. */
6433 switch (TREE_CODE (exp))
6435 case ADDR_EXPR:
6436 /* If the operand is static or we are static, we can't conflict.
6437 Likewise if we don't conflict with the operand at all. */
6438 if (staticp (TREE_OPERAND (exp, 0))
6439 || TREE_STATIC (exp)
6440 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6441 return 1;
6443 /* Otherwise, the only way this can conflict is if we are taking
6444 the address of a DECL a that address if part of X, which is
6445 very rare. */
6446 exp = TREE_OPERAND (exp, 0);
6447 if (DECL_P (exp))
6449 if (!DECL_RTL_SET_P (exp)
6450 || !MEM_P (DECL_RTL (exp)))
6451 return 0;
6452 else
6453 exp_rtl = XEXP (DECL_RTL (exp), 0);
6455 break;
6457 case MISALIGNED_INDIRECT_REF:
6458 case ALIGN_INDIRECT_REF:
6459 case INDIRECT_REF:
6460 if (MEM_P (x)
6461 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6462 get_alias_set (exp)))
6463 return 0;
6464 break;
6466 case CALL_EXPR:
6467 /* Assume that the call will clobber all hard registers and
6468 all of memory. */
6469 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6470 || MEM_P (x))
6471 return 0;
6472 break;
6474 case WITH_CLEANUP_EXPR:
6475 case CLEANUP_POINT_EXPR:
6476 /* Lowered by gimplify.c. */
6477 gcc_unreachable ();
6479 case SAVE_EXPR:
6480 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6482 default:
6483 break;
6486 /* If we have an rtx, we do not need to scan our operands. */
6487 if (exp_rtl)
6488 break;
6490 nops = TREE_OPERAND_LENGTH (exp);
6491 for (i = 0; i < nops; i++)
6492 if (TREE_OPERAND (exp, i) != 0
6493 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6494 return 0;
6496 break;
6498 case tcc_type:
6499 /* Should never get a type here. */
6500 gcc_unreachable ();
6502 case tcc_gimple_stmt:
6503 gcc_unreachable ();
6506 /* If we have an rtl, find any enclosed object. Then see if we conflict
6507 with it. */
6508 if (exp_rtl)
6510 if (GET_CODE (exp_rtl) == SUBREG)
6512 exp_rtl = SUBREG_REG (exp_rtl);
6513 if (REG_P (exp_rtl)
6514 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6515 return 0;
6518 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6519 are memory and they conflict. */
6520 return ! (rtx_equal_p (x, exp_rtl)
6521 || (MEM_P (x) && MEM_P (exp_rtl)
6522 && true_dependence (exp_rtl, VOIDmode, x,
6523 rtx_addr_varies_p)));
6526 /* If we reach here, it is safe. */
6527 return 1;
6531 /* Return the highest power of two that EXP is known to be a multiple of.
6532 This is used in updating alignment of MEMs in array references. */
6534 unsigned HOST_WIDE_INT
6535 highest_pow2_factor (const_tree exp)
6537 unsigned HOST_WIDE_INT c0, c1;
6539 switch (TREE_CODE (exp))
6541 case INTEGER_CST:
6542 /* We can find the lowest bit that's a one. If the low
6543 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6544 We need to handle this case since we can find it in a COND_EXPR,
6545 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6546 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6547 later ICE. */
6548 if (TREE_OVERFLOW (exp))
6549 return BIGGEST_ALIGNMENT;
6550 else
6552 /* Note: tree_low_cst is intentionally not used here,
6553 we don't care about the upper bits. */
6554 c0 = TREE_INT_CST_LOW (exp);
6555 c0 &= -c0;
6556 return c0 ? c0 : BIGGEST_ALIGNMENT;
6558 break;
6560 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6561 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6562 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6563 return MIN (c0, c1);
6565 case MULT_EXPR:
6566 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6567 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6568 return c0 * c1;
6570 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6571 case CEIL_DIV_EXPR:
6572 if (integer_pow2p (TREE_OPERAND (exp, 1))
6573 && host_integerp (TREE_OPERAND (exp, 1), 1))
6575 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6576 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6577 return MAX (1, c0 / c1);
6579 break;
6581 case NON_LVALUE_EXPR: case NOP_EXPR: case CONVERT_EXPR:
6582 case SAVE_EXPR:
6583 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6585 case COMPOUND_EXPR:
6586 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6588 case COND_EXPR:
6589 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6590 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6591 return MIN (c0, c1);
6593 default:
6594 break;
6597 return 1;
6600 /* Similar, except that the alignment requirements of TARGET are
6601 taken into account. Assume it is at least as aligned as its
6602 type, unless it is a COMPONENT_REF in which case the layout of
6603 the structure gives the alignment. */
6605 static unsigned HOST_WIDE_INT
6606 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6608 unsigned HOST_WIDE_INT target_align, factor;
6610 factor = highest_pow2_factor (exp);
6611 if (TREE_CODE (target) == COMPONENT_REF)
6612 target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
6613 else
6614 target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
6615 return MAX (factor, target_align);
6618 /* Return &VAR expression for emulated thread local VAR. */
6620 static tree
6621 emutls_var_address (tree var)
6623 tree emuvar = emutls_decl (var);
6624 tree fn = built_in_decls [BUILT_IN_EMUTLS_GET_ADDRESS];
6625 tree arg = build_fold_addr_expr_with_type (emuvar, ptr_type_node);
6626 tree arglist = build_tree_list (NULL_TREE, arg);
6627 tree call = build_function_call_expr (fn, arglist);
6628 return fold_convert (build_pointer_type (TREE_TYPE (var)), call);
6631 /* Expands variable VAR. */
6633 void
6634 expand_var (tree var)
6636 if (DECL_EXTERNAL (var))
6637 return;
6639 if (TREE_STATIC (var))
6640 /* If this is an inlined copy of a static local variable,
6641 look up the original decl. */
6642 var = DECL_ORIGIN (var);
6644 if (TREE_STATIC (var)
6645 ? !TREE_ASM_WRITTEN (var)
6646 : !DECL_RTL_SET_P (var))
6648 if (TREE_CODE (var) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (var))
6649 /* Should be ignored. */;
6650 else if (lang_hooks.expand_decl (var))
6651 /* OK. */;
6652 else if (TREE_CODE (var) == VAR_DECL && !TREE_STATIC (var))
6653 expand_decl (var);
6654 else if (TREE_CODE (var) == VAR_DECL && TREE_STATIC (var))
6655 rest_of_decl_compilation (var, 0, 0);
6656 else
6657 /* No expansion needed. */
6658 gcc_assert (TREE_CODE (var) == TYPE_DECL
6659 || TREE_CODE (var) == CONST_DECL
6660 || TREE_CODE (var) == FUNCTION_DECL
6661 || TREE_CODE (var) == LABEL_DECL);
6665 /* Subroutine of expand_expr. Expand the two operands of a binary
6666 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6667 The value may be stored in TARGET if TARGET is nonzero. The
6668 MODIFIER argument is as documented by expand_expr. */
6670 static void
6671 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6672 enum expand_modifier modifier)
6674 if (! safe_from_p (target, exp1, 1))
6675 target = 0;
6676 if (operand_equal_p (exp0, exp1, 0))
6678 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6679 *op1 = copy_rtx (*op0);
6681 else
6683 /* If we need to preserve evaluation order, copy exp0 into its own
6684 temporary variable so that it can't be clobbered by exp1. */
6685 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6686 exp0 = save_expr (exp0);
6687 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6688 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6693 /* Return a MEM that contains constant EXP. DEFER is as for
6694 output_constant_def and MODIFIER is as for expand_expr. */
6696 static rtx
6697 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6699 rtx mem;
6701 mem = output_constant_def (exp, defer);
6702 if (modifier != EXPAND_INITIALIZER)
6703 mem = use_anchored_address (mem);
6704 return mem;
6707 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6708 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6710 static rtx
6711 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6712 enum expand_modifier modifier)
6714 rtx result, subtarget;
6715 tree inner, offset;
6716 HOST_WIDE_INT bitsize, bitpos;
6717 int volatilep, unsignedp;
6718 enum machine_mode mode1;
6720 /* If we are taking the address of a constant and are at the top level,
6721 we have to use output_constant_def since we can't call force_const_mem
6722 at top level. */
6723 /* ??? This should be considered a front-end bug. We should not be
6724 generating ADDR_EXPR of something that isn't an LVALUE. The only
6725 exception here is STRING_CST. */
6726 if (TREE_CODE (exp) == CONSTRUCTOR
6727 || CONSTANT_CLASS_P (exp))
6728 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6730 /* Everything must be something allowed by is_gimple_addressable. */
6731 switch (TREE_CODE (exp))
6733 case INDIRECT_REF:
6734 /* This case will happen via recursion for &a->b. */
6735 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6737 case CONST_DECL:
6738 /* Recurse and make the output_constant_def clause above handle this. */
6739 return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6740 tmode, modifier);
6742 case REALPART_EXPR:
6743 /* The real part of the complex number is always first, therefore
6744 the address is the same as the address of the parent object. */
6745 offset = 0;
6746 bitpos = 0;
6747 inner = TREE_OPERAND (exp, 0);
6748 break;
6750 case IMAGPART_EXPR:
6751 /* The imaginary part of the complex number is always second.
6752 The expression is therefore always offset by the size of the
6753 scalar type. */
6754 offset = 0;
6755 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6756 inner = TREE_OPERAND (exp, 0);
6757 break;
6759 case VAR_DECL:
6760 /* TLS emulation hook - replace __thread VAR's &VAR with
6761 __emutls_get_address (&_emutls.VAR). */
6762 if (! targetm.have_tls
6763 && TREE_CODE (exp) == VAR_DECL
6764 && DECL_THREAD_LOCAL_P (exp))
6766 exp = emutls_var_address (exp);
6767 return expand_expr (exp, target, tmode, modifier);
6769 /* Fall through. */
6771 default:
6772 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6773 expand_expr, as that can have various side effects; LABEL_DECLs for
6774 example, may not have their DECL_RTL set yet. Assume language
6775 specific tree nodes can be expanded in some interesting way. */
6776 if (DECL_P (exp)
6777 || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
6779 result = expand_expr (exp, target, tmode,
6780 modifier == EXPAND_INITIALIZER
6781 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6783 /* If the DECL isn't in memory, then the DECL wasn't properly
6784 marked TREE_ADDRESSABLE, which will be either a front-end
6785 or a tree optimizer bug. */
6786 gcc_assert (MEM_P (result));
6787 result = XEXP (result, 0);
6789 /* ??? Is this needed anymore? */
6790 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6792 assemble_external (exp);
6793 TREE_USED (exp) = 1;
6796 if (modifier != EXPAND_INITIALIZER
6797 && modifier != EXPAND_CONST_ADDRESS)
6798 result = force_operand (result, target);
6799 return result;
6802 /* Pass FALSE as the last argument to get_inner_reference although
6803 we are expanding to RTL. The rationale is that we know how to
6804 handle "aligning nodes" here: we can just bypass them because
6805 they won't change the final object whose address will be returned
6806 (they actually exist only for that purpose). */
6807 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6808 &mode1, &unsignedp, &volatilep, false);
6809 break;
6812 /* We must have made progress. */
6813 gcc_assert (inner != exp);
6815 subtarget = offset || bitpos ? NULL_RTX : target;
6816 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
6818 if (offset)
6820 rtx tmp;
6822 if (modifier != EXPAND_NORMAL)
6823 result = force_operand (result, NULL);
6824 tmp = expand_expr (offset, NULL_RTX, tmode,
6825 modifier == EXPAND_INITIALIZER
6826 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6828 result = convert_memory_address (tmode, result);
6829 tmp = convert_memory_address (tmode, tmp);
6831 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6832 result = gen_rtx_PLUS (tmode, result, tmp);
6833 else
6835 subtarget = bitpos ? NULL_RTX : target;
6836 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6837 1, OPTAB_LIB_WIDEN);
6841 if (bitpos)
6843 /* Someone beforehand should have rejected taking the address
6844 of such an object. */
6845 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6847 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6848 if (modifier < EXPAND_SUM)
6849 result = force_operand (result, target);
6852 return result;
6855 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6856 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6858 static rtx
6859 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6860 enum expand_modifier modifier)
6862 enum machine_mode rmode;
6863 rtx result;
6865 /* Target mode of VOIDmode says "whatever's natural". */
6866 if (tmode == VOIDmode)
6867 tmode = TYPE_MODE (TREE_TYPE (exp));
6869 /* We can get called with some Weird Things if the user does silliness
6870 like "(short) &a". In that case, convert_memory_address won't do
6871 the right thing, so ignore the given target mode. */
6872 if (tmode != Pmode && tmode != ptr_mode)
6873 tmode = Pmode;
6875 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6876 tmode, modifier);
6878 /* Despite expand_expr claims concerning ignoring TMODE when not
6879 strictly convenient, stuff breaks if we don't honor it. Note
6880 that combined with the above, we only do this for pointer modes. */
6881 rmode = GET_MODE (result);
6882 if (rmode == VOIDmode)
6883 rmode = tmode;
6884 if (rmode != tmode)
6885 result = convert_memory_address (tmode, result);
6887 return result;
6890 /* Generate code for computing CONSTRUCTOR EXP.
6891 An rtx for the computed value is returned. If AVOID_TEMP_MEM
6892 is TRUE, instead of creating a temporary variable in memory
6893 NULL is returned and the caller needs to handle it differently. */
6895 static rtx
6896 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
6897 bool avoid_temp_mem)
6899 tree type = TREE_TYPE (exp);
6900 enum machine_mode mode = TYPE_MODE (type);
6902 /* Try to avoid creating a temporary at all. This is possible
6903 if all of the initializer is zero.
6904 FIXME: try to handle all [0..255] initializers we can handle
6905 with memset. */
6906 if (TREE_STATIC (exp)
6907 && !TREE_ADDRESSABLE (exp)
6908 && target != 0 && mode == BLKmode
6909 && all_zeros_p (exp))
6911 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6912 return target;
6915 /* All elts simple constants => refer to a constant in memory. But
6916 if this is a non-BLKmode mode, let it store a field at a time
6917 since that should make a CONST_INT or CONST_DOUBLE when we
6918 fold. Likewise, if we have a target we can use, it is best to
6919 store directly into the target unless the type is large enough
6920 that memcpy will be used. If we are making an initializer and
6921 all operands are constant, put it in memory as well.
6923 FIXME: Avoid trying to fill vector constructors piece-meal.
6924 Output them with output_constant_def below unless we're sure
6925 they're zeros. This should go away when vector initializers
6926 are treated like VECTOR_CST instead of arrays. */
6927 if ((TREE_STATIC (exp)
6928 && ((mode == BLKmode
6929 && ! (target != 0 && safe_from_p (target, exp, 1)))
6930 || TREE_ADDRESSABLE (exp)
6931 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
6932 && (! MOVE_BY_PIECES_P
6933 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
6934 TYPE_ALIGN (type)))
6935 && ! mostly_zeros_p (exp))))
6936 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
6937 && TREE_CONSTANT (exp)))
6939 rtx constructor;
6941 if (avoid_temp_mem)
6942 return NULL_RTX;
6944 constructor = expand_expr_constant (exp, 1, modifier);
6946 if (modifier != EXPAND_CONST_ADDRESS
6947 && modifier != EXPAND_INITIALIZER
6948 && modifier != EXPAND_SUM)
6949 constructor = validize_mem (constructor);
6951 return constructor;
6954 /* Handle calls that pass values in multiple non-contiguous
6955 locations. The Irix 6 ABI has examples of this. */
6956 if (target == 0 || ! safe_from_p (target, exp, 1)
6957 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
6959 if (avoid_temp_mem)
6960 return NULL_RTX;
6962 target
6963 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
6964 | (TREE_READONLY (exp)
6965 * TYPE_QUAL_CONST))),
6966 0, TREE_ADDRESSABLE (exp), 1);
6969 store_constructor (exp, target, 0, int_expr_size (exp));
6970 return target;
6974 /* expand_expr: generate code for computing expression EXP.
6975 An rtx for the computed value is returned. The value is never null.
6976 In the case of a void EXP, const0_rtx is returned.
6978 The value may be stored in TARGET if TARGET is nonzero.
6979 TARGET is just a suggestion; callers must assume that
6980 the rtx returned may not be the same as TARGET.
6982 If TARGET is CONST0_RTX, it means that the value will be ignored.
6984 If TMODE is not VOIDmode, it suggests generating the
6985 result in mode TMODE. But this is done only when convenient.
6986 Otherwise, TMODE is ignored and the value generated in its natural mode.
6987 TMODE is just a suggestion; callers must assume that
6988 the rtx returned may not have mode TMODE.
6990 Note that TARGET may have neither TMODE nor MODE. In that case, it
6991 probably will not be used.
6993 If MODIFIER is EXPAND_SUM then when EXP is an addition
6994 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6995 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6996 products as above, or REG or MEM, or constant.
6997 Ordinarily in such cases we would output mul or add instructions
6998 and then return a pseudo reg containing the sum.
7000 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7001 it also marks a label as absolutely required (it can't be dead).
7002 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7003 This is used for outputting expressions used in initializers.
7005 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7006 with a constant address even if that address is not normally legitimate.
7007 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7009 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7010 a call parameter. Such targets require special care as we haven't yet
7011 marked TARGET so that it's safe from being trashed by libcalls. We
7012 don't want to use TARGET for anything but the final result;
7013 Intermediate values must go elsewhere. Additionally, calls to
7014 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7016 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7017 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7018 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7019 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7020 recursively. */
7022 static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
7023 enum expand_modifier, rtx *);
7026 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7027 enum expand_modifier modifier, rtx *alt_rtl)
7029 int rn = -1;
7030 rtx ret, last = NULL;
7032 /* Handle ERROR_MARK before anybody tries to access its type. */
7033 if (TREE_CODE (exp) == ERROR_MARK
7034 || (!GIMPLE_TUPLE_P (exp) && TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7036 ret = CONST0_RTX (tmode);
7037 return ret ? ret : const0_rtx;
7040 if (flag_non_call_exceptions)
7042 rn = lookup_stmt_eh_region (exp);
7043 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
7044 if (rn >= 0)
7045 last = get_last_insn ();
7048 /* If this is an expression of some kind and it has an associated line
7049 number, then emit the line number before expanding the expression.
7051 We need to save and restore the file and line information so that
7052 errors discovered during expansion are emitted with the right
7053 information. It would be better of the diagnostic routines
7054 used the file/line information embedded in the tree nodes rather
7055 than globals. */
7056 if (cfun && EXPR_HAS_LOCATION (exp))
7058 location_t saved_location = input_location;
7059 input_location = EXPR_LOCATION (exp);
7060 set_curr_insn_source_location (input_location);
7062 /* Record where the insns produced belong. */
7063 set_curr_insn_block (TREE_BLOCK (exp));
7065 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7067 input_location = saved_location;
7069 else
7071 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7074 /* If using non-call exceptions, mark all insns that may trap.
7075 expand_call() will mark CALL_INSNs before we get to this code,
7076 but it doesn't handle libcalls, and these may trap. */
7077 if (rn >= 0)
7079 rtx insn;
7080 for (insn = next_real_insn (last); insn;
7081 insn = next_real_insn (insn))
7083 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
7084 /* If we want exceptions for non-call insns, any
7085 may_trap_p instruction may throw. */
7086 && GET_CODE (PATTERN (insn)) != CLOBBER
7087 && GET_CODE (PATTERN (insn)) != USE
7088 && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
7090 REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
7091 REG_NOTES (insn));
7096 return ret;
7099 static rtx
7100 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
7101 enum expand_modifier modifier, rtx *alt_rtl)
7103 rtx op0, op1, op2, temp, decl_rtl;
7104 tree type;
7105 int unsignedp;
7106 enum machine_mode mode;
7107 enum tree_code code = TREE_CODE (exp);
7108 optab this_optab;
7109 rtx subtarget, original_target;
7110 int ignore;
7111 tree context, subexp0, subexp1;
7112 bool reduce_bit_field = false;
7113 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
7114 ? reduce_to_bit_field_precision ((expr), \
7115 target, \
7116 type) \
7117 : (expr))
7119 if (GIMPLE_STMT_P (exp))
7121 type = void_type_node;
7122 mode = VOIDmode;
7123 unsignedp = 0;
7125 else
7127 type = TREE_TYPE (exp);
7128 mode = TYPE_MODE (type);
7129 unsignedp = TYPE_UNSIGNED (type);
7131 if (lang_hooks.reduce_bit_field_operations
7132 && TREE_CODE (type) == INTEGER_TYPE
7133 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type))
7135 /* An operation in what may be a bit-field type needs the
7136 result to be reduced to the precision of the bit-field type,
7137 which is narrower than that of the type's mode. */
7138 reduce_bit_field = true;
7139 if (modifier == EXPAND_STACK_PARM)
7140 target = 0;
7143 /* Use subtarget as the target for operand 0 of a binary operation. */
7144 subtarget = get_subtarget (target);
7145 original_target = target;
7146 ignore = (target == const0_rtx
7147 || ((code == NON_LVALUE_EXPR || code == NOP_EXPR
7148 || code == CONVERT_EXPR || code == COND_EXPR
7149 || code == VIEW_CONVERT_EXPR)
7150 && TREE_CODE (type) == VOID_TYPE));
7152 /* If we are going to ignore this result, we need only do something
7153 if there is a side-effect somewhere in the expression. If there
7154 is, short-circuit the most common cases here. Note that we must
7155 not call expand_expr with anything but const0_rtx in case this
7156 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
7158 if (ignore)
7160 if (! TREE_SIDE_EFFECTS (exp))
7161 return const0_rtx;
7163 /* Ensure we reference a volatile object even if value is ignored, but
7164 don't do this if all we are doing is taking its address. */
7165 if (TREE_THIS_VOLATILE (exp)
7166 && TREE_CODE (exp) != FUNCTION_DECL
7167 && mode != VOIDmode && mode != BLKmode
7168 && modifier != EXPAND_CONST_ADDRESS)
7170 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
7171 if (MEM_P (temp))
7172 temp = copy_to_reg (temp);
7173 return const0_rtx;
7176 if (TREE_CODE_CLASS (code) == tcc_unary
7177 || code == COMPONENT_REF || code == INDIRECT_REF)
7178 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
7179 modifier);
7181 else if (TREE_CODE_CLASS (code) == tcc_binary
7182 || TREE_CODE_CLASS (code) == tcc_comparison
7183 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
7185 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
7186 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
7187 return const0_rtx;
7189 else if (code == BIT_FIELD_REF)
7191 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
7192 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
7193 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
7194 return const0_rtx;
7197 target = 0;
7201 switch (code)
7203 case LABEL_DECL:
7205 tree function = decl_function_context (exp);
7207 temp = label_rtx (exp);
7208 temp = gen_rtx_LABEL_REF (Pmode, temp);
7210 if (function != current_function_decl
7211 && function != 0)
7212 LABEL_REF_NONLOCAL_P (temp) = 1;
7214 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
7215 return temp;
7218 case SSA_NAME:
7219 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
7220 NULL);
7222 case PARM_DECL:
7223 case VAR_DECL:
7224 /* If a static var's type was incomplete when the decl was written,
7225 but the type is complete now, lay out the decl now. */
7226 if (DECL_SIZE (exp) == 0
7227 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
7228 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
7229 layout_decl (exp, 0);
7231 /* TLS emulation hook - replace __thread vars with
7232 *__emutls_get_address (&_emutls.var). */
7233 if (! targetm.have_tls
7234 && TREE_CODE (exp) == VAR_DECL
7235 && DECL_THREAD_LOCAL_P (exp))
7237 exp = build_fold_indirect_ref (emutls_var_address (exp));
7238 return expand_expr_real_1 (exp, target, tmode, modifier, NULL);
7241 /* ... fall through ... */
7243 case FUNCTION_DECL:
7244 case RESULT_DECL:
7245 decl_rtl = DECL_RTL (exp);
7246 gcc_assert (decl_rtl);
7247 decl_rtl = copy_rtx (decl_rtl);
7249 /* Ensure variable marked as used even if it doesn't go through
7250 a parser. If it hasn't be used yet, write out an external
7251 definition. */
7252 if (! TREE_USED (exp))
7254 assemble_external (exp);
7255 TREE_USED (exp) = 1;
7258 /* Show we haven't gotten RTL for this yet. */
7259 temp = 0;
7261 /* Variables inherited from containing functions should have
7262 been lowered by this point. */
7263 context = decl_function_context (exp);
7264 gcc_assert (!context
7265 || context == current_function_decl
7266 || TREE_STATIC (exp)
7267 /* ??? C++ creates functions that are not TREE_STATIC. */
7268 || TREE_CODE (exp) == FUNCTION_DECL);
7270 /* This is the case of an array whose size is to be determined
7271 from its initializer, while the initializer is still being parsed.
7272 See expand_decl. */
7274 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
7275 temp = validize_mem (decl_rtl);
7277 /* If DECL_RTL is memory, we are in the normal case and either
7278 the address is not valid or it is not a register and -fforce-addr
7279 is specified, get the address into a register. */
7281 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
7283 if (alt_rtl)
7284 *alt_rtl = decl_rtl;
7285 decl_rtl = use_anchored_address (decl_rtl);
7286 if (modifier != EXPAND_CONST_ADDRESS
7287 && modifier != EXPAND_SUM
7288 && (!memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0))
7289 || (flag_force_addr && !REG_P (XEXP (decl_rtl, 0)))))
7290 temp = replace_equiv_address (decl_rtl,
7291 copy_rtx (XEXP (decl_rtl, 0)));
7294 /* If we got something, return it. But first, set the alignment
7295 if the address is a register. */
7296 if (temp != 0)
7298 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
7299 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
7301 return temp;
7304 /* If the mode of DECL_RTL does not match that of the decl, it
7305 must be a promoted value. We return a SUBREG of the wanted mode,
7306 but mark it so that we know that it was already extended. */
7308 if (REG_P (decl_rtl)
7309 && GET_MODE (decl_rtl) != DECL_MODE (exp))
7311 enum machine_mode pmode;
7313 /* Get the signedness used for this variable. Ensure we get the
7314 same mode we got when the variable was declared. */
7315 pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
7316 (TREE_CODE (exp) == RESULT_DECL
7317 || TREE_CODE (exp) == PARM_DECL) ? 1 : 0);
7318 gcc_assert (GET_MODE (decl_rtl) == pmode);
7320 temp = gen_lowpart_SUBREG (mode, decl_rtl);
7321 SUBREG_PROMOTED_VAR_P (temp) = 1;
7322 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
7323 return temp;
7326 return decl_rtl;
7328 case INTEGER_CST:
7329 temp = immed_double_const (TREE_INT_CST_LOW (exp),
7330 TREE_INT_CST_HIGH (exp), mode);
7332 return temp;
7334 case VECTOR_CST:
7336 tree tmp = NULL_TREE;
7337 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
7338 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
7339 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
7340 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
7341 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
7342 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
7343 return const_vector_from_tree (exp);
7344 if (GET_MODE_CLASS (mode) == MODE_INT)
7346 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
7347 if (type_for_mode)
7348 tmp = fold_unary (VIEW_CONVERT_EXPR, type_for_mode, exp);
7350 if (!tmp)
7351 tmp = build_constructor_from_list (type,
7352 TREE_VECTOR_CST_ELTS (exp));
7353 return expand_expr (tmp, ignore ? const0_rtx : target,
7354 tmode, modifier);
7357 case CONST_DECL:
7358 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
7360 case REAL_CST:
7361 /* If optimized, generate immediate CONST_DOUBLE
7362 which will be turned into memory by reload if necessary.
7364 We used to force a register so that loop.c could see it. But
7365 this does not allow gen_* patterns to perform optimizations with
7366 the constants. It also produces two insns in cases like "x = 1.0;".
7367 On most machines, floating-point constants are not permitted in
7368 many insns, so we'd end up copying it to a register in any case.
7370 Now, we do the copying in expand_binop, if appropriate. */
7371 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
7372 TYPE_MODE (TREE_TYPE (exp)));
7374 case FIXED_CST:
7375 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
7376 TYPE_MODE (TREE_TYPE (exp)));
7378 case COMPLEX_CST:
7379 /* Handle evaluating a complex constant in a CONCAT target. */
7380 if (original_target && GET_CODE (original_target) == CONCAT)
7382 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
7383 rtx rtarg, itarg;
7385 rtarg = XEXP (original_target, 0);
7386 itarg = XEXP (original_target, 1);
7388 /* Move the real and imaginary parts separately. */
7389 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
7390 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
7392 if (op0 != rtarg)
7393 emit_move_insn (rtarg, op0);
7394 if (op1 != itarg)
7395 emit_move_insn (itarg, op1);
7397 return original_target;
7400 /* ... fall through ... */
7402 case STRING_CST:
7403 temp = expand_expr_constant (exp, 1, modifier);
7405 /* temp contains a constant address.
7406 On RISC machines where a constant address isn't valid,
7407 make some insns to get that address into a register. */
7408 if (modifier != EXPAND_CONST_ADDRESS
7409 && modifier != EXPAND_INITIALIZER
7410 && modifier != EXPAND_SUM
7411 && (! memory_address_p (mode, XEXP (temp, 0))
7412 || flag_force_addr))
7413 return replace_equiv_address (temp,
7414 copy_rtx (XEXP (temp, 0)));
7415 return temp;
7417 case SAVE_EXPR:
7419 tree val = TREE_OPERAND (exp, 0);
7420 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
7422 if (!SAVE_EXPR_RESOLVED_P (exp))
7424 /* We can indeed still hit this case, typically via builtin
7425 expanders calling save_expr immediately before expanding
7426 something. Assume this means that we only have to deal
7427 with non-BLKmode values. */
7428 gcc_assert (GET_MODE (ret) != BLKmode);
7430 val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
7431 DECL_ARTIFICIAL (val) = 1;
7432 DECL_IGNORED_P (val) = 1;
7433 TREE_OPERAND (exp, 0) = val;
7434 SAVE_EXPR_RESOLVED_P (exp) = 1;
7436 if (!CONSTANT_P (ret))
7437 ret = copy_to_reg (ret);
7438 SET_DECL_RTL (val, ret);
7441 return ret;
7444 case GOTO_EXPR:
7445 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
7446 expand_goto (TREE_OPERAND (exp, 0));
7447 else
7448 expand_computed_goto (TREE_OPERAND (exp, 0));
7449 return const0_rtx;
7451 case CONSTRUCTOR:
7452 /* If we don't need the result, just ensure we evaluate any
7453 subexpressions. */
7454 if (ignore)
7456 unsigned HOST_WIDE_INT idx;
7457 tree value;
7459 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
7460 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
7462 return const0_rtx;
7465 return expand_constructor (exp, target, modifier, false);
7467 case MISALIGNED_INDIRECT_REF:
7468 case ALIGN_INDIRECT_REF:
7469 case INDIRECT_REF:
7471 tree exp1 = TREE_OPERAND (exp, 0);
7473 if (modifier != EXPAND_WRITE)
7475 tree t;
7477 t = fold_read_from_constant_string (exp);
7478 if (t)
7479 return expand_expr (t, target, tmode, modifier);
7482 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
7483 op0 = memory_address (mode, op0);
7485 if (code == ALIGN_INDIRECT_REF)
7487 int align = TYPE_ALIGN_UNIT (type);
7488 op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
7489 op0 = memory_address (mode, op0);
7492 temp = gen_rtx_MEM (mode, op0);
7494 set_mem_attributes (temp, exp, 0);
7496 /* Resolve the misalignment now, so that we don't have to remember
7497 to resolve it later. Of course, this only works for reads. */
7498 /* ??? When we get around to supporting writes, we'll have to handle
7499 this in store_expr directly. The vectorizer isn't generating
7500 those yet, however. */
7501 if (code == MISALIGNED_INDIRECT_REF)
7503 int icode;
7504 rtx reg, insn;
7506 gcc_assert (modifier == EXPAND_NORMAL
7507 || modifier == EXPAND_STACK_PARM);
7509 /* The vectorizer should have already checked the mode. */
7510 icode = optab_handler (movmisalign_optab, mode)->insn_code;
7511 gcc_assert (icode != CODE_FOR_nothing);
7513 /* We've already validated the memory, and we're creating a
7514 new pseudo destination. The predicates really can't fail. */
7515 reg = gen_reg_rtx (mode);
7517 /* Nor can the insn generator. */
7518 insn = GEN_FCN (icode) (reg, temp);
7519 emit_insn (insn);
7521 return reg;
7524 return temp;
7527 case TARGET_MEM_REF:
7529 struct mem_address addr;
7531 get_address_description (exp, &addr);
7532 op0 = addr_for_mem_ref (&addr, true);
7533 op0 = memory_address (mode, op0);
7534 temp = gen_rtx_MEM (mode, op0);
7535 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
7537 return temp;
7539 case ARRAY_REF:
7542 tree array = TREE_OPERAND (exp, 0);
7543 tree index = TREE_OPERAND (exp, 1);
7545 /* Fold an expression like: "foo"[2].
7546 This is not done in fold so it won't happen inside &.
7547 Don't fold if this is for wide characters since it's too
7548 difficult to do correctly and this is a very rare case. */
7550 if (modifier != EXPAND_CONST_ADDRESS
7551 && modifier != EXPAND_INITIALIZER
7552 && modifier != EXPAND_MEMORY)
7554 tree t = fold_read_from_constant_string (exp);
7556 if (t)
7557 return expand_expr (t, target, tmode, modifier);
7560 /* If this is a constant index into a constant array,
7561 just get the value from the array. Handle both the cases when
7562 we have an explicit constructor and when our operand is a variable
7563 that was declared const. */
7565 if (modifier != EXPAND_CONST_ADDRESS
7566 && modifier != EXPAND_INITIALIZER
7567 && modifier != EXPAND_MEMORY
7568 && TREE_CODE (array) == CONSTRUCTOR
7569 && ! TREE_SIDE_EFFECTS (array)
7570 && TREE_CODE (index) == INTEGER_CST)
7572 unsigned HOST_WIDE_INT ix;
7573 tree field, value;
7575 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
7576 field, value)
7577 if (tree_int_cst_equal (field, index))
7579 if (!TREE_SIDE_EFFECTS (value))
7580 return expand_expr (fold (value), target, tmode, modifier);
7581 break;
7585 else if (optimize >= 1
7586 && modifier != EXPAND_CONST_ADDRESS
7587 && modifier != EXPAND_INITIALIZER
7588 && modifier != EXPAND_MEMORY
7589 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
7590 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
7591 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
7592 && targetm.binds_local_p (array))
7594 if (TREE_CODE (index) == INTEGER_CST)
7596 tree init = DECL_INITIAL (array);
7598 if (TREE_CODE (init) == CONSTRUCTOR)
7600 unsigned HOST_WIDE_INT ix;
7601 tree field, value;
7603 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
7604 field, value)
7605 if (tree_int_cst_equal (field, index))
7607 if (TREE_SIDE_EFFECTS (value))
7608 break;
7610 if (TREE_CODE (value) == CONSTRUCTOR)
7612 /* If VALUE is a CONSTRUCTOR, this
7613 optimization is only useful if
7614 this doesn't store the CONSTRUCTOR
7615 into memory. If it does, it is more
7616 efficient to just load the data from
7617 the array directly. */
7618 rtx ret = expand_constructor (value, target,
7619 modifier, true);
7620 if (ret == NULL_RTX)
7621 break;
7624 return expand_expr (fold (value), target, tmode,
7625 modifier);
7628 else if(TREE_CODE (init) == STRING_CST)
7630 tree index1 = index;
7631 tree low_bound = array_ref_low_bound (exp);
7632 index1 = fold_convert (sizetype, TREE_OPERAND (exp, 1));
7634 /* Optimize the special-case of a zero lower bound.
7636 We convert the low_bound to sizetype to avoid some problems
7637 with constant folding. (E.g. suppose the lower bound is 1,
7638 and its mode is QI. Without the conversion,l (ARRAY
7639 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7640 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
7642 if (! integer_zerop (low_bound))
7643 index1 = size_diffop (index1, fold_convert (sizetype,
7644 low_bound));
7646 if (0 > compare_tree_int (index1,
7647 TREE_STRING_LENGTH (init)))
7649 tree type = TREE_TYPE (TREE_TYPE (init));
7650 enum machine_mode mode = TYPE_MODE (type);
7652 if (GET_MODE_CLASS (mode) == MODE_INT
7653 && GET_MODE_SIZE (mode) == 1)
7654 return gen_int_mode (TREE_STRING_POINTER (init)
7655 [TREE_INT_CST_LOW (index1)],
7656 mode);
7662 goto normal_inner_ref;
7664 case COMPONENT_REF:
7665 /* If the operand is a CONSTRUCTOR, we can just extract the
7666 appropriate field if it is present. */
7667 if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
7669 unsigned HOST_WIDE_INT idx;
7670 tree field, value;
7672 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
7673 idx, field, value)
7674 if (field == TREE_OPERAND (exp, 1)
7675 /* We can normally use the value of the field in the
7676 CONSTRUCTOR. However, if this is a bitfield in
7677 an integral mode that we can fit in a HOST_WIDE_INT,
7678 we must mask only the number of bits in the bitfield,
7679 since this is done implicitly by the constructor. If
7680 the bitfield does not meet either of those conditions,
7681 we can't do this optimization. */
7682 && (! DECL_BIT_FIELD (field)
7683 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
7684 && (GET_MODE_BITSIZE (DECL_MODE (field))
7685 <= HOST_BITS_PER_WIDE_INT))))
7687 if (DECL_BIT_FIELD (field)
7688 && modifier == EXPAND_STACK_PARM)
7689 target = 0;
7690 op0 = expand_expr (value, target, tmode, modifier);
7691 if (DECL_BIT_FIELD (field))
7693 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
7694 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
7696 if (TYPE_UNSIGNED (TREE_TYPE (field)))
7698 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
7699 op0 = expand_and (imode, op0, op1, target);
7701 else
7703 tree count
7704 = build_int_cst (NULL_TREE,
7705 GET_MODE_BITSIZE (imode) - bitsize);
7707 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
7708 target, 0);
7709 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
7710 target, 0);
7714 return op0;
7717 goto normal_inner_ref;
7719 case BIT_FIELD_REF:
7720 case ARRAY_RANGE_REF:
7721 normal_inner_ref:
7723 enum machine_mode mode1;
7724 HOST_WIDE_INT bitsize, bitpos;
7725 tree offset;
7726 int volatilep = 0;
7727 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7728 &mode1, &unsignedp, &volatilep, true);
7729 rtx orig_op0;
7731 /* If we got back the original object, something is wrong. Perhaps
7732 we are evaluating an expression too early. In any event, don't
7733 infinitely recurse. */
7734 gcc_assert (tem != exp);
7736 /* If TEM's type is a union of variable size, pass TARGET to the inner
7737 computation, since it will need a temporary and TARGET is known
7738 to have to do. This occurs in unchecked conversion in Ada. */
7740 orig_op0 = op0
7741 = expand_expr (tem,
7742 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
7743 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
7744 != INTEGER_CST)
7745 && modifier != EXPAND_STACK_PARM
7746 ? target : NULL_RTX),
7747 VOIDmode,
7748 (modifier == EXPAND_INITIALIZER
7749 || modifier == EXPAND_CONST_ADDRESS
7750 || modifier == EXPAND_STACK_PARM)
7751 ? modifier : EXPAND_NORMAL);
7753 /* If this is a constant, put it into a register if it is a legitimate
7754 constant, OFFSET is 0, and we won't try to extract outside the
7755 register (in case we were passed a partially uninitialized object
7756 or a view_conversion to a larger size). Force the constant to
7757 memory otherwise. */
7758 if (CONSTANT_P (op0))
7760 enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
7761 if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
7762 && offset == 0
7763 && bitpos + bitsize <= GET_MODE_BITSIZE (mode))
7764 op0 = force_reg (mode, op0);
7765 else
7766 op0 = validize_mem (force_const_mem (mode, op0));
7769 /* Otherwise, if this object not in memory and we either have an
7770 offset, a BLKmode result, or a reference outside the object, put it
7771 there. Such cases can occur in Ada if we have unchecked conversion
7772 of an expression from a scalar type to an array or record type or
7773 for an ARRAY_RANGE_REF whose type is BLKmode. */
7774 else if (!MEM_P (op0)
7775 && (offset != 0
7776 || (bitpos + bitsize > GET_MODE_BITSIZE (GET_MODE (op0)))
7777 || (code == ARRAY_RANGE_REF && mode == BLKmode)))
7779 tree nt = build_qualified_type (TREE_TYPE (tem),
7780 (TYPE_QUALS (TREE_TYPE (tem))
7781 | TYPE_QUAL_CONST));
7782 rtx memloc = assign_temp (nt, 1, 1, 1);
7784 emit_move_insn (memloc, op0);
7785 op0 = memloc;
7788 if (offset != 0)
7790 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
7791 EXPAND_SUM);
7793 gcc_assert (MEM_P (op0));
7795 #ifdef POINTERS_EXTEND_UNSIGNED
7796 if (GET_MODE (offset_rtx) != Pmode)
7797 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
7798 #else
7799 if (GET_MODE (offset_rtx) != ptr_mode)
7800 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
7801 #endif
7803 if (GET_MODE (op0) == BLKmode
7804 /* A constant address in OP0 can have VOIDmode, we must
7805 not try to call force_reg in that case. */
7806 && GET_MODE (XEXP (op0, 0)) != VOIDmode
7807 && bitsize != 0
7808 && (bitpos % bitsize) == 0
7809 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
7810 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
7812 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7813 bitpos = 0;
7816 op0 = offset_address (op0, offset_rtx,
7817 highest_pow2_factor (offset));
7820 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7821 record its alignment as BIGGEST_ALIGNMENT. */
7822 if (MEM_P (op0) && bitpos == 0 && offset != 0
7823 && is_aligning_offset (offset, tem))
7824 set_mem_align (op0, BIGGEST_ALIGNMENT);
7826 /* Don't forget about volatility even if this is a bitfield. */
7827 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
7829 if (op0 == orig_op0)
7830 op0 = copy_rtx (op0);
7832 MEM_VOLATILE_P (op0) = 1;
7835 /* The following code doesn't handle CONCAT.
7836 Assume only bitpos == 0 can be used for CONCAT, due to
7837 one element arrays having the same mode as its element. */
7838 if (GET_CODE (op0) == CONCAT)
7840 gcc_assert (bitpos == 0
7841 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
7842 return op0;
7845 /* In cases where an aligned union has an unaligned object
7846 as a field, we might be extracting a BLKmode value from
7847 an integer-mode (e.g., SImode) object. Handle this case
7848 by doing the extract into an object as wide as the field
7849 (which we know to be the width of a basic mode), then
7850 storing into memory, and changing the mode to BLKmode. */
7851 if (mode1 == VOIDmode
7852 || REG_P (op0) || GET_CODE (op0) == SUBREG
7853 || (mode1 != BLKmode && ! direct_load[(int) mode1]
7854 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7855 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
7856 && modifier != EXPAND_CONST_ADDRESS
7857 && modifier != EXPAND_INITIALIZER)
7858 /* If the field isn't aligned enough to fetch as a memref,
7859 fetch it as a bit field. */
7860 || (mode1 != BLKmode
7861 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
7862 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
7863 || (MEM_P (op0)
7864 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
7865 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
7866 && ((modifier == EXPAND_CONST_ADDRESS
7867 || modifier == EXPAND_INITIALIZER)
7868 ? STRICT_ALIGNMENT
7869 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
7870 || (bitpos % BITS_PER_UNIT != 0)))
7871 /* If the type and the field are a constant size and the
7872 size of the type isn't the same size as the bitfield,
7873 we must use bitfield operations. */
7874 || (bitsize >= 0
7875 && TYPE_SIZE (TREE_TYPE (exp))
7876 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
7877 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
7878 bitsize)))
7880 enum machine_mode ext_mode = mode;
7882 if (ext_mode == BLKmode
7883 && ! (target != 0 && MEM_P (op0)
7884 && MEM_P (target)
7885 && bitpos % BITS_PER_UNIT == 0))
7886 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
7888 if (ext_mode == BLKmode)
7890 if (target == 0)
7891 target = assign_temp (type, 0, 1, 1);
7893 if (bitsize == 0)
7894 return target;
7896 /* In this case, BITPOS must start at a byte boundary and
7897 TARGET, if specified, must be a MEM. */
7898 gcc_assert (MEM_P (op0)
7899 && (!target || MEM_P (target))
7900 && !(bitpos % BITS_PER_UNIT));
7902 emit_block_move (target,
7903 adjust_address (op0, VOIDmode,
7904 bitpos / BITS_PER_UNIT),
7905 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
7906 / BITS_PER_UNIT),
7907 (modifier == EXPAND_STACK_PARM
7908 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7910 return target;
7913 op0 = validize_mem (op0);
7915 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
7916 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7918 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
7919 (modifier == EXPAND_STACK_PARM
7920 ? NULL_RTX : target),
7921 ext_mode, ext_mode);
7923 /* If the result is a record type and BITSIZE is narrower than
7924 the mode of OP0, an integral mode, and this is a big endian
7925 machine, we must put the field into the high-order bits. */
7926 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
7927 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7928 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
7929 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
7930 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
7931 - bitsize),
7932 op0, 1);
7934 /* If the result type is BLKmode, store the data into a temporary
7935 of the appropriate type, but with the mode corresponding to the
7936 mode for the data we have (op0's mode). It's tempting to make
7937 this a constant type, since we know it's only being stored once,
7938 but that can cause problems if we are taking the address of this
7939 COMPONENT_REF because the MEM of any reference via that address
7940 will have flags corresponding to the type, which will not
7941 necessarily be constant. */
7942 if (mode == BLKmode)
7944 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
7945 rtx new;
7947 /* If the reference doesn't use the alias set of its type,
7948 we cannot create the temporary using that type. */
7949 if (component_uses_parent_alias_set (exp))
7951 new = assign_stack_local (ext_mode, size, 0);
7952 set_mem_alias_set (new, get_alias_set (exp));
7954 else
7955 new = assign_stack_temp_for_type (ext_mode, size, 0, type);
7957 emit_move_insn (new, op0);
7958 op0 = copy_rtx (new);
7959 PUT_MODE (op0, BLKmode);
7960 set_mem_attributes (op0, exp, 1);
7963 return op0;
7966 /* If the result is BLKmode, use that to access the object
7967 now as well. */
7968 if (mode == BLKmode)
7969 mode1 = BLKmode;
7971 /* Get a reference to just this component. */
7972 if (modifier == EXPAND_CONST_ADDRESS
7973 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7974 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
7975 else
7976 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7978 if (op0 == orig_op0)
7979 op0 = copy_rtx (op0);
7981 set_mem_attributes (op0, exp, 0);
7982 if (REG_P (XEXP (op0, 0)))
7983 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7985 MEM_VOLATILE_P (op0) |= volatilep;
7986 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
7987 || modifier == EXPAND_CONST_ADDRESS
7988 || modifier == EXPAND_INITIALIZER)
7989 return op0;
7990 else if (target == 0)
7991 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7993 convert_move (target, op0, unsignedp);
7994 return target;
7997 case OBJ_TYPE_REF:
7998 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
8000 case CALL_EXPR:
8001 /* All valid uses of __builtin_va_arg_pack () are removed during
8002 inlining. */
8003 if (CALL_EXPR_VA_ARG_PACK (exp))
8004 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
8006 tree fndecl = get_callee_fndecl (exp), attr;
8008 if (fndecl
8009 && (attr = lookup_attribute ("error",
8010 DECL_ATTRIBUTES (fndecl))) != NULL)
8011 error ("%Kcall to %qs declared with attribute error: %s",
8012 exp, lang_hooks.decl_printable_name (fndecl, 1),
8013 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
8014 if (fndecl
8015 && (attr = lookup_attribute ("warning",
8016 DECL_ATTRIBUTES (fndecl))) != NULL)
8017 warning (0, "%Kcall to %qs declared with attribute warning: %s",
8018 exp, lang_hooks.decl_printable_name (fndecl, 1),
8019 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
8021 /* Check for a built-in function. */
8022 if (fndecl && DECL_BUILT_IN (fndecl))
8024 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_FRONTEND)
8025 return lang_hooks.expand_expr (exp, original_target,
8026 tmode, modifier, alt_rtl);
8027 else
8028 return expand_builtin (exp, target, subtarget, tmode, ignore);
8031 return expand_call (exp, target, ignore);
8033 case NON_LVALUE_EXPR:
8034 case NOP_EXPR:
8035 case CONVERT_EXPR:
8036 if (TREE_OPERAND (exp, 0) == error_mark_node)
8037 return const0_rtx;
8039 if (TREE_CODE (type) == UNION_TYPE)
8041 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
8043 /* If both input and output are BLKmode, this conversion isn't doing
8044 anything except possibly changing memory attribute. */
8045 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8047 rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
8048 modifier);
8050 result = copy_rtx (result);
8051 set_mem_attributes (result, exp, 0);
8052 return result;
8055 if (target == 0)
8057 if (TYPE_MODE (type) != BLKmode)
8058 target = gen_reg_rtx (TYPE_MODE (type));
8059 else
8060 target = assign_temp (type, 0, 1, 1);
8063 if (MEM_P (target))
8064 /* Store data into beginning of memory target. */
8065 store_expr (TREE_OPERAND (exp, 0),
8066 adjust_address (target, TYPE_MODE (valtype), 0),
8067 modifier == EXPAND_STACK_PARM,
8068 false);
8070 else
8072 gcc_assert (REG_P (target));
8074 /* Store this field into a union of the proper type. */
8075 store_field (target,
8076 MIN ((int_size_in_bytes (TREE_TYPE
8077 (TREE_OPERAND (exp, 0)))
8078 * BITS_PER_UNIT),
8079 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8080 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
8081 type, 0, false);
8084 /* Return the entire union. */
8085 return target;
8088 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
8090 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
8091 modifier);
8093 /* If the signedness of the conversion differs and OP0 is
8094 a promoted SUBREG, clear that indication since we now
8095 have to do the proper extension. */
8096 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
8097 && GET_CODE (op0) == SUBREG)
8098 SUBREG_PROMOTED_VAR_P (op0) = 0;
8100 return REDUCE_BIT_FIELD (op0);
8103 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode,
8104 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8105 if (GET_MODE (op0) == mode)
8108 /* If OP0 is a constant, just convert it into the proper mode. */
8109 else if (CONSTANT_P (op0))
8111 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8112 enum machine_mode inner_mode = TYPE_MODE (inner_type);
8114 if (modifier == EXPAND_INITIALIZER)
8115 op0 = simplify_gen_subreg (mode, op0, inner_mode,
8116 subreg_lowpart_offset (mode,
8117 inner_mode));
8118 else
8119 op0= convert_modes (mode, inner_mode, op0,
8120 TYPE_UNSIGNED (inner_type));
8123 else if (modifier == EXPAND_INITIALIZER)
8124 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8126 else if (target == 0)
8127 op0 = convert_to_mode (mode, op0,
8128 TYPE_UNSIGNED (TREE_TYPE
8129 (TREE_OPERAND (exp, 0))));
8130 else
8132 convert_move (target, op0,
8133 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8134 op0 = target;
8137 return REDUCE_BIT_FIELD (op0);
8139 case VIEW_CONVERT_EXPR:
8140 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
8142 /* If the input and output modes are both the same, we are done. */
8143 if (TYPE_MODE (type) == GET_MODE (op0))
8145 /* If neither mode is BLKmode, and both modes are the same size
8146 then we can use gen_lowpart. */
8147 else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
8148 && GET_MODE_SIZE (TYPE_MODE (type))
8149 == GET_MODE_SIZE (GET_MODE (op0)))
8151 if (GET_CODE (op0) == SUBREG)
8152 op0 = force_reg (GET_MODE (op0), op0);
8153 op0 = gen_lowpart (TYPE_MODE (type), op0);
8155 /* If both modes are integral, then we can convert from one to the
8156 other. */
8157 else if (SCALAR_INT_MODE_P (GET_MODE (op0))
8158 && SCALAR_INT_MODE_P (TYPE_MODE (type)))
8159 op0 = convert_modes (TYPE_MODE (type), GET_MODE (op0), op0,
8160 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8161 /* As a last resort, spill op0 to memory, and reload it in a
8162 different mode. */
8163 else if (!MEM_P (op0))
8165 /* If the operand is not a MEM, force it into memory. Since we
8166 are going to be changing the mode of the MEM, don't call
8167 force_const_mem for constants because we don't allow pool
8168 constants to change mode. */
8169 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8171 gcc_assert (!TREE_ADDRESSABLE (exp));
8173 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
8174 target
8175 = assign_stack_temp_for_type
8176 (TYPE_MODE (inner_type),
8177 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
8179 emit_move_insn (target, op0);
8180 op0 = target;
8183 /* At this point, OP0 is in the correct mode. If the output type is such
8184 that the operand is known to be aligned, indicate that it is.
8185 Otherwise, we need only be concerned about alignment for non-BLKmode
8186 results. */
8187 if (MEM_P (op0))
8189 op0 = copy_rtx (op0);
8191 if (TYPE_ALIGN_OK (type))
8192 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
8193 else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
8194 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
8196 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8197 HOST_WIDE_INT temp_size
8198 = MAX (int_size_in_bytes (inner_type),
8199 (HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
8200 rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
8201 temp_size, 0, type);
8202 rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
8204 gcc_assert (!TREE_ADDRESSABLE (exp));
8206 if (GET_MODE (op0) == BLKmode)
8207 emit_block_move (new_with_op0_mode, op0,
8208 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))),
8209 (modifier == EXPAND_STACK_PARM
8210 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
8211 else
8212 emit_move_insn (new_with_op0_mode, op0);
8214 op0 = new;
8217 op0 = adjust_address (op0, TYPE_MODE (type), 0);
8220 return op0;
8222 case POINTER_PLUS_EXPR:
8223 /* Even though the sizetype mode and the pointer's mode can be different
8224 expand is able to handle this correctly and get the correct result out
8225 of the PLUS_EXPR code. */
8226 case PLUS_EXPR:
8228 /* Check if this is a case for multiplication and addition. */
8229 if ((TREE_CODE (type) == INTEGER_TYPE
8230 || TREE_CODE (type) == FIXED_POINT_TYPE)
8231 && TREE_CODE (TREE_OPERAND (exp, 0)) == MULT_EXPR)
8233 tree subsubexp0, subsubexp1;
8234 enum tree_code code0, code1, this_code;
8236 subexp0 = TREE_OPERAND (exp, 0);
8237 subsubexp0 = TREE_OPERAND (subexp0, 0);
8238 subsubexp1 = TREE_OPERAND (subexp0, 1);
8239 code0 = TREE_CODE (subsubexp0);
8240 code1 = TREE_CODE (subsubexp1);
8241 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
8242 : FIXED_CONVERT_EXPR;
8243 if (code0 == this_code && code1 == this_code
8244 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8245 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
8246 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8247 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp1, 0))))
8248 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8249 == TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp1, 0)))))
8251 tree op0type = TREE_TYPE (TREE_OPERAND (subsubexp0, 0));
8252 enum machine_mode innermode = TYPE_MODE (op0type);
8253 bool zextend_p = TYPE_UNSIGNED (op0type);
8254 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
8255 if (sat_p == 0)
8256 this_optab = zextend_p ? umadd_widen_optab : smadd_widen_optab;
8257 else
8258 this_optab = zextend_p ? usmadd_widen_optab
8259 : ssmadd_widen_optab;
8260 if (mode == GET_MODE_2XWIDER_MODE (innermode)
8261 && (optab_handler (this_optab, mode)->insn_code
8262 != CODE_FOR_nothing))
8264 expand_operands (TREE_OPERAND (subsubexp0, 0),
8265 TREE_OPERAND (subsubexp1, 0),
8266 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8267 op2 = expand_expr (TREE_OPERAND (exp, 1), subtarget,
8268 VOIDmode, EXPAND_NORMAL);
8269 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8270 target, unsignedp);
8271 gcc_assert (temp);
8272 return REDUCE_BIT_FIELD (temp);
8277 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8278 something else, make sure we add the register to the constant and
8279 then to the other thing. This case can occur during strength
8280 reduction and doing it this way will produce better code if the
8281 frame pointer or argument pointer is eliminated.
8283 fold-const.c will ensure that the constant is always in the inner
8284 PLUS_EXPR, so the only case we need to do anything about is if
8285 sp, ap, or fp is our second argument, in which case we must swap
8286 the innermost first argument and our second argument. */
8288 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
8289 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
8290 && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
8291 && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
8292 || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
8293 || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
8295 tree t = TREE_OPERAND (exp, 1);
8297 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
8298 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
8301 /* If the result is to be ptr_mode and we are adding an integer to
8302 something, we might be forming a constant. So try to use
8303 plus_constant. If it produces a sum and we can't accept it,
8304 use force_operand. This allows P = &ARR[const] to generate
8305 efficient code on machines where a SYMBOL_REF is not a valid
8306 address.
8308 If this is an EXPAND_SUM call, always return the sum. */
8309 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8310 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8312 if (modifier == EXPAND_STACK_PARM)
8313 target = 0;
8314 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
8315 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8316 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
8318 rtx constant_part;
8320 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
8321 EXPAND_SUM);
8322 /* Use immed_double_const to ensure that the constant is
8323 truncated according to the mode of OP1, then sign extended
8324 to a HOST_WIDE_INT. Using the constant directly can result
8325 in non-canonical RTL in a 64x32 cross compile. */
8326 constant_part
8327 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
8328 (HOST_WIDE_INT) 0,
8329 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
8330 op1 = plus_constant (op1, INTVAL (constant_part));
8331 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8332 op1 = force_operand (op1, target);
8333 return REDUCE_BIT_FIELD (op1);
8336 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
8337 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8338 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
8340 rtx constant_part;
8342 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
8343 (modifier == EXPAND_INITIALIZER
8344 ? EXPAND_INITIALIZER : EXPAND_SUM));
8345 if (! CONSTANT_P (op0))
8347 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
8348 VOIDmode, modifier);
8349 /* Return a PLUS if modifier says it's OK. */
8350 if (modifier == EXPAND_SUM
8351 || modifier == EXPAND_INITIALIZER)
8352 return simplify_gen_binary (PLUS, mode, op0, op1);
8353 goto binop2;
8355 /* Use immed_double_const to ensure that the constant is
8356 truncated according to the mode of OP1, then sign extended
8357 to a HOST_WIDE_INT. Using the constant directly can result
8358 in non-canonical RTL in a 64x32 cross compile. */
8359 constant_part
8360 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
8361 (HOST_WIDE_INT) 0,
8362 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
8363 op0 = plus_constant (op0, INTVAL (constant_part));
8364 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8365 op0 = force_operand (op0, target);
8366 return REDUCE_BIT_FIELD (op0);
8370 /* No sense saving up arithmetic to be done
8371 if it's all in the wrong mode to form part of an address.
8372 And force_operand won't know whether to sign-extend or
8373 zero-extend. */
8374 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8375 || mode != ptr_mode)
8377 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8378 subtarget, &op0, &op1, 0);
8379 if (op0 == const0_rtx)
8380 return op1;
8381 if (op1 == const0_rtx)
8382 return op0;
8383 goto binop2;
8386 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8387 subtarget, &op0, &op1, modifier);
8388 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8390 case MINUS_EXPR:
8391 /* Check if this is a case for multiplication and subtraction. */
8392 if ((TREE_CODE (type) == INTEGER_TYPE
8393 || TREE_CODE (type) == FIXED_POINT_TYPE)
8394 && TREE_CODE (TREE_OPERAND (exp, 1)) == MULT_EXPR)
8396 tree subsubexp0, subsubexp1;
8397 enum tree_code code0, code1, this_code;
8399 subexp1 = TREE_OPERAND (exp, 1);
8400 subsubexp0 = TREE_OPERAND (subexp1, 0);
8401 subsubexp1 = TREE_OPERAND (subexp1, 1);
8402 code0 = TREE_CODE (subsubexp0);
8403 code1 = TREE_CODE (subsubexp1);
8404 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
8405 : FIXED_CONVERT_EXPR;
8406 if (code0 == this_code && code1 == this_code
8407 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8408 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
8409 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8410 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp1, 0))))
8411 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8412 == TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp1, 0)))))
8414 tree op0type = TREE_TYPE (TREE_OPERAND (subsubexp0, 0));
8415 enum machine_mode innermode = TYPE_MODE (op0type);
8416 bool zextend_p = TYPE_UNSIGNED (op0type);
8417 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
8418 if (sat_p == 0)
8419 this_optab = zextend_p ? umsub_widen_optab : smsub_widen_optab;
8420 else
8421 this_optab = zextend_p ? usmsub_widen_optab
8422 : ssmsub_widen_optab;
8423 if (mode == GET_MODE_2XWIDER_MODE (innermode)
8424 && (optab_handler (this_optab, mode)->insn_code
8425 != CODE_FOR_nothing))
8427 expand_operands (TREE_OPERAND (subsubexp0, 0),
8428 TREE_OPERAND (subsubexp1, 0),
8429 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8430 op2 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8431 VOIDmode, EXPAND_NORMAL);
8432 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8433 target, unsignedp);
8434 gcc_assert (temp);
8435 return REDUCE_BIT_FIELD (temp);
8440 /* For initializers, we are allowed to return a MINUS of two
8441 symbolic constants. Here we handle all cases when both operands
8442 are constant. */
8443 /* Handle difference of two symbolic constants,
8444 for the sake of an initializer. */
8445 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8446 && really_constant_p (TREE_OPERAND (exp, 0))
8447 && really_constant_p (TREE_OPERAND (exp, 1)))
8449 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8450 NULL_RTX, &op0, &op1, modifier);
8452 /* If the last operand is a CONST_INT, use plus_constant of
8453 the negated constant. Else make the MINUS. */
8454 if (GET_CODE (op1) == CONST_INT)
8455 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
8456 else
8457 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8460 /* No sense saving up arithmetic to be done
8461 if it's all in the wrong mode to form part of an address.
8462 And force_operand won't know whether to sign-extend or
8463 zero-extend. */
8464 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8465 || mode != ptr_mode)
8466 goto binop;
8468 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8469 subtarget, &op0, &op1, modifier);
8471 /* Convert A - const to A + (-const). */
8472 if (GET_CODE (op1) == CONST_INT)
8474 op1 = negate_rtx (mode, op1);
8475 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8478 goto binop2;
8480 case MULT_EXPR:
8481 /* If this is a fixed-point operation, then we cannot use the code
8482 below because "expand_mult" doesn't support sat/no-sat fixed-point
8483 multiplications. */
8484 if (ALL_FIXED_POINT_MODE_P (mode))
8485 goto binop;
8487 /* If first operand is constant, swap them.
8488 Thus the following special case checks need only
8489 check the second operand. */
8490 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
8492 tree t1 = TREE_OPERAND (exp, 0);
8493 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
8494 TREE_OPERAND (exp, 1) = t1;
8497 /* Attempt to return something suitable for generating an
8498 indexed address, for machines that support that. */
8500 if (modifier == EXPAND_SUM && mode == ptr_mode
8501 && host_integerp (TREE_OPERAND (exp, 1), 0))
8503 tree exp1 = TREE_OPERAND (exp, 1);
8505 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
8506 EXPAND_SUM);
8508 if (!REG_P (op0))
8509 op0 = force_operand (op0, NULL_RTX);
8510 if (!REG_P (op0))
8511 op0 = copy_to_mode_reg (mode, op0);
8513 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8514 gen_int_mode (tree_low_cst (exp1, 0),
8515 TYPE_MODE (TREE_TYPE (exp1)))));
8518 if (modifier == EXPAND_STACK_PARM)
8519 target = 0;
8521 /* Check for multiplying things that have been extended
8522 from a narrower type. If this machine supports multiplying
8523 in that narrower type with a result in the desired type,
8524 do it that way, and avoid the explicit type-conversion. */
8526 subexp0 = TREE_OPERAND (exp, 0);
8527 subexp1 = TREE_OPERAND (exp, 1);
8528 /* First, check if we have a multiplication of one signed and one
8529 unsigned operand. */
8530 if (TREE_CODE (subexp0) == NOP_EXPR
8531 && TREE_CODE (subexp1) == NOP_EXPR
8532 && TREE_CODE (type) == INTEGER_TYPE
8533 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8534 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
8535 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8536 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1, 0))))
8537 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8538 != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1, 0)))))
8540 enum machine_mode innermode
8541 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0, 0)));
8542 this_optab = usmul_widen_optab;
8543 if (mode == GET_MODE_WIDER_MODE (innermode))
8545 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
8547 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0))))
8548 expand_operands (TREE_OPERAND (subexp0, 0),
8549 TREE_OPERAND (subexp1, 0),
8550 NULL_RTX, &op0, &op1, 0);
8551 else
8552 expand_operands (TREE_OPERAND (subexp0, 0),
8553 TREE_OPERAND (subexp1, 0),
8554 NULL_RTX, &op1, &op0, 0);
8556 goto binop3;
8560 /* Check for a multiplication with matching signedness. */
8561 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
8562 && TREE_CODE (type) == INTEGER_TYPE
8563 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
8564 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
8565 && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
8566 && int_fits_type_p (TREE_OPERAND (exp, 1),
8567 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
8568 /* Don't use a widening multiply if a shift will do. */
8569 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
8570 > HOST_BITS_PER_WIDE_INT)
8571 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
8573 (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
8574 && (TYPE_PRECISION (TREE_TYPE
8575 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
8576 == TYPE_PRECISION (TREE_TYPE
8577 (TREE_OPERAND
8578 (TREE_OPERAND (exp, 0), 0))))
8579 /* If both operands are extended, they must either both
8580 be zero-extended or both be sign-extended. */
8581 && (TYPE_UNSIGNED (TREE_TYPE
8582 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
8583 == TYPE_UNSIGNED (TREE_TYPE
8584 (TREE_OPERAND
8585 (TREE_OPERAND (exp, 0), 0)))))))
8587 tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8588 enum machine_mode innermode = TYPE_MODE (op0type);
8589 bool zextend_p = TYPE_UNSIGNED (op0type);
8590 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8591 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8593 if (mode == GET_MODE_2XWIDER_MODE (innermode))
8595 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
8597 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8598 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8599 TREE_OPERAND (exp, 1),
8600 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8601 else
8602 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8603 TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
8604 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8605 goto binop3;
8607 else if (optab_handler (other_optab, mode)->insn_code != CODE_FOR_nothing
8608 && innermode == word_mode)
8610 rtx htem, hipart;
8611 op0 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8612 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8613 op1 = convert_modes (innermode, mode,
8614 expand_normal (TREE_OPERAND (exp, 1)),
8615 unsignedp);
8616 else
8617 op1 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 1), 0));
8618 temp = expand_binop (mode, other_optab, op0, op1, target,
8619 unsignedp, OPTAB_LIB_WIDEN);
8620 hipart = gen_highpart (innermode, temp);
8621 htem = expand_mult_highpart_adjust (innermode, hipart,
8622 op0, op1, hipart,
8623 zextend_p);
8624 if (htem != hipart)
8625 emit_move_insn (hipart, htem);
8626 return REDUCE_BIT_FIELD (temp);
8630 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8631 subtarget, &op0, &op1, 0);
8632 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8634 case TRUNC_DIV_EXPR:
8635 case FLOOR_DIV_EXPR:
8636 case CEIL_DIV_EXPR:
8637 case ROUND_DIV_EXPR:
8638 case EXACT_DIV_EXPR:
8639 /* If this is a fixed-point operation, then we cannot use the code
8640 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8641 divisions. */
8642 if (ALL_FIXED_POINT_MODE_P (mode))
8643 goto binop;
8645 if (modifier == EXPAND_STACK_PARM)
8646 target = 0;
8647 /* Possible optimization: compute the dividend with EXPAND_SUM
8648 then if the divisor is constant can optimize the case
8649 where some terms of the dividend have coeffs divisible by it. */
8650 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8651 subtarget, &op0, &op1, 0);
8652 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8654 case RDIV_EXPR:
8655 goto binop;
8657 case TRUNC_MOD_EXPR:
8658 case FLOOR_MOD_EXPR:
8659 case CEIL_MOD_EXPR:
8660 case ROUND_MOD_EXPR:
8661 if (modifier == EXPAND_STACK_PARM)
8662 target = 0;
8663 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8664 subtarget, &op0, &op1, 0);
8665 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8667 case FIXED_CONVERT_EXPR:
8668 op0 = expand_normal (TREE_OPERAND (exp, 0));
8669 if (target == 0 || modifier == EXPAND_STACK_PARM)
8670 target = gen_reg_rtx (mode);
8672 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == INTEGER_TYPE
8673 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
8674 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8675 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8676 else
8677 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8678 return target;
8680 case FIX_TRUNC_EXPR:
8681 op0 = expand_normal (TREE_OPERAND (exp, 0));
8682 if (target == 0 || modifier == EXPAND_STACK_PARM)
8683 target = gen_reg_rtx (mode);
8684 expand_fix (target, op0, unsignedp);
8685 return target;
8687 case FLOAT_EXPR:
8688 op0 = expand_normal (TREE_OPERAND (exp, 0));
8689 if (target == 0 || modifier == EXPAND_STACK_PARM)
8690 target = gen_reg_rtx (mode);
8691 /* expand_float can't figure out what to do if FROM has VOIDmode.
8692 So give it the correct mode. With -O, cse will optimize this. */
8693 if (GET_MODE (op0) == VOIDmode)
8694 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
8695 op0);
8696 expand_float (target, op0,
8697 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8698 return target;
8700 case NEGATE_EXPR:
8701 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8702 VOIDmode, EXPAND_NORMAL);
8703 if (modifier == EXPAND_STACK_PARM)
8704 target = 0;
8705 temp = expand_unop (mode,
8706 optab_for_tree_code (NEGATE_EXPR, type),
8707 op0, target, 0);
8708 gcc_assert (temp);
8709 return REDUCE_BIT_FIELD (temp);
8711 case ABS_EXPR:
8712 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8713 VOIDmode, EXPAND_NORMAL);
8714 if (modifier == EXPAND_STACK_PARM)
8715 target = 0;
8717 /* ABS_EXPR is not valid for complex arguments. */
8718 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8719 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8721 /* Unsigned abs is simply the operand. Testing here means we don't
8722 risk generating incorrect code below. */
8723 if (TYPE_UNSIGNED (type))
8724 return op0;
8726 return expand_abs (mode, op0, target, unsignedp,
8727 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
8729 case MAX_EXPR:
8730 case MIN_EXPR:
8731 target = original_target;
8732 if (target == 0
8733 || modifier == EXPAND_STACK_PARM
8734 || (MEM_P (target) && MEM_VOLATILE_P (target))
8735 || GET_MODE (target) != mode
8736 || (REG_P (target)
8737 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8738 target = gen_reg_rtx (mode);
8739 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8740 target, &op0, &op1, 0);
8742 /* First try to do it with a special MIN or MAX instruction.
8743 If that does not win, use a conditional jump to select the proper
8744 value. */
8745 this_optab = optab_for_tree_code (code, type);
8746 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8747 OPTAB_WIDEN);
8748 if (temp != 0)
8749 return temp;
8751 /* At this point, a MEM target is no longer useful; we will get better
8752 code without it. */
8754 if (! REG_P (target))
8755 target = gen_reg_rtx (mode);
8757 /* If op1 was placed in target, swap op0 and op1. */
8758 if (target != op0 && target == op1)
8760 temp = op0;
8761 op0 = op1;
8762 op1 = temp;
8765 /* We generate better code and avoid problems with op1 mentioning
8766 target by forcing op1 into a pseudo if it isn't a constant. */
8767 if (! CONSTANT_P (op1))
8768 op1 = force_reg (mode, op1);
8771 enum rtx_code comparison_code;
8772 rtx cmpop1 = op1;
8774 if (code == MAX_EXPR)
8775 comparison_code = unsignedp ? GEU : GE;
8776 else
8777 comparison_code = unsignedp ? LEU : LE;
8779 /* Canonicalize to comparisons against 0. */
8780 if (op1 == const1_rtx)
8782 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8783 or (a != 0 ? a : 1) for unsigned.
8784 For MIN we are safe converting (a <= 1 ? a : 1)
8785 into (a <= 0 ? a : 1) */
8786 cmpop1 = const0_rtx;
8787 if (code == MAX_EXPR)
8788 comparison_code = unsignedp ? NE : GT;
8790 if (op1 == constm1_rtx && !unsignedp)
8792 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8793 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8794 cmpop1 = const0_rtx;
8795 if (code == MIN_EXPR)
8796 comparison_code = LT;
8798 #ifdef HAVE_conditional_move
8799 /* Use a conditional move if possible. */
8800 if (can_conditionally_move_p (mode))
8802 rtx insn;
8804 /* ??? Same problem as in expmed.c: emit_conditional_move
8805 forces a stack adjustment via compare_from_rtx, and we
8806 lose the stack adjustment if the sequence we are about
8807 to create is discarded. */
8808 do_pending_stack_adjust ();
8810 start_sequence ();
8812 /* Try to emit the conditional move. */
8813 insn = emit_conditional_move (target, comparison_code,
8814 op0, cmpop1, mode,
8815 op0, op1, mode,
8816 unsignedp);
8818 /* If we could do the conditional move, emit the sequence,
8819 and return. */
8820 if (insn)
8822 rtx seq = get_insns ();
8823 end_sequence ();
8824 emit_insn (seq);
8825 return target;
8828 /* Otherwise discard the sequence and fall back to code with
8829 branches. */
8830 end_sequence ();
8832 #endif
8833 if (target != op0)
8834 emit_move_insn (target, op0);
8836 temp = gen_label_rtx ();
8837 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8838 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
8840 emit_move_insn (target, op1);
8841 emit_label (temp);
8842 return target;
8844 case BIT_NOT_EXPR:
8845 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8846 VOIDmode, EXPAND_NORMAL);
8847 if (modifier == EXPAND_STACK_PARM)
8848 target = 0;
8849 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8850 gcc_assert (temp);
8851 return temp;
8853 /* ??? Can optimize bitwise operations with one arg constant.
8854 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8855 and (a bitwise1 b) bitwise2 b (etc)
8856 but that is probably not worth while. */
8858 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8859 boolean values when we want in all cases to compute both of them. In
8860 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8861 as actual zero-or-1 values and then bitwise anding. In cases where
8862 there cannot be any side effects, better code would be made by
8863 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8864 how to recognize those cases. */
8866 case TRUTH_AND_EXPR:
8867 code = BIT_AND_EXPR;
8868 case BIT_AND_EXPR:
8869 goto binop;
8871 case TRUTH_OR_EXPR:
8872 code = BIT_IOR_EXPR;
8873 case BIT_IOR_EXPR:
8874 goto binop;
8876 case TRUTH_XOR_EXPR:
8877 code = BIT_XOR_EXPR;
8878 case BIT_XOR_EXPR:
8879 goto binop;
8881 case LSHIFT_EXPR:
8882 case RSHIFT_EXPR:
8883 case LROTATE_EXPR:
8884 case RROTATE_EXPR:
8885 /* If this is a fixed-point operation, then we cannot use the code
8886 below because "expand_shift" doesn't support sat/no-sat fixed-point
8887 shifts. */
8888 if (ALL_FIXED_POINT_MODE_P (mode))
8889 goto binop;
8891 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
8892 subtarget = 0;
8893 if (modifier == EXPAND_STACK_PARM)
8894 target = 0;
8895 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8896 VOIDmode, EXPAND_NORMAL);
8897 return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
8898 unsignedp);
8900 /* Could determine the answer when only additive constants differ. Also,
8901 the addition of one can be handled by changing the condition. */
8902 case LT_EXPR:
8903 case LE_EXPR:
8904 case GT_EXPR:
8905 case GE_EXPR:
8906 case EQ_EXPR:
8907 case NE_EXPR:
8908 case UNORDERED_EXPR:
8909 case ORDERED_EXPR:
8910 case UNLT_EXPR:
8911 case UNLE_EXPR:
8912 case UNGT_EXPR:
8913 case UNGE_EXPR:
8914 case UNEQ_EXPR:
8915 case LTGT_EXPR:
8916 temp = do_store_flag (exp,
8917 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8918 tmode != VOIDmode ? tmode : mode, 0);
8919 if (temp != 0)
8920 return temp;
8922 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8923 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
8924 && original_target
8925 && REG_P (original_target)
8926 && (GET_MODE (original_target)
8927 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
8929 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
8930 VOIDmode, EXPAND_NORMAL);
8932 /* If temp is constant, we can just compute the result. */
8933 if (GET_CODE (temp) == CONST_INT)
8935 if (INTVAL (temp) != 0)
8936 emit_move_insn (target, const1_rtx);
8937 else
8938 emit_move_insn (target, const0_rtx);
8940 return target;
8943 if (temp != original_target)
8945 enum machine_mode mode1 = GET_MODE (temp);
8946 if (mode1 == VOIDmode)
8947 mode1 = tmode != VOIDmode ? tmode : mode;
8949 temp = copy_to_mode_reg (mode1, temp);
8952 op1 = gen_label_rtx ();
8953 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
8954 GET_MODE (temp), unsignedp, op1);
8955 emit_move_insn (temp, const1_rtx);
8956 emit_label (op1);
8957 return temp;
8960 /* If no set-flag instruction, must generate a conditional store
8961 into a temporary variable. Drop through and handle this
8962 like && and ||. */
8964 if (! ignore
8965 && (target == 0
8966 || modifier == EXPAND_STACK_PARM
8967 || ! safe_from_p (target, exp, 1)
8968 /* Make sure we don't have a hard reg (such as function's return
8969 value) live across basic blocks, if not optimizing. */
8970 || (!optimize && REG_P (target)
8971 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8972 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8974 if (target)
8975 emit_move_insn (target, const0_rtx);
8977 op1 = gen_label_rtx ();
8978 jumpifnot (exp, op1);
8980 if (target)
8981 emit_move_insn (target, const1_rtx);
8983 emit_label (op1);
8984 return ignore ? const0_rtx : target;
8986 case TRUTH_NOT_EXPR:
8987 if (modifier == EXPAND_STACK_PARM)
8988 target = 0;
8989 op0 = expand_expr (TREE_OPERAND (exp, 0), target,
8990 VOIDmode, EXPAND_NORMAL);
8991 /* The parser is careful to generate TRUTH_NOT_EXPR
8992 only with operands that are always zero or one. */
8993 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8994 target, 1, OPTAB_LIB_WIDEN);
8995 gcc_assert (temp);
8996 return temp;
8998 case STATEMENT_LIST:
9000 tree_stmt_iterator iter;
9002 gcc_assert (ignore);
9004 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9005 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9007 return const0_rtx;
9009 case COND_EXPR:
9010 /* A COND_EXPR with its type being VOID_TYPE represents a
9011 conditional jump and is handled in
9012 expand_gimple_cond_expr. */
9013 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
9015 /* Note that COND_EXPRs whose type is a structure or union
9016 are required to be constructed to contain assignments of
9017 a temporary variable, so that we can evaluate them here
9018 for side effect only. If type is void, we must do likewise. */
9020 gcc_assert (!TREE_ADDRESSABLE (type)
9021 && !ignore
9022 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
9023 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
9025 /* If we are not to produce a result, we have no target. Otherwise,
9026 if a target was specified use it; it will not be used as an
9027 intermediate target unless it is safe. If no target, use a
9028 temporary. */
9030 if (modifier != EXPAND_STACK_PARM
9031 && original_target
9032 && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
9033 && GET_MODE (original_target) == mode
9034 #ifdef HAVE_conditional_move
9035 && (! can_conditionally_move_p (mode)
9036 || REG_P (original_target))
9037 #endif
9038 && !MEM_P (original_target))
9039 temp = original_target;
9040 else
9041 temp = assign_temp (type, 0, 0, 1);
9043 do_pending_stack_adjust ();
9044 NO_DEFER_POP;
9045 op0 = gen_label_rtx ();
9046 op1 = gen_label_rtx ();
9047 jumpifnot (TREE_OPERAND (exp, 0), op0);
9048 store_expr (TREE_OPERAND (exp, 1), temp,
9049 modifier == EXPAND_STACK_PARM,
9050 false);
9052 emit_jump_insn (gen_jump (op1));
9053 emit_barrier ();
9054 emit_label (op0);
9055 store_expr (TREE_OPERAND (exp, 2), temp,
9056 modifier == EXPAND_STACK_PARM,
9057 false);
9059 emit_label (op1);
9060 OK_DEFER_POP;
9061 return temp;
9063 case VEC_COND_EXPR:
9064 target = expand_vec_cond_expr (exp, target);
9065 return target;
9067 case MODIFY_EXPR:
9069 tree lhs = TREE_OPERAND (exp, 0);
9070 tree rhs = TREE_OPERAND (exp, 1);
9071 gcc_assert (ignore);
9072 expand_assignment (lhs, rhs, false);
9073 return const0_rtx;
9076 case GIMPLE_MODIFY_STMT:
9078 tree lhs = GIMPLE_STMT_OPERAND (exp, 0);
9079 tree rhs = GIMPLE_STMT_OPERAND (exp, 1);
9081 gcc_assert (ignore);
9083 /* Check for |= or &= of a bitfield of size one into another bitfield
9084 of size 1. In this case, (unless we need the result of the
9085 assignment) we can do this more efficiently with a
9086 test followed by an assignment, if necessary.
9088 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9089 things change so we do, this code should be enhanced to
9090 support it. */
9091 if (TREE_CODE (lhs) == COMPONENT_REF
9092 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9093 || TREE_CODE (rhs) == BIT_AND_EXPR)
9094 && TREE_OPERAND (rhs, 0) == lhs
9095 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9096 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9097 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9099 rtx label = gen_label_rtx ();
9100 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9101 do_jump (TREE_OPERAND (rhs, 1),
9102 value ? label : 0,
9103 value ? 0 : label);
9104 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9105 MOVE_NONTEMPORAL (exp));
9106 do_pending_stack_adjust ();
9107 emit_label (label);
9108 return const0_rtx;
9111 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9112 return const0_rtx;
9115 case RETURN_EXPR:
9116 if (!TREE_OPERAND (exp, 0))
9117 expand_null_return ();
9118 else
9119 expand_return (TREE_OPERAND (exp, 0));
9120 return const0_rtx;
9122 case ADDR_EXPR:
9123 return expand_expr_addr_expr (exp, target, tmode, modifier);
9125 case COMPLEX_EXPR:
9126 /* Get the rtx code of the operands. */
9127 op0 = expand_normal (TREE_OPERAND (exp, 0));
9128 op1 = expand_normal (TREE_OPERAND (exp, 1));
9130 if (!target)
9131 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
9133 /* Move the real (op0) and imaginary (op1) parts to their location. */
9134 write_complex_part (target, op0, false);
9135 write_complex_part (target, op1, true);
9137 return target;
9139 case REALPART_EXPR:
9140 op0 = expand_normal (TREE_OPERAND (exp, 0));
9141 return read_complex_part (op0, false);
9143 case IMAGPART_EXPR:
9144 op0 = expand_normal (TREE_OPERAND (exp, 0));
9145 return read_complex_part (op0, true);
9147 case RESX_EXPR:
9148 expand_resx_expr (exp);
9149 return const0_rtx;
9151 case TRY_CATCH_EXPR:
9152 case CATCH_EXPR:
9153 case EH_FILTER_EXPR:
9154 case TRY_FINALLY_EXPR:
9155 /* Lowered by tree-eh.c. */
9156 gcc_unreachable ();
9158 case WITH_CLEANUP_EXPR:
9159 case CLEANUP_POINT_EXPR:
9160 case TARGET_EXPR:
9161 case CASE_LABEL_EXPR:
9162 case VA_ARG_EXPR:
9163 case BIND_EXPR:
9164 case INIT_EXPR:
9165 case CONJ_EXPR:
9166 case COMPOUND_EXPR:
9167 case PREINCREMENT_EXPR:
9168 case PREDECREMENT_EXPR:
9169 case POSTINCREMENT_EXPR:
9170 case POSTDECREMENT_EXPR:
9171 case LOOP_EXPR:
9172 case EXIT_EXPR:
9173 case TRUTH_ANDIF_EXPR:
9174 case TRUTH_ORIF_EXPR:
9175 /* Lowered by gimplify.c. */
9176 gcc_unreachable ();
9178 case CHANGE_DYNAMIC_TYPE_EXPR:
9179 /* This is ignored at the RTL level. The tree level set
9180 DECL_POINTER_ALIAS_SET of any variable to be 0, which is
9181 overkill for the RTL layer but is all that we can
9182 represent. */
9183 return const0_rtx;
9185 case EXC_PTR_EXPR:
9186 return get_exception_pointer (cfun);
9188 case FILTER_EXPR:
9189 return get_exception_filter (cfun);
9191 case FDESC_EXPR:
9192 /* Function descriptors are not valid except for as
9193 initialization constants, and should not be expanded. */
9194 gcc_unreachable ();
9196 case SWITCH_EXPR:
9197 expand_case (exp);
9198 return const0_rtx;
9200 case LABEL_EXPR:
9201 expand_label (TREE_OPERAND (exp, 0));
9202 return const0_rtx;
9204 case ASM_EXPR:
9205 expand_asm_expr (exp);
9206 return const0_rtx;
9208 case WITH_SIZE_EXPR:
9209 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9210 have pulled out the size to use in whatever context it needed. */
9211 return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
9212 modifier, alt_rtl);
9214 case REALIGN_LOAD_EXPR:
9216 tree oprnd0 = TREE_OPERAND (exp, 0);
9217 tree oprnd1 = TREE_OPERAND (exp, 1);
9218 tree oprnd2 = TREE_OPERAND (exp, 2);
9219 rtx op2;
9221 this_optab = optab_for_tree_code (code, type);
9222 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9223 op2 = expand_normal (oprnd2);
9224 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9225 target, unsignedp);
9226 gcc_assert (temp);
9227 return temp;
9230 case DOT_PROD_EXPR:
9232 tree oprnd0 = TREE_OPERAND (exp, 0);
9233 tree oprnd1 = TREE_OPERAND (exp, 1);
9234 tree oprnd2 = TREE_OPERAND (exp, 2);
9235 rtx op2;
9237 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9238 op2 = expand_normal (oprnd2);
9239 target = expand_widen_pattern_expr (exp, op0, op1, op2,
9240 target, unsignedp);
9241 return target;
9244 case WIDEN_SUM_EXPR:
9246 tree oprnd0 = TREE_OPERAND (exp, 0);
9247 tree oprnd1 = TREE_OPERAND (exp, 1);
9249 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
9250 target = expand_widen_pattern_expr (exp, op0, NULL_RTX, op1,
9251 target, unsignedp);
9252 return target;
9255 case REDUC_MAX_EXPR:
9256 case REDUC_MIN_EXPR:
9257 case REDUC_PLUS_EXPR:
9259 op0 = expand_normal (TREE_OPERAND (exp, 0));
9260 this_optab = optab_for_tree_code (code, type);
9261 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
9262 gcc_assert (temp);
9263 return temp;
9266 case VEC_EXTRACT_EVEN_EXPR:
9267 case VEC_EXTRACT_ODD_EXPR:
9269 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9270 NULL_RTX, &op0, &op1, 0);
9271 this_optab = optab_for_tree_code (code, type);
9272 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9273 OPTAB_WIDEN);
9274 gcc_assert (temp);
9275 return temp;
9278 case VEC_INTERLEAVE_HIGH_EXPR:
9279 case VEC_INTERLEAVE_LOW_EXPR:
9281 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9282 NULL_RTX, &op0, &op1, 0);
9283 this_optab = optab_for_tree_code (code, type);
9284 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9285 OPTAB_WIDEN);
9286 gcc_assert (temp);
9287 return temp;
9290 case VEC_LSHIFT_EXPR:
9291 case VEC_RSHIFT_EXPR:
9293 target = expand_vec_shift_expr (exp, target);
9294 return target;
9297 case VEC_UNPACK_HI_EXPR:
9298 case VEC_UNPACK_LO_EXPR:
9300 op0 = expand_normal (TREE_OPERAND (exp, 0));
9301 this_optab = optab_for_tree_code (code, type);
9302 temp = expand_widen_pattern_expr (exp, op0, NULL_RTX, NULL_RTX,
9303 target, unsignedp);
9304 gcc_assert (temp);
9305 return temp;
9308 case VEC_UNPACK_FLOAT_HI_EXPR:
9309 case VEC_UNPACK_FLOAT_LO_EXPR:
9311 op0 = expand_normal (TREE_OPERAND (exp, 0));
9312 /* The signedness is determined from input operand. */
9313 this_optab = optab_for_tree_code (code,
9314 TREE_TYPE (TREE_OPERAND (exp, 0)));
9315 temp = expand_widen_pattern_expr
9316 (exp, op0, NULL_RTX, NULL_RTX,
9317 target, TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
9319 gcc_assert (temp);
9320 return temp;
9323 case VEC_WIDEN_MULT_HI_EXPR:
9324 case VEC_WIDEN_MULT_LO_EXPR:
9326 tree oprnd0 = TREE_OPERAND (exp, 0);
9327 tree oprnd1 = TREE_OPERAND (exp, 1);
9329 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
9330 target = expand_widen_pattern_expr (exp, op0, op1, NULL_RTX,
9331 target, unsignedp);
9332 gcc_assert (target);
9333 return target;
9336 case VEC_PACK_TRUNC_EXPR:
9337 case VEC_PACK_SAT_EXPR:
9338 case VEC_PACK_FIX_TRUNC_EXPR:
9340 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9341 goto binop;
9344 default:
9345 return lang_hooks.expand_expr (exp, original_target, tmode,
9346 modifier, alt_rtl);
9349 /* Here to do an ordinary binary operator. */
9350 binop:
9351 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9352 subtarget, &op0, &op1, 0);
9353 binop2:
9354 this_optab = optab_for_tree_code (code, type);
9355 binop3:
9356 if (modifier == EXPAND_STACK_PARM)
9357 target = 0;
9358 temp = expand_binop (mode, this_optab, op0, op1, target,
9359 unsignedp, OPTAB_LIB_WIDEN);
9360 gcc_assert (temp);
9361 return REDUCE_BIT_FIELD (temp);
9363 #undef REDUCE_BIT_FIELD
9365 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9366 signedness of TYPE), possibly returning the result in TARGET. */
9367 static rtx
9368 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9370 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9371 if (target && GET_MODE (target) != GET_MODE (exp))
9372 target = 0;
9373 /* For constant values, reduce using build_int_cst_type. */
9374 if (GET_CODE (exp) == CONST_INT)
9376 HOST_WIDE_INT value = INTVAL (exp);
9377 tree t = build_int_cst_type (type, value);
9378 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9380 else if (TYPE_UNSIGNED (type))
9382 rtx mask;
9383 if (prec < HOST_BITS_PER_WIDE_INT)
9384 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
9385 GET_MODE (exp));
9386 else
9387 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
9388 ((unsigned HOST_WIDE_INT) 1
9389 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
9390 GET_MODE (exp));
9391 return expand_and (GET_MODE (exp), exp, mask, target);
9393 else
9395 tree count = build_int_cst (NULL_TREE,
9396 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9397 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9398 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9402 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9403 when applied to the address of EXP produces an address known to be
9404 aligned more than BIGGEST_ALIGNMENT. */
9406 static int
9407 is_aligning_offset (const_tree offset, const_tree exp)
9409 /* Strip off any conversions. */
9410 while (TREE_CODE (offset) == NON_LVALUE_EXPR
9411 || TREE_CODE (offset) == NOP_EXPR
9412 || TREE_CODE (offset) == CONVERT_EXPR)
9413 offset = TREE_OPERAND (offset, 0);
9415 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9416 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9417 if (TREE_CODE (offset) != BIT_AND_EXPR
9418 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9419 || compare_tree_int (TREE_OPERAND (offset, 1),
9420 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9421 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9422 return 0;
9424 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9425 It must be NEGATE_EXPR. Then strip any more conversions. */
9426 offset = TREE_OPERAND (offset, 0);
9427 while (TREE_CODE (offset) == NON_LVALUE_EXPR
9428 || TREE_CODE (offset) == NOP_EXPR
9429 || TREE_CODE (offset) == CONVERT_EXPR)
9430 offset = TREE_OPERAND (offset, 0);
9432 if (TREE_CODE (offset) != NEGATE_EXPR)
9433 return 0;
9435 offset = TREE_OPERAND (offset, 0);
9436 while (TREE_CODE (offset) == NON_LVALUE_EXPR
9437 || TREE_CODE (offset) == NOP_EXPR
9438 || TREE_CODE (offset) == CONVERT_EXPR)
9439 offset = TREE_OPERAND (offset, 0);
9441 /* This must now be the address of EXP. */
9442 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9445 /* Return the tree node if an ARG corresponds to a string constant or zero
9446 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9447 in bytes within the string that ARG is accessing. The type of the
9448 offset will be `sizetype'. */
9450 tree
9451 string_constant (tree arg, tree *ptr_offset)
9453 tree array, offset, lower_bound;
9454 STRIP_NOPS (arg);
9456 if (TREE_CODE (arg) == ADDR_EXPR)
9458 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9460 *ptr_offset = size_zero_node;
9461 return TREE_OPERAND (arg, 0);
9463 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9465 array = TREE_OPERAND (arg, 0);
9466 offset = size_zero_node;
9468 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9470 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9471 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9472 if (TREE_CODE (array) != STRING_CST
9473 && TREE_CODE (array) != VAR_DECL)
9474 return 0;
9476 /* Check if the array has a nonzero lower bound. */
9477 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9478 if (!integer_zerop (lower_bound))
9480 /* If the offset and base aren't both constants, return 0. */
9481 if (TREE_CODE (lower_bound) != INTEGER_CST)
9482 return 0;
9483 if (TREE_CODE (offset) != INTEGER_CST)
9484 return 0;
9485 /* Adjust offset by the lower bound. */
9486 offset = size_diffop (fold_convert (sizetype, offset),
9487 fold_convert (sizetype, lower_bound));
9490 else
9491 return 0;
9493 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9495 tree arg0 = TREE_OPERAND (arg, 0);
9496 tree arg1 = TREE_OPERAND (arg, 1);
9498 STRIP_NOPS (arg0);
9499 STRIP_NOPS (arg1);
9501 if (TREE_CODE (arg0) == ADDR_EXPR
9502 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9503 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9505 array = TREE_OPERAND (arg0, 0);
9506 offset = arg1;
9508 else if (TREE_CODE (arg1) == ADDR_EXPR
9509 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9510 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9512 array = TREE_OPERAND (arg1, 0);
9513 offset = arg0;
9515 else
9516 return 0;
9518 else
9519 return 0;
9521 if (TREE_CODE (array) == STRING_CST)
9523 *ptr_offset = fold_convert (sizetype, offset);
9524 return array;
9526 else if (TREE_CODE (array) == VAR_DECL)
9528 int length;
9530 /* Variables initialized to string literals can be handled too. */
9531 if (DECL_INITIAL (array) == NULL_TREE
9532 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9533 return 0;
9535 /* If they are read-only, non-volatile and bind locally. */
9536 if (! TREE_READONLY (array)
9537 || TREE_SIDE_EFFECTS (array)
9538 || ! targetm.binds_local_p (array))
9539 return 0;
9541 /* Avoid const char foo[4] = "abcde"; */
9542 if (DECL_SIZE_UNIT (array) == NULL_TREE
9543 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9544 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9545 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9546 return 0;
9548 /* If variable is bigger than the string literal, OFFSET must be constant
9549 and inside of the bounds of the string literal. */
9550 offset = fold_convert (sizetype, offset);
9551 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9552 && (! host_integerp (offset, 1)
9553 || compare_tree_int (offset, length) >= 0))
9554 return 0;
9556 *ptr_offset = offset;
9557 return DECL_INITIAL (array);
9560 return 0;
9563 /* Generate code to calculate EXP using a store-flag instruction
9564 and return an rtx for the result. EXP is either a comparison
9565 or a TRUTH_NOT_EXPR whose operand is a comparison.
9567 If TARGET is nonzero, store the result there if convenient.
9569 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
9570 cheap.
9572 Return zero if there is no suitable set-flag instruction
9573 available on this machine.
9575 Once expand_expr has been called on the arguments of the comparison,
9576 we are committed to doing the store flag, since it is not safe to
9577 re-evaluate the expression. We emit the store-flag insn by calling
9578 emit_store_flag, but only expand the arguments if we have a reason
9579 to believe that emit_store_flag will be successful. If we think that
9580 it will, but it isn't, we have to simulate the store-flag with a
9581 set/jump/set sequence. */
9583 static rtx
9584 do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
9586 enum rtx_code code;
9587 tree arg0, arg1, type;
9588 tree tem;
9589 enum machine_mode operand_mode;
9590 int invert = 0;
9591 int unsignedp;
9592 rtx op0, op1;
9593 enum insn_code icode;
9594 rtx subtarget = target;
9595 rtx result, label;
9597 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
9598 result at the end. We can't simply invert the test since it would
9599 have already been inverted if it were valid. This case occurs for
9600 some floating-point comparisons. */
9602 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
9603 invert = 1, exp = TREE_OPERAND (exp, 0);
9605 arg0 = TREE_OPERAND (exp, 0);
9606 arg1 = TREE_OPERAND (exp, 1);
9608 /* Don't crash if the comparison was erroneous. */
9609 if (arg0 == error_mark_node || arg1 == error_mark_node)
9610 return const0_rtx;
9612 type = TREE_TYPE (arg0);
9613 operand_mode = TYPE_MODE (type);
9614 unsignedp = TYPE_UNSIGNED (type);
9616 /* We won't bother with BLKmode store-flag operations because it would mean
9617 passing a lot of information to emit_store_flag. */
9618 if (operand_mode == BLKmode)
9619 return 0;
9621 /* We won't bother with store-flag operations involving function pointers
9622 when function pointers must be canonicalized before comparisons. */
9623 #ifdef HAVE_canonicalize_funcptr_for_compare
9624 if (HAVE_canonicalize_funcptr_for_compare
9625 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
9626 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
9627 == FUNCTION_TYPE))
9628 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
9629 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
9630 == FUNCTION_TYPE))))
9631 return 0;
9632 #endif
9634 STRIP_NOPS (arg0);
9635 STRIP_NOPS (arg1);
9637 /* Get the rtx comparison code to use. We know that EXP is a comparison
9638 operation of some type. Some comparisons against 1 and -1 can be
9639 converted to comparisons with zero. Do so here so that the tests
9640 below will be aware that we have a comparison with zero. These
9641 tests will not catch constants in the first operand, but constants
9642 are rarely passed as the first operand. */
9644 switch (TREE_CODE (exp))
9646 case EQ_EXPR:
9647 code = EQ;
9648 break;
9649 case NE_EXPR:
9650 code = NE;
9651 break;
9652 case LT_EXPR:
9653 if (integer_onep (arg1))
9654 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9655 else
9656 code = unsignedp ? LTU : LT;
9657 break;
9658 case LE_EXPR:
9659 if (! unsignedp && integer_all_onesp (arg1))
9660 arg1 = integer_zero_node, code = LT;
9661 else
9662 code = unsignedp ? LEU : LE;
9663 break;
9664 case GT_EXPR:
9665 if (! unsignedp && integer_all_onesp (arg1))
9666 arg1 = integer_zero_node, code = GE;
9667 else
9668 code = unsignedp ? GTU : GT;
9669 break;
9670 case GE_EXPR:
9671 if (integer_onep (arg1))
9672 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9673 else
9674 code = unsignedp ? GEU : GE;
9675 break;
9677 case UNORDERED_EXPR:
9678 code = UNORDERED;
9679 break;
9680 case ORDERED_EXPR:
9681 code = ORDERED;
9682 break;
9683 case UNLT_EXPR:
9684 code = UNLT;
9685 break;
9686 case UNLE_EXPR:
9687 code = UNLE;
9688 break;
9689 case UNGT_EXPR:
9690 code = UNGT;
9691 break;
9692 case UNGE_EXPR:
9693 code = UNGE;
9694 break;
9695 case UNEQ_EXPR:
9696 code = UNEQ;
9697 break;
9698 case LTGT_EXPR:
9699 code = LTGT;
9700 break;
9702 default:
9703 gcc_unreachable ();
9706 /* Put a constant second. */
9707 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
9708 || TREE_CODE (arg0) == FIXED_CST)
9710 tem = arg0; arg0 = arg1; arg1 = tem;
9711 code = swap_condition (code);
9714 /* If this is an equality or inequality test of a single bit, we can
9715 do this by shifting the bit being tested to the low-order bit and
9716 masking the result with the constant 1. If the condition was EQ,
9717 we xor it with 1. This does not require an scc insn and is faster
9718 than an scc insn even if we have it.
9720 The code to make this transformation was moved into fold_single_bit_test,
9721 so we just call into the folder and expand its result. */
9723 if ((code == NE || code == EQ)
9724 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
9725 && integer_pow2p (TREE_OPERAND (arg0, 1)))
9727 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
9728 return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
9729 arg0, arg1, type),
9730 target, VOIDmode, EXPAND_NORMAL);
9733 /* Now see if we are likely to be able to do this. Return if not. */
9734 if (! can_compare_p (code, operand_mode, ccp_store_flag))
9735 return 0;
9737 icode = setcc_gen_code[(int) code];
9739 if (icode == CODE_FOR_nothing)
9741 enum machine_mode wmode;
9743 for (wmode = operand_mode;
9744 icode == CODE_FOR_nothing && wmode != VOIDmode;
9745 wmode = GET_MODE_WIDER_MODE (wmode))
9746 icode = optab_handler (cstore_optab, wmode)->insn_code;
9749 if (icode == CODE_FOR_nothing
9750 || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
9752 /* We can only do this if it is one of the special cases that
9753 can be handled without an scc insn. */
9754 if ((code == LT && integer_zerop (arg1))
9755 || (! only_cheap && code == GE && integer_zerop (arg1)))
9757 else if (! only_cheap && (code == NE || code == EQ)
9758 && TREE_CODE (type) != REAL_TYPE
9759 && ((optab_handler (abs_optab, operand_mode)->insn_code
9760 != CODE_FOR_nothing)
9761 || (optab_handler (ffs_optab, operand_mode)->insn_code
9762 != CODE_FOR_nothing)))
9764 else
9765 return 0;
9768 if (! get_subtarget (target)
9769 || GET_MODE (subtarget) != operand_mode)
9770 subtarget = 0;
9772 expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
9774 if (target == 0)
9775 target = gen_reg_rtx (mode);
9777 result = emit_store_flag (target, code, op0, op1,
9778 operand_mode, unsignedp, 1);
9780 if (result)
9782 if (invert)
9783 result = expand_binop (mode, xor_optab, result, const1_rtx,
9784 result, 0, OPTAB_LIB_WIDEN);
9785 return result;
9788 /* If this failed, we have to do this with set/compare/jump/set code. */
9789 if (!REG_P (target)
9790 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
9791 target = gen_reg_rtx (GET_MODE (target));
9793 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
9794 label = gen_label_rtx ();
9795 do_compare_rtx_and_jump (op0, op1, code, unsignedp, operand_mode, NULL_RTX,
9796 NULL_RTX, label);
9798 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
9799 emit_label (label);
9801 return target;
9805 /* Stubs in case we haven't got a casesi insn. */
9806 #ifndef HAVE_casesi
9807 # define HAVE_casesi 0
9808 # define gen_casesi(a, b, c, d, e) (0)
9809 # define CODE_FOR_casesi CODE_FOR_nothing
9810 #endif
9812 /* If the machine does not have a case insn that compares the bounds,
9813 this means extra overhead for dispatch tables, which raises the
9814 threshold for using them. */
9815 #ifndef CASE_VALUES_THRESHOLD
9816 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
9817 #endif /* CASE_VALUES_THRESHOLD */
9819 unsigned int
9820 case_values_threshold (void)
9822 return CASE_VALUES_THRESHOLD;
9825 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9826 0 otherwise (i.e. if there is no casesi instruction). */
9828 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
9829 rtx table_label ATTRIBUTE_UNUSED, rtx default_label)
9831 enum machine_mode index_mode = SImode;
9832 int index_bits = GET_MODE_BITSIZE (index_mode);
9833 rtx op1, op2, index;
9834 enum machine_mode op_mode;
9836 if (! HAVE_casesi)
9837 return 0;
9839 /* Convert the index to SImode. */
9840 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
9842 enum machine_mode omode = TYPE_MODE (index_type);
9843 rtx rangertx = expand_normal (range);
9845 /* We must handle the endpoints in the original mode. */
9846 index_expr = build2 (MINUS_EXPR, index_type,
9847 index_expr, minval);
9848 minval = integer_zero_node;
9849 index = expand_normal (index_expr);
9850 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
9851 omode, 1, default_label);
9852 /* Now we can safely truncate. */
9853 index = convert_to_mode (index_mode, index, 0);
9855 else
9857 if (TYPE_MODE (index_type) != index_mode)
9859 index_type = lang_hooks.types.type_for_size (index_bits, 0);
9860 index_expr = fold_convert (index_type, index_expr);
9863 index = expand_normal (index_expr);
9866 do_pending_stack_adjust ();
9868 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
9869 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
9870 (index, op_mode))
9871 index = copy_to_mode_reg (op_mode, index);
9873 op1 = expand_normal (minval);
9875 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
9876 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
9877 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
9878 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
9879 (op1, op_mode))
9880 op1 = copy_to_mode_reg (op_mode, op1);
9882 op2 = expand_normal (range);
9884 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
9885 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
9886 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
9887 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
9888 (op2, op_mode))
9889 op2 = copy_to_mode_reg (op_mode, op2);
9891 emit_jump_insn (gen_casesi (index, op1, op2,
9892 table_label, default_label));
9893 return 1;
9896 /* Attempt to generate a tablejump instruction; same concept. */
9897 #ifndef HAVE_tablejump
9898 #define HAVE_tablejump 0
9899 #define gen_tablejump(x, y) (0)
9900 #endif
9902 /* Subroutine of the next function.
9904 INDEX is the value being switched on, with the lowest value
9905 in the table already subtracted.
9906 MODE is its expected mode (needed if INDEX is constant).
9907 RANGE is the length of the jump table.
9908 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
9910 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
9911 index value is out of range. */
9913 static void
9914 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
9915 rtx default_label)
9917 rtx temp, vector;
9919 if (INTVAL (range) > cfun->max_jumptable_ents)
9920 cfun->max_jumptable_ents = INTVAL (range);
9922 /* Do an unsigned comparison (in the proper mode) between the index
9923 expression and the value which represents the length of the range.
9924 Since we just finished subtracting the lower bound of the range
9925 from the index expression, this comparison allows us to simultaneously
9926 check that the original index expression value is both greater than
9927 or equal to the minimum value of the range and less than or equal to
9928 the maximum value of the range. */
9930 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
9931 default_label);
9933 /* If index is in range, it must fit in Pmode.
9934 Convert to Pmode so we can index with it. */
9935 if (mode != Pmode)
9936 index = convert_to_mode (Pmode, index, 1);
9938 /* Don't let a MEM slip through, because then INDEX that comes
9939 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
9940 and break_out_memory_refs will go to work on it and mess it up. */
9941 #ifdef PIC_CASE_VECTOR_ADDRESS
9942 if (flag_pic && !REG_P (index))
9943 index = copy_to_mode_reg (Pmode, index);
9944 #endif
9946 /* If flag_force_addr were to affect this address
9947 it could interfere with the tricky assumptions made
9948 about addresses that contain label-refs,
9949 which may be valid only very near the tablejump itself. */
9950 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
9951 GET_MODE_SIZE, because this indicates how large insns are. The other
9952 uses should all be Pmode, because they are addresses. This code
9953 could fail if addresses and insns are not the same size. */
9954 index = gen_rtx_PLUS (Pmode,
9955 gen_rtx_MULT (Pmode, index,
9956 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
9957 gen_rtx_LABEL_REF (Pmode, table_label));
9958 #ifdef PIC_CASE_VECTOR_ADDRESS
9959 if (flag_pic)
9960 index = PIC_CASE_VECTOR_ADDRESS (index);
9961 else
9962 #endif
9963 index = memory_address_noforce (CASE_VECTOR_MODE, index);
9964 temp = gen_reg_rtx (CASE_VECTOR_MODE);
9965 vector = gen_const_mem (CASE_VECTOR_MODE, index);
9966 convert_move (temp, vector, 0);
9968 emit_jump_insn (gen_tablejump (temp, table_label));
9970 /* If we are generating PIC code or if the table is PC-relative, the
9971 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
9972 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
9973 emit_barrier ();
9977 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
9978 rtx table_label, rtx default_label)
9980 rtx index;
9982 if (! HAVE_tablejump)
9983 return 0;
9985 index_expr = fold_build2 (MINUS_EXPR, index_type,
9986 fold_convert (index_type, index_expr),
9987 fold_convert (index_type, minval));
9988 index = expand_normal (index_expr);
9989 do_pending_stack_adjust ();
9991 do_tablejump (index, TYPE_MODE (index_type),
9992 convert_modes (TYPE_MODE (index_type),
9993 TYPE_MODE (TREE_TYPE (range)),
9994 expand_normal (range),
9995 TYPE_UNSIGNED (TREE_TYPE (range))),
9996 table_label, default_label);
9997 return 1;
10000 /* Nonzero if the mode is a valid vector mode for this architecture.
10001 This returns nonzero even if there is no hardware support for the
10002 vector mode, but we can emulate with narrower modes. */
10005 vector_mode_valid_p (enum machine_mode mode)
10007 enum mode_class class = GET_MODE_CLASS (mode);
10008 enum machine_mode innermode;
10010 /* Doh! What's going on? */
10011 if (class != MODE_VECTOR_INT
10012 && class != MODE_VECTOR_FLOAT
10013 && class != MODE_VECTOR_FRACT
10014 && class != MODE_VECTOR_UFRACT
10015 && class != MODE_VECTOR_ACCUM
10016 && class != MODE_VECTOR_UACCUM)
10017 return 0;
10019 /* Hardware support. Woo hoo! */
10020 if (targetm.vector_mode_supported_p (mode))
10021 return 1;
10023 innermode = GET_MODE_INNER (mode);
10025 /* We should probably return 1 if requesting V4DI and we have no DI,
10026 but we have V2DI, but this is probably very unlikely. */
10028 /* If we have support for the inner mode, we can safely emulate it.
10029 We may not have V2DI, but me can emulate with a pair of DIs. */
10030 return targetm.scalar_mode_supported_p (innermode);
10033 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10034 static rtx
10035 const_vector_from_tree (tree exp)
10037 rtvec v;
10038 int units, i;
10039 tree link, elt;
10040 enum machine_mode inner, mode;
10042 mode = TYPE_MODE (TREE_TYPE (exp));
10044 if (initializer_zerop (exp))
10045 return CONST0_RTX (mode);
10047 units = GET_MODE_NUNITS (mode);
10048 inner = GET_MODE_INNER (mode);
10050 v = rtvec_alloc (units);
10052 link = TREE_VECTOR_CST_ELTS (exp);
10053 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10055 elt = TREE_VALUE (link);
10057 if (TREE_CODE (elt) == REAL_CST)
10058 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10059 inner);
10060 else if (TREE_CODE (elt) == FIXED_CST)
10061 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10062 inner);
10063 else
10064 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
10065 TREE_INT_CST_HIGH (elt),
10066 inner);
10069 /* Initialize remaining elements to 0. */
10070 for (; i < units; ++i)
10071 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10073 return gen_rtx_CONST_VECTOR (mode, v);
10075 #include "gt-expr.h"