* config/m32c/m32c.c (m32c_valid_pointer_mode): Remove stray debug
[official-gcc.git] / gcc / function.c
blob3ee5e8b8892a89fe6be26e7dbe5c6a4e930f6813
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "toplev.h"
56 #include "hashtab.h"
57 #include "ggc.h"
58 #include "tm_p.h"
59 #include "integrate.h"
60 #include "langhooks.h"
61 #include "target.h"
62 #include "cfglayout.h"
63 #include "tree-gimple.h"
64 #include "tree-pass.h"
65 #include "predict.h"
67 #ifndef LOCAL_ALIGNMENT
68 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
69 #endif
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 /* Nonzero if function being compiled doesn't contain any calls
95 (ignoring the prologue and epilogue). This is set prior to
96 local register allocation and is valid for the remaining
97 compiler passes. */
98 int current_function_is_leaf;
100 /* Nonzero if function being compiled doesn't modify the stack pointer
101 (ignoring the prologue and epilogue). This is only valid after
102 life_analysis has run. */
103 int current_function_sp_is_unchanging;
105 /* Nonzero if the function being compiled is a leaf function which only
106 uses leaf registers. This is valid after reload (specifically after
107 sched2) and is useful only if the port defines LEAF_REGISTERS. */
108 int current_function_uses_only_leaf_regs;
110 /* Nonzero once virtual register instantiation has been done.
111 assign_stack_local uses frame_pointer_rtx when this is nonzero.
112 calls.c:emit_library_call_value_1 uses it to set up
113 post-instantiation libcalls. */
114 int virtuals_instantiated;
116 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
117 static GTY(()) int funcdef_no;
119 /* These variables hold pointers to functions to create and destroy
120 target specific, per-function data structures. */
121 struct machine_function * (*init_machine_status) (void);
123 /* The currently compiled function. */
124 struct function *cfun = 0;
126 DEF_VEC_I(int);
127 DEF_VEC_ALLOC_I(int,heap);
129 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
130 static VEC(int,heap) *prologue;
131 static VEC(int,heap) *epilogue;
133 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
134 in this function. */
135 static VEC(int,heap) *sibcall_epilogue;
137 /* In order to evaluate some expressions, such as function calls returning
138 structures in memory, we need to temporarily allocate stack locations.
139 We record each allocated temporary in the following structure.
141 Associated with each temporary slot is a nesting level. When we pop up
142 one level, all temporaries associated with the previous level are freed.
143 Normally, all temporaries are freed after the execution of the statement
144 in which they were created. However, if we are inside a ({...}) grouping,
145 the result may be in a temporary and hence must be preserved. If the
146 result could be in a temporary, we preserve it if we can determine which
147 one it is in. If we cannot determine which temporary may contain the
148 result, all temporaries are preserved. A temporary is preserved by
149 pretending it was allocated at the previous nesting level.
151 Automatic variables are also assigned temporary slots, at the nesting
152 level where they are defined. They are marked a "kept" so that
153 free_temp_slots will not free them. */
155 struct temp_slot GTY(())
157 /* Points to next temporary slot. */
158 struct temp_slot *next;
159 /* Points to previous temporary slot. */
160 struct temp_slot *prev;
162 /* The rtx to used to reference the slot. */
163 rtx slot;
164 /* The rtx used to represent the address if not the address of the
165 slot above. May be an EXPR_LIST if multiple addresses exist. */
166 rtx address;
167 /* The alignment (in bits) of the slot. */
168 unsigned int align;
169 /* The size, in units, of the slot. */
170 HOST_WIDE_INT size;
171 /* The type of the object in the slot, or zero if it doesn't correspond
172 to a type. We use this to determine whether a slot can be reused.
173 It can be reused if objects of the type of the new slot will always
174 conflict with objects of the type of the old slot. */
175 tree type;
176 /* Nonzero if this temporary is currently in use. */
177 char in_use;
178 /* Nonzero if this temporary has its address taken. */
179 char addr_taken;
180 /* Nesting level at which this slot is being used. */
181 int level;
182 /* Nonzero if this should survive a call to free_temp_slots. */
183 int keep;
184 /* The offset of the slot from the frame_pointer, including extra space
185 for alignment. This info is for combine_temp_slots. */
186 HOST_WIDE_INT base_offset;
187 /* The size of the slot, including extra space for alignment. This
188 info is for combine_temp_slots. */
189 HOST_WIDE_INT full_size;
192 /* Forward declarations. */
194 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
195 struct function *);
196 static struct temp_slot *find_temp_slot_from_address (rtx);
197 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
198 static void pad_below (struct args_size *, enum machine_mode, tree);
199 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
200 static void reorder_fix_fragments (tree);
201 static int all_blocks (tree, tree *);
202 static tree *get_block_vector (tree, int *);
203 extern tree debug_find_var_in_block_tree (tree, tree);
204 /* We always define `record_insns' even if it's not used so that we
205 can always export `prologue_epilogue_contains'. */
206 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
207 static int contains (rtx, VEC(int,heap) **);
208 #ifdef HAVE_return
209 static void emit_return_into_block (basic_block, rtx);
210 #endif
211 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
212 static rtx keep_stack_depressed (rtx);
213 #endif
214 static void prepare_function_start (tree);
215 static void do_clobber_return_reg (rtx, void *);
216 static void do_use_return_reg (rtx, void *);
217 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
219 /* Pointer to chain of `struct function' for containing functions. */
220 struct function *outer_function_chain;
222 /* Given a function decl for a containing function,
223 return the `struct function' for it. */
225 struct function *
226 find_function_data (tree decl)
228 struct function *p;
230 for (p = outer_function_chain; p; p = p->outer)
231 if (p->decl == decl)
232 return p;
234 gcc_unreachable ();
237 /* Save the current context for compilation of a nested function.
238 This is called from language-specific code. The caller should use
239 the enter_nested langhook to save any language-specific state,
240 since this function knows only about language-independent
241 variables. */
243 void
244 push_function_context_to (tree context ATTRIBUTE_UNUSED)
246 struct function *p;
248 if (cfun == 0)
249 init_dummy_function_start ();
250 p = cfun;
252 p->outer = outer_function_chain;
253 outer_function_chain = p;
255 lang_hooks.function.enter_nested (p);
257 cfun = 0;
260 void
261 push_function_context (void)
263 push_function_context_to (current_function_decl);
266 /* Restore the last saved context, at the end of a nested function.
267 This function is called from language-specific code. */
269 void
270 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
272 struct function *p = outer_function_chain;
274 cfun = p;
275 outer_function_chain = p->outer;
277 current_function_decl = p->decl;
279 lang_hooks.function.leave_nested (p);
281 /* Reset variables that have known state during rtx generation. */
282 virtuals_instantiated = 0;
283 generating_concat_p = 1;
286 void
287 pop_function_context (void)
289 pop_function_context_from (current_function_decl);
292 /* Clear out all parts of the state in F that can safely be discarded
293 after the function has been parsed, but not compiled, to let
294 garbage collection reclaim the memory. */
296 void
297 free_after_parsing (struct function *f)
299 /* f->expr->forced_labels is used by code generation. */
300 /* f->emit->regno_reg_rtx is used by code generation. */
301 /* f->varasm is used by code generation. */
302 /* f->eh->eh_return_stub_label is used by code generation. */
304 lang_hooks.function.final (f);
307 /* Clear out all parts of the state in F that can safely be discarded
308 after the function has been compiled, to let garbage collection
309 reclaim the memory. */
311 void
312 free_after_compilation (struct function *f)
314 VEC_free (int, heap, prologue);
315 VEC_free (int, heap, epilogue);
316 VEC_free (int, heap, sibcall_epilogue);
318 f->eh = NULL;
319 f->expr = NULL;
320 f->emit = NULL;
321 f->varasm = NULL;
322 f->machine = NULL;
323 f->cfg = NULL;
325 f->x_avail_temp_slots = NULL;
326 f->x_used_temp_slots = NULL;
327 f->arg_offset_rtx = NULL;
328 f->return_rtx = NULL;
329 f->internal_arg_pointer = NULL;
330 f->x_nonlocal_goto_handler_labels = NULL;
331 f->x_return_label = NULL;
332 f->x_naked_return_label = NULL;
333 f->x_stack_slot_list = NULL;
334 f->x_tail_recursion_reentry = NULL;
335 f->x_arg_pointer_save_area = NULL;
336 f->x_parm_birth_insn = NULL;
337 f->original_arg_vector = NULL;
338 f->original_decl_initial = NULL;
339 f->epilogue_delay_list = NULL;
342 /* Allocate fixed slots in the stack frame of the current function. */
344 /* Return size needed for stack frame based on slots so far allocated in
345 function F.
346 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
347 the caller may have to do that. */
349 static HOST_WIDE_INT
350 get_func_frame_size (struct function *f)
352 if (FRAME_GROWS_DOWNWARD)
353 return -f->x_frame_offset;
354 else
355 return f->x_frame_offset;
358 /* Return size needed for stack frame based on slots so far allocated.
359 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
360 the caller may have to do that. */
361 HOST_WIDE_INT
362 get_frame_size (void)
364 return get_func_frame_size (cfun);
367 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
368 with machine mode MODE.
370 ALIGN controls the amount of alignment for the address of the slot:
371 0 means according to MODE,
372 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
373 -2 means use BITS_PER_UNIT,
374 positive specifies alignment boundary in bits.
376 We do not round to stack_boundary here.
378 FUNCTION specifies the function to allocate in. */
380 static rtx
381 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
382 struct function *function)
384 rtx x, addr;
385 int bigend_correction = 0;
386 unsigned int alignment;
387 int frame_off, frame_alignment, frame_phase;
389 if (align == 0)
391 tree type;
393 if (mode == BLKmode)
394 alignment = BIGGEST_ALIGNMENT;
395 else
396 alignment = GET_MODE_ALIGNMENT (mode);
398 /* Allow the target to (possibly) increase the alignment of this
399 stack slot. */
400 type = lang_hooks.types.type_for_mode (mode, 0);
401 if (type)
402 alignment = LOCAL_ALIGNMENT (type, alignment);
404 alignment /= BITS_PER_UNIT;
406 else if (align == -1)
408 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
409 size = CEIL_ROUND (size, alignment);
411 else if (align == -2)
412 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
413 else
414 alignment = align / BITS_PER_UNIT;
416 if (FRAME_GROWS_DOWNWARD)
417 function->x_frame_offset -= size;
419 /* Ignore alignment we can't do with expected alignment of the boundary. */
420 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
421 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
423 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
424 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
426 /* Calculate how many bytes the start of local variables is off from
427 stack alignment. */
428 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
429 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
430 frame_phase = frame_off ? frame_alignment - frame_off : 0;
432 /* Round the frame offset to the specified alignment. The default is
433 to always honor requests to align the stack but a port may choose to
434 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
435 if (STACK_ALIGNMENT_NEEDED
436 || mode != BLKmode
437 || size != 0)
439 /* We must be careful here, since FRAME_OFFSET might be negative and
440 division with a negative dividend isn't as well defined as we might
441 like. So we instead assume that ALIGNMENT is a power of two and
442 use logical operations which are unambiguous. */
443 if (FRAME_GROWS_DOWNWARD)
444 function->x_frame_offset
445 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
446 (unsigned HOST_WIDE_INT) alignment)
447 + frame_phase);
448 else
449 function->x_frame_offset
450 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
451 (unsigned HOST_WIDE_INT) alignment)
452 + frame_phase);
455 /* On a big-endian machine, if we are allocating more space than we will use,
456 use the least significant bytes of those that are allocated. */
457 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
458 bigend_correction = size - GET_MODE_SIZE (mode);
460 /* If we have already instantiated virtual registers, return the actual
461 address relative to the frame pointer. */
462 if (function == cfun && virtuals_instantiated)
463 addr = plus_constant (frame_pointer_rtx,
464 trunc_int_for_mode
465 (frame_offset + bigend_correction
466 + STARTING_FRAME_OFFSET, Pmode));
467 else
468 addr = plus_constant (virtual_stack_vars_rtx,
469 trunc_int_for_mode
470 (function->x_frame_offset + bigend_correction,
471 Pmode));
473 if (!FRAME_GROWS_DOWNWARD)
474 function->x_frame_offset += size;
476 x = gen_rtx_MEM (mode, addr);
477 MEM_NOTRAP_P (x) = 1;
479 function->x_stack_slot_list
480 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
482 return x;
485 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
486 current function. */
489 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
491 return assign_stack_local_1 (mode, size, align, cfun);
495 /* Removes temporary slot TEMP from LIST. */
497 static void
498 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
500 if (temp->next)
501 temp->next->prev = temp->prev;
502 if (temp->prev)
503 temp->prev->next = temp->next;
504 else
505 *list = temp->next;
507 temp->prev = temp->next = NULL;
510 /* Inserts temporary slot TEMP to LIST. */
512 static void
513 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
515 temp->next = *list;
516 if (*list)
517 (*list)->prev = temp;
518 temp->prev = NULL;
519 *list = temp;
522 /* Returns the list of used temp slots at LEVEL. */
524 static struct temp_slot **
525 temp_slots_at_level (int level)
528 if (!used_temp_slots)
529 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
531 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
532 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
534 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
537 /* Returns the maximal temporary slot level. */
539 static int
540 max_slot_level (void)
542 if (!used_temp_slots)
543 return -1;
545 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
548 /* Moves temporary slot TEMP to LEVEL. */
550 static void
551 move_slot_to_level (struct temp_slot *temp, int level)
553 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
554 insert_slot_to_list (temp, temp_slots_at_level (level));
555 temp->level = level;
558 /* Make temporary slot TEMP available. */
560 static void
561 make_slot_available (struct temp_slot *temp)
563 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
564 insert_slot_to_list (temp, &avail_temp_slots);
565 temp->in_use = 0;
566 temp->level = -1;
569 /* Allocate a temporary stack slot and record it for possible later
570 reuse.
572 MODE is the machine mode to be given to the returned rtx.
574 SIZE is the size in units of the space required. We do no rounding here
575 since assign_stack_local will do any required rounding.
577 KEEP is 1 if this slot is to be retained after a call to
578 free_temp_slots. Automatic variables for a block are allocated
579 with this flag. KEEP values of 2 or 3 were needed respectively
580 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
581 or for SAVE_EXPRs, but they are now unused.
583 TYPE is the type that will be used for the stack slot. */
586 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
587 int keep, tree type)
589 unsigned int align;
590 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
591 rtx slot;
593 /* If SIZE is -1 it means that somebody tried to allocate a temporary
594 of a variable size. */
595 gcc_assert (size != -1);
597 /* These are now unused. */
598 gcc_assert (keep <= 1);
600 if (mode == BLKmode)
601 align = BIGGEST_ALIGNMENT;
602 else
603 align = GET_MODE_ALIGNMENT (mode);
605 if (! type)
606 type = lang_hooks.types.type_for_mode (mode, 0);
608 if (type)
609 align = LOCAL_ALIGNMENT (type, align);
611 /* Try to find an available, already-allocated temporary of the proper
612 mode which meets the size and alignment requirements. Choose the
613 smallest one with the closest alignment. */
614 for (p = avail_temp_slots; p; p = p->next)
616 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
617 && objects_must_conflict_p (p->type, type)
618 && (best_p == 0 || best_p->size > p->size
619 || (best_p->size == p->size && best_p->align > p->align)))
621 if (p->align == align && p->size == size)
623 selected = p;
624 cut_slot_from_list (selected, &avail_temp_slots);
625 best_p = 0;
626 break;
628 best_p = p;
632 /* Make our best, if any, the one to use. */
633 if (best_p)
635 selected = best_p;
636 cut_slot_from_list (selected, &avail_temp_slots);
638 /* If there are enough aligned bytes left over, make them into a new
639 temp_slot so that the extra bytes don't get wasted. Do this only
640 for BLKmode slots, so that we can be sure of the alignment. */
641 if (GET_MODE (best_p->slot) == BLKmode)
643 int alignment = best_p->align / BITS_PER_UNIT;
644 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
646 if (best_p->size - rounded_size >= alignment)
648 p = ggc_alloc (sizeof (struct temp_slot));
649 p->in_use = p->addr_taken = 0;
650 p->size = best_p->size - rounded_size;
651 p->base_offset = best_p->base_offset + rounded_size;
652 p->full_size = best_p->full_size - rounded_size;
653 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
654 p->align = best_p->align;
655 p->address = 0;
656 p->type = best_p->type;
657 insert_slot_to_list (p, &avail_temp_slots);
659 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
660 stack_slot_list);
662 best_p->size = rounded_size;
663 best_p->full_size = rounded_size;
668 /* If we still didn't find one, make a new temporary. */
669 if (selected == 0)
671 HOST_WIDE_INT frame_offset_old = frame_offset;
673 p = ggc_alloc (sizeof (struct temp_slot));
675 /* We are passing an explicit alignment request to assign_stack_local.
676 One side effect of that is assign_stack_local will not round SIZE
677 to ensure the frame offset remains suitably aligned.
679 So for requests which depended on the rounding of SIZE, we go ahead
680 and round it now. We also make sure ALIGNMENT is at least
681 BIGGEST_ALIGNMENT. */
682 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
683 p->slot = assign_stack_local (mode,
684 (mode == BLKmode
685 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
686 : size),
687 align);
689 p->align = align;
691 /* The following slot size computation is necessary because we don't
692 know the actual size of the temporary slot until assign_stack_local
693 has performed all the frame alignment and size rounding for the
694 requested temporary. Note that extra space added for alignment
695 can be either above or below this stack slot depending on which
696 way the frame grows. We include the extra space if and only if it
697 is above this slot. */
698 if (FRAME_GROWS_DOWNWARD)
699 p->size = frame_offset_old - frame_offset;
700 else
701 p->size = size;
703 /* Now define the fields used by combine_temp_slots. */
704 if (FRAME_GROWS_DOWNWARD)
706 p->base_offset = frame_offset;
707 p->full_size = frame_offset_old - frame_offset;
709 else
711 p->base_offset = frame_offset_old;
712 p->full_size = frame_offset - frame_offset_old;
714 p->address = 0;
716 selected = p;
719 p = selected;
720 p->in_use = 1;
721 p->addr_taken = 0;
722 p->type = type;
723 p->level = temp_slot_level;
724 p->keep = keep;
726 pp = temp_slots_at_level (p->level);
727 insert_slot_to_list (p, pp);
729 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
730 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
731 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
733 /* If we know the alias set for the memory that will be used, use
734 it. If there's no TYPE, then we don't know anything about the
735 alias set for the memory. */
736 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
737 set_mem_align (slot, align);
739 /* If a type is specified, set the relevant flags. */
740 if (type != 0)
742 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
743 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
745 MEM_NOTRAP_P (slot) = 1;
747 return slot;
750 /* Allocate a temporary stack slot and record it for possible later
751 reuse. First three arguments are same as in preceding function. */
754 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
756 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
759 /* Assign a temporary.
760 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
761 and so that should be used in error messages. In either case, we
762 allocate of the given type.
763 KEEP is as for assign_stack_temp.
764 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
765 it is 0 if a register is OK.
766 DONT_PROMOTE is 1 if we should not promote values in register
767 to wider modes. */
770 assign_temp (tree type_or_decl, int keep, int memory_required,
771 int dont_promote ATTRIBUTE_UNUSED)
773 tree type, decl;
774 enum machine_mode mode;
775 #ifdef PROMOTE_MODE
776 int unsignedp;
777 #endif
779 if (DECL_P (type_or_decl))
780 decl = type_or_decl, type = TREE_TYPE (decl);
781 else
782 decl = NULL, type = type_or_decl;
784 mode = TYPE_MODE (type);
785 #ifdef PROMOTE_MODE
786 unsignedp = TYPE_UNSIGNED (type);
787 #endif
789 if (mode == BLKmode || memory_required)
791 HOST_WIDE_INT size = int_size_in_bytes (type);
792 tree size_tree;
793 rtx tmp;
795 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
796 problems with allocating the stack space. */
797 if (size == 0)
798 size = 1;
800 /* Unfortunately, we don't yet know how to allocate variable-sized
801 temporaries. However, sometimes we have a fixed upper limit on
802 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
803 instead. This is the case for Chill variable-sized strings. */
804 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
805 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
806 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
807 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
809 /* If we still haven't been able to get a size, see if the language
810 can compute a maximum size. */
811 if (size == -1
812 && (size_tree = lang_hooks.types.max_size (type)) != 0
813 && host_integerp (size_tree, 1))
814 size = tree_low_cst (size_tree, 1);
816 /* The size of the temporary may be too large to fit into an integer. */
817 /* ??? Not sure this should happen except for user silliness, so limit
818 this to things that aren't compiler-generated temporaries. The
819 rest of the time we'll die in assign_stack_temp_for_type. */
820 if (decl && size == -1
821 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
823 error ("size of variable %q+D is too large", decl);
824 size = 1;
827 tmp = assign_stack_temp_for_type (mode, size, keep, type);
828 return tmp;
831 #ifdef PROMOTE_MODE
832 if (! dont_promote)
833 mode = promote_mode (type, mode, &unsignedp, 0);
834 #endif
836 return gen_reg_rtx (mode);
839 /* Combine temporary stack slots which are adjacent on the stack.
841 This allows for better use of already allocated stack space. This is only
842 done for BLKmode slots because we can be sure that we won't have alignment
843 problems in this case. */
845 static void
846 combine_temp_slots (void)
848 struct temp_slot *p, *q, *next, *next_q;
849 int num_slots;
851 /* We can't combine slots, because the information about which slot
852 is in which alias set will be lost. */
853 if (flag_strict_aliasing)
854 return;
856 /* If there are a lot of temp slots, don't do anything unless
857 high levels of optimization. */
858 if (! flag_expensive_optimizations)
859 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
860 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
861 return;
863 for (p = avail_temp_slots; p; p = next)
865 int delete_p = 0;
867 next = p->next;
869 if (GET_MODE (p->slot) != BLKmode)
870 continue;
872 for (q = p->next; q; q = next_q)
874 int delete_q = 0;
876 next_q = q->next;
878 if (GET_MODE (q->slot) != BLKmode)
879 continue;
881 if (p->base_offset + p->full_size == q->base_offset)
883 /* Q comes after P; combine Q into P. */
884 p->size += q->size;
885 p->full_size += q->full_size;
886 delete_q = 1;
888 else if (q->base_offset + q->full_size == p->base_offset)
890 /* P comes after Q; combine P into Q. */
891 q->size += p->size;
892 q->full_size += p->full_size;
893 delete_p = 1;
894 break;
896 if (delete_q)
897 cut_slot_from_list (q, &avail_temp_slots);
900 /* Either delete P or advance past it. */
901 if (delete_p)
902 cut_slot_from_list (p, &avail_temp_slots);
906 /* Find the temp slot corresponding to the object at address X. */
908 static struct temp_slot *
909 find_temp_slot_from_address (rtx x)
911 struct temp_slot *p;
912 rtx next;
913 int i;
915 for (i = max_slot_level (); i >= 0; i--)
916 for (p = *temp_slots_at_level (i); p; p = p->next)
918 if (XEXP (p->slot, 0) == x
919 || p->address == x
920 || (GET_CODE (x) == PLUS
921 && XEXP (x, 0) == virtual_stack_vars_rtx
922 && GET_CODE (XEXP (x, 1)) == CONST_INT
923 && INTVAL (XEXP (x, 1)) >= p->base_offset
924 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
925 return p;
927 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
928 for (next = p->address; next; next = XEXP (next, 1))
929 if (XEXP (next, 0) == x)
930 return p;
933 /* If we have a sum involving a register, see if it points to a temp
934 slot. */
935 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
936 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
937 return p;
938 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
939 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
940 return p;
942 return 0;
945 /* Indicate that NEW is an alternate way of referring to the temp slot
946 that previously was known by OLD. */
948 void
949 update_temp_slot_address (rtx old, rtx new)
951 struct temp_slot *p;
953 if (rtx_equal_p (old, new))
954 return;
956 p = find_temp_slot_from_address (old);
958 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
959 is a register, see if one operand of the PLUS is a temporary
960 location. If so, NEW points into it. Otherwise, if both OLD and
961 NEW are a PLUS and if there is a register in common between them.
962 If so, try a recursive call on those values. */
963 if (p == 0)
965 if (GET_CODE (old) != PLUS)
966 return;
968 if (REG_P (new))
970 update_temp_slot_address (XEXP (old, 0), new);
971 update_temp_slot_address (XEXP (old, 1), new);
972 return;
974 else if (GET_CODE (new) != PLUS)
975 return;
977 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
978 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
979 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
980 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
981 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
982 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
983 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
984 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
986 return;
989 /* Otherwise add an alias for the temp's address. */
990 else if (p->address == 0)
991 p->address = new;
992 else
994 if (GET_CODE (p->address) != EXPR_LIST)
995 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
997 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1001 /* If X could be a reference to a temporary slot, mark the fact that its
1002 address was taken. */
1004 void
1005 mark_temp_addr_taken (rtx x)
1007 struct temp_slot *p;
1009 if (x == 0)
1010 return;
1012 /* If X is not in memory or is at a constant address, it cannot be in
1013 a temporary slot. */
1014 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1015 return;
1017 p = find_temp_slot_from_address (XEXP (x, 0));
1018 if (p != 0)
1019 p->addr_taken = 1;
1022 /* If X could be a reference to a temporary slot, mark that slot as
1023 belonging to the to one level higher than the current level. If X
1024 matched one of our slots, just mark that one. Otherwise, we can't
1025 easily predict which it is, so upgrade all of them. Kept slots
1026 need not be touched.
1028 This is called when an ({...}) construct occurs and a statement
1029 returns a value in memory. */
1031 void
1032 preserve_temp_slots (rtx x)
1034 struct temp_slot *p = 0, *next;
1036 /* If there is no result, we still might have some objects whose address
1037 were taken, so we need to make sure they stay around. */
1038 if (x == 0)
1040 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1042 next = p->next;
1044 if (p->addr_taken)
1045 move_slot_to_level (p, temp_slot_level - 1);
1048 return;
1051 /* If X is a register that is being used as a pointer, see if we have
1052 a temporary slot we know it points to. To be consistent with
1053 the code below, we really should preserve all non-kept slots
1054 if we can't find a match, but that seems to be much too costly. */
1055 if (REG_P (x) && REG_POINTER (x))
1056 p = find_temp_slot_from_address (x);
1058 /* If X is not in memory or is at a constant address, it cannot be in
1059 a temporary slot, but it can contain something whose address was
1060 taken. */
1061 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1063 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1065 next = p->next;
1067 if (p->addr_taken)
1068 move_slot_to_level (p, temp_slot_level - 1);
1071 return;
1074 /* First see if we can find a match. */
1075 if (p == 0)
1076 p = find_temp_slot_from_address (XEXP (x, 0));
1078 if (p != 0)
1080 /* Move everything at our level whose address was taken to our new
1081 level in case we used its address. */
1082 struct temp_slot *q;
1084 if (p->level == temp_slot_level)
1086 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1088 next = q->next;
1090 if (p != q && q->addr_taken)
1091 move_slot_to_level (q, temp_slot_level - 1);
1094 move_slot_to_level (p, temp_slot_level - 1);
1095 p->addr_taken = 0;
1097 return;
1100 /* Otherwise, preserve all non-kept slots at this level. */
1101 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1103 next = p->next;
1105 if (!p->keep)
1106 move_slot_to_level (p, temp_slot_level - 1);
1110 /* Free all temporaries used so far. This is normally called at the
1111 end of generating code for a statement. */
1113 void
1114 free_temp_slots (void)
1116 struct temp_slot *p, *next;
1118 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1120 next = p->next;
1122 if (!p->keep)
1123 make_slot_available (p);
1126 combine_temp_slots ();
1129 /* Push deeper into the nesting level for stack temporaries. */
1131 void
1132 push_temp_slots (void)
1134 temp_slot_level++;
1137 /* Pop a temporary nesting level. All slots in use in the current level
1138 are freed. */
1140 void
1141 pop_temp_slots (void)
1143 struct temp_slot *p, *next;
1145 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1147 next = p->next;
1148 make_slot_available (p);
1151 combine_temp_slots ();
1153 temp_slot_level--;
1156 /* Initialize temporary slots. */
1158 void
1159 init_temp_slots (void)
1161 /* We have not allocated any temporaries yet. */
1162 avail_temp_slots = 0;
1163 used_temp_slots = 0;
1164 temp_slot_level = 0;
1167 /* These routines are responsible for converting virtual register references
1168 to the actual hard register references once RTL generation is complete.
1170 The following four variables are used for communication between the
1171 routines. They contain the offsets of the virtual registers from their
1172 respective hard registers. */
1174 static int in_arg_offset;
1175 static int var_offset;
1176 static int dynamic_offset;
1177 static int out_arg_offset;
1178 static int cfa_offset;
1180 /* In most machines, the stack pointer register is equivalent to the bottom
1181 of the stack. */
1183 #ifndef STACK_POINTER_OFFSET
1184 #define STACK_POINTER_OFFSET 0
1185 #endif
1187 /* If not defined, pick an appropriate default for the offset of dynamically
1188 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1189 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1191 #ifndef STACK_DYNAMIC_OFFSET
1193 /* The bottom of the stack points to the actual arguments. If
1194 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1195 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1196 stack space for register parameters is not pushed by the caller, but
1197 rather part of the fixed stack areas and hence not included in
1198 `current_function_outgoing_args_size'. Nevertheless, we must allow
1199 for it when allocating stack dynamic objects. */
1201 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1202 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1203 ((ACCUMULATE_OUTGOING_ARGS \
1204 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1205 + (STACK_POINTER_OFFSET)) \
1207 #else
1208 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1209 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1210 + (STACK_POINTER_OFFSET))
1211 #endif
1212 #endif
1214 /* On most machines, the CFA coincides with the first incoming parm. */
1216 #ifndef ARG_POINTER_CFA_OFFSET
1217 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1218 #endif
1221 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1222 is a virtual register, return the equivalent hard register and set the
1223 offset indirectly through the pointer. Otherwise, return 0. */
1225 static rtx
1226 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1228 rtx new;
1229 HOST_WIDE_INT offset;
1231 if (x == virtual_incoming_args_rtx)
1232 new = arg_pointer_rtx, offset = in_arg_offset;
1233 else if (x == virtual_stack_vars_rtx)
1234 new = frame_pointer_rtx, offset = var_offset;
1235 else if (x == virtual_stack_dynamic_rtx)
1236 new = stack_pointer_rtx, offset = dynamic_offset;
1237 else if (x == virtual_outgoing_args_rtx)
1238 new = stack_pointer_rtx, offset = out_arg_offset;
1239 else if (x == virtual_cfa_rtx)
1240 new = arg_pointer_rtx, offset = cfa_offset;
1241 else
1242 return NULL_RTX;
1244 *poffset = offset;
1245 return new;
1248 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1249 Instantiate any virtual registers present inside of *LOC. The expression
1250 is simplified, as much as possible, but is not to be considered "valid"
1251 in any sense implied by the target. If any change is made, set CHANGED
1252 to true. */
1254 static int
1255 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1257 HOST_WIDE_INT offset;
1258 bool *changed = (bool *) data;
1259 rtx x, new;
1261 x = *loc;
1262 if (x == 0)
1263 return 0;
1265 switch (GET_CODE (x))
1267 case REG:
1268 new = instantiate_new_reg (x, &offset);
1269 if (new)
1271 *loc = plus_constant (new, offset);
1272 if (changed)
1273 *changed = true;
1275 return -1;
1277 case PLUS:
1278 new = instantiate_new_reg (XEXP (x, 0), &offset);
1279 if (new)
1281 new = plus_constant (new, offset);
1282 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1283 if (changed)
1284 *changed = true;
1285 return -1;
1288 /* FIXME -- from old code */
1289 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1290 we can commute the PLUS and SUBREG because pointers into the
1291 frame are well-behaved. */
1292 break;
1294 default:
1295 break;
1298 return 0;
1301 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1302 matches the predicate for insn CODE operand OPERAND. */
1304 static int
1305 safe_insn_predicate (int code, int operand, rtx x)
1307 const struct insn_operand_data *op_data;
1309 if (code < 0)
1310 return true;
1312 op_data = &insn_data[code].operand[operand];
1313 if (op_data->predicate == NULL)
1314 return true;
1316 return op_data->predicate (x, op_data->mode);
1319 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1320 registers present inside of insn. The result will be a valid insn. */
1322 static void
1323 instantiate_virtual_regs_in_insn (rtx insn)
1325 HOST_WIDE_INT offset;
1326 int insn_code, i;
1327 bool any_change = false;
1328 rtx set, new, x, seq;
1330 /* There are some special cases to be handled first. */
1331 set = single_set (insn);
1332 if (set)
1334 /* We're allowed to assign to a virtual register. This is interpreted
1335 to mean that the underlying register gets assigned the inverse
1336 transformation. This is used, for example, in the handling of
1337 non-local gotos. */
1338 new = instantiate_new_reg (SET_DEST (set), &offset);
1339 if (new)
1341 start_sequence ();
1343 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1344 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1345 GEN_INT (-offset));
1346 x = force_operand (x, new);
1347 if (x != new)
1348 emit_move_insn (new, x);
1350 seq = get_insns ();
1351 end_sequence ();
1353 emit_insn_before (seq, insn);
1354 delete_insn (insn);
1355 return;
1358 /* Handle a straight copy from a virtual register by generating a
1359 new add insn. The difference between this and falling through
1360 to the generic case is avoiding a new pseudo and eliminating a
1361 move insn in the initial rtl stream. */
1362 new = instantiate_new_reg (SET_SRC (set), &offset);
1363 if (new && offset != 0
1364 && REG_P (SET_DEST (set))
1365 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1367 start_sequence ();
1369 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1370 new, GEN_INT (offset), SET_DEST (set),
1371 1, OPTAB_LIB_WIDEN);
1372 if (x != SET_DEST (set))
1373 emit_move_insn (SET_DEST (set), x);
1375 seq = get_insns ();
1376 end_sequence ();
1378 emit_insn_before (seq, insn);
1379 delete_insn (insn);
1380 return;
1383 extract_insn (insn);
1384 insn_code = INSN_CODE (insn);
1386 /* Handle a plus involving a virtual register by determining if the
1387 operands remain valid if they're modified in place. */
1388 if (GET_CODE (SET_SRC (set)) == PLUS
1389 && recog_data.n_operands >= 3
1390 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1391 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1392 && GET_CODE (recog_data.operand[2]) == CONST_INT
1393 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1395 offset += INTVAL (recog_data.operand[2]);
1397 /* If the sum is zero, then replace with a plain move. */
1398 if (offset == 0
1399 && REG_P (SET_DEST (set))
1400 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1402 start_sequence ();
1403 emit_move_insn (SET_DEST (set), new);
1404 seq = get_insns ();
1405 end_sequence ();
1407 emit_insn_before (seq, insn);
1408 delete_insn (insn);
1409 return;
1412 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1414 /* Using validate_change and apply_change_group here leaves
1415 recog_data in an invalid state. Since we know exactly what
1416 we want to check, do those two by hand. */
1417 if (safe_insn_predicate (insn_code, 1, new)
1418 && safe_insn_predicate (insn_code, 2, x))
1420 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1421 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1422 any_change = true;
1424 /* Fall through into the regular operand fixup loop in
1425 order to take care of operands other than 1 and 2. */
1429 else
1431 extract_insn (insn);
1432 insn_code = INSN_CODE (insn);
1435 /* In the general case, we expect virtual registers to appear only in
1436 operands, and then only as either bare registers or inside memories. */
1437 for (i = 0; i < recog_data.n_operands; ++i)
1439 x = recog_data.operand[i];
1440 switch (GET_CODE (x))
1442 case MEM:
1444 rtx addr = XEXP (x, 0);
1445 bool changed = false;
1447 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1448 if (!changed)
1449 continue;
1451 start_sequence ();
1452 x = replace_equiv_address (x, addr);
1453 seq = get_insns ();
1454 end_sequence ();
1455 if (seq)
1456 emit_insn_before (seq, insn);
1458 break;
1460 case REG:
1461 new = instantiate_new_reg (x, &offset);
1462 if (new == NULL)
1463 continue;
1464 if (offset == 0)
1465 x = new;
1466 else
1468 start_sequence ();
1470 /* Careful, special mode predicates may have stuff in
1471 insn_data[insn_code].operand[i].mode that isn't useful
1472 to us for computing a new value. */
1473 /* ??? Recognize address_operand and/or "p" constraints
1474 to see if (plus new offset) is a valid before we put
1475 this through expand_simple_binop. */
1476 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1477 GEN_INT (offset), NULL_RTX,
1478 1, OPTAB_LIB_WIDEN);
1479 seq = get_insns ();
1480 end_sequence ();
1481 emit_insn_before (seq, insn);
1483 break;
1485 case SUBREG:
1486 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1487 if (new == NULL)
1488 continue;
1489 if (offset != 0)
1491 start_sequence ();
1492 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1493 GEN_INT (offset), NULL_RTX,
1494 1, OPTAB_LIB_WIDEN);
1495 seq = get_insns ();
1496 end_sequence ();
1497 emit_insn_before (seq, insn);
1499 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1500 GET_MODE (new), SUBREG_BYTE (x));
1501 break;
1503 default:
1504 continue;
1507 /* At this point, X contains the new value for the operand.
1508 Validate the new value vs the insn predicate. Note that
1509 asm insns will have insn_code -1 here. */
1510 if (!safe_insn_predicate (insn_code, i, x))
1511 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1513 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1514 any_change = true;
1517 if (any_change)
1519 /* Propagate operand changes into the duplicates. */
1520 for (i = 0; i < recog_data.n_dups; ++i)
1521 *recog_data.dup_loc[i]
1522 = recog_data.operand[(unsigned)recog_data.dup_num[i]];
1524 /* Force re-recognition of the instruction for validation. */
1525 INSN_CODE (insn) = -1;
1528 if (asm_noperands (PATTERN (insn)) >= 0)
1530 if (!check_asm_operands (PATTERN (insn)))
1532 error_for_asm (insn, "impossible constraint in %<asm%>");
1533 delete_insn (insn);
1536 else
1538 if (recog_memoized (insn) < 0)
1539 fatal_insn_not_found (insn);
1543 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1544 do any instantiation required. */
1546 static void
1547 instantiate_decl (rtx x)
1549 rtx addr;
1551 if (x == 0)
1552 return;
1554 /* If this is a CONCAT, recurse for the pieces. */
1555 if (GET_CODE (x) == CONCAT)
1557 instantiate_decl (XEXP (x, 0));
1558 instantiate_decl (XEXP (x, 1));
1559 return;
1562 /* If this is not a MEM, no need to do anything. Similarly if the
1563 address is a constant or a register that is not a virtual register. */
1564 if (!MEM_P (x))
1565 return;
1567 addr = XEXP (x, 0);
1568 if (CONSTANT_P (addr)
1569 || (REG_P (addr)
1570 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1571 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1572 return;
1574 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1577 /* Subroutine of instantiate_decls: Process all decls in the given
1578 BLOCK node and all its subblocks. */
1580 static void
1581 instantiate_decls_1 (tree let)
1583 tree t;
1585 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1586 if (DECL_RTL_SET_P (t))
1587 instantiate_decl (DECL_RTL (t));
1589 /* Process all subblocks. */
1590 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1591 instantiate_decls_1 (t);
1594 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1595 all virtual registers in their DECL_RTL's. */
1597 static void
1598 instantiate_decls (tree fndecl)
1600 tree decl;
1602 /* Process all parameters of the function. */
1603 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1605 instantiate_decl (DECL_RTL (decl));
1606 instantiate_decl (DECL_INCOMING_RTL (decl));
1609 /* Now process all variables defined in the function or its subblocks. */
1610 instantiate_decls_1 (DECL_INITIAL (fndecl));
1613 /* Pass through the INSNS of function FNDECL and convert virtual register
1614 references to hard register references. */
1616 void
1617 instantiate_virtual_regs (void)
1619 rtx insn;
1621 /* Compute the offsets to use for this function. */
1622 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1623 var_offset = STARTING_FRAME_OFFSET;
1624 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1625 out_arg_offset = STACK_POINTER_OFFSET;
1626 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1628 /* Initialize recognition, indicating that volatile is OK. */
1629 init_recog ();
1631 /* Scan through all the insns, instantiating every virtual register still
1632 present. */
1633 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1634 if (INSN_P (insn))
1636 /* These patterns in the instruction stream can never be recognized.
1637 Fortunately, they shouldn't contain virtual registers either. */
1638 if (GET_CODE (PATTERN (insn)) == USE
1639 || GET_CODE (PATTERN (insn)) == CLOBBER
1640 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1641 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1642 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1643 continue;
1645 instantiate_virtual_regs_in_insn (insn);
1647 if (INSN_DELETED_P (insn))
1648 continue;
1650 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1652 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1653 if (GET_CODE (insn) == CALL_INSN)
1654 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1655 instantiate_virtual_regs_in_rtx, NULL);
1658 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1659 instantiate_decls (current_function_decl);
1661 /* Indicate that, from now on, assign_stack_local should use
1662 frame_pointer_rtx. */
1663 virtuals_instantiated = 1;
1666 struct tree_opt_pass pass_instantiate_virtual_regs =
1668 "vregs", /* name */
1669 NULL, /* gate */
1670 instantiate_virtual_regs, /* execute */
1671 NULL, /* sub */
1672 NULL, /* next */
1673 0, /* static_pass_number */
1674 0, /* tv_id */
1675 0, /* properties_required */
1676 0, /* properties_provided */
1677 0, /* properties_destroyed */
1678 0, /* todo_flags_start */
1679 TODO_dump_func, /* todo_flags_finish */
1680 0 /* letter */
1684 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1685 This means a type for which function calls must pass an address to the
1686 function or get an address back from the function.
1687 EXP may be a type node or an expression (whose type is tested). */
1690 aggregate_value_p (tree exp, tree fntype)
1692 int i, regno, nregs;
1693 rtx reg;
1695 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1697 if (fntype)
1698 switch (TREE_CODE (fntype))
1700 case CALL_EXPR:
1701 fntype = get_callee_fndecl (fntype);
1702 fntype = fntype ? TREE_TYPE (fntype) : 0;
1703 break;
1704 case FUNCTION_DECL:
1705 fntype = TREE_TYPE (fntype);
1706 break;
1707 case FUNCTION_TYPE:
1708 case METHOD_TYPE:
1709 break;
1710 case IDENTIFIER_NODE:
1711 fntype = 0;
1712 break;
1713 default:
1714 /* We don't expect other rtl types here. */
1715 gcc_unreachable ();
1718 if (TREE_CODE (type) == VOID_TYPE)
1719 return 0;
1720 /* If the front end has decided that this needs to be passed by
1721 reference, do so. */
1722 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1723 && DECL_BY_REFERENCE (exp))
1724 return 1;
1725 if (targetm.calls.return_in_memory (type, fntype))
1726 return 1;
1727 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1728 and thus can't be returned in registers. */
1729 if (TREE_ADDRESSABLE (type))
1730 return 1;
1731 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1732 return 1;
1733 /* Make sure we have suitable call-clobbered regs to return
1734 the value in; if not, we must return it in memory. */
1735 reg = hard_function_value (type, 0, fntype, 0);
1737 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1738 it is OK. */
1739 if (!REG_P (reg))
1740 return 0;
1742 regno = REGNO (reg);
1743 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1744 for (i = 0; i < nregs; i++)
1745 if (! call_used_regs[regno + i])
1746 return 1;
1747 return 0;
1750 /* Return true if we should assign DECL a pseudo register; false if it
1751 should live on the local stack. */
1753 bool
1754 use_register_for_decl (tree decl)
1756 /* Honor volatile. */
1757 if (TREE_SIDE_EFFECTS (decl))
1758 return false;
1760 /* Honor addressability. */
1761 if (TREE_ADDRESSABLE (decl))
1762 return false;
1764 /* Only register-like things go in registers. */
1765 if (DECL_MODE (decl) == BLKmode)
1766 return false;
1768 /* If -ffloat-store specified, don't put explicit float variables
1769 into registers. */
1770 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1771 propagates values across these stores, and it probably shouldn't. */
1772 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1773 return false;
1775 /* If we're not interested in tracking debugging information for
1776 this decl, then we can certainly put it in a register. */
1777 if (DECL_IGNORED_P (decl))
1778 return true;
1780 return (optimize || DECL_REGISTER (decl));
1783 /* Return true if TYPE should be passed by invisible reference. */
1785 bool
1786 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1787 tree type, bool named_arg)
1789 if (type)
1791 /* If this type contains non-trivial constructors, then it is
1792 forbidden for the middle-end to create any new copies. */
1793 if (TREE_ADDRESSABLE (type))
1794 return true;
1796 /* GCC post 3.4 passes *all* variable sized types by reference. */
1797 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1798 return true;
1801 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1804 /* Return true if TYPE, which is passed by reference, should be callee
1805 copied instead of caller copied. */
1807 bool
1808 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1809 tree type, bool named_arg)
1811 if (type && TREE_ADDRESSABLE (type))
1812 return false;
1813 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1816 /* Structures to communicate between the subroutines of assign_parms.
1817 The first holds data persistent across all parameters, the second
1818 is cleared out for each parameter. */
1820 struct assign_parm_data_all
1822 CUMULATIVE_ARGS args_so_far;
1823 struct args_size stack_args_size;
1824 tree function_result_decl;
1825 tree orig_fnargs;
1826 rtx conversion_insns;
1827 HOST_WIDE_INT pretend_args_size;
1828 HOST_WIDE_INT extra_pretend_bytes;
1829 int reg_parm_stack_space;
1832 struct assign_parm_data_one
1834 tree nominal_type;
1835 tree passed_type;
1836 rtx entry_parm;
1837 rtx stack_parm;
1838 enum machine_mode nominal_mode;
1839 enum machine_mode passed_mode;
1840 enum machine_mode promoted_mode;
1841 struct locate_and_pad_arg_data locate;
1842 int partial;
1843 BOOL_BITFIELD named_arg : 1;
1844 BOOL_BITFIELD passed_pointer : 1;
1845 BOOL_BITFIELD on_stack : 1;
1846 BOOL_BITFIELD loaded_in_reg : 1;
1849 /* A subroutine of assign_parms. Initialize ALL. */
1851 static void
1852 assign_parms_initialize_all (struct assign_parm_data_all *all)
1854 tree fntype;
1856 memset (all, 0, sizeof (*all));
1858 fntype = TREE_TYPE (current_function_decl);
1860 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1861 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1862 #else
1863 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1864 current_function_decl, -1);
1865 #endif
1867 #ifdef REG_PARM_STACK_SPACE
1868 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1869 #endif
1872 /* If ARGS contains entries with complex types, split the entry into two
1873 entries of the component type. Return a new list of substitutions are
1874 needed, else the old list. */
1876 static tree
1877 split_complex_args (tree args)
1879 tree p;
1881 /* Before allocating memory, check for the common case of no complex. */
1882 for (p = args; p; p = TREE_CHAIN (p))
1884 tree type = TREE_TYPE (p);
1885 if (TREE_CODE (type) == COMPLEX_TYPE
1886 && targetm.calls.split_complex_arg (type))
1887 goto found;
1889 return args;
1891 found:
1892 args = copy_list (args);
1894 for (p = args; p; p = TREE_CHAIN (p))
1896 tree type = TREE_TYPE (p);
1897 if (TREE_CODE (type) == COMPLEX_TYPE
1898 && targetm.calls.split_complex_arg (type))
1900 tree decl;
1901 tree subtype = TREE_TYPE (type);
1902 bool addressable = TREE_ADDRESSABLE (p);
1904 /* Rewrite the PARM_DECL's type with its component. */
1905 TREE_TYPE (p) = subtype;
1906 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1907 DECL_MODE (p) = VOIDmode;
1908 DECL_SIZE (p) = NULL;
1909 DECL_SIZE_UNIT (p) = NULL;
1910 /* If this arg must go in memory, put it in a pseudo here.
1911 We can't allow it to go in memory as per normal parms,
1912 because the usual place might not have the imag part
1913 adjacent to the real part. */
1914 DECL_ARTIFICIAL (p) = addressable;
1915 DECL_IGNORED_P (p) = addressable;
1916 TREE_ADDRESSABLE (p) = 0;
1917 layout_decl (p, 0);
1919 /* Build a second synthetic decl. */
1920 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1921 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1922 DECL_ARTIFICIAL (decl) = addressable;
1923 DECL_IGNORED_P (decl) = addressable;
1924 layout_decl (decl, 0);
1926 /* Splice it in; skip the new decl. */
1927 TREE_CHAIN (decl) = TREE_CHAIN (p);
1928 TREE_CHAIN (p) = decl;
1929 p = decl;
1933 return args;
1936 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
1937 the hidden struct return argument, and (abi willing) complex args.
1938 Return the new parameter list. */
1940 static tree
1941 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
1943 tree fndecl = current_function_decl;
1944 tree fntype = TREE_TYPE (fndecl);
1945 tree fnargs = DECL_ARGUMENTS (fndecl);
1947 /* If struct value address is treated as the first argument, make it so. */
1948 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
1949 && ! current_function_returns_pcc_struct
1950 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
1952 tree type = build_pointer_type (TREE_TYPE (fntype));
1953 tree decl;
1955 decl = build_decl (PARM_DECL, NULL_TREE, type);
1956 DECL_ARG_TYPE (decl) = type;
1957 DECL_ARTIFICIAL (decl) = 1;
1958 DECL_IGNORED_P (decl) = 1;
1960 TREE_CHAIN (decl) = fnargs;
1961 fnargs = decl;
1962 all->function_result_decl = decl;
1965 all->orig_fnargs = fnargs;
1967 /* If the target wants to split complex arguments into scalars, do so. */
1968 if (targetm.calls.split_complex_arg)
1969 fnargs = split_complex_args (fnargs);
1971 return fnargs;
1974 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
1975 data for the parameter. Incorporate ABI specifics such as pass-by-
1976 reference and type promotion. */
1978 static void
1979 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
1980 struct assign_parm_data_one *data)
1982 tree nominal_type, passed_type;
1983 enum machine_mode nominal_mode, passed_mode, promoted_mode;
1985 memset (data, 0, sizeof (*data));
1987 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
1988 if (!current_function_stdarg)
1989 data->named_arg = 1; /* No varadic parms. */
1990 else if (TREE_CHAIN (parm))
1991 data->named_arg = 1; /* Not the last non-varadic parm. */
1992 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
1993 data->named_arg = 1; /* Only varadic ones are unnamed. */
1994 else
1995 data->named_arg = 0; /* Treat as varadic. */
1997 nominal_type = TREE_TYPE (parm);
1998 passed_type = DECL_ARG_TYPE (parm);
2000 /* Look out for errors propagating this far. Also, if the parameter's
2001 type is void then its value doesn't matter. */
2002 if (TREE_TYPE (parm) == error_mark_node
2003 /* This can happen after weird syntax errors
2004 or if an enum type is defined among the parms. */
2005 || TREE_CODE (parm) != PARM_DECL
2006 || passed_type == NULL
2007 || VOID_TYPE_P (nominal_type))
2009 nominal_type = passed_type = void_type_node;
2010 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2011 goto egress;
2014 /* Find mode of arg as it is passed, and mode of arg as it should be
2015 during execution of this function. */
2016 passed_mode = TYPE_MODE (passed_type);
2017 nominal_mode = TYPE_MODE (nominal_type);
2019 /* If the parm is to be passed as a transparent union, use the type of
2020 the first field for the tests below. We have already verified that
2021 the modes are the same. */
2022 if (DECL_TRANSPARENT_UNION (parm)
2023 || (TREE_CODE (passed_type) == UNION_TYPE
2024 && TYPE_TRANSPARENT_UNION (passed_type)))
2025 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2027 /* See if this arg was passed by invisible reference. */
2028 if (pass_by_reference (&all->args_so_far, passed_mode,
2029 passed_type, data->named_arg))
2031 passed_type = nominal_type = build_pointer_type (passed_type);
2032 data->passed_pointer = true;
2033 passed_mode = nominal_mode = Pmode;
2036 /* Find mode as it is passed by the ABI. */
2037 promoted_mode = passed_mode;
2038 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2040 int unsignedp = TYPE_UNSIGNED (passed_type);
2041 promoted_mode = promote_mode (passed_type, promoted_mode,
2042 &unsignedp, 1);
2045 egress:
2046 data->nominal_type = nominal_type;
2047 data->passed_type = passed_type;
2048 data->nominal_mode = nominal_mode;
2049 data->passed_mode = passed_mode;
2050 data->promoted_mode = promoted_mode;
2053 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2055 static void
2056 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2057 struct assign_parm_data_one *data, bool no_rtl)
2059 int varargs_pretend_bytes = 0;
2061 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2062 data->promoted_mode,
2063 data->passed_type,
2064 &varargs_pretend_bytes, no_rtl);
2066 /* If the back-end has requested extra stack space, record how much is
2067 needed. Do not change pretend_args_size otherwise since it may be
2068 nonzero from an earlier partial argument. */
2069 if (varargs_pretend_bytes > 0)
2070 all->pretend_args_size = varargs_pretend_bytes;
2073 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2074 the incoming location of the current parameter. */
2076 static void
2077 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2078 struct assign_parm_data_one *data)
2080 HOST_WIDE_INT pretend_bytes = 0;
2081 rtx entry_parm;
2082 bool in_regs;
2084 if (data->promoted_mode == VOIDmode)
2086 data->entry_parm = data->stack_parm = const0_rtx;
2087 return;
2090 #ifdef FUNCTION_INCOMING_ARG
2091 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2092 data->passed_type, data->named_arg);
2093 #else
2094 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2095 data->passed_type, data->named_arg);
2096 #endif
2098 if (entry_parm == 0)
2099 data->promoted_mode = data->passed_mode;
2101 /* Determine parm's home in the stack, in case it arrives in the stack
2102 or we should pretend it did. Compute the stack position and rtx where
2103 the argument arrives and its size.
2105 There is one complexity here: If this was a parameter that would
2106 have been passed in registers, but wasn't only because it is
2107 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2108 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2109 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2110 as it was the previous time. */
2111 in_regs = entry_parm != 0;
2112 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2113 in_regs = true;
2114 #endif
2115 if (!in_regs && !data->named_arg)
2117 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2119 rtx tem;
2120 #ifdef FUNCTION_INCOMING_ARG
2121 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2122 data->passed_type, true);
2123 #else
2124 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2125 data->passed_type, true);
2126 #endif
2127 in_regs = tem != NULL;
2131 /* If this parameter was passed both in registers and in the stack, use
2132 the copy on the stack. */
2133 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2134 data->passed_type))
2135 entry_parm = 0;
2137 if (entry_parm)
2139 int partial;
2141 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2142 data->promoted_mode,
2143 data->passed_type,
2144 data->named_arg);
2145 data->partial = partial;
2147 /* The caller might already have allocated stack space for the
2148 register parameters. */
2149 if (partial != 0 && all->reg_parm_stack_space == 0)
2151 /* Part of this argument is passed in registers and part
2152 is passed on the stack. Ask the prologue code to extend
2153 the stack part so that we can recreate the full value.
2155 PRETEND_BYTES is the size of the registers we need to store.
2156 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2157 stack space that the prologue should allocate.
2159 Internally, gcc assumes that the argument pointer is aligned
2160 to STACK_BOUNDARY bits. This is used both for alignment
2161 optimizations (see init_emit) and to locate arguments that are
2162 aligned to more than PARM_BOUNDARY bits. We must preserve this
2163 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2164 a stack boundary. */
2166 /* We assume at most one partial arg, and it must be the first
2167 argument on the stack. */
2168 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2170 pretend_bytes = partial;
2171 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2173 /* We want to align relative to the actual stack pointer, so
2174 don't include this in the stack size until later. */
2175 all->extra_pretend_bytes = all->pretend_args_size;
2179 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2180 entry_parm ? data->partial : 0, current_function_decl,
2181 &all->stack_args_size, &data->locate);
2183 /* Adjust offsets to include the pretend args. */
2184 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2185 data->locate.slot_offset.constant += pretend_bytes;
2186 data->locate.offset.constant += pretend_bytes;
2188 data->entry_parm = entry_parm;
2191 /* A subroutine of assign_parms. If there is actually space on the stack
2192 for this parm, count it in stack_args_size and return true. */
2194 static bool
2195 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2196 struct assign_parm_data_one *data)
2198 /* Trivially true if we've no incoming register. */
2199 if (data->entry_parm == NULL)
2201 /* Also true if we're partially in registers and partially not,
2202 since we've arranged to drop the entire argument on the stack. */
2203 else if (data->partial != 0)
2205 /* Also true if the target says that it's passed in both registers
2206 and on the stack. */
2207 else if (GET_CODE (data->entry_parm) == PARALLEL
2208 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2210 /* Also true if the target says that there's stack allocated for
2211 all register parameters. */
2212 else if (all->reg_parm_stack_space > 0)
2214 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2215 else
2216 return false;
2218 all->stack_args_size.constant += data->locate.size.constant;
2219 if (data->locate.size.var)
2220 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2222 return true;
2225 /* A subroutine of assign_parms. Given that this parameter is allocated
2226 stack space by the ABI, find it. */
2228 static void
2229 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2231 rtx offset_rtx, stack_parm;
2232 unsigned int align, boundary;
2234 /* If we're passing this arg using a reg, make its stack home the
2235 aligned stack slot. */
2236 if (data->entry_parm)
2237 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2238 else
2239 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2241 stack_parm = current_function_internal_arg_pointer;
2242 if (offset_rtx != const0_rtx)
2243 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2244 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2246 set_mem_attributes (stack_parm, parm, 1);
2248 boundary = data->locate.boundary;
2249 align = BITS_PER_UNIT;
2251 /* If we're padding upward, we know that the alignment of the slot
2252 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2253 intentionally forcing upward padding. Otherwise we have to come
2254 up with a guess at the alignment based on OFFSET_RTX. */
2255 if (data->locate.where_pad != downward || data->entry_parm)
2256 align = boundary;
2257 else if (GET_CODE (offset_rtx) == CONST_INT)
2259 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2260 align = align & -align;
2262 set_mem_align (stack_parm, align);
2264 if (data->entry_parm)
2265 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2267 data->stack_parm = stack_parm;
2270 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2271 always valid and contiguous. */
2273 static void
2274 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2276 rtx entry_parm = data->entry_parm;
2277 rtx stack_parm = data->stack_parm;
2279 /* If this parm was passed part in regs and part in memory, pretend it
2280 arrived entirely in memory by pushing the register-part onto the stack.
2281 In the special case of a DImode or DFmode that is split, we could put
2282 it together in a pseudoreg directly, but for now that's not worth
2283 bothering with. */
2284 if (data->partial != 0)
2286 /* Handle calls that pass values in multiple non-contiguous
2287 locations. The Irix 6 ABI has examples of this. */
2288 if (GET_CODE (entry_parm) == PARALLEL)
2289 emit_group_store (validize_mem (stack_parm), entry_parm,
2290 data->passed_type,
2291 int_size_in_bytes (data->passed_type));
2292 else
2294 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2295 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2296 data->partial / UNITS_PER_WORD);
2299 entry_parm = stack_parm;
2302 /* If we didn't decide this parm came in a register, by default it came
2303 on the stack. */
2304 else if (entry_parm == NULL)
2305 entry_parm = stack_parm;
2307 /* When an argument is passed in multiple locations, we can't make use
2308 of this information, but we can save some copying if the whole argument
2309 is passed in a single register. */
2310 else if (GET_CODE (entry_parm) == PARALLEL
2311 && data->nominal_mode != BLKmode
2312 && data->passed_mode != BLKmode)
2314 size_t i, len = XVECLEN (entry_parm, 0);
2316 for (i = 0; i < len; i++)
2317 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2318 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2319 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2320 == data->passed_mode)
2321 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2323 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2324 break;
2328 data->entry_parm = entry_parm;
2331 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2332 always valid and properly aligned. */
2334 static void
2335 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2337 rtx stack_parm = data->stack_parm;
2339 /* If we can't trust the parm stack slot to be aligned enough for its
2340 ultimate type, don't use that slot after entry. We'll make another
2341 stack slot, if we need one. */
2342 if (stack_parm
2343 && ((STRICT_ALIGNMENT
2344 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2345 || (data->nominal_type
2346 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2347 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2348 stack_parm = NULL;
2350 /* If parm was passed in memory, and we need to convert it on entry,
2351 don't store it back in that same slot. */
2352 else if (data->entry_parm == stack_parm
2353 && data->nominal_mode != BLKmode
2354 && data->nominal_mode != data->passed_mode)
2355 stack_parm = NULL;
2357 /* If stack protection is in effect for this function, don't leave any
2358 pointers in their passed stack slots. */
2359 else if (cfun->stack_protect_guard
2360 && (flag_stack_protect == 2
2361 || data->passed_pointer
2362 || POINTER_TYPE_P (data->nominal_type)))
2363 stack_parm = NULL;
2365 data->stack_parm = stack_parm;
2368 /* A subroutine of assign_parms. Return true if the current parameter
2369 should be stored as a BLKmode in the current frame. */
2371 static bool
2372 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2374 if (data->nominal_mode == BLKmode)
2375 return true;
2376 if (GET_CODE (data->entry_parm) == PARALLEL)
2377 return true;
2379 #ifdef BLOCK_REG_PADDING
2380 /* Only assign_parm_setup_block knows how to deal with register arguments
2381 that are padded at the least significant end. */
2382 if (REG_P (data->entry_parm)
2383 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2384 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2385 == (BYTES_BIG_ENDIAN ? upward : downward)))
2386 return true;
2387 #endif
2389 return false;
2392 /* A subroutine of assign_parms. Arrange for the parameter to be
2393 present and valid in DATA->STACK_RTL. */
2395 static void
2396 assign_parm_setup_block (struct assign_parm_data_all *all,
2397 tree parm, struct assign_parm_data_one *data)
2399 rtx entry_parm = data->entry_parm;
2400 rtx stack_parm = data->stack_parm;
2401 HOST_WIDE_INT size;
2402 HOST_WIDE_INT size_stored;
2403 rtx orig_entry_parm = entry_parm;
2405 if (GET_CODE (entry_parm) == PARALLEL)
2406 entry_parm = emit_group_move_into_temps (entry_parm);
2408 /* If we've a non-block object that's nevertheless passed in parts,
2409 reconstitute it in register operations rather than on the stack. */
2410 if (GET_CODE (entry_parm) == PARALLEL
2411 && data->nominal_mode != BLKmode)
2413 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2415 if ((XVECLEN (entry_parm, 0) > 1
2416 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2417 && use_register_for_decl (parm))
2419 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2421 push_to_sequence (all->conversion_insns);
2423 /* For values returned in multiple registers, handle possible
2424 incompatible calls to emit_group_store.
2426 For example, the following would be invalid, and would have to
2427 be fixed by the conditional below:
2429 emit_group_store ((reg:SF), (parallel:DF))
2430 emit_group_store ((reg:SI), (parallel:DI))
2432 An example of this are doubles in e500 v2:
2433 (parallel:DF (expr_list (reg:SI) (const_int 0))
2434 (expr_list (reg:SI) (const_int 4))). */
2435 if (data->nominal_mode != data->passed_mode)
2437 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2438 emit_group_store (t, entry_parm, NULL_TREE,
2439 GET_MODE_SIZE (GET_MODE (entry_parm)));
2440 convert_move (parmreg, t, 0);
2442 else
2443 emit_group_store (parmreg, entry_parm, data->nominal_type,
2444 int_size_in_bytes (data->nominal_type));
2446 all->conversion_insns = get_insns ();
2447 end_sequence ();
2449 SET_DECL_RTL (parm, parmreg);
2450 return;
2454 size = int_size_in_bytes (data->passed_type);
2455 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2456 if (stack_parm == 0)
2458 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2459 stack_parm = assign_stack_local (BLKmode, size_stored,
2460 DECL_ALIGN (parm));
2461 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2462 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2463 set_mem_attributes (stack_parm, parm, 1);
2466 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2467 calls that pass values in multiple non-contiguous locations. */
2468 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2470 rtx mem;
2472 /* Note that we will be storing an integral number of words.
2473 So we have to be careful to ensure that we allocate an
2474 integral number of words. We do this above when we call
2475 assign_stack_local if space was not allocated in the argument
2476 list. If it was, this will not work if PARM_BOUNDARY is not
2477 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2478 if it becomes a problem. Exception is when BLKmode arrives
2479 with arguments not conforming to word_mode. */
2481 if (data->stack_parm == 0)
2483 else if (GET_CODE (entry_parm) == PARALLEL)
2485 else
2486 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2488 mem = validize_mem (stack_parm);
2490 /* Handle values in multiple non-contiguous locations. */
2491 if (GET_CODE (entry_parm) == PARALLEL)
2493 push_to_sequence (all->conversion_insns);
2494 emit_group_store (mem, entry_parm, data->passed_type, size);
2495 all->conversion_insns = get_insns ();
2496 end_sequence ();
2499 else if (size == 0)
2502 /* If SIZE is that of a mode no bigger than a word, just use
2503 that mode's store operation. */
2504 else if (size <= UNITS_PER_WORD)
2506 enum machine_mode mode
2507 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2509 if (mode != BLKmode
2510 #ifdef BLOCK_REG_PADDING
2511 && (size == UNITS_PER_WORD
2512 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2513 != (BYTES_BIG_ENDIAN ? upward : downward)))
2514 #endif
2517 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2518 emit_move_insn (change_address (mem, mode, 0), reg);
2521 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2522 machine must be aligned to the left before storing
2523 to memory. Note that the previous test doesn't
2524 handle all cases (e.g. SIZE == 3). */
2525 else if (size != UNITS_PER_WORD
2526 #ifdef BLOCK_REG_PADDING
2527 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2528 == downward)
2529 #else
2530 && BYTES_BIG_ENDIAN
2531 #endif
2534 rtx tem, x;
2535 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2536 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2538 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2539 build_int_cst (NULL_TREE, by),
2540 NULL_RTX, 1);
2541 tem = change_address (mem, word_mode, 0);
2542 emit_move_insn (tem, x);
2544 else
2545 move_block_from_reg (REGNO (entry_parm), mem,
2546 size_stored / UNITS_PER_WORD);
2548 else
2549 move_block_from_reg (REGNO (entry_parm), mem,
2550 size_stored / UNITS_PER_WORD);
2552 else if (data->stack_parm == 0)
2554 push_to_sequence (all->conversion_insns);
2555 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2556 BLOCK_OP_NORMAL);
2557 all->conversion_insns = get_insns ();
2558 end_sequence ();
2561 data->stack_parm = stack_parm;
2562 SET_DECL_RTL (parm, stack_parm);
2565 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2566 parameter. Get it there. Perform all ABI specified conversions. */
2568 static void
2569 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2570 struct assign_parm_data_one *data)
2572 rtx parmreg;
2573 enum machine_mode promoted_nominal_mode;
2574 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2575 bool did_conversion = false;
2577 /* Store the parm in a pseudoregister during the function, but we may
2578 need to do it in a wider mode. */
2580 promoted_nominal_mode
2581 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2583 parmreg = gen_reg_rtx (promoted_nominal_mode);
2585 if (!DECL_ARTIFICIAL (parm))
2586 mark_user_reg (parmreg);
2588 /* If this was an item that we received a pointer to,
2589 set DECL_RTL appropriately. */
2590 if (data->passed_pointer)
2592 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2593 set_mem_attributes (x, parm, 1);
2594 SET_DECL_RTL (parm, x);
2596 else
2597 SET_DECL_RTL (parm, parmreg);
2599 /* Copy the value into the register. */
2600 if (data->nominal_mode != data->passed_mode
2601 || promoted_nominal_mode != data->promoted_mode)
2603 int save_tree_used;
2605 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2606 mode, by the caller. We now have to convert it to
2607 NOMINAL_MODE, if different. However, PARMREG may be in
2608 a different mode than NOMINAL_MODE if it is being stored
2609 promoted.
2611 If ENTRY_PARM is a hard register, it might be in a register
2612 not valid for operating in its mode (e.g., an odd-numbered
2613 register for a DFmode). In that case, moves are the only
2614 thing valid, so we can't do a convert from there. This
2615 occurs when the calling sequence allow such misaligned
2616 usages.
2618 In addition, the conversion may involve a call, which could
2619 clobber parameters which haven't been copied to pseudo
2620 registers yet. Therefore, we must first copy the parm to
2621 a pseudo reg here, and save the conversion until after all
2622 parameters have been moved. */
2624 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2626 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2628 push_to_sequence (all->conversion_insns);
2629 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2631 if (GET_CODE (tempreg) == SUBREG
2632 && GET_MODE (tempreg) == data->nominal_mode
2633 && REG_P (SUBREG_REG (tempreg))
2634 && data->nominal_mode == data->passed_mode
2635 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2636 && GET_MODE_SIZE (GET_MODE (tempreg))
2637 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2639 /* The argument is already sign/zero extended, so note it
2640 into the subreg. */
2641 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2642 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2645 /* TREE_USED gets set erroneously during expand_assignment. */
2646 save_tree_used = TREE_USED (parm);
2647 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2648 TREE_USED (parm) = save_tree_used;
2649 all->conversion_insns = get_insns ();
2650 end_sequence ();
2652 did_conversion = true;
2654 else
2655 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2657 /* If we were passed a pointer but the actual value can safely live
2658 in a register, put it in one. */
2659 if (data->passed_pointer
2660 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2661 /* If by-reference argument was promoted, demote it. */
2662 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2663 || use_register_for_decl (parm)))
2665 /* We can't use nominal_mode, because it will have been set to
2666 Pmode above. We must use the actual mode of the parm. */
2667 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2668 mark_user_reg (parmreg);
2670 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2672 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2673 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2675 push_to_sequence (all->conversion_insns);
2676 emit_move_insn (tempreg, DECL_RTL (parm));
2677 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2678 emit_move_insn (parmreg, tempreg);
2679 all->conversion_insns = get_insns ();
2680 end_sequence ();
2682 did_conversion = true;
2684 else
2685 emit_move_insn (parmreg, DECL_RTL (parm));
2687 SET_DECL_RTL (parm, parmreg);
2689 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2690 now the parm. */
2691 data->stack_parm = NULL;
2694 /* Mark the register as eliminable if we did no conversion and it was
2695 copied from memory at a fixed offset, and the arg pointer was not
2696 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2697 offset formed an invalid address, such memory-equivalences as we
2698 make here would screw up life analysis for it. */
2699 if (data->nominal_mode == data->passed_mode
2700 && !did_conversion
2701 && data->stack_parm != 0
2702 && MEM_P (data->stack_parm)
2703 && data->locate.offset.var == 0
2704 && reg_mentioned_p (virtual_incoming_args_rtx,
2705 XEXP (data->stack_parm, 0)))
2707 rtx linsn = get_last_insn ();
2708 rtx sinsn, set;
2710 /* Mark complex types separately. */
2711 if (GET_CODE (parmreg) == CONCAT)
2713 enum machine_mode submode
2714 = GET_MODE_INNER (GET_MODE (parmreg));
2715 int regnor = REGNO (XEXP (parmreg, 0));
2716 int regnoi = REGNO (XEXP (parmreg, 1));
2717 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2718 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2719 GET_MODE_SIZE (submode));
2721 /* Scan backwards for the set of the real and
2722 imaginary parts. */
2723 for (sinsn = linsn; sinsn != 0;
2724 sinsn = prev_nonnote_insn (sinsn))
2726 set = single_set (sinsn);
2727 if (set == 0)
2728 continue;
2730 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2731 REG_NOTES (sinsn)
2732 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2733 REG_NOTES (sinsn));
2734 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2735 REG_NOTES (sinsn)
2736 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2737 REG_NOTES (sinsn));
2740 else if ((set = single_set (linsn)) != 0
2741 && SET_DEST (set) == parmreg)
2742 REG_NOTES (linsn)
2743 = gen_rtx_EXPR_LIST (REG_EQUIV,
2744 data->stack_parm, REG_NOTES (linsn));
2747 /* For pointer data type, suggest pointer register. */
2748 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2749 mark_reg_pointer (parmreg,
2750 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2753 /* A subroutine of assign_parms. Allocate stack space to hold the current
2754 parameter. Get it there. Perform all ABI specified conversions. */
2756 static void
2757 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2758 struct assign_parm_data_one *data)
2760 /* Value must be stored in the stack slot STACK_PARM during function
2761 execution. */
2762 bool to_conversion = false;
2764 if (data->promoted_mode != data->nominal_mode)
2766 /* Conversion is required. */
2767 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2769 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2771 push_to_sequence (all->conversion_insns);
2772 to_conversion = true;
2774 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2775 TYPE_UNSIGNED (TREE_TYPE (parm)));
2777 if (data->stack_parm)
2778 /* ??? This may need a big-endian conversion on sparc64. */
2779 data->stack_parm
2780 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2783 if (data->entry_parm != data->stack_parm)
2785 rtx src, dest;
2787 if (data->stack_parm == 0)
2789 data->stack_parm
2790 = assign_stack_local (GET_MODE (data->entry_parm),
2791 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2792 TYPE_ALIGN (data->passed_type));
2793 set_mem_attributes (data->stack_parm, parm, 1);
2796 dest = validize_mem (data->stack_parm);
2797 src = validize_mem (data->entry_parm);
2799 if (MEM_P (src))
2801 /* Use a block move to handle potentially misaligned entry_parm. */
2802 if (!to_conversion)
2803 push_to_sequence (all->conversion_insns);
2804 to_conversion = true;
2806 emit_block_move (dest, src,
2807 GEN_INT (int_size_in_bytes (data->passed_type)),
2808 BLOCK_OP_NORMAL);
2810 else
2811 emit_move_insn (dest, src);
2814 if (to_conversion)
2816 all->conversion_insns = get_insns ();
2817 end_sequence ();
2820 SET_DECL_RTL (parm, data->stack_parm);
2823 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2824 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2826 static void
2827 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2829 tree parm;
2830 tree orig_fnargs = all->orig_fnargs;
2832 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2834 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2835 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2837 rtx tmp, real, imag;
2838 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2840 real = DECL_RTL (fnargs);
2841 imag = DECL_RTL (TREE_CHAIN (fnargs));
2842 if (inner != GET_MODE (real))
2844 real = gen_lowpart_SUBREG (inner, real);
2845 imag = gen_lowpart_SUBREG (inner, imag);
2848 if (TREE_ADDRESSABLE (parm))
2850 rtx rmem, imem;
2851 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2853 /* split_complex_arg put the real and imag parts in
2854 pseudos. Move them to memory. */
2855 tmp = assign_stack_local (DECL_MODE (parm), size,
2856 TYPE_ALIGN (TREE_TYPE (parm)));
2857 set_mem_attributes (tmp, parm, 1);
2858 rmem = adjust_address_nv (tmp, inner, 0);
2859 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2860 push_to_sequence (all->conversion_insns);
2861 emit_move_insn (rmem, real);
2862 emit_move_insn (imem, imag);
2863 all->conversion_insns = get_insns ();
2864 end_sequence ();
2866 else
2867 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2868 SET_DECL_RTL (parm, tmp);
2870 real = DECL_INCOMING_RTL (fnargs);
2871 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2872 if (inner != GET_MODE (real))
2874 real = gen_lowpart_SUBREG (inner, real);
2875 imag = gen_lowpart_SUBREG (inner, imag);
2877 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2878 set_decl_incoming_rtl (parm, tmp);
2879 fnargs = TREE_CHAIN (fnargs);
2881 else
2883 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2884 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2886 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2887 instead of the copy of decl, i.e. FNARGS. */
2888 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2889 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2892 fnargs = TREE_CHAIN (fnargs);
2896 /* Assign RTL expressions to the function's parameters. This may involve
2897 copying them into registers and using those registers as the DECL_RTL. */
2899 static void
2900 assign_parms (tree fndecl)
2902 struct assign_parm_data_all all;
2903 tree fnargs, parm;
2904 rtx internal_arg_pointer;
2906 /* If the reg that the virtual arg pointer will be translated into is
2907 not a fixed reg or is the stack pointer, make a copy of the virtual
2908 arg pointer, and address parms via the copy. The frame pointer is
2909 considered fixed even though it is not marked as such.
2911 The second time through, simply use ap to avoid generating rtx. */
2913 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
2914 || ! (fixed_regs[ARG_POINTER_REGNUM]
2915 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
2916 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
2917 else
2918 internal_arg_pointer = virtual_incoming_args_rtx;
2919 current_function_internal_arg_pointer = internal_arg_pointer;
2921 assign_parms_initialize_all (&all);
2922 fnargs = assign_parms_augmented_arg_list (&all);
2924 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2926 struct assign_parm_data_one data;
2928 /* Extract the type of PARM; adjust it according to ABI. */
2929 assign_parm_find_data_types (&all, parm, &data);
2931 /* Early out for errors and void parameters. */
2932 if (data.passed_mode == VOIDmode)
2934 SET_DECL_RTL (parm, const0_rtx);
2935 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2936 continue;
2939 if (current_function_stdarg && !TREE_CHAIN (parm))
2940 assign_parms_setup_varargs (&all, &data, false);
2942 /* Find out where the parameter arrives in this function. */
2943 assign_parm_find_entry_rtl (&all, &data);
2945 /* Find out where stack space for this parameter might be. */
2946 if (assign_parm_is_stack_parm (&all, &data))
2948 assign_parm_find_stack_rtl (parm, &data);
2949 assign_parm_adjust_entry_rtl (&data);
2952 /* Record permanently how this parm was passed. */
2953 set_decl_incoming_rtl (parm, data.entry_parm);
2955 /* Update info on where next arg arrives in registers. */
2956 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
2957 data.passed_type, data.named_arg);
2959 assign_parm_adjust_stack_rtl (&data);
2961 if (assign_parm_setup_block_p (&data))
2962 assign_parm_setup_block (&all, parm, &data);
2963 else if (data.passed_pointer || use_register_for_decl (parm))
2964 assign_parm_setup_reg (&all, parm, &data);
2965 else
2966 assign_parm_setup_stack (&all, parm, &data);
2969 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
2970 assign_parms_unsplit_complex (&all, fnargs);
2972 /* Output all parameter conversion instructions (possibly including calls)
2973 now that all parameters have been copied out of hard registers. */
2974 emit_insn (all.conversion_insns);
2976 /* If we are receiving a struct value address as the first argument, set up
2977 the RTL for the function result. As this might require code to convert
2978 the transmitted address to Pmode, we do this here to ensure that possible
2979 preliminary conversions of the address have been emitted already. */
2980 if (all.function_result_decl)
2982 tree result = DECL_RESULT (current_function_decl);
2983 rtx addr = DECL_RTL (all.function_result_decl);
2984 rtx x;
2986 if (DECL_BY_REFERENCE (result))
2987 x = addr;
2988 else
2990 addr = convert_memory_address (Pmode, addr);
2991 x = gen_rtx_MEM (DECL_MODE (result), addr);
2992 set_mem_attributes (x, result, 1);
2994 SET_DECL_RTL (result, x);
2997 /* We have aligned all the args, so add space for the pretend args. */
2998 current_function_pretend_args_size = all.pretend_args_size;
2999 all.stack_args_size.constant += all.extra_pretend_bytes;
3000 current_function_args_size = all.stack_args_size.constant;
3002 /* Adjust function incoming argument size for alignment and
3003 minimum length. */
3005 #ifdef REG_PARM_STACK_SPACE
3006 current_function_args_size = MAX (current_function_args_size,
3007 REG_PARM_STACK_SPACE (fndecl));
3008 #endif
3010 current_function_args_size = CEIL_ROUND (current_function_args_size,
3011 PARM_BOUNDARY / BITS_PER_UNIT);
3013 #ifdef ARGS_GROW_DOWNWARD
3014 current_function_arg_offset_rtx
3015 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3016 : expand_expr (size_diffop (all.stack_args_size.var,
3017 size_int (-all.stack_args_size.constant)),
3018 NULL_RTX, VOIDmode, 0));
3019 #else
3020 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3021 #endif
3023 /* See how many bytes, if any, of its args a function should try to pop
3024 on return. */
3026 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3027 current_function_args_size);
3029 /* For stdarg.h function, save info about
3030 regs and stack space used by the named args. */
3032 current_function_args_info = all.args_so_far;
3034 /* Set the rtx used for the function return value. Put this in its
3035 own variable so any optimizers that need this information don't have
3036 to include tree.h. Do this here so it gets done when an inlined
3037 function gets output. */
3039 current_function_return_rtx
3040 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3041 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3043 /* If scalar return value was computed in a pseudo-reg, or was a named
3044 return value that got dumped to the stack, copy that to the hard
3045 return register. */
3046 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3048 tree decl_result = DECL_RESULT (fndecl);
3049 rtx decl_rtl = DECL_RTL (decl_result);
3051 if (REG_P (decl_rtl)
3052 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3053 : DECL_REGISTER (decl_result))
3055 rtx real_decl_rtl;
3057 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3058 fndecl, true);
3059 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3060 /* The delay slot scheduler assumes that current_function_return_rtx
3061 holds the hard register containing the return value, not a
3062 temporary pseudo. */
3063 current_function_return_rtx = real_decl_rtl;
3068 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3069 For all seen types, gimplify their sizes. */
3071 static tree
3072 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3074 tree t = *tp;
3076 *walk_subtrees = 0;
3077 if (TYPE_P (t))
3079 if (POINTER_TYPE_P (t))
3080 *walk_subtrees = 1;
3081 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3082 && !TYPE_SIZES_GIMPLIFIED (t))
3084 gimplify_type_sizes (t, (tree *) data);
3085 *walk_subtrees = 1;
3089 return NULL;
3092 /* Gimplify the parameter list for current_function_decl. This involves
3093 evaluating SAVE_EXPRs of variable sized parameters and generating code
3094 to implement callee-copies reference parameters. Returns a list of
3095 statements to add to the beginning of the function, or NULL if nothing
3096 to do. */
3098 tree
3099 gimplify_parameters (void)
3101 struct assign_parm_data_all all;
3102 tree fnargs, parm, stmts = NULL;
3104 assign_parms_initialize_all (&all);
3105 fnargs = assign_parms_augmented_arg_list (&all);
3107 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3109 struct assign_parm_data_one data;
3111 /* Extract the type of PARM; adjust it according to ABI. */
3112 assign_parm_find_data_types (&all, parm, &data);
3114 /* Early out for errors and void parameters. */
3115 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3116 continue;
3118 /* Update info on where next arg arrives in registers. */
3119 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3120 data.passed_type, data.named_arg);
3122 /* ??? Once upon a time variable_size stuffed parameter list
3123 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3124 turned out to be less than manageable in the gimple world.
3125 Now we have to hunt them down ourselves. */
3126 walk_tree_without_duplicates (&data.passed_type,
3127 gimplify_parm_type, &stmts);
3129 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3131 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3132 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3135 if (data.passed_pointer)
3137 tree type = TREE_TYPE (data.passed_type);
3138 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3139 type, data.named_arg))
3141 tree local, t;
3143 /* For constant sized objects, this is trivial; for
3144 variable-sized objects, we have to play games. */
3145 if (TREE_CONSTANT (DECL_SIZE (parm)))
3147 local = create_tmp_var (type, get_name (parm));
3148 DECL_IGNORED_P (local) = 0;
3150 else
3152 tree ptr_type, addr, args;
3154 ptr_type = build_pointer_type (type);
3155 addr = create_tmp_var (ptr_type, get_name (parm));
3156 DECL_IGNORED_P (addr) = 0;
3157 local = build_fold_indirect_ref (addr);
3159 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3160 t = built_in_decls[BUILT_IN_ALLOCA];
3161 t = build_function_call_expr (t, args);
3162 t = fold_convert (ptr_type, t);
3163 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3164 gimplify_and_add (t, &stmts);
3167 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3168 gimplify_and_add (t, &stmts);
3170 SET_DECL_VALUE_EXPR (parm, local);
3171 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3176 return stmts;
3179 /* Indicate whether REGNO is an incoming argument to the current function
3180 that was promoted to a wider mode. If so, return the RTX for the
3181 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3182 that REGNO is promoted from and whether the promotion was signed or
3183 unsigned. */
3186 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3188 tree arg;
3190 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3191 arg = TREE_CHAIN (arg))
3192 if (REG_P (DECL_INCOMING_RTL (arg))
3193 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3194 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3196 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3197 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3199 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3200 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3201 && mode != DECL_MODE (arg))
3203 *pmode = DECL_MODE (arg);
3204 *punsignedp = unsignedp;
3205 return DECL_INCOMING_RTL (arg);
3209 return 0;
3213 /* Compute the size and offset from the start of the stacked arguments for a
3214 parm passed in mode PASSED_MODE and with type TYPE.
3216 INITIAL_OFFSET_PTR points to the current offset into the stacked
3217 arguments.
3219 The starting offset and size for this parm are returned in
3220 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3221 nonzero, the offset is that of stack slot, which is returned in
3222 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3223 padding required from the initial offset ptr to the stack slot.
3225 IN_REGS is nonzero if the argument will be passed in registers. It will
3226 never be set if REG_PARM_STACK_SPACE is not defined.
3228 FNDECL is the function in which the argument was defined.
3230 There are two types of rounding that are done. The first, controlled by
3231 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3232 list to be aligned to the specific boundary (in bits). This rounding
3233 affects the initial and starting offsets, but not the argument size.
3235 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3236 optionally rounds the size of the parm to PARM_BOUNDARY. The
3237 initial offset is not affected by this rounding, while the size always
3238 is and the starting offset may be. */
3240 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3241 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3242 callers pass in the total size of args so far as
3243 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3245 void
3246 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3247 int partial, tree fndecl ATTRIBUTE_UNUSED,
3248 struct args_size *initial_offset_ptr,
3249 struct locate_and_pad_arg_data *locate)
3251 tree sizetree;
3252 enum direction where_pad;
3253 unsigned int boundary;
3254 int reg_parm_stack_space = 0;
3255 int part_size_in_regs;
3257 #ifdef REG_PARM_STACK_SPACE
3258 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3260 /* If we have found a stack parm before we reach the end of the
3261 area reserved for registers, skip that area. */
3262 if (! in_regs)
3264 if (reg_parm_stack_space > 0)
3266 if (initial_offset_ptr->var)
3268 initial_offset_ptr->var
3269 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3270 ssize_int (reg_parm_stack_space));
3271 initial_offset_ptr->constant = 0;
3273 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3274 initial_offset_ptr->constant = reg_parm_stack_space;
3277 #endif /* REG_PARM_STACK_SPACE */
3279 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3281 sizetree
3282 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3283 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3284 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3285 locate->where_pad = where_pad;
3286 locate->boundary = boundary;
3288 /* Remember if the outgoing parameter requires extra alignment on the
3289 calling function side. */
3290 if (boundary > PREFERRED_STACK_BOUNDARY)
3291 boundary = PREFERRED_STACK_BOUNDARY;
3292 if (cfun->stack_alignment_needed < boundary)
3293 cfun->stack_alignment_needed = boundary;
3295 #ifdef ARGS_GROW_DOWNWARD
3296 locate->slot_offset.constant = -initial_offset_ptr->constant;
3297 if (initial_offset_ptr->var)
3298 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3299 initial_offset_ptr->var);
3302 tree s2 = sizetree;
3303 if (where_pad != none
3304 && (!host_integerp (sizetree, 1)
3305 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3306 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3307 SUB_PARM_SIZE (locate->slot_offset, s2);
3310 locate->slot_offset.constant += part_size_in_regs;
3312 if (!in_regs
3313 #ifdef REG_PARM_STACK_SPACE
3314 || REG_PARM_STACK_SPACE (fndecl) > 0
3315 #endif
3317 pad_to_arg_alignment (&locate->slot_offset, boundary,
3318 &locate->alignment_pad);
3320 locate->size.constant = (-initial_offset_ptr->constant
3321 - locate->slot_offset.constant);
3322 if (initial_offset_ptr->var)
3323 locate->size.var = size_binop (MINUS_EXPR,
3324 size_binop (MINUS_EXPR,
3325 ssize_int (0),
3326 initial_offset_ptr->var),
3327 locate->slot_offset.var);
3329 /* Pad_below needs the pre-rounded size to know how much to pad
3330 below. */
3331 locate->offset = locate->slot_offset;
3332 if (where_pad == downward)
3333 pad_below (&locate->offset, passed_mode, sizetree);
3335 #else /* !ARGS_GROW_DOWNWARD */
3336 if (!in_regs
3337 #ifdef REG_PARM_STACK_SPACE
3338 || REG_PARM_STACK_SPACE (fndecl) > 0
3339 #endif
3341 pad_to_arg_alignment (initial_offset_ptr, boundary,
3342 &locate->alignment_pad);
3343 locate->slot_offset = *initial_offset_ptr;
3345 #ifdef PUSH_ROUNDING
3346 if (passed_mode != BLKmode)
3347 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3348 #endif
3350 /* Pad_below needs the pre-rounded size to know how much to pad below
3351 so this must be done before rounding up. */
3352 locate->offset = locate->slot_offset;
3353 if (where_pad == downward)
3354 pad_below (&locate->offset, passed_mode, sizetree);
3356 if (where_pad != none
3357 && (!host_integerp (sizetree, 1)
3358 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3359 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3361 ADD_PARM_SIZE (locate->size, sizetree);
3363 locate->size.constant -= part_size_in_regs;
3364 #endif /* ARGS_GROW_DOWNWARD */
3367 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3368 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3370 static void
3371 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3372 struct args_size *alignment_pad)
3374 tree save_var = NULL_TREE;
3375 HOST_WIDE_INT save_constant = 0;
3376 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3377 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3379 #ifdef SPARC_STACK_BOUNDARY_HACK
3380 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3381 higher than the real alignment of %sp. However, when it does this,
3382 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3383 This is a temporary hack while the sparc port is fixed. */
3384 if (SPARC_STACK_BOUNDARY_HACK)
3385 sp_offset = 0;
3386 #endif
3388 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3390 save_var = offset_ptr->var;
3391 save_constant = offset_ptr->constant;
3394 alignment_pad->var = NULL_TREE;
3395 alignment_pad->constant = 0;
3397 if (boundary > BITS_PER_UNIT)
3399 if (offset_ptr->var)
3401 tree sp_offset_tree = ssize_int (sp_offset);
3402 tree offset = size_binop (PLUS_EXPR,
3403 ARGS_SIZE_TREE (*offset_ptr),
3404 sp_offset_tree);
3405 #ifdef ARGS_GROW_DOWNWARD
3406 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3407 #else
3408 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3409 #endif
3411 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3412 /* ARGS_SIZE_TREE includes constant term. */
3413 offset_ptr->constant = 0;
3414 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3415 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3416 save_var);
3418 else
3420 offset_ptr->constant = -sp_offset +
3421 #ifdef ARGS_GROW_DOWNWARD
3422 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3423 #else
3424 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3425 #endif
3426 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3427 alignment_pad->constant = offset_ptr->constant - save_constant;
3432 static void
3433 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3435 if (passed_mode != BLKmode)
3437 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3438 offset_ptr->constant
3439 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3440 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3441 - GET_MODE_SIZE (passed_mode));
3443 else
3445 if (TREE_CODE (sizetree) != INTEGER_CST
3446 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3448 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3449 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3450 /* Add it in. */
3451 ADD_PARM_SIZE (*offset_ptr, s2);
3452 SUB_PARM_SIZE (*offset_ptr, sizetree);
3457 /* Walk the tree of blocks describing the binding levels within a function
3458 and warn about variables the might be killed by setjmp or vfork.
3459 This is done after calling flow_analysis and before global_alloc
3460 clobbers the pseudo-regs to hard regs. */
3462 void
3463 setjmp_vars_warning (tree block)
3465 tree decl, sub;
3467 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3469 if (TREE_CODE (decl) == VAR_DECL
3470 && DECL_RTL_SET_P (decl)
3471 && REG_P (DECL_RTL (decl))
3472 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3473 warning (0, "variable %q+D might be clobbered by %<longjmp%>"
3474 " or %<vfork%>",
3475 decl);
3478 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3479 setjmp_vars_warning (sub);
3482 /* Do the appropriate part of setjmp_vars_warning
3483 but for arguments instead of local variables. */
3485 void
3486 setjmp_args_warning (void)
3488 tree decl;
3489 for (decl = DECL_ARGUMENTS (current_function_decl);
3490 decl; decl = TREE_CHAIN (decl))
3491 if (DECL_RTL (decl) != 0
3492 && REG_P (DECL_RTL (decl))
3493 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3494 warning (0, "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3495 decl);
3499 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3500 and create duplicate blocks. */
3501 /* ??? Need an option to either create block fragments or to create
3502 abstract origin duplicates of a source block. It really depends
3503 on what optimization has been performed. */
3505 void
3506 reorder_blocks (void)
3508 tree block = DECL_INITIAL (current_function_decl);
3509 VEC(tree,heap) *block_stack;
3511 if (block == NULL_TREE)
3512 return;
3514 block_stack = VEC_alloc (tree, heap, 10);
3516 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3517 clear_block_marks (block);
3519 /* Prune the old trees away, so that they don't get in the way. */
3520 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3521 BLOCK_CHAIN (block) = NULL_TREE;
3523 /* Recreate the block tree from the note nesting. */
3524 reorder_blocks_1 (get_insns (), block, &block_stack);
3525 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3527 /* Remove deleted blocks from the block fragment chains. */
3528 reorder_fix_fragments (block);
3530 VEC_free (tree, heap, block_stack);
3533 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3535 void
3536 clear_block_marks (tree block)
3538 while (block)
3540 TREE_ASM_WRITTEN (block) = 0;
3541 clear_block_marks (BLOCK_SUBBLOCKS (block));
3542 block = BLOCK_CHAIN (block);
3546 static void
3547 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3549 rtx insn;
3551 for (insn = insns; insn; insn = NEXT_INSN (insn))
3553 if (NOTE_P (insn))
3555 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3557 tree block = NOTE_BLOCK (insn);
3559 /* If we have seen this block before, that means it now
3560 spans multiple address regions. Create a new fragment. */
3561 if (TREE_ASM_WRITTEN (block))
3563 tree new_block = copy_node (block);
3564 tree origin;
3566 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3567 ? BLOCK_FRAGMENT_ORIGIN (block)
3568 : block);
3569 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3570 BLOCK_FRAGMENT_CHAIN (new_block)
3571 = BLOCK_FRAGMENT_CHAIN (origin);
3572 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3574 NOTE_BLOCK (insn) = new_block;
3575 block = new_block;
3578 BLOCK_SUBBLOCKS (block) = 0;
3579 TREE_ASM_WRITTEN (block) = 1;
3580 /* When there's only one block for the entire function,
3581 current_block == block and we mustn't do this, it
3582 will cause infinite recursion. */
3583 if (block != current_block)
3585 BLOCK_SUPERCONTEXT (block) = current_block;
3586 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3587 BLOCK_SUBBLOCKS (current_block) = block;
3588 current_block = block;
3590 VEC_safe_push (tree, heap, *p_block_stack, block);
3592 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3594 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3595 BLOCK_SUBBLOCKS (current_block)
3596 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3597 current_block = BLOCK_SUPERCONTEXT (current_block);
3603 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3604 appears in the block tree, select one of the fragments to become
3605 the new origin block. */
3607 static void
3608 reorder_fix_fragments (tree block)
3610 while (block)
3612 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3613 tree new_origin = NULL_TREE;
3615 if (dup_origin)
3617 if (! TREE_ASM_WRITTEN (dup_origin))
3619 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3621 /* Find the first of the remaining fragments. There must
3622 be at least one -- the current block. */
3623 while (! TREE_ASM_WRITTEN (new_origin))
3624 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3625 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3628 else if (! dup_origin)
3629 new_origin = block;
3631 /* Re-root the rest of the fragments to the new origin. In the
3632 case that DUP_ORIGIN was null, that means BLOCK was the origin
3633 of a chain of fragments and we want to remove those fragments
3634 that didn't make it to the output. */
3635 if (new_origin)
3637 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3638 tree chain = *pp;
3640 while (chain)
3642 if (TREE_ASM_WRITTEN (chain))
3644 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3645 *pp = chain;
3646 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3648 chain = BLOCK_FRAGMENT_CHAIN (chain);
3650 *pp = NULL_TREE;
3653 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3654 block = BLOCK_CHAIN (block);
3658 /* Reverse the order of elements in the chain T of blocks,
3659 and return the new head of the chain (old last element). */
3661 tree
3662 blocks_nreverse (tree t)
3664 tree prev = 0, decl, next;
3665 for (decl = t; decl; decl = next)
3667 next = BLOCK_CHAIN (decl);
3668 BLOCK_CHAIN (decl) = prev;
3669 prev = decl;
3671 return prev;
3674 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3675 non-NULL, list them all into VECTOR, in a depth-first preorder
3676 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3677 blocks. */
3679 static int
3680 all_blocks (tree block, tree *vector)
3682 int n_blocks = 0;
3684 while (block)
3686 TREE_ASM_WRITTEN (block) = 0;
3688 /* Record this block. */
3689 if (vector)
3690 vector[n_blocks] = block;
3692 ++n_blocks;
3694 /* Record the subblocks, and their subblocks... */
3695 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3696 vector ? vector + n_blocks : 0);
3697 block = BLOCK_CHAIN (block);
3700 return n_blocks;
3703 /* Return a vector containing all the blocks rooted at BLOCK. The
3704 number of elements in the vector is stored in N_BLOCKS_P. The
3705 vector is dynamically allocated; it is the caller's responsibility
3706 to call `free' on the pointer returned. */
3708 static tree *
3709 get_block_vector (tree block, int *n_blocks_p)
3711 tree *block_vector;
3713 *n_blocks_p = all_blocks (block, NULL);
3714 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3715 all_blocks (block, block_vector);
3717 return block_vector;
3720 static GTY(()) int next_block_index = 2;
3722 /* Set BLOCK_NUMBER for all the blocks in FN. */
3724 void
3725 number_blocks (tree fn)
3727 int i;
3728 int n_blocks;
3729 tree *block_vector;
3731 /* For SDB and XCOFF debugging output, we start numbering the blocks
3732 from 1 within each function, rather than keeping a running
3733 count. */
3734 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3735 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3736 next_block_index = 1;
3737 #endif
3739 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3741 /* The top-level BLOCK isn't numbered at all. */
3742 for (i = 1; i < n_blocks; ++i)
3743 /* We number the blocks from two. */
3744 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3746 free (block_vector);
3748 return;
3751 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3753 tree
3754 debug_find_var_in_block_tree (tree var, tree block)
3756 tree t;
3758 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3759 if (t == var)
3760 return block;
3762 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3764 tree ret = debug_find_var_in_block_tree (var, t);
3765 if (ret)
3766 return ret;
3769 return NULL_TREE;
3772 /* Allocate a function structure for FNDECL and set its contents
3773 to the defaults. */
3775 void
3776 allocate_struct_function (tree fndecl)
3778 tree result;
3779 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3781 cfun = ggc_alloc_cleared (sizeof (struct function));
3783 cfun->stack_alignment_needed = STACK_BOUNDARY;
3784 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3786 current_function_funcdef_no = funcdef_no++;
3788 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3790 init_eh_for_function ();
3792 lang_hooks.function.init (cfun);
3793 if (init_machine_status)
3794 cfun->machine = (*init_machine_status) ();
3796 if (fndecl == NULL)
3797 return;
3799 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3800 cfun->decl = fndecl;
3802 result = DECL_RESULT (fndecl);
3803 if (aggregate_value_p (result, fndecl))
3805 #ifdef PCC_STATIC_STRUCT_RETURN
3806 current_function_returns_pcc_struct = 1;
3807 #endif
3808 current_function_returns_struct = 1;
3811 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3813 current_function_stdarg
3814 = (fntype
3815 && TYPE_ARG_TYPES (fntype) != 0
3816 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3817 != void_type_node));
3819 /* Assume all registers in stdarg functions need to be saved. */
3820 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3821 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3824 /* Reset cfun, and other non-struct-function variables to defaults as
3825 appropriate for emitting rtl at the start of a function. */
3827 static void
3828 prepare_function_start (tree fndecl)
3830 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3831 cfun = DECL_STRUCT_FUNCTION (fndecl);
3832 else
3833 allocate_struct_function (fndecl);
3834 init_emit ();
3835 init_varasm_status (cfun);
3836 init_expr ();
3838 cse_not_expected = ! optimize;
3840 /* Caller save not needed yet. */
3841 caller_save_needed = 0;
3843 /* We haven't done register allocation yet. */
3844 reg_renumber = 0;
3846 /* Indicate that we have not instantiated virtual registers yet. */
3847 virtuals_instantiated = 0;
3849 /* Indicate that we want CONCATs now. */
3850 generating_concat_p = 1;
3852 /* Indicate we have no need of a frame pointer yet. */
3853 frame_pointer_needed = 0;
3856 /* Initialize the rtl expansion mechanism so that we can do simple things
3857 like generate sequences. This is used to provide a context during global
3858 initialization of some passes. */
3859 void
3860 init_dummy_function_start (void)
3862 prepare_function_start (NULL);
3865 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3866 and initialize static variables for generating RTL for the statements
3867 of the function. */
3869 void
3870 init_function_start (tree subr)
3872 prepare_function_start (subr);
3874 /* Prevent ever trying to delete the first instruction of a
3875 function. Also tell final how to output a linenum before the
3876 function prologue. Note linenums could be missing, e.g. when
3877 compiling a Java .class file. */
3878 if (! DECL_IS_BUILTIN (subr))
3879 emit_line_note (DECL_SOURCE_LOCATION (subr));
3881 /* Make sure first insn is a note even if we don't want linenums.
3882 This makes sure the first insn will never be deleted.
3883 Also, final expects a note to appear there. */
3884 emit_note (NOTE_INSN_DELETED);
3886 /* Warn if this value is an aggregate type,
3887 regardless of which calling convention we are using for it. */
3888 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3889 warning (OPT_Waggregate_return, "function returns an aggregate");
3892 /* Make sure all values used by the optimization passes have sane
3893 defaults. */
3894 void
3895 init_function_for_compilation (void)
3897 reg_renumber = 0;
3899 /* No prologue/epilogue insns yet. Make sure that these vectors are
3900 empty. */
3901 gcc_assert (VEC_length (int, prologue) == 0);
3902 gcc_assert (VEC_length (int, epilogue) == 0);
3903 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3906 struct tree_opt_pass pass_init_function =
3908 NULL, /* name */
3909 NULL, /* gate */
3910 init_function_for_compilation, /* execute */
3911 NULL, /* sub */
3912 NULL, /* next */
3913 0, /* static_pass_number */
3914 0, /* tv_id */
3915 0, /* properties_required */
3916 0, /* properties_provided */
3917 0, /* properties_destroyed */
3918 0, /* todo_flags_start */
3919 0, /* todo_flags_finish */
3920 0 /* letter */
3924 void
3925 expand_main_function (void)
3927 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
3928 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
3930 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
3931 rtx tmp, seq;
3933 start_sequence ();
3934 /* Forcibly align the stack. */
3935 #ifdef STACK_GROWS_DOWNWARD
3936 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
3937 stack_pointer_rtx, 1, OPTAB_WIDEN);
3938 #else
3939 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3940 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
3941 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
3942 stack_pointer_rtx, 1, OPTAB_WIDEN);
3943 #endif
3944 if (tmp != stack_pointer_rtx)
3945 emit_move_insn (stack_pointer_rtx, tmp);
3947 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
3948 tmp = force_reg (Pmode, const0_rtx);
3949 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
3950 seq = get_insns ();
3951 end_sequence ();
3953 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
3954 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
3955 break;
3956 if (tmp)
3957 emit_insn_before (seq, tmp);
3958 else
3959 emit_insn (seq);
3961 #endif
3963 #if (defined(INVOKE__main) \
3964 || (!defined(HAS_INIT_SECTION) \
3965 && !defined(INIT_SECTION_ASM_OP) \
3966 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3967 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3968 #endif
3971 /* Expand code to initialize the stack_protect_guard. This is invoked at
3972 the beginning of a function to be protected. */
3974 #ifndef HAVE_stack_protect_set
3975 # define HAVE_stack_protect_set 0
3976 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
3977 #endif
3979 void
3980 stack_protect_prologue (void)
3982 tree guard_decl = targetm.stack_protect_guard ();
3983 rtx x, y;
3985 /* Avoid expand_expr here, because we don't want guard_decl pulled
3986 into registers unless absolutely necessary. And we know that
3987 cfun->stack_protect_guard is a local stack slot, so this skips
3988 all the fluff. */
3989 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3990 y = validize_mem (DECL_RTL (guard_decl));
3992 /* Allow the target to copy from Y to X without leaking Y into a
3993 register. */
3994 if (HAVE_stack_protect_set)
3996 rtx insn = gen_stack_protect_set (x, y);
3997 if (insn)
3999 emit_insn (insn);
4000 return;
4004 /* Otherwise do a straight move. */
4005 emit_move_insn (x, y);
4008 /* Expand code to verify the stack_protect_guard. This is invoked at
4009 the end of a function to be protected. */
4011 #ifndef HAVE_stack_protect_test
4012 # define HAVE_stack_protect_test 0
4013 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4014 #endif
4016 void
4017 stack_protect_epilogue (void)
4019 tree guard_decl = targetm.stack_protect_guard ();
4020 rtx label = gen_label_rtx ();
4021 rtx x, y, tmp;
4023 /* Avoid expand_expr here, because we don't want guard_decl pulled
4024 into registers unless absolutely necessary. And we know that
4025 cfun->stack_protect_guard is a local stack slot, so this skips
4026 all the fluff. */
4027 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4028 y = validize_mem (DECL_RTL (guard_decl));
4030 /* Allow the target to compare Y with X without leaking either into
4031 a register. */
4032 switch (HAVE_stack_protect_test != 0)
4034 case 1:
4035 tmp = gen_stack_protect_test (x, y, label);
4036 if (tmp)
4038 emit_insn (tmp);
4039 break;
4041 /* FALLTHRU */
4043 default:
4044 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4045 break;
4048 /* The noreturn predictor has been moved to the tree level. The rtl-level
4049 predictors estimate this branch about 20%, which isn't enough to get
4050 things moved out of line. Since this is the only extant case of adding
4051 a noreturn function at the rtl level, it doesn't seem worth doing ought
4052 except adding the prediction by hand. */
4053 tmp = get_last_insn ();
4054 if (JUMP_P (tmp))
4055 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4057 expand_expr_stmt (targetm.stack_protect_fail ());
4058 emit_label (label);
4061 /* Start the RTL for a new function, and set variables used for
4062 emitting RTL.
4063 SUBR is the FUNCTION_DECL node.
4064 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4065 the function's parameters, which must be run at any return statement. */
4067 void
4068 expand_function_start (tree subr)
4070 /* Make sure volatile mem refs aren't considered
4071 valid operands of arithmetic insns. */
4072 init_recog_no_volatile ();
4074 current_function_profile
4075 = (profile_flag
4076 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4078 current_function_limit_stack
4079 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4081 /* Make the label for return statements to jump to. Do not special
4082 case machines with special return instructions -- they will be
4083 handled later during jump, ifcvt, or epilogue creation. */
4084 return_label = gen_label_rtx ();
4086 /* Initialize rtx used to return the value. */
4087 /* Do this before assign_parms so that we copy the struct value address
4088 before any library calls that assign parms might generate. */
4090 /* Decide whether to return the value in memory or in a register. */
4091 if (aggregate_value_p (DECL_RESULT (subr), subr))
4093 /* Returning something that won't go in a register. */
4094 rtx value_address = 0;
4096 #ifdef PCC_STATIC_STRUCT_RETURN
4097 if (current_function_returns_pcc_struct)
4099 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4100 value_address = assemble_static_space (size);
4102 else
4103 #endif
4105 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4106 /* Expect to be passed the address of a place to store the value.
4107 If it is passed as an argument, assign_parms will take care of
4108 it. */
4109 if (sv)
4111 value_address = gen_reg_rtx (Pmode);
4112 emit_move_insn (value_address, sv);
4115 if (value_address)
4117 rtx x = value_address;
4118 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4120 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4121 set_mem_attributes (x, DECL_RESULT (subr), 1);
4123 SET_DECL_RTL (DECL_RESULT (subr), x);
4126 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4127 /* If return mode is void, this decl rtl should not be used. */
4128 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4129 else
4131 /* Compute the return values into a pseudo reg, which we will copy
4132 into the true return register after the cleanups are done. */
4133 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4134 if (TYPE_MODE (return_type) != BLKmode
4135 && targetm.calls.return_in_msb (return_type))
4136 /* expand_function_end will insert the appropriate padding in
4137 this case. Use the return value's natural (unpadded) mode
4138 within the function proper. */
4139 SET_DECL_RTL (DECL_RESULT (subr),
4140 gen_reg_rtx (TYPE_MODE (return_type)));
4141 else
4143 /* In order to figure out what mode to use for the pseudo, we
4144 figure out what the mode of the eventual return register will
4145 actually be, and use that. */
4146 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4148 /* Structures that are returned in registers are not
4149 aggregate_value_p, so we may see a PARALLEL or a REG. */
4150 if (REG_P (hard_reg))
4151 SET_DECL_RTL (DECL_RESULT (subr),
4152 gen_reg_rtx (GET_MODE (hard_reg)));
4153 else
4155 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4156 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4160 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4161 result to the real return register(s). */
4162 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4165 /* Initialize rtx for parameters and local variables.
4166 In some cases this requires emitting insns. */
4167 assign_parms (subr);
4169 /* If function gets a static chain arg, store it. */
4170 if (cfun->static_chain_decl)
4172 tree parm = cfun->static_chain_decl;
4173 rtx local = gen_reg_rtx (Pmode);
4175 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4176 SET_DECL_RTL (parm, local);
4177 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4179 emit_move_insn (local, static_chain_incoming_rtx);
4182 /* If the function receives a non-local goto, then store the
4183 bits we need to restore the frame pointer. */
4184 if (cfun->nonlocal_goto_save_area)
4186 tree t_save;
4187 rtx r_save;
4189 /* ??? We need to do this save early. Unfortunately here is
4190 before the frame variable gets declared. Help out... */
4191 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4193 t_save = build4 (ARRAY_REF, ptr_type_node,
4194 cfun->nonlocal_goto_save_area,
4195 integer_zero_node, NULL_TREE, NULL_TREE);
4196 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4197 r_save = convert_memory_address (Pmode, r_save);
4199 emit_move_insn (r_save, virtual_stack_vars_rtx);
4200 update_nonlocal_goto_save_area ();
4203 /* The following was moved from init_function_start.
4204 The move is supposed to make sdb output more accurate. */
4205 /* Indicate the beginning of the function body,
4206 as opposed to parm setup. */
4207 emit_note (NOTE_INSN_FUNCTION_BEG);
4209 if (!NOTE_P (get_last_insn ()))
4210 emit_note (NOTE_INSN_DELETED);
4211 parm_birth_insn = get_last_insn ();
4213 if (current_function_profile)
4215 #ifdef PROFILE_HOOK
4216 PROFILE_HOOK (current_function_funcdef_no);
4217 #endif
4220 /* After the display initializations is where the tail-recursion label
4221 should go, if we end up needing one. Ensure we have a NOTE here
4222 since some things (like trampolines) get placed before this. */
4223 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4225 /* Make sure there is a line number after the function entry setup code. */
4226 force_next_line_note ();
4229 /* Undo the effects of init_dummy_function_start. */
4230 void
4231 expand_dummy_function_end (void)
4233 /* End any sequences that failed to be closed due to syntax errors. */
4234 while (in_sequence_p ())
4235 end_sequence ();
4237 /* Outside function body, can't compute type's actual size
4238 until next function's body starts. */
4240 free_after_parsing (cfun);
4241 free_after_compilation (cfun);
4242 cfun = 0;
4245 /* Call DOIT for each hard register used as a return value from
4246 the current function. */
4248 void
4249 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4251 rtx outgoing = current_function_return_rtx;
4253 if (! outgoing)
4254 return;
4256 if (REG_P (outgoing))
4257 (*doit) (outgoing, arg);
4258 else if (GET_CODE (outgoing) == PARALLEL)
4260 int i;
4262 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4264 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4266 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4267 (*doit) (x, arg);
4272 static void
4273 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4275 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4278 void
4279 clobber_return_register (void)
4281 diddle_return_value (do_clobber_return_reg, NULL);
4283 /* In case we do use pseudo to return value, clobber it too. */
4284 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4286 tree decl_result = DECL_RESULT (current_function_decl);
4287 rtx decl_rtl = DECL_RTL (decl_result);
4288 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4290 do_clobber_return_reg (decl_rtl, NULL);
4295 static void
4296 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4298 emit_insn (gen_rtx_USE (VOIDmode, reg));
4301 void
4302 use_return_register (void)
4304 diddle_return_value (do_use_return_reg, NULL);
4307 /* Possibly warn about unused parameters. */
4308 void
4309 do_warn_unused_parameter (tree fn)
4311 tree decl;
4313 for (decl = DECL_ARGUMENTS (fn);
4314 decl; decl = TREE_CHAIN (decl))
4315 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4316 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4317 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4320 static GTY(()) rtx initial_trampoline;
4322 /* Generate RTL for the end of the current function. */
4324 void
4325 expand_function_end (void)
4327 rtx clobber_after;
4329 /* If arg_pointer_save_area was referenced only from a nested
4330 function, we will not have initialized it yet. Do that now. */
4331 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4332 get_arg_pointer_save_area (cfun);
4334 /* If we are doing stack checking and this function makes calls,
4335 do a stack probe at the start of the function to ensure we have enough
4336 space for another stack frame. */
4337 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4339 rtx insn, seq;
4341 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4342 if (CALL_P (insn))
4344 start_sequence ();
4345 probe_stack_range (STACK_CHECK_PROTECT,
4346 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4347 seq = get_insns ();
4348 end_sequence ();
4349 emit_insn_before (seq, tail_recursion_reentry);
4350 break;
4354 /* Possibly warn about unused parameters.
4355 When frontend does unit-at-a-time, the warning is already
4356 issued at finalization time. */
4357 if (warn_unused_parameter
4358 && !lang_hooks.callgraph.expand_function)
4359 do_warn_unused_parameter (current_function_decl);
4361 /* End any sequences that failed to be closed due to syntax errors. */
4362 while (in_sequence_p ())
4363 end_sequence ();
4365 clear_pending_stack_adjust ();
4366 do_pending_stack_adjust ();
4368 /* @@@ This is a kludge. We want to ensure that instructions that
4369 may trap are not moved into the epilogue by scheduling, because
4370 we don't always emit unwind information for the epilogue.
4371 However, not all machine descriptions define a blockage insn, so
4372 emit an ASM_INPUT to act as one. */
4373 if (flag_non_call_exceptions)
4374 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4376 /* Mark the end of the function body.
4377 If control reaches this insn, the function can drop through
4378 without returning a value. */
4379 emit_note (NOTE_INSN_FUNCTION_END);
4381 /* Must mark the last line number note in the function, so that the test
4382 coverage code can avoid counting the last line twice. This just tells
4383 the code to ignore the immediately following line note, since there
4384 already exists a copy of this note somewhere above. This line number
4385 note is still needed for debugging though, so we can't delete it. */
4386 if (flag_test_coverage)
4387 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4389 /* Output a linenumber for the end of the function.
4390 SDB depends on this. */
4391 force_next_line_note ();
4392 emit_line_note (input_location);
4394 /* Before the return label (if any), clobber the return
4395 registers so that they are not propagated live to the rest of
4396 the function. This can only happen with functions that drop
4397 through; if there had been a return statement, there would
4398 have either been a return rtx, or a jump to the return label.
4400 We delay actual code generation after the current_function_value_rtx
4401 is computed. */
4402 clobber_after = get_last_insn ();
4404 /* Output the label for the actual return from the function. */
4405 emit_label (return_label);
4407 /* Let except.c know where it should emit the call to unregister
4408 the function context for sjlj exceptions. */
4409 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4410 sjlj_emit_function_exit_after (get_last_insn ());
4412 /* If scalar return value was computed in a pseudo-reg, or was a named
4413 return value that got dumped to the stack, copy that to the hard
4414 return register. */
4415 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4417 tree decl_result = DECL_RESULT (current_function_decl);
4418 rtx decl_rtl = DECL_RTL (decl_result);
4420 if (REG_P (decl_rtl)
4421 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4422 : DECL_REGISTER (decl_result))
4424 rtx real_decl_rtl = current_function_return_rtx;
4426 /* This should be set in assign_parms. */
4427 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4429 /* If this is a BLKmode structure being returned in registers,
4430 then use the mode computed in expand_return. Note that if
4431 decl_rtl is memory, then its mode may have been changed,
4432 but that current_function_return_rtx has not. */
4433 if (GET_MODE (real_decl_rtl) == BLKmode)
4434 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4436 /* If a non-BLKmode return value should be padded at the least
4437 significant end of the register, shift it left by the appropriate
4438 amount. BLKmode results are handled using the group load/store
4439 machinery. */
4440 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4441 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4443 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4444 REGNO (real_decl_rtl)),
4445 decl_rtl);
4446 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4448 /* If a named return value dumped decl_return to memory, then
4449 we may need to re-do the PROMOTE_MODE signed/unsigned
4450 extension. */
4451 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4453 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4455 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4456 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4457 &unsignedp, 1);
4459 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4461 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4463 /* If expand_function_start has created a PARALLEL for decl_rtl,
4464 move the result to the real return registers. Otherwise, do
4465 a group load from decl_rtl for a named return. */
4466 if (GET_CODE (decl_rtl) == PARALLEL)
4467 emit_group_move (real_decl_rtl, decl_rtl);
4468 else
4469 emit_group_load (real_decl_rtl, decl_rtl,
4470 TREE_TYPE (decl_result),
4471 int_size_in_bytes (TREE_TYPE (decl_result)));
4473 else
4474 emit_move_insn (real_decl_rtl, decl_rtl);
4478 /* If returning a structure, arrange to return the address of the value
4479 in a place where debuggers expect to find it.
4481 If returning a structure PCC style,
4482 the caller also depends on this value.
4483 And current_function_returns_pcc_struct is not necessarily set. */
4484 if (current_function_returns_struct
4485 || current_function_returns_pcc_struct)
4487 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4488 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4489 rtx outgoing;
4491 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4492 type = TREE_TYPE (type);
4493 else
4494 value_address = XEXP (value_address, 0);
4496 outgoing = targetm.calls.function_value (build_pointer_type (type),
4497 current_function_decl, true);
4499 /* Mark this as a function return value so integrate will delete the
4500 assignment and USE below when inlining this function. */
4501 REG_FUNCTION_VALUE_P (outgoing) = 1;
4503 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4504 value_address = convert_memory_address (GET_MODE (outgoing),
4505 value_address);
4507 emit_move_insn (outgoing, value_address);
4509 /* Show return register used to hold result (in this case the address
4510 of the result. */
4511 current_function_return_rtx = outgoing;
4514 /* If this is an implementation of throw, do what's necessary to
4515 communicate between __builtin_eh_return and the epilogue. */
4516 expand_eh_return ();
4518 /* Emit the actual code to clobber return register. */
4520 rtx seq;
4522 start_sequence ();
4523 clobber_return_register ();
4524 expand_naked_return ();
4525 seq = get_insns ();
4526 end_sequence ();
4528 emit_insn_after (seq, clobber_after);
4531 /* Output the label for the naked return from the function. */
4532 emit_label (naked_return_label);
4534 /* If stack protection is enabled for this function, check the guard. */
4535 if (cfun->stack_protect_guard)
4536 stack_protect_epilogue ();
4538 /* If we had calls to alloca, and this machine needs
4539 an accurate stack pointer to exit the function,
4540 insert some code to save and restore the stack pointer. */
4541 if (! EXIT_IGNORE_STACK
4542 && current_function_calls_alloca)
4544 rtx tem = 0;
4546 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4547 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4550 /* ??? This should no longer be necessary since stupid is no longer with
4551 us, but there are some parts of the compiler (eg reload_combine, and
4552 sh mach_dep_reorg) that still try and compute their own lifetime info
4553 instead of using the general framework. */
4554 use_return_register ();
4558 get_arg_pointer_save_area (struct function *f)
4560 rtx ret = f->x_arg_pointer_save_area;
4562 if (! ret)
4564 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4565 f->x_arg_pointer_save_area = ret;
4568 if (f == cfun && ! f->arg_pointer_save_area_init)
4570 rtx seq;
4572 /* Save the arg pointer at the beginning of the function. The
4573 generated stack slot may not be a valid memory address, so we
4574 have to check it and fix it if necessary. */
4575 start_sequence ();
4576 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4577 seq = get_insns ();
4578 end_sequence ();
4580 push_topmost_sequence ();
4581 emit_insn_after (seq, entry_of_function ());
4582 pop_topmost_sequence ();
4585 return ret;
4588 /* Extend a vector that records the INSN_UIDs of INSNS
4589 (a list of one or more insns). */
4591 static void
4592 record_insns (rtx insns, VEC(int,heap) **vecp)
4594 rtx tmp;
4596 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4597 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4600 /* Set the locator of the insn chain starting at INSN to LOC. */
4601 static void
4602 set_insn_locators (rtx insn, int loc)
4604 while (insn != NULL_RTX)
4606 if (INSN_P (insn))
4607 INSN_LOCATOR (insn) = loc;
4608 insn = NEXT_INSN (insn);
4612 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4613 be running after reorg, SEQUENCE rtl is possible. */
4615 static int
4616 contains (rtx insn, VEC(int,heap) **vec)
4618 int i, j;
4620 if (NONJUMP_INSN_P (insn)
4621 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4623 int count = 0;
4624 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4625 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4626 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4627 == VEC_index (int, *vec, j))
4628 count++;
4629 return count;
4631 else
4633 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4634 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4635 return 1;
4637 return 0;
4641 prologue_epilogue_contains (rtx insn)
4643 if (contains (insn, &prologue))
4644 return 1;
4645 if (contains (insn, &epilogue))
4646 return 1;
4647 return 0;
4651 sibcall_epilogue_contains (rtx insn)
4653 if (sibcall_epilogue)
4654 return contains (insn, &sibcall_epilogue);
4655 return 0;
4658 #ifdef HAVE_return
4659 /* Insert gen_return at the end of block BB. This also means updating
4660 block_for_insn appropriately. */
4662 static void
4663 emit_return_into_block (basic_block bb, rtx line_note)
4665 emit_jump_insn_after (gen_return (), BB_END (bb));
4666 if (line_note)
4667 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4669 #endif /* HAVE_return */
4671 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4673 /* These functions convert the epilogue into a variant that does not
4674 modify the stack pointer. This is used in cases where a function
4675 returns an object whose size is not known until it is computed.
4676 The called function leaves the object on the stack, leaves the
4677 stack depressed, and returns a pointer to the object.
4679 What we need to do is track all modifications and references to the
4680 stack pointer, deleting the modifications and changing the
4681 references to point to the location the stack pointer would have
4682 pointed to had the modifications taken place.
4684 These functions need to be portable so we need to make as few
4685 assumptions about the epilogue as we can. However, the epilogue
4686 basically contains three things: instructions to reset the stack
4687 pointer, instructions to reload registers, possibly including the
4688 frame pointer, and an instruction to return to the caller.
4690 We must be sure of what a relevant epilogue insn is doing. We also
4691 make no attempt to validate the insns we make since if they are
4692 invalid, we probably can't do anything valid. The intent is that
4693 these routines get "smarter" as more and more machines start to use
4694 them and they try operating on different epilogues.
4696 We use the following structure to track what the part of the
4697 epilogue that we've already processed has done. We keep two copies
4698 of the SP equivalence, one for use during the insn we are
4699 processing and one for use in the next insn. The difference is
4700 because one part of a PARALLEL may adjust SP and the other may use
4701 it. */
4703 struct epi_info
4705 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4706 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4707 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4708 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4709 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4710 should be set to once we no longer need
4711 its value. */
4712 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4713 for registers. */
4716 static void handle_epilogue_set (rtx, struct epi_info *);
4717 static void update_epilogue_consts (rtx, rtx, void *);
4718 static void emit_equiv_load (struct epi_info *);
4720 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4721 no modifications to the stack pointer. Return the new list of insns. */
4723 static rtx
4724 keep_stack_depressed (rtx insns)
4726 int j;
4727 struct epi_info info;
4728 rtx insn, next;
4730 /* If the epilogue is just a single instruction, it must be OK as is. */
4731 if (NEXT_INSN (insns) == NULL_RTX)
4732 return insns;
4734 /* Otherwise, start a sequence, initialize the information we have, and
4735 process all the insns we were given. */
4736 start_sequence ();
4738 info.sp_equiv_reg = stack_pointer_rtx;
4739 info.sp_offset = 0;
4740 info.equiv_reg_src = 0;
4742 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4743 info.const_equiv[j] = 0;
4745 insn = insns;
4746 next = NULL_RTX;
4747 while (insn != NULL_RTX)
4749 next = NEXT_INSN (insn);
4751 if (!INSN_P (insn))
4753 add_insn (insn);
4754 insn = next;
4755 continue;
4758 /* If this insn references the register that SP is equivalent to and
4759 we have a pending load to that register, we must force out the load
4760 first and then indicate we no longer know what SP's equivalent is. */
4761 if (info.equiv_reg_src != 0
4762 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4764 emit_equiv_load (&info);
4765 info.sp_equiv_reg = 0;
4768 info.new_sp_equiv_reg = info.sp_equiv_reg;
4769 info.new_sp_offset = info.sp_offset;
4771 /* If this is a (RETURN) and the return address is on the stack,
4772 update the address and change to an indirect jump. */
4773 if (GET_CODE (PATTERN (insn)) == RETURN
4774 || (GET_CODE (PATTERN (insn)) == PARALLEL
4775 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4777 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4778 rtx base = 0;
4779 HOST_WIDE_INT offset = 0;
4780 rtx jump_insn, jump_set;
4782 /* If the return address is in a register, we can emit the insn
4783 unchanged. Otherwise, it must be a MEM and we see what the
4784 base register and offset are. In any case, we have to emit any
4785 pending load to the equivalent reg of SP, if any. */
4786 if (REG_P (retaddr))
4788 emit_equiv_load (&info);
4789 add_insn (insn);
4790 insn = next;
4791 continue;
4793 else
4795 rtx ret_ptr;
4796 gcc_assert (MEM_P (retaddr));
4798 ret_ptr = XEXP (retaddr, 0);
4800 if (REG_P (ret_ptr))
4802 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4803 offset = 0;
4805 else
4807 gcc_assert (GET_CODE (ret_ptr) == PLUS
4808 && REG_P (XEXP (ret_ptr, 0))
4809 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4810 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4811 offset = INTVAL (XEXP (ret_ptr, 1));
4815 /* If the base of the location containing the return pointer
4816 is SP, we must update it with the replacement address. Otherwise,
4817 just build the necessary MEM. */
4818 retaddr = plus_constant (base, offset);
4819 if (base == stack_pointer_rtx)
4820 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4821 plus_constant (info.sp_equiv_reg,
4822 info.sp_offset));
4824 retaddr = gen_rtx_MEM (Pmode, retaddr);
4825 MEM_NOTRAP_P (retaddr) = 1;
4827 /* If there is a pending load to the equivalent register for SP
4828 and we reference that register, we must load our address into
4829 a scratch register and then do that load. */
4830 if (info.equiv_reg_src
4831 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4833 unsigned int regno;
4834 rtx reg;
4836 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4837 if (HARD_REGNO_MODE_OK (regno, Pmode)
4838 && !fixed_regs[regno]
4839 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4840 && !REGNO_REG_SET_P
4841 (EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno)
4842 && !refers_to_regno_p (regno,
4843 regno + hard_regno_nregs[regno]
4844 [Pmode],
4845 info.equiv_reg_src, NULL)
4846 && info.const_equiv[regno] == 0)
4847 break;
4849 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4851 reg = gen_rtx_REG (Pmode, regno);
4852 emit_move_insn (reg, retaddr);
4853 retaddr = reg;
4856 emit_equiv_load (&info);
4857 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4859 /* Show the SET in the above insn is a RETURN. */
4860 jump_set = single_set (jump_insn);
4861 gcc_assert (jump_set);
4862 SET_IS_RETURN_P (jump_set) = 1;
4865 /* If SP is not mentioned in the pattern and its equivalent register, if
4866 any, is not modified, just emit it. Otherwise, if neither is set,
4867 replace the reference to SP and emit the insn. If none of those are
4868 true, handle each SET individually. */
4869 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4870 && (info.sp_equiv_reg == stack_pointer_rtx
4871 || !reg_set_p (info.sp_equiv_reg, insn)))
4872 add_insn (insn);
4873 else if (! reg_set_p (stack_pointer_rtx, insn)
4874 && (info.sp_equiv_reg == stack_pointer_rtx
4875 || !reg_set_p (info.sp_equiv_reg, insn)))
4877 int changed;
4879 changed = validate_replace_rtx (stack_pointer_rtx,
4880 plus_constant (info.sp_equiv_reg,
4881 info.sp_offset),
4882 insn);
4883 gcc_assert (changed);
4885 add_insn (insn);
4887 else if (GET_CODE (PATTERN (insn)) == SET)
4888 handle_epilogue_set (PATTERN (insn), &info);
4889 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4891 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4892 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4893 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4895 else
4896 add_insn (insn);
4898 info.sp_equiv_reg = info.new_sp_equiv_reg;
4899 info.sp_offset = info.new_sp_offset;
4901 /* Now update any constants this insn sets. */
4902 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4903 insn = next;
4906 insns = get_insns ();
4907 end_sequence ();
4908 return insns;
4911 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4912 structure that contains information about what we've seen so far. We
4913 process this SET by either updating that data or by emitting one or
4914 more insns. */
4916 static void
4917 handle_epilogue_set (rtx set, struct epi_info *p)
4919 /* First handle the case where we are setting SP. Record what it is being
4920 set from, which we must be able to determine */
4921 if (reg_set_p (stack_pointer_rtx, set))
4923 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4925 if (GET_CODE (SET_SRC (set)) == PLUS)
4927 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4928 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4929 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4930 else
4932 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4933 && (REGNO (XEXP (SET_SRC (set), 1))
4934 < FIRST_PSEUDO_REGISTER)
4935 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4936 p->new_sp_offset
4937 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4940 else
4941 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4943 /* If we are adjusting SP, we adjust from the old data. */
4944 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4946 p->new_sp_equiv_reg = p->sp_equiv_reg;
4947 p->new_sp_offset += p->sp_offset;
4950 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4952 return;
4955 /* Next handle the case where we are setting SP's equivalent
4956 register. We must not already have a value to set it to. We
4957 could update, but there seems little point in handling that case.
4958 Note that we have to allow for the case where we are setting the
4959 register set in the previous part of a PARALLEL inside a single
4960 insn. But use the old offset for any updates within this insn.
4961 We must allow for the case where the register is being set in a
4962 different (usually wider) mode than Pmode). */
4963 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4965 gcc_assert (!p->equiv_reg_src
4966 && REG_P (p->new_sp_equiv_reg)
4967 && REG_P (SET_DEST (set))
4968 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4969 <= BITS_PER_WORD)
4970 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4971 p->equiv_reg_src
4972 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4973 plus_constant (p->sp_equiv_reg,
4974 p->sp_offset));
4977 /* Otherwise, replace any references to SP in the insn to its new value
4978 and emit the insn. */
4979 else
4981 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4982 plus_constant (p->sp_equiv_reg,
4983 p->sp_offset));
4984 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4985 plus_constant (p->sp_equiv_reg,
4986 p->sp_offset));
4987 emit_insn (set);
4991 /* Update the tracking information for registers set to constants. */
4993 static void
4994 update_epilogue_consts (rtx dest, rtx x, void *data)
4996 struct epi_info *p = (struct epi_info *) data;
4997 rtx new;
4999 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5000 return;
5002 /* If we are either clobbering a register or doing a partial set,
5003 show we don't know the value. */
5004 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5005 p->const_equiv[REGNO (dest)] = 0;
5007 /* If we are setting it to a constant, record that constant. */
5008 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5009 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5011 /* If this is a binary operation between a register we have been tracking
5012 and a constant, see if we can compute a new constant value. */
5013 else if (ARITHMETIC_P (SET_SRC (x))
5014 && REG_P (XEXP (SET_SRC (x), 0))
5015 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5016 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5017 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5018 && 0 != (new = simplify_binary_operation
5019 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5020 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5021 XEXP (SET_SRC (x), 1)))
5022 && GET_CODE (new) == CONST_INT)
5023 p->const_equiv[REGNO (dest)] = new;
5025 /* Otherwise, we can't do anything with this value. */
5026 else
5027 p->const_equiv[REGNO (dest)] = 0;
5030 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5032 static void
5033 emit_equiv_load (struct epi_info *p)
5035 if (p->equiv_reg_src != 0)
5037 rtx dest = p->sp_equiv_reg;
5039 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5040 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5041 REGNO (p->sp_equiv_reg));
5043 emit_move_insn (dest, p->equiv_reg_src);
5044 p->equiv_reg_src = 0;
5047 #endif
5049 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5050 this into place with notes indicating where the prologue ends and where
5051 the epilogue begins. Update the basic block information when possible. */
5053 void
5054 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5056 int inserted = 0;
5057 edge e;
5058 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5059 rtx seq;
5060 #endif
5061 #ifdef HAVE_prologue
5062 rtx prologue_end = NULL_RTX;
5063 #endif
5064 #if defined (HAVE_epilogue) || defined(HAVE_return)
5065 rtx epilogue_end = NULL_RTX;
5066 #endif
5067 edge_iterator ei;
5069 #ifdef HAVE_prologue
5070 if (HAVE_prologue)
5072 start_sequence ();
5073 seq = gen_prologue ();
5074 emit_insn (seq);
5076 /* Retain a map of the prologue insns. */
5077 record_insns (seq, &prologue);
5078 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5080 seq = get_insns ();
5081 end_sequence ();
5082 set_insn_locators (seq, prologue_locator);
5084 /* Can't deal with multiple successors of the entry block
5085 at the moment. Function should always have at least one
5086 entry point. */
5087 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5089 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5090 inserted = 1;
5092 #endif
5094 /* If the exit block has no non-fake predecessors, we don't need
5095 an epilogue. */
5096 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5097 if ((e->flags & EDGE_FAKE) == 0)
5098 break;
5099 if (e == NULL)
5100 goto epilogue_done;
5102 #ifdef HAVE_return
5103 if (optimize && HAVE_return)
5105 /* If we're allowed to generate a simple return instruction,
5106 then by definition we don't need a full epilogue. Examine
5107 the block that falls through to EXIT. If it does not
5108 contain any code, examine its predecessors and try to
5109 emit (conditional) return instructions. */
5111 basic_block last;
5112 rtx label;
5114 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5115 if (e->flags & EDGE_FALLTHRU)
5116 break;
5117 if (e == NULL)
5118 goto epilogue_done;
5119 last = e->src;
5121 /* Verify that there are no active instructions in the last block. */
5122 label = BB_END (last);
5123 while (label && !LABEL_P (label))
5125 if (active_insn_p (label))
5126 break;
5127 label = PREV_INSN (label);
5130 if (BB_HEAD (last) == label && LABEL_P (label))
5132 edge_iterator ei2;
5133 rtx epilogue_line_note = NULL_RTX;
5135 /* Locate the line number associated with the closing brace,
5136 if we can find one. */
5137 for (seq = get_last_insn ();
5138 seq && ! active_insn_p (seq);
5139 seq = PREV_INSN (seq))
5140 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5142 epilogue_line_note = seq;
5143 break;
5146 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5148 basic_block bb = e->src;
5149 rtx jump;
5151 if (bb == ENTRY_BLOCK_PTR)
5153 ei_next (&ei2);
5154 continue;
5157 jump = BB_END (bb);
5158 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5160 ei_next (&ei2);
5161 continue;
5164 /* If we have an unconditional jump, we can replace that
5165 with a simple return instruction. */
5166 if (simplejump_p (jump))
5168 emit_return_into_block (bb, epilogue_line_note);
5169 delete_insn (jump);
5172 /* If we have a conditional jump, we can try to replace
5173 that with a conditional return instruction. */
5174 else if (condjump_p (jump))
5176 if (! redirect_jump (jump, 0, 0))
5178 ei_next (&ei2);
5179 continue;
5182 /* If this block has only one successor, it both jumps
5183 and falls through to the fallthru block, so we can't
5184 delete the edge. */
5185 if (single_succ_p (bb))
5187 ei_next (&ei2);
5188 continue;
5191 else
5193 ei_next (&ei2);
5194 continue;
5197 /* Fix up the CFG for the successful change we just made. */
5198 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5201 /* Emit a return insn for the exit fallthru block. Whether
5202 this is still reachable will be determined later. */
5204 emit_barrier_after (BB_END (last));
5205 emit_return_into_block (last, epilogue_line_note);
5206 epilogue_end = BB_END (last);
5207 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5208 goto epilogue_done;
5211 #endif
5212 /* Find the edge that falls through to EXIT. Other edges may exist
5213 due to RETURN instructions, but those don't need epilogues.
5214 There really shouldn't be a mixture -- either all should have
5215 been converted or none, however... */
5217 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5218 if (e->flags & EDGE_FALLTHRU)
5219 break;
5220 if (e == NULL)
5221 goto epilogue_done;
5223 #ifdef HAVE_epilogue
5224 if (HAVE_epilogue)
5226 start_sequence ();
5227 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5229 seq = gen_epilogue ();
5231 #ifdef INCOMING_RETURN_ADDR_RTX
5232 /* If this function returns with the stack depressed and we can support
5233 it, massage the epilogue to actually do that. */
5234 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5235 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5236 seq = keep_stack_depressed (seq);
5237 #endif
5239 emit_jump_insn (seq);
5241 /* Retain a map of the epilogue insns. */
5242 record_insns (seq, &epilogue);
5243 set_insn_locators (seq, epilogue_locator);
5245 seq = get_insns ();
5246 end_sequence ();
5248 insert_insn_on_edge (seq, e);
5249 inserted = 1;
5251 else
5252 #endif
5254 basic_block cur_bb;
5256 if (! next_active_insn (BB_END (e->src)))
5257 goto epilogue_done;
5258 /* We have a fall-through edge to the exit block, the source is not
5259 at the end of the function, and there will be an assembler epilogue
5260 at the end of the function.
5261 We can't use force_nonfallthru here, because that would try to
5262 use return. Inserting a jump 'by hand' is extremely messy, so
5263 we take advantage of cfg_layout_finalize using
5264 fixup_fallthru_exit_predecessor. */
5265 cfg_layout_initialize (0);
5266 FOR_EACH_BB (cur_bb)
5267 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5268 cur_bb->aux = cur_bb->next_bb;
5269 cfg_layout_finalize ();
5271 epilogue_done:
5273 if (inserted)
5274 commit_edge_insertions ();
5276 #ifdef HAVE_sibcall_epilogue
5277 /* Emit sibling epilogues before any sibling call sites. */
5278 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5280 basic_block bb = e->src;
5281 rtx insn = BB_END (bb);
5283 if (!CALL_P (insn)
5284 || ! SIBLING_CALL_P (insn))
5286 ei_next (&ei);
5287 continue;
5290 start_sequence ();
5291 emit_insn (gen_sibcall_epilogue ());
5292 seq = get_insns ();
5293 end_sequence ();
5295 /* Retain a map of the epilogue insns. Used in life analysis to
5296 avoid getting rid of sibcall epilogue insns. Do this before we
5297 actually emit the sequence. */
5298 record_insns (seq, &sibcall_epilogue);
5299 set_insn_locators (seq, epilogue_locator);
5301 emit_insn_before (seq, insn);
5302 ei_next (&ei);
5304 #endif
5306 #ifdef HAVE_prologue
5307 /* This is probably all useless now that we use locators. */
5308 if (prologue_end)
5310 rtx insn, prev;
5312 /* GDB handles `break f' by setting a breakpoint on the first
5313 line note after the prologue. Which means (1) that if
5314 there are line number notes before where we inserted the
5315 prologue we should move them, and (2) we should generate a
5316 note before the end of the first basic block, if there isn't
5317 one already there.
5319 ??? This behavior is completely broken when dealing with
5320 multiple entry functions. We simply place the note always
5321 into first basic block and let alternate entry points
5322 to be missed.
5325 for (insn = prologue_end; insn; insn = prev)
5327 prev = PREV_INSN (insn);
5328 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5330 /* Note that we cannot reorder the first insn in the
5331 chain, since rest_of_compilation relies on that
5332 remaining constant. */
5333 if (prev == NULL)
5334 break;
5335 reorder_insns (insn, insn, prologue_end);
5339 /* Find the last line number note in the first block. */
5340 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5341 insn != prologue_end && insn;
5342 insn = PREV_INSN (insn))
5343 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5344 break;
5346 /* If we didn't find one, make a copy of the first line number
5347 we run across. */
5348 if (! insn)
5350 for (insn = next_active_insn (prologue_end);
5351 insn;
5352 insn = PREV_INSN (insn))
5353 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5355 emit_note_copy_after (insn, prologue_end);
5356 break;
5360 #endif
5361 #ifdef HAVE_epilogue
5362 if (epilogue_end)
5364 rtx insn, next;
5366 /* Similarly, move any line notes that appear after the epilogue.
5367 There is no need, however, to be quite so anal about the existence
5368 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5369 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5370 info generation. */
5371 for (insn = epilogue_end; insn; insn = next)
5373 next = NEXT_INSN (insn);
5374 if (NOTE_P (insn)
5375 && (NOTE_LINE_NUMBER (insn) > 0
5376 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5377 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5378 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5381 #endif
5384 /* Reposition the prologue-end and epilogue-begin notes after instruction
5385 scheduling and delayed branch scheduling. */
5387 void
5388 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5390 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5391 rtx insn, last, note;
5392 int len;
5394 if ((len = VEC_length (int, prologue)) > 0)
5396 last = 0, note = 0;
5398 /* Scan from the beginning until we reach the last prologue insn.
5399 We apparently can't depend on basic_block_{head,end} after
5400 reorg has run. */
5401 for (insn = f; insn; insn = NEXT_INSN (insn))
5403 if (NOTE_P (insn))
5405 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5406 note = insn;
5408 else if (contains (insn, &prologue))
5410 last = insn;
5411 if (--len == 0)
5412 break;
5416 if (last)
5418 /* Find the prologue-end note if we haven't already, and
5419 move it to just after the last prologue insn. */
5420 if (note == 0)
5422 for (note = last; (note = NEXT_INSN (note));)
5423 if (NOTE_P (note)
5424 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5425 break;
5428 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5429 if (LABEL_P (last))
5430 last = NEXT_INSN (last);
5431 reorder_insns (note, note, last);
5435 if ((len = VEC_length (int, epilogue)) > 0)
5437 last = 0, note = 0;
5439 /* Scan from the end until we reach the first epilogue insn.
5440 We apparently can't depend on basic_block_{head,end} after
5441 reorg has run. */
5442 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5444 if (NOTE_P (insn))
5446 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5447 note = insn;
5449 else if (contains (insn, &epilogue))
5451 last = insn;
5452 if (--len == 0)
5453 break;
5457 if (last)
5459 /* Find the epilogue-begin note if we haven't already, and
5460 move it to just before the first epilogue insn. */
5461 if (note == 0)
5463 for (note = insn; (note = PREV_INSN (note));)
5464 if (NOTE_P (note)
5465 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5466 break;
5469 if (PREV_INSN (last) != note)
5470 reorder_insns (note, note, PREV_INSN (last));
5473 #endif /* HAVE_prologue or HAVE_epilogue */
5476 /* Resets insn_block_boundaries array. */
5478 void
5479 reset_block_changes (void)
5481 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5482 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5485 /* Record the boundary for BLOCK. */
5486 void
5487 record_block_change (tree block)
5489 int i, n;
5490 tree last_block;
5492 if (!block)
5493 return;
5495 if(!cfun->ib_boundaries_block)
5496 return;
5498 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5499 VARRAY_POP (cfun->ib_boundaries_block);
5500 n = get_max_uid ();
5501 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5502 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5504 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5507 /* Finishes record of boundaries. */
5508 void finalize_block_changes (void)
5510 record_block_change (DECL_INITIAL (current_function_decl));
5513 /* For INSN return the BLOCK it belongs to. */
5514 void
5515 check_block_change (rtx insn, tree *block)
5517 unsigned uid = INSN_UID (insn);
5519 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5520 return;
5522 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5525 /* Releases the ib_boundaries_block records. */
5526 void
5527 free_block_changes (void)
5529 cfun->ib_boundaries_block = NULL;
5532 /* Returns the name of the current function. */
5533 const char *
5534 current_function_name (void)
5536 return lang_hooks.decl_printable_name (cfun->decl, 2);
5540 static void
5541 rest_of_handle_check_leaf_regs (void)
5543 #ifdef LEAF_REGISTERS
5544 current_function_uses_only_leaf_regs
5545 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5546 #endif
5549 struct tree_opt_pass pass_leaf_regs =
5551 NULL, /* name */
5552 NULL, /* gate */
5553 rest_of_handle_check_leaf_regs, /* execute */
5554 NULL, /* sub */
5555 NULL, /* next */
5556 0, /* static_pass_number */
5557 0, /* tv_id */
5558 0, /* properties_required */
5559 0, /* properties_provided */
5560 0, /* properties_destroyed */
5561 0, /* todo_flags_start */
5562 0, /* todo_flags_finish */
5563 0 /* letter */
5567 #include "gt-function.h"