1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
30 /* The entry points in this file are fold, size_int_wide, size_binop
33 fold takes a tree as argument and returns a simplified tree.
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
42 force_fit_type takes a constant, an overflowable flag and prior
43 overflow indicators. It forces the value to fit the type and sets
44 TREE_OVERFLOW and TREE_CONSTANT_OVERFLOW as appropriate. */
48 #include "coretypes.h"
59 #include "langhooks.h"
62 /* The following constants represent a bit based encoding of GCC's
63 comparison operators. This encoding simplifies transformations
64 on relational comparison operators, such as AND and OR. */
65 enum comparison_code
{
84 static void encode (HOST_WIDE_INT
*, unsigned HOST_WIDE_INT
, HOST_WIDE_INT
);
85 static void decode (HOST_WIDE_INT
*, unsigned HOST_WIDE_INT
*, HOST_WIDE_INT
*);
86 static bool negate_mathfn_p (enum built_in_function
);
87 static bool negate_expr_p (tree
);
88 static tree
negate_expr (tree
);
89 static tree
split_tree (tree
, enum tree_code
, tree
*, tree
*, tree
*, int);
90 static tree
associate_trees (tree
, tree
, enum tree_code
, tree
);
91 static tree
const_binop (enum tree_code
, tree
, tree
, int);
92 static enum comparison_code
comparison_to_compcode (enum tree_code
);
93 static enum tree_code
compcode_to_comparison (enum comparison_code
);
94 static tree
combine_comparisons (enum tree_code
, enum tree_code
,
95 enum tree_code
, tree
, tree
, tree
);
96 static int truth_value_p (enum tree_code
);
97 static int operand_equal_for_comparison_p (tree
, tree
, tree
);
98 static int twoval_comparison_p (tree
, tree
*, tree
*, int *);
99 static tree
eval_subst (tree
, tree
, tree
, tree
, tree
);
100 static tree
pedantic_omit_one_operand (tree
, tree
, tree
);
101 static tree
distribute_bit_expr (enum tree_code
, tree
, tree
, tree
);
102 static tree
make_bit_field_ref (tree
, tree
, int, int, int);
103 static tree
optimize_bit_field_compare (enum tree_code
, tree
, tree
, tree
);
104 static tree
decode_field_reference (tree
, HOST_WIDE_INT
*, HOST_WIDE_INT
*,
105 enum machine_mode
*, int *, int *,
107 static int all_ones_mask_p (tree
, int);
108 static tree
sign_bit_p (tree
, tree
);
109 static int simple_operand_p (tree
);
110 static tree
range_binop (enum tree_code
, tree
, tree
, int, tree
, int);
111 static tree
make_range (tree
, int *, tree
*, tree
*);
112 static tree
build_range_check (tree
, tree
, int, tree
, tree
);
113 static int merge_ranges (int *, tree
*, tree
*, int, tree
, tree
, int, tree
,
115 static tree
fold_range_test (enum tree_code
, tree
, tree
, tree
);
116 static tree
fold_cond_expr_with_comparison (tree
, tree
, tree
, tree
);
117 static tree
unextend (tree
, int, int, tree
);
118 static tree
fold_truthop (enum tree_code
, tree
, tree
, tree
);
119 static tree
optimize_minmax_comparison (enum tree_code
, tree
, tree
, tree
);
120 static tree
extract_muldiv (tree
, tree
, enum tree_code
, tree
);
121 static tree
extract_muldiv_1 (tree
, tree
, enum tree_code
, tree
);
122 static int multiple_of_p (tree
, tree
, tree
);
123 static tree
fold_binary_op_with_conditional_arg (enum tree_code
, tree
,
126 static bool fold_real_zero_addition_p (tree
, tree
, int);
127 static tree
fold_mathfn_compare (enum built_in_function
, enum tree_code
,
129 static tree
fold_inf_compare (enum tree_code
, tree
, tree
, tree
);
130 static tree
fold_div_compare (enum tree_code
, tree
, tree
, tree
);
131 static bool reorder_operands_p (tree
, tree
);
132 static tree
fold_negate_const (tree
, tree
);
133 static tree
fold_not_const (tree
, tree
);
134 static tree
fold_relational_const (enum tree_code
, tree
, tree
, tree
);
136 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
137 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
138 and SUM1. Then this yields nonzero if overflow occurred during the
141 Overflow occurs if A and B have the same sign, but A and SUM differ in
142 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
144 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
146 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
147 We do that by representing the two-word integer in 4 words, with only
148 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
149 number. The value of the word is LOWPART + HIGHPART * BASE. */
152 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
153 #define HIGHPART(x) \
154 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
155 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
157 /* Unpack a two-word integer into 4 words.
158 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
159 WORDS points to the array of HOST_WIDE_INTs. */
162 encode (HOST_WIDE_INT
*words
, unsigned HOST_WIDE_INT low
, HOST_WIDE_INT hi
)
164 words
[0] = LOWPART (low
);
165 words
[1] = HIGHPART (low
);
166 words
[2] = LOWPART (hi
);
167 words
[3] = HIGHPART (hi
);
170 /* Pack an array of 4 words into a two-word integer.
171 WORDS points to the array of words.
172 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
175 decode (HOST_WIDE_INT
*words
, unsigned HOST_WIDE_INT
*low
,
178 *low
= words
[0] + words
[1] * BASE
;
179 *hi
= words
[2] + words
[3] * BASE
;
182 /* T is an INT_CST node. OVERFLOWABLE indicates if we are interested
183 in overflow of the value, when >0 we are only interested in signed
184 overflow, for <0 we are interested in any overflow. OVERFLOWED
185 indicates whether overflow has already occurred. CONST_OVERFLOWED
186 indicates whether constant overflow has already occurred. We force
187 T's value to be within range of T's type (by setting to 0 or 1 all
188 the bits outside the type's range). We set TREE_OVERFLOWED if,
189 OVERFLOWED is nonzero,
190 or OVERFLOWABLE is >0 and signed overflow occurs
191 or OVERFLOWABLE is <0 and any overflow occurs
192 We set TREE_CONSTANT_OVERFLOWED if,
193 CONST_OVERFLOWED is nonzero
194 or we set TREE_OVERFLOWED.
195 We return either the original T, or a copy. */
198 force_fit_type (tree t
, int overflowable
,
199 bool overflowed
, bool overflowed_const
)
201 unsigned HOST_WIDE_INT low
;
204 int sign_extended_type
;
206 gcc_assert (TREE_CODE (t
) == INTEGER_CST
);
208 low
= TREE_INT_CST_LOW (t
);
209 high
= TREE_INT_CST_HIGH (t
);
211 if (POINTER_TYPE_P (TREE_TYPE (t
))
212 || TREE_CODE (TREE_TYPE (t
)) == OFFSET_TYPE
)
215 prec
= TYPE_PRECISION (TREE_TYPE (t
));
216 /* Size types *are* sign extended. */
217 sign_extended_type
= (!TYPE_UNSIGNED (TREE_TYPE (t
))
218 || (TREE_CODE (TREE_TYPE (t
)) == INTEGER_TYPE
219 && TYPE_IS_SIZETYPE (TREE_TYPE (t
))));
221 /* First clear all bits that are beyond the type's precision. */
223 if (prec
>= 2 * HOST_BITS_PER_WIDE_INT
)
225 else if (prec
> HOST_BITS_PER_WIDE_INT
)
226 high
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
230 if (prec
< HOST_BITS_PER_WIDE_INT
)
231 low
&= ~((HOST_WIDE_INT
) (-1) << prec
);
234 if (!sign_extended_type
)
235 /* No sign extension */;
236 else if (prec
>= 2 * HOST_BITS_PER_WIDE_INT
)
237 /* Correct width already. */;
238 else if (prec
> HOST_BITS_PER_WIDE_INT
)
240 /* Sign extend top half? */
241 if (high
& ((unsigned HOST_WIDE_INT
)1
242 << (prec
- HOST_BITS_PER_WIDE_INT
- 1)))
243 high
|= (HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
);
245 else if (prec
== HOST_BITS_PER_WIDE_INT
)
247 if ((HOST_WIDE_INT
)low
< 0)
252 /* Sign extend bottom half? */
253 if (low
& ((unsigned HOST_WIDE_INT
)1 << (prec
- 1)))
256 low
|= (HOST_WIDE_INT
)(-1) << prec
;
260 /* If the value changed, return a new node. */
261 if (overflowed
|| overflowed_const
262 || low
!= TREE_INT_CST_LOW (t
) || high
!= TREE_INT_CST_HIGH (t
))
264 t
= build_int_cst_wide (TREE_TYPE (t
), low
, high
);
268 || (overflowable
> 0 && sign_extended_type
))
271 TREE_OVERFLOW (t
) = 1;
272 TREE_CONSTANT_OVERFLOW (t
) = 1;
274 else if (overflowed_const
)
277 TREE_CONSTANT_OVERFLOW (t
) = 1;
284 /* Add two doubleword integers with doubleword result.
285 Each argument is given as two `HOST_WIDE_INT' pieces.
286 One argument is L1 and H1; the other, L2 and H2.
287 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
290 add_double (unsigned HOST_WIDE_INT l1
, HOST_WIDE_INT h1
,
291 unsigned HOST_WIDE_INT l2
, HOST_WIDE_INT h2
,
292 unsigned HOST_WIDE_INT
*lv
, HOST_WIDE_INT
*hv
)
294 unsigned HOST_WIDE_INT l
;
298 h
= h1
+ h2
+ (l
< l1
);
302 return OVERFLOW_SUM_SIGN (h1
, h2
, h
);
305 /* Negate a doubleword integer with doubleword result.
306 Return nonzero if the operation overflows, assuming it's signed.
307 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
308 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
311 neg_double (unsigned HOST_WIDE_INT l1
, HOST_WIDE_INT h1
,
312 unsigned HOST_WIDE_INT
*lv
, HOST_WIDE_INT
*hv
)
318 return (*hv
& h1
) < 0;
328 /* Multiply two doubleword integers with doubleword result.
329 Return nonzero if the operation overflows, assuming it's signed.
330 Each argument is given as two `HOST_WIDE_INT' pieces.
331 One argument is L1 and H1; the other, L2 and H2.
332 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
335 mul_double (unsigned HOST_WIDE_INT l1
, HOST_WIDE_INT h1
,
336 unsigned HOST_WIDE_INT l2
, HOST_WIDE_INT h2
,
337 unsigned HOST_WIDE_INT
*lv
, HOST_WIDE_INT
*hv
)
339 HOST_WIDE_INT arg1
[4];
340 HOST_WIDE_INT arg2
[4];
341 HOST_WIDE_INT prod
[4 * 2];
342 unsigned HOST_WIDE_INT carry
;
344 unsigned HOST_WIDE_INT toplow
, neglow
;
345 HOST_WIDE_INT tophigh
, neghigh
;
347 encode (arg1
, l1
, h1
);
348 encode (arg2
, l2
, h2
);
350 memset (prod
, 0, sizeof prod
);
352 for (i
= 0; i
< 4; i
++)
355 for (j
= 0; j
< 4; j
++)
358 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
359 carry
+= arg1
[i
] * arg2
[j
];
360 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
362 prod
[k
] = LOWPART (carry
);
363 carry
= HIGHPART (carry
);
368 decode (prod
, lv
, hv
); /* This ignores prod[4] through prod[4*2-1] */
370 /* Check for overflow by calculating the top half of the answer in full;
371 it should agree with the low half's sign bit. */
372 decode (prod
+ 4, &toplow
, &tophigh
);
375 neg_double (l2
, h2
, &neglow
, &neghigh
);
376 add_double (neglow
, neghigh
, toplow
, tophigh
, &toplow
, &tophigh
);
380 neg_double (l1
, h1
, &neglow
, &neghigh
);
381 add_double (neglow
, neghigh
, toplow
, tophigh
, &toplow
, &tophigh
);
383 return (*hv
< 0 ? ~(toplow
& tophigh
) : toplow
| tophigh
) != 0;
386 /* Shift the doubleword integer in L1, H1 left by COUNT places
387 keeping only PREC bits of result.
388 Shift right if COUNT is negative.
389 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
390 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
393 lshift_double (unsigned HOST_WIDE_INT l1
, HOST_WIDE_INT h1
,
394 HOST_WIDE_INT count
, unsigned int prec
,
395 unsigned HOST_WIDE_INT
*lv
, HOST_WIDE_INT
*hv
, int arith
)
397 unsigned HOST_WIDE_INT signmask
;
401 rshift_double (l1
, h1
, -count
, prec
, lv
, hv
, arith
);
405 if (SHIFT_COUNT_TRUNCATED
)
408 if (count
>= 2 * HOST_BITS_PER_WIDE_INT
)
410 /* Shifting by the host word size is undefined according to the
411 ANSI standard, so we must handle this as a special case. */
415 else if (count
>= HOST_BITS_PER_WIDE_INT
)
417 *hv
= l1
<< (count
- HOST_BITS_PER_WIDE_INT
);
422 *hv
= (((unsigned HOST_WIDE_INT
) h1
<< count
)
423 | (l1
>> (HOST_BITS_PER_WIDE_INT
- count
- 1) >> 1));
427 /* Sign extend all bits that are beyond the precision. */
429 signmask
= -((prec
> HOST_BITS_PER_WIDE_INT
430 ? ((unsigned HOST_WIDE_INT
) *hv
431 >> (prec
- HOST_BITS_PER_WIDE_INT
- 1))
432 : (*lv
>> (prec
- 1))) & 1);
434 if (prec
>= 2 * HOST_BITS_PER_WIDE_INT
)
436 else if (prec
>= HOST_BITS_PER_WIDE_INT
)
438 *hv
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
439 *hv
|= signmask
<< (prec
- HOST_BITS_PER_WIDE_INT
);
444 *lv
&= ~((unsigned HOST_WIDE_INT
) (-1) << prec
);
445 *lv
|= signmask
<< prec
;
449 /* Shift the doubleword integer in L1, H1 right by COUNT places
450 keeping only PREC bits of result. COUNT must be positive.
451 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
452 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
455 rshift_double (unsigned HOST_WIDE_INT l1
, HOST_WIDE_INT h1
,
456 HOST_WIDE_INT count
, unsigned int prec
,
457 unsigned HOST_WIDE_INT
*lv
, HOST_WIDE_INT
*hv
,
460 unsigned HOST_WIDE_INT signmask
;
463 ? -((unsigned HOST_WIDE_INT
) h1
>> (HOST_BITS_PER_WIDE_INT
- 1))
466 if (SHIFT_COUNT_TRUNCATED
)
469 if (count
>= 2 * HOST_BITS_PER_WIDE_INT
)
471 /* Shifting by the host word size is undefined according to the
472 ANSI standard, so we must handle this as a special case. */
476 else if (count
>= HOST_BITS_PER_WIDE_INT
)
479 *lv
= (unsigned HOST_WIDE_INT
) h1
>> (count
- HOST_BITS_PER_WIDE_INT
);
483 *hv
= (unsigned HOST_WIDE_INT
) h1
>> count
;
485 | ((unsigned HOST_WIDE_INT
) h1
<< (HOST_BITS_PER_WIDE_INT
- count
- 1) << 1));
488 /* Zero / sign extend all bits that are beyond the precision. */
490 if (count
>= (HOST_WIDE_INT
)prec
)
495 else if ((prec
- count
) >= 2 * HOST_BITS_PER_WIDE_INT
)
497 else if ((prec
- count
) >= HOST_BITS_PER_WIDE_INT
)
499 *hv
&= ~((HOST_WIDE_INT
) (-1) << (prec
- count
- HOST_BITS_PER_WIDE_INT
));
500 *hv
|= signmask
<< (prec
- count
- HOST_BITS_PER_WIDE_INT
);
505 *lv
&= ~((unsigned HOST_WIDE_INT
) (-1) << (prec
- count
));
506 *lv
|= signmask
<< (prec
- count
);
510 /* Rotate the doubleword integer in L1, H1 left by COUNT places
511 keeping only PREC bits of result.
512 Rotate right if COUNT is negative.
513 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
516 lrotate_double (unsigned HOST_WIDE_INT l1
, HOST_WIDE_INT h1
,
517 HOST_WIDE_INT count
, unsigned int prec
,
518 unsigned HOST_WIDE_INT
*lv
, HOST_WIDE_INT
*hv
)
520 unsigned HOST_WIDE_INT s1l
, s2l
;
521 HOST_WIDE_INT s1h
, s2h
;
527 lshift_double (l1
, h1
, count
, prec
, &s1l
, &s1h
, 0);
528 rshift_double (l1
, h1
, prec
- count
, prec
, &s2l
, &s2h
, 0);
533 /* Rotate the doubleword integer in L1, H1 left by COUNT places
534 keeping only PREC bits of result. COUNT must be positive.
535 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
538 rrotate_double (unsigned HOST_WIDE_INT l1
, HOST_WIDE_INT h1
,
539 HOST_WIDE_INT count
, unsigned int prec
,
540 unsigned HOST_WIDE_INT
*lv
, HOST_WIDE_INT
*hv
)
542 unsigned HOST_WIDE_INT s1l
, s2l
;
543 HOST_WIDE_INT s1h
, s2h
;
549 rshift_double (l1
, h1
, count
, prec
, &s1l
, &s1h
, 0);
550 lshift_double (l1
, h1
, prec
- count
, prec
, &s2l
, &s2h
, 0);
555 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
556 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
557 CODE is a tree code for a kind of division, one of
558 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
560 It controls how the quotient is rounded to an integer.
561 Return nonzero if the operation overflows.
562 UNS nonzero says do unsigned division. */
565 div_and_round_double (enum tree_code code
, int uns
,
566 unsigned HOST_WIDE_INT lnum_orig
, /* num == numerator == dividend */
567 HOST_WIDE_INT hnum_orig
,
568 unsigned HOST_WIDE_INT lden_orig
, /* den == denominator == divisor */
569 HOST_WIDE_INT hden_orig
,
570 unsigned HOST_WIDE_INT
*lquo
,
571 HOST_WIDE_INT
*hquo
, unsigned HOST_WIDE_INT
*lrem
,
575 HOST_WIDE_INT num
[4 + 1]; /* extra element for scaling. */
576 HOST_WIDE_INT den
[4], quo
[4];
578 unsigned HOST_WIDE_INT work
;
579 unsigned HOST_WIDE_INT carry
= 0;
580 unsigned HOST_WIDE_INT lnum
= lnum_orig
;
581 HOST_WIDE_INT hnum
= hnum_orig
;
582 unsigned HOST_WIDE_INT lden
= lden_orig
;
583 HOST_WIDE_INT hden
= hden_orig
;
586 if (hden
== 0 && lden
== 0)
587 overflow
= 1, lden
= 1;
589 /* Calculate quotient sign and convert operands to unsigned. */
595 /* (minimum integer) / (-1) is the only overflow case. */
596 if (neg_double (lnum
, hnum
, &lnum
, &hnum
)
597 && ((HOST_WIDE_INT
) lden
& hden
) == -1)
603 neg_double (lden
, hden
, &lden
, &hden
);
607 if (hnum
== 0 && hden
== 0)
608 { /* single precision */
610 /* This unsigned division rounds toward zero. */
616 { /* trivial case: dividend < divisor */
617 /* hden != 0 already checked. */
624 memset (quo
, 0, sizeof quo
);
626 memset (num
, 0, sizeof num
); /* to zero 9th element */
627 memset (den
, 0, sizeof den
);
629 encode (num
, lnum
, hnum
);
630 encode (den
, lden
, hden
);
632 /* Special code for when the divisor < BASE. */
633 if (hden
== 0 && lden
< (unsigned HOST_WIDE_INT
) BASE
)
635 /* hnum != 0 already checked. */
636 for (i
= 4 - 1; i
>= 0; i
--)
638 work
= num
[i
] + carry
* BASE
;
639 quo
[i
] = work
/ lden
;
645 /* Full double precision division,
646 with thanks to Don Knuth's "Seminumerical Algorithms". */
647 int num_hi_sig
, den_hi_sig
;
648 unsigned HOST_WIDE_INT quo_est
, scale
;
650 /* Find the highest nonzero divisor digit. */
651 for (i
= 4 - 1;; i
--)
658 /* Insure that the first digit of the divisor is at least BASE/2.
659 This is required by the quotient digit estimation algorithm. */
661 scale
= BASE
/ (den
[den_hi_sig
] + 1);
663 { /* scale divisor and dividend */
665 for (i
= 0; i
<= 4 - 1; i
++)
667 work
= (num
[i
] * scale
) + carry
;
668 num
[i
] = LOWPART (work
);
669 carry
= HIGHPART (work
);
674 for (i
= 0; i
<= 4 - 1; i
++)
676 work
= (den
[i
] * scale
) + carry
;
677 den
[i
] = LOWPART (work
);
678 carry
= HIGHPART (work
);
679 if (den
[i
] != 0) den_hi_sig
= i
;
686 for (i
= num_hi_sig
- den_hi_sig
- 1; i
>= 0; i
--)
688 /* Guess the next quotient digit, quo_est, by dividing the first
689 two remaining dividend digits by the high order quotient digit.
690 quo_est is never low and is at most 2 high. */
691 unsigned HOST_WIDE_INT tmp
;
693 num_hi_sig
= i
+ den_hi_sig
+ 1;
694 work
= num
[num_hi_sig
] * BASE
+ num
[num_hi_sig
- 1];
695 if (num
[num_hi_sig
] != den
[den_hi_sig
])
696 quo_est
= work
/ den
[den_hi_sig
];
700 /* Refine quo_est so it's usually correct, and at most one high. */
701 tmp
= work
- quo_est
* den
[den_hi_sig
];
703 && (den
[den_hi_sig
- 1] * quo_est
704 > (tmp
* BASE
+ num
[num_hi_sig
- 2])))
707 /* Try QUO_EST as the quotient digit, by multiplying the
708 divisor by QUO_EST and subtracting from the remaining dividend.
709 Keep in mind that QUO_EST is the I - 1st digit. */
712 for (j
= 0; j
<= den_hi_sig
; j
++)
714 work
= quo_est
* den
[j
] + carry
;
715 carry
= HIGHPART (work
);
716 work
= num
[i
+ j
] - LOWPART (work
);
717 num
[i
+ j
] = LOWPART (work
);
718 carry
+= HIGHPART (work
) != 0;
721 /* If quo_est was high by one, then num[i] went negative and
722 we need to correct things. */
723 if (num
[num_hi_sig
] < (HOST_WIDE_INT
) carry
)
726 carry
= 0; /* add divisor back in */
727 for (j
= 0; j
<= den_hi_sig
; j
++)
729 work
= num
[i
+ j
] + den
[j
] + carry
;
730 carry
= HIGHPART (work
);
731 num
[i
+ j
] = LOWPART (work
);
734 num
[num_hi_sig
] += carry
;
737 /* Store the quotient digit. */
742 decode (quo
, lquo
, hquo
);
745 /* If result is negative, make it so. */
747 neg_double (*lquo
, *hquo
, lquo
, hquo
);
749 /* Compute trial remainder: rem = num - (quo * den) */
750 mul_double (*lquo
, *hquo
, lden_orig
, hden_orig
, lrem
, hrem
);
751 neg_double (*lrem
, *hrem
, lrem
, hrem
);
752 add_double (lnum_orig
, hnum_orig
, *lrem
, *hrem
, lrem
, hrem
);
757 case TRUNC_MOD_EXPR
: /* round toward zero */
758 case EXACT_DIV_EXPR
: /* for this one, it shouldn't matter */
762 case FLOOR_MOD_EXPR
: /* round toward negative infinity */
763 if (quo_neg
&& (*lrem
!= 0 || *hrem
!= 0)) /* ratio < 0 && rem != 0 */
766 add_double (*lquo
, *hquo
, (HOST_WIDE_INT
) -1, (HOST_WIDE_INT
) -1,
774 case CEIL_MOD_EXPR
: /* round toward positive infinity */
775 if (!quo_neg
&& (*lrem
!= 0 || *hrem
!= 0)) /* ratio > 0 && rem != 0 */
777 add_double (*lquo
, *hquo
, (HOST_WIDE_INT
) 1, (HOST_WIDE_INT
) 0,
785 case ROUND_MOD_EXPR
: /* round to closest integer */
787 unsigned HOST_WIDE_INT labs_rem
= *lrem
;
788 HOST_WIDE_INT habs_rem
= *hrem
;
789 unsigned HOST_WIDE_INT labs_den
= lden
, ltwice
;
790 HOST_WIDE_INT habs_den
= hden
, htwice
;
792 /* Get absolute values. */
794 neg_double (*lrem
, *hrem
, &labs_rem
, &habs_rem
);
796 neg_double (lden
, hden
, &labs_den
, &habs_den
);
798 /* If (2 * abs (lrem) >= abs (lden)) */
799 mul_double ((HOST_WIDE_INT
) 2, (HOST_WIDE_INT
) 0,
800 labs_rem
, habs_rem
, <wice
, &htwice
);
802 if (((unsigned HOST_WIDE_INT
) habs_den
803 < (unsigned HOST_WIDE_INT
) htwice
)
804 || (((unsigned HOST_WIDE_INT
) habs_den
805 == (unsigned HOST_WIDE_INT
) htwice
)
806 && (labs_den
< ltwice
)))
810 add_double (*lquo
, *hquo
,
811 (HOST_WIDE_INT
) -1, (HOST_WIDE_INT
) -1, lquo
, hquo
);
814 add_double (*lquo
, *hquo
, (HOST_WIDE_INT
) 1, (HOST_WIDE_INT
) 0,
826 /* Compute true remainder: rem = num - (quo * den) */
827 mul_double (*lquo
, *hquo
, lden_orig
, hden_orig
, lrem
, hrem
);
828 neg_double (*lrem
, *hrem
, lrem
, hrem
);
829 add_double (lnum_orig
, hnum_orig
, *lrem
, *hrem
, lrem
, hrem
);
833 /* If ARG2 divides ARG1 with zero remainder, carries out the division
834 of type CODE and returns the quotient.
835 Otherwise returns NULL_TREE. */
838 div_if_zero_remainder (enum tree_code code
, tree arg1
, tree arg2
)
840 unsigned HOST_WIDE_INT int1l
, int2l
;
841 HOST_WIDE_INT int1h
, int2h
;
842 unsigned HOST_WIDE_INT quol
, reml
;
843 HOST_WIDE_INT quoh
, remh
;
844 tree type
= TREE_TYPE (arg1
);
845 int uns
= TYPE_UNSIGNED (type
);
847 int1l
= TREE_INT_CST_LOW (arg1
);
848 int1h
= TREE_INT_CST_HIGH (arg1
);
849 int2l
= TREE_INT_CST_LOW (arg2
);
850 int2h
= TREE_INT_CST_HIGH (arg2
);
852 div_and_round_double (code
, uns
, int1l
, int1h
, int2l
, int2h
,
853 &quol
, &quoh
, &reml
, &remh
);
854 if (remh
!= 0 || reml
!= 0)
857 return build_int_cst_wide (type
, quol
, quoh
);
860 /* Return true if built-in mathematical function specified by CODE
861 preserves the sign of it argument, i.e. -f(x) == f(-x). */
864 negate_mathfn_p (enum built_in_function code
)
888 /* Check whether we may negate an integer constant T without causing
892 may_negate_without_overflow_p (tree t
)
894 unsigned HOST_WIDE_INT val
;
898 gcc_assert (TREE_CODE (t
) == INTEGER_CST
);
900 type
= TREE_TYPE (t
);
901 if (TYPE_UNSIGNED (type
))
904 prec
= TYPE_PRECISION (type
);
905 if (prec
> HOST_BITS_PER_WIDE_INT
)
907 if (TREE_INT_CST_LOW (t
) != 0)
909 prec
-= HOST_BITS_PER_WIDE_INT
;
910 val
= TREE_INT_CST_HIGH (t
);
913 val
= TREE_INT_CST_LOW (t
);
914 if (prec
< HOST_BITS_PER_WIDE_INT
)
915 val
&= ((unsigned HOST_WIDE_INT
) 1 << prec
) - 1;
916 return val
!= ((unsigned HOST_WIDE_INT
) 1 << (prec
- 1));
919 /* Determine whether an expression T can be cheaply negated using
920 the function negate_expr. */
923 negate_expr_p (tree t
)
930 type
= TREE_TYPE (t
);
933 switch (TREE_CODE (t
))
936 if (TYPE_UNSIGNED (type
) || ! flag_trapv
)
939 /* Check that -CST will not overflow type. */
940 return may_negate_without_overflow_p (t
);
947 return negate_expr_p (TREE_REALPART (t
))
948 && negate_expr_p (TREE_IMAGPART (t
));
951 if (FLOAT_TYPE_P (type
) && !flag_unsafe_math_optimizations
)
953 /* -(A + B) -> (-B) - A. */
954 if (negate_expr_p (TREE_OPERAND (t
, 1))
955 && reorder_operands_p (TREE_OPERAND (t
, 0),
956 TREE_OPERAND (t
, 1)))
958 /* -(A + B) -> (-A) - B. */
959 return negate_expr_p (TREE_OPERAND (t
, 0));
962 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
963 return (! FLOAT_TYPE_P (type
) || flag_unsafe_math_optimizations
)
964 && reorder_operands_p (TREE_OPERAND (t
, 0),
965 TREE_OPERAND (t
, 1));
968 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
974 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t
))))
975 return negate_expr_p (TREE_OPERAND (t
, 1))
976 || negate_expr_p (TREE_OPERAND (t
, 0));
980 /* Negate -((double)float) as (double)(-float). */
981 if (TREE_CODE (type
) == REAL_TYPE
)
983 tree tem
= strip_float_extensions (t
);
985 return negate_expr_p (tem
);
990 /* Negate -f(x) as f(-x). */
991 if (negate_mathfn_p (builtin_mathfn_code (t
)))
992 return negate_expr_p (TREE_VALUE (TREE_OPERAND (t
, 1)));
996 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
997 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
999 tree op1
= TREE_OPERAND (t
, 1);
1000 if (TREE_INT_CST_HIGH (op1
) == 0
1001 && (unsigned HOST_WIDE_INT
) (TYPE_PRECISION (type
) - 1)
1002 == TREE_INT_CST_LOW (op1
))
1013 /* Given T, an expression, return the negation of T. Allow for T to be
1014 null, in which case return null. */
1017 negate_expr (tree t
)
1025 type
= TREE_TYPE (t
);
1026 STRIP_SIGN_NOPS (t
);
1028 switch (TREE_CODE (t
))
1031 tem
= fold_negate_const (t
, type
);
1032 if (! TREE_OVERFLOW (tem
)
1033 || TYPE_UNSIGNED (type
)
1039 tem
= fold_negate_const (t
, type
);
1040 /* Two's complement FP formats, such as c4x, may overflow. */
1041 if (! TREE_OVERFLOW (tem
) || ! flag_trapping_math
)
1042 return fold_convert (type
, tem
);
1047 tree rpart
= negate_expr (TREE_REALPART (t
));
1048 tree ipart
= negate_expr (TREE_IMAGPART (t
));
1050 if ((TREE_CODE (rpart
) == REAL_CST
1051 && TREE_CODE (ipart
) == REAL_CST
)
1052 || (TREE_CODE (rpart
) == INTEGER_CST
1053 && TREE_CODE (ipart
) == INTEGER_CST
))
1054 return build_complex (type
, rpart
, ipart
);
1059 return fold_convert (type
, TREE_OPERAND (t
, 0));
1062 if (! FLOAT_TYPE_P (type
) || flag_unsafe_math_optimizations
)
1064 /* -(A + B) -> (-B) - A. */
1065 if (negate_expr_p (TREE_OPERAND (t
, 1))
1066 && reorder_operands_p (TREE_OPERAND (t
, 0),
1067 TREE_OPERAND (t
, 1)))
1069 tem
= negate_expr (TREE_OPERAND (t
, 1));
1070 tem
= fold_build2 (MINUS_EXPR
, TREE_TYPE (t
),
1071 tem
, TREE_OPERAND (t
, 0));
1072 return fold_convert (type
, tem
);
1075 /* -(A + B) -> (-A) - B. */
1076 if (negate_expr_p (TREE_OPERAND (t
, 0)))
1078 tem
= negate_expr (TREE_OPERAND (t
, 0));
1079 tem
= fold_build2 (MINUS_EXPR
, TREE_TYPE (t
),
1080 tem
, TREE_OPERAND (t
, 1));
1081 return fold_convert (type
, tem
);
1087 /* - (A - B) -> B - A */
1088 if ((! FLOAT_TYPE_P (type
) || flag_unsafe_math_optimizations
)
1089 && reorder_operands_p (TREE_OPERAND (t
, 0), TREE_OPERAND (t
, 1)))
1090 return fold_convert (type
,
1091 fold_build2 (MINUS_EXPR
, TREE_TYPE (t
),
1092 TREE_OPERAND (t
, 1),
1093 TREE_OPERAND (t
, 0)));
1097 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
1103 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t
))))
1105 tem
= TREE_OPERAND (t
, 1);
1106 if (negate_expr_p (tem
))
1107 return fold_convert (type
,
1108 fold_build2 (TREE_CODE (t
), TREE_TYPE (t
),
1109 TREE_OPERAND (t
, 0),
1110 negate_expr (tem
)));
1111 tem
= TREE_OPERAND (t
, 0);
1112 if (negate_expr_p (tem
))
1113 return fold_convert (type
,
1114 fold_build2 (TREE_CODE (t
), TREE_TYPE (t
),
1116 TREE_OPERAND (t
, 1)));
1121 /* Convert -((double)float) into (double)(-float). */
1122 if (TREE_CODE (type
) == REAL_TYPE
)
1124 tem
= strip_float_extensions (t
);
1125 if (tem
!= t
&& negate_expr_p (tem
))
1126 return fold_convert (type
, negate_expr (tem
));
1131 /* Negate -f(x) as f(-x). */
1132 if (negate_mathfn_p (builtin_mathfn_code (t
))
1133 && negate_expr_p (TREE_VALUE (TREE_OPERAND (t
, 1))))
1135 tree fndecl
, arg
, arglist
;
1137 fndecl
= get_callee_fndecl (t
);
1138 arg
= negate_expr (TREE_VALUE (TREE_OPERAND (t
, 1)));
1139 arglist
= build_tree_list (NULL_TREE
, arg
);
1140 return build_function_call_expr (fndecl
, arglist
);
1145 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1146 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
1148 tree op1
= TREE_OPERAND (t
, 1);
1149 if (TREE_INT_CST_HIGH (op1
) == 0
1150 && (unsigned HOST_WIDE_INT
) (TYPE_PRECISION (type
) - 1)
1151 == TREE_INT_CST_LOW (op1
))
1153 tree ntype
= TYPE_UNSIGNED (type
)
1154 ? lang_hooks
.types
.signed_type (type
)
1155 : lang_hooks
.types
.unsigned_type (type
);
1156 tree temp
= fold_convert (ntype
, TREE_OPERAND (t
, 0));
1157 temp
= fold_build2 (RSHIFT_EXPR
, ntype
, temp
, op1
);
1158 return fold_convert (type
, temp
);
1167 tem
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (t
), t
);
1168 return fold_convert (type
, tem
);
1171 /* Split a tree IN into a constant, literal and variable parts that could be
1172 combined with CODE to make IN. "constant" means an expression with
1173 TREE_CONSTANT but that isn't an actual constant. CODE must be a
1174 commutative arithmetic operation. Store the constant part into *CONP,
1175 the literal in *LITP and return the variable part. If a part isn't
1176 present, set it to null. If the tree does not decompose in this way,
1177 return the entire tree as the variable part and the other parts as null.
1179 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
1180 case, we negate an operand that was subtracted. Except if it is a
1181 literal for which we use *MINUS_LITP instead.
1183 If NEGATE_P is true, we are negating all of IN, again except a literal
1184 for which we use *MINUS_LITP instead.
1186 If IN is itself a literal or constant, return it as appropriate.
1188 Note that we do not guarantee that any of the three values will be the
1189 same type as IN, but they will have the same signedness and mode. */
1192 split_tree (tree in
, enum tree_code code
, tree
*conp
, tree
*litp
,
1193 tree
*minus_litp
, int negate_p
)
1201 /* Strip any conversions that don't change the machine mode or signedness. */
1202 STRIP_SIGN_NOPS (in
);
1204 if (TREE_CODE (in
) == INTEGER_CST
|| TREE_CODE (in
) == REAL_CST
)
1206 else if (TREE_CODE (in
) == code
1207 || (! FLOAT_TYPE_P (TREE_TYPE (in
))
1208 /* We can associate addition and subtraction together (even
1209 though the C standard doesn't say so) for integers because
1210 the value is not affected. For reals, the value might be
1211 affected, so we can't. */
1212 && ((code
== PLUS_EXPR
&& TREE_CODE (in
) == MINUS_EXPR
)
1213 || (code
== MINUS_EXPR
&& TREE_CODE (in
) == PLUS_EXPR
))))
1215 tree op0
= TREE_OPERAND (in
, 0);
1216 tree op1
= TREE_OPERAND (in
, 1);
1217 int neg1_p
= TREE_CODE (in
) == MINUS_EXPR
;
1218 int neg_litp_p
= 0, neg_conp_p
= 0, neg_var_p
= 0;
1220 /* First see if either of the operands is a literal, then a constant. */
1221 if (TREE_CODE (op0
) == INTEGER_CST
|| TREE_CODE (op0
) == REAL_CST
)
1222 *litp
= op0
, op0
= 0;
1223 else if (TREE_CODE (op1
) == INTEGER_CST
|| TREE_CODE (op1
) == REAL_CST
)
1224 *litp
= op1
, neg_litp_p
= neg1_p
, op1
= 0;
1226 if (op0
!= 0 && TREE_CONSTANT (op0
))
1227 *conp
= op0
, op0
= 0;
1228 else if (op1
!= 0 && TREE_CONSTANT (op1
))
1229 *conp
= op1
, neg_conp_p
= neg1_p
, op1
= 0;
1231 /* If we haven't dealt with either operand, this is not a case we can
1232 decompose. Otherwise, VAR is either of the ones remaining, if any. */
1233 if (op0
!= 0 && op1
!= 0)
1238 var
= op1
, neg_var_p
= neg1_p
;
1240 /* Now do any needed negations. */
1242 *minus_litp
= *litp
, *litp
= 0;
1244 *conp
= negate_expr (*conp
);
1246 var
= negate_expr (var
);
1248 else if (TREE_CONSTANT (in
))
1256 *minus_litp
= *litp
, *litp
= 0;
1257 else if (*minus_litp
)
1258 *litp
= *minus_litp
, *minus_litp
= 0;
1259 *conp
= negate_expr (*conp
);
1260 var
= negate_expr (var
);
1266 /* Re-associate trees split by the above function. T1 and T2 are either
1267 expressions to associate or null. Return the new expression, if any. If
1268 we build an operation, do it in TYPE and with CODE. */
1271 associate_trees (tree t1
, tree t2
, enum tree_code code
, tree type
)
1278 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1279 try to fold this since we will have infinite recursion. But do
1280 deal with any NEGATE_EXPRs. */
1281 if (TREE_CODE (t1
) == code
|| TREE_CODE (t2
) == code
1282 || TREE_CODE (t1
) == MINUS_EXPR
|| TREE_CODE (t2
) == MINUS_EXPR
)
1284 if (code
== PLUS_EXPR
)
1286 if (TREE_CODE (t1
) == NEGATE_EXPR
)
1287 return build2 (MINUS_EXPR
, type
, fold_convert (type
, t2
),
1288 fold_convert (type
, TREE_OPERAND (t1
, 0)));
1289 else if (TREE_CODE (t2
) == NEGATE_EXPR
)
1290 return build2 (MINUS_EXPR
, type
, fold_convert (type
, t1
),
1291 fold_convert (type
, TREE_OPERAND (t2
, 0)));
1292 else if (integer_zerop (t2
))
1293 return fold_convert (type
, t1
);
1295 else if (code
== MINUS_EXPR
)
1297 if (integer_zerop (t2
))
1298 return fold_convert (type
, t1
);
1301 return build2 (code
, type
, fold_convert (type
, t1
),
1302 fold_convert (type
, t2
));
1305 return fold_build2 (code
, type
, fold_convert (type
, t1
),
1306 fold_convert (type
, t2
));
1309 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1310 to produce a new constant.
1312 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1315 int_const_binop (enum tree_code code
, tree arg1
, tree arg2
, int notrunc
)
1317 unsigned HOST_WIDE_INT int1l
, int2l
;
1318 HOST_WIDE_INT int1h
, int2h
;
1319 unsigned HOST_WIDE_INT low
;
1321 unsigned HOST_WIDE_INT garbagel
;
1322 HOST_WIDE_INT garbageh
;
1324 tree type
= TREE_TYPE (arg1
);
1325 int uns
= TYPE_UNSIGNED (type
);
1327 = (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_IS_SIZETYPE (type
));
1330 int1l
= TREE_INT_CST_LOW (arg1
);
1331 int1h
= TREE_INT_CST_HIGH (arg1
);
1332 int2l
= TREE_INT_CST_LOW (arg2
);
1333 int2h
= TREE_INT_CST_HIGH (arg2
);
1338 low
= int1l
| int2l
, hi
= int1h
| int2h
;
1342 low
= int1l
^ int2l
, hi
= int1h
^ int2h
;
1346 low
= int1l
& int2l
, hi
= int1h
& int2h
;
1352 /* It's unclear from the C standard whether shifts can overflow.
1353 The following code ignores overflow; perhaps a C standard
1354 interpretation ruling is needed. */
1355 lshift_double (int1l
, int1h
, int2l
, TYPE_PRECISION (type
),
1362 lrotate_double (int1l
, int1h
, int2l
, TYPE_PRECISION (type
),
1367 overflow
= add_double (int1l
, int1h
, int2l
, int2h
, &low
, &hi
);
1371 neg_double (int2l
, int2h
, &low
, &hi
);
1372 add_double (int1l
, int1h
, low
, hi
, &low
, &hi
);
1373 overflow
= OVERFLOW_SUM_SIGN (hi
, int2h
, int1h
);
1377 overflow
= mul_double (int1l
, int1h
, int2l
, int2h
, &low
, &hi
);
1380 case TRUNC_DIV_EXPR
:
1381 case FLOOR_DIV_EXPR
: case CEIL_DIV_EXPR
:
1382 case EXACT_DIV_EXPR
:
1383 /* This is a shortcut for a common special case. */
1384 if (int2h
== 0 && (HOST_WIDE_INT
) int2l
> 0
1385 && ! TREE_CONSTANT_OVERFLOW (arg1
)
1386 && ! TREE_CONSTANT_OVERFLOW (arg2
)
1387 && int1h
== 0 && (HOST_WIDE_INT
) int1l
>= 0)
1389 if (code
== CEIL_DIV_EXPR
)
1392 low
= int1l
/ int2l
, hi
= 0;
1396 /* ... fall through ... */
1398 case ROUND_DIV_EXPR
:
1399 if (int2h
== 0 && int2l
== 1)
1401 low
= int1l
, hi
= int1h
;
1404 if (int1l
== int2l
&& int1h
== int2h
1405 && ! (int1l
== 0 && int1h
== 0))
1410 overflow
= div_and_round_double (code
, uns
, int1l
, int1h
, int2l
, int2h
,
1411 &low
, &hi
, &garbagel
, &garbageh
);
1414 case TRUNC_MOD_EXPR
:
1415 case FLOOR_MOD_EXPR
: case CEIL_MOD_EXPR
:
1416 /* This is a shortcut for a common special case. */
1417 if (int2h
== 0 && (HOST_WIDE_INT
) int2l
> 0
1418 && ! TREE_CONSTANT_OVERFLOW (arg1
)
1419 && ! TREE_CONSTANT_OVERFLOW (arg2
)
1420 && int1h
== 0 && (HOST_WIDE_INT
) int1l
>= 0)
1422 if (code
== CEIL_MOD_EXPR
)
1424 low
= int1l
% int2l
, hi
= 0;
1428 /* ... fall through ... */
1430 case ROUND_MOD_EXPR
:
1431 overflow
= div_and_round_double (code
, uns
,
1432 int1l
, int1h
, int2l
, int2h
,
1433 &garbagel
, &garbageh
, &low
, &hi
);
1439 low
= (((unsigned HOST_WIDE_INT
) int1h
1440 < (unsigned HOST_WIDE_INT
) int2h
)
1441 || (((unsigned HOST_WIDE_INT
) int1h
1442 == (unsigned HOST_WIDE_INT
) int2h
)
1445 low
= (int1h
< int2h
1446 || (int1h
== int2h
&& int1l
< int2l
));
1448 if (low
== (code
== MIN_EXPR
))
1449 low
= int1l
, hi
= int1h
;
1451 low
= int2l
, hi
= int2h
;
1458 t
= build_int_cst_wide (TREE_TYPE (arg1
), low
, hi
);
1462 /* Propagate overflow flags ourselves. */
1463 if (((!uns
|| is_sizetype
) && overflow
)
1464 | TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
))
1467 TREE_OVERFLOW (t
) = 1;
1468 TREE_CONSTANT_OVERFLOW (t
) = 1;
1470 else if (TREE_CONSTANT_OVERFLOW (arg1
) | TREE_CONSTANT_OVERFLOW (arg2
))
1473 TREE_CONSTANT_OVERFLOW (t
) = 1;
1477 t
= force_fit_type (t
, 1,
1478 ((!uns
|| is_sizetype
) && overflow
)
1479 | TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
),
1480 TREE_CONSTANT_OVERFLOW (arg1
)
1481 | TREE_CONSTANT_OVERFLOW (arg2
));
1486 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1487 constant. We assume ARG1 and ARG2 have the same data type, or at least
1488 are the same kind of constant and the same machine mode.
1490 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1493 const_binop (enum tree_code code
, tree arg1
, tree arg2
, int notrunc
)
1498 if (TREE_CODE (arg1
) == INTEGER_CST
)
1499 return int_const_binop (code
, arg1
, arg2
, notrunc
);
1501 if (TREE_CODE (arg1
) == REAL_CST
)
1503 enum machine_mode mode
;
1506 REAL_VALUE_TYPE value
;
1507 REAL_VALUE_TYPE result
;
1511 d1
= TREE_REAL_CST (arg1
);
1512 d2
= TREE_REAL_CST (arg2
);
1514 type
= TREE_TYPE (arg1
);
1515 mode
= TYPE_MODE (type
);
1517 /* Don't perform operation if we honor signaling NaNs and
1518 either operand is a NaN. */
1519 if (HONOR_SNANS (mode
)
1520 && (REAL_VALUE_ISNAN (d1
) || REAL_VALUE_ISNAN (d2
)))
1523 /* Don't perform operation if it would raise a division
1524 by zero exception. */
1525 if (code
== RDIV_EXPR
1526 && REAL_VALUES_EQUAL (d2
, dconst0
)
1527 && (flag_trapping_math
|| ! MODE_HAS_INFINITIES (mode
)))
1530 /* If either operand is a NaN, just return it. Otherwise, set up
1531 for floating-point trap; we return an overflow. */
1532 if (REAL_VALUE_ISNAN (d1
))
1534 else if (REAL_VALUE_ISNAN (d2
))
1537 inexact
= real_arithmetic (&value
, code
, &d1
, &d2
);
1538 real_convert (&result
, mode
, &value
);
1540 /* Don't constant fold this floating point operation if the
1541 result may dependent upon the run-time rounding mode and
1542 flag_rounding_math is set, or if GCC's software emulation
1543 is unable to accurately represent the result. */
1545 if ((flag_rounding_math
1546 || (REAL_MODE_FORMAT_COMPOSITE_P (mode
)
1547 && !flag_unsafe_math_optimizations
))
1548 && (inexact
|| !real_identical (&result
, &value
)))
1551 t
= build_real (type
, result
);
1553 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
);
1554 TREE_CONSTANT_OVERFLOW (t
)
1556 | TREE_CONSTANT_OVERFLOW (arg1
)
1557 | TREE_CONSTANT_OVERFLOW (arg2
);
1560 if (TREE_CODE (arg1
) == COMPLEX_CST
)
1562 tree type
= TREE_TYPE (arg1
);
1563 tree r1
= TREE_REALPART (arg1
);
1564 tree i1
= TREE_IMAGPART (arg1
);
1565 tree r2
= TREE_REALPART (arg2
);
1566 tree i2
= TREE_IMAGPART (arg2
);
1572 t
= build_complex (type
,
1573 const_binop (PLUS_EXPR
, r1
, r2
, notrunc
),
1574 const_binop (PLUS_EXPR
, i1
, i2
, notrunc
));
1578 t
= build_complex (type
,
1579 const_binop (MINUS_EXPR
, r1
, r2
, notrunc
),
1580 const_binop (MINUS_EXPR
, i1
, i2
, notrunc
));
1584 t
= build_complex (type
,
1585 const_binop (MINUS_EXPR
,
1586 const_binop (MULT_EXPR
,
1588 const_binop (MULT_EXPR
,
1591 const_binop (PLUS_EXPR
,
1592 const_binop (MULT_EXPR
,
1594 const_binop (MULT_EXPR
,
1601 tree t1
, t2
, real
, imag
;
1603 = const_binop (PLUS_EXPR
,
1604 const_binop (MULT_EXPR
, r2
, r2
, notrunc
),
1605 const_binop (MULT_EXPR
, i2
, i2
, notrunc
),
1608 t1
= const_binop (PLUS_EXPR
,
1609 const_binop (MULT_EXPR
, r1
, r2
, notrunc
),
1610 const_binop (MULT_EXPR
, i1
, i2
, notrunc
),
1612 t2
= const_binop (MINUS_EXPR
,
1613 const_binop (MULT_EXPR
, i1
, r2
, notrunc
),
1614 const_binop (MULT_EXPR
, r1
, i2
, notrunc
),
1617 if (INTEGRAL_TYPE_P (TREE_TYPE (r1
)))
1619 real
= const_binop (TRUNC_DIV_EXPR
, t1
, magsquared
, notrunc
);
1620 imag
= const_binop (TRUNC_DIV_EXPR
, t2
, magsquared
, notrunc
);
1624 real
= const_binop (RDIV_EXPR
, t1
, magsquared
, notrunc
);
1625 imag
= const_binop (RDIV_EXPR
, t2
, magsquared
, notrunc
);
1630 t
= build_complex (type
, real
, imag
);
1642 /* Create a size type INT_CST node with NUMBER sign extended. KIND
1643 indicates which particular sizetype to create. */
1646 size_int_kind (HOST_WIDE_INT number
, enum size_type_kind kind
)
1648 return build_int_cst (sizetype_tab
[(int) kind
], number
);
1651 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1652 is a tree code. The type of the result is taken from the operands.
1653 Both must be the same type integer type and it must be a size type.
1654 If the operands are constant, so is the result. */
1657 size_binop (enum tree_code code
, tree arg0
, tree arg1
)
1659 tree type
= TREE_TYPE (arg0
);
1661 gcc_assert (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_IS_SIZETYPE (type
)
1662 && type
== TREE_TYPE (arg1
));
1664 /* Handle the special case of two integer constants faster. */
1665 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
1667 /* And some specific cases even faster than that. */
1668 if (code
== PLUS_EXPR
&& integer_zerop (arg0
))
1670 else if ((code
== MINUS_EXPR
|| code
== PLUS_EXPR
)
1671 && integer_zerop (arg1
))
1673 else if (code
== MULT_EXPR
&& integer_onep (arg0
))
1676 /* Handle general case of two integer constants. */
1677 return int_const_binop (code
, arg0
, arg1
, 0);
1680 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
1681 return error_mark_node
;
1683 return fold_build2 (code
, type
, arg0
, arg1
);
1686 /* Given two values, either both of sizetype or both of bitsizetype,
1687 compute the difference between the two values. Return the value
1688 in signed type corresponding to the type of the operands. */
1691 size_diffop (tree arg0
, tree arg1
)
1693 tree type
= TREE_TYPE (arg0
);
1696 gcc_assert (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_IS_SIZETYPE (type
)
1697 && type
== TREE_TYPE (arg1
));
1699 /* If the type is already signed, just do the simple thing. */
1700 if (!TYPE_UNSIGNED (type
))
1701 return size_binop (MINUS_EXPR
, arg0
, arg1
);
1703 ctype
= type
== bitsizetype
? sbitsizetype
: ssizetype
;
1705 /* If either operand is not a constant, do the conversions to the signed
1706 type and subtract. The hardware will do the right thing with any
1707 overflow in the subtraction. */
1708 if (TREE_CODE (arg0
) != INTEGER_CST
|| TREE_CODE (arg1
) != INTEGER_CST
)
1709 return size_binop (MINUS_EXPR
, fold_convert (ctype
, arg0
),
1710 fold_convert (ctype
, arg1
));
1712 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1713 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1714 overflow) and negate (which can't either). Special-case a result
1715 of zero while we're here. */
1716 if (tree_int_cst_equal (arg0
, arg1
))
1717 return fold_convert (ctype
, integer_zero_node
);
1718 else if (tree_int_cst_lt (arg1
, arg0
))
1719 return fold_convert (ctype
, size_binop (MINUS_EXPR
, arg0
, arg1
));
1721 return size_binop (MINUS_EXPR
, fold_convert (ctype
, integer_zero_node
),
1722 fold_convert (ctype
, size_binop (MINUS_EXPR
,
1726 /* A subroutine of fold_convert_const handling conversions of an
1727 INTEGER_CST to another integer type. */
1730 fold_convert_const_int_from_int (tree type
, tree arg1
)
1734 /* Given an integer constant, make new constant with new type,
1735 appropriately sign-extended or truncated. */
1736 t
= build_int_cst_wide (type
, TREE_INT_CST_LOW (arg1
),
1737 TREE_INT_CST_HIGH (arg1
));
1739 t
= force_fit_type (t
,
1740 /* Don't set the overflow when
1741 converting a pointer */
1742 !POINTER_TYPE_P (TREE_TYPE (arg1
)),
1743 (TREE_INT_CST_HIGH (arg1
) < 0
1744 && (TYPE_UNSIGNED (type
)
1745 < TYPE_UNSIGNED (TREE_TYPE (arg1
))))
1746 | TREE_OVERFLOW (arg1
),
1747 TREE_CONSTANT_OVERFLOW (arg1
));
1752 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1753 to an integer type. */
1756 fold_convert_const_int_from_real (enum tree_code code
, tree type
, tree arg1
)
1761 /* The following code implements the floating point to integer
1762 conversion rules required by the Java Language Specification,
1763 that IEEE NaNs are mapped to zero and values that overflow
1764 the target precision saturate, i.e. values greater than
1765 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1766 are mapped to INT_MIN. These semantics are allowed by the
1767 C and C++ standards that simply state that the behavior of
1768 FP-to-integer conversion is unspecified upon overflow. */
1770 HOST_WIDE_INT high
, low
;
1772 REAL_VALUE_TYPE x
= TREE_REAL_CST (arg1
);
1776 case FIX_TRUNC_EXPR
:
1777 real_trunc (&r
, VOIDmode
, &x
);
1781 real_ceil (&r
, VOIDmode
, &x
);
1784 case FIX_FLOOR_EXPR
:
1785 real_floor (&r
, VOIDmode
, &x
);
1788 case FIX_ROUND_EXPR
:
1789 real_round (&r
, VOIDmode
, &x
);
1796 /* If R is NaN, return zero and show we have an overflow. */
1797 if (REAL_VALUE_ISNAN (r
))
1804 /* See if R is less than the lower bound or greater than the
1809 tree lt
= TYPE_MIN_VALUE (type
);
1810 REAL_VALUE_TYPE l
= real_value_from_int_cst (NULL_TREE
, lt
);
1811 if (REAL_VALUES_LESS (r
, l
))
1814 high
= TREE_INT_CST_HIGH (lt
);
1815 low
= TREE_INT_CST_LOW (lt
);
1821 tree ut
= TYPE_MAX_VALUE (type
);
1824 REAL_VALUE_TYPE u
= real_value_from_int_cst (NULL_TREE
, ut
);
1825 if (REAL_VALUES_LESS (u
, r
))
1828 high
= TREE_INT_CST_HIGH (ut
);
1829 low
= TREE_INT_CST_LOW (ut
);
1835 REAL_VALUE_TO_INT (&low
, &high
, r
);
1837 t
= build_int_cst_wide (type
, low
, high
);
1839 t
= force_fit_type (t
, -1, overflow
| TREE_OVERFLOW (arg1
),
1840 TREE_CONSTANT_OVERFLOW (arg1
));
1844 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1845 to another floating point type. */
1848 fold_convert_const_real_from_real (tree type
, tree arg1
)
1850 REAL_VALUE_TYPE value
;
1853 real_convert (&value
, TYPE_MODE (type
), &TREE_REAL_CST (arg1
));
1854 t
= build_real (type
, value
);
1856 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
1857 TREE_CONSTANT_OVERFLOW (t
)
1858 = TREE_OVERFLOW (t
) | TREE_CONSTANT_OVERFLOW (arg1
);
1862 /* Attempt to fold type conversion operation CODE of expression ARG1 to
1863 type TYPE. If no simplification can be done return NULL_TREE. */
1866 fold_convert_const (enum tree_code code
, tree type
, tree arg1
)
1868 if (TREE_TYPE (arg1
) == type
)
1871 if (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
))
1873 if (TREE_CODE (arg1
) == INTEGER_CST
)
1874 return fold_convert_const_int_from_int (type
, arg1
);
1875 else if (TREE_CODE (arg1
) == REAL_CST
)
1876 return fold_convert_const_int_from_real (code
, type
, arg1
);
1878 else if (TREE_CODE (type
) == REAL_TYPE
)
1880 if (TREE_CODE (arg1
) == INTEGER_CST
)
1881 return build_real_from_int_cst (type
, arg1
);
1882 if (TREE_CODE (arg1
) == REAL_CST
)
1883 return fold_convert_const_real_from_real (type
, arg1
);
1888 /* Construct a vector of zero elements of vector type TYPE. */
1891 build_zero_vector (tree type
)
1896 elem
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), integer_zero_node
);
1897 units
= TYPE_VECTOR_SUBPARTS (type
);
1900 for (i
= 0; i
< units
; i
++)
1901 list
= tree_cons (NULL_TREE
, elem
, list
);
1902 return build_vector (type
, list
);
1905 /* Convert expression ARG to type TYPE. Used by the middle-end for
1906 simple conversions in preference to calling the front-end's convert. */
1909 fold_convert (tree type
, tree arg
)
1911 tree orig
= TREE_TYPE (arg
);
1917 if (TREE_CODE (arg
) == ERROR_MARK
1918 || TREE_CODE (type
) == ERROR_MARK
1919 || TREE_CODE (orig
) == ERROR_MARK
)
1920 return error_mark_node
;
1922 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
)
1923 || lang_hooks
.types_compatible_p (TYPE_MAIN_VARIANT (type
),
1924 TYPE_MAIN_VARIANT (orig
)))
1925 return fold_build1 (NOP_EXPR
, type
, arg
);
1927 switch (TREE_CODE (type
))
1929 case INTEGER_TYPE
: case CHAR_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
1930 case POINTER_TYPE
: case REFERENCE_TYPE
:
1932 if (TREE_CODE (arg
) == INTEGER_CST
)
1934 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
1935 if (tem
!= NULL_TREE
)
1938 if (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
1939 || TREE_CODE (orig
) == OFFSET_TYPE
)
1940 return fold_build1 (NOP_EXPR
, type
, arg
);
1941 if (TREE_CODE (orig
) == COMPLEX_TYPE
)
1943 tem
= fold_build1 (REALPART_EXPR
, TREE_TYPE (orig
), arg
);
1944 return fold_convert (type
, tem
);
1946 gcc_assert (TREE_CODE (orig
) == VECTOR_TYPE
1947 && tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
1948 return fold_build1 (NOP_EXPR
, type
, arg
);
1951 if (TREE_CODE (arg
) == INTEGER_CST
)
1953 tem
= fold_convert_const (FLOAT_EXPR
, type
, arg
);
1954 if (tem
!= NULL_TREE
)
1957 else if (TREE_CODE (arg
) == REAL_CST
)
1959 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
1960 if (tem
!= NULL_TREE
)
1964 switch (TREE_CODE (orig
))
1966 case INTEGER_TYPE
: case CHAR_TYPE
:
1967 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
1968 case POINTER_TYPE
: case REFERENCE_TYPE
:
1969 return fold_build1 (FLOAT_EXPR
, type
, arg
);
1972 return fold_build1 (flag_float_store
? CONVERT_EXPR
: NOP_EXPR
,
1976 tem
= fold_build1 (REALPART_EXPR
, TREE_TYPE (orig
), arg
);
1977 return fold_convert (type
, tem
);
1984 switch (TREE_CODE (orig
))
1986 case INTEGER_TYPE
: case CHAR_TYPE
:
1987 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
1988 case POINTER_TYPE
: case REFERENCE_TYPE
:
1990 return build2 (COMPLEX_EXPR
, type
,
1991 fold_convert (TREE_TYPE (type
), arg
),
1992 fold_convert (TREE_TYPE (type
), integer_zero_node
));
1997 if (TREE_CODE (arg
) == COMPLEX_EXPR
)
1999 rpart
= fold_convert (TREE_TYPE (type
), TREE_OPERAND (arg
, 0));
2000 ipart
= fold_convert (TREE_TYPE (type
), TREE_OPERAND (arg
, 1));
2001 return fold_build2 (COMPLEX_EXPR
, type
, rpart
, ipart
);
2004 arg
= save_expr (arg
);
2005 rpart
= fold_build1 (REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2006 ipart
= fold_build1 (IMAGPART_EXPR
, TREE_TYPE (orig
), arg
);
2007 rpart
= fold_convert (TREE_TYPE (type
), rpart
);
2008 ipart
= fold_convert (TREE_TYPE (type
), ipart
);
2009 return fold_build2 (COMPLEX_EXPR
, type
, rpart
, ipart
);
2017 if (integer_zerop (arg
))
2018 return build_zero_vector (type
);
2019 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2020 gcc_assert (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2021 || TREE_CODE (orig
) == VECTOR_TYPE
);
2022 return fold_build1 (VIEW_CONVERT_EXPR
, type
, arg
);
2025 return fold_build1 (CONVERT_EXPR
, type
, fold_ignored_result (arg
));
2032 /* Return false if expr can be assumed not to be an lvalue, true
2036 maybe_lvalue_p (tree x
)
2038 /* We only need to wrap lvalue tree codes. */
2039 switch (TREE_CODE (x
))
2050 case ALIGN_INDIRECT_REF
:
2051 case MISALIGNED_INDIRECT_REF
:
2053 case ARRAY_RANGE_REF
:
2059 case PREINCREMENT_EXPR
:
2060 case PREDECREMENT_EXPR
:
2062 case TRY_CATCH_EXPR
:
2063 case WITH_CLEANUP_EXPR
:
2074 /* Assume the worst for front-end tree codes. */
2075 if ((int)TREE_CODE (x
) >= NUM_TREE_CODES
)
2083 /* Return an expr equal to X but certainly not valid as an lvalue. */
2088 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2093 if (! maybe_lvalue_p (x
))
2095 return build1 (NON_LVALUE_EXPR
, TREE_TYPE (x
), x
);
2098 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2099 Zero means allow extended lvalues. */
2101 int pedantic_lvalues
;
2103 /* When pedantic, return an expr equal to X but certainly not valid as a
2104 pedantic lvalue. Otherwise, return X. */
2107 pedantic_non_lvalue (tree x
)
2109 if (pedantic_lvalues
)
2110 return non_lvalue (x
);
2115 /* Given a tree comparison code, return the code that is the logical inverse
2116 of the given code. It is not safe to do this for floating-point
2117 comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode
2118 as well: if reversing the comparison is unsafe, return ERROR_MARK. */
2121 invert_tree_comparison (enum tree_code code
, bool honor_nans
)
2123 if (honor_nans
&& flag_trapping_math
)
2133 return honor_nans
? UNLE_EXPR
: LE_EXPR
;
2135 return honor_nans
? UNLT_EXPR
: LT_EXPR
;
2137 return honor_nans
? UNGE_EXPR
: GE_EXPR
;
2139 return honor_nans
? UNGT_EXPR
: GT_EXPR
;
2153 return UNORDERED_EXPR
;
2154 case UNORDERED_EXPR
:
2155 return ORDERED_EXPR
;
2161 /* Similar, but return the comparison that results if the operands are
2162 swapped. This is safe for floating-point. */
2165 swap_tree_comparison (enum tree_code code
)
2172 case UNORDERED_EXPR
:
2198 /* Convert a comparison tree code from an enum tree_code representation
2199 into a compcode bit-based encoding. This function is the inverse of
2200 compcode_to_comparison. */
2202 static enum comparison_code
2203 comparison_to_compcode (enum tree_code code
)
2220 return COMPCODE_ORD
;
2221 case UNORDERED_EXPR
:
2222 return COMPCODE_UNORD
;
2224 return COMPCODE_UNLT
;
2226 return COMPCODE_UNEQ
;
2228 return COMPCODE_UNLE
;
2230 return COMPCODE_UNGT
;
2232 return COMPCODE_LTGT
;
2234 return COMPCODE_UNGE
;
2240 /* Convert a compcode bit-based encoding of a comparison operator back
2241 to GCC's enum tree_code representation. This function is the
2242 inverse of comparison_to_compcode. */
2244 static enum tree_code
2245 compcode_to_comparison (enum comparison_code code
)
2262 return ORDERED_EXPR
;
2263 case COMPCODE_UNORD
:
2264 return UNORDERED_EXPR
;
2282 /* Return a tree for the comparison which is the combination of
2283 doing the AND or OR (depending on CODE) of the two operations LCODE
2284 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2285 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2286 if this makes the transformation invalid. */
2289 combine_comparisons (enum tree_code code
, enum tree_code lcode
,
2290 enum tree_code rcode
, tree truth_type
,
2291 tree ll_arg
, tree lr_arg
)
2293 bool honor_nans
= HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg
)));
2294 enum comparison_code lcompcode
= comparison_to_compcode (lcode
);
2295 enum comparison_code rcompcode
= comparison_to_compcode (rcode
);
2296 enum comparison_code compcode
;
2300 case TRUTH_AND_EXPR
: case TRUTH_ANDIF_EXPR
:
2301 compcode
= lcompcode
& rcompcode
;
2304 case TRUTH_OR_EXPR
: case TRUTH_ORIF_EXPR
:
2305 compcode
= lcompcode
| rcompcode
;
2314 /* Eliminate unordered comparisons, as well as LTGT and ORD
2315 which are not used unless the mode has NaNs. */
2316 compcode
&= ~COMPCODE_UNORD
;
2317 if (compcode
== COMPCODE_LTGT
)
2318 compcode
= COMPCODE_NE
;
2319 else if (compcode
== COMPCODE_ORD
)
2320 compcode
= COMPCODE_TRUE
;
2322 else if (flag_trapping_math
)
2324 /* Check that the original operation and the optimized ones will trap
2325 under the same condition. */
2326 bool ltrap
= (lcompcode
& COMPCODE_UNORD
) == 0
2327 && (lcompcode
!= COMPCODE_EQ
)
2328 && (lcompcode
!= COMPCODE_ORD
);
2329 bool rtrap
= (rcompcode
& COMPCODE_UNORD
) == 0
2330 && (rcompcode
!= COMPCODE_EQ
)
2331 && (rcompcode
!= COMPCODE_ORD
);
2332 bool trap
= (compcode
& COMPCODE_UNORD
) == 0
2333 && (compcode
!= COMPCODE_EQ
)
2334 && (compcode
!= COMPCODE_ORD
);
2336 /* In a short-circuited boolean expression the LHS might be
2337 such that the RHS, if evaluated, will never trap. For
2338 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2339 if neither x nor y is NaN. (This is a mixed blessing: for
2340 example, the expression above will never trap, hence
2341 optimizing it to x < y would be invalid). */
2342 if ((code
== TRUTH_ORIF_EXPR
&& (lcompcode
& COMPCODE_UNORD
))
2343 || (code
== TRUTH_ANDIF_EXPR
&& !(lcompcode
& COMPCODE_UNORD
)))
2346 /* If the comparison was short-circuited, and only the RHS
2347 trapped, we may now generate a spurious trap. */
2349 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
2352 /* If we changed the conditions that cause a trap, we lose. */
2353 if ((ltrap
|| rtrap
) != trap
)
2357 if (compcode
== COMPCODE_TRUE
)
2358 return constant_boolean_node (true, truth_type
);
2359 else if (compcode
== COMPCODE_FALSE
)
2360 return constant_boolean_node (false, truth_type
);
2362 return fold_build2 (compcode_to_comparison (compcode
),
2363 truth_type
, ll_arg
, lr_arg
);
2366 /* Return nonzero if CODE is a tree code that represents a truth value. */
2369 truth_value_p (enum tree_code code
)
2371 return (TREE_CODE_CLASS (code
) == tcc_comparison
2372 || code
== TRUTH_AND_EXPR
|| code
== TRUTH_ANDIF_EXPR
2373 || code
== TRUTH_OR_EXPR
|| code
== TRUTH_ORIF_EXPR
2374 || code
== TRUTH_XOR_EXPR
|| code
== TRUTH_NOT_EXPR
);
2377 /* Return nonzero if two operands (typically of the same tree node)
2378 are necessarily equal. If either argument has side-effects this
2379 function returns zero. FLAGS modifies behavior as follows:
2381 If OEP_ONLY_CONST is set, only return nonzero for constants.
2382 This function tests whether the operands are indistinguishable;
2383 it does not test whether they are equal using C's == operation.
2384 The distinction is important for IEEE floating point, because
2385 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2386 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2388 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2389 even though it may hold multiple values during a function.
2390 This is because a GCC tree node guarantees that nothing else is
2391 executed between the evaluation of its "operands" (which may often
2392 be evaluated in arbitrary order). Hence if the operands themselves
2393 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2394 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2395 unset means assuming isochronic (or instantaneous) tree equivalence.
2396 Unless comparing arbitrary expression trees, such as from different
2397 statements, this flag can usually be left unset.
2399 If OEP_PURE_SAME is set, then pure functions with identical arguments
2400 are considered the same. It is used when the caller has other ways
2401 to ensure that global memory is unchanged in between. */
2404 operand_equal_p (tree arg0
, tree arg1
, unsigned int flags
)
2406 /* If either is ERROR_MARK, they aren't equal. */
2407 if (TREE_CODE (arg0
) == ERROR_MARK
|| TREE_CODE (arg1
) == ERROR_MARK
)
2410 /* If both types don't have the same signedness, then we can't consider
2411 them equal. We must check this before the STRIP_NOPS calls
2412 because they may change the signedness of the arguments. */
2413 if (TYPE_UNSIGNED (TREE_TYPE (arg0
)) != TYPE_UNSIGNED (TREE_TYPE (arg1
)))
2419 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
2420 /* This is needed for conversions and for COMPONENT_REF.
2421 Might as well play it safe and always test this. */
2422 || TREE_CODE (TREE_TYPE (arg0
)) == ERROR_MARK
2423 || TREE_CODE (TREE_TYPE (arg1
)) == ERROR_MARK
2424 || TYPE_MODE (TREE_TYPE (arg0
)) != TYPE_MODE (TREE_TYPE (arg1
)))
2427 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2428 We don't care about side effects in that case because the SAVE_EXPR
2429 takes care of that for us. In all other cases, two expressions are
2430 equal if they have no side effects. If we have two identical
2431 expressions with side effects that should be treated the same due
2432 to the only side effects being identical SAVE_EXPR's, that will
2433 be detected in the recursive calls below. */
2434 if (arg0
== arg1
&& ! (flags
& OEP_ONLY_CONST
)
2435 && (TREE_CODE (arg0
) == SAVE_EXPR
2436 || (! TREE_SIDE_EFFECTS (arg0
) && ! TREE_SIDE_EFFECTS (arg1
))))
2439 /* Next handle constant cases, those for which we can return 1 even
2440 if ONLY_CONST is set. */
2441 if (TREE_CONSTANT (arg0
) && TREE_CONSTANT (arg1
))
2442 switch (TREE_CODE (arg0
))
2445 return (! TREE_CONSTANT_OVERFLOW (arg0
)
2446 && ! TREE_CONSTANT_OVERFLOW (arg1
)
2447 && tree_int_cst_equal (arg0
, arg1
));
2450 return (! TREE_CONSTANT_OVERFLOW (arg0
)
2451 && ! TREE_CONSTANT_OVERFLOW (arg1
)
2452 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0
),
2453 TREE_REAL_CST (arg1
)));
2459 if (TREE_CONSTANT_OVERFLOW (arg0
)
2460 || TREE_CONSTANT_OVERFLOW (arg1
))
2463 v1
= TREE_VECTOR_CST_ELTS (arg0
);
2464 v2
= TREE_VECTOR_CST_ELTS (arg1
);
2467 if (!operand_equal_p (TREE_VALUE (v1
), TREE_VALUE (v2
),
2470 v1
= TREE_CHAIN (v1
);
2471 v2
= TREE_CHAIN (v2
);
2478 return (operand_equal_p (TREE_REALPART (arg0
), TREE_REALPART (arg1
),
2480 && operand_equal_p (TREE_IMAGPART (arg0
), TREE_IMAGPART (arg1
),
2484 return (TREE_STRING_LENGTH (arg0
) == TREE_STRING_LENGTH (arg1
)
2485 && ! memcmp (TREE_STRING_POINTER (arg0
),
2486 TREE_STRING_POINTER (arg1
),
2487 TREE_STRING_LENGTH (arg0
)));
2490 return operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0),
2496 if (flags
& OEP_ONLY_CONST
)
2499 /* Define macros to test an operand from arg0 and arg1 for equality and a
2500 variant that allows null and views null as being different from any
2501 non-null value. In the latter case, if either is null, the both
2502 must be; otherwise, do the normal comparison. */
2503 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2504 TREE_OPERAND (arg1, N), flags)
2506 #define OP_SAME_WITH_NULL(N) \
2507 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2508 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2510 switch (TREE_CODE_CLASS (TREE_CODE (arg0
)))
2513 /* Two conversions are equal only if signedness and modes match. */
2514 switch (TREE_CODE (arg0
))
2519 case FIX_TRUNC_EXPR
:
2520 case FIX_FLOOR_EXPR
:
2521 case FIX_ROUND_EXPR
:
2522 if (TYPE_UNSIGNED (TREE_TYPE (arg0
))
2523 != TYPE_UNSIGNED (TREE_TYPE (arg1
)))
2533 case tcc_comparison
:
2535 if (OP_SAME (0) && OP_SAME (1))
2538 /* For commutative ops, allow the other order. */
2539 return (commutative_tree_code (TREE_CODE (arg0
))
2540 && operand_equal_p (TREE_OPERAND (arg0
, 0),
2541 TREE_OPERAND (arg1
, 1), flags
)
2542 && operand_equal_p (TREE_OPERAND (arg0
, 1),
2543 TREE_OPERAND (arg1
, 0), flags
));
2546 /* If either of the pointer (or reference) expressions we are
2547 dereferencing contain a side effect, these cannot be equal. */
2548 if (TREE_SIDE_EFFECTS (arg0
)
2549 || TREE_SIDE_EFFECTS (arg1
))
2552 switch (TREE_CODE (arg0
))
2555 case ALIGN_INDIRECT_REF
:
2556 case MISALIGNED_INDIRECT_REF
:
2562 case ARRAY_RANGE_REF
:
2563 /* Operands 2 and 3 may be null. */
2566 && OP_SAME_WITH_NULL (2)
2567 && OP_SAME_WITH_NULL (3));
2570 /* Handle operand 2 the same as for ARRAY_REF. */
2571 return OP_SAME (0) && OP_SAME (1) && OP_SAME_WITH_NULL (2);
2574 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
2580 case tcc_expression
:
2581 switch (TREE_CODE (arg0
))
2584 case TRUTH_NOT_EXPR
:
2587 case TRUTH_ANDIF_EXPR
:
2588 case TRUTH_ORIF_EXPR
:
2589 return OP_SAME (0) && OP_SAME (1);
2591 case TRUTH_AND_EXPR
:
2593 case TRUTH_XOR_EXPR
:
2594 if (OP_SAME (0) && OP_SAME (1))
2597 /* Otherwise take into account this is a commutative operation. */
2598 return (operand_equal_p (TREE_OPERAND (arg0
, 0),
2599 TREE_OPERAND (arg1
, 1), flags
)
2600 && operand_equal_p (TREE_OPERAND (arg0
, 1),
2601 TREE_OPERAND (arg1
, 0), flags
));
2604 /* If the CALL_EXPRs call different functions, then they
2605 clearly can not be equal. */
2610 unsigned int cef
= call_expr_flags (arg0
);
2611 if (flags
& OEP_PURE_SAME
)
2612 cef
&= ECF_CONST
| ECF_PURE
;
2619 /* Now see if all the arguments are the same. operand_equal_p
2620 does not handle TREE_LIST, so we walk the operands here
2621 feeding them to operand_equal_p. */
2622 arg0
= TREE_OPERAND (arg0
, 1);
2623 arg1
= TREE_OPERAND (arg1
, 1);
2624 while (arg0
&& arg1
)
2626 if (! operand_equal_p (TREE_VALUE (arg0
), TREE_VALUE (arg1
),
2630 arg0
= TREE_CHAIN (arg0
);
2631 arg1
= TREE_CHAIN (arg1
);
2634 /* If we get here and both argument lists are exhausted
2635 then the CALL_EXPRs are equal. */
2636 return ! (arg0
|| arg1
);
2642 case tcc_declaration
:
2643 /* Consider __builtin_sqrt equal to sqrt. */
2644 return (TREE_CODE (arg0
) == FUNCTION_DECL
2645 && DECL_BUILT_IN (arg0
) && DECL_BUILT_IN (arg1
)
2646 && DECL_BUILT_IN_CLASS (arg0
) == DECL_BUILT_IN_CLASS (arg1
)
2647 && DECL_FUNCTION_CODE (arg0
) == DECL_FUNCTION_CODE (arg1
));
2654 #undef OP_SAME_WITH_NULL
2657 /* Similar to operand_equal_p, but see if ARG0 might have been made by
2658 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2660 When in doubt, return 0. */
2663 operand_equal_for_comparison_p (tree arg0
, tree arg1
, tree other
)
2665 int unsignedp1
, unsignedpo
;
2666 tree primarg0
, primarg1
, primother
;
2667 unsigned int correct_width
;
2669 if (operand_equal_p (arg0
, arg1
, 0))
2672 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
2673 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1
)))
2676 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2677 and see if the inner values are the same. This removes any
2678 signedness comparison, which doesn't matter here. */
2679 primarg0
= arg0
, primarg1
= arg1
;
2680 STRIP_NOPS (primarg0
);
2681 STRIP_NOPS (primarg1
);
2682 if (operand_equal_p (primarg0
, primarg1
, 0))
2685 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2686 actual comparison operand, ARG0.
2688 First throw away any conversions to wider types
2689 already present in the operands. */
2691 primarg1
= get_narrower (arg1
, &unsignedp1
);
2692 primother
= get_narrower (other
, &unsignedpo
);
2694 correct_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
2695 if (unsignedp1
== unsignedpo
2696 && TYPE_PRECISION (TREE_TYPE (primarg1
)) < correct_width
2697 && TYPE_PRECISION (TREE_TYPE (primother
)) < correct_width
)
2699 tree type
= TREE_TYPE (arg0
);
2701 /* Make sure shorter operand is extended the right way
2702 to match the longer operand. */
2703 primarg1
= fold_convert (lang_hooks
.types
.signed_or_unsigned_type
2704 (unsignedp1
, TREE_TYPE (primarg1
)), primarg1
);
2706 if (operand_equal_p (arg0
, fold_convert (type
, primarg1
), 0))
2713 /* See if ARG is an expression that is either a comparison or is performing
2714 arithmetic on comparisons. The comparisons must only be comparing
2715 two different values, which will be stored in *CVAL1 and *CVAL2; if
2716 they are nonzero it means that some operands have already been found.
2717 No variables may be used anywhere else in the expression except in the
2718 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2719 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2721 If this is true, return 1. Otherwise, return zero. */
2724 twoval_comparison_p (tree arg
, tree
*cval1
, tree
*cval2
, int *save_p
)
2726 enum tree_code code
= TREE_CODE (arg
);
2727 enum tree_code_class
class = TREE_CODE_CLASS (code
);
2729 /* We can handle some of the tcc_expression cases here. */
2730 if (class == tcc_expression
&& code
== TRUTH_NOT_EXPR
)
2732 else if (class == tcc_expression
2733 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
2734 || code
== COMPOUND_EXPR
))
2737 else if (class == tcc_expression
&& code
== SAVE_EXPR
2738 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg
, 0)))
2740 /* If we've already found a CVAL1 or CVAL2, this expression is
2741 two complex to handle. */
2742 if (*cval1
|| *cval2
)
2752 return twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
, save_p
);
2755 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
, save_p
)
2756 && twoval_comparison_p (TREE_OPERAND (arg
, 1),
2757 cval1
, cval2
, save_p
));
2762 case tcc_expression
:
2763 if (code
== COND_EXPR
)
2764 return (twoval_comparison_p (TREE_OPERAND (arg
, 0),
2765 cval1
, cval2
, save_p
)
2766 && twoval_comparison_p (TREE_OPERAND (arg
, 1),
2767 cval1
, cval2
, save_p
)
2768 && twoval_comparison_p (TREE_OPERAND (arg
, 2),
2769 cval1
, cval2
, save_p
));
2772 case tcc_comparison
:
2773 /* First see if we can handle the first operand, then the second. For
2774 the second operand, we know *CVAL1 can't be zero. It must be that
2775 one side of the comparison is each of the values; test for the
2776 case where this isn't true by failing if the two operands
2779 if (operand_equal_p (TREE_OPERAND (arg
, 0),
2780 TREE_OPERAND (arg
, 1), 0))
2784 *cval1
= TREE_OPERAND (arg
, 0);
2785 else if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 0), 0))
2787 else if (*cval2
== 0)
2788 *cval2
= TREE_OPERAND (arg
, 0);
2789 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 0), 0))
2794 if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 1), 0))
2796 else if (*cval2
== 0)
2797 *cval2
= TREE_OPERAND (arg
, 1);
2798 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 1), 0))
2810 /* ARG is a tree that is known to contain just arithmetic operations and
2811 comparisons. Evaluate the operations in the tree substituting NEW0 for
2812 any occurrence of OLD0 as an operand of a comparison and likewise for
2816 eval_subst (tree arg
, tree old0
, tree new0
, tree old1
, tree new1
)
2818 tree type
= TREE_TYPE (arg
);
2819 enum tree_code code
= TREE_CODE (arg
);
2820 enum tree_code_class
class = TREE_CODE_CLASS (code
);
2822 /* We can handle some of the tcc_expression cases here. */
2823 if (class == tcc_expression
&& code
== TRUTH_NOT_EXPR
)
2825 else if (class == tcc_expression
2826 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
2832 return fold_build1 (code
, type
,
2833 eval_subst (TREE_OPERAND (arg
, 0),
2834 old0
, new0
, old1
, new1
));
2837 return fold_build2 (code
, type
,
2838 eval_subst (TREE_OPERAND (arg
, 0),
2839 old0
, new0
, old1
, new1
),
2840 eval_subst (TREE_OPERAND (arg
, 1),
2841 old0
, new0
, old1
, new1
));
2843 case tcc_expression
:
2847 return eval_subst (TREE_OPERAND (arg
, 0), old0
, new0
, old1
, new1
);
2850 return eval_subst (TREE_OPERAND (arg
, 1), old0
, new0
, old1
, new1
);
2853 return fold_build3 (code
, type
,
2854 eval_subst (TREE_OPERAND (arg
, 0),
2855 old0
, new0
, old1
, new1
),
2856 eval_subst (TREE_OPERAND (arg
, 1),
2857 old0
, new0
, old1
, new1
),
2858 eval_subst (TREE_OPERAND (arg
, 2),
2859 old0
, new0
, old1
, new1
));
2863 /* Fall through - ??? */
2865 case tcc_comparison
:
2867 tree arg0
= TREE_OPERAND (arg
, 0);
2868 tree arg1
= TREE_OPERAND (arg
, 1);
2870 /* We need to check both for exact equality and tree equality. The
2871 former will be true if the operand has a side-effect. In that
2872 case, we know the operand occurred exactly once. */
2874 if (arg0
== old0
|| operand_equal_p (arg0
, old0
, 0))
2876 else if (arg0
== old1
|| operand_equal_p (arg0
, old1
, 0))
2879 if (arg1
== old0
|| operand_equal_p (arg1
, old0
, 0))
2881 else if (arg1
== old1
|| operand_equal_p (arg1
, old1
, 0))
2884 return fold_build2 (code
, type
, arg0
, arg1
);
2892 /* Return a tree for the case when the result of an expression is RESULT
2893 converted to TYPE and OMITTED was previously an operand of the expression
2894 but is now not needed (e.g., we folded OMITTED * 0).
2896 If OMITTED has side effects, we must evaluate it. Otherwise, just do
2897 the conversion of RESULT to TYPE. */
2900 omit_one_operand (tree type
, tree result
, tree omitted
)
2902 tree t
= fold_convert (type
, result
);
2904 if (TREE_SIDE_EFFECTS (omitted
))
2905 return build2 (COMPOUND_EXPR
, type
, fold_ignored_result (omitted
), t
);
2907 return non_lvalue (t
);
2910 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
2913 pedantic_omit_one_operand (tree type
, tree result
, tree omitted
)
2915 tree t
= fold_convert (type
, result
);
2917 if (TREE_SIDE_EFFECTS (omitted
))
2918 return build2 (COMPOUND_EXPR
, type
, fold_ignored_result (omitted
), t
);
2920 return pedantic_non_lvalue (t
);
2923 /* Return a tree for the case when the result of an expression is RESULT
2924 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
2925 of the expression but are now not needed.
2927 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
2928 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
2929 evaluated before OMITTED2. Otherwise, if neither has side effects,
2930 just do the conversion of RESULT to TYPE. */
2933 omit_two_operands (tree type
, tree result
, tree omitted1
, tree omitted2
)
2935 tree t
= fold_convert (type
, result
);
2937 if (TREE_SIDE_EFFECTS (omitted2
))
2938 t
= build2 (COMPOUND_EXPR
, type
, omitted2
, t
);
2939 if (TREE_SIDE_EFFECTS (omitted1
))
2940 t
= build2 (COMPOUND_EXPR
, type
, omitted1
, t
);
2942 return TREE_CODE (t
) != COMPOUND_EXPR
? non_lvalue (t
) : t
;
2946 /* Return a simplified tree node for the truth-negation of ARG. This
2947 never alters ARG itself. We assume that ARG is an operation that
2948 returns a truth value (0 or 1).
2950 FIXME: one would think we would fold the result, but it causes
2951 problems with the dominator optimizer. */
2953 invert_truthvalue (tree arg
)
2955 tree type
= TREE_TYPE (arg
);
2956 enum tree_code code
= TREE_CODE (arg
);
2958 if (code
== ERROR_MARK
)
2961 /* If this is a comparison, we can simply invert it, except for
2962 floating-point non-equality comparisons, in which case we just
2963 enclose a TRUTH_NOT_EXPR around what we have. */
2965 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
2967 tree op_type
= TREE_TYPE (TREE_OPERAND (arg
, 0));
2968 if (FLOAT_TYPE_P (op_type
)
2969 && flag_trapping_math
2970 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
2971 && code
!= NE_EXPR
&& code
!= EQ_EXPR
)
2972 return build1 (TRUTH_NOT_EXPR
, type
, arg
);
2975 code
= invert_tree_comparison (code
,
2976 HONOR_NANS (TYPE_MODE (op_type
)));
2977 if (code
== ERROR_MARK
)
2978 return build1 (TRUTH_NOT_EXPR
, type
, arg
);
2980 return build2 (code
, type
,
2981 TREE_OPERAND (arg
, 0), TREE_OPERAND (arg
, 1));
2988 return constant_boolean_node (integer_zerop (arg
), type
);
2990 case TRUTH_AND_EXPR
:
2991 return build2 (TRUTH_OR_EXPR
, type
,
2992 invert_truthvalue (TREE_OPERAND (arg
, 0)),
2993 invert_truthvalue (TREE_OPERAND (arg
, 1)));
2996 return build2 (TRUTH_AND_EXPR
, type
,
2997 invert_truthvalue (TREE_OPERAND (arg
, 0)),
2998 invert_truthvalue (TREE_OPERAND (arg
, 1)));
3000 case TRUTH_XOR_EXPR
:
3001 /* Here we can invert either operand. We invert the first operand
3002 unless the second operand is a TRUTH_NOT_EXPR in which case our
3003 result is the XOR of the first operand with the inside of the
3004 negation of the second operand. */
3006 if (TREE_CODE (TREE_OPERAND (arg
, 1)) == TRUTH_NOT_EXPR
)
3007 return build2 (TRUTH_XOR_EXPR
, type
, TREE_OPERAND (arg
, 0),
3008 TREE_OPERAND (TREE_OPERAND (arg
, 1), 0));
3010 return build2 (TRUTH_XOR_EXPR
, type
,
3011 invert_truthvalue (TREE_OPERAND (arg
, 0)),
3012 TREE_OPERAND (arg
, 1));
3014 case TRUTH_ANDIF_EXPR
:
3015 return build2 (TRUTH_ORIF_EXPR
, type
,
3016 invert_truthvalue (TREE_OPERAND (arg
, 0)),
3017 invert_truthvalue (TREE_OPERAND (arg
, 1)));
3019 case TRUTH_ORIF_EXPR
:
3020 return build2 (TRUTH_ANDIF_EXPR
, type
,
3021 invert_truthvalue (TREE_OPERAND (arg
, 0)),
3022 invert_truthvalue (TREE_OPERAND (arg
, 1)));
3024 case TRUTH_NOT_EXPR
:
3025 return TREE_OPERAND (arg
, 0);
3028 return build3 (COND_EXPR
, type
, TREE_OPERAND (arg
, 0),
3029 invert_truthvalue (TREE_OPERAND (arg
, 1)),
3030 invert_truthvalue (TREE_OPERAND (arg
, 2)));
3033 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg
, 0),
3034 invert_truthvalue (TREE_OPERAND (arg
, 1)));
3036 case NON_LVALUE_EXPR
:
3037 return invert_truthvalue (TREE_OPERAND (arg
, 0));
3040 if (TREE_CODE (TREE_TYPE (arg
)) == BOOLEAN_TYPE
)
3045 return build1 (TREE_CODE (arg
), type
,
3046 invert_truthvalue (TREE_OPERAND (arg
, 0)));
3049 if (!integer_onep (TREE_OPERAND (arg
, 1)))
3051 return build2 (EQ_EXPR
, type
, arg
,
3052 fold_convert (type
, integer_zero_node
));
3055 return build1 (TRUTH_NOT_EXPR
, type
, arg
);
3057 case CLEANUP_POINT_EXPR
:
3058 return build1 (CLEANUP_POINT_EXPR
, type
,
3059 invert_truthvalue (TREE_OPERAND (arg
, 0)));
3064 gcc_assert (TREE_CODE (TREE_TYPE (arg
)) == BOOLEAN_TYPE
);
3065 return build1 (TRUTH_NOT_EXPR
, type
, arg
);
3068 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3069 operands are another bit-wise operation with a common input. If so,
3070 distribute the bit operations to save an operation and possibly two if
3071 constants are involved. For example, convert
3072 (A | B) & (A | C) into A | (B & C)
3073 Further simplification will occur if B and C are constants.
3075 If this optimization cannot be done, 0 will be returned. */
3078 distribute_bit_expr (enum tree_code code
, tree type
, tree arg0
, tree arg1
)
3083 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
3084 || TREE_CODE (arg0
) == code
3085 || (TREE_CODE (arg0
) != BIT_AND_EXPR
3086 && TREE_CODE (arg0
) != BIT_IOR_EXPR
))
3089 if (operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0), 0))
3091 common
= TREE_OPERAND (arg0
, 0);
3092 left
= TREE_OPERAND (arg0
, 1);
3093 right
= TREE_OPERAND (arg1
, 1);
3095 else if (operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 1), 0))
3097 common
= TREE_OPERAND (arg0
, 0);
3098 left
= TREE_OPERAND (arg0
, 1);
3099 right
= TREE_OPERAND (arg1
, 0);
3101 else if (operand_equal_p (TREE_OPERAND (arg0
, 1), TREE_OPERAND (arg1
, 0), 0))
3103 common
= TREE_OPERAND (arg0
, 1);
3104 left
= TREE_OPERAND (arg0
, 0);
3105 right
= TREE_OPERAND (arg1
, 1);
3107 else if (operand_equal_p (TREE_OPERAND (arg0
, 1), TREE_OPERAND (arg1
, 1), 0))
3109 common
= TREE_OPERAND (arg0
, 1);
3110 left
= TREE_OPERAND (arg0
, 0);
3111 right
= TREE_OPERAND (arg1
, 0);
3116 return fold_build2 (TREE_CODE (arg0
), type
, common
,
3117 fold_build2 (code
, type
, left
, right
));
3120 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3121 with code CODE. This optimization is unsafe. */
3123 distribute_real_division (enum tree_code code
, tree type
, tree arg0
, tree arg1
)
3125 bool mul0
= TREE_CODE (arg0
) == MULT_EXPR
;
3126 bool mul1
= TREE_CODE (arg1
) == MULT_EXPR
;
3128 /* (A / C) +- (B / C) -> (A +- B) / C. */
3130 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3131 TREE_OPERAND (arg1
, 1), 0))
3132 return fold_build2 (mul0
? MULT_EXPR
: RDIV_EXPR
, type
,
3133 fold_build2 (code
, type
,
3134 TREE_OPERAND (arg0
, 0),
3135 TREE_OPERAND (arg1
, 0)),
3136 TREE_OPERAND (arg0
, 1));
3138 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3139 if (operand_equal_p (TREE_OPERAND (arg0
, 0),
3140 TREE_OPERAND (arg1
, 0), 0)
3141 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
3142 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == REAL_CST
)
3144 REAL_VALUE_TYPE r0
, r1
;
3145 r0
= TREE_REAL_CST (TREE_OPERAND (arg0
, 1));
3146 r1
= TREE_REAL_CST (TREE_OPERAND (arg1
, 1));
3148 real_arithmetic (&r0
, RDIV_EXPR
, &dconst1
, &r0
);
3150 real_arithmetic (&r1
, RDIV_EXPR
, &dconst1
, &r1
);
3151 real_arithmetic (&r0
, code
, &r0
, &r1
);
3152 return fold_build2 (MULT_EXPR
, type
,
3153 TREE_OPERAND (arg0
, 0),
3154 build_real (type
, r0
));
3160 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3161 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3164 make_bit_field_ref (tree inner
, tree type
, int bitsize
, int bitpos
,
3171 tree size
= TYPE_SIZE (TREE_TYPE (inner
));
3172 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner
))
3173 || POINTER_TYPE_P (TREE_TYPE (inner
)))
3174 && host_integerp (size
, 0)
3175 && tree_low_cst (size
, 0) == bitsize
)
3176 return fold_convert (type
, inner
);
3179 result
= build3 (BIT_FIELD_REF
, type
, inner
,
3180 size_int (bitsize
), bitsize_int (bitpos
));
3182 BIT_FIELD_REF_UNSIGNED (result
) = unsignedp
;
3187 /* Optimize a bit-field compare.
3189 There are two cases: First is a compare against a constant and the
3190 second is a comparison of two items where the fields are at the same
3191 bit position relative to the start of a chunk (byte, halfword, word)
3192 large enough to contain it. In these cases we can avoid the shift
3193 implicit in bitfield extractions.
3195 For constants, we emit a compare of the shifted constant with the
3196 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3197 compared. For two fields at the same position, we do the ANDs with the
3198 similar mask and compare the result of the ANDs.
3200 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3201 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3202 are the left and right operands of the comparison, respectively.
3204 If the optimization described above can be done, we return the resulting
3205 tree. Otherwise we return zero. */
3208 optimize_bit_field_compare (enum tree_code code
, tree compare_type
,
3211 HOST_WIDE_INT lbitpos
, lbitsize
, rbitpos
, rbitsize
, nbitpos
, nbitsize
;
3212 tree type
= TREE_TYPE (lhs
);
3213 tree signed_type
, unsigned_type
;
3214 int const_p
= TREE_CODE (rhs
) == INTEGER_CST
;
3215 enum machine_mode lmode
, rmode
, nmode
;
3216 int lunsignedp
, runsignedp
;
3217 int lvolatilep
= 0, rvolatilep
= 0;
3218 tree linner
, rinner
= NULL_TREE
;
3222 /* Get all the information about the extractions being done. If the bit size
3223 if the same as the size of the underlying object, we aren't doing an
3224 extraction at all and so can do nothing. We also don't want to
3225 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3226 then will no longer be able to replace it. */
3227 linner
= get_inner_reference (lhs
, &lbitsize
, &lbitpos
, &offset
, &lmode
,
3228 &lunsignedp
, &lvolatilep
, false);
3229 if (linner
== lhs
|| lbitsize
== GET_MODE_BITSIZE (lmode
) || lbitsize
< 0
3230 || offset
!= 0 || TREE_CODE (linner
) == PLACEHOLDER_EXPR
)
3235 /* If this is not a constant, we can only do something if bit positions,
3236 sizes, and signedness are the same. */
3237 rinner
= get_inner_reference (rhs
, &rbitsize
, &rbitpos
, &offset
, &rmode
,
3238 &runsignedp
, &rvolatilep
, false);
3240 if (rinner
== rhs
|| lbitpos
!= rbitpos
|| lbitsize
!= rbitsize
3241 || lunsignedp
!= runsignedp
|| offset
!= 0
3242 || TREE_CODE (rinner
) == PLACEHOLDER_EXPR
)
3246 /* See if we can find a mode to refer to this field. We should be able to,
3247 but fail if we can't. */
3248 nmode
= get_best_mode (lbitsize
, lbitpos
,
3249 const_p
? TYPE_ALIGN (TREE_TYPE (linner
))
3250 : MIN (TYPE_ALIGN (TREE_TYPE (linner
)),
3251 TYPE_ALIGN (TREE_TYPE (rinner
))),
3252 word_mode
, lvolatilep
|| rvolatilep
);
3253 if (nmode
== VOIDmode
)
3256 /* Set signed and unsigned types of the precision of this mode for the
3258 signed_type
= lang_hooks
.types
.type_for_mode (nmode
, 0);
3259 unsigned_type
= lang_hooks
.types
.type_for_mode (nmode
, 1);
3261 /* Compute the bit position and size for the new reference and our offset
3262 within it. If the new reference is the same size as the original, we
3263 won't optimize anything, so return zero. */
3264 nbitsize
= GET_MODE_BITSIZE (nmode
);
3265 nbitpos
= lbitpos
& ~ (nbitsize
- 1);
3267 if (nbitsize
== lbitsize
)
3270 if (BYTES_BIG_ENDIAN
)
3271 lbitpos
= nbitsize
- lbitsize
- lbitpos
;
3273 /* Make the mask to be used against the extracted field. */
3274 mask
= build_int_cst (unsigned_type
, -1);
3275 mask
= force_fit_type (mask
, 0, false, false);
3276 mask
= fold_convert (unsigned_type
, mask
);
3277 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (nbitsize
- lbitsize
), 0);
3278 mask
= const_binop (RSHIFT_EXPR
, mask
,
3279 size_int (nbitsize
- lbitsize
- lbitpos
), 0);
3282 /* If not comparing with constant, just rework the comparison
3284 return build2 (code
, compare_type
,
3285 build2 (BIT_AND_EXPR
, unsigned_type
,
3286 make_bit_field_ref (linner
, unsigned_type
,
3287 nbitsize
, nbitpos
, 1),
3289 build2 (BIT_AND_EXPR
, unsigned_type
,
3290 make_bit_field_ref (rinner
, unsigned_type
,
3291 nbitsize
, nbitpos
, 1),
3294 /* Otherwise, we are handling the constant case. See if the constant is too
3295 big for the field. Warn and return a tree of for 0 (false) if so. We do
3296 this not only for its own sake, but to avoid having to test for this
3297 error case below. If we didn't, we might generate wrong code.
3299 For unsigned fields, the constant shifted right by the field length should
3300 be all zero. For signed fields, the high-order bits should agree with
3305 if (! integer_zerop (const_binop (RSHIFT_EXPR
,
3306 fold_convert (unsigned_type
, rhs
),
3307 size_int (lbitsize
), 0)))
3309 warning (0, "comparison is always %d due to width of bit-field",
3311 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
3316 tree tem
= const_binop (RSHIFT_EXPR
, fold_convert (signed_type
, rhs
),
3317 size_int (lbitsize
- 1), 0);
3318 if (! integer_zerop (tem
) && ! integer_all_onesp (tem
))
3320 warning (0, "comparison is always %d due to width of bit-field",
3322 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
3326 /* Single-bit compares should always be against zero. */
3327 if (lbitsize
== 1 && ! integer_zerop (rhs
))
3329 code
= code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
;
3330 rhs
= fold_convert (type
, integer_zero_node
);
3333 /* Make a new bitfield reference, shift the constant over the
3334 appropriate number of bits and mask it with the computed mask
3335 (in case this was a signed field). If we changed it, make a new one. */
3336 lhs
= make_bit_field_ref (linner
, unsigned_type
, nbitsize
, nbitpos
, 1);
3339 TREE_SIDE_EFFECTS (lhs
) = 1;
3340 TREE_THIS_VOLATILE (lhs
) = 1;
3343 rhs
= const_binop (BIT_AND_EXPR
,
3344 const_binop (LSHIFT_EXPR
,
3345 fold_convert (unsigned_type
, rhs
),
3346 size_int (lbitpos
), 0),
3349 return build2 (code
, compare_type
,
3350 build2 (BIT_AND_EXPR
, unsigned_type
, lhs
, mask
),
3354 /* Subroutine for fold_truthop: decode a field reference.
3356 If EXP is a comparison reference, we return the innermost reference.
3358 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3359 set to the starting bit number.
3361 If the innermost field can be completely contained in a mode-sized
3362 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3364 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3365 otherwise it is not changed.
3367 *PUNSIGNEDP is set to the signedness of the field.
3369 *PMASK is set to the mask used. This is either contained in a
3370 BIT_AND_EXPR or derived from the width of the field.
3372 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3374 Return 0 if this is not a component reference or is one that we can't
3375 do anything with. */
3378 decode_field_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
3379 HOST_WIDE_INT
*pbitpos
, enum machine_mode
*pmode
,
3380 int *punsignedp
, int *pvolatilep
,
3381 tree
*pmask
, tree
*pand_mask
)
3383 tree outer_type
= 0;
3385 tree mask
, inner
, offset
;
3387 unsigned int precision
;
3389 /* All the optimizations using this function assume integer fields.
3390 There are problems with FP fields since the type_for_size call
3391 below can fail for, e.g., XFmode. */
3392 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp
)))
3395 /* We are interested in the bare arrangement of bits, so strip everything
3396 that doesn't affect the machine mode. However, record the type of the
3397 outermost expression if it may matter below. */
3398 if (TREE_CODE (exp
) == NOP_EXPR
3399 || TREE_CODE (exp
) == CONVERT_EXPR
3400 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
3401 outer_type
= TREE_TYPE (exp
);
3404 if (TREE_CODE (exp
) == BIT_AND_EXPR
)
3406 and_mask
= TREE_OPERAND (exp
, 1);
3407 exp
= TREE_OPERAND (exp
, 0);
3408 STRIP_NOPS (exp
); STRIP_NOPS (and_mask
);
3409 if (TREE_CODE (and_mask
) != INTEGER_CST
)
3413 inner
= get_inner_reference (exp
, pbitsize
, pbitpos
, &offset
, pmode
,
3414 punsignedp
, pvolatilep
, false);
3415 if ((inner
== exp
&& and_mask
== 0)
3416 || *pbitsize
< 0 || offset
!= 0
3417 || TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
3420 /* If the number of bits in the reference is the same as the bitsize of
3421 the outer type, then the outer type gives the signedness. Otherwise
3422 (in case of a small bitfield) the signedness is unchanged. */
3423 if (outer_type
&& *pbitsize
== TYPE_PRECISION (outer_type
))
3424 *punsignedp
= TYPE_UNSIGNED (outer_type
);
3426 /* Compute the mask to access the bitfield. */
3427 unsigned_type
= lang_hooks
.types
.type_for_size (*pbitsize
, 1);
3428 precision
= TYPE_PRECISION (unsigned_type
);
3430 mask
= build_int_cst (unsigned_type
, -1);
3431 mask
= force_fit_type (mask
, 0, false, false);
3433 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
), 0);
3434 mask
= const_binop (RSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
), 0);
3436 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3438 mask
= fold_build2 (BIT_AND_EXPR
, unsigned_type
,
3439 fold_convert (unsigned_type
, and_mask
), mask
);
3442 *pand_mask
= and_mask
;
3446 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3450 all_ones_mask_p (tree mask
, int size
)
3452 tree type
= TREE_TYPE (mask
);
3453 unsigned int precision
= TYPE_PRECISION (type
);
3456 tmask
= build_int_cst (lang_hooks
.types
.signed_type (type
), -1);
3457 tmask
= force_fit_type (tmask
, 0, false, false);
3460 tree_int_cst_equal (mask
,
3461 const_binop (RSHIFT_EXPR
,
3462 const_binop (LSHIFT_EXPR
, tmask
,
3463 size_int (precision
- size
),
3465 size_int (precision
- size
), 0));
3468 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3469 represents the sign bit of EXP's type. If EXP represents a sign
3470 or zero extension, also test VAL against the unextended type.
3471 The return value is the (sub)expression whose sign bit is VAL,
3472 or NULL_TREE otherwise. */
3475 sign_bit_p (tree exp
, tree val
)
3477 unsigned HOST_WIDE_INT mask_lo
, lo
;
3478 HOST_WIDE_INT mask_hi
, hi
;
3482 /* Tree EXP must have an integral type. */
3483 t
= TREE_TYPE (exp
);
3484 if (! INTEGRAL_TYPE_P (t
))
3487 /* Tree VAL must be an integer constant. */
3488 if (TREE_CODE (val
) != INTEGER_CST
3489 || TREE_CONSTANT_OVERFLOW (val
))
3492 width
= TYPE_PRECISION (t
);
3493 if (width
> HOST_BITS_PER_WIDE_INT
)
3495 hi
= (unsigned HOST_WIDE_INT
) 1 << (width
- HOST_BITS_PER_WIDE_INT
- 1);
3498 mask_hi
= ((unsigned HOST_WIDE_INT
) -1
3499 >> (2 * HOST_BITS_PER_WIDE_INT
- width
));
3505 lo
= (unsigned HOST_WIDE_INT
) 1 << (width
- 1);
3508 mask_lo
= ((unsigned HOST_WIDE_INT
) -1
3509 >> (HOST_BITS_PER_WIDE_INT
- width
));
3512 /* We mask off those bits beyond TREE_TYPE (exp) so that we can
3513 treat VAL as if it were unsigned. */
3514 if ((TREE_INT_CST_HIGH (val
) & mask_hi
) == hi
3515 && (TREE_INT_CST_LOW (val
) & mask_lo
) == lo
)
3518 /* Handle extension from a narrower type. */
3519 if (TREE_CODE (exp
) == NOP_EXPR
3520 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))) < width
)
3521 return sign_bit_p (TREE_OPERAND (exp
, 0), val
);
3526 /* Subroutine for fold_truthop: determine if an operand is simple enough
3527 to be evaluated unconditionally. */
3530 simple_operand_p (tree exp
)
3532 /* Strip any conversions that don't change the machine mode. */
3535 return (CONSTANT_CLASS_P (exp
)
3536 || TREE_CODE (exp
) == SSA_NAME
3538 && ! TREE_ADDRESSABLE (exp
)
3539 && ! TREE_THIS_VOLATILE (exp
)
3540 && ! DECL_NONLOCAL (exp
)
3541 /* Don't regard global variables as simple. They may be
3542 allocated in ways unknown to the compiler (shared memory,
3543 #pragma weak, etc). */
3544 && ! TREE_PUBLIC (exp
)
3545 && ! DECL_EXTERNAL (exp
)
3546 /* Loading a static variable is unduly expensive, but global
3547 registers aren't expensive. */
3548 && (! TREE_STATIC (exp
) || DECL_REGISTER (exp
))));
3551 /* The following functions are subroutines to fold_range_test and allow it to
3552 try to change a logical combination of comparisons into a range test.
3555 X == 2 || X == 3 || X == 4 || X == 5
3559 (unsigned) (X - 2) <= 3
3561 We describe each set of comparisons as being either inside or outside
3562 a range, using a variable named like IN_P, and then describe the
3563 range with a lower and upper bound. If one of the bounds is omitted,
3564 it represents either the highest or lowest value of the type.
3566 In the comments below, we represent a range by two numbers in brackets
3567 preceded by a "+" to designate being inside that range, or a "-" to
3568 designate being outside that range, so the condition can be inverted by
3569 flipping the prefix. An omitted bound is represented by a "-". For
3570 example, "- [-, 10]" means being outside the range starting at the lowest
3571 possible value and ending at 10, in other words, being greater than 10.
3572 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
3575 We set up things so that the missing bounds are handled in a consistent
3576 manner so neither a missing bound nor "true" and "false" need to be
3577 handled using a special case. */
3579 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
3580 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
3581 and UPPER1_P are nonzero if the respective argument is an upper bound
3582 and zero for a lower. TYPE, if nonzero, is the type of the result; it
3583 must be specified for a comparison. ARG1 will be converted to ARG0's
3584 type if both are specified. */
3587 range_binop (enum tree_code code
, tree type
, tree arg0
, int upper0_p
,
3588 tree arg1
, int upper1_p
)
3594 /* If neither arg represents infinity, do the normal operation.
3595 Else, if not a comparison, return infinity. Else handle the special
3596 comparison rules. Note that most of the cases below won't occur, but
3597 are handled for consistency. */
3599 if (arg0
!= 0 && arg1
!= 0)
3601 tem
= fold_build2 (code
, type
!= 0 ? type
: TREE_TYPE (arg0
),
3602 arg0
, fold_convert (TREE_TYPE (arg0
), arg1
));
3604 return TREE_CODE (tem
) == INTEGER_CST
? tem
: 0;
3607 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
3610 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
3611 for neither. In real maths, we cannot assume open ended ranges are
3612 the same. But, this is computer arithmetic, where numbers are finite.
3613 We can therefore make the transformation of any unbounded range with
3614 the value Z, Z being greater than any representable number. This permits
3615 us to treat unbounded ranges as equal. */
3616 sgn0
= arg0
!= 0 ? 0 : (upper0_p
? 1 : -1);
3617 sgn1
= arg1
!= 0 ? 0 : (upper1_p
? 1 : -1);
3621 result
= sgn0
== sgn1
;
3624 result
= sgn0
!= sgn1
;
3627 result
= sgn0
< sgn1
;
3630 result
= sgn0
<= sgn1
;
3633 result
= sgn0
> sgn1
;
3636 result
= sgn0
>= sgn1
;
3642 return constant_boolean_node (result
, type
);
3645 /* Given EXP, a logical expression, set the range it is testing into
3646 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
3647 actually being tested. *PLOW and *PHIGH will be made of the same type
3648 as the returned expression. If EXP is not a comparison, we will most
3649 likely not be returning a useful value and range. */
3652 make_range (tree exp
, int *pin_p
, tree
*plow
, tree
*phigh
)
3654 enum tree_code code
;
3655 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
;
3656 tree exp_type
= NULL_TREE
, arg0_type
= NULL_TREE
;
3658 tree low
, high
, n_low
, n_high
;
3660 /* Start with simply saying "EXP != 0" and then look at the code of EXP
3661 and see if we can refine the range. Some of the cases below may not
3662 happen, but it doesn't seem worth worrying about this. We "continue"
3663 the outer loop when we've changed something; otherwise we "break"
3664 the switch, which will "break" the while. */
3667 low
= high
= fold_convert (TREE_TYPE (exp
), integer_zero_node
);
3671 code
= TREE_CODE (exp
);
3672 exp_type
= TREE_TYPE (exp
);
3674 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
3676 if (TREE_CODE_LENGTH (code
) > 0)
3677 arg0
= TREE_OPERAND (exp
, 0);
3678 if (TREE_CODE_CLASS (code
) == tcc_comparison
3679 || TREE_CODE_CLASS (code
) == tcc_unary
3680 || TREE_CODE_CLASS (code
) == tcc_binary
)
3681 arg0_type
= TREE_TYPE (arg0
);
3682 if (TREE_CODE_CLASS (code
) == tcc_binary
3683 || TREE_CODE_CLASS (code
) == tcc_comparison
3684 || (TREE_CODE_CLASS (code
) == tcc_expression
3685 && TREE_CODE_LENGTH (code
) > 1))
3686 arg1
= TREE_OPERAND (exp
, 1);
3691 case TRUTH_NOT_EXPR
:
3692 in_p
= ! in_p
, exp
= arg0
;
3695 case EQ_EXPR
: case NE_EXPR
:
3696 case LT_EXPR
: case LE_EXPR
: case GE_EXPR
: case GT_EXPR
:
3697 /* We can only do something if the range is testing for zero
3698 and if the second operand is an integer constant. Note that
3699 saying something is "in" the range we make is done by
3700 complementing IN_P since it will set in the initial case of
3701 being not equal to zero; "out" is leaving it alone. */
3702 if (low
== 0 || high
== 0
3703 || ! integer_zerop (low
) || ! integer_zerop (high
)
3704 || TREE_CODE (arg1
) != INTEGER_CST
)
3709 case NE_EXPR
: /* - [c, c] */
3712 case EQ_EXPR
: /* + [c, c] */
3713 in_p
= ! in_p
, low
= high
= arg1
;
3715 case GT_EXPR
: /* - [-, c] */
3716 low
= 0, high
= arg1
;
3718 case GE_EXPR
: /* + [c, -] */
3719 in_p
= ! in_p
, low
= arg1
, high
= 0;
3721 case LT_EXPR
: /* - [c, -] */
3722 low
= arg1
, high
= 0;
3724 case LE_EXPR
: /* + [-, c] */
3725 in_p
= ! in_p
, low
= 0, high
= arg1
;
3731 /* If this is an unsigned comparison, we also know that EXP is
3732 greater than or equal to zero. We base the range tests we make
3733 on that fact, so we record it here so we can parse existing
3734 range tests. We test arg0_type since often the return type
3735 of, e.g. EQ_EXPR, is boolean. */
3736 if (TYPE_UNSIGNED (arg0_type
) && (low
== 0 || high
== 0))
3738 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
3740 fold_convert (arg0_type
, integer_zero_node
),
3744 in_p
= n_in_p
, low
= n_low
, high
= n_high
;
3746 /* If the high bound is missing, but we have a nonzero low
3747 bound, reverse the range so it goes from zero to the low bound
3749 if (high
== 0 && low
&& ! integer_zerop (low
))
3752 high
= range_binop (MINUS_EXPR
, NULL_TREE
, low
, 0,
3753 integer_one_node
, 0);
3754 low
= fold_convert (arg0_type
, integer_zero_node
);
3762 /* (-x) IN [a,b] -> x in [-b, -a] */
3763 n_low
= range_binop (MINUS_EXPR
, exp_type
,
3764 fold_convert (exp_type
, integer_zero_node
),
3766 n_high
= range_binop (MINUS_EXPR
, exp_type
,
3767 fold_convert (exp_type
, integer_zero_node
),
3769 low
= n_low
, high
= n_high
;
3775 exp
= build2 (MINUS_EXPR
, exp_type
, negate_expr (arg0
),
3776 fold_convert (exp_type
, integer_one_node
));
3779 case PLUS_EXPR
: case MINUS_EXPR
:
3780 if (TREE_CODE (arg1
) != INTEGER_CST
)
3783 /* If EXP is signed, any overflow in the computation is undefined,
3784 so we don't worry about it so long as our computations on
3785 the bounds don't overflow. For unsigned, overflow is defined
3786 and this is exactly the right thing. */
3787 n_low
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
3788 arg0_type
, low
, 0, arg1
, 0);
3789 n_high
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
3790 arg0_type
, high
, 1, arg1
, 0);
3791 if ((n_low
!= 0 && TREE_OVERFLOW (n_low
))
3792 || (n_high
!= 0 && TREE_OVERFLOW (n_high
)))
3795 /* Check for an unsigned range which has wrapped around the maximum
3796 value thus making n_high < n_low, and normalize it. */
3797 if (n_low
&& n_high
&& tree_int_cst_lt (n_high
, n_low
))
3799 low
= range_binop (PLUS_EXPR
, arg0_type
, n_high
, 0,
3800 integer_one_node
, 0);
3801 high
= range_binop (MINUS_EXPR
, arg0_type
, n_low
, 0,
3802 integer_one_node
, 0);
3804 /* If the range is of the form +/- [ x+1, x ], we won't
3805 be able to normalize it. But then, it represents the
3806 whole range or the empty set, so make it
3808 if (tree_int_cst_equal (n_low
, low
)
3809 && tree_int_cst_equal (n_high
, high
))
3815 low
= n_low
, high
= n_high
;
3820 case NOP_EXPR
: case NON_LVALUE_EXPR
: case CONVERT_EXPR
:
3821 if (TYPE_PRECISION (arg0_type
) > TYPE_PRECISION (exp_type
))
3824 if (! INTEGRAL_TYPE_P (arg0_type
)
3825 || (low
!= 0 && ! int_fits_type_p (low
, arg0_type
))
3826 || (high
!= 0 && ! int_fits_type_p (high
, arg0_type
)))
3829 n_low
= low
, n_high
= high
;
3832 n_low
= fold_convert (arg0_type
, n_low
);
3835 n_high
= fold_convert (arg0_type
, n_high
);
3838 /* If we're converting arg0 from an unsigned type, to exp,
3839 a signed type, we will be doing the comparison as unsigned.
3840 The tests above have already verified that LOW and HIGH
3843 So we have to ensure that we will handle large unsigned
3844 values the same way that the current signed bounds treat
3847 if (!TYPE_UNSIGNED (exp_type
) && TYPE_UNSIGNED (arg0_type
))
3850 tree equiv_type
= lang_hooks
.types
.type_for_mode
3851 (TYPE_MODE (arg0_type
), 1);
3853 /* A range without an upper bound is, naturally, unbounded.
3854 Since convert would have cropped a very large value, use
3855 the max value for the destination type. */
3857 = TYPE_MAX_VALUE (equiv_type
) ? TYPE_MAX_VALUE (equiv_type
)
3858 : TYPE_MAX_VALUE (arg0_type
);
3860 if (TYPE_PRECISION (exp_type
) == TYPE_PRECISION (arg0_type
))
3861 high_positive
= fold_build2 (RSHIFT_EXPR
, arg0_type
,
3862 fold_convert (arg0_type
,
3864 fold_convert (arg0_type
,
3867 /* If the low bound is specified, "and" the range with the
3868 range for which the original unsigned value will be
3872 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
3873 1, n_low
, n_high
, 1,
3874 fold_convert (arg0_type
,
3879 in_p
= (n_in_p
== in_p
);
3883 /* Otherwise, "or" the range with the range of the input
3884 that will be interpreted as negative. */
3885 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
3886 0, n_low
, n_high
, 1,
3887 fold_convert (arg0_type
,
3892 in_p
= (in_p
!= n_in_p
);
3897 low
= n_low
, high
= n_high
;
3907 /* If EXP is a constant, we can evaluate whether this is true or false. */
3908 if (TREE_CODE (exp
) == INTEGER_CST
)
3910 in_p
= in_p
== (integer_onep (range_binop (GE_EXPR
, integer_type_node
,
3912 && integer_onep (range_binop (LE_EXPR
, integer_type_node
,
3918 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
3922 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
3923 type, TYPE, return an expression to test if EXP is in (or out of, depending
3924 on IN_P) the range. Return 0 if the test couldn't be created. */
3927 build_range_check (tree type
, tree exp
, int in_p
, tree low
, tree high
)
3929 tree etype
= TREE_TYPE (exp
);
3932 #ifdef HAVE_canonicalize_funcptr_for_compare
3933 /* Disable this optimization for function pointer expressions
3934 on targets that require function pointer canonicalization. */
3935 if (HAVE_canonicalize_funcptr_for_compare
3936 && TREE_CODE (etype
) == POINTER_TYPE
3937 && TREE_CODE (TREE_TYPE (etype
)) == FUNCTION_TYPE
)
3943 value
= build_range_check (type
, exp
, 1, low
, high
);
3945 return invert_truthvalue (value
);
3950 if (low
== 0 && high
== 0)
3951 return fold_convert (type
, integer_one_node
);
3954 return fold_build2 (LE_EXPR
, type
, exp
,
3955 fold_convert (etype
, high
));
3958 return fold_build2 (GE_EXPR
, type
, exp
,
3959 fold_convert (etype
, low
));
3961 if (operand_equal_p (low
, high
, 0))
3962 return fold_build2 (EQ_EXPR
, type
, exp
,
3963 fold_convert (etype
, low
));
3965 if (integer_zerop (low
))
3967 if (! TYPE_UNSIGNED (etype
))
3969 etype
= lang_hooks
.types
.unsigned_type (etype
);
3970 high
= fold_convert (etype
, high
);
3971 exp
= fold_convert (etype
, exp
);
3973 return build_range_check (type
, exp
, 1, 0, high
);
3976 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
3977 if (integer_onep (low
) && TREE_CODE (high
) == INTEGER_CST
)
3979 unsigned HOST_WIDE_INT lo
;
3983 prec
= TYPE_PRECISION (etype
);
3984 if (prec
<= HOST_BITS_PER_WIDE_INT
)
3987 lo
= ((unsigned HOST_WIDE_INT
) 1 << (prec
- 1)) - 1;
3991 hi
= ((HOST_WIDE_INT
) 1 << (prec
- HOST_BITS_PER_WIDE_INT
- 1)) - 1;
3992 lo
= (unsigned HOST_WIDE_INT
) -1;
3995 if (TREE_INT_CST_HIGH (high
) == hi
&& TREE_INT_CST_LOW (high
) == lo
)
3997 if (TYPE_UNSIGNED (etype
))
3999 etype
= lang_hooks
.types
.signed_type (etype
);
4000 exp
= fold_convert (etype
, exp
);
4002 return fold_build2 (GT_EXPR
, type
, exp
,
4003 fold_convert (etype
, integer_zero_node
));
4007 value
= const_binop (MINUS_EXPR
, high
, low
, 0);
4008 if (value
!= 0 && TREE_OVERFLOW (value
) && ! TYPE_UNSIGNED (etype
))
4010 tree utype
, minv
, maxv
;
4012 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4013 for the type in question, as we rely on this here. */
4014 switch (TREE_CODE (etype
))
4019 utype
= lang_hooks
.types
.unsigned_type (etype
);
4020 maxv
= fold_convert (utype
, TYPE_MAX_VALUE (etype
));
4021 maxv
= range_binop (PLUS_EXPR
, NULL_TREE
, maxv
, 1,
4022 integer_one_node
, 1);
4023 minv
= fold_convert (utype
, TYPE_MIN_VALUE (etype
));
4024 if (integer_zerop (range_binop (NE_EXPR
, integer_type_node
,
4028 high
= fold_convert (etype
, high
);
4029 low
= fold_convert (etype
, low
);
4030 exp
= fold_convert (etype
, exp
);
4031 value
= const_binop (MINUS_EXPR
, high
, low
, 0);
4039 if (value
!= 0 && ! TREE_OVERFLOW (value
))
4040 return build_range_check (type
,
4041 fold_build2 (MINUS_EXPR
, etype
, exp
, low
),
4042 1, fold_convert (etype
, integer_zero_node
),
4048 /* Given two ranges, see if we can merge them into one. Return 1 if we
4049 can, 0 if we can't. Set the output range into the specified parameters. */
4052 merge_ranges (int *pin_p
, tree
*plow
, tree
*phigh
, int in0_p
, tree low0
,
4053 tree high0
, int in1_p
, tree low1
, tree high1
)
4061 int lowequal
= ((low0
== 0 && low1
== 0)
4062 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4063 low0
, 0, low1
, 0)));
4064 int highequal
= ((high0
== 0 && high1
== 0)
4065 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4066 high0
, 1, high1
, 1)));
4068 /* Make range 0 be the range that starts first, or ends last if they
4069 start at the same value. Swap them if it isn't. */
4070 if (integer_onep (range_binop (GT_EXPR
, integer_type_node
,
4073 && integer_onep (range_binop (GT_EXPR
, integer_type_node
,
4074 high1
, 1, high0
, 1))))
4076 temp
= in0_p
, in0_p
= in1_p
, in1_p
= temp
;
4077 tem
= low0
, low0
= low1
, low1
= tem
;
4078 tem
= high0
, high0
= high1
, high1
= tem
;
4081 /* Now flag two cases, whether the ranges are disjoint or whether the
4082 second range is totally subsumed in the first. Note that the tests
4083 below are simplified by the ones above. */
4084 no_overlap
= integer_onep (range_binop (LT_EXPR
, integer_type_node
,
4085 high0
, 1, low1
, 0));
4086 subset
= integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4087 high1
, 1, high0
, 1));
4089 /* We now have four cases, depending on whether we are including or
4090 excluding the two ranges. */
4093 /* If they don't overlap, the result is false. If the second range
4094 is a subset it is the result. Otherwise, the range is from the start
4095 of the second to the end of the first. */
4097 in_p
= 0, low
= high
= 0;
4099 in_p
= 1, low
= low1
, high
= high1
;
4101 in_p
= 1, low
= low1
, high
= high0
;
4104 else if (in0_p
&& ! in1_p
)
4106 /* If they don't overlap, the result is the first range. If they are
4107 equal, the result is false. If the second range is a subset of the
4108 first, and the ranges begin at the same place, we go from just after
4109 the end of the first range to the end of the second. If the second
4110 range is not a subset of the first, or if it is a subset and both
4111 ranges end at the same place, the range starts at the start of the
4112 first range and ends just before the second range.
4113 Otherwise, we can't describe this as a single range. */
4115 in_p
= 1, low
= low0
, high
= high0
;
4116 else if (lowequal
&& highequal
)
4117 in_p
= 0, low
= high
= 0;
4118 else if (subset
&& lowequal
)
4120 in_p
= 1, high
= high0
;
4121 low
= range_binop (PLUS_EXPR
, NULL_TREE
, high1
, 0,
4122 integer_one_node
, 0);
4124 else if (! subset
|| highequal
)
4126 in_p
= 1, low
= low0
;
4127 high
= range_binop (MINUS_EXPR
, NULL_TREE
, low1
, 0,
4128 integer_one_node
, 0);
4134 else if (! in0_p
&& in1_p
)
4136 /* If they don't overlap, the result is the second range. If the second
4137 is a subset of the first, the result is false. Otherwise,
4138 the range starts just after the first range and ends at the
4139 end of the second. */
4141 in_p
= 1, low
= low1
, high
= high1
;
4142 else if (subset
|| highequal
)
4143 in_p
= 0, low
= high
= 0;
4146 in_p
= 1, high
= high1
;
4147 low
= range_binop (PLUS_EXPR
, NULL_TREE
, high0
, 1,
4148 integer_one_node
, 0);
4154 /* The case where we are excluding both ranges. Here the complex case
4155 is if they don't overlap. In that case, the only time we have a
4156 range is if they are adjacent. If the second is a subset of the
4157 first, the result is the first. Otherwise, the range to exclude
4158 starts at the beginning of the first range and ends at the end of the
4162 if (integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4163 range_binop (PLUS_EXPR
, NULL_TREE
,
4165 integer_one_node
, 1),
4167 in_p
= 0, low
= low0
, high
= high1
;
4170 /* Canonicalize - [min, x] into - [-, x]. */
4171 if (low0
&& TREE_CODE (low0
) == INTEGER_CST
)
4172 switch (TREE_CODE (TREE_TYPE (low0
)))
4175 if (TYPE_PRECISION (TREE_TYPE (low0
))
4176 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0
))))
4181 if (tree_int_cst_equal (low0
,
4182 TYPE_MIN_VALUE (TREE_TYPE (low0
))))
4186 if (TYPE_UNSIGNED (TREE_TYPE (low0
))
4187 && integer_zerop (low0
))
4194 /* Canonicalize - [x, max] into - [x, -]. */
4195 if (high1
&& TREE_CODE (high1
) == INTEGER_CST
)
4196 switch (TREE_CODE (TREE_TYPE (high1
)))
4199 if (TYPE_PRECISION (TREE_TYPE (high1
))
4200 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1
))))
4205 if (tree_int_cst_equal (high1
,
4206 TYPE_MAX_VALUE (TREE_TYPE (high1
))))
4210 if (TYPE_UNSIGNED (TREE_TYPE (high1
))
4211 && integer_zerop (range_binop (PLUS_EXPR
, NULL_TREE
,
4213 integer_one_node
, 1)))
4220 /* The ranges might be also adjacent between the maximum and
4221 minimum values of the given type. For
4222 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4223 return + [x + 1, y - 1]. */
4224 if (low0
== 0 && high1
== 0)
4226 low
= range_binop (PLUS_EXPR
, NULL_TREE
, high0
, 1,
4227 integer_one_node
, 1);
4228 high
= range_binop (MINUS_EXPR
, NULL_TREE
, low1
, 0,
4229 integer_one_node
, 0);
4230 if (low
== 0 || high
== 0)
4240 in_p
= 0, low
= low0
, high
= high0
;
4242 in_p
= 0, low
= low0
, high
= high1
;
4245 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
4250 /* Subroutine of fold, looking inside expressions of the form
4251 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4252 of the COND_EXPR. This function is being used also to optimize
4253 A op B ? C : A, by reversing the comparison first.
4255 Return a folded expression whose code is not a COND_EXPR
4256 anymore, or NULL_TREE if no folding opportunity is found. */
4259 fold_cond_expr_with_comparison (tree type
, tree arg0
, tree arg1
, tree arg2
)
4261 enum tree_code comp_code
= TREE_CODE (arg0
);
4262 tree arg00
= TREE_OPERAND (arg0
, 0);
4263 tree arg01
= TREE_OPERAND (arg0
, 1);
4264 tree arg1_type
= TREE_TYPE (arg1
);
4270 /* If we have A op 0 ? A : -A, consider applying the following
4273 A == 0? A : -A same as -A
4274 A != 0? A : -A same as A
4275 A >= 0? A : -A same as abs (A)
4276 A > 0? A : -A same as abs (A)
4277 A <= 0? A : -A same as -abs (A)
4278 A < 0? A : -A same as -abs (A)
4280 None of these transformations work for modes with signed
4281 zeros. If A is +/-0, the first two transformations will
4282 change the sign of the result (from +0 to -0, or vice
4283 versa). The last four will fix the sign of the result,
4284 even though the original expressions could be positive or
4285 negative, depending on the sign of A.
4287 Note that all these transformations are correct if A is
4288 NaN, since the two alternatives (A and -A) are also NaNs. */
4289 if ((FLOAT_TYPE_P (TREE_TYPE (arg01
))
4290 ? real_zerop (arg01
)
4291 : integer_zerop (arg01
))
4292 && ((TREE_CODE (arg2
) == NEGATE_EXPR
4293 && operand_equal_p (TREE_OPERAND (arg2
, 0), arg1
, 0))
4294 /* In the case that A is of the form X-Y, '-A' (arg2) may
4295 have already been folded to Y-X, check for that. */
4296 || (TREE_CODE (arg1
) == MINUS_EXPR
4297 && TREE_CODE (arg2
) == MINUS_EXPR
4298 && operand_equal_p (TREE_OPERAND (arg1
, 0),
4299 TREE_OPERAND (arg2
, 1), 0)
4300 && operand_equal_p (TREE_OPERAND (arg1
, 1),
4301 TREE_OPERAND (arg2
, 0), 0))))
4306 tem
= fold_convert (arg1_type
, arg1
);
4307 return pedantic_non_lvalue (fold_convert (type
, negate_expr (tem
)));
4310 return pedantic_non_lvalue (fold_convert (type
, arg1
));
4313 if (flag_trapping_math
)
4318 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
4319 arg1
= fold_convert (lang_hooks
.types
.signed_type
4320 (TREE_TYPE (arg1
)), arg1
);
4321 tem
= fold_build1 (ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
4322 return pedantic_non_lvalue (fold_convert (type
, tem
));
4325 if (flag_trapping_math
)
4329 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
4330 arg1
= fold_convert (lang_hooks
.types
.signed_type
4331 (TREE_TYPE (arg1
)), arg1
);
4332 tem
= fold_build1 (ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
4333 return negate_expr (fold_convert (type
, tem
));
4335 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
4339 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4340 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4341 both transformations are correct when A is NaN: A != 0
4342 is then true, and A == 0 is false. */
4344 if (integer_zerop (arg01
) && integer_zerop (arg2
))
4346 if (comp_code
== NE_EXPR
)
4347 return pedantic_non_lvalue (fold_convert (type
, arg1
));
4348 else if (comp_code
== EQ_EXPR
)
4349 return fold_convert (type
, integer_zero_node
);
4352 /* Try some transformations of A op B ? A : B.
4354 A == B? A : B same as B
4355 A != B? A : B same as A
4356 A >= B? A : B same as max (A, B)
4357 A > B? A : B same as max (B, A)
4358 A <= B? A : B same as min (A, B)
4359 A < B? A : B same as min (B, A)
4361 As above, these transformations don't work in the presence
4362 of signed zeros. For example, if A and B are zeros of
4363 opposite sign, the first two transformations will change
4364 the sign of the result. In the last four, the original
4365 expressions give different results for (A=+0, B=-0) and
4366 (A=-0, B=+0), but the transformed expressions do not.
4368 The first two transformations are correct if either A or B
4369 is a NaN. In the first transformation, the condition will
4370 be false, and B will indeed be chosen. In the case of the
4371 second transformation, the condition A != B will be true,
4372 and A will be chosen.
4374 The conversions to max() and min() are not correct if B is
4375 a number and A is not. The conditions in the original
4376 expressions will be false, so all four give B. The min()
4377 and max() versions would give a NaN instead. */
4378 if (operand_equal_for_comparison_p (arg01
, arg2
, arg00
)
4379 /* Avoid these transformations if the COND_EXPR may be used
4380 as an lvalue in the C++ front-end. PR c++/19199. */
4382 || strcmp (lang_hooks
.name
, "GNU C++") != 0
4383 || ! maybe_lvalue_p (arg1
)
4384 || ! maybe_lvalue_p (arg2
)))
4386 tree comp_op0
= arg00
;
4387 tree comp_op1
= arg01
;
4388 tree comp_type
= TREE_TYPE (comp_op0
);
4390 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
4391 if (TYPE_MAIN_VARIANT (comp_type
) == TYPE_MAIN_VARIANT (type
))
4401 return pedantic_non_lvalue (fold_convert (type
, arg2
));
4403 return pedantic_non_lvalue (fold_convert (type
, arg1
));
4408 /* In C++ a ?: expression can be an lvalue, so put the
4409 operand which will be used if they are equal first
4410 so that we can convert this back to the
4411 corresponding COND_EXPR. */
4412 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1
))))
4414 comp_op0
= fold_convert (comp_type
, comp_op0
);
4415 comp_op1
= fold_convert (comp_type
, comp_op1
);
4416 tem
= (comp_code
== LE_EXPR
|| comp_code
== UNLE_EXPR
)
4417 ? fold_build2 (MIN_EXPR
, comp_type
, comp_op0
, comp_op1
)
4418 : fold_build2 (MIN_EXPR
, comp_type
, comp_op1
, comp_op0
);
4419 return pedantic_non_lvalue (fold_convert (type
, tem
));
4426 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1
))))
4428 comp_op0
= fold_convert (comp_type
, comp_op0
);
4429 comp_op1
= fold_convert (comp_type
, comp_op1
);
4430 tem
= (comp_code
== GE_EXPR
|| comp_code
== UNGE_EXPR
)
4431 ? fold_build2 (MAX_EXPR
, comp_type
, comp_op0
, comp_op1
)
4432 : fold_build2 (MAX_EXPR
, comp_type
, comp_op1
, comp_op0
);
4433 return pedantic_non_lvalue (fold_convert (type
, tem
));
4437 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1
))))
4438 return pedantic_non_lvalue (fold_convert (type
, arg2
));
4441 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1
))))
4442 return pedantic_non_lvalue (fold_convert (type
, arg1
));
4445 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
4450 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
4451 we might still be able to simplify this. For example,
4452 if C1 is one less or one more than C2, this might have started
4453 out as a MIN or MAX and been transformed by this function.
4454 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
4456 if (INTEGRAL_TYPE_P (type
)
4457 && TREE_CODE (arg01
) == INTEGER_CST
4458 && TREE_CODE (arg2
) == INTEGER_CST
)
4462 /* We can replace A with C1 in this case. */
4463 arg1
= fold_convert (type
, arg01
);
4464 return fold_build3 (COND_EXPR
, type
, arg0
, arg1
, arg2
);
4467 /* If C1 is C2 + 1, this is min(A, C2). */
4468 if (! operand_equal_p (arg2
, TYPE_MAX_VALUE (type
),
4470 && operand_equal_p (arg01
,
4471 const_binop (PLUS_EXPR
, arg2
,
4472 integer_one_node
, 0),
4474 return pedantic_non_lvalue (fold_build2 (MIN_EXPR
,
4479 /* If C1 is C2 - 1, this is min(A, C2). */
4480 if (! operand_equal_p (arg2
, TYPE_MIN_VALUE (type
),
4482 && operand_equal_p (arg01
,
4483 const_binop (MINUS_EXPR
, arg2
,
4484 integer_one_node
, 0),
4486 return pedantic_non_lvalue (fold_build2 (MIN_EXPR
,
4491 /* If C1 is C2 - 1, this is max(A, C2). */
4492 if (! operand_equal_p (arg2
, TYPE_MIN_VALUE (type
),
4494 && operand_equal_p (arg01
,
4495 const_binop (MINUS_EXPR
, arg2
,
4496 integer_one_node
, 0),
4498 return pedantic_non_lvalue (fold_build2 (MAX_EXPR
,
4503 /* If C1 is C2 + 1, this is max(A, C2). */
4504 if (! operand_equal_p (arg2
, TYPE_MAX_VALUE (type
),
4506 && operand_equal_p (arg01
,
4507 const_binop (PLUS_EXPR
, arg2
,
4508 integer_one_node
, 0),
4510 return pedantic_non_lvalue (fold_build2 (MAX_EXPR
,
4524 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
4525 #define LOGICAL_OP_NON_SHORT_CIRCUIT (BRANCH_COST >= 2)
4528 /* EXP is some logical combination of boolean tests. See if we can
4529 merge it into some range test. Return the new tree if so. */
4532 fold_range_test (enum tree_code code
, tree type
, tree op0
, tree op1
)
4534 int or_op
= (code
== TRUTH_ORIF_EXPR
4535 || code
== TRUTH_OR_EXPR
);
4536 int in0_p
, in1_p
, in_p
;
4537 tree low0
, low1
, low
, high0
, high1
, high
;
4538 tree lhs
= make_range (op0
, &in0_p
, &low0
, &high0
);
4539 tree rhs
= make_range (op1
, &in1_p
, &low1
, &high1
);
4542 /* If this is an OR operation, invert both sides; we will invert
4543 again at the end. */
4545 in0_p
= ! in0_p
, in1_p
= ! in1_p
;
4547 /* If both expressions are the same, if we can merge the ranges, and we
4548 can build the range test, return it or it inverted. If one of the
4549 ranges is always true or always false, consider it to be the same
4550 expression as the other. */
4551 if ((lhs
== 0 || rhs
== 0 || operand_equal_p (lhs
, rhs
, 0))
4552 && merge_ranges (&in_p
, &low
, &high
, in0_p
, low0
, high0
,
4554 && 0 != (tem
= (build_range_check (type
,
4556 : rhs
!= 0 ? rhs
: integer_zero_node
,
4558 return or_op
? invert_truthvalue (tem
) : tem
;
4560 /* On machines where the branch cost is expensive, if this is a
4561 short-circuited branch and the underlying object on both sides
4562 is the same, make a non-short-circuit operation. */
4563 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
4564 && lhs
!= 0 && rhs
!= 0
4565 && (code
== TRUTH_ANDIF_EXPR
4566 || code
== TRUTH_ORIF_EXPR
)
4567 && operand_equal_p (lhs
, rhs
, 0))
4569 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
4570 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
4571 which cases we can't do this. */
4572 if (simple_operand_p (lhs
))
4573 return build2 (code
== TRUTH_ANDIF_EXPR
4574 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
4577 else if (lang_hooks
.decls
.global_bindings_p () == 0
4578 && ! CONTAINS_PLACEHOLDER_P (lhs
))
4580 tree common
= save_expr (lhs
);
4582 if (0 != (lhs
= build_range_check (type
, common
,
4583 or_op
? ! in0_p
: in0_p
,
4585 && (0 != (rhs
= build_range_check (type
, common
,
4586 or_op
? ! in1_p
: in1_p
,
4588 return build2 (code
== TRUTH_ANDIF_EXPR
4589 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
4597 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
4598 bit value. Arrange things so the extra bits will be set to zero if and
4599 only if C is signed-extended to its full width. If MASK is nonzero,
4600 it is an INTEGER_CST that should be AND'ed with the extra bits. */
4603 unextend (tree c
, int p
, int unsignedp
, tree mask
)
4605 tree type
= TREE_TYPE (c
);
4606 int modesize
= GET_MODE_BITSIZE (TYPE_MODE (type
));
4609 if (p
== modesize
|| unsignedp
)
4612 /* We work by getting just the sign bit into the low-order bit, then
4613 into the high-order bit, then sign-extend. We then XOR that value
4615 temp
= const_binop (RSHIFT_EXPR
, c
, size_int (p
- 1), 0);
4616 temp
= const_binop (BIT_AND_EXPR
, temp
, size_int (1), 0);
4618 /* We must use a signed type in order to get an arithmetic right shift.
4619 However, we must also avoid introducing accidental overflows, so that
4620 a subsequent call to integer_zerop will work. Hence we must
4621 do the type conversion here. At this point, the constant is either
4622 zero or one, and the conversion to a signed type can never overflow.
4623 We could get an overflow if this conversion is done anywhere else. */
4624 if (TYPE_UNSIGNED (type
))
4625 temp
= fold_convert (lang_hooks
.types
.signed_type (type
), temp
);
4627 temp
= const_binop (LSHIFT_EXPR
, temp
, size_int (modesize
- 1), 0);
4628 temp
= const_binop (RSHIFT_EXPR
, temp
, size_int (modesize
- p
- 1), 0);
4630 temp
= const_binop (BIT_AND_EXPR
, temp
,
4631 fold_convert (TREE_TYPE (c
), mask
), 0);
4632 /* If necessary, convert the type back to match the type of C. */
4633 if (TYPE_UNSIGNED (type
))
4634 temp
= fold_convert (type
, temp
);
4636 return fold_convert (type
, const_binop (BIT_XOR_EXPR
, c
, temp
, 0));
4639 /* Find ways of folding logical expressions of LHS and RHS:
4640 Try to merge two comparisons to the same innermost item.
4641 Look for range tests like "ch >= '0' && ch <= '9'".
4642 Look for combinations of simple terms on machines with expensive branches
4643 and evaluate the RHS unconditionally.
4645 For example, if we have p->a == 2 && p->b == 4 and we can make an
4646 object large enough to span both A and B, we can do this with a comparison
4647 against the object ANDed with the a mask.
4649 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
4650 operations to do this with one comparison.
4652 We check for both normal comparisons and the BIT_AND_EXPRs made this by
4653 function and the one above.
4655 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
4656 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
4658 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
4661 We return the simplified tree or 0 if no optimization is possible. */
4664 fold_truthop (enum tree_code code
, tree truth_type
, tree lhs
, tree rhs
)
4666 /* If this is the "or" of two comparisons, we can do something if
4667 the comparisons are NE_EXPR. If this is the "and", we can do something
4668 if the comparisons are EQ_EXPR. I.e.,
4669 (a->b == 2 && a->c == 4) can become (a->new == NEW).
4671 WANTED_CODE is this operation code. For single bit fields, we can
4672 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
4673 comparison for one-bit fields. */
4675 enum tree_code wanted_code
;
4676 enum tree_code lcode
, rcode
;
4677 tree ll_arg
, lr_arg
, rl_arg
, rr_arg
;
4678 tree ll_inner
, lr_inner
, rl_inner
, rr_inner
;
4679 HOST_WIDE_INT ll_bitsize
, ll_bitpos
, lr_bitsize
, lr_bitpos
;
4680 HOST_WIDE_INT rl_bitsize
, rl_bitpos
, rr_bitsize
, rr_bitpos
;
4681 HOST_WIDE_INT xll_bitpos
, xlr_bitpos
, xrl_bitpos
, xrr_bitpos
;
4682 HOST_WIDE_INT lnbitsize
, lnbitpos
, rnbitsize
, rnbitpos
;
4683 int ll_unsignedp
, lr_unsignedp
, rl_unsignedp
, rr_unsignedp
;
4684 enum machine_mode ll_mode
, lr_mode
, rl_mode
, rr_mode
;
4685 enum machine_mode lnmode
, rnmode
;
4686 tree ll_mask
, lr_mask
, rl_mask
, rr_mask
;
4687 tree ll_and_mask
, lr_and_mask
, rl_and_mask
, rr_and_mask
;
4688 tree l_const
, r_const
;
4689 tree lntype
, rntype
, result
;
4690 int first_bit
, end_bit
;
4693 /* Start by getting the comparison codes. Fail if anything is volatile.
4694 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
4695 it were surrounded with a NE_EXPR. */
4697 if (TREE_SIDE_EFFECTS (lhs
) || TREE_SIDE_EFFECTS (rhs
))
4700 lcode
= TREE_CODE (lhs
);
4701 rcode
= TREE_CODE (rhs
);
4703 if (lcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (lhs
, 1)))
4705 lhs
= build2 (NE_EXPR
, truth_type
, lhs
,
4706 fold_convert (TREE_TYPE (lhs
), integer_zero_node
));
4710 if (rcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (rhs
, 1)))
4712 rhs
= build2 (NE_EXPR
, truth_type
, rhs
,
4713 fold_convert (TREE_TYPE (rhs
), integer_zero_node
));
4717 if (TREE_CODE_CLASS (lcode
) != tcc_comparison
4718 || TREE_CODE_CLASS (rcode
) != tcc_comparison
)
4721 ll_arg
= TREE_OPERAND (lhs
, 0);
4722 lr_arg
= TREE_OPERAND (lhs
, 1);
4723 rl_arg
= TREE_OPERAND (rhs
, 0);
4724 rr_arg
= TREE_OPERAND (rhs
, 1);
4726 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
4727 if (simple_operand_p (ll_arg
)
4728 && simple_operand_p (lr_arg
))
4731 if (operand_equal_p (ll_arg
, rl_arg
, 0)
4732 && operand_equal_p (lr_arg
, rr_arg
, 0))
4734 result
= combine_comparisons (code
, lcode
, rcode
,
4735 truth_type
, ll_arg
, lr_arg
);
4739 else if (operand_equal_p (ll_arg
, rr_arg
, 0)
4740 && operand_equal_p (lr_arg
, rl_arg
, 0))
4742 result
= combine_comparisons (code
, lcode
,
4743 swap_tree_comparison (rcode
),
4744 truth_type
, ll_arg
, lr_arg
);
4750 code
= ((code
== TRUTH_AND_EXPR
|| code
== TRUTH_ANDIF_EXPR
)
4751 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
);
4753 /* If the RHS can be evaluated unconditionally and its operands are
4754 simple, it wins to evaluate the RHS unconditionally on machines
4755 with expensive branches. In this case, this isn't a comparison
4756 that can be merged. Avoid doing this if the RHS is a floating-point
4757 comparison since those can trap. */
4759 if (BRANCH_COST
>= 2
4760 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg
))
4761 && simple_operand_p (rl_arg
)
4762 && simple_operand_p (rr_arg
))
4764 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
4765 if (code
== TRUTH_OR_EXPR
4766 && lcode
== NE_EXPR
&& integer_zerop (lr_arg
)
4767 && rcode
== NE_EXPR
&& integer_zerop (rr_arg
)
4768 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
))
4769 return build2 (NE_EXPR
, truth_type
,
4770 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
4772 fold_convert (TREE_TYPE (ll_arg
), integer_zero_node
));
4774 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
4775 if (code
== TRUTH_AND_EXPR
4776 && lcode
== EQ_EXPR
&& integer_zerop (lr_arg
)
4777 && rcode
== EQ_EXPR
&& integer_zerop (rr_arg
)
4778 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
))
4779 return build2 (EQ_EXPR
, truth_type
,
4780 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
4782 fold_convert (TREE_TYPE (ll_arg
), integer_zero_node
));
4784 if (LOGICAL_OP_NON_SHORT_CIRCUIT
)
4785 return build2 (code
, truth_type
, lhs
, rhs
);
4788 /* See if the comparisons can be merged. Then get all the parameters for
4791 if ((lcode
!= EQ_EXPR
&& lcode
!= NE_EXPR
)
4792 || (rcode
!= EQ_EXPR
&& rcode
!= NE_EXPR
))
4796 ll_inner
= decode_field_reference (ll_arg
,
4797 &ll_bitsize
, &ll_bitpos
, &ll_mode
,
4798 &ll_unsignedp
, &volatilep
, &ll_mask
,
4800 lr_inner
= decode_field_reference (lr_arg
,
4801 &lr_bitsize
, &lr_bitpos
, &lr_mode
,
4802 &lr_unsignedp
, &volatilep
, &lr_mask
,
4804 rl_inner
= decode_field_reference (rl_arg
,
4805 &rl_bitsize
, &rl_bitpos
, &rl_mode
,
4806 &rl_unsignedp
, &volatilep
, &rl_mask
,
4808 rr_inner
= decode_field_reference (rr_arg
,
4809 &rr_bitsize
, &rr_bitpos
, &rr_mode
,
4810 &rr_unsignedp
, &volatilep
, &rr_mask
,
4813 /* It must be true that the inner operation on the lhs of each
4814 comparison must be the same if we are to be able to do anything.
4815 Then see if we have constants. If not, the same must be true for
4817 if (volatilep
|| ll_inner
== 0 || rl_inner
== 0
4818 || ! operand_equal_p (ll_inner
, rl_inner
, 0))
4821 if (TREE_CODE (lr_arg
) == INTEGER_CST
4822 && TREE_CODE (rr_arg
) == INTEGER_CST
)
4823 l_const
= lr_arg
, r_const
= rr_arg
;
4824 else if (lr_inner
== 0 || rr_inner
== 0
4825 || ! operand_equal_p (lr_inner
, rr_inner
, 0))
4828 l_const
= r_const
= 0;
4830 /* If either comparison code is not correct for our logical operation,
4831 fail. However, we can convert a one-bit comparison against zero into
4832 the opposite comparison against that bit being set in the field. */
4834 wanted_code
= (code
== TRUTH_AND_EXPR
? EQ_EXPR
: NE_EXPR
);
4835 if (lcode
!= wanted_code
)
4837 if (l_const
&& integer_zerop (l_const
) && integer_pow2p (ll_mask
))
4839 /* Make the left operand unsigned, since we are only interested
4840 in the value of one bit. Otherwise we are doing the wrong
4849 /* This is analogous to the code for l_const above. */
4850 if (rcode
!= wanted_code
)
4852 if (r_const
&& integer_zerop (r_const
) && integer_pow2p (rl_mask
))
4861 /* After this point all optimizations will generate bit-field
4862 references, which we might not want. */
4863 if (! lang_hooks
.can_use_bit_fields_p ())
4866 /* See if we can find a mode that contains both fields being compared on
4867 the left. If we can't, fail. Otherwise, update all constants and masks
4868 to be relative to a field of that size. */
4869 first_bit
= MIN (ll_bitpos
, rl_bitpos
);
4870 end_bit
= MAX (ll_bitpos
+ ll_bitsize
, rl_bitpos
+ rl_bitsize
);
4871 lnmode
= get_best_mode (end_bit
- first_bit
, first_bit
,
4872 TYPE_ALIGN (TREE_TYPE (ll_inner
)), word_mode
,
4874 if (lnmode
== VOIDmode
)
4877 lnbitsize
= GET_MODE_BITSIZE (lnmode
);
4878 lnbitpos
= first_bit
& ~ (lnbitsize
- 1);
4879 lntype
= lang_hooks
.types
.type_for_size (lnbitsize
, 1);
4880 xll_bitpos
= ll_bitpos
- lnbitpos
, xrl_bitpos
= rl_bitpos
- lnbitpos
;
4882 if (BYTES_BIG_ENDIAN
)
4884 xll_bitpos
= lnbitsize
- xll_bitpos
- ll_bitsize
;
4885 xrl_bitpos
= lnbitsize
- xrl_bitpos
- rl_bitsize
;
4888 ll_mask
= const_binop (LSHIFT_EXPR
, fold_convert (lntype
, ll_mask
),
4889 size_int (xll_bitpos
), 0);
4890 rl_mask
= const_binop (LSHIFT_EXPR
, fold_convert (lntype
, rl_mask
),
4891 size_int (xrl_bitpos
), 0);
4895 l_const
= fold_convert (lntype
, l_const
);
4896 l_const
= unextend (l_const
, ll_bitsize
, ll_unsignedp
, ll_and_mask
);
4897 l_const
= const_binop (LSHIFT_EXPR
, l_const
, size_int (xll_bitpos
), 0);
4898 if (! integer_zerop (const_binop (BIT_AND_EXPR
, l_const
,
4899 fold_build1 (BIT_NOT_EXPR
,
4903 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
4905 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
4910 r_const
= fold_convert (lntype
, r_const
);
4911 r_const
= unextend (r_const
, rl_bitsize
, rl_unsignedp
, rl_and_mask
);
4912 r_const
= const_binop (LSHIFT_EXPR
, r_const
, size_int (xrl_bitpos
), 0);
4913 if (! integer_zerop (const_binop (BIT_AND_EXPR
, r_const
,
4914 fold_build1 (BIT_NOT_EXPR
,
4918 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
4920 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
4924 /* If the right sides are not constant, do the same for it. Also,
4925 disallow this optimization if a size or signedness mismatch occurs
4926 between the left and right sides. */
4929 if (ll_bitsize
!= lr_bitsize
|| rl_bitsize
!= rr_bitsize
4930 || ll_unsignedp
!= lr_unsignedp
|| rl_unsignedp
!= rr_unsignedp
4931 /* Make sure the two fields on the right
4932 correspond to the left without being swapped. */
4933 || ll_bitpos
- rl_bitpos
!= lr_bitpos
- rr_bitpos
)
4936 first_bit
= MIN (lr_bitpos
, rr_bitpos
);
4937 end_bit
= MAX (lr_bitpos
+ lr_bitsize
, rr_bitpos
+ rr_bitsize
);
4938 rnmode
= get_best_mode (end_bit
- first_bit
, first_bit
,
4939 TYPE_ALIGN (TREE_TYPE (lr_inner
)), word_mode
,
4941 if (rnmode
== VOIDmode
)
4944 rnbitsize
= GET_MODE_BITSIZE (rnmode
);
4945 rnbitpos
= first_bit
& ~ (rnbitsize
- 1);
4946 rntype
= lang_hooks
.types
.type_for_size (rnbitsize
, 1);
4947 xlr_bitpos
= lr_bitpos
- rnbitpos
, xrr_bitpos
= rr_bitpos
- rnbitpos
;
4949 if (BYTES_BIG_ENDIAN
)
4951 xlr_bitpos
= rnbitsize
- xlr_bitpos
- lr_bitsize
;
4952 xrr_bitpos
= rnbitsize
- xrr_bitpos
- rr_bitsize
;
4955 lr_mask
= const_binop (LSHIFT_EXPR
, fold_convert (rntype
, lr_mask
),
4956 size_int (xlr_bitpos
), 0);
4957 rr_mask
= const_binop (LSHIFT_EXPR
, fold_convert (rntype
, rr_mask
),
4958 size_int (xrr_bitpos
), 0);
4960 /* Make a mask that corresponds to both fields being compared.
4961 Do this for both items being compared. If the operands are the
4962 same size and the bits being compared are in the same position
4963 then we can do this by masking both and comparing the masked
4965 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
, 0);
4966 lr_mask
= const_binop (BIT_IOR_EXPR
, lr_mask
, rr_mask
, 0);
4967 if (lnbitsize
== rnbitsize
&& xll_bitpos
== xlr_bitpos
)
4969 lhs
= make_bit_field_ref (ll_inner
, lntype
, lnbitsize
, lnbitpos
,
4970 ll_unsignedp
|| rl_unsignedp
);
4971 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
4972 lhs
= build2 (BIT_AND_EXPR
, lntype
, lhs
, ll_mask
);
4974 rhs
= make_bit_field_ref (lr_inner
, rntype
, rnbitsize
, rnbitpos
,
4975 lr_unsignedp
|| rr_unsignedp
);
4976 if (! all_ones_mask_p (lr_mask
, rnbitsize
))
4977 rhs
= build2 (BIT_AND_EXPR
, rntype
, rhs
, lr_mask
);
4979 return build2 (wanted_code
, truth_type
, lhs
, rhs
);
4982 /* There is still another way we can do something: If both pairs of
4983 fields being compared are adjacent, we may be able to make a wider
4984 field containing them both.
4986 Note that we still must mask the lhs/rhs expressions. Furthermore,
4987 the mask must be shifted to account for the shift done by
4988 make_bit_field_ref. */
4989 if ((ll_bitsize
+ ll_bitpos
== rl_bitpos
4990 && lr_bitsize
+ lr_bitpos
== rr_bitpos
)
4991 || (ll_bitpos
== rl_bitpos
+ rl_bitsize
4992 && lr_bitpos
== rr_bitpos
+ rr_bitsize
))
4996 lhs
= make_bit_field_ref (ll_inner
, lntype
, ll_bitsize
+ rl_bitsize
,
4997 MIN (ll_bitpos
, rl_bitpos
), ll_unsignedp
);
4998 rhs
= make_bit_field_ref (lr_inner
, rntype
, lr_bitsize
+ rr_bitsize
,
4999 MIN (lr_bitpos
, rr_bitpos
), lr_unsignedp
);
5001 ll_mask
= const_binop (RSHIFT_EXPR
, ll_mask
,
5002 size_int (MIN (xll_bitpos
, xrl_bitpos
)), 0);
5003 lr_mask
= const_binop (RSHIFT_EXPR
, lr_mask
,
5004 size_int (MIN (xlr_bitpos
, xrr_bitpos
)), 0);
5006 /* Convert to the smaller type before masking out unwanted bits. */
5008 if (lntype
!= rntype
)
5010 if (lnbitsize
> rnbitsize
)
5012 lhs
= fold_convert (rntype
, lhs
);
5013 ll_mask
= fold_convert (rntype
, ll_mask
);
5016 else if (lnbitsize
< rnbitsize
)
5018 rhs
= fold_convert (lntype
, rhs
);
5019 lr_mask
= fold_convert (lntype
, lr_mask
);
5024 if (! all_ones_mask_p (ll_mask
, ll_bitsize
+ rl_bitsize
))
5025 lhs
= build2 (BIT_AND_EXPR
, type
, lhs
, ll_mask
);
5027 if (! all_ones_mask_p (lr_mask
, lr_bitsize
+ rr_bitsize
))
5028 rhs
= build2 (BIT_AND_EXPR
, type
, rhs
, lr_mask
);
5030 return build2 (wanted_code
, truth_type
, lhs
, rhs
);
5036 /* Handle the case of comparisons with constants. If there is something in
5037 common between the masks, those bits of the constants must be the same.
5038 If not, the condition is always false. Test for this to avoid generating
5039 incorrect code below. */
5040 result
= const_binop (BIT_AND_EXPR
, ll_mask
, rl_mask
, 0);
5041 if (! integer_zerop (result
)
5042 && simple_cst_equal (const_binop (BIT_AND_EXPR
, result
, l_const
, 0),
5043 const_binop (BIT_AND_EXPR
, result
, r_const
, 0)) != 1)
5045 if (wanted_code
== NE_EXPR
)
5047 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5048 return constant_boolean_node (true, truth_type
);
5052 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5053 return constant_boolean_node (false, truth_type
);
5057 /* Construct the expression we will return. First get the component
5058 reference we will make. Unless the mask is all ones the width of
5059 that field, perform the mask operation. Then compare with the
5061 result
= make_bit_field_ref (ll_inner
, lntype
, lnbitsize
, lnbitpos
,
5062 ll_unsignedp
|| rl_unsignedp
);
5064 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
, 0);
5065 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
5066 result
= build2 (BIT_AND_EXPR
, lntype
, result
, ll_mask
);
5068 return build2 (wanted_code
, truth_type
, result
,
5069 const_binop (BIT_IOR_EXPR
, l_const
, r_const
, 0));
5072 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5076 optimize_minmax_comparison (enum tree_code code
, tree type
, tree op0
, tree op1
)
5079 enum tree_code op_code
;
5080 tree comp_const
= op1
;
5082 int consts_equal
, consts_lt
;
5085 STRIP_SIGN_NOPS (arg0
);
5087 op_code
= TREE_CODE (arg0
);
5088 minmax_const
= TREE_OPERAND (arg0
, 1);
5089 consts_equal
= tree_int_cst_equal (minmax_const
, comp_const
);
5090 consts_lt
= tree_int_cst_lt (minmax_const
, comp_const
);
5091 inner
= TREE_OPERAND (arg0
, 0);
5093 /* If something does not permit us to optimize, return the original tree. */
5094 if ((op_code
!= MIN_EXPR
&& op_code
!= MAX_EXPR
)
5095 || TREE_CODE (comp_const
) != INTEGER_CST
5096 || TREE_CONSTANT_OVERFLOW (comp_const
)
5097 || TREE_CODE (minmax_const
) != INTEGER_CST
5098 || TREE_CONSTANT_OVERFLOW (minmax_const
))
5101 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5102 and GT_EXPR, doing the rest with recursive calls using logical
5106 case NE_EXPR
: case LT_EXPR
: case LE_EXPR
:
5108 /* FIXME: We should be able to invert code without building a
5109 scratch tree node, but doing so would require us to
5110 duplicate a part of invert_truthvalue here. */
5111 tree tem
= invert_truthvalue (build2 (code
, type
, op0
, op1
));
5112 tem
= optimize_minmax_comparison (TREE_CODE (tem
),
5114 TREE_OPERAND (tem
, 0),
5115 TREE_OPERAND (tem
, 1));
5116 return invert_truthvalue (tem
);
5121 fold_build2 (TRUTH_ORIF_EXPR
, type
,
5122 optimize_minmax_comparison
5123 (EQ_EXPR
, type
, arg0
, comp_const
),
5124 optimize_minmax_comparison
5125 (GT_EXPR
, type
, arg0
, comp_const
));
5128 if (op_code
== MAX_EXPR
&& consts_equal
)
5129 /* MAX (X, 0) == 0 -> X <= 0 */
5130 return fold_build2 (LE_EXPR
, type
, inner
, comp_const
);
5132 else if (op_code
== MAX_EXPR
&& consts_lt
)
5133 /* MAX (X, 0) == 5 -> X == 5 */
5134 return fold_build2 (EQ_EXPR
, type
, inner
, comp_const
);
5136 else if (op_code
== MAX_EXPR
)
5137 /* MAX (X, 0) == -1 -> false */
5138 return omit_one_operand (type
, integer_zero_node
, inner
);
5140 else if (consts_equal
)
5141 /* MIN (X, 0) == 0 -> X >= 0 */
5142 return fold_build2 (GE_EXPR
, type
, inner
, comp_const
);
5145 /* MIN (X, 0) == 5 -> false */
5146 return omit_one_operand (type
, integer_zero_node
, inner
);
5149 /* MIN (X, 0) == -1 -> X == -1 */
5150 return fold_build2 (EQ_EXPR
, type
, inner
, comp_const
);
5153 if (op_code
== MAX_EXPR
&& (consts_equal
|| consts_lt
))
5154 /* MAX (X, 0) > 0 -> X > 0
5155 MAX (X, 0) > 5 -> X > 5 */
5156 return fold_build2 (GT_EXPR
, type
, inner
, comp_const
);
5158 else if (op_code
== MAX_EXPR
)
5159 /* MAX (X, 0) > -1 -> true */
5160 return omit_one_operand (type
, integer_one_node
, inner
);
5162 else if (op_code
== MIN_EXPR
&& (consts_equal
|| consts_lt
))
5163 /* MIN (X, 0) > 0 -> false
5164 MIN (X, 0) > 5 -> false */
5165 return omit_one_operand (type
, integer_zero_node
, inner
);
5168 /* MIN (X, 0) > -1 -> X > -1 */
5169 return fold_build2 (GT_EXPR
, type
, inner
, comp_const
);
5176 /* T is an integer expression that is being multiplied, divided, or taken a
5177 modulus (CODE says which and what kind of divide or modulus) by a
5178 constant C. See if we can eliminate that operation by folding it with
5179 other operations already in T. WIDE_TYPE, if non-null, is a type that
5180 should be used for the computation if wider than our type.
5182 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5183 (X * 2) + (Y * 4). We must, however, be assured that either the original
5184 expression would not overflow or that overflow is undefined for the type
5185 in the language in question.
5187 We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
5188 the machine has a multiply-accumulate insn or that this is part of an
5189 addressing calculation.
5191 If we return a non-null expression, it is an equivalent form of the
5192 original computation, but need not be in the original type. */
5195 extract_muldiv (tree t
, tree c
, enum tree_code code
, tree wide_type
)
5197 /* To avoid exponential search depth, refuse to allow recursion past
5198 three levels. Beyond that (1) it's highly unlikely that we'll find
5199 something interesting and (2) we've probably processed it before
5200 when we built the inner expression. */
5209 ret
= extract_muldiv_1 (t
, c
, code
, wide_type
);
5216 extract_muldiv_1 (tree t
, tree c
, enum tree_code code
, tree wide_type
)
5218 tree type
= TREE_TYPE (t
);
5219 enum tree_code tcode
= TREE_CODE (t
);
5220 tree ctype
= (wide_type
!= 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type
))
5221 > GET_MODE_SIZE (TYPE_MODE (type
)))
5222 ? wide_type
: type
);
5224 int same_p
= tcode
== code
;
5225 tree op0
= NULL_TREE
, op1
= NULL_TREE
;
5227 /* Don't deal with constants of zero here; they confuse the code below. */
5228 if (integer_zerop (c
))
5231 if (TREE_CODE_CLASS (tcode
) == tcc_unary
)
5232 op0
= TREE_OPERAND (t
, 0);
5234 if (TREE_CODE_CLASS (tcode
) == tcc_binary
)
5235 op0
= TREE_OPERAND (t
, 0), op1
= TREE_OPERAND (t
, 1);
5237 /* Note that we need not handle conditional operations here since fold
5238 already handles those cases. So just do arithmetic here. */
5242 /* For a constant, we can always simplify if we are a multiply
5243 or (for divide and modulus) if it is a multiple of our constant. */
5244 if (code
== MULT_EXPR
5245 || integer_zerop (const_binop (TRUNC_MOD_EXPR
, t
, c
, 0)))
5246 return const_binop (code
, fold_convert (ctype
, t
),
5247 fold_convert (ctype
, c
), 0);
5250 case CONVERT_EXPR
: case NON_LVALUE_EXPR
: case NOP_EXPR
:
5251 /* If op0 is an expression ... */
5252 if ((COMPARISON_CLASS_P (op0
)
5253 || UNARY_CLASS_P (op0
)
5254 || BINARY_CLASS_P (op0
)
5255 || EXPRESSION_CLASS_P (op0
))
5256 /* ... and is unsigned, and its type is smaller than ctype,
5257 then we cannot pass through as widening. */
5258 && ((TYPE_UNSIGNED (TREE_TYPE (op0
))
5259 && ! (TREE_CODE (TREE_TYPE (op0
)) == INTEGER_TYPE
5260 && TYPE_IS_SIZETYPE (TREE_TYPE (op0
)))
5261 && (GET_MODE_SIZE (TYPE_MODE (ctype
))
5262 > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0
)))))
5263 /* ... or this is a truncation (t is narrower than op0),
5264 then we cannot pass through this narrowing. */
5265 || (GET_MODE_SIZE (TYPE_MODE (type
))
5266 < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0
))))
5267 /* ... or signedness changes for division or modulus,
5268 then we cannot pass through this conversion. */
5269 || (code
!= MULT_EXPR
5270 && (TYPE_UNSIGNED (ctype
)
5271 != TYPE_UNSIGNED (TREE_TYPE (op0
))))))
5274 /* Pass the constant down and see if we can make a simplification. If
5275 we can, replace this expression with the inner simplification for
5276 possible later conversion to our or some other type. */
5277 if ((t2
= fold_convert (TREE_TYPE (op0
), c
)) != 0
5278 && TREE_CODE (t2
) == INTEGER_CST
5279 && ! TREE_CONSTANT_OVERFLOW (t2
)
5280 && (0 != (t1
= extract_muldiv (op0
, t2
, code
,
5282 ? ctype
: NULL_TREE
))))
5287 /* If widening the type changes it from signed to unsigned, then we
5288 must avoid building ABS_EXPR itself as unsigned. */
5289 if (TYPE_UNSIGNED (ctype
) && !TYPE_UNSIGNED (type
))
5291 tree cstype
= (*lang_hooks
.types
.signed_type
) (ctype
);
5292 if ((t1
= extract_muldiv (op0
, c
, code
, cstype
)) != 0)
5294 t1
= fold_build1 (tcode
, cstype
, fold_convert (cstype
, t1
));
5295 return fold_convert (ctype
, t1
);
5301 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
)) != 0)
5302 return fold_build1 (tcode
, ctype
, fold_convert (ctype
, t1
));
5305 case MIN_EXPR
: case MAX_EXPR
:
5306 /* If widening the type changes the signedness, then we can't perform
5307 this optimization as that changes the result. */
5308 if (TYPE_UNSIGNED (ctype
) != TYPE_UNSIGNED (type
))
5311 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
5312 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
)) != 0
5313 && (t2
= extract_muldiv (op1
, c
, code
, wide_type
)) != 0)
5315 if (tree_int_cst_sgn (c
) < 0)
5316 tcode
= (tcode
== MIN_EXPR
? MAX_EXPR
: MIN_EXPR
);
5318 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
5319 fold_convert (ctype
, t2
));
5323 case LSHIFT_EXPR
: case RSHIFT_EXPR
:
5324 /* If the second operand is constant, this is a multiplication
5325 or floor division, by a power of two, so we can treat it that
5326 way unless the multiplier or divisor overflows. Signed
5327 left-shift overflow is implementation-defined rather than
5328 undefined in C90, so do not convert signed left shift into
5330 if (TREE_CODE (op1
) == INTEGER_CST
5331 && (tcode
== RSHIFT_EXPR
|| TYPE_UNSIGNED (TREE_TYPE (op0
)))
5332 /* const_binop may not detect overflow correctly,
5333 so check for it explicitly here. */
5334 && TYPE_PRECISION (TREE_TYPE (size_one_node
)) > TREE_INT_CST_LOW (op1
)
5335 && TREE_INT_CST_HIGH (op1
) == 0
5336 && 0 != (t1
= fold_convert (ctype
,
5337 const_binop (LSHIFT_EXPR
,
5340 && ! TREE_OVERFLOW (t1
))
5341 return extract_muldiv (build2 (tcode
== LSHIFT_EXPR
5342 ? MULT_EXPR
: FLOOR_DIV_EXPR
,
5343 ctype
, fold_convert (ctype
, op0
), t1
),
5344 c
, code
, wide_type
);
5347 case PLUS_EXPR
: case MINUS_EXPR
:
5348 /* See if we can eliminate the operation on both sides. If we can, we
5349 can return a new PLUS or MINUS. If we can't, the only remaining
5350 cases where we can do anything are if the second operand is a
5352 t1
= extract_muldiv (op0
, c
, code
, wide_type
);
5353 t2
= extract_muldiv (op1
, c
, code
, wide_type
);
5354 if (t1
!= 0 && t2
!= 0
5355 && (code
== MULT_EXPR
5356 /* If not multiplication, we can only do this if both operands
5357 are divisible by c. */
5358 || (multiple_of_p (ctype
, op0
, c
)
5359 && multiple_of_p (ctype
, op1
, c
))))
5360 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
5361 fold_convert (ctype
, t2
));
5363 /* If this was a subtraction, negate OP1 and set it to be an addition.
5364 This simplifies the logic below. */
5365 if (tcode
== MINUS_EXPR
)
5366 tcode
= PLUS_EXPR
, op1
= negate_expr (op1
);
5368 if (TREE_CODE (op1
) != INTEGER_CST
)
5371 /* If either OP1 or C are negative, this optimization is not safe for
5372 some of the division and remainder types while for others we need
5373 to change the code. */
5374 if (tree_int_cst_sgn (op1
) < 0 || tree_int_cst_sgn (c
) < 0)
5376 if (code
== CEIL_DIV_EXPR
)
5377 code
= FLOOR_DIV_EXPR
;
5378 else if (code
== FLOOR_DIV_EXPR
)
5379 code
= CEIL_DIV_EXPR
;
5380 else if (code
!= MULT_EXPR
5381 && code
!= CEIL_MOD_EXPR
&& code
!= FLOOR_MOD_EXPR
)
5385 /* If it's a multiply or a division/modulus operation of a multiple
5386 of our constant, do the operation and verify it doesn't overflow. */
5387 if (code
== MULT_EXPR
5388 || integer_zerop (const_binop (TRUNC_MOD_EXPR
, op1
, c
, 0)))
5390 op1
= const_binop (code
, fold_convert (ctype
, op1
),
5391 fold_convert (ctype
, c
), 0);
5392 /* We allow the constant to overflow with wrapping semantics. */
5394 || (TREE_OVERFLOW (op1
) && ! flag_wrapv
))
5400 /* If we have an unsigned type is not a sizetype, we cannot widen
5401 the operation since it will change the result if the original
5402 computation overflowed. */
5403 if (TYPE_UNSIGNED (ctype
)
5404 && ! (TREE_CODE (ctype
) == INTEGER_TYPE
&& TYPE_IS_SIZETYPE (ctype
))
5408 /* If we were able to eliminate our operation from the first side,
5409 apply our operation to the second side and reform the PLUS. */
5410 if (t1
!= 0 && (TREE_CODE (t1
) != code
|| code
== MULT_EXPR
))
5411 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
), op1
);
5413 /* The last case is if we are a multiply. In that case, we can
5414 apply the distributive law to commute the multiply and addition
5415 if the multiplication of the constants doesn't overflow. */
5416 if (code
== MULT_EXPR
)
5417 return fold_build2 (tcode
, ctype
,
5418 fold_build2 (code
, ctype
,
5419 fold_convert (ctype
, op0
),
5420 fold_convert (ctype
, c
)),
5426 /* We have a special case here if we are doing something like
5427 (C * 8) % 4 since we know that's zero. */
5428 if ((code
== TRUNC_MOD_EXPR
|| code
== CEIL_MOD_EXPR
5429 || code
== FLOOR_MOD_EXPR
|| code
== ROUND_MOD_EXPR
)
5430 && TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
5431 && integer_zerop (const_binop (TRUNC_MOD_EXPR
, op1
, c
, 0)))
5432 return omit_one_operand (type
, integer_zero_node
, op0
);
5434 /* ... fall through ... */
5436 case TRUNC_DIV_EXPR
: case CEIL_DIV_EXPR
: case FLOOR_DIV_EXPR
:
5437 case ROUND_DIV_EXPR
: case EXACT_DIV_EXPR
:
5438 /* If we can extract our operation from the LHS, do so and return a
5439 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
5440 do something only if the second operand is a constant. */
5442 && (t1
= extract_muldiv (op0
, c
, code
, wide_type
)) != 0)
5443 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
5444 fold_convert (ctype
, op1
));
5445 else if (tcode
== MULT_EXPR
&& code
== MULT_EXPR
5446 && (t1
= extract_muldiv (op1
, c
, code
, wide_type
)) != 0)
5447 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
5448 fold_convert (ctype
, t1
));
5449 else if (TREE_CODE (op1
) != INTEGER_CST
)
5452 /* If these are the same operation types, we can associate them
5453 assuming no overflow. */
5455 && 0 != (t1
= const_binop (MULT_EXPR
, fold_convert (ctype
, op1
),
5456 fold_convert (ctype
, c
), 0))
5457 && ! TREE_OVERFLOW (t1
))
5458 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
), t1
);
5460 /* If these operations "cancel" each other, we have the main
5461 optimizations of this pass, which occur when either constant is a
5462 multiple of the other, in which case we replace this with either an
5463 operation or CODE or TCODE.
5465 If we have an unsigned type that is not a sizetype, we cannot do
5466 this since it will change the result if the original computation
5468 if ((! TYPE_UNSIGNED (ctype
)
5469 || (TREE_CODE (ctype
) == INTEGER_TYPE
&& TYPE_IS_SIZETYPE (ctype
)))
5471 && ((code
== MULT_EXPR
&& tcode
== EXACT_DIV_EXPR
)
5472 || (tcode
== MULT_EXPR
5473 && code
!= TRUNC_MOD_EXPR
&& code
!= CEIL_MOD_EXPR
5474 && code
!= FLOOR_MOD_EXPR
&& code
!= ROUND_MOD_EXPR
)))
5476 if (integer_zerop (const_binop (TRUNC_MOD_EXPR
, op1
, c
, 0)))
5477 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
5478 fold_convert (ctype
,
5479 const_binop (TRUNC_DIV_EXPR
,
5481 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR
, c
, op1
, 0)))
5482 return fold_build2 (code
, ctype
, fold_convert (ctype
, op0
),
5483 fold_convert (ctype
,
5484 const_binop (TRUNC_DIV_EXPR
,
5496 /* Return a node which has the indicated constant VALUE (either 0 or
5497 1), and is of the indicated TYPE. */
5500 constant_boolean_node (int value
, tree type
)
5502 if (type
== integer_type_node
)
5503 return value
? integer_one_node
: integer_zero_node
;
5504 else if (type
== boolean_type_node
)
5505 return value
? boolean_true_node
: boolean_false_node
;
5507 return build_int_cst (type
, value
);
5511 /* Return true if expr looks like an ARRAY_REF and set base and
5512 offset to the appropriate trees. If there is no offset,
5513 offset is set to NULL_TREE. Base will be canonicalized to
5514 something you can get the element type from using
5515 TREE_TYPE (TREE_TYPE (base)). */
5518 extract_array_ref (tree expr
, tree
*base
, tree
*offset
)
5520 /* One canonical form is a PLUS_EXPR with the first
5521 argument being an ADDR_EXPR with a possible NOP_EXPR
5523 if (TREE_CODE (expr
) == PLUS_EXPR
)
5525 tree op0
= TREE_OPERAND (expr
, 0);
5526 tree inner_base
, dummy1
;
5527 /* Strip NOP_EXPRs here because the C frontends and/or
5528 folders present us (int *)&x.a + 4B possibly. */
5530 if (extract_array_ref (op0
, &inner_base
, &dummy1
))
5533 if (dummy1
== NULL_TREE
)
5534 *offset
= TREE_OPERAND (expr
, 1);
5536 *offset
= fold_build2 (PLUS_EXPR
, TREE_TYPE (expr
),
5537 dummy1
, TREE_OPERAND (expr
, 1));
5541 /* Other canonical form is an ADDR_EXPR of an ARRAY_REF,
5542 which we transform into an ADDR_EXPR with appropriate
5543 offset. For other arguments to the ADDR_EXPR we assume
5544 zero offset and as such do not care about the ADDR_EXPR
5545 type and strip possible nops from it. */
5546 else if (TREE_CODE (expr
) == ADDR_EXPR
)
5548 tree op0
= TREE_OPERAND (expr
, 0);
5549 if (TREE_CODE (op0
) == ARRAY_REF
)
5551 *base
= TREE_OPERAND (op0
, 0);
5552 *offset
= TREE_OPERAND (op0
, 1);
5556 /* Handle array-to-pointer decay as &a. */
5557 if (TREE_CODE (TREE_TYPE (op0
)) == ARRAY_TYPE
)
5558 *base
= TREE_OPERAND (expr
, 0);
5561 *offset
= NULL_TREE
;
5565 /* The next canonical form is a VAR_DECL with POINTER_TYPE. */
5566 else if (SSA_VAR_P (expr
)
5567 && TREE_CODE (TREE_TYPE (expr
)) == POINTER_TYPE
)
5570 *offset
= NULL_TREE
;
5578 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
5579 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
5580 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
5581 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
5582 COND is the first argument to CODE; otherwise (as in the example
5583 given here), it is the second argument. TYPE is the type of the
5584 original expression. Return NULL_TREE if no simplification is
5588 fold_binary_op_with_conditional_arg (enum tree_code code
,
5589 tree type
, tree op0
, tree op1
,
5590 tree cond
, tree arg
, int cond_first_p
)
5592 tree cond_type
= cond_first_p
? TREE_TYPE (op0
) : TREE_TYPE (op1
);
5593 tree arg_type
= cond_first_p
? TREE_TYPE (op1
) : TREE_TYPE (op0
);
5594 tree test
, true_value
, false_value
;
5595 tree lhs
= NULL_TREE
;
5596 tree rhs
= NULL_TREE
;
5598 /* This transformation is only worthwhile if we don't have to wrap
5599 arg in a SAVE_EXPR, and the operation can be simplified on at least
5600 one of the branches once its pushed inside the COND_EXPR. */
5601 if (!TREE_CONSTANT (arg
))
5604 if (TREE_CODE (cond
) == COND_EXPR
)
5606 test
= TREE_OPERAND (cond
, 0);
5607 true_value
= TREE_OPERAND (cond
, 1);
5608 false_value
= TREE_OPERAND (cond
, 2);
5609 /* If this operand throws an expression, then it does not make
5610 sense to try to perform a logical or arithmetic operation
5612 if (VOID_TYPE_P (TREE_TYPE (true_value
)))
5614 if (VOID_TYPE_P (TREE_TYPE (false_value
)))
5619 tree testtype
= TREE_TYPE (cond
);
5621 true_value
= constant_boolean_node (true, testtype
);
5622 false_value
= constant_boolean_node (false, testtype
);
5625 arg
= fold_convert (arg_type
, arg
);
5628 true_value
= fold_convert (cond_type
, true_value
);
5630 lhs
= fold_build2 (code
, type
, true_value
, arg
);
5632 lhs
= fold_build2 (code
, type
, arg
, true_value
);
5636 false_value
= fold_convert (cond_type
, false_value
);
5638 rhs
= fold_build2 (code
, type
, false_value
, arg
);
5640 rhs
= fold_build2 (code
, type
, arg
, false_value
);
5643 test
= fold_build3 (COND_EXPR
, type
, test
, lhs
, rhs
);
5644 return fold_convert (type
, test
);
5648 /* Subroutine of fold() that checks for the addition of +/- 0.0.
5650 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
5651 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
5652 ADDEND is the same as X.
5654 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
5655 and finite. The problematic cases are when X is zero, and its mode
5656 has signed zeros. In the case of rounding towards -infinity,
5657 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
5658 modes, X + 0 is not the same as X because -0 + 0 is 0. */
5661 fold_real_zero_addition_p (tree type
, tree addend
, int negate
)
5663 if (!real_zerop (addend
))
5666 /* Don't allow the fold with -fsignaling-nans. */
5667 if (HONOR_SNANS (TYPE_MODE (type
)))
5670 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
5671 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type
)))
5674 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
5675 if (TREE_CODE (addend
) == REAL_CST
5676 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend
)))
5679 /* The mode has signed zeros, and we have to honor their sign.
5680 In this situation, there is only one case we can return true for.
5681 X - 0 is the same as X unless rounding towards -infinity is
5683 return negate
&& !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type
));
5686 /* Subroutine of fold() that checks comparisons of built-in math
5687 functions against real constants.
5689 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
5690 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
5691 is the type of the result and ARG0 and ARG1 are the operands of the
5692 comparison. ARG1 must be a TREE_REAL_CST.
5694 The function returns the constant folded tree if a simplification
5695 can be made, and NULL_TREE otherwise. */
5698 fold_mathfn_compare (enum built_in_function fcode
, enum tree_code code
,
5699 tree type
, tree arg0
, tree arg1
)
5703 if (BUILTIN_SQRT_P (fcode
))
5705 tree arg
= TREE_VALUE (TREE_OPERAND (arg0
, 1));
5706 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (arg0
));
5708 c
= TREE_REAL_CST (arg1
);
5709 if (REAL_VALUE_NEGATIVE (c
))
5711 /* sqrt(x) < y is always false, if y is negative. */
5712 if (code
== EQ_EXPR
|| code
== LT_EXPR
|| code
== LE_EXPR
)
5713 return omit_one_operand (type
, integer_zero_node
, arg
);
5715 /* sqrt(x) > y is always true, if y is negative and we
5716 don't care about NaNs, i.e. negative values of x. */
5717 if (code
== NE_EXPR
|| !HONOR_NANS (mode
))
5718 return omit_one_operand (type
, integer_one_node
, arg
);
5720 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
5721 return fold_build2 (GE_EXPR
, type
, arg
,
5722 build_real (TREE_TYPE (arg
), dconst0
));
5724 else if (code
== GT_EXPR
|| code
== GE_EXPR
)
5728 REAL_ARITHMETIC (c2
, MULT_EXPR
, c
, c
);
5729 real_convert (&c2
, mode
, &c2
);
5731 if (REAL_VALUE_ISINF (c2
))
5733 /* sqrt(x) > y is x == +Inf, when y is very large. */
5734 if (HONOR_INFINITIES (mode
))
5735 return fold_build2 (EQ_EXPR
, type
, arg
,
5736 build_real (TREE_TYPE (arg
), c2
));
5738 /* sqrt(x) > y is always false, when y is very large
5739 and we don't care about infinities. */
5740 return omit_one_operand (type
, integer_zero_node
, arg
);
5743 /* sqrt(x) > c is the same as x > c*c. */
5744 return fold_build2 (code
, type
, arg
,
5745 build_real (TREE_TYPE (arg
), c2
));
5747 else if (code
== LT_EXPR
|| code
== LE_EXPR
)
5751 REAL_ARITHMETIC (c2
, MULT_EXPR
, c
, c
);
5752 real_convert (&c2
, mode
, &c2
);
5754 if (REAL_VALUE_ISINF (c2
))
5756 /* sqrt(x) < y is always true, when y is a very large
5757 value and we don't care about NaNs or Infinities. */
5758 if (! HONOR_NANS (mode
) && ! HONOR_INFINITIES (mode
))
5759 return omit_one_operand (type
, integer_one_node
, arg
);
5761 /* sqrt(x) < y is x != +Inf when y is very large and we
5762 don't care about NaNs. */
5763 if (! HONOR_NANS (mode
))
5764 return fold_build2 (NE_EXPR
, type
, arg
,
5765 build_real (TREE_TYPE (arg
), c2
));
5767 /* sqrt(x) < y is x >= 0 when y is very large and we
5768 don't care about Infinities. */
5769 if (! HONOR_INFINITIES (mode
))
5770 return fold_build2 (GE_EXPR
, type
, arg
,
5771 build_real (TREE_TYPE (arg
), dconst0
));
5773 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
5774 if (lang_hooks
.decls
.global_bindings_p () != 0
5775 || CONTAINS_PLACEHOLDER_P (arg
))
5778 arg
= save_expr (arg
);
5779 return fold_build2 (TRUTH_ANDIF_EXPR
, type
,
5780 fold_build2 (GE_EXPR
, type
, arg
,
5781 build_real (TREE_TYPE (arg
),
5783 fold_build2 (NE_EXPR
, type
, arg
,
5784 build_real (TREE_TYPE (arg
),
5788 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
5789 if (! HONOR_NANS (mode
))
5790 return fold_build2 (code
, type
, arg
,
5791 build_real (TREE_TYPE (arg
), c2
));
5793 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
5794 if (lang_hooks
.decls
.global_bindings_p () == 0
5795 && ! CONTAINS_PLACEHOLDER_P (arg
))
5797 arg
= save_expr (arg
);
5798 return fold_build2 (TRUTH_ANDIF_EXPR
, type
,
5799 fold_build2 (GE_EXPR
, type
, arg
,
5800 build_real (TREE_TYPE (arg
),
5802 fold_build2 (code
, type
, arg
,
5803 build_real (TREE_TYPE (arg
),
5812 /* Subroutine of fold() that optimizes comparisons against Infinities,
5813 either +Inf or -Inf.
5815 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
5816 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
5817 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
5819 The function returns the constant folded tree if a simplification
5820 can be made, and NULL_TREE otherwise. */
5823 fold_inf_compare (enum tree_code code
, tree type
, tree arg0
, tree arg1
)
5825 enum machine_mode mode
;
5826 REAL_VALUE_TYPE max
;
5830 mode
= TYPE_MODE (TREE_TYPE (arg0
));
5832 /* For negative infinity swap the sense of the comparison. */
5833 neg
= REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1
));
5835 code
= swap_tree_comparison (code
);
5840 /* x > +Inf is always false, if with ignore sNANs. */
5841 if (HONOR_SNANS (mode
))
5843 return omit_one_operand (type
, integer_zero_node
, arg0
);
5846 /* x <= +Inf is always true, if we don't case about NaNs. */
5847 if (! HONOR_NANS (mode
))
5848 return omit_one_operand (type
, integer_one_node
, arg0
);
5850 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
5851 if (lang_hooks
.decls
.global_bindings_p () == 0
5852 && ! CONTAINS_PLACEHOLDER_P (arg0
))
5854 arg0
= save_expr (arg0
);
5855 return fold_build2 (EQ_EXPR
, type
, arg0
, arg0
);
5861 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
5862 real_maxval (&max
, neg
, mode
);
5863 return fold_build2 (neg
? LT_EXPR
: GT_EXPR
, type
,
5864 arg0
, build_real (TREE_TYPE (arg0
), max
));
5867 /* x < +Inf is always equal to x <= DBL_MAX. */
5868 real_maxval (&max
, neg
, mode
);
5869 return fold_build2 (neg
? GE_EXPR
: LE_EXPR
, type
,
5870 arg0
, build_real (TREE_TYPE (arg0
), max
));
5873 /* x != +Inf is always equal to !(x > DBL_MAX). */
5874 real_maxval (&max
, neg
, mode
);
5875 if (! HONOR_NANS (mode
))
5876 return fold_build2 (neg
? GE_EXPR
: LE_EXPR
, type
,
5877 arg0
, build_real (TREE_TYPE (arg0
), max
));
5879 /* The transformation below creates non-gimple code and thus is
5880 not appropriate if we are in gimple form. */
5884 temp
= fold_build2 (neg
? LT_EXPR
: GT_EXPR
, type
,
5885 arg0
, build_real (TREE_TYPE (arg0
), max
));
5886 return fold_build1 (TRUTH_NOT_EXPR
, type
, temp
);
5895 /* Subroutine of fold() that optimizes comparisons of a division by
5896 a nonzero integer constant against an integer constant, i.e.
5899 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
5900 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
5901 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
5903 The function returns the constant folded tree if a simplification
5904 can be made, and NULL_TREE otherwise. */
5907 fold_div_compare (enum tree_code code
, tree type
, tree arg0
, tree arg1
)
5909 tree prod
, tmp
, hi
, lo
;
5910 tree arg00
= TREE_OPERAND (arg0
, 0);
5911 tree arg01
= TREE_OPERAND (arg0
, 1);
5912 unsigned HOST_WIDE_INT lpart
;
5913 HOST_WIDE_INT hpart
;
5916 /* We have to do this the hard way to detect unsigned overflow.
5917 prod = int_const_binop (MULT_EXPR, arg01, arg1, 0); */
5918 overflow
= mul_double (TREE_INT_CST_LOW (arg01
),
5919 TREE_INT_CST_HIGH (arg01
),
5920 TREE_INT_CST_LOW (arg1
),
5921 TREE_INT_CST_HIGH (arg1
), &lpart
, &hpart
);
5922 prod
= build_int_cst_wide (TREE_TYPE (arg00
), lpart
, hpart
);
5923 prod
= force_fit_type (prod
, -1, overflow
, false);
5925 if (TYPE_UNSIGNED (TREE_TYPE (arg0
)))
5927 tmp
= int_const_binop (MINUS_EXPR
, arg01
, integer_one_node
, 0);
5930 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp, 0). */
5931 overflow
= add_double (TREE_INT_CST_LOW (prod
),
5932 TREE_INT_CST_HIGH (prod
),
5933 TREE_INT_CST_LOW (tmp
),
5934 TREE_INT_CST_HIGH (tmp
),
5936 hi
= build_int_cst_wide (TREE_TYPE (arg00
), lpart
, hpart
);
5937 hi
= force_fit_type (hi
, -1, overflow
| TREE_OVERFLOW (prod
),
5938 TREE_CONSTANT_OVERFLOW (prod
));
5940 else if (tree_int_cst_sgn (arg01
) >= 0)
5942 tmp
= int_const_binop (MINUS_EXPR
, arg01
, integer_one_node
, 0);
5943 switch (tree_int_cst_sgn (arg1
))
5946 lo
= int_const_binop (MINUS_EXPR
, prod
, tmp
, 0);
5951 lo
= fold_negate_const (tmp
, TREE_TYPE (arg0
));
5956 hi
= int_const_binop (PLUS_EXPR
, prod
, tmp
, 0);
5966 /* A negative divisor reverses the relational operators. */
5967 code
= swap_tree_comparison (code
);
5969 tmp
= int_const_binop (PLUS_EXPR
, arg01
, integer_one_node
, 0);
5970 switch (tree_int_cst_sgn (arg1
))
5973 hi
= int_const_binop (MINUS_EXPR
, prod
, tmp
, 0);
5978 hi
= fold_negate_const (tmp
, TREE_TYPE (arg0
));
5983 lo
= int_const_binop (PLUS_EXPR
, prod
, tmp
, 0);
5995 if (TREE_OVERFLOW (lo
) && TREE_OVERFLOW (hi
))
5996 return omit_one_operand (type
, integer_zero_node
, arg00
);
5997 if (TREE_OVERFLOW (hi
))
5998 return fold_build2 (GE_EXPR
, type
, arg00
, lo
);
5999 if (TREE_OVERFLOW (lo
))
6000 return fold_build2 (LE_EXPR
, type
, arg00
, hi
);
6001 return build_range_check (type
, arg00
, 1, lo
, hi
);
6004 if (TREE_OVERFLOW (lo
) && TREE_OVERFLOW (hi
))
6005 return omit_one_operand (type
, integer_one_node
, arg00
);
6006 if (TREE_OVERFLOW (hi
))
6007 return fold_build2 (LT_EXPR
, type
, arg00
, lo
);
6008 if (TREE_OVERFLOW (lo
))
6009 return fold_build2 (GT_EXPR
, type
, arg00
, hi
);
6010 return build_range_check (type
, arg00
, 0, lo
, hi
);
6013 if (TREE_OVERFLOW (lo
))
6014 return omit_one_operand (type
, integer_zero_node
, arg00
);
6015 return fold_build2 (LT_EXPR
, type
, arg00
, lo
);
6018 if (TREE_OVERFLOW (hi
))
6019 return omit_one_operand (type
, integer_one_node
, arg00
);
6020 return fold_build2 (LE_EXPR
, type
, arg00
, hi
);
6023 if (TREE_OVERFLOW (hi
))
6024 return omit_one_operand (type
, integer_zero_node
, arg00
);
6025 return fold_build2 (GT_EXPR
, type
, arg00
, hi
);
6028 if (TREE_OVERFLOW (lo
))
6029 return omit_one_operand (type
, integer_one_node
, arg00
);
6030 return fold_build2 (GE_EXPR
, type
, arg00
, lo
);
6040 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6041 equality/inequality test, then return a simplified form of the test
6042 using a sign testing. Otherwise return NULL. TYPE is the desired
6046 fold_single_bit_test_into_sign_test (enum tree_code code
, tree arg0
, tree arg1
,
6049 /* If this is testing a single bit, we can optimize the test. */
6050 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6051 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6052 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6054 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6055 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6056 tree arg00
= sign_bit_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg0
, 1));
6058 if (arg00
!= NULL_TREE
6059 /* This is only a win if casting to a signed type is cheap,
6060 i.e. when arg00's type is not a partial mode. */
6061 && TYPE_PRECISION (TREE_TYPE (arg00
))
6062 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg00
))))
6064 tree stype
= lang_hooks
.types
.signed_type (TREE_TYPE (arg00
));
6065 return fold_build2 (code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
6066 result_type
, fold_convert (stype
, arg00
),
6067 fold_convert (stype
, integer_zero_node
));
6074 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6075 equality/inequality test, then return a simplified form of
6076 the test using shifts and logical operations. Otherwise return
6077 NULL. TYPE is the desired result type. */
6080 fold_single_bit_test (enum tree_code code
, tree arg0
, tree arg1
,
6083 /* If this is testing a single bit, we can optimize the test. */
6084 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6085 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6086 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6088 tree inner
= TREE_OPERAND (arg0
, 0);
6089 tree type
= TREE_TYPE (arg0
);
6090 int bitnum
= tree_log2 (TREE_OPERAND (arg0
, 1));
6091 enum machine_mode operand_mode
= TYPE_MODE (type
);
6093 tree signed_type
, unsigned_type
, intermediate_type
;
6096 /* First, see if we can fold the single bit test into a sign-bit
6098 tem
= fold_single_bit_test_into_sign_test (code
, arg0
, arg1
,
6103 /* Otherwise we have (A & C) != 0 where C is a single bit,
6104 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6105 Similarly for (A & C) == 0. */
6107 /* If INNER is a right shift of a constant and it plus BITNUM does
6108 not overflow, adjust BITNUM and INNER. */
6109 if (TREE_CODE (inner
) == RSHIFT_EXPR
6110 && TREE_CODE (TREE_OPERAND (inner
, 1)) == INTEGER_CST
6111 && TREE_INT_CST_HIGH (TREE_OPERAND (inner
, 1)) == 0
6112 && bitnum
< TYPE_PRECISION (type
)
6113 && 0 > compare_tree_int (TREE_OPERAND (inner
, 1),
6114 bitnum
- TYPE_PRECISION (type
)))
6116 bitnum
+= TREE_INT_CST_LOW (TREE_OPERAND (inner
, 1));
6117 inner
= TREE_OPERAND (inner
, 0);
6120 /* If we are going to be able to omit the AND below, we must do our
6121 operations as unsigned. If we must use the AND, we have a choice.
6122 Normally unsigned is faster, but for some machines signed is. */
6123 #ifdef LOAD_EXTEND_OP
6124 ops_unsigned
= (LOAD_EXTEND_OP (operand_mode
) == SIGN_EXTEND
6125 && !flag_syntax_only
) ? 0 : 1;
6130 signed_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 0);
6131 unsigned_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 1);
6132 intermediate_type
= ops_unsigned
? unsigned_type
: signed_type
;
6133 inner
= fold_convert (intermediate_type
, inner
);
6136 inner
= build2 (RSHIFT_EXPR
, intermediate_type
,
6137 inner
, size_int (bitnum
));
6139 if (code
== EQ_EXPR
)
6140 inner
= fold_build2 (BIT_XOR_EXPR
, intermediate_type
,
6141 inner
, integer_one_node
);
6143 /* Put the AND last so it can combine with more things. */
6144 inner
= build2 (BIT_AND_EXPR
, intermediate_type
,
6145 inner
, integer_one_node
);
6147 /* Make sure to return the proper type. */
6148 inner
= fold_convert (result_type
, inner
);
6155 /* Check whether we are allowed to reorder operands arg0 and arg1,
6156 such that the evaluation of arg1 occurs before arg0. */
6159 reorder_operands_p (tree arg0
, tree arg1
)
6161 if (! flag_evaluation_order
)
6163 if (TREE_CONSTANT (arg0
) || TREE_CONSTANT (arg1
))
6165 return ! TREE_SIDE_EFFECTS (arg0
)
6166 && ! TREE_SIDE_EFFECTS (arg1
);
6169 /* Test whether it is preferable two swap two operands, ARG0 and
6170 ARG1, for example because ARG0 is an integer constant and ARG1
6171 isn't. If REORDER is true, only recommend swapping if we can
6172 evaluate the operands in reverse order. */
6175 tree_swap_operands_p (tree arg0
, tree arg1
, bool reorder
)
6177 STRIP_SIGN_NOPS (arg0
);
6178 STRIP_SIGN_NOPS (arg1
);
6180 if (TREE_CODE (arg1
) == INTEGER_CST
)
6182 if (TREE_CODE (arg0
) == INTEGER_CST
)
6185 if (TREE_CODE (arg1
) == REAL_CST
)
6187 if (TREE_CODE (arg0
) == REAL_CST
)
6190 if (TREE_CODE (arg1
) == COMPLEX_CST
)
6192 if (TREE_CODE (arg0
) == COMPLEX_CST
)
6195 if (TREE_CONSTANT (arg1
))
6197 if (TREE_CONSTANT (arg0
))
6203 if (reorder
&& flag_evaluation_order
6204 && (TREE_SIDE_EFFECTS (arg0
) || TREE_SIDE_EFFECTS (arg1
)))
6212 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6213 for commutative and comparison operators. Ensuring a canonical
6214 form allows the optimizers to find additional redundancies without
6215 having to explicitly check for both orderings. */
6216 if (TREE_CODE (arg0
) == SSA_NAME
6217 && TREE_CODE (arg1
) == SSA_NAME
6218 && SSA_NAME_VERSION (arg0
) > SSA_NAME_VERSION (arg1
))
6224 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
6225 ARG0 is extended to a wider type. */
6228 fold_widened_comparison (enum tree_code code
, tree type
, tree arg0
, tree arg1
)
6230 tree arg0_unw
= get_unwidened (arg0
, NULL_TREE
);
6232 tree shorter_type
, outer_type
;
6236 if (arg0_unw
== arg0
)
6238 shorter_type
= TREE_TYPE (arg0_unw
);
6240 #ifdef HAVE_canonicalize_funcptr_for_compare
6241 /* Disable this optimization if we're casting a function pointer
6242 type on targets that require function pointer canonicalization. */
6243 if (HAVE_canonicalize_funcptr_for_compare
6244 && TREE_CODE (shorter_type
) == POINTER_TYPE
6245 && TREE_CODE (TREE_TYPE (shorter_type
)) == FUNCTION_TYPE
)
6249 if (TYPE_PRECISION (TREE_TYPE (arg0
)) <= TYPE_PRECISION (shorter_type
))
6252 arg1_unw
= get_unwidened (arg1
, shorter_type
);
6256 /* If possible, express the comparison in the shorter mode. */
6257 if ((code
== EQ_EXPR
|| code
== NE_EXPR
6258 || TYPE_UNSIGNED (TREE_TYPE (arg0
)) == TYPE_UNSIGNED (shorter_type
))
6259 && (TREE_TYPE (arg1_unw
) == shorter_type
6260 || (TREE_CODE (arg1_unw
) == INTEGER_CST
6261 && (TREE_CODE (shorter_type
) == INTEGER_TYPE
6262 || TREE_CODE (shorter_type
) == BOOLEAN_TYPE
)
6263 && int_fits_type_p (arg1_unw
, shorter_type
))))
6264 return fold_build2 (code
, type
, arg0_unw
,
6265 fold_convert (shorter_type
, arg1_unw
));
6267 if (TREE_CODE (arg1_unw
) != INTEGER_CST
)
6270 /* If we are comparing with the integer that does not fit into the range
6271 of the shorter type, the result is known. */
6272 outer_type
= TREE_TYPE (arg1_unw
);
6273 min
= lower_bound_in_type (outer_type
, shorter_type
);
6274 max
= upper_bound_in_type (outer_type
, shorter_type
);
6276 above
= integer_nonzerop (fold_relational_const (LT_EXPR
, type
,
6278 below
= integer_nonzerop (fold_relational_const (LT_EXPR
, type
,
6285 return omit_one_operand (type
, integer_zero_node
, arg0
);
6290 return omit_one_operand (type
, integer_one_node
, arg0
);
6296 return omit_one_operand (type
, integer_one_node
, arg0
);
6298 return omit_one_operand (type
, integer_zero_node
, arg0
);
6303 return omit_one_operand (type
, integer_zero_node
, arg0
);
6305 return omit_one_operand (type
, integer_one_node
, arg0
);
6314 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
6315 ARG0 just the signedness is changed. */
6318 fold_sign_changed_comparison (enum tree_code code
, tree type
,
6319 tree arg0
, tree arg1
)
6321 tree arg0_inner
, tmp
;
6322 tree inner_type
, outer_type
;
6324 if (TREE_CODE (arg0
) != NOP_EXPR
6325 && TREE_CODE (arg0
) != CONVERT_EXPR
)
6328 outer_type
= TREE_TYPE (arg0
);
6329 arg0_inner
= TREE_OPERAND (arg0
, 0);
6330 inner_type
= TREE_TYPE (arg0_inner
);
6332 #ifdef HAVE_canonicalize_funcptr_for_compare
6333 /* Disable this optimization if we're casting a function pointer
6334 type on targets that require function pointer canonicalization. */
6335 if (HAVE_canonicalize_funcptr_for_compare
6336 && TREE_CODE (inner_type
) == POINTER_TYPE
6337 && TREE_CODE (TREE_TYPE (inner_type
)) == FUNCTION_TYPE
)
6341 if (TYPE_PRECISION (inner_type
) != TYPE_PRECISION (outer_type
))
6344 if (TREE_CODE (arg1
) != INTEGER_CST
6345 && !((TREE_CODE (arg1
) == NOP_EXPR
6346 || TREE_CODE (arg1
) == CONVERT_EXPR
)
6347 && TREE_TYPE (TREE_OPERAND (arg1
, 0)) == inner_type
))
6350 if (TYPE_UNSIGNED (inner_type
) != TYPE_UNSIGNED (outer_type
)
6355 if (TREE_CODE (arg1
) == INTEGER_CST
)
6357 tmp
= build_int_cst_wide (inner_type
,
6358 TREE_INT_CST_LOW (arg1
),
6359 TREE_INT_CST_HIGH (arg1
));
6360 arg1
= force_fit_type (tmp
, 0,
6361 TREE_OVERFLOW (arg1
),
6362 TREE_CONSTANT_OVERFLOW (arg1
));
6365 arg1
= fold_convert (inner_type
, arg1
);
6367 return fold_build2 (code
, type
, arg0_inner
, arg1
);
6370 /* Tries to replace &a[idx] CODE s * delta with &a[idx CODE delta], if s is
6371 step of the array. Reconstructs s and delta in the case of s * delta
6372 being an integer constant (and thus already folded).
6373 ADDR is the address. MULT is the multiplicative expression.
6374 If the function succeeds, the new address expression is returned. Otherwise
6375 NULL_TREE is returned. */
6378 try_move_mult_to_index (enum tree_code code
, tree addr
, tree op1
)
6380 tree s
, delta
, step
;
6381 tree ref
= TREE_OPERAND (addr
, 0), pref
;
6385 /* Canonicalize op1 into a possibly non-constant delta
6386 and an INTEGER_CST s. */
6387 if (TREE_CODE (op1
) == MULT_EXPR
)
6389 tree arg0
= TREE_OPERAND (op1
, 0), arg1
= TREE_OPERAND (op1
, 1);
6394 if (TREE_CODE (arg0
) == INTEGER_CST
)
6399 else if (TREE_CODE (arg1
) == INTEGER_CST
)
6407 else if (TREE_CODE (op1
) == INTEGER_CST
)
6414 /* Simulate we are delta * 1. */
6416 s
= integer_one_node
;
6419 for (;; ref
= TREE_OPERAND (ref
, 0))
6421 if (TREE_CODE (ref
) == ARRAY_REF
)
6423 itype
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref
, 0)));
6427 step
= array_ref_element_size (ref
);
6428 if (TREE_CODE (step
) != INTEGER_CST
)
6433 if (! tree_int_cst_equal (step
, s
))
6438 /* Try if delta is a multiple of step. */
6439 tree tmp
= div_if_zero_remainder (EXACT_DIV_EXPR
, delta
, step
);
6448 if (!handled_component_p (ref
))
6452 /* We found the suitable array reference. So copy everything up to it,
6453 and replace the index. */
6455 pref
= TREE_OPERAND (addr
, 0);
6456 ret
= copy_node (pref
);
6461 pref
= TREE_OPERAND (pref
, 0);
6462 TREE_OPERAND (pos
, 0) = copy_node (pref
);
6463 pos
= TREE_OPERAND (pos
, 0);
6466 TREE_OPERAND (pos
, 1) = fold_build2 (code
, itype
,
6467 fold_convert (itype
,
6468 TREE_OPERAND (pos
, 1)),
6469 fold_convert (itype
, delta
));
6471 return fold_build1 (ADDR_EXPR
, TREE_TYPE (addr
), ret
);
6475 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6476 means A >= Y && A != MAX, but in this case we know that
6477 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6480 fold_to_nonsharp_ineq_using_bound (tree ineq
, tree bound
)
6482 tree a
, typea
, type
= TREE_TYPE (ineq
), a1
, diff
, y
;
6484 if (TREE_CODE (bound
) == LT_EXPR
)
6485 a
= TREE_OPERAND (bound
, 0);
6486 else if (TREE_CODE (bound
) == GT_EXPR
)
6487 a
= TREE_OPERAND (bound
, 1);
6491 typea
= TREE_TYPE (a
);
6492 if (!INTEGRAL_TYPE_P (typea
)
6493 && !POINTER_TYPE_P (typea
))
6496 if (TREE_CODE (ineq
) == LT_EXPR
)
6498 a1
= TREE_OPERAND (ineq
, 1);
6499 y
= TREE_OPERAND (ineq
, 0);
6501 else if (TREE_CODE (ineq
) == GT_EXPR
)
6503 a1
= TREE_OPERAND (ineq
, 0);
6504 y
= TREE_OPERAND (ineq
, 1);
6509 if (TREE_TYPE (a1
) != typea
)
6512 diff
= fold_build2 (MINUS_EXPR
, typea
, a1
, a
);
6513 if (!integer_onep (diff
))
6516 return fold_build2 (GE_EXPR
, type
, a
, y
);
6519 /* Fold a unary expression of code CODE and type TYPE with operand
6520 OP0. Return the folded expression if folding is successful.
6521 Otherwise, return NULL_TREE. */
6524 fold_unary (enum tree_code code
, tree type
, tree op0
)
6528 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
6530 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
6531 && TREE_CODE_LENGTH (code
) == 1);
6536 if (code
== NOP_EXPR
|| code
== CONVERT_EXPR
6537 || code
== FLOAT_EXPR
|| code
== ABS_EXPR
)
6539 /* Don't use STRIP_NOPS, because signedness of argument type
6541 STRIP_SIGN_NOPS (arg0
);
6545 /* Strip any conversions that don't change the mode. This
6546 is safe for every expression, except for a comparison
6547 expression because its signedness is derived from its
6550 Note that this is done as an internal manipulation within
6551 the constant folder, in order to find the simplest
6552 representation of the arguments so that their form can be
6553 studied. In any cases, the appropriate type conversions
6554 should be put back in the tree that will get out of the
6560 if (TREE_CODE_CLASS (code
) == tcc_unary
)
6562 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
6563 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
6564 fold_build1 (code
, type
, TREE_OPERAND (arg0
, 1)));
6565 else if (TREE_CODE (arg0
) == COND_EXPR
)
6567 tree arg01
= TREE_OPERAND (arg0
, 1);
6568 tree arg02
= TREE_OPERAND (arg0
, 2);
6569 if (! VOID_TYPE_P (TREE_TYPE (arg01
)))
6570 arg01
= fold_build1 (code
, type
, arg01
);
6571 if (! VOID_TYPE_P (TREE_TYPE (arg02
)))
6572 arg02
= fold_build1 (code
, type
, arg02
);
6573 tem
= fold_build3 (COND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
6576 /* If this was a conversion, and all we did was to move into
6577 inside the COND_EXPR, bring it back out. But leave it if
6578 it is a conversion from integer to integer and the
6579 result precision is no wider than a word since such a
6580 conversion is cheap and may be optimized away by combine,
6581 while it couldn't if it were outside the COND_EXPR. Then return
6582 so we don't get into an infinite recursion loop taking the
6583 conversion out and then back in. */
6585 if ((code
== NOP_EXPR
|| code
== CONVERT_EXPR
6586 || code
== NON_LVALUE_EXPR
)
6587 && TREE_CODE (tem
) == COND_EXPR
6588 && TREE_CODE (TREE_OPERAND (tem
, 1)) == code
6589 && TREE_CODE (TREE_OPERAND (tem
, 2)) == code
6590 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 1))
6591 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 2))
6592 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))
6593 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 2), 0)))
6594 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
6596 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))))
6597 && TYPE_PRECISION (TREE_TYPE (tem
)) <= BITS_PER_WORD
)
6598 || flag_syntax_only
))
6599 tem
= build1 (code
, type
,
6601 TREE_TYPE (TREE_OPERAND
6602 (TREE_OPERAND (tem
, 1), 0)),
6603 TREE_OPERAND (tem
, 0),
6604 TREE_OPERAND (TREE_OPERAND (tem
, 1), 0),
6605 TREE_OPERAND (TREE_OPERAND (tem
, 2), 0)));
6608 else if (COMPARISON_CLASS_P (arg0
))
6610 if (TREE_CODE (type
) == BOOLEAN_TYPE
)
6612 arg0
= copy_node (arg0
);
6613 TREE_TYPE (arg0
) = type
;
6616 else if (TREE_CODE (type
) != INTEGER_TYPE
)
6617 return fold_build3 (COND_EXPR
, type
, arg0
,
6618 fold_build1 (code
, type
,
6620 fold_build1 (code
, type
,
6621 integer_zero_node
));
6630 case FIX_TRUNC_EXPR
:
6632 case FIX_FLOOR_EXPR
:
6633 case FIX_ROUND_EXPR
:
6634 if (TREE_TYPE (op0
) == type
)
6637 /* Handle cases of two conversions in a row. */
6638 if (TREE_CODE (op0
) == NOP_EXPR
6639 || TREE_CODE (op0
) == CONVERT_EXPR
)
6641 tree inside_type
= TREE_TYPE (TREE_OPERAND (op0
, 0));
6642 tree inter_type
= TREE_TYPE (op0
);
6643 int inside_int
= INTEGRAL_TYPE_P (inside_type
);
6644 int inside_ptr
= POINTER_TYPE_P (inside_type
);
6645 int inside_float
= FLOAT_TYPE_P (inside_type
);
6646 int inside_vec
= TREE_CODE (inside_type
) == VECTOR_TYPE
;
6647 unsigned int inside_prec
= TYPE_PRECISION (inside_type
);
6648 int inside_unsignedp
= TYPE_UNSIGNED (inside_type
);
6649 int inter_int
= INTEGRAL_TYPE_P (inter_type
);
6650 int inter_ptr
= POINTER_TYPE_P (inter_type
);
6651 int inter_float
= FLOAT_TYPE_P (inter_type
);
6652 int inter_vec
= TREE_CODE (inter_type
) == VECTOR_TYPE
;
6653 unsigned int inter_prec
= TYPE_PRECISION (inter_type
);
6654 int inter_unsignedp
= TYPE_UNSIGNED (inter_type
);
6655 int final_int
= INTEGRAL_TYPE_P (type
);
6656 int final_ptr
= POINTER_TYPE_P (type
);
6657 int final_float
= FLOAT_TYPE_P (type
);
6658 int final_vec
= TREE_CODE (type
) == VECTOR_TYPE
;
6659 unsigned int final_prec
= TYPE_PRECISION (type
);
6660 int final_unsignedp
= TYPE_UNSIGNED (type
);
6662 /* In addition to the cases of two conversions in a row
6663 handled below, if we are converting something to its own
6664 type via an object of identical or wider precision, neither
6665 conversion is needed. */
6666 if (TYPE_MAIN_VARIANT (inside_type
) == TYPE_MAIN_VARIANT (type
)
6667 && ((inter_int
&& final_int
) || (inter_float
&& final_float
))
6668 && inter_prec
>= final_prec
)
6669 return fold_build1 (code
, type
, TREE_OPERAND (op0
, 0));
6671 /* Likewise, if the intermediate and final types are either both
6672 float or both integer, we don't need the middle conversion if
6673 it is wider than the final type and doesn't change the signedness
6674 (for integers). Avoid this if the final type is a pointer
6675 since then we sometimes need the inner conversion. Likewise if
6676 the outer has a precision not equal to the size of its mode. */
6677 if ((((inter_int
|| inter_ptr
) && (inside_int
|| inside_ptr
))
6678 || (inter_float
&& inside_float
)
6679 || (inter_vec
&& inside_vec
))
6680 && inter_prec
>= inside_prec
6681 && (inter_float
|| inter_vec
6682 || inter_unsignedp
== inside_unsignedp
)
6683 && ! (final_prec
!= GET_MODE_BITSIZE (TYPE_MODE (type
))
6684 && TYPE_MODE (type
) == TYPE_MODE (inter_type
))
6686 && (! final_vec
|| inter_prec
== inside_prec
))
6687 return fold_build1 (code
, type
, TREE_OPERAND (op0
, 0));
6689 /* If we have a sign-extension of a zero-extended value, we can
6690 replace that by a single zero-extension. */
6691 if (inside_int
&& inter_int
&& final_int
6692 && inside_prec
< inter_prec
&& inter_prec
< final_prec
6693 && inside_unsignedp
&& !inter_unsignedp
)
6694 return fold_build1 (code
, type
, TREE_OPERAND (op0
, 0));
6696 /* Two conversions in a row are not needed unless:
6697 - some conversion is floating-point (overstrict for now), or
6698 - some conversion is a vector (overstrict for now), or
6699 - the intermediate type is narrower than both initial and
6701 - the intermediate type and innermost type differ in signedness,
6702 and the outermost type is wider than the intermediate, or
6703 - the initial type is a pointer type and the precisions of the
6704 intermediate and final types differ, or
6705 - the final type is a pointer type and the precisions of the
6706 initial and intermediate types differ. */
6707 if (! inside_float
&& ! inter_float
&& ! final_float
6708 && ! inside_vec
&& ! inter_vec
&& ! final_vec
6709 && (inter_prec
> inside_prec
|| inter_prec
> final_prec
)
6710 && ! (inside_int
&& inter_int
6711 && inter_unsignedp
!= inside_unsignedp
6712 && inter_prec
< final_prec
)
6713 && ((inter_unsignedp
&& inter_prec
> inside_prec
)
6714 == (final_unsignedp
&& final_prec
> inter_prec
))
6715 && ! (inside_ptr
&& inter_prec
!= final_prec
)
6716 && ! (final_ptr
&& inside_prec
!= inter_prec
)
6717 && ! (final_prec
!= GET_MODE_BITSIZE (TYPE_MODE (type
))
6718 && TYPE_MODE (type
) == TYPE_MODE (inter_type
))
6720 return fold_build1 (code
, type
, TREE_OPERAND (op0
, 0));
6723 /* Handle (T *)&A.B.C for A being of type T and B and C
6724 living at offset zero. This occurs frequently in
6725 C++ upcasting and then accessing the base. */
6726 if (TREE_CODE (op0
) == ADDR_EXPR
6727 && POINTER_TYPE_P (type
)
6728 && handled_component_p (TREE_OPERAND (op0
, 0)))
6730 HOST_WIDE_INT bitsize
, bitpos
;
6732 enum machine_mode mode
;
6733 int unsignedp
, volatilep
;
6734 tree base
= TREE_OPERAND (op0
, 0);
6735 base
= get_inner_reference (base
, &bitsize
, &bitpos
, &offset
,
6736 &mode
, &unsignedp
, &volatilep
, false);
6737 /* If the reference was to a (constant) zero offset, we can use
6738 the address of the base if it has the same base type
6739 as the result type. */
6740 if (! offset
&& bitpos
== 0
6741 && TYPE_MAIN_VARIANT (TREE_TYPE (type
))
6742 == TYPE_MAIN_VARIANT (TREE_TYPE (base
)))
6743 return fold_convert (type
, build_fold_addr_expr (base
));
6746 if (TREE_CODE (op0
) == MODIFY_EXPR
6747 && TREE_CONSTANT (TREE_OPERAND (op0
, 1))
6748 /* Detect assigning a bitfield. */
6749 && !(TREE_CODE (TREE_OPERAND (op0
, 0)) == COMPONENT_REF
6750 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (op0
, 0), 1))))
6752 /* Don't leave an assignment inside a conversion
6753 unless assigning a bitfield. */
6754 tem
= fold_build1 (code
, type
, TREE_OPERAND (op0
, 1));
6755 /* First do the assignment, then return converted constant. */
6756 tem
= build2 (COMPOUND_EXPR
, TREE_TYPE (tem
), op0
, tem
);
6757 TREE_NO_WARNING (tem
) = 1;
6758 TREE_USED (tem
) = 1;
6762 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
6763 constants (if x has signed type, the sign bit cannot be set
6764 in c). This folds extension into the BIT_AND_EXPR. */
6765 if (INTEGRAL_TYPE_P (type
)
6766 && TREE_CODE (type
) != BOOLEAN_TYPE
6767 && TREE_CODE (op0
) == BIT_AND_EXPR
6768 && TREE_CODE (TREE_OPERAND (op0
, 1)) == INTEGER_CST
)
6771 tree and0
= TREE_OPERAND (and, 0), and1
= TREE_OPERAND (and, 1);
6774 if (TYPE_UNSIGNED (TREE_TYPE (and))
6775 || (TYPE_PRECISION (type
)
6776 <= TYPE_PRECISION (TREE_TYPE (and))))
6778 else if (TYPE_PRECISION (TREE_TYPE (and1
))
6779 <= HOST_BITS_PER_WIDE_INT
6780 && host_integerp (and1
, 1))
6782 unsigned HOST_WIDE_INT cst
;
6784 cst
= tree_low_cst (and1
, 1);
6785 cst
&= (HOST_WIDE_INT
) -1
6786 << (TYPE_PRECISION (TREE_TYPE (and1
)) - 1);
6787 change
= (cst
== 0);
6788 #ifdef LOAD_EXTEND_OP
6790 && !flag_syntax_only
6791 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0
)))
6794 tree uns
= lang_hooks
.types
.unsigned_type (TREE_TYPE (and0
));
6795 and0
= fold_convert (uns
, and0
);
6796 and1
= fold_convert (uns
, and1
);
6802 tem
= build_int_cst_wide (type
, TREE_INT_CST_LOW (and1
),
6803 TREE_INT_CST_HIGH (and1
));
6804 tem
= force_fit_type (tem
, 0, TREE_OVERFLOW (and1
),
6805 TREE_CONSTANT_OVERFLOW (and1
));
6806 return fold_build2 (BIT_AND_EXPR
, type
,
6807 fold_convert (type
, and0
), tem
);
6811 /* Convert (T1)((T2)X op Y) into (T1)X op Y, for pointer types T1 and
6812 T2 being pointers to types of the same size. */
6813 if (POINTER_TYPE_P (type
)
6814 && BINARY_CLASS_P (arg0
)
6815 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == NOP_EXPR
6816 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0
, 0))))
6818 tree arg00
= TREE_OPERAND (arg0
, 0);
6820 tree t1
= TREE_TYPE (arg00
);
6821 tree tt0
= TREE_TYPE (t0
);
6822 tree tt1
= TREE_TYPE (t1
);
6823 tree s0
= TYPE_SIZE (tt0
);
6824 tree s1
= TYPE_SIZE (tt1
);
6826 if (s0
&& s1
&& operand_equal_p (s0
, s1
, OEP_ONLY_CONST
))
6827 return build2 (TREE_CODE (arg0
), t0
, fold_convert (t0
, arg00
),
6828 TREE_OPERAND (arg0
, 1));
6831 tem
= fold_convert_const (code
, type
, arg0
);
6832 return tem
? tem
: NULL_TREE
;
6834 case VIEW_CONVERT_EXPR
:
6835 if (TREE_CODE (op0
) == VIEW_CONVERT_EXPR
)
6836 return build1 (VIEW_CONVERT_EXPR
, type
, TREE_OPERAND (op0
, 0));
6840 if (negate_expr_p (arg0
))
6841 return fold_convert (type
, negate_expr (arg0
));
6842 /* Convert - (~A) to A + 1. */
6843 if (INTEGRAL_TYPE_P (type
) && TREE_CODE (arg0
) == BIT_NOT_EXPR
)
6844 return fold_build2 (PLUS_EXPR
, type
, TREE_OPERAND (arg0
, 0),
6845 build_int_cst (type
, 1));
6849 if (TREE_CODE (arg0
) == INTEGER_CST
|| TREE_CODE (arg0
) == REAL_CST
)
6850 return fold_abs_const (arg0
, type
);
6851 else if (TREE_CODE (arg0
) == NEGATE_EXPR
)
6852 return fold_build1 (ABS_EXPR
, type
, TREE_OPERAND (arg0
, 0));
6853 /* Convert fabs((double)float) into (double)fabsf(float). */
6854 else if (TREE_CODE (arg0
) == NOP_EXPR
6855 && TREE_CODE (type
) == REAL_TYPE
)
6857 tree targ0
= strip_float_extensions (arg0
);
6859 return fold_convert (type
, fold_build1 (ABS_EXPR
,
6863 /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on. */
6864 else if (tree_expr_nonnegative_p (arg0
) || TREE_CODE (arg0
) == ABS_EXPR
)
6867 /* Strip sign ops from argument. */
6868 if (TREE_CODE (type
) == REAL_TYPE
)
6870 tem
= fold_strip_sign_ops (arg0
);
6872 return fold_build1 (ABS_EXPR
, type
, fold_convert (type
, tem
));
6877 if (TREE_CODE (TREE_TYPE (arg0
)) != COMPLEX_TYPE
)
6878 return fold_convert (type
, arg0
);
6879 else if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
6880 return build2 (COMPLEX_EXPR
, type
,
6881 TREE_OPERAND (arg0
, 0),
6882 negate_expr (TREE_OPERAND (arg0
, 1)));
6883 else if (TREE_CODE (arg0
) == COMPLEX_CST
)
6884 return build_complex (type
, TREE_REALPART (arg0
),
6885 negate_expr (TREE_IMAGPART (arg0
)));
6886 else if (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
6887 return fold_build2 (TREE_CODE (arg0
), type
,
6888 fold_build1 (CONJ_EXPR
, type
,
6889 TREE_OPERAND (arg0
, 0)),
6890 fold_build1 (CONJ_EXPR
, type
,
6891 TREE_OPERAND (arg0
, 1)));
6892 else if (TREE_CODE (arg0
) == CONJ_EXPR
)
6893 return TREE_OPERAND (arg0
, 0);
6897 if (TREE_CODE (arg0
) == INTEGER_CST
)
6898 return fold_not_const (arg0
, type
);
6899 else if (TREE_CODE (arg0
) == BIT_NOT_EXPR
)
6900 return TREE_OPERAND (arg0
, 0);
6901 /* Convert ~ (-A) to A - 1. */
6902 else if (INTEGRAL_TYPE_P (type
) && TREE_CODE (arg0
) == NEGATE_EXPR
)
6903 return fold_build2 (MINUS_EXPR
, type
, TREE_OPERAND (arg0
, 0),
6904 build_int_cst (type
, 1));
6905 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
6906 else if (INTEGRAL_TYPE_P (type
)
6907 && ((TREE_CODE (arg0
) == MINUS_EXPR
6908 && integer_onep (TREE_OPERAND (arg0
, 1)))
6909 || (TREE_CODE (arg0
) == PLUS_EXPR
6910 && integer_all_onesp (TREE_OPERAND (arg0
, 1)))))
6911 return fold_build1 (NEGATE_EXPR
, type
, TREE_OPERAND (arg0
, 0));
6912 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
6913 else if (TREE_CODE (arg0
) == BIT_XOR_EXPR
6914 && (tem
= fold_unary (BIT_NOT_EXPR
, type
,
6916 TREE_OPERAND (arg0
, 0)))))
6917 return fold_build2 (BIT_XOR_EXPR
, type
, tem
,
6918 fold_convert (type
, TREE_OPERAND (arg0
, 1)));
6919 else if (TREE_CODE (arg0
) == BIT_XOR_EXPR
6920 && (tem
= fold_unary (BIT_NOT_EXPR
, type
,
6922 TREE_OPERAND (arg0
, 1)))))
6923 return fold_build2 (BIT_XOR_EXPR
, type
,
6924 fold_convert (type
, TREE_OPERAND (arg0
, 0)), tem
);
6928 case TRUTH_NOT_EXPR
:
6929 /* The argument to invert_truthvalue must have Boolean type. */
6930 if (TREE_CODE (TREE_TYPE (arg0
)) != BOOLEAN_TYPE
)
6931 arg0
= fold_convert (boolean_type_node
, arg0
);
6933 /* Note that the operand of this must be an int
6934 and its values must be 0 or 1.
6935 ("true" is a fixed value perhaps depending on the language,
6936 but we don't handle values other than 1 correctly yet.) */
6937 tem
= invert_truthvalue (arg0
);
6938 /* Avoid infinite recursion. */
6939 if (TREE_CODE (tem
) == TRUTH_NOT_EXPR
)
6941 return fold_convert (type
, tem
);
6944 if (TREE_CODE (TREE_TYPE (arg0
)) != COMPLEX_TYPE
)
6946 else if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
6947 return omit_one_operand (type
, TREE_OPERAND (arg0
, 0),
6948 TREE_OPERAND (arg0
, 1));
6949 else if (TREE_CODE (arg0
) == COMPLEX_CST
)
6950 return TREE_REALPART (arg0
);
6951 else if (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
6952 return fold_build2 (TREE_CODE (arg0
), type
,
6953 fold_build1 (REALPART_EXPR
, type
,
6954 TREE_OPERAND (arg0
, 0)),
6955 fold_build1 (REALPART_EXPR
, type
,
6956 TREE_OPERAND (arg0
, 1)));
6960 if (TREE_CODE (TREE_TYPE (arg0
)) != COMPLEX_TYPE
)
6961 return fold_convert (type
, integer_zero_node
);
6962 else if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
6963 return omit_one_operand (type
, TREE_OPERAND (arg0
, 1),
6964 TREE_OPERAND (arg0
, 0));
6965 else if (TREE_CODE (arg0
) == COMPLEX_CST
)
6966 return TREE_IMAGPART (arg0
);
6967 else if (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
6968 return fold_build2 (TREE_CODE (arg0
), type
,
6969 fold_build1 (IMAGPART_EXPR
, type
,
6970 TREE_OPERAND (arg0
, 0)),
6971 fold_build1 (IMAGPART_EXPR
, type
,
6972 TREE_OPERAND (arg0
, 1)));
6977 } /* switch (code) */
6980 /* Fold a binary expression of code CODE and type TYPE with operands
6981 OP0 and OP1. Return the folded expression if folding is
6982 successful. Otherwise, return NULL_TREE. */
6985 fold_binary (enum tree_code code
, tree type
, tree op0
, tree op1
)
6987 tree t1
= NULL_TREE
;
6989 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
;
6990 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
6992 /* WINS will be nonzero when the switch is done
6993 if all operands are constant. */
6996 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
6997 && TREE_CODE_LENGTH (code
) == 2);
7006 /* Strip any conversions that don't change the mode. This is
7007 safe for every expression, except for a comparison expression
7008 because its signedness is derived from its operands. So, in
7009 the latter case, only strip conversions that don't change the
7012 Note that this is done as an internal manipulation within the
7013 constant folder, in order to find the simplest representation
7014 of the arguments so that their form can be studied. In any
7015 cases, the appropriate type conversions should be put back in
7016 the tree that will get out of the constant folder. */
7017 if (kind
== tcc_comparison
)
7018 STRIP_SIGN_NOPS (arg0
);
7022 if (TREE_CODE (arg0
) == COMPLEX_CST
)
7023 subop
= TREE_REALPART (arg0
);
7027 if (TREE_CODE (subop
) != INTEGER_CST
7028 && TREE_CODE (subop
) != REAL_CST
)
7029 /* Note that TREE_CONSTANT isn't enough:
7030 static var addresses are constant but we can't
7031 do arithmetic on them. */
7039 /* Strip any conversions that don't change the mode. This is
7040 safe for every expression, except for a comparison expression
7041 because its signedness is derived from its operands. So, in
7042 the latter case, only strip conversions that don't change the
7045 Note that this is done as an internal manipulation within the
7046 constant folder, in order to find the simplest representation
7047 of the arguments so that their form can be studied. In any
7048 cases, the appropriate type conversions should be put back in
7049 the tree that will get out of the constant folder. */
7050 if (kind
== tcc_comparison
)
7051 STRIP_SIGN_NOPS (arg1
);
7055 if (TREE_CODE (arg1
) == COMPLEX_CST
)
7056 subop
= TREE_REALPART (arg1
);
7060 if (TREE_CODE (subop
) != INTEGER_CST
7061 && TREE_CODE (subop
) != REAL_CST
)
7062 /* Note that TREE_CONSTANT isn't enough:
7063 static var addresses are constant but we can't
7064 do arithmetic on them. */
7068 /* If this is a commutative operation, and ARG0 is a constant, move it
7069 to ARG1 to reduce the number of tests below. */
7070 if (commutative_tree_code (code
)
7071 && tree_swap_operands_p (arg0
, arg1
, true))
7072 return fold_build2 (code
, type
, op1
, op0
);
7074 /* Now WINS is set as described above,
7075 ARG0 is the first operand of EXPR,
7076 and ARG1 is the second operand (if it has more than one operand).
7078 First check for cases where an arithmetic operation is applied to a
7079 compound, conditional, or comparison operation. Push the arithmetic
7080 operation inside the compound or conditional to see if any folding
7081 can then be done. Convert comparison to conditional for this purpose.
7082 The also optimizes non-constant cases that used to be done in
7085 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
7086 one of the operands is a comparison and the other is a comparison, a
7087 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
7088 code below would make the expression more complex. Change it to a
7089 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
7090 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
7092 if ((code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
7093 || code
== EQ_EXPR
|| code
== NE_EXPR
)
7094 && ((truth_value_p (TREE_CODE (arg0
))
7095 && (truth_value_p (TREE_CODE (arg1
))
7096 || (TREE_CODE (arg1
) == BIT_AND_EXPR
7097 && integer_onep (TREE_OPERAND (arg1
, 1)))))
7098 || (truth_value_p (TREE_CODE (arg1
))
7099 && (truth_value_p (TREE_CODE (arg0
))
7100 || (TREE_CODE (arg0
) == BIT_AND_EXPR
7101 && integer_onep (TREE_OPERAND (arg0
, 1)))))))
7103 tem
= fold_build2 (code
== BIT_AND_EXPR
? TRUTH_AND_EXPR
7104 : code
== BIT_IOR_EXPR
? TRUTH_OR_EXPR
7107 fold_convert (boolean_type_node
, arg0
),
7108 fold_convert (boolean_type_node
, arg1
));
7110 if (code
== EQ_EXPR
)
7111 tem
= invert_truthvalue (tem
);
7113 return fold_convert (type
, tem
);
7116 if (TREE_CODE_CLASS (code
) == tcc_comparison
7117 && TREE_CODE (arg0
) == COMPOUND_EXPR
)
7118 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7119 fold_build2 (code
, type
, TREE_OPERAND (arg0
, 1), arg1
));
7120 else if (TREE_CODE_CLASS (code
) == tcc_comparison
7121 && TREE_CODE (arg1
) == COMPOUND_EXPR
)
7122 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg1
, 0),
7123 fold_build2 (code
, type
, arg0
, TREE_OPERAND (arg1
, 1)));
7124 else if (TREE_CODE_CLASS (code
) == tcc_binary
7125 || TREE_CODE_CLASS (code
) == tcc_comparison
)
7127 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
7128 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7129 fold_build2 (code
, type
, TREE_OPERAND (arg0
, 1),
7131 if (TREE_CODE (arg1
) == COMPOUND_EXPR
7132 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 0)))
7133 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg1
, 0),
7134 fold_build2 (code
, type
,
7135 arg0
, TREE_OPERAND (arg1
, 1)));
7137 if (TREE_CODE (arg0
) == COND_EXPR
|| COMPARISON_CLASS_P (arg0
))
7139 tem
= fold_binary_op_with_conditional_arg (code
, type
, op0
, op1
,
7141 /*cond_first_p=*/1);
7142 if (tem
!= NULL_TREE
)
7146 if (TREE_CODE (arg1
) == COND_EXPR
|| COMPARISON_CLASS_P (arg1
))
7148 tem
= fold_binary_op_with_conditional_arg (code
, type
, op0
, op1
,
7150 /*cond_first_p=*/0);
7151 if (tem
!= NULL_TREE
)
7159 /* A + (-B) -> A - B */
7160 if (TREE_CODE (arg1
) == NEGATE_EXPR
)
7161 return fold_build2 (MINUS_EXPR
, type
,
7162 fold_convert (type
, arg0
),
7163 fold_convert (type
, TREE_OPERAND (arg1
, 0)));
7164 /* (-A) + B -> B - A */
7165 if (TREE_CODE (arg0
) == NEGATE_EXPR
7166 && reorder_operands_p (TREE_OPERAND (arg0
, 0), arg1
))
7167 return fold_build2 (MINUS_EXPR
, type
,
7168 fold_convert (type
, arg1
),
7169 fold_convert (type
, TREE_OPERAND (arg0
, 0)));
7170 /* Convert ~A + 1 to -A. */
7171 if (INTEGRAL_TYPE_P (type
)
7172 && TREE_CODE (arg0
) == BIT_NOT_EXPR
7173 && integer_onep (arg1
))
7174 return fold_build1 (NEGATE_EXPR
, type
, TREE_OPERAND (arg0
, 0));
7176 if (! FLOAT_TYPE_P (type
))
7178 if (integer_zerop (arg1
))
7179 return non_lvalue (fold_convert (type
, arg0
));
7181 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
7182 with a constant, and the two constants have no bits in common,
7183 we should treat this as a BIT_IOR_EXPR since this may produce more
7185 if (TREE_CODE (arg0
) == BIT_AND_EXPR
7186 && TREE_CODE (arg1
) == BIT_AND_EXPR
7187 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
7188 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
7189 && integer_zerop (const_binop (BIT_AND_EXPR
,
7190 TREE_OPERAND (arg0
, 1),
7191 TREE_OPERAND (arg1
, 1), 0)))
7193 code
= BIT_IOR_EXPR
;
7197 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
7198 (plus (plus (mult) (mult)) (foo)) so that we can
7199 take advantage of the factoring cases below. */
7200 if (((TREE_CODE (arg0
) == PLUS_EXPR
7201 || TREE_CODE (arg0
) == MINUS_EXPR
)
7202 && TREE_CODE (arg1
) == MULT_EXPR
)
7203 || ((TREE_CODE (arg1
) == PLUS_EXPR
7204 || TREE_CODE (arg1
) == MINUS_EXPR
)
7205 && TREE_CODE (arg0
) == MULT_EXPR
))
7207 tree parg0
, parg1
, parg
, marg
;
7208 enum tree_code pcode
;
7210 if (TREE_CODE (arg1
) == MULT_EXPR
)
7211 parg
= arg0
, marg
= arg1
;
7213 parg
= arg1
, marg
= arg0
;
7214 pcode
= TREE_CODE (parg
);
7215 parg0
= TREE_OPERAND (parg
, 0);
7216 parg1
= TREE_OPERAND (parg
, 1);
7220 if (TREE_CODE (parg0
) == MULT_EXPR
7221 && TREE_CODE (parg1
) != MULT_EXPR
)
7222 return fold_build2 (pcode
, type
,
7223 fold_build2 (PLUS_EXPR
, type
,
7224 fold_convert (type
, parg0
),
7225 fold_convert (type
, marg
)),
7226 fold_convert (type
, parg1
));
7227 if (TREE_CODE (parg0
) != MULT_EXPR
7228 && TREE_CODE (parg1
) == MULT_EXPR
)
7229 return fold_build2 (PLUS_EXPR
, type
,
7230 fold_convert (type
, parg0
),
7231 fold_build2 (pcode
, type
,
7232 fold_convert (type
, marg
),
7237 if (TREE_CODE (arg0
) == MULT_EXPR
&& TREE_CODE (arg1
) == MULT_EXPR
)
7239 tree arg00
, arg01
, arg10
, arg11
;
7240 tree alt0
= NULL_TREE
, alt1
= NULL_TREE
, same
;
7242 /* (A * C) + (B * C) -> (A+B) * C.
7243 We are most concerned about the case where C is a constant,
7244 but other combinations show up during loop reduction. Since
7245 it is not difficult, try all four possibilities. */
7247 arg00
= TREE_OPERAND (arg0
, 0);
7248 arg01
= TREE_OPERAND (arg0
, 1);
7249 arg10
= TREE_OPERAND (arg1
, 0);
7250 arg11
= TREE_OPERAND (arg1
, 1);
7253 if (operand_equal_p (arg01
, arg11
, 0))
7254 same
= arg01
, alt0
= arg00
, alt1
= arg10
;
7255 else if (operand_equal_p (arg00
, arg10
, 0))
7256 same
= arg00
, alt0
= arg01
, alt1
= arg11
;
7257 else if (operand_equal_p (arg00
, arg11
, 0))
7258 same
= arg00
, alt0
= arg01
, alt1
= arg10
;
7259 else if (operand_equal_p (arg01
, arg10
, 0))
7260 same
= arg01
, alt0
= arg00
, alt1
= arg11
;
7262 /* No identical multiplicands; see if we can find a common
7263 power-of-two factor in non-power-of-two multiplies. This
7264 can help in multi-dimensional array access. */
7265 else if (TREE_CODE (arg01
) == INTEGER_CST
7266 && TREE_CODE (arg11
) == INTEGER_CST
7267 && TREE_INT_CST_HIGH (arg01
) == 0
7268 && TREE_INT_CST_HIGH (arg11
) == 0)
7270 HOST_WIDE_INT int01
, int11
, tmp
;
7271 int01
= TREE_INT_CST_LOW (arg01
);
7272 int11
= TREE_INT_CST_LOW (arg11
);
7274 /* Move min of absolute values to int11. */
7275 if ((int01
>= 0 ? int01
: -int01
)
7276 < (int11
>= 0 ? int11
: -int11
))
7278 tmp
= int01
, int01
= int11
, int11
= tmp
;
7279 alt0
= arg00
, arg00
= arg10
, arg10
= alt0
;
7280 alt0
= arg01
, arg01
= arg11
, arg11
= alt0
;
7283 if (exact_log2 (int11
) > 0 && int01
% int11
== 0)
7285 alt0
= fold_build2 (MULT_EXPR
, type
, arg00
,
7286 build_int_cst (NULL_TREE
,
7294 return fold_build2 (MULT_EXPR
, type
,
7295 fold_build2 (PLUS_EXPR
, type
,
7296 fold_convert (type
, alt0
),
7297 fold_convert (type
, alt1
)),
7298 fold_convert (type
, same
));
7301 /* Try replacing &a[i1] + c * i2 with &a[i1 + i2], if c is step
7302 of the array. Loop optimizer sometimes produce this type of
7304 if (TREE_CODE (arg0
) == ADDR_EXPR
)
7306 tem
= try_move_mult_to_index (PLUS_EXPR
, arg0
, arg1
);
7308 return fold_convert (type
, tem
);
7310 else if (TREE_CODE (arg1
) == ADDR_EXPR
)
7312 tem
= try_move_mult_to_index (PLUS_EXPR
, arg1
, arg0
);
7314 return fold_convert (type
, tem
);
7319 /* See if ARG1 is zero and X + ARG1 reduces to X. */
7320 if (fold_real_zero_addition_p (TREE_TYPE (arg0
), arg1
, 0))
7321 return non_lvalue (fold_convert (type
, arg0
));
7323 /* Likewise if the operands are reversed. */
7324 if (fold_real_zero_addition_p (TREE_TYPE (arg1
), arg0
, 0))
7325 return non_lvalue (fold_convert (type
, arg1
));
7327 /* Convert X + -C into X - C. */
7328 if (TREE_CODE (arg1
) == REAL_CST
7329 && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1
)))
7331 tem
= fold_negate_const (arg1
, type
);
7332 if (!TREE_OVERFLOW (arg1
) || !flag_trapping_math
)
7333 return fold_build2 (MINUS_EXPR
, type
,
7334 fold_convert (type
, arg0
),
7335 fold_convert (type
, tem
));
7338 if (flag_unsafe_math_optimizations
7339 && (TREE_CODE (arg0
) == RDIV_EXPR
|| TREE_CODE (arg0
) == MULT_EXPR
)
7340 && (TREE_CODE (arg1
) == RDIV_EXPR
|| TREE_CODE (arg1
) == MULT_EXPR
)
7341 && (tem
= distribute_real_division (code
, type
, arg0
, arg1
)))
7344 /* Convert x+x into x*2.0. */
7345 if (operand_equal_p (arg0
, arg1
, 0)
7346 && SCALAR_FLOAT_TYPE_P (type
))
7347 return fold_build2 (MULT_EXPR
, type
, arg0
,
7348 build_real (type
, dconst2
));
7350 /* Convert x*c+x into x*(c+1). */
7351 if (flag_unsafe_math_optimizations
7352 && TREE_CODE (arg0
) == MULT_EXPR
7353 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
7354 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg0
, 1))
7355 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
7359 c
= TREE_REAL_CST (TREE_OPERAND (arg0
, 1));
7360 real_arithmetic (&c
, PLUS_EXPR
, &c
, &dconst1
);
7361 return fold_build2 (MULT_EXPR
, type
, arg1
,
7362 build_real (type
, c
));
7365 /* Convert x+x*c into x*(c+1). */
7366 if (flag_unsafe_math_optimizations
7367 && TREE_CODE (arg1
) == MULT_EXPR
7368 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == REAL_CST
7369 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg1
, 1))
7370 && operand_equal_p (TREE_OPERAND (arg1
, 0), arg0
, 0))
7374 c
= TREE_REAL_CST (TREE_OPERAND (arg1
, 1));
7375 real_arithmetic (&c
, PLUS_EXPR
, &c
, &dconst1
);
7376 return fold_build2 (MULT_EXPR
, type
, arg0
,
7377 build_real (type
, c
));
7380 /* Convert x*c1+x*c2 into x*(c1+c2). */
7381 if (flag_unsafe_math_optimizations
7382 && TREE_CODE (arg0
) == MULT_EXPR
7383 && TREE_CODE (arg1
) == MULT_EXPR
7384 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
7385 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg0
, 1))
7386 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == REAL_CST
7387 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg1
, 1))
7388 && operand_equal_p (TREE_OPERAND (arg0
, 0),
7389 TREE_OPERAND (arg1
, 0), 0))
7391 REAL_VALUE_TYPE c1
, c2
;
7393 c1
= TREE_REAL_CST (TREE_OPERAND (arg0
, 1));
7394 c2
= TREE_REAL_CST (TREE_OPERAND (arg1
, 1));
7395 real_arithmetic (&c1
, PLUS_EXPR
, &c1
, &c2
);
7396 return fold_build2 (MULT_EXPR
, type
,
7397 TREE_OPERAND (arg0
, 0),
7398 build_real (type
, c1
));
7400 /* Convert a + (b*c + d*e) into (a + b*c) + d*e. */
7401 if (flag_unsafe_math_optimizations
7402 && TREE_CODE (arg1
) == PLUS_EXPR
7403 && TREE_CODE (arg0
) != MULT_EXPR
)
7405 tree tree10
= TREE_OPERAND (arg1
, 0);
7406 tree tree11
= TREE_OPERAND (arg1
, 1);
7407 if (TREE_CODE (tree11
) == MULT_EXPR
7408 && TREE_CODE (tree10
) == MULT_EXPR
)
7411 tree0
= fold_build2 (PLUS_EXPR
, type
, arg0
, tree10
);
7412 return fold_build2 (PLUS_EXPR
, type
, tree0
, tree11
);
7415 /* Convert (b*c + d*e) + a into b*c + (d*e +a). */
7416 if (flag_unsafe_math_optimizations
7417 && TREE_CODE (arg0
) == PLUS_EXPR
7418 && TREE_CODE (arg1
) != MULT_EXPR
)
7420 tree tree00
= TREE_OPERAND (arg0
, 0);
7421 tree tree01
= TREE_OPERAND (arg0
, 1);
7422 if (TREE_CODE (tree01
) == MULT_EXPR
7423 && TREE_CODE (tree00
) == MULT_EXPR
)
7426 tree0
= fold_build2 (PLUS_EXPR
, type
, tree01
, arg1
);
7427 return fold_build2 (PLUS_EXPR
, type
, tree00
, tree0
);
7433 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
7434 is a rotate of A by C1 bits. */
7435 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
7436 is a rotate of A by B bits. */
7438 enum tree_code code0
, code1
;
7439 code0
= TREE_CODE (arg0
);
7440 code1
= TREE_CODE (arg1
);
7441 if (((code0
== RSHIFT_EXPR
&& code1
== LSHIFT_EXPR
)
7442 || (code1
== RSHIFT_EXPR
&& code0
== LSHIFT_EXPR
))
7443 && operand_equal_p (TREE_OPERAND (arg0
, 0),
7444 TREE_OPERAND (arg1
, 0), 0)
7445 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0
, 0))))
7447 tree tree01
, tree11
;
7448 enum tree_code code01
, code11
;
7450 tree01
= TREE_OPERAND (arg0
, 1);
7451 tree11
= TREE_OPERAND (arg1
, 1);
7452 STRIP_NOPS (tree01
);
7453 STRIP_NOPS (tree11
);
7454 code01
= TREE_CODE (tree01
);
7455 code11
= TREE_CODE (tree11
);
7456 if (code01
== INTEGER_CST
7457 && code11
== INTEGER_CST
7458 && TREE_INT_CST_HIGH (tree01
) == 0
7459 && TREE_INT_CST_HIGH (tree11
) == 0
7460 && ((TREE_INT_CST_LOW (tree01
) + TREE_INT_CST_LOW (tree11
))
7461 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0
, 0)))))
7462 return build2 (LROTATE_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7463 code0
== LSHIFT_EXPR
? tree01
: tree11
);
7464 else if (code11
== MINUS_EXPR
)
7466 tree tree110
, tree111
;
7467 tree110
= TREE_OPERAND (tree11
, 0);
7468 tree111
= TREE_OPERAND (tree11
, 1);
7469 STRIP_NOPS (tree110
);
7470 STRIP_NOPS (tree111
);
7471 if (TREE_CODE (tree110
) == INTEGER_CST
7472 && 0 == compare_tree_int (tree110
,
7474 (TREE_TYPE (TREE_OPERAND
7476 && operand_equal_p (tree01
, tree111
, 0))
7477 return build2 ((code0
== LSHIFT_EXPR
7480 type
, TREE_OPERAND (arg0
, 0), tree01
);
7482 else if (code01
== MINUS_EXPR
)
7484 tree tree010
, tree011
;
7485 tree010
= TREE_OPERAND (tree01
, 0);
7486 tree011
= TREE_OPERAND (tree01
, 1);
7487 STRIP_NOPS (tree010
);
7488 STRIP_NOPS (tree011
);
7489 if (TREE_CODE (tree010
) == INTEGER_CST
7490 && 0 == compare_tree_int (tree010
,
7492 (TREE_TYPE (TREE_OPERAND
7494 && operand_equal_p (tree11
, tree011
, 0))
7495 return build2 ((code0
!= LSHIFT_EXPR
7498 type
, TREE_OPERAND (arg0
, 0), tree11
);
7504 /* In most languages, can't associate operations on floats through
7505 parentheses. Rather than remember where the parentheses were, we
7506 don't associate floats at all, unless the user has specified
7507 -funsafe-math-optimizations. */
7510 && (! FLOAT_TYPE_P (type
) || flag_unsafe_math_optimizations
))
7512 tree var0
, con0
, lit0
, minus_lit0
;
7513 tree var1
, con1
, lit1
, minus_lit1
;
7515 /* Split both trees into variables, constants, and literals. Then
7516 associate each group together, the constants with literals,
7517 then the result with variables. This increases the chances of
7518 literals being recombined later and of generating relocatable
7519 expressions for the sum of a constant and literal. */
7520 var0
= split_tree (arg0
, code
, &con0
, &lit0
, &minus_lit0
, 0);
7521 var1
= split_tree (arg1
, code
, &con1
, &lit1
, &minus_lit1
,
7522 code
== MINUS_EXPR
);
7524 /* Only do something if we found more than two objects. Otherwise,
7525 nothing has changed and we risk infinite recursion. */
7526 if (2 < ((var0
!= 0) + (var1
!= 0)
7527 + (con0
!= 0) + (con1
!= 0)
7528 + (lit0
!= 0) + (lit1
!= 0)
7529 + (minus_lit0
!= 0) + (minus_lit1
!= 0)))
7531 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
7532 if (code
== MINUS_EXPR
)
7535 var0
= associate_trees (var0
, var1
, code
, type
);
7536 con0
= associate_trees (con0
, con1
, code
, type
);
7537 lit0
= associate_trees (lit0
, lit1
, code
, type
);
7538 minus_lit0
= associate_trees (minus_lit0
, minus_lit1
, code
, type
);
7540 /* Preserve the MINUS_EXPR if the negative part of the literal is
7541 greater than the positive part. Otherwise, the multiplicative
7542 folding code (i.e extract_muldiv) may be fooled in case
7543 unsigned constants are subtracted, like in the following
7544 example: ((X*2 + 4) - 8U)/2. */
7545 if (minus_lit0
&& lit0
)
7547 if (TREE_CODE (lit0
) == INTEGER_CST
7548 && TREE_CODE (minus_lit0
) == INTEGER_CST
7549 && tree_int_cst_lt (lit0
, minus_lit0
))
7551 minus_lit0
= associate_trees (minus_lit0
, lit0
,
7557 lit0
= associate_trees (lit0
, minus_lit0
,
7565 return fold_convert (type
,
7566 associate_trees (var0
, minus_lit0
,
7570 con0
= associate_trees (con0
, minus_lit0
,
7572 return fold_convert (type
,
7573 associate_trees (var0
, con0
,
7578 con0
= associate_trees (con0
, lit0
, code
, type
);
7579 return fold_convert (type
, associate_trees (var0
, con0
,
7586 t1
= const_binop (code
, arg0
, arg1
, 0);
7587 if (t1
!= NULL_TREE
)
7589 /* The return value should always have
7590 the same type as the original expression. */
7591 if (TREE_TYPE (t1
) != type
)
7592 t1
= fold_convert (type
, t1
);
7599 /* A - (-B) -> A + B */
7600 if (TREE_CODE (arg1
) == NEGATE_EXPR
)
7601 return fold_build2 (PLUS_EXPR
, type
, arg0
, TREE_OPERAND (arg1
, 0));
7602 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
7603 if (TREE_CODE (arg0
) == NEGATE_EXPR
7604 && (FLOAT_TYPE_P (type
)
7605 || (INTEGRAL_TYPE_P (type
) && flag_wrapv
&& !flag_trapv
))
7606 && negate_expr_p (arg1
)
7607 && reorder_operands_p (arg0
, arg1
))
7608 return fold_build2 (MINUS_EXPR
, type
, negate_expr (arg1
),
7609 TREE_OPERAND (arg0
, 0));
7610 /* Convert -A - 1 to ~A. */
7611 if (INTEGRAL_TYPE_P (type
)
7612 && TREE_CODE (arg0
) == NEGATE_EXPR
7613 && integer_onep (arg1
))
7614 return fold_build1 (BIT_NOT_EXPR
, type
, TREE_OPERAND (arg0
, 0));
7616 /* Convert -1 - A to ~A. */
7617 if (INTEGRAL_TYPE_P (type
)
7618 && integer_all_onesp (arg0
))
7619 return fold_build1 (BIT_NOT_EXPR
, type
, arg1
);
7621 if (! FLOAT_TYPE_P (type
))
7623 if (! wins
&& integer_zerop (arg0
))
7624 return negate_expr (fold_convert (type
, arg1
));
7625 if (integer_zerop (arg1
))
7626 return non_lvalue (fold_convert (type
, arg0
));
7628 /* Fold A - (A & B) into ~B & A. */
7629 if (!TREE_SIDE_EFFECTS (arg0
)
7630 && TREE_CODE (arg1
) == BIT_AND_EXPR
)
7632 if (operand_equal_p (arg0
, TREE_OPERAND (arg1
, 1), 0))
7633 return fold_build2 (BIT_AND_EXPR
, type
,
7634 fold_build1 (BIT_NOT_EXPR
, type
,
7635 TREE_OPERAND (arg1
, 0)),
7637 if (operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
7638 return fold_build2 (BIT_AND_EXPR
, type
,
7639 fold_build1 (BIT_NOT_EXPR
, type
,
7640 TREE_OPERAND (arg1
, 1)),
7644 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
7645 any power of 2 minus 1. */
7646 if (TREE_CODE (arg0
) == BIT_AND_EXPR
7647 && TREE_CODE (arg1
) == BIT_AND_EXPR
7648 && operand_equal_p (TREE_OPERAND (arg0
, 0),
7649 TREE_OPERAND (arg1
, 0), 0))
7651 tree mask0
= TREE_OPERAND (arg0
, 1);
7652 tree mask1
= TREE_OPERAND (arg1
, 1);
7653 tree tem
= fold_build1 (BIT_NOT_EXPR
, type
, mask0
);
7655 if (operand_equal_p (tem
, mask1
, 0))
7657 tem
= fold_build2 (BIT_XOR_EXPR
, type
,
7658 TREE_OPERAND (arg0
, 0), mask1
);
7659 return fold_build2 (MINUS_EXPR
, type
, tem
, mask1
);
7664 /* See if ARG1 is zero and X - ARG1 reduces to X. */
7665 else if (fold_real_zero_addition_p (TREE_TYPE (arg0
), arg1
, 1))
7666 return non_lvalue (fold_convert (type
, arg0
));
7668 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
7669 ARG0 is zero and X + ARG0 reduces to X, since that would mean
7670 (-ARG1 + ARG0) reduces to -ARG1. */
7671 else if (!wins
&& fold_real_zero_addition_p (TREE_TYPE (arg1
), arg0
, 0))
7672 return negate_expr (fold_convert (type
, arg1
));
7674 /* Fold &x - &x. This can happen from &x.foo - &x.
7675 This is unsafe for certain floats even in non-IEEE formats.
7676 In IEEE, it is unsafe because it does wrong for NaNs.
7677 Also note that operand_equal_p is always false if an operand
7680 if ((! FLOAT_TYPE_P (type
) || flag_unsafe_math_optimizations
)
7681 && operand_equal_p (arg0
, arg1
, 0))
7682 return fold_convert (type
, integer_zero_node
);
7684 /* A - B -> A + (-B) if B is easily negatable. */
7685 if (!wins
&& negate_expr_p (arg1
)
7686 && ((FLOAT_TYPE_P (type
)
7687 /* Avoid this transformation if B is a positive REAL_CST. */
7688 && (TREE_CODE (arg1
) != REAL_CST
7689 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1
))))
7690 || (INTEGRAL_TYPE_P (type
) && flag_wrapv
&& !flag_trapv
)))
7691 return fold_build2 (PLUS_EXPR
, type
,
7692 fold_convert (type
, arg0
),
7693 fold_convert (type
, negate_expr (arg1
)));
7695 /* Try folding difference of addresses. */
7699 if ((TREE_CODE (arg0
) == ADDR_EXPR
7700 || TREE_CODE (arg1
) == ADDR_EXPR
)
7701 && ptr_difference_const (arg0
, arg1
, &diff
))
7702 return build_int_cst_type (type
, diff
);
7705 /* Fold &a[i] - &a[j] to i-j. */
7706 if (TREE_CODE (arg0
) == ADDR_EXPR
7707 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ARRAY_REF
7708 && TREE_CODE (arg1
) == ADDR_EXPR
7709 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ARRAY_REF
)
7711 tree aref0
= TREE_OPERAND (arg0
, 0);
7712 tree aref1
= TREE_OPERAND (arg1
, 0);
7713 if (operand_equal_p (TREE_OPERAND (aref0
, 0),
7714 TREE_OPERAND (aref1
, 0), 0))
7716 tree op0
= fold_convert (type
, TREE_OPERAND (aref0
, 1));
7717 tree op1
= fold_convert (type
, TREE_OPERAND (aref1
, 1));
7718 tree esz
= array_ref_element_size (aref0
);
7719 tree diff
= build2 (MINUS_EXPR
, type
, op0
, op1
);
7720 return fold_build2 (MULT_EXPR
, type
, diff
,
7721 fold_convert (type
, esz
));
7726 /* Try replacing &a[i1] - c * i2 with &a[i1 - i2], if c is step
7727 of the array. Loop optimizer sometimes produce this type of
7729 if (TREE_CODE (arg0
) == ADDR_EXPR
)
7731 tem
= try_move_mult_to_index (MINUS_EXPR
, arg0
, arg1
);
7733 return fold_convert (type
, tem
);
7736 if (flag_unsafe_math_optimizations
7737 && (TREE_CODE (arg0
) == RDIV_EXPR
|| TREE_CODE (arg0
) == MULT_EXPR
)
7738 && (TREE_CODE (arg1
) == RDIV_EXPR
|| TREE_CODE (arg1
) == MULT_EXPR
)
7739 && (tem
= distribute_real_division (code
, type
, arg0
, arg1
)))
7742 if (TREE_CODE (arg0
) == MULT_EXPR
7743 && TREE_CODE (arg1
) == MULT_EXPR
7744 && (!FLOAT_TYPE_P (type
) || flag_unsafe_math_optimizations
))
7746 /* (A * C) - (B * C) -> (A-B) * C. */
7747 if (operand_equal_p (TREE_OPERAND (arg0
, 1),
7748 TREE_OPERAND (arg1
, 1), 0))
7749 return fold_build2 (MULT_EXPR
, type
,
7750 fold_build2 (MINUS_EXPR
, type
,
7751 TREE_OPERAND (arg0
, 0),
7752 TREE_OPERAND (arg1
, 0)),
7753 TREE_OPERAND (arg0
, 1));
7754 /* (A * C1) - (A * C2) -> A * (C1-C2). */
7755 if (operand_equal_p (TREE_OPERAND (arg0
, 0),
7756 TREE_OPERAND (arg1
, 0), 0))
7757 return fold_build2 (MULT_EXPR
, type
,
7758 TREE_OPERAND (arg0
, 0),
7759 fold_build2 (MINUS_EXPR
, type
,
7760 TREE_OPERAND (arg0
, 1),
7761 TREE_OPERAND (arg1
, 1)));
7767 /* (-A) * (-B) -> A * B */
7768 if (TREE_CODE (arg0
) == NEGATE_EXPR
&& negate_expr_p (arg1
))
7769 return fold_build2 (MULT_EXPR
, type
,
7770 TREE_OPERAND (arg0
, 0),
7771 negate_expr (arg1
));
7772 if (TREE_CODE (arg1
) == NEGATE_EXPR
&& negate_expr_p (arg0
))
7773 return fold_build2 (MULT_EXPR
, type
,
7775 TREE_OPERAND (arg1
, 0));
7777 if (! FLOAT_TYPE_P (type
))
7779 if (integer_zerop (arg1
))
7780 return omit_one_operand (type
, arg1
, arg0
);
7781 if (integer_onep (arg1
))
7782 return non_lvalue (fold_convert (type
, arg0
));
7783 /* Transform x * -1 into -x. */
7784 if (integer_all_onesp (arg1
))
7785 return fold_convert (type
, negate_expr (arg0
));
7787 /* (a * (1 << b)) is (a << b) */
7788 if (TREE_CODE (arg1
) == LSHIFT_EXPR
7789 && integer_onep (TREE_OPERAND (arg1
, 0)))
7790 return fold_build2 (LSHIFT_EXPR
, type
, arg0
,
7791 TREE_OPERAND (arg1
, 1));
7792 if (TREE_CODE (arg0
) == LSHIFT_EXPR
7793 && integer_onep (TREE_OPERAND (arg0
, 0)))
7794 return fold_build2 (LSHIFT_EXPR
, type
, arg1
,
7795 TREE_OPERAND (arg0
, 1));
7797 if (TREE_CODE (arg1
) == INTEGER_CST
7798 && 0 != (tem
= extract_muldiv (op0
,
7799 fold_convert (type
, arg1
),
7801 return fold_convert (type
, tem
);
7806 /* Maybe fold x * 0 to 0. The expressions aren't the same
7807 when x is NaN, since x * 0 is also NaN. Nor are they the
7808 same in modes with signed zeros, since multiplying a
7809 negative value by 0 gives -0, not +0. */
7810 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
)))
7811 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0
)))
7812 && real_zerop (arg1
))
7813 return omit_one_operand (type
, arg1
, arg0
);
7814 /* In IEEE floating point, x*1 is not equivalent to x for snans. */
7815 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
7816 && real_onep (arg1
))
7817 return non_lvalue (fold_convert (type
, arg0
));
7819 /* Transform x * -1.0 into -x. */
7820 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
7821 && real_minus_onep (arg1
))
7822 return fold_convert (type
, negate_expr (arg0
));
7824 /* Convert (C1/X)*C2 into (C1*C2)/X. */
7825 if (flag_unsafe_math_optimizations
7826 && TREE_CODE (arg0
) == RDIV_EXPR
7827 && TREE_CODE (arg1
) == REAL_CST
7828 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == REAL_CST
)
7830 tree tem
= const_binop (MULT_EXPR
, TREE_OPERAND (arg0
, 0),
7833 return fold_build2 (RDIV_EXPR
, type
, tem
,
7834 TREE_OPERAND (arg0
, 1));
7837 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
7838 if (operand_equal_p (arg0
, arg1
, 0))
7840 tree tem
= fold_strip_sign_ops (arg0
);
7841 if (tem
!= NULL_TREE
)
7843 tem
= fold_convert (type
, tem
);
7844 return fold_build2 (MULT_EXPR
, type
, tem
, tem
);
7848 if (flag_unsafe_math_optimizations
)
7850 enum built_in_function fcode0
= builtin_mathfn_code (arg0
);
7851 enum built_in_function fcode1
= builtin_mathfn_code (arg1
);
7853 /* Optimizations of root(...)*root(...). */
7854 if (fcode0
== fcode1
&& BUILTIN_ROOT_P (fcode0
))
7856 tree rootfn
, arg
, arglist
;
7857 tree arg00
= TREE_VALUE (TREE_OPERAND (arg0
, 1));
7858 tree arg10
= TREE_VALUE (TREE_OPERAND (arg1
, 1));
7860 /* Optimize sqrt(x)*sqrt(x) as x. */
7861 if (BUILTIN_SQRT_P (fcode0
)
7862 && operand_equal_p (arg00
, arg10
, 0)
7863 && ! HONOR_SNANS (TYPE_MODE (type
)))
7866 /* Optimize root(x)*root(y) as root(x*y). */
7867 rootfn
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
7868 arg
= fold_build2 (MULT_EXPR
, type
, arg00
, arg10
);
7869 arglist
= build_tree_list (NULL_TREE
, arg
);
7870 return build_function_call_expr (rootfn
, arglist
);
7873 /* Optimize expN(x)*expN(y) as expN(x+y). */
7874 if (fcode0
== fcode1
&& BUILTIN_EXPONENT_P (fcode0
))
7876 tree expfn
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
7877 tree arg
= fold_build2 (PLUS_EXPR
, type
,
7878 TREE_VALUE (TREE_OPERAND (arg0
, 1)),
7879 TREE_VALUE (TREE_OPERAND (arg1
, 1)));
7880 tree arglist
= build_tree_list (NULL_TREE
, arg
);
7881 return build_function_call_expr (expfn
, arglist
);
7884 /* Optimizations of pow(...)*pow(...). */
7885 if ((fcode0
== BUILT_IN_POW
&& fcode1
== BUILT_IN_POW
)
7886 || (fcode0
== BUILT_IN_POWF
&& fcode1
== BUILT_IN_POWF
)
7887 || (fcode0
== BUILT_IN_POWL
&& fcode1
== BUILT_IN_POWL
))
7889 tree arg00
= TREE_VALUE (TREE_OPERAND (arg0
, 1));
7890 tree arg01
= TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0
,
7892 tree arg10
= TREE_VALUE (TREE_OPERAND (arg1
, 1));
7893 tree arg11
= TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1
,
7896 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
7897 if (operand_equal_p (arg01
, arg11
, 0))
7899 tree powfn
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
7900 tree arg
= fold_build2 (MULT_EXPR
, type
, arg00
, arg10
);
7901 tree arglist
= tree_cons (NULL_TREE
, arg
,
7902 build_tree_list (NULL_TREE
,
7904 return build_function_call_expr (powfn
, arglist
);
7907 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
7908 if (operand_equal_p (arg00
, arg10
, 0))
7910 tree powfn
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
7911 tree arg
= fold_build2 (PLUS_EXPR
, type
, arg01
, arg11
);
7912 tree arglist
= tree_cons (NULL_TREE
, arg00
,
7913 build_tree_list (NULL_TREE
,
7915 return build_function_call_expr (powfn
, arglist
);
7919 /* Optimize tan(x)*cos(x) as sin(x). */
7920 if (((fcode0
== BUILT_IN_TAN
&& fcode1
== BUILT_IN_COS
)
7921 || (fcode0
== BUILT_IN_TANF
&& fcode1
== BUILT_IN_COSF
)
7922 || (fcode0
== BUILT_IN_TANL
&& fcode1
== BUILT_IN_COSL
)
7923 || (fcode0
== BUILT_IN_COS
&& fcode1
== BUILT_IN_TAN
)
7924 || (fcode0
== BUILT_IN_COSF
&& fcode1
== BUILT_IN_TANF
)
7925 || (fcode0
== BUILT_IN_COSL
&& fcode1
== BUILT_IN_TANL
))
7926 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0
, 1)),
7927 TREE_VALUE (TREE_OPERAND (arg1
, 1)), 0))
7929 tree sinfn
= mathfn_built_in (type
, BUILT_IN_SIN
);
7931 if (sinfn
!= NULL_TREE
)
7932 return build_function_call_expr (sinfn
,
7933 TREE_OPERAND (arg0
, 1));
7936 /* Optimize x*pow(x,c) as pow(x,c+1). */
7937 if (fcode1
== BUILT_IN_POW
7938 || fcode1
== BUILT_IN_POWF
7939 || fcode1
== BUILT_IN_POWL
)
7941 tree arg10
= TREE_VALUE (TREE_OPERAND (arg1
, 1));
7942 tree arg11
= TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1
,
7944 if (TREE_CODE (arg11
) == REAL_CST
7945 && ! TREE_CONSTANT_OVERFLOW (arg11
)
7946 && operand_equal_p (arg0
, arg10
, 0))
7948 tree powfn
= TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0);
7952 c
= TREE_REAL_CST (arg11
);
7953 real_arithmetic (&c
, PLUS_EXPR
, &c
, &dconst1
);
7954 arg
= build_real (type
, c
);
7955 arglist
= build_tree_list (NULL_TREE
, arg
);
7956 arglist
= tree_cons (NULL_TREE
, arg0
, arglist
);
7957 return build_function_call_expr (powfn
, arglist
);
7961 /* Optimize pow(x,c)*x as pow(x,c+1). */
7962 if (fcode0
== BUILT_IN_POW
7963 || fcode0
== BUILT_IN_POWF
7964 || fcode0
== BUILT_IN_POWL
)
7966 tree arg00
= TREE_VALUE (TREE_OPERAND (arg0
, 1));
7967 tree arg01
= TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0
,
7969 if (TREE_CODE (arg01
) == REAL_CST
7970 && ! TREE_CONSTANT_OVERFLOW (arg01
)
7971 && operand_equal_p (arg1
, arg00
, 0))
7973 tree powfn
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
7977 c
= TREE_REAL_CST (arg01
);
7978 real_arithmetic (&c
, PLUS_EXPR
, &c
, &dconst1
);
7979 arg
= build_real (type
, c
);
7980 arglist
= build_tree_list (NULL_TREE
, arg
);
7981 arglist
= tree_cons (NULL_TREE
, arg1
, arglist
);
7982 return build_function_call_expr (powfn
, arglist
);
7986 /* Optimize x*x as pow(x,2.0), which is expanded as x*x. */
7988 && operand_equal_p (arg0
, arg1
, 0))
7990 tree powfn
= mathfn_built_in (type
, BUILT_IN_POW
);
7994 tree arg
= build_real (type
, dconst2
);
7995 tree arglist
= build_tree_list (NULL_TREE
, arg
);
7996 arglist
= tree_cons (NULL_TREE
, arg0
, arglist
);
7997 return build_function_call_expr (powfn
, arglist
);
8006 if (integer_all_onesp (arg1
))
8007 return omit_one_operand (type
, arg1
, arg0
);
8008 if (integer_zerop (arg1
))
8009 return non_lvalue (fold_convert (type
, arg0
));
8010 if (operand_equal_p (arg0
, arg1
, 0))
8011 return non_lvalue (fold_convert (type
, arg0
));
8014 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
8015 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
8017 t1
= build_int_cst (type
, -1);
8018 t1
= force_fit_type (t1
, 0, false, false);
8019 return omit_one_operand (type
, t1
, arg1
);
8023 if (TREE_CODE (arg1
) == BIT_NOT_EXPR
8024 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
8026 t1
= build_int_cst (type
, -1);
8027 t1
= force_fit_type (t1
, 0, false, false);
8028 return omit_one_operand (type
, t1
, arg0
);
8031 t1
= distribute_bit_expr (code
, type
, arg0
, arg1
);
8032 if (t1
!= NULL_TREE
)
8035 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
8037 This results in more efficient code for machines without a NAND
8038 instruction. Combine will canonicalize to the first form
8039 which will allow use of NAND instructions provided by the
8040 backend if they exist. */
8041 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
8042 && TREE_CODE (arg1
) == BIT_NOT_EXPR
)
8044 return fold_build1 (BIT_NOT_EXPR
, type
,
8045 build2 (BIT_AND_EXPR
, type
,
8046 TREE_OPERAND (arg0
, 0),
8047 TREE_OPERAND (arg1
, 0)));
8050 /* See if this can be simplified into a rotate first. If that
8051 is unsuccessful continue in the association code. */
8055 if (integer_zerop (arg1
))
8056 return non_lvalue (fold_convert (type
, arg0
));
8057 if (integer_all_onesp (arg1
))
8058 return fold_build1 (BIT_NOT_EXPR
, type
, arg0
);
8059 if (operand_equal_p (arg0
, arg1
, 0))
8060 return omit_one_operand (type
, integer_zero_node
, arg0
);
8063 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
8064 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
8066 t1
= build_int_cst (type
, -1);
8067 t1
= force_fit_type (t1
, 0, false, false);
8068 return omit_one_operand (type
, t1
, arg1
);
8072 if (TREE_CODE (arg1
) == BIT_NOT_EXPR
8073 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
8075 t1
= build_int_cst (type
, -1);
8076 t1
= force_fit_type (t1
, 0, false, false);
8077 return omit_one_operand (type
, t1
, arg0
);
8080 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
8081 with a constant, and the two constants have no bits in common,
8082 we should treat this as a BIT_IOR_EXPR since this may produce more
8084 if (TREE_CODE (arg0
) == BIT_AND_EXPR
8085 && TREE_CODE (arg1
) == BIT_AND_EXPR
8086 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8087 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
8088 && integer_zerop (const_binop (BIT_AND_EXPR
,
8089 TREE_OPERAND (arg0
, 1),
8090 TREE_OPERAND (arg1
, 1), 0)))
8092 code
= BIT_IOR_EXPR
;
8096 /* (X | Y) ^ X -> Y & ~ X*/
8097 if (TREE_CODE (arg0
) == BIT_IOR_EXPR
8098 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
8100 tree t2
= TREE_OPERAND (arg0
, 1);
8101 t1
= fold_build1 (BIT_NOT_EXPR
, TREE_TYPE (arg1
),
8103 t1
= fold_build2 (BIT_AND_EXPR
, type
, fold_convert (type
, t2
),
8104 fold_convert (type
, t1
));
8108 /* (Y | X) ^ X -> Y & ~ X*/
8109 if (TREE_CODE (arg0
) == BIT_IOR_EXPR
8110 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
8112 tree t2
= TREE_OPERAND (arg0
, 0);
8113 t1
= fold_build1 (BIT_NOT_EXPR
, TREE_TYPE (arg1
),
8115 t1
= fold_build2 (BIT_AND_EXPR
, type
, fold_convert (type
, t2
),
8116 fold_convert (type
, t1
));
8120 /* X ^ (X | Y) -> Y & ~ X*/
8121 if (TREE_CODE (arg1
) == BIT_IOR_EXPR
8122 && operand_equal_p (TREE_OPERAND (arg1
, 0), arg0
, 0))
8124 tree t2
= TREE_OPERAND (arg1
, 1);
8125 t1
= fold_build1 (BIT_NOT_EXPR
, TREE_TYPE (arg0
),
8127 t1
= fold_build2 (BIT_AND_EXPR
, type
, fold_convert (type
, t2
),
8128 fold_convert (type
, t1
));
8132 /* X ^ (Y | X) -> Y & ~ X*/
8133 if (TREE_CODE (arg1
) == BIT_IOR_EXPR
8134 && operand_equal_p (TREE_OPERAND (arg1
, 1), arg0
, 0))
8136 tree t2
= TREE_OPERAND (arg1
, 0);
8137 t1
= fold_build1 (BIT_NOT_EXPR
, TREE_TYPE (arg0
),
8139 t1
= fold_build2 (BIT_AND_EXPR
, type
, fold_convert (type
, t2
),
8140 fold_convert (type
, t1
));
8144 /* Convert ~X ^ ~Y to X ^ Y. */
8145 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
8146 && TREE_CODE (arg1
) == BIT_NOT_EXPR
)
8147 return fold_build2 (code
, type
,
8148 fold_convert (type
, TREE_OPERAND (arg0
, 0)),
8149 fold_convert (type
, TREE_OPERAND (arg1
, 0)));
8151 /* See if this can be simplified into a rotate first. If that
8152 is unsuccessful continue in the association code. */
8156 if (integer_all_onesp (arg1
))
8157 return non_lvalue (fold_convert (type
, arg0
));
8158 if (integer_zerop (arg1
))
8159 return omit_one_operand (type
, arg1
, arg0
);
8160 if (operand_equal_p (arg0
, arg1
, 0))
8161 return non_lvalue (fold_convert (type
, arg0
));
8163 /* ~X & X is always zero. */
8164 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
8165 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
8166 return omit_one_operand (type
, integer_zero_node
, arg1
);
8168 /* X & ~X is always zero. */
8169 if (TREE_CODE (arg1
) == BIT_NOT_EXPR
8170 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
8171 return omit_one_operand (type
, integer_zero_node
, arg0
);
8173 t1
= distribute_bit_expr (code
, type
, arg0
, arg1
);
8174 if (t1
!= NULL_TREE
)
8176 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
8177 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) == NOP_EXPR
8178 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0
, 0))))
8181 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0
, 0)));
8183 if (prec
< BITS_PER_WORD
&& prec
< HOST_BITS_PER_WIDE_INT
8184 && (~TREE_INT_CST_LOW (arg1
)
8185 & (((HOST_WIDE_INT
) 1 << prec
) - 1)) == 0)
8186 return fold_convert (type
, TREE_OPERAND (arg0
, 0));
8189 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
8191 This results in more efficient code for machines without a NOR
8192 instruction. Combine will canonicalize to the first form
8193 which will allow use of NOR instructions provided by the
8194 backend if they exist. */
8195 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
8196 && TREE_CODE (arg1
) == BIT_NOT_EXPR
)
8198 return fold_build1 (BIT_NOT_EXPR
, type
,
8199 build2 (BIT_IOR_EXPR
, type
,
8200 TREE_OPERAND (arg0
, 0),
8201 TREE_OPERAND (arg1
, 0)));
8207 /* Don't touch a floating-point divide by zero unless the mode
8208 of the constant can represent infinity. */
8209 if (TREE_CODE (arg1
) == REAL_CST
8210 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1
)))
8211 && real_zerop (arg1
))
8214 /* (-A) / (-B) -> A / B */
8215 if (TREE_CODE (arg0
) == NEGATE_EXPR
&& negate_expr_p (arg1
))
8216 return fold_build2 (RDIV_EXPR
, type
,
8217 TREE_OPERAND (arg0
, 0),
8218 negate_expr (arg1
));
8219 if (TREE_CODE (arg1
) == NEGATE_EXPR
&& negate_expr_p (arg0
))
8220 return fold_build2 (RDIV_EXPR
, type
,
8222 TREE_OPERAND (arg1
, 0));
8224 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
8225 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
8226 && real_onep (arg1
))
8227 return non_lvalue (fold_convert (type
, arg0
));
8229 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
8230 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
8231 && real_minus_onep (arg1
))
8232 return non_lvalue (fold_convert (type
, negate_expr (arg0
)));
8234 /* If ARG1 is a constant, we can convert this to a multiply by the
8235 reciprocal. This does not have the same rounding properties,
8236 so only do this if -funsafe-math-optimizations. We can actually
8237 always safely do it if ARG1 is a power of two, but it's hard to
8238 tell if it is or not in a portable manner. */
8239 if (TREE_CODE (arg1
) == REAL_CST
)
8241 if (flag_unsafe_math_optimizations
8242 && 0 != (tem
= const_binop (code
, build_real (type
, dconst1
),
8244 return fold_build2 (MULT_EXPR
, type
, arg0
, tem
);
8245 /* Find the reciprocal if optimizing and the result is exact. */
8249 r
= TREE_REAL_CST (arg1
);
8250 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0
)), &r
))
8252 tem
= build_real (type
, r
);
8253 return fold_build2 (MULT_EXPR
, type
,
8254 fold_convert (type
, arg0
), tem
);
8258 /* Convert A/B/C to A/(B*C). */
8259 if (flag_unsafe_math_optimizations
8260 && TREE_CODE (arg0
) == RDIV_EXPR
)
8261 return fold_build2 (RDIV_EXPR
, type
, TREE_OPERAND (arg0
, 0),
8262 fold_build2 (MULT_EXPR
, type
,
8263 TREE_OPERAND (arg0
, 1), arg1
));
8265 /* Convert A/(B/C) to (A/B)*C. */
8266 if (flag_unsafe_math_optimizations
8267 && TREE_CODE (arg1
) == RDIV_EXPR
)
8268 return fold_build2 (MULT_EXPR
, type
,
8269 fold_build2 (RDIV_EXPR
, type
, arg0
,
8270 TREE_OPERAND (arg1
, 0)),
8271 TREE_OPERAND (arg1
, 1));
8273 /* Convert C1/(X*C2) into (C1/C2)/X. */
8274 if (flag_unsafe_math_optimizations
8275 && TREE_CODE (arg1
) == MULT_EXPR
8276 && TREE_CODE (arg0
) == REAL_CST
8277 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == REAL_CST
)
8279 tree tem
= const_binop (RDIV_EXPR
, arg0
,
8280 TREE_OPERAND (arg1
, 1), 0);
8282 return fold_build2 (RDIV_EXPR
, type
, tem
,
8283 TREE_OPERAND (arg1
, 0));
8286 if (flag_unsafe_math_optimizations
)
8288 enum built_in_function fcode
= builtin_mathfn_code (arg1
);
8289 /* Optimize x/expN(y) into x*expN(-y). */
8290 if (BUILTIN_EXPONENT_P (fcode
))
8292 tree expfn
= TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0);
8293 tree arg
= negate_expr (TREE_VALUE (TREE_OPERAND (arg1
, 1)));
8294 tree arglist
= build_tree_list (NULL_TREE
,
8295 fold_convert (type
, arg
));
8296 arg1
= build_function_call_expr (expfn
, arglist
);
8297 return fold_build2 (MULT_EXPR
, type
, arg0
, arg1
);
8300 /* Optimize x/pow(y,z) into x*pow(y,-z). */
8301 if (fcode
== BUILT_IN_POW
8302 || fcode
== BUILT_IN_POWF
8303 || fcode
== BUILT_IN_POWL
)
8305 tree powfn
= TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0);
8306 tree arg10
= TREE_VALUE (TREE_OPERAND (arg1
, 1));
8307 tree arg11
= TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1
, 1)));
8308 tree neg11
= fold_convert (type
, negate_expr (arg11
));
8309 tree arglist
= tree_cons(NULL_TREE
, arg10
,
8310 build_tree_list (NULL_TREE
, neg11
));
8311 arg1
= build_function_call_expr (powfn
, arglist
);
8312 return fold_build2 (MULT_EXPR
, type
, arg0
, arg1
);
8316 if (flag_unsafe_math_optimizations
)
8318 enum built_in_function fcode0
= builtin_mathfn_code (arg0
);
8319 enum built_in_function fcode1
= builtin_mathfn_code (arg1
);
8321 /* Optimize sin(x)/cos(x) as tan(x). */
8322 if (((fcode0
== BUILT_IN_SIN
&& fcode1
== BUILT_IN_COS
)
8323 || (fcode0
== BUILT_IN_SINF
&& fcode1
== BUILT_IN_COSF
)
8324 || (fcode0
== BUILT_IN_SINL
&& fcode1
== BUILT_IN_COSL
))
8325 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0
, 1)),
8326 TREE_VALUE (TREE_OPERAND (arg1
, 1)), 0))
8328 tree tanfn
= mathfn_built_in (type
, BUILT_IN_TAN
);
8330 if (tanfn
!= NULL_TREE
)
8331 return build_function_call_expr (tanfn
,
8332 TREE_OPERAND (arg0
, 1));
8335 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
8336 if (((fcode0
== BUILT_IN_COS
&& fcode1
== BUILT_IN_SIN
)
8337 || (fcode0
== BUILT_IN_COSF
&& fcode1
== BUILT_IN_SINF
)
8338 || (fcode0
== BUILT_IN_COSL
&& fcode1
== BUILT_IN_SINL
))
8339 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0
, 1)),
8340 TREE_VALUE (TREE_OPERAND (arg1
, 1)), 0))
8342 tree tanfn
= mathfn_built_in (type
, BUILT_IN_TAN
);
8344 if (tanfn
!= NULL_TREE
)
8346 tree tmp
= TREE_OPERAND (arg0
, 1);
8347 tmp
= build_function_call_expr (tanfn
, tmp
);
8348 return fold_build2 (RDIV_EXPR
, type
,
8349 build_real (type
, dconst1
), tmp
);
8353 /* Optimize pow(x,c)/x as pow(x,c-1). */
8354 if (fcode0
== BUILT_IN_POW
8355 || fcode0
== BUILT_IN_POWF
8356 || fcode0
== BUILT_IN_POWL
)
8358 tree arg00
= TREE_VALUE (TREE_OPERAND (arg0
, 1));
8359 tree arg01
= TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0
, 1)));
8360 if (TREE_CODE (arg01
) == REAL_CST
8361 && ! TREE_CONSTANT_OVERFLOW (arg01
)
8362 && operand_equal_p (arg1
, arg00
, 0))
8364 tree powfn
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
8368 c
= TREE_REAL_CST (arg01
);
8369 real_arithmetic (&c
, MINUS_EXPR
, &c
, &dconst1
);
8370 arg
= build_real (type
, c
);
8371 arglist
= build_tree_list (NULL_TREE
, arg
);
8372 arglist
= tree_cons (NULL_TREE
, arg1
, arglist
);
8373 return build_function_call_expr (powfn
, arglist
);
8379 case TRUNC_DIV_EXPR
:
8380 case ROUND_DIV_EXPR
:
8381 case FLOOR_DIV_EXPR
:
8383 case EXACT_DIV_EXPR
:
8384 if (integer_onep (arg1
))
8385 return non_lvalue (fold_convert (type
, arg0
));
8386 if (integer_zerop (arg1
))
8389 if (!TYPE_UNSIGNED (type
)
8390 && TREE_CODE (arg1
) == INTEGER_CST
8391 && TREE_INT_CST_LOW (arg1
) == (unsigned HOST_WIDE_INT
) -1
8392 && TREE_INT_CST_HIGH (arg1
) == -1)
8393 return fold_convert (type
, negate_expr (arg0
));
8395 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
8396 operation, EXACT_DIV_EXPR.
8398 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
8399 At one time others generated faster code, it's not clear if they do
8400 after the last round to changes to the DIV code in expmed.c. */
8401 if ((code
== CEIL_DIV_EXPR
|| code
== FLOOR_DIV_EXPR
)
8402 && multiple_of_p (type
, arg0
, arg1
))
8403 return fold_build2 (EXACT_DIV_EXPR
, type
, arg0
, arg1
);
8405 if (TREE_CODE (arg1
) == INTEGER_CST
8406 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
)))
8407 return fold_convert (type
, tem
);
8412 case FLOOR_MOD_EXPR
:
8413 case ROUND_MOD_EXPR
:
8414 case TRUNC_MOD_EXPR
:
8415 /* X % 1 is always zero, but be sure to preserve any side
8417 if (integer_onep (arg1
))
8418 return omit_one_operand (type
, integer_zero_node
, arg0
);
8420 /* X % 0, return X % 0 unchanged so that we can get the
8421 proper warnings and errors. */
8422 if (integer_zerop (arg1
))
8425 /* 0 % X is always zero, but be sure to preserve any side
8426 effects in X. Place this after checking for X == 0. */
8427 if (integer_zerop (arg0
))
8428 return omit_one_operand (type
, integer_zero_node
, arg1
);
8430 /* X % -1 is zero. */
8431 if (!TYPE_UNSIGNED (type
)
8432 && TREE_CODE (arg1
) == INTEGER_CST
8433 && TREE_INT_CST_LOW (arg1
) == (unsigned HOST_WIDE_INT
) -1
8434 && TREE_INT_CST_HIGH (arg1
) == -1)
8435 return omit_one_operand (type
, integer_zero_node
, arg0
);
8437 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
8438 i.e. "X % C" into "X & C2", if X and C are positive. */
8439 if ((code
== TRUNC_MOD_EXPR
|| code
== FLOOR_MOD_EXPR
)
8440 && (TYPE_UNSIGNED (type
) || tree_expr_nonnegative_p (arg0
))
8441 && integer_pow2p (arg1
) && tree_int_cst_sgn (arg1
) >= 0)
8443 unsigned HOST_WIDE_INT high
, low
;
8447 l
= tree_log2 (arg1
);
8448 if (l
>= HOST_BITS_PER_WIDE_INT
)
8450 high
= ((unsigned HOST_WIDE_INT
) 1
8451 << (l
- HOST_BITS_PER_WIDE_INT
)) - 1;
8457 low
= ((unsigned HOST_WIDE_INT
) 1 << l
) - 1;
8460 mask
= build_int_cst_wide (type
, low
, high
);
8461 return fold_build2 (BIT_AND_EXPR
, type
,
8462 fold_convert (type
, arg0
), mask
);
8465 /* X % -C is the same as X % C. */
8466 if (code
== TRUNC_MOD_EXPR
8467 && !TYPE_UNSIGNED (type
)
8468 && TREE_CODE (arg1
) == INTEGER_CST
8469 && !TREE_CONSTANT_OVERFLOW (arg1
)
8470 && TREE_INT_CST_HIGH (arg1
) < 0
8472 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
8473 && !sign_bit_p (arg1
, arg1
))
8474 return fold_build2 (code
, type
, fold_convert (type
, arg0
),
8475 fold_convert (type
, negate_expr (arg1
)));
8477 /* X % -Y is the same as X % Y. */
8478 if (code
== TRUNC_MOD_EXPR
8479 && !TYPE_UNSIGNED (type
)
8480 && TREE_CODE (arg1
) == NEGATE_EXPR
8482 return fold_build2 (code
, type
, fold_convert (type
, arg0
),
8483 fold_convert (type
, TREE_OPERAND (arg1
, 0)));
8485 if (TREE_CODE (arg1
) == INTEGER_CST
8486 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
)))
8487 return fold_convert (type
, tem
);
8493 if (integer_all_onesp (arg0
))
8494 return omit_one_operand (type
, arg0
, arg1
);
8498 /* Optimize -1 >> x for arithmetic right shifts. */
8499 if (integer_all_onesp (arg0
) && !TYPE_UNSIGNED (type
))
8500 return omit_one_operand (type
, arg0
, arg1
);
8501 /* ... fall through ... */
8505 if (integer_zerop (arg1
))
8506 return non_lvalue (fold_convert (type
, arg0
));
8507 if (integer_zerop (arg0
))
8508 return omit_one_operand (type
, arg0
, arg1
);
8510 /* Since negative shift count is not well-defined,
8511 don't try to compute it in the compiler. */
8512 if (TREE_CODE (arg1
) == INTEGER_CST
&& tree_int_cst_sgn (arg1
) < 0)
8515 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
8516 if (TREE_CODE (arg0
) == code
&& host_integerp (arg1
, false)
8517 && TREE_INT_CST_LOW (arg1
) < TYPE_PRECISION (type
)
8518 && host_integerp (TREE_OPERAND (arg0
, 1), false)
8519 && TREE_INT_CST_LOW (TREE_OPERAND (arg0
, 1)) < TYPE_PRECISION (type
))
8521 HOST_WIDE_INT low
= (TREE_INT_CST_LOW (TREE_OPERAND (arg0
, 1))
8522 + TREE_INT_CST_LOW (arg1
));
8524 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
8525 being well defined. */
8526 if (low
>= TYPE_PRECISION (type
))
8528 if (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
)
8529 low
= low
% TYPE_PRECISION (type
);
8530 else if (TYPE_UNSIGNED (type
) || code
== LSHIFT_EXPR
)
8531 return build_int_cst (type
, 0);
8533 low
= TYPE_PRECISION (type
) - 1;
8536 return fold_build2 (code
, type
, TREE_OPERAND (arg0
, 0),
8537 build_int_cst (type
, low
));
8540 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
8541 into x & ((unsigned)-1 >> c) for unsigned types. */
8542 if (((code
== LSHIFT_EXPR
&& TREE_CODE (arg0
) == RSHIFT_EXPR
)
8543 || (TYPE_UNSIGNED (type
)
8544 && code
== RSHIFT_EXPR
&& TREE_CODE (arg0
) == LSHIFT_EXPR
))
8545 && host_integerp (arg1
, false)
8546 && TREE_INT_CST_LOW (arg1
) < TYPE_PRECISION (type
)
8547 && host_integerp (TREE_OPERAND (arg0
, 1), false)
8548 && TREE_INT_CST_LOW (TREE_OPERAND (arg0
, 1)) < TYPE_PRECISION (type
))
8550 HOST_WIDE_INT low0
= TREE_INT_CST_LOW (TREE_OPERAND (arg0
, 1));
8551 HOST_WIDE_INT low1
= TREE_INT_CST_LOW (arg1
);
8557 arg00
= fold_convert (type
, TREE_OPERAND (arg0
, 0));
8559 lshift
= build_int_cst (type
, -1);
8560 lshift
= int_const_binop (code
, lshift
, arg1
, 0);
8562 return fold_build2 (BIT_AND_EXPR
, type
, arg00
, lshift
);
8566 /* Rewrite an LROTATE_EXPR by a constant into an
8567 RROTATE_EXPR by a new constant. */
8568 if (code
== LROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
)
8570 tree tem
= build_int_cst (NULL_TREE
,
8571 GET_MODE_BITSIZE (TYPE_MODE (type
)));
8572 tem
= fold_convert (TREE_TYPE (arg1
), tem
);
8573 tem
= const_binop (MINUS_EXPR
, tem
, arg1
, 0);
8574 return fold_build2 (RROTATE_EXPR
, type
, arg0
, tem
);
8577 /* If we have a rotate of a bit operation with the rotate count and
8578 the second operand of the bit operation both constant,
8579 permute the two operations. */
8580 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
8581 && (TREE_CODE (arg0
) == BIT_AND_EXPR
8582 || TREE_CODE (arg0
) == BIT_IOR_EXPR
8583 || TREE_CODE (arg0
) == BIT_XOR_EXPR
)
8584 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
8585 return fold_build2 (TREE_CODE (arg0
), type
,
8586 fold_build2 (code
, type
,
8587 TREE_OPERAND (arg0
, 0), arg1
),
8588 fold_build2 (code
, type
,
8589 TREE_OPERAND (arg0
, 1), arg1
));
8591 /* Two consecutive rotates adding up to the width of the mode can
8593 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
8594 && TREE_CODE (arg0
) == RROTATE_EXPR
8595 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8596 && TREE_INT_CST_HIGH (arg1
) == 0
8597 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0
, 1)) == 0
8598 && ((TREE_INT_CST_LOW (arg1
)
8599 + TREE_INT_CST_LOW (TREE_OPERAND (arg0
, 1)))
8600 == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type
))))
8601 return TREE_OPERAND (arg0
, 0);
8606 if (operand_equal_p (arg0
, arg1
, 0))
8607 return omit_one_operand (type
, arg0
, arg1
);
8608 if (INTEGRAL_TYPE_P (type
)
8609 && operand_equal_p (arg1
, TYPE_MIN_VALUE (type
), OEP_ONLY_CONST
))
8610 return omit_one_operand (type
, arg1
, arg0
);
8614 if (operand_equal_p (arg0
, arg1
, 0))
8615 return omit_one_operand (type
, arg0
, arg1
);
8616 if (INTEGRAL_TYPE_P (type
)
8617 && TYPE_MAX_VALUE (type
)
8618 && operand_equal_p (arg1
, TYPE_MAX_VALUE (type
), OEP_ONLY_CONST
))
8619 return omit_one_operand (type
, arg1
, arg0
);
8622 case TRUTH_ANDIF_EXPR
:
8623 /* Note that the operands of this must be ints
8624 and their values must be 0 or 1.
8625 ("true" is a fixed value perhaps depending on the language.) */
8626 /* If first arg is constant zero, return it. */
8627 if (integer_zerop (arg0
))
8628 return fold_convert (type
, arg0
);
8629 case TRUTH_AND_EXPR
:
8630 /* If either arg is constant true, drop it. */
8631 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
8632 return non_lvalue (fold_convert (type
, arg1
));
8633 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
)
8634 /* Preserve sequence points. */
8635 && (code
!= TRUTH_ANDIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
8636 return non_lvalue (fold_convert (type
, arg0
));
8637 /* If second arg is constant zero, result is zero, but first arg
8638 must be evaluated. */
8639 if (integer_zerop (arg1
))
8640 return omit_one_operand (type
, arg1
, arg0
);
8641 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
8642 case will be handled here. */
8643 if (integer_zerop (arg0
))
8644 return omit_one_operand (type
, arg0
, arg1
);
8646 /* !X && X is always false. */
8647 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
8648 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
8649 return omit_one_operand (type
, integer_zero_node
, arg1
);
8650 /* X && !X is always false. */
8651 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
8652 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
8653 return omit_one_operand (type
, integer_zero_node
, arg0
);
8655 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
8656 means A >= Y && A != MAX, but in this case we know that
8659 if (!TREE_SIDE_EFFECTS (arg0
)
8660 && !TREE_SIDE_EFFECTS (arg1
))
8662 tem
= fold_to_nonsharp_ineq_using_bound (arg0
, arg1
);
8663 if (tem
&& !operand_equal_p (tem
, arg0
, 0))
8664 return fold_build2 (code
, type
, tem
, arg1
);
8666 tem
= fold_to_nonsharp_ineq_using_bound (arg1
, arg0
);
8667 if (tem
&& !operand_equal_p (tem
, arg1
, 0))
8668 return fold_build2 (code
, type
, arg0
, tem
);
8672 /* We only do these simplifications if we are optimizing. */
8676 /* Check for things like (A || B) && (A || C). We can convert this
8677 to A || (B && C). Note that either operator can be any of the four
8678 truth and/or operations and the transformation will still be
8679 valid. Also note that we only care about order for the
8680 ANDIF and ORIF operators. If B contains side effects, this
8681 might change the truth-value of A. */
8682 if (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8683 && (TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
8684 || TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
8685 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
8686 || TREE_CODE (arg0
) == TRUTH_OR_EXPR
)
8687 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0
, 1)))
8689 tree a00
= TREE_OPERAND (arg0
, 0);
8690 tree a01
= TREE_OPERAND (arg0
, 1);
8691 tree a10
= TREE_OPERAND (arg1
, 0);
8692 tree a11
= TREE_OPERAND (arg1
, 1);
8693 int commutative
= ((TREE_CODE (arg0
) == TRUTH_OR_EXPR
8694 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
)
8695 && (code
== TRUTH_AND_EXPR
8696 || code
== TRUTH_OR_EXPR
));
8698 if (operand_equal_p (a00
, a10
, 0))
8699 return fold_build2 (TREE_CODE (arg0
), type
, a00
,
8700 fold_build2 (code
, type
, a01
, a11
));
8701 else if (commutative
&& operand_equal_p (a00
, a11
, 0))
8702 return fold_build2 (TREE_CODE (arg0
), type
, a00
,
8703 fold_build2 (code
, type
, a01
, a10
));
8704 else if (commutative
&& operand_equal_p (a01
, a10
, 0))
8705 return fold_build2 (TREE_CODE (arg0
), type
, a01
,
8706 fold_build2 (code
, type
, a00
, a11
));
8708 /* This case if tricky because we must either have commutative
8709 operators or else A10 must not have side-effects. */
8711 else if ((commutative
|| ! TREE_SIDE_EFFECTS (a10
))
8712 && operand_equal_p (a01
, a11
, 0))
8713 return fold_build2 (TREE_CODE (arg0
), type
,
8714 fold_build2 (code
, type
, a00
, a10
),
8718 /* See if we can build a range comparison. */
8719 if (0 != (tem
= fold_range_test (code
, type
, op0
, op1
)))
8722 /* Check for the possibility of merging component references. If our
8723 lhs is another similar operation, try to merge its rhs with our
8724 rhs. Then try to merge our lhs and rhs. */
8725 if (TREE_CODE (arg0
) == code
8726 && 0 != (tem
= fold_truthop (code
, type
,
8727 TREE_OPERAND (arg0
, 1), arg1
)))
8728 return fold_build2 (code
, type
, TREE_OPERAND (arg0
, 0), tem
);
8730 if ((tem
= fold_truthop (code
, type
, arg0
, arg1
)) != 0)
8735 case TRUTH_ORIF_EXPR
:
8736 /* Note that the operands of this must be ints
8737 and their values must be 0 or true.
8738 ("true" is a fixed value perhaps depending on the language.) */
8739 /* If first arg is constant true, return it. */
8740 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
8741 return fold_convert (type
, arg0
);
8743 /* If either arg is constant zero, drop it. */
8744 if (TREE_CODE (arg0
) == INTEGER_CST
&& integer_zerop (arg0
))
8745 return non_lvalue (fold_convert (type
, arg1
));
8746 if (TREE_CODE (arg1
) == INTEGER_CST
&& integer_zerop (arg1
)
8747 /* Preserve sequence points. */
8748 && (code
!= TRUTH_ORIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
8749 return non_lvalue (fold_convert (type
, arg0
));
8750 /* If second arg is constant true, result is true, but we must
8751 evaluate first arg. */
8752 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
))
8753 return omit_one_operand (type
, arg1
, arg0
);
8754 /* Likewise for first arg, but note this only occurs here for
8756 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
8757 return omit_one_operand (type
, arg0
, arg1
);
8759 /* !X || X is always true. */
8760 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
8761 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
8762 return omit_one_operand (type
, integer_one_node
, arg1
);
8763 /* X || !X is always true. */
8764 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
8765 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
8766 return omit_one_operand (type
, integer_one_node
, arg0
);
8770 case TRUTH_XOR_EXPR
:
8771 /* If the second arg is constant zero, drop it. */
8772 if (integer_zerop (arg1
))
8773 return non_lvalue (fold_convert (type
, arg0
));
8774 /* If the second arg is constant true, this is a logical inversion. */
8775 if (integer_onep (arg1
))
8777 /* Only call invert_truthvalue if operand is a truth value. */
8778 if (TREE_CODE (TREE_TYPE (arg0
)) != BOOLEAN_TYPE
)
8779 tem
= fold_build1 (TRUTH_NOT_EXPR
, TREE_TYPE (arg0
), arg0
);
8781 tem
= invert_truthvalue (arg0
);
8782 return non_lvalue (fold_convert (type
, tem
));
8784 /* Identical arguments cancel to zero. */
8785 if (operand_equal_p (arg0
, arg1
, 0))
8786 return omit_one_operand (type
, integer_zero_node
, arg0
);
8788 /* !X ^ X is always true. */
8789 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
8790 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
8791 return omit_one_operand (type
, integer_one_node
, arg1
);
8793 /* X ^ !X is always true. */
8794 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
8795 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
8796 return omit_one_operand (type
, integer_one_node
, arg0
);
8806 /* If one arg is a real or integer constant, put it last. */
8807 if (tree_swap_operands_p (arg0
, arg1
, true))
8808 return fold_build2 (swap_tree_comparison (code
), type
, op1
, op0
);
8810 /* bool_var != 0 becomes bool_var. */
8811 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_zerop (arg1
)
8813 return non_lvalue (fold_convert (type
, arg0
));
8815 /* bool_var == 1 becomes bool_var. */
8816 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_onep (arg1
)
8818 return non_lvalue (fold_convert (type
, arg0
));
8820 /* If this is an equality comparison of the address of a non-weak
8821 object against zero, then we know the result. */
8822 if ((code
== EQ_EXPR
|| code
== NE_EXPR
)
8823 && TREE_CODE (arg0
) == ADDR_EXPR
8824 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0
, 0))
8825 && ! DECL_WEAK (TREE_OPERAND (arg0
, 0))
8826 && integer_zerop (arg1
))
8827 return constant_boolean_node (code
!= EQ_EXPR
, type
);
8829 /* If this is an equality comparison of the address of two non-weak,
8830 unaliased symbols neither of which are extern (since we do not
8831 have access to attributes for externs), then we know the result. */
8832 if ((code
== EQ_EXPR
|| code
== NE_EXPR
)
8833 && TREE_CODE (arg0
) == ADDR_EXPR
8834 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0
, 0))
8835 && ! DECL_WEAK (TREE_OPERAND (arg0
, 0))
8836 && ! lookup_attribute ("alias",
8837 DECL_ATTRIBUTES (TREE_OPERAND (arg0
, 0)))
8838 && ! DECL_EXTERNAL (TREE_OPERAND (arg0
, 0))
8839 && TREE_CODE (arg1
) == ADDR_EXPR
8840 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg1
, 0))
8841 && ! DECL_WEAK (TREE_OPERAND (arg1
, 0))
8842 && ! lookup_attribute ("alias",
8843 DECL_ATTRIBUTES (TREE_OPERAND (arg1
, 0)))
8844 && ! DECL_EXTERNAL (TREE_OPERAND (arg1
, 0)))
8846 /* We know that we're looking at the address of two
8847 non-weak, unaliased, static _DECL nodes.
8849 It is both wasteful and incorrect to call operand_equal_p
8850 to compare the two ADDR_EXPR nodes. It is wasteful in that
8851 all we need to do is test pointer equality for the arguments
8852 to the two ADDR_EXPR nodes. It is incorrect to use
8853 operand_equal_p as that function is NOT equivalent to a
8854 C equality test. It can in fact return false for two
8855 objects which would test as equal using the C equality
8857 bool equal
= TREE_OPERAND (arg0
, 0) == TREE_OPERAND (arg1
, 0);
8858 return constant_boolean_node (equal
8859 ? code
== EQ_EXPR
: code
!= EQ_EXPR
,
8863 /* If this is a comparison of two exprs that look like an
8864 ARRAY_REF of the same object, then we can fold this to a
8865 comparison of the two offsets. */
8866 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
8868 tree base0
, offset0
, base1
, offset1
;
8870 if (extract_array_ref (arg0
, &base0
, &offset0
)
8871 && extract_array_ref (arg1
, &base1
, &offset1
)
8872 && operand_equal_p (base0
, base1
, 0))
8874 if (TYPE_SIZE (TREE_TYPE (TREE_TYPE (base0
)))
8875 && integer_zerop (TYPE_SIZE (TREE_TYPE (TREE_TYPE (base0
)))))
8876 offset0
= NULL_TREE
;
8877 if (TYPE_SIZE (TREE_TYPE (TREE_TYPE (base1
)))
8878 && integer_zerop (TYPE_SIZE (TREE_TYPE (TREE_TYPE (base1
)))))
8879 offset1
= NULL_TREE
;
8880 if (offset0
== NULL_TREE
8881 && offset1
== NULL_TREE
)
8883 offset0
= integer_zero_node
;
8884 offset1
= integer_zero_node
;
8886 else if (offset0
== NULL_TREE
)
8887 offset0
= build_int_cst (TREE_TYPE (offset1
), 0);
8888 else if (offset1
== NULL_TREE
)
8889 offset1
= build_int_cst (TREE_TYPE (offset0
), 0);
8891 if (TREE_TYPE (offset0
) == TREE_TYPE (offset1
))
8892 return fold_build2 (code
, type
, offset0
, offset1
);
8896 /* Transform comparisons of the form X +- C CMP X. */
8897 if ((code
!= EQ_EXPR
&& code
!= NE_EXPR
)
8898 && (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8899 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
8900 && ((TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
8901 && !HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
))))
8902 || (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8903 && !TYPE_UNSIGNED (TREE_TYPE (arg1
))
8904 && !(flag_wrapv
|| flag_trapv
))))
8906 tree arg01
= TREE_OPERAND (arg0
, 1);
8907 enum tree_code code0
= TREE_CODE (arg0
);
8910 if (TREE_CODE (arg01
) == REAL_CST
)
8911 is_positive
= REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01
)) ? -1 : 1;
8913 is_positive
= tree_int_cst_sgn (arg01
);
8915 /* (X - c) > X becomes false. */
8917 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
8918 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
8919 return constant_boolean_node (0, type
);
8921 /* Likewise (X + c) < X becomes false. */
8923 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
8924 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
8925 return constant_boolean_node (0, type
);
8927 /* Convert (X - c) <= X to true. */
8928 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1
)))
8930 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
8931 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
8932 return constant_boolean_node (1, type
);
8934 /* Convert (X + c) >= X to true. */
8935 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1
)))
8937 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
8938 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
8939 return constant_boolean_node (1, type
);
8941 if (TREE_CODE (arg01
) == INTEGER_CST
)
8943 /* Convert X + c > X and X - c < X to true for integers. */
8945 && ((code0
== PLUS_EXPR
&& is_positive
> 0)
8946 || (code0
== MINUS_EXPR
&& is_positive
< 0)))
8947 return constant_boolean_node (1, type
);
8950 && ((code0
== MINUS_EXPR
&& is_positive
> 0)
8951 || (code0
== PLUS_EXPR
&& is_positive
< 0)))
8952 return constant_boolean_node (1, type
);
8954 /* Convert X + c <= X and X - c >= X to false for integers. */
8956 && ((code0
== PLUS_EXPR
&& is_positive
> 0)
8957 || (code0
== MINUS_EXPR
&& is_positive
< 0)))
8958 return constant_boolean_node (0, type
);
8961 && ((code0
== MINUS_EXPR
&& is_positive
> 0)
8962 || (code0
== PLUS_EXPR
&& is_positive
< 0)))
8963 return constant_boolean_node (0, type
);
8967 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 +- C1. */
8968 if ((TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8969 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8970 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1))
8971 && !TYPE_UNSIGNED (TREE_TYPE (arg1
))
8972 && !(flag_wrapv
|| flag_trapv
))
8973 && (TREE_CODE (arg1
) == INTEGER_CST
8974 && !TREE_OVERFLOW (arg1
)))
8976 tree const1
= TREE_OPERAND (arg0
, 1);
8978 tree variable
= TREE_OPERAND (arg0
, 0);
8981 lhs_add
= TREE_CODE (arg0
) != PLUS_EXPR
;
8983 lhs
= fold_build2 (lhs_add
? PLUS_EXPR
: MINUS_EXPR
,
8984 TREE_TYPE (arg1
), const2
, const1
);
8985 if (TREE_CODE (lhs
) == TREE_CODE (arg1
)
8986 && (TREE_CODE (lhs
) != INTEGER_CST
8987 || !TREE_OVERFLOW (lhs
)))
8988 return fold_build2 (code
, type
, variable
, lhs
);
8991 if (FLOAT_TYPE_P (TREE_TYPE (arg0
)))
8993 tree targ0
= strip_float_extensions (arg0
);
8994 tree targ1
= strip_float_extensions (arg1
);
8995 tree newtype
= TREE_TYPE (targ0
);
8997 if (TYPE_PRECISION (TREE_TYPE (targ1
)) > TYPE_PRECISION (newtype
))
8998 newtype
= TREE_TYPE (targ1
);
9000 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
9001 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (TREE_TYPE (arg0
)))
9002 return fold_build2 (code
, type
, fold_convert (newtype
, targ0
),
9003 fold_convert (newtype
, targ1
));
9005 /* (-a) CMP (-b) -> b CMP a */
9006 if (TREE_CODE (arg0
) == NEGATE_EXPR
9007 && TREE_CODE (arg1
) == NEGATE_EXPR
)
9008 return fold_build2 (code
, type
, TREE_OPERAND (arg1
, 0),
9009 TREE_OPERAND (arg0
, 0));
9011 if (TREE_CODE (arg1
) == REAL_CST
)
9013 REAL_VALUE_TYPE cst
;
9014 cst
= TREE_REAL_CST (arg1
);
9016 /* (-a) CMP CST -> a swap(CMP) (-CST) */
9017 if (TREE_CODE (arg0
) == NEGATE_EXPR
)
9019 fold_build2 (swap_tree_comparison (code
), type
,
9020 TREE_OPERAND (arg0
, 0),
9021 build_real (TREE_TYPE (arg1
),
9022 REAL_VALUE_NEGATE (cst
)));
9024 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
9025 /* a CMP (-0) -> a CMP 0 */
9026 if (REAL_VALUE_MINUS_ZERO (cst
))
9027 return fold_build2 (code
, type
, arg0
,
9028 build_real (TREE_TYPE (arg1
), dconst0
));
9030 /* x != NaN is always true, other ops are always false. */
9031 if (REAL_VALUE_ISNAN (cst
)
9032 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1
))))
9034 tem
= (code
== NE_EXPR
) ? integer_one_node
: integer_zero_node
;
9035 return omit_one_operand (type
, tem
, arg0
);
9038 /* Fold comparisons against infinity. */
9039 if (REAL_VALUE_ISINF (cst
))
9041 tem
= fold_inf_compare (code
, type
, arg0
, arg1
);
9042 if (tem
!= NULL_TREE
)
9047 /* If this is a comparison of a real constant with a PLUS_EXPR
9048 or a MINUS_EXPR of a real constant, we can convert it into a
9049 comparison with a revised real constant as long as no overflow
9050 occurs when unsafe_math_optimizations are enabled. */
9051 if (flag_unsafe_math_optimizations
9052 && TREE_CODE (arg1
) == REAL_CST
9053 && (TREE_CODE (arg0
) == PLUS_EXPR
9054 || TREE_CODE (arg0
) == MINUS_EXPR
)
9055 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
9056 && 0 != (tem
= const_binop (TREE_CODE (arg0
) == PLUS_EXPR
9057 ? MINUS_EXPR
: PLUS_EXPR
,
9058 arg1
, TREE_OPERAND (arg0
, 1), 0))
9059 && ! TREE_CONSTANT_OVERFLOW (tem
))
9060 return fold_build2 (code
, type
, TREE_OPERAND (arg0
, 0), tem
);
9062 /* Likewise, we can simplify a comparison of a real constant with
9063 a MINUS_EXPR whose first operand is also a real constant, i.e.
9064 (c1 - x) < c2 becomes x > c1-c2. */
9065 if (flag_unsafe_math_optimizations
9066 && TREE_CODE (arg1
) == REAL_CST
9067 && TREE_CODE (arg0
) == MINUS_EXPR
9068 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == REAL_CST
9069 && 0 != (tem
= const_binop (MINUS_EXPR
, TREE_OPERAND (arg0
, 0),
9071 && ! TREE_CONSTANT_OVERFLOW (tem
))
9072 return fold_build2 (swap_tree_comparison (code
), type
,
9073 TREE_OPERAND (arg0
, 1), tem
);
9075 /* Fold comparisons against built-in math functions. */
9076 if (TREE_CODE (arg1
) == REAL_CST
9077 && flag_unsafe_math_optimizations
9078 && ! flag_errno_math
)
9080 enum built_in_function fcode
= builtin_mathfn_code (arg0
);
9082 if (fcode
!= END_BUILTINS
)
9084 tem
= fold_mathfn_compare (fcode
, code
, type
, arg0
, arg1
);
9085 if (tem
!= NULL_TREE
)
9091 /* Convert foo++ == CONST into ++foo == CONST + INCR. */
9092 if (TREE_CONSTANT (arg1
)
9093 && (TREE_CODE (arg0
) == POSTINCREMENT_EXPR
9094 || TREE_CODE (arg0
) == POSTDECREMENT_EXPR
)
9095 /* This optimization is invalid for ordered comparisons
9096 if CONST+INCR overflows or if foo+incr might overflow.
9097 This optimization is invalid for floating point due to rounding.
9098 For pointer types we assume overflow doesn't happen. */
9099 && (POINTER_TYPE_P (TREE_TYPE (arg0
))
9100 || (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
9101 && (code
== EQ_EXPR
|| code
== NE_EXPR
))))
9103 tree varop
, newconst
;
9105 if (TREE_CODE (arg0
) == POSTINCREMENT_EXPR
)
9107 newconst
= fold_build2 (PLUS_EXPR
, TREE_TYPE (arg0
),
9108 arg1
, TREE_OPERAND (arg0
, 1));
9109 varop
= build2 (PREINCREMENT_EXPR
, TREE_TYPE (arg0
),
9110 TREE_OPERAND (arg0
, 0),
9111 TREE_OPERAND (arg0
, 1));
9115 newconst
= fold_build2 (MINUS_EXPR
, TREE_TYPE (arg0
),
9116 arg1
, TREE_OPERAND (arg0
, 1));
9117 varop
= build2 (PREDECREMENT_EXPR
, TREE_TYPE (arg0
),
9118 TREE_OPERAND (arg0
, 0),
9119 TREE_OPERAND (arg0
, 1));
9123 /* If VAROP is a reference to a bitfield, we must mask
9124 the constant by the width of the field. */
9125 if (TREE_CODE (TREE_OPERAND (varop
, 0)) == COMPONENT_REF
9126 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (varop
, 0), 1))
9127 && host_integerp (DECL_SIZE (TREE_OPERAND
9128 (TREE_OPERAND (varop
, 0), 1)), 1))
9130 tree fielddecl
= TREE_OPERAND (TREE_OPERAND (varop
, 0), 1);
9131 HOST_WIDE_INT size
= tree_low_cst (DECL_SIZE (fielddecl
), 1);
9132 tree folded_compare
, shift
;
9134 /* First check whether the comparison would come out
9135 always the same. If we don't do that we would
9136 change the meaning with the masking. */
9137 folded_compare
= fold_build2 (code
, type
,
9138 TREE_OPERAND (varop
, 0), arg1
);
9139 if (integer_zerop (folded_compare
)
9140 || integer_onep (folded_compare
))
9141 return omit_one_operand (type
, folded_compare
, varop
);
9143 shift
= build_int_cst (NULL_TREE
,
9144 TYPE_PRECISION (TREE_TYPE (varop
)) - size
);
9145 shift
= fold_convert (TREE_TYPE (varop
), shift
);
9146 newconst
= fold_build2 (LSHIFT_EXPR
, TREE_TYPE (varop
),
9148 newconst
= fold_build2 (RSHIFT_EXPR
, TREE_TYPE (varop
),
9152 return fold_build2 (code
, type
, varop
, newconst
);
9155 /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
9156 This transformation affects the cases which are handled in later
9157 optimizations involving comparisons with non-negative constants. */
9158 if (TREE_CODE (arg1
) == INTEGER_CST
9159 && TREE_CODE (arg0
) != INTEGER_CST
9160 && tree_int_cst_sgn (arg1
) > 0)
9165 arg1
= const_binop (MINUS_EXPR
, arg1
,
9166 build_int_cst (TREE_TYPE (arg1
), 1), 0);
9167 return fold_build2 (GT_EXPR
, type
, arg0
,
9168 fold_convert (TREE_TYPE (arg0
), arg1
));
9171 arg1
= const_binop (MINUS_EXPR
, arg1
,
9172 build_int_cst (TREE_TYPE (arg1
), 1), 0);
9173 return fold_build2 (LE_EXPR
, type
, arg0
,
9174 fold_convert (TREE_TYPE (arg0
), arg1
));
9181 /* Comparisons with the highest or lowest possible integer of
9182 the specified size will have known values. */
9184 int width
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg1
)));
9186 if (TREE_CODE (arg1
) == INTEGER_CST
9187 && ! TREE_CONSTANT_OVERFLOW (arg1
)
9188 && width
<= 2 * HOST_BITS_PER_WIDE_INT
9189 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9190 || POINTER_TYPE_P (TREE_TYPE (arg1
))))
9192 HOST_WIDE_INT signed_max_hi
;
9193 unsigned HOST_WIDE_INT signed_max_lo
;
9194 unsigned HOST_WIDE_INT max_hi
, max_lo
, min_hi
, min_lo
;
9196 if (width
<= HOST_BITS_PER_WIDE_INT
)
9198 signed_max_lo
= ((unsigned HOST_WIDE_INT
) 1 << (width
- 1))
9203 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
9205 max_lo
= ((unsigned HOST_WIDE_INT
) 2 << (width
- 1)) - 1;
9211 max_lo
= signed_max_lo
;
9212 min_lo
= ((unsigned HOST_WIDE_INT
) -1 << (width
- 1));
9218 width
-= HOST_BITS_PER_WIDE_INT
;
9220 signed_max_hi
= ((unsigned HOST_WIDE_INT
) 1 << (width
- 1))
9225 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
9227 max_hi
= ((unsigned HOST_WIDE_INT
) 2 << (width
- 1)) - 1;
9232 max_hi
= signed_max_hi
;
9233 min_hi
= ((unsigned HOST_WIDE_INT
) -1 << (width
- 1));
9237 if ((unsigned HOST_WIDE_INT
) TREE_INT_CST_HIGH (arg1
) == max_hi
9238 && TREE_INT_CST_LOW (arg1
) == max_lo
)
9242 return omit_one_operand (type
, integer_zero_node
, arg0
);
9245 return fold_build2 (EQ_EXPR
, type
, arg0
, arg1
);
9248 return omit_one_operand (type
, integer_one_node
, arg0
);
9251 return fold_build2 (NE_EXPR
, type
, arg0
, arg1
);
9253 /* The GE_EXPR and LT_EXPR cases above are not normally
9254 reached because of previous transformations. */
9259 else if ((unsigned HOST_WIDE_INT
) TREE_INT_CST_HIGH (arg1
)
9261 && TREE_INT_CST_LOW (arg1
) == max_lo
- 1)
9265 arg1
= const_binop (PLUS_EXPR
, arg1
, integer_one_node
, 0);
9266 return fold_build2 (EQ_EXPR
, type
, arg0
, arg1
);
9268 arg1
= const_binop (PLUS_EXPR
, arg1
, integer_one_node
, 0);
9269 return fold_build2 (NE_EXPR
, type
, arg0
, arg1
);
9273 else if ((unsigned HOST_WIDE_INT
) TREE_INT_CST_HIGH (arg1
)
9275 && TREE_INT_CST_LOW (arg1
) == min_lo
)
9279 return omit_one_operand (type
, integer_zero_node
, arg0
);
9282 return fold_build2 (EQ_EXPR
, type
, arg0
, arg1
);
9285 return omit_one_operand (type
, integer_one_node
, arg0
);
9288 return fold_build2 (NE_EXPR
, type
, arg0
, arg1
);
9293 else if ((unsigned HOST_WIDE_INT
) TREE_INT_CST_HIGH (arg1
)
9295 && TREE_INT_CST_LOW (arg1
) == min_lo
+ 1)
9299 arg1
= const_binop (MINUS_EXPR
, arg1
, integer_one_node
, 0);
9300 return fold_build2 (NE_EXPR
, type
, arg0
, arg1
);
9302 arg1
= const_binop (MINUS_EXPR
, arg1
, integer_one_node
, 0);
9303 return fold_build2 (EQ_EXPR
, type
, arg0
, arg1
);
9308 else if (!in_gimple_form
9309 && TREE_INT_CST_HIGH (arg1
) == signed_max_hi
9310 && TREE_INT_CST_LOW (arg1
) == signed_max_lo
9311 && TYPE_UNSIGNED (TREE_TYPE (arg1
))
9312 /* signed_type does not work on pointer types. */
9313 && INTEGRAL_TYPE_P (TREE_TYPE (arg1
)))
9315 /* The following case also applies to X < signed_max+1
9316 and X >= signed_max+1 because previous transformations. */
9317 if (code
== LE_EXPR
|| code
== GT_EXPR
)
9320 st0
= lang_hooks
.types
.signed_type (TREE_TYPE (arg0
));
9321 st1
= lang_hooks
.types
.signed_type (TREE_TYPE (arg1
));
9322 return fold_build2 (code
== LE_EXPR
? GE_EXPR
: LT_EXPR
,
9323 type
, fold_convert (st0
, arg0
),
9324 build_int_cst (st1
, 0));
9330 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
9331 a MINUS_EXPR of a constant, we can convert it into a comparison with
9332 a revised constant as long as no overflow occurs. */
9333 if ((code
== EQ_EXPR
|| code
== NE_EXPR
)
9334 && TREE_CODE (arg1
) == INTEGER_CST
9335 && (TREE_CODE (arg0
) == PLUS_EXPR
9336 || TREE_CODE (arg0
) == MINUS_EXPR
)
9337 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
9338 && 0 != (tem
= const_binop (TREE_CODE (arg0
) == PLUS_EXPR
9339 ? MINUS_EXPR
: PLUS_EXPR
,
9340 arg1
, TREE_OPERAND (arg0
, 1), 0))
9341 && ! TREE_CONSTANT_OVERFLOW (tem
))
9342 return fold_build2 (code
, type
, TREE_OPERAND (arg0
, 0), tem
);
9344 /* Similarly for a NEGATE_EXPR. */
9345 else if ((code
== EQ_EXPR
|| code
== NE_EXPR
)
9346 && TREE_CODE (arg0
) == NEGATE_EXPR
9347 && TREE_CODE (arg1
) == INTEGER_CST
9348 && 0 != (tem
= negate_expr (arg1
))
9349 && TREE_CODE (tem
) == INTEGER_CST
9350 && ! TREE_CONSTANT_OVERFLOW (tem
))
9351 return fold_build2 (code
, type
, TREE_OPERAND (arg0
, 0), tem
);
9353 /* If we have X - Y == 0, we can convert that to X == Y and similarly
9354 for !=. Don't do this for ordered comparisons due to overflow. */
9355 else if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
9356 && integer_zerop (arg1
) && TREE_CODE (arg0
) == MINUS_EXPR
)
9357 return fold_build2 (code
, type
,
9358 TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg0
, 1));
9360 else if (TREE_CODE (TREE_TYPE (arg0
)) == INTEGER_TYPE
9361 && (TREE_CODE (arg0
) == NOP_EXPR
9362 || TREE_CODE (arg0
) == CONVERT_EXPR
))
9364 /* If we are widening one operand of an integer comparison,
9365 see if the other operand is similarly being widened. Perhaps we
9366 can do the comparison in the narrower type. */
9367 tem
= fold_widened_comparison (code
, type
, arg0
, arg1
);
9371 /* Or if we are changing signedness. */
9372 tem
= fold_sign_changed_comparison (code
, type
, arg0
, arg1
);
9377 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
9378 constant, we can simplify it. */
9379 else if (TREE_CODE (arg1
) == INTEGER_CST
9380 && (TREE_CODE (arg0
) == MIN_EXPR
9381 || TREE_CODE (arg0
) == MAX_EXPR
)
9382 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
9384 tem
= optimize_minmax_comparison (code
, type
, op0
, op1
);
9391 /* If we are comparing an ABS_EXPR with a constant, we can
9392 convert all the cases into explicit comparisons, but they may
9393 well not be faster than doing the ABS and one comparison.
9394 But ABS (X) <= C is a range comparison, which becomes a subtraction
9395 and a comparison, and is probably faster. */
9396 else if (code
== LE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
9397 && TREE_CODE (arg0
) == ABS_EXPR
9398 && ! TREE_SIDE_EFFECTS (arg0
)
9399 && (0 != (tem
= negate_expr (arg1
)))
9400 && TREE_CODE (tem
) == INTEGER_CST
9401 && ! TREE_CONSTANT_OVERFLOW (tem
))
9402 return fold_build2 (TRUTH_ANDIF_EXPR
, type
,
9403 build2 (GE_EXPR
, type
,
9404 TREE_OPERAND (arg0
, 0), tem
),
9405 build2 (LE_EXPR
, type
,
9406 TREE_OPERAND (arg0
, 0), arg1
));
9408 /* Convert ABS_EXPR<x> >= 0 to true. */
9409 else if (code
== GE_EXPR
9410 && tree_expr_nonnegative_p (arg0
)
9411 && (integer_zerop (arg1
)
9412 || (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
)))
9413 && real_zerop (arg1
))))
9414 return omit_one_operand (type
, integer_one_node
, arg0
);
9416 /* Convert ABS_EXPR<x> < 0 to false. */
9417 else if (code
== LT_EXPR
9418 && tree_expr_nonnegative_p (arg0
)
9419 && (integer_zerop (arg1
) || real_zerop (arg1
)))
9420 return omit_one_operand (type
, integer_zero_node
, arg0
);
9422 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
9423 else if ((code
== EQ_EXPR
|| code
== NE_EXPR
)
9424 && TREE_CODE (arg0
) == ABS_EXPR
9425 && (integer_zerop (arg1
) || real_zerop (arg1
)))
9426 return fold_build2 (code
, type
, TREE_OPERAND (arg0
, 0), arg1
);
9428 /* If this is an EQ or NE comparison with zero and ARG0 is
9429 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
9430 two operations, but the latter can be done in one less insn
9431 on machines that have only two-operand insns or on which a
9432 constant cannot be the first operand. */
9433 if (integer_zerop (arg1
) && (code
== EQ_EXPR
|| code
== NE_EXPR
)
9434 && TREE_CODE (arg0
) == BIT_AND_EXPR
)
9436 tree arg00
= TREE_OPERAND (arg0
, 0);
9437 tree arg01
= TREE_OPERAND (arg0
, 1);
9438 if (TREE_CODE (arg00
) == LSHIFT_EXPR
9439 && integer_onep (TREE_OPERAND (arg00
, 0)))
9441 fold_build2 (code
, type
,
9442 build2 (BIT_AND_EXPR
, TREE_TYPE (arg0
),
9443 build2 (RSHIFT_EXPR
, TREE_TYPE (arg00
),
9444 arg01
, TREE_OPERAND (arg00
, 1)),
9445 fold_convert (TREE_TYPE (arg0
),
9448 else if (TREE_CODE (TREE_OPERAND (arg0
, 1)) == LSHIFT_EXPR
9449 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0
, 1), 0)))
9451 fold_build2 (code
, type
,
9452 build2 (BIT_AND_EXPR
, TREE_TYPE (arg0
),
9453 build2 (RSHIFT_EXPR
, TREE_TYPE (arg01
),
9454 arg00
, TREE_OPERAND (arg01
, 1)),
9455 fold_convert (TREE_TYPE (arg0
),
9460 /* If this is an NE or EQ comparison of zero against the result of a
9461 signed MOD operation whose second operand is a power of 2, make
9462 the MOD operation unsigned since it is simpler and equivalent. */
9463 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
9464 && integer_zerop (arg1
)
9465 && !TYPE_UNSIGNED (TREE_TYPE (arg0
))
9466 && (TREE_CODE (arg0
) == TRUNC_MOD_EXPR
9467 || TREE_CODE (arg0
) == CEIL_MOD_EXPR
9468 || TREE_CODE (arg0
) == FLOOR_MOD_EXPR
9469 || TREE_CODE (arg0
) == ROUND_MOD_EXPR
)
9470 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
9472 tree newtype
= lang_hooks
.types
.unsigned_type (TREE_TYPE (arg0
));
9473 tree newmod
= fold_build2 (TREE_CODE (arg0
), newtype
,
9474 fold_convert (newtype
,
9475 TREE_OPERAND (arg0
, 0)),
9476 fold_convert (newtype
,
9477 TREE_OPERAND (arg0
, 1)));
9479 return fold_build2 (code
, type
, newmod
,
9480 fold_convert (newtype
, arg1
));
9483 /* If this is an NE comparison of zero with an AND of one, remove the
9484 comparison since the AND will give the correct value. */
9485 if (code
== NE_EXPR
&& integer_zerop (arg1
)
9486 && TREE_CODE (arg0
) == BIT_AND_EXPR
9487 && integer_onep (TREE_OPERAND (arg0
, 1)))
9488 return fold_convert (type
, arg0
);
9490 /* If we have (A & C) == C where C is a power of 2, convert this into
9491 (A & C) != 0. Similarly for NE_EXPR. */
9492 if ((code
== EQ_EXPR
|| code
== NE_EXPR
)
9493 && TREE_CODE (arg0
) == BIT_AND_EXPR
9494 && integer_pow2p (TREE_OPERAND (arg0
, 1))
9495 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
9496 return fold_build2 (code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
9497 arg0
, fold_convert (TREE_TYPE (arg0
),
9498 integer_zero_node
));
9500 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
9501 bit, then fold the expression into A < 0 or A >= 0. */
9502 tem
= fold_single_bit_test_into_sign_test (code
, arg0
, arg1
, type
);
9506 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
9507 Similarly for NE_EXPR. */
9508 if ((code
== EQ_EXPR
|| code
== NE_EXPR
)
9509 && TREE_CODE (arg0
) == BIT_AND_EXPR
9510 && TREE_CODE (arg1
) == INTEGER_CST
9511 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
9513 tree notc
= fold_build1 (BIT_NOT_EXPR
,
9514 TREE_TYPE (TREE_OPERAND (arg0
, 1)),
9515 TREE_OPERAND (arg0
, 1));
9516 tree dandnotc
= fold_build2 (BIT_AND_EXPR
, TREE_TYPE (arg0
),
9518 tree rslt
= code
== EQ_EXPR
? integer_zero_node
: integer_one_node
;
9519 if (integer_nonzerop (dandnotc
))
9520 return omit_one_operand (type
, rslt
, arg0
);
9523 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
9524 Similarly for NE_EXPR. */
9525 if ((code
== EQ_EXPR
|| code
== NE_EXPR
)
9526 && TREE_CODE (arg0
) == BIT_IOR_EXPR
9527 && TREE_CODE (arg1
) == INTEGER_CST
9528 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
9530 tree notd
= fold_build1 (BIT_NOT_EXPR
, TREE_TYPE (arg1
), arg1
);
9531 tree candnotd
= fold_build2 (BIT_AND_EXPR
, TREE_TYPE (arg0
),
9532 TREE_OPERAND (arg0
, 1), notd
);
9533 tree rslt
= code
== EQ_EXPR
? integer_zero_node
: integer_one_node
;
9534 if (integer_nonzerop (candnotd
))
9535 return omit_one_operand (type
, rslt
, arg0
);
9538 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
9539 and similarly for >= into !=. */
9540 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
9541 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
9542 && TREE_CODE (arg1
) == LSHIFT_EXPR
9543 && integer_onep (TREE_OPERAND (arg1
, 0)))
9544 return build2 (code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
9545 build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
9546 TREE_OPERAND (arg1
, 1)),
9547 fold_convert (TREE_TYPE (arg0
), integer_zero_node
));
9549 else if ((code
== LT_EXPR
|| code
== GE_EXPR
)
9550 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
9551 && (TREE_CODE (arg1
) == NOP_EXPR
9552 || TREE_CODE (arg1
) == CONVERT_EXPR
)
9553 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == LSHIFT_EXPR
9554 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0)))
9556 build2 (code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
9557 fold_convert (TREE_TYPE (arg0
),
9558 build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
9559 TREE_OPERAND (TREE_OPERAND (arg1
, 0),
9561 fold_convert (TREE_TYPE (arg0
), integer_zero_node
));
9563 /* Simplify comparison of something with itself. (For IEEE
9564 floating-point, we can only do some of these simplifications.) */
9565 if (operand_equal_p (arg0
, arg1
, 0))
9570 if (! FLOAT_TYPE_P (TREE_TYPE (arg0
))
9571 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
))))
9572 return constant_boolean_node (1, type
);
9577 if (! FLOAT_TYPE_P (TREE_TYPE (arg0
))
9578 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
))))
9579 return constant_boolean_node (1, type
);
9580 return fold_build2 (EQ_EXPR
, type
, arg0
, arg1
);
9583 /* For NE, we can only do this simplification if integer
9584 or we don't honor IEEE floating point NaNs. */
9585 if (FLOAT_TYPE_P (TREE_TYPE (arg0
))
9586 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0
))))
9588 /* ... fall through ... */
9591 return constant_boolean_node (0, type
);
9597 /* If we are comparing an expression that just has comparisons
9598 of two integer values, arithmetic expressions of those comparisons,
9599 and constants, we can simplify it. There are only three cases
9600 to check: the two values can either be equal, the first can be
9601 greater, or the second can be greater. Fold the expression for
9602 those three values. Since each value must be 0 or 1, we have
9603 eight possibilities, each of which corresponds to the constant 0
9604 or 1 or one of the six possible comparisons.
9606 This handles common cases like (a > b) == 0 but also handles
9607 expressions like ((x > y) - (y > x)) > 0, which supposedly
9608 occur in macroized code. */
9610 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) != INTEGER_CST
)
9612 tree cval1
= 0, cval2
= 0;
9615 if (twoval_comparison_p (arg0
, &cval1
, &cval2
, &save_p
)
9616 /* Don't handle degenerate cases here; they should already
9617 have been handled anyway. */
9618 && cval1
!= 0 && cval2
!= 0
9619 && ! (TREE_CONSTANT (cval1
) && TREE_CONSTANT (cval2
))
9620 && TREE_TYPE (cval1
) == TREE_TYPE (cval2
)
9621 && INTEGRAL_TYPE_P (TREE_TYPE (cval1
))
9622 && TYPE_MAX_VALUE (TREE_TYPE (cval1
))
9623 && TYPE_MAX_VALUE (TREE_TYPE (cval2
))
9624 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1
)),
9625 TYPE_MAX_VALUE (TREE_TYPE (cval2
)), 0))
9627 tree maxval
= TYPE_MAX_VALUE (TREE_TYPE (cval1
));
9628 tree minval
= TYPE_MIN_VALUE (TREE_TYPE (cval1
));
9630 /* We can't just pass T to eval_subst in case cval1 or cval2
9631 was the same as ARG1. */
9634 = fold_build2 (code
, type
,
9635 eval_subst (arg0
, cval1
, maxval
,
9639 = fold_build2 (code
, type
,
9640 eval_subst (arg0
, cval1
, maxval
,
9644 = fold_build2 (code
, type
,
9645 eval_subst (arg0
, cval1
, minval
,
9649 /* All three of these results should be 0 or 1. Confirm they
9650 are. Then use those values to select the proper code
9653 if ((integer_zerop (high_result
)
9654 || integer_onep (high_result
))
9655 && (integer_zerop (equal_result
)
9656 || integer_onep (equal_result
))
9657 && (integer_zerop (low_result
)
9658 || integer_onep (low_result
)))
9660 /* Make a 3-bit mask with the high-order bit being the
9661 value for `>', the next for '=', and the low for '<'. */
9662 switch ((integer_onep (high_result
) * 4)
9663 + (integer_onep (equal_result
) * 2)
9664 + integer_onep (low_result
))
9668 return omit_one_operand (type
, integer_zero_node
, arg0
);
9689 return omit_one_operand (type
, integer_one_node
, arg0
);
9693 return save_expr (build2 (code
, type
, cval1
, cval2
));
9695 return fold_build2 (code
, type
, cval1
, cval2
);
9700 /* If this is a comparison of a field, we may be able to simplify it. */
9701 if (((TREE_CODE (arg0
) == COMPONENT_REF
9702 && lang_hooks
.can_use_bit_fields_p ())
9703 || TREE_CODE (arg0
) == BIT_FIELD_REF
)
9704 && (code
== EQ_EXPR
|| code
== NE_EXPR
)
9705 /* Handle the constant case even without -O
9706 to make sure the warnings are given. */
9707 && (optimize
|| TREE_CODE (arg1
) == INTEGER_CST
))
9709 t1
= optimize_bit_field_compare (code
, type
, arg0
, arg1
);
9714 /* Fold a comparison of the address of COMPONENT_REFs with the same
9715 type and component to a comparison of the address of the base
9716 object. In short, &x->a OP &y->a to x OP y and
9717 &x->a OP &y.a to x OP &y */
9718 if (TREE_CODE (arg0
) == ADDR_EXPR
9719 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == COMPONENT_REF
9720 && TREE_CODE (arg1
) == ADDR_EXPR
9721 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == COMPONENT_REF
)
9723 tree cref0
= TREE_OPERAND (arg0
, 0);
9724 tree cref1
= TREE_OPERAND (arg1
, 0);
9725 if (TREE_OPERAND (cref0
, 1) == TREE_OPERAND (cref1
, 1))
9727 tree op0
= TREE_OPERAND (cref0
, 0);
9728 tree op1
= TREE_OPERAND (cref1
, 0);
9729 return fold_build2 (code
, type
,
9730 build_fold_addr_expr (op0
),
9731 build_fold_addr_expr (op1
));
9735 /* Optimize comparisons of strlen vs zero to a compare of the
9736 first character of the string vs zero. To wit,
9737 strlen(ptr) == 0 => *ptr == 0
9738 strlen(ptr) != 0 => *ptr != 0
9739 Other cases should reduce to one of these two (or a constant)
9740 due to the return value of strlen being unsigned. */
9741 if ((code
== EQ_EXPR
|| code
== NE_EXPR
)
9742 && integer_zerop (arg1
)
9743 && TREE_CODE (arg0
) == CALL_EXPR
)
9745 tree fndecl
= get_callee_fndecl (arg0
);
9749 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
9750 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_STRLEN
9751 && (arglist
= TREE_OPERAND (arg0
, 1))
9752 && TREE_CODE (TREE_TYPE (TREE_VALUE (arglist
))) == POINTER_TYPE
9753 && ! TREE_CHAIN (arglist
))
9755 tree iref
= build_fold_indirect_ref (TREE_VALUE (arglist
));
9756 return fold_build2 (code
, type
, iref
,
9757 build_int_cst (TREE_TYPE (iref
), 0));
9761 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
9762 into a single range test. */
9763 if ((TREE_CODE (arg0
) == TRUNC_DIV_EXPR
9764 || TREE_CODE (arg0
) == EXACT_DIV_EXPR
)
9765 && TREE_CODE (arg1
) == INTEGER_CST
9766 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
9767 && !integer_zerop (TREE_OPERAND (arg0
, 1))
9768 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1))
9769 && !TREE_OVERFLOW (arg1
))
9771 t1
= fold_div_compare (code
, type
, arg0
, arg1
);
9772 if (t1
!= NULL_TREE
)
9776 if ((code
== EQ_EXPR
|| code
== NE_EXPR
)
9777 && integer_zerop (arg1
)
9778 && tree_expr_nonzero_p (arg0
))
9780 tree res
= constant_boolean_node (code
==NE_EXPR
, type
);
9781 return omit_one_operand (type
, res
, arg0
);
9784 t1
= fold_relational_const (code
, type
, arg0
, arg1
);
9785 return t1
== NULL_TREE
? NULL_TREE
: t1
;
9787 case UNORDERED_EXPR
:
9795 if (TREE_CODE (arg0
) == REAL_CST
&& TREE_CODE (arg1
) == REAL_CST
)
9797 t1
= fold_relational_const (code
, type
, arg0
, arg1
);
9798 if (t1
!= NULL_TREE
)
9802 /* If the first operand is NaN, the result is constant. */
9803 if (TREE_CODE (arg0
) == REAL_CST
9804 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0
))
9805 && (code
!= LTGT_EXPR
|| ! flag_trapping_math
))
9807 t1
= (code
== ORDERED_EXPR
|| code
== LTGT_EXPR
)
9810 return omit_one_operand (type
, t1
, arg1
);
9813 /* If the second operand is NaN, the result is constant. */
9814 if (TREE_CODE (arg1
) == REAL_CST
9815 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1
))
9816 && (code
!= LTGT_EXPR
|| ! flag_trapping_math
))
9818 t1
= (code
== ORDERED_EXPR
|| code
== LTGT_EXPR
)
9821 return omit_one_operand (type
, t1
, arg0
);
9824 /* Simplify unordered comparison of something with itself. */
9825 if ((code
== UNLE_EXPR
|| code
== UNGE_EXPR
|| code
== UNEQ_EXPR
)
9826 && operand_equal_p (arg0
, arg1
, 0))
9827 return constant_boolean_node (1, type
);
9829 if (code
== LTGT_EXPR
9830 && !flag_trapping_math
9831 && operand_equal_p (arg0
, arg1
, 0))
9832 return constant_boolean_node (0, type
);
9834 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
9836 tree targ0
= strip_float_extensions (arg0
);
9837 tree targ1
= strip_float_extensions (arg1
);
9838 tree newtype
= TREE_TYPE (targ0
);
9840 if (TYPE_PRECISION (TREE_TYPE (targ1
)) > TYPE_PRECISION (newtype
))
9841 newtype
= TREE_TYPE (targ1
);
9843 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (TREE_TYPE (arg0
)))
9844 return fold_build2 (code
, type
, fold_convert (newtype
, targ0
),
9845 fold_convert (newtype
, targ1
));
9851 /* When pedantic, a compound expression can be neither an lvalue
9852 nor an integer constant expression. */
9853 if (TREE_SIDE_EFFECTS (arg0
) || TREE_CONSTANT (arg1
))
9855 /* Don't let (0, 0) be null pointer constant. */
9856 tem
= integer_zerop (arg1
) ? build1 (NOP_EXPR
, type
, arg1
)
9857 : fold_convert (type
, arg1
);
9858 return pedantic_non_lvalue (tem
);
9862 return build_complex (type
, arg0
, arg1
);
9866 /* An ASSERT_EXPR should never be passed to fold_binary. */
9871 } /* switch (code) */
9874 /* Callback for walk_tree, looking for LABEL_EXPR.
9875 Returns tree TP if it is LABEL_EXPR. Otherwise it returns NULL_TREE.
9876 Do not check the sub-tree of GOTO_EXPR. */
9879 contains_label_1 (tree
*tp
,
9881 void *data ATTRIBUTE_UNUSED
)
9883 switch (TREE_CODE (*tp
))
9895 /* Checks whether the sub-tree ST contains a label LABEL_EXPR which is
9896 accessible from outside the sub-tree. Returns NULL_TREE if no
9897 addressable label is found. */
9900 contains_label_p (tree st
)
9902 return (walk_tree (&st
, contains_label_1
, NULL
, NULL
) != NULL_TREE
);
9905 /* Fold a ternary expression of code CODE and type TYPE with operands
9906 OP0, OP1, and OP2. Return the folded expression if folding is
9907 successful. Otherwise, return NULL_TREE. */
9910 fold_ternary (enum tree_code code
, tree type
, tree op0
, tree op1
, tree op2
)
9913 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
;
9914 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
9916 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
9917 && TREE_CODE_LENGTH (code
) == 3);
9919 /* Strip any conversions that don't change the mode. This is safe
9920 for every expression, except for a comparison expression because
9921 its signedness is derived from its operands. So, in the latter
9922 case, only strip conversions that don't change the signedness.
9924 Note that this is done as an internal manipulation within the
9925 constant folder, in order to find the simplest representation of
9926 the arguments so that their form can be studied. In any cases,
9927 the appropriate type conversions should be put back in the tree
9928 that will get out of the constant folder. */
9944 if (TREE_CODE (arg0
) == CONSTRUCTOR
9945 && ! type_contains_placeholder_p (TREE_TYPE (arg0
)))
9947 unsigned HOST_WIDE_INT idx
;
9949 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0
), idx
, field
, value
)
9956 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
9957 so all simple results must be passed through pedantic_non_lvalue. */
9958 if (TREE_CODE (arg0
) == INTEGER_CST
)
9960 tree unused_op
= integer_zerop (arg0
) ? op1
: op2
;
9961 tem
= integer_zerop (arg0
) ? op2
: op1
;
9962 /* Only optimize constant conditions when the selected branch
9963 has the same type as the COND_EXPR. This avoids optimizing
9964 away "c ? x : throw", where the throw has a void type.
9965 Avoid throwing away that operand which contains label. */
9966 if ((!TREE_SIDE_EFFECTS (unused_op
)
9967 || !contains_label_p (unused_op
))
9968 && (! VOID_TYPE_P (TREE_TYPE (tem
))
9969 || VOID_TYPE_P (type
)))
9970 return pedantic_non_lvalue (tem
);
9973 if (operand_equal_p (arg1
, op2
, 0))
9974 return pedantic_omit_one_operand (type
, arg1
, arg0
);
9976 /* If we have A op B ? A : C, we may be able to convert this to a
9977 simpler expression, depending on the operation and the values
9978 of B and C. Signed zeros prevent all of these transformations,
9979 for reasons given above each one.
9981 Also try swapping the arguments and inverting the conditional. */
9982 if (COMPARISON_CLASS_P (arg0
)
9983 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0),
9984 arg1
, TREE_OPERAND (arg0
, 1))
9985 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1
))))
9987 tem
= fold_cond_expr_with_comparison (type
, arg0
, op1
, op2
);
9992 if (COMPARISON_CLASS_P (arg0
)
9993 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0),
9995 TREE_OPERAND (arg0
, 1))
9996 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op2
))))
9998 tem
= invert_truthvalue (arg0
);
9999 if (COMPARISON_CLASS_P (tem
))
10001 tem
= fold_cond_expr_with_comparison (type
, tem
, op2
, op1
);
10007 /* If the second operand is simpler than the third, swap them
10008 since that produces better jump optimization results. */
10009 if (tree_swap_operands_p (op1
, op2
, false))
10011 /* See if this can be inverted. If it can't, possibly because
10012 it was a floating-point inequality comparison, don't do
10014 tem
= invert_truthvalue (arg0
);
10016 if (TREE_CODE (tem
) != TRUTH_NOT_EXPR
)
10017 return fold_build3 (code
, type
, tem
, op2
, op1
);
10020 /* Convert A ? 1 : 0 to simply A. */
10021 if (integer_onep (op1
)
10022 && integer_zerop (op2
)
10023 /* If we try to convert OP0 to our type, the
10024 call to fold will try to move the conversion inside
10025 a COND, which will recurse. In that case, the COND_EXPR
10026 is probably the best choice, so leave it alone. */
10027 && type
== TREE_TYPE (arg0
))
10028 return pedantic_non_lvalue (arg0
);
10030 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
10031 over COND_EXPR in cases such as floating point comparisons. */
10032 if (integer_zerop (op1
)
10033 && integer_onep (op2
)
10034 && truth_value_p (TREE_CODE (arg0
)))
10035 return pedantic_non_lvalue (fold_convert (type
,
10036 invert_truthvalue (arg0
)));
10038 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
10039 if (TREE_CODE (arg0
) == LT_EXPR
10040 && integer_zerop (TREE_OPERAND (arg0
, 1))
10041 && integer_zerop (op2
)
10042 && (tem
= sign_bit_p (TREE_OPERAND (arg0
, 0), arg1
)))
10043 return fold_convert (type
, fold_build2 (BIT_AND_EXPR
,
10044 TREE_TYPE (tem
), tem
, arg1
));
10046 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
10047 already handled above. */
10048 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10049 && integer_onep (TREE_OPERAND (arg0
, 1))
10050 && integer_zerop (op2
)
10051 && integer_pow2p (arg1
))
10053 tree tem
= TREE_OPERAND (arg0
, 0);
10055 if (TREE_CODE (tem
) == RSHIFT_EXPR
10056 && TREE_CODE (TREE_OPERAND (tem
, 1)) == INTEGER_CST
10057 && (unsigned HOST_WIDE_INT
) tree_log2 (arg1
) ==
10058 TREE_INT_CST_LOW (TREE_OPERAND (tem
, 1)))
10059 return fold_build2 (BIT_AND_EXPR
, type
,
10060 TREE_OPERAND (tem
, 0), arg1
);
10063 /* A & N ? N : 0 is simply A & N if N is a power of two. This
10064 is probably obsolete because the first operand should be a
10065 truth value (that's why we have the two cases above), but let's
10066 leave it in until we can confirm this for all front-ends. */
10067 if (integer_zerop (op2
)
10068 && TREE_CODE (arg0
) == NE_EXPR
10069 && integer_zerop (TREE_OPERAND (arg0
, 1))
10070 && integer_pow2p (arg1
)
10071 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
10072 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10073 arg1
, OEP_ONLY_CONST
))
10074 return pedantic_non_lvalue (fold_convert (type
,
10075 TREE_OPERAND (arg0
, 0)));
10077 /* Convert A ? B : 0 into A && B if A and B are truth values. */
10078 if (integer_zerop (op2
)
10079 && truth_value_p (TREE_CODE (arg0
))
10080 && truth_value_p (TREE_CODE (arg1
)))
10081 return fold_build2 (TRUTH_ANDIF_EXPR
, type
, arg0
, arg1
);
10083 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
10084 if (integer_onep (op2
)
10085 && truth_value_p (TREE_CODE (arg0
))
10086 && truth_value_p (TREE_CODE (arg1
)))
10088 /* Only perform transformation if ARG0 is easily inverted. */
10089 tem
= invert_truthvalue (arg0
);
10090 if (TREE_CODE (tem
) != TRUTH_NOT_EXPR
)
10091 return fold_build2 (TRUTH_ORIF_EXPR
, type
, tem
, arg1
);
10094 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
10095 if (integer_zerop (arg1
)
10096 && truth_value_p (TREE_CODE (arg0
))
10097 && truth_value_p (TREE_CODE (op2
)))
10099 /* Only perform transformation if ARG0 is easily inverted. */
10100 tem
= invert_truthvalue (arg0
);
10101 if (TREE_CODE (tem
) != TRUTH_NOT_EXPR
)
10102 return fold_build2 (TRUTH_ANDIF_EXPR
, type
, tem
, op2
);
10105 /* Convert A ? 1 : B into A || B if A and B are truth values. */
10106 if (integer_onep (arg1
)
10107 && truth_value_p (TREE_CODE (arg0
))
10108 && truth_value_p (TREE_CODE (op2
)))
10109 return fold_build2 (TRUTH_ORIF_EXPR
, type
, arg0
, op2
);
10114 /* Check for a built-in function. */
10115 if (TREE_CODE (op0
) == ADDR_EXPR
10116 && TREE_CODE (TREE_OPERAND (op0
, 0)) == FUNCTION_DECL
10117 && DECL_BUILT_IN (TREE_OPERAND (op0
, 0)))
10118 return fold_builtin (TREE_OPERAND (op0
, 0), op1
, false);
10121 case BIT_FIELD_REF
:
10122 if (TREE_CODE (arg0
) == VECTOR_CST
10123 && type
== TREE_TYPE (TREE_TYPE (arg0
))
10124 && host_integerp (arg1
, 1)
10125 && host_integerp (op2
, 1))
10127 unsigned HOST_WIDE_INT width
= tree_low_cst (arg1
, 1);
10128 unsigned HOST_WIDE_INT idx
= tree_low_cst (op2
, 1);
10131 && simple_cst_equal (arg1
, TYPE_SIZE (type
)) == 1
10132 && (idx
% width
) == 0
10133 && (idx
= idx
/ width
)
10134 < TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)))
10136 tree elements
= TREE_VECTOR_CST_ELTS (arg0
);
10137 while (idx
-- > 0 && elements
)
10138 elements
= TREE_CHAIN (elements
);
10140 return TREE_VALUE (elements
);
10142 return fold_convert (type
, integer_zero_node
);
10149 } /* switch (code) */
10152 /* Perform constant folding and related simplification of EXPR.
10153 The related simplifications include x*1 => x, x*0 => 0, etc.,
10154 and application of the associative law.
10155 NOP_EXPR conversions may be removed freely (as long as we
10156 are careful not to change the type of the overall expression).
10157 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
10158 but we can constant-fold them if they have constant operands. */
10160 #ifdef ENABLE_FOLD_CHECKING
10161 # define fold(x) fold_1 (x)
10162 static tree
fold_1 (tree
);
10168 const tree t
= expr
;
10169 enum tree_code code
= TREE_CODE (t
);
10170 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
10173 /* Return right away if a constant. */
10174 if (kind
== tcc_constant
)
10177 if (IS_EXPR_CODE_CLASS (kind
))
10179 tree type
= TREE_TYPE (t
);
10180 tree op0
, op1
, op2
;
10182 switch (TREE_CODE_LENGTH (code
))
10185 op0
= TREE_OPERAND (t
, 0);
10186 tem
= fold_unary (code
, type
, op0
);
10187 return tem
? tem
: expr
;
10189 op0
= TREE_OPERAND (t
, 0);
10190 op1
= TREE_OPERAND (t
, 1);
10191 tem
= fold_binary (code
, type
, op0
, op1
);
10192 return tem
? tem
: expr
;
10194 op0
= TREE_OPERAND (t
, 0);
10195 op1
= TREE_OPERAND (t
, 1);
10196 op2
= TREE_OPERAND (t
, 2);
10197 tem
= fold_ternary (code
, type
, op0
, op1
, op2
);
10198 return tem
? tem
: expr
;
10207 return fold (DECL_INITIAL (t
));
10211 } /* switch (code) */
10214 #ifdef ENABLE_FOLD_CHECKING
10217 static void fold_checksum_tree (tree
, struct md5_ctx
*, htab_t
);
10218 static void fold_check_failed (tree
, tree
);
10219 void print_fold_checksum (tree
);
10221 /* When --enable-checking=fold, compute a digest of expr before
10222 and after actual fold call to see if fold did not accidentally
10223 change original expr. */
10229 struct md5_ctx ctx
;
10230 unsigned char checksum_before
[16], checksum_after
[16];
10233 ht
= htab_create (32, htab_hash_pointer
, htab_eq_pointer
, NULL
);
10234 md5_init_ctx (&ctx
);
10235 fold_checksum_tree (expr
, &ctx
, ht
);
10236 md5_finish_ctx (&ctx
, checksum_before
);
10239 ret
= fold_1 (expr
);
10241 md5_init_ctx (&ctx
);
10242 fold_checksum_tree (expr
, &ctx
, ht
);
10243 md5_finish_ctx (&ctx
, checksum_after
);
10246 if (memcmp (checksum_before
, checksum_after
, 16))
10247 fold_check_failed (expr
, ret
);
10253 print_fold_checksum (tree expr
)
10255 struct md5_ctx ctx
;
10256 unsigned char checksum
[16], cnt
;
10259 ht
= htab_create (32, htab_hash_pointer
, htab_eq_pointer
, NULL
);
10260 md5_init_ctx (&ctx
);
10261 fold_checksum_tree (expr
, &ctx
, ht
);
10262 md5_finish_ctx (&ctx
, checksum
);
10264 for (cnt
= 0; cnt
< 16; ++cnt
)
10265 fprintf (stderr
, "%02x", checksum
[cnt
]);
10266 putc ('\n', stderr
);
10270 fold_check_failed (tree expr ATTRIBUTE_UNUSED
, tree ret ATTRIBUTE_UNUSED
)
10272 internal_error ("fold check: original tree changed by fold");
10276 fold_checksum_tree (tree expr
, struct md5_ctx
*ctx
, htab_t ht
)
10279 enum tree_code code
;
10280 char buf
[sizeof (struct tree_function_decl
)];
10285 gcc_assert ((sizeof (struct tree_exp
) + 5 * sizeof (tree
)
10286 <= sizeof (struct tree_function_decl
))
10287 && sizeof (struct tree_type
) <= sizeof (struct tree_function_decl
));
10290 slot
= htab_find_slot (ht
, expr
, INSERT
);
10294 code
= TREE_CODE (expr
);
10295 if (TREE_CODE_CLASS (code
) == tcc_declaration
10296 && DECL_ASSEMBLER_NAME_SET_P (expr
))
10298 /* Allow DECL_ASSEMBLER_NAME to be modified. */
10299 memcpy (buf
, expr
, tree_size (expr
));
10301 SET_DECL_ASSEMBLER_NAME (expr
, NULL
);
10303 else if (TREE_CODE_CLASS (code
) == tcc_type
10304 && (TYPE_POINTER_TO (expr
) || TYPE_REFERENCE_TO (expr
)
10305 || TYPE_CACHED_VALUES_P (expr
)
10306 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr
)))
10308 /* Allow these fields to be modified. */
10309 memcpy (buf
, expr
, tree_size (expr
));
10311 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr
) = 0;
10312 TYPE_POINTER_TO (expr
) = NULL
;
10313 TYPE_REFERENCE_TO (expr
) = NULL
;
10314 if (TYPE_CACHED_VALUES_P (expr
))
10316 TYPE_CACHED_VALUES_P (expr
) = 0;
10317 TYPE_CACHED_VALUES (expr
) = NULL
;
10320 md5_process_bytes (expr
, tree_size (expr
), ctx
);
10321 fold_checksum_tree (TREE_TYPE (expr
), ctx
, ht
);
10322 if (TREE_CODE_CLASS (code
) != tcc_type
10323 && TREE_CODE_CLASS (code
) != tcc_declaration
10324 && code
!= TREE_LIST
)
10325 fold_checksum_tree (TREE_CHAIN (expr
), ctx
, ht
);
10326 switch (TREE_CODE_CLASS (code
))
10332 md5_process_bytes (TREE_STRING_POINTER (expr
),
10333 TREE_STRING_LENGTH (expr
), ctx
);
10336 fold_checksum_tree (TREE_REALPART (expr
), ctx
, ht
);
10337 fold_checksum_tree (TREE_IMAGPART (expr
), ctx
, ht
);
10340 fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr
), ctx
, ht
);
10346 case tcc_exceptional
:
10350 fold_checksum_tree (TREE_PURPOSE (expr
), ctx
, ht
);
10351 fold_checksum_tree (TREE_VALUE (expr
), ctx
, ht
);
10352 expr
= TREE_CHAIN (expr
);
10353 goto recursive_label
;
10356 for (i
= 0; i
< TREE_VEC_LENGTH (expr
); ++i
)
10357 fold_checksum_tree (TREE_VEC_ELT (expr
, i
), ctx
, ht
);
10363 case tcc_expression
:
10364 case tcc_reference
:
10365 case tcc_comparison
:
10368 case tcc_statement
:
10369 len
= TREE_CODE_LENGTH (code
);
10370 for (i
= 0; i
< len
; ++i
)
10371 fold_checksum_tree (TREE_OPERAND (expr
, i
), ctx
, ht
);
10373 case tcc_declaration
:
10374 fold_checksum_tree (DECL_SIZE (expr
), ctx
, ht
);
10375 fold_checksum_tree (DECL_SIZE_UNIT (expr
), ctx
, ht
);
10376 fold_checksum_tree (DECL_NAME (expr
), ctx
, ht
);
10377 fold_checksum_tree (DECL_CONTEXT (expr
), ctx
, ht
);
10378 fold_checksum_tree (DECL_INITIAL (expr
), ctx
, ht
);
10379 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr
), ctx
, ht
);
10380 fold_checksum_tree (DECL_ATTRIBUTES (expr
), ctx
, ht
);
10381 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_WITH_VIS
))
10382 fold_checksum_tree (DECL_SECTION_NAME (expr
), ctx
, ht
);
10384 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_NON_COMMON
))
10386 fold_checksum_tree (DECL_VINDEX (expr
), ctx
, ht
);
10387 fold_checksum_tree (DECL_RESULT_FLD (expr
), ctx
, ht
);
10388 fold_checksum_tree (DECL_ARGUMENT_FLD (expr
), ctx
, ht
);
10392 if (TREE_CODE (expr
) == ENUMERAL_TYPE
)
10393 fold_checksum_tree (TYPE_VALUES (expr
), ctx
, ht
);
10394 fold_checksum_tree (TYPE_SIZE (expr
), ctx
, ht
);
10395 fold_checksum_tree (TYPE_SIZE_UNIT (expr
), ctx
, ht
);
10396 fold_checksum_tree (TYPE_ATTRIBUTES (expr
), ctx
, ht
);
10397 fold_checksum_tree (TYPE_NAME (expr
), ctx
, ht
);
10398 if (INTEGRAL_TYPE_P (expr
)
10399 || SCALAR_FLOAT_TYPE_P (expr
))
10401 fold_checksum_tree (TYPE_MIN_VALUE (expr
), ctx
, ht
);
10402 fold_checksum_tree (TYPE_MAX_VALUE (expr
), ctx
, ht
);
10404 fold_checksum_tree (TYPE_MAIN_VARIANT (expr
), ctx
, ht
);
10405 if (TREE_CODE (expr
) == RECORD_TYPE
10406 || TREE_CODE (expr
) == UNION_TYPE
10407 || TREE_CODE (expr
) == QUAL_UNION_TYPE
)
10408 fold_checksum_tree (TYPE_BINFO (expr
), ctx
, ht
);
10409 fold_checksum_tree (TYPE_CONTEXT (expr
), ctx
, ht
);
10418 /* Fold a unary tree expression with code CODE of type TYPE with an
10419 operand OP0. Return a folded expression if successful. Otherwise,
10420 return a tree expression with code CODE of type TYPE with an
10424 fold_build1_stat (enum tree_code code
, tree type
, tree op0 MEM_STAT_DECL
)
10427 #ifdef ENABLE_FOLD_CHECKING
10428 unsigned char checksum_before
[16], checksum_after
[16];
10429 struct md5_ctx ctx
;
10432 ht
= htab_create (32, htab_hash_pointer
, htab_eq_pointer
, NULL
);
10433 md5_init_ctx (&ctx
);
10434 fold_checksum_tree (op0
, &ctx
, ht
);
10435 md5_finish_ctx (&ctx
, checksum_before
);
10439 tem
= fold_unary (code
, type
, op0
);
10441 tem
= build1_stat (code
, type
, op0 PASS_MEM_STAT
);
10443 #ifdef ENABLE_FOLD_CHECKING
10444 md5_init_ctx (&ctx
);
10445 fold_checksum_tree (op0
, &ctx
, ht
);
10446 md5_finish_ctx (&ctx
, checksum_after
);
10449 if (memcmp (checksum_before
, checksum_after
, 16))
10450 fold_check_failed (op0
, tem
);
10455 /* Fold a binary tree expression with code CODE of type TYPE with
10456 operands OP0 and OP1. Return a folded expression if successful.
10457 Otherwise, return a tree expression with code CODE of type TYPE
10458 with operands OP0 and OP1. */
10461 fold_build2_stat (enum tree_code code
, tree type
, tree op0
, tree op1
10465 #ifdef ENABLE_FOLD_CHECKING
10466 unsigned char checksum_before_op0
[16],
10467 checksum_before_op1
[16],
10468 checksum_after_op0
[16],
10469 checksum_after_op1
[16];
10470 struct md5_ctx ctx
;
10473 ht
= htab_create (32, htab_hash_pointer
, htab_eq_pointer
, NULL
);
10474 md5_init_ctx (&ctx
);
10475 fold_checksum_tree (op0
, &ctx
, ht
);
10476 md5_finish_ctx (&ctx
, checksum_before_op0
);
10479 md5_init_ctx (&ctx
);
10480 fold_checksum_tree (op1
, &ctx
, ht
);
10481 md5_finish_ctx (&ctx
, checksum_before_op1
);
10485 tem
= fold_binary (code
, type
, op0
, op1
);
10487 tem
= build2_stat (code
, type
, op0
, op1 PASS_MEM_STAT
);
10489 #ifdef ENABLE_FOLD_CHECKING
10490 md5_init_ctx (&ctx
);
10491 fold_checksum_tree (op0
, &ctx
, ht
);
10492 md5_finish_ctx (&ctx
, checksum_after_op0
);
10495 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
10496 fold_check_failed (op0
, tem
);
10498 md5_init_ctx (&ctx
);
10499 fold_checksum_tree (op1
, &ctx
, ht
);
10500 md5_finish_ctx (&ctx
, checksum_after_op1
);
10503 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
10504 fold_check_failed (op1
, tem
);
10509 /* Fold a ternary tree expression with code CODE of type TYPE with
10510 operands OP0, OP1, and OP2. Return a folded expression if
10511 successful. Otherwise, return a tree expression with code CODE of
10512 type TYPE with operands OP0, OP1, and OP2. */
10515 fold_build3_stat (enum tree_code code
, tree type
, tree op0
, tree op1
, tree op2
10519 #ifdef ENABLE_FOLD_CHECKING
10520 unsigned char checksum_before_op0
[16],
10521 checksum_before_op1
[16],
10522 checksum_before_op2
[16],
10523 checksum_after_op0
[16],
10524 checksum_after_op1
[16],
10525 checksum_after_op2
[16];
10526 struct md5_ctx ctx
;
10529 ht
= htab_create (32, htab_hash_pointer
, htab_eq_pointer
, NULL
);
10530 md5_init_ctx (&ctx
);
10531 fold_checksum_tree (op0
, &ctx
, ht
);
10532 md5_finish_ctx (&ctx
, checksum_before_op0
);
10535 md5_init_ctx (&ctx
);
10536 fold_checksum_tree (op1
, &ctx
, ht
);
10537 md5_finish_ctx (&ctx
, checksum_before_op1
);
10540 md5_init_ctx (&ctx
);
10541 fold_checksum_tree (op2
, &ctx
, ht
);
10542 md5_finish_ctx (&ctx
, checksum_before_op2
);
10546 tem
= fold_ternary (code
, type
, op0
, op1
, op2
);
10548 tem
= build3_stat (code
, type
, op0
, op1
, op2 PASS_MEM_STAT
);
10550 #ifdef ENABLE_FOLD_CHECKING
10551 md5_init_ctx (&ctx
);
10552 fold_checksum_tree (op0
, &ctx
, ht
);
10553 md5_finish_ctx (&ctx
, checksum_after_op0
);
10556 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
10557 fold_check_failed (op0
, tem
);
10559 md5_init_ctx (&ctx
);
10560 fold_checksum_tree (op1
, &ctx
, ht
);
10561 md5_finish_ctx (&ctx
, checksum_after_op1
);
10564 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
10565 fold_check_failed (op1
, tem
);
10567 md5_init_ctx (&ctx
);
10568 fold_checksum_tree (op2
, &ctx
, ht
);
10569 md5_finish_ctx (&ctx
, checksum_after_op2
);
10572 if (memcmp (checksum_before_op2
, checksum_after_op2
, 16))
10573 fold_check_failed (op2
, tem
);
10578 /* Perform constant folding and related simplification of initializer
10579 expression EXPR. These behave identically to "fold_buildN" but ignore
10580 potential run-time traps and exceptions that fold must preserve. */
10582 #define START_FOLD_INIT \
10583 int saved_signaling_nans = flag_signaling_nans;\
10584 int saved_trapping_math = flag_trapping_math;\
10585 int saved_rounding_math = flag_rounding_math;\
10586 int saved_trapv = flag_trapv;\
10587 flag_signaling_nans = 0;\
10588 flag_trapping_math = 0;\
10589 flag_rounding_math = 0;\
10592 #define END_FOLD_INIT \
10593 flag_signaling_nans = saved_signaling_nans;\
10594 flag_trapping_math = saved_trapping_math;\
10595 flag_rounding_math = saved_rounding_math;\
10596 flag_trapv = saved_trapv
10599 fold_build1_initializer (enum tree_code code
, tree type
, tree op
)
10604 result
= fold_build1 (code
, type
, op
);
10611 fold_build2_initializer (enum tree_code code
, tree type
, tree op0
, tree op1
)
10616 result
= fold_build2 (code
, type
, op0
, op1
);
10623 fold_build3_initializer (enum tree_code code
, tree type
, tree op0
, tree op1
,
10629 result
= fold_build3 (code
, type
, op0
, op1
, op2
);
10635 #undef START_FOLD_INIT
10636 #undef END_FOLD_INIT
10638 /* Determine if first argument is a multiple of second argument. Return 0 if
10639 it is not, or we cannot easily determined it to be.
10641 An example of the sort of thing we care about (at this point; this routine
10642 could surely be made more general, and expanded to do what the *_DIV_EXPR's
10643 fold cases do now) is discovering that
10645 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
10651 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
10653 This code also handles discovering that
10655 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
10657 is a multiple of 8 so we don't have to worry about dealing with a
10658 possible remainder.
10660 Note that we *look* inside a SAVE_EXPR only to determine how it was
10661 calculated; it is not safe for fold to do much of anything else with the
10662 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
10663 at run time. For example, the latter example above *cannot* be implemented
10664 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
10665 evaluation time of the original SAVE_EXPR is not necessarily the same at
10666 the time the new expression is evaluated. The only optimization of this
10667 sort that would be valid is changing
10669 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
10673 SAVE_EXPR (I) * SAVE_EXPR (J)
10675 (where the same SAVE_EXPR (J) is used in the original and the
10676 transformed version). */
10679 multiple_of_p (tree type
, tree top
, tree bottom
)
10681 if (operand_equal_p (top
, bottom
, 0))
10684 if (TREE_CODE (type
) != INTEGER_TYPE
)
10687 switch (TREE_CODE (top
))
10690 /* Bitwise and provides a power of two multiple. If the mask is
10691 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
10692 if (!integer_pow2p (bottom
))
10697 return (multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
)
10698 || multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
));
10702 return (multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
)
10703 && multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
));
10706 if (TREE_CODE (TREE_OPERAND (top
, 1)) == INTEGER_CST
)
10710 op1
= TREE_OPERAND (top
, 1);
10711 /* const_binop may not detect overflow correctly,
10712 so check for it explicitly here. */
10713 if (TYPE_PRECISION (TREE_TYPE (size_one_node
))
10714 > TREE_INT_CST_LOW (op1
)
10715 && TREE_INT_CST_HIGH (op1
) == 0
10716 && 0 != (t1
= fold_convert (type
,
10717 const_binop (LSHIFT_EXPR
,
10720 && ! TREE_OVERFLOW (t1
))
10721 return multiple_of_p (type
, t1
, bottom
);
10726 /* Can't handle conversions from non-integral or wider integral type. */
10727 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top
, 0))) != INTEGER_TYPE
)
10728 || (TYPE_PRECISION (type
)
10729 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top
, 0)))))
10732 /* .. fall through ... */
10735 return multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
);
10738 if (TREE_CODE (bottom
) != INTEGER_CST
10739 || (TYPE_UNSIGNED (type
)
10740 && (tree_int_cst_sgn (top
) < 0
10741 || tree_int_cst_sgn (bottom
) < 0)))
10743 return integer_zerop (const_binop (TRUNC_MOD_EXPR
,
10751 /* Return true if `t' is known to be non-negative. */
10754 tree_expr_nonnegative_p (tree t
)
10756 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
10759 switch (TREE_CODE (t
))
10762 /* We can't return 1 if flag_wrapv is set because
10763 ABS_EXPR<INT_MIN> = INT_MIN. */
10764 if (!(flag_wrapv
&& INTEGRAL_TYPE_P (TREE_TYPE (t
))))
10769 return tree_int_cst_sgn (t
) >= 0;
10772 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
10775 if (FLOAT_TYPE_P (TREE_TYPE (t
)))
10776 return tree_expr_nonnegative_p (TREE_OPERAND (t
, 0))
10777 && tree_expr_nonnegative_p (TREE_OPERAND (t
, 1));
10779 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
10780 both unsigned and at least 2 bits shorter than the result. */
10781 if (TREE_CODE (TREE_TYPE (t
)) == INTEGER_TYPE
10782 && TREE_CODE (TREE_OPERAND (t
, 0)) == NOP_EXPR
10783 && TREE_CODE (TREE_OPERAND (t
, 1)) == NOP_EXPR
)
10785 tree inner1
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t
, 0), 0));
10786 tree inner2
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t
, 1), 0));
10787 if (TREE_CODE (inner1
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner1
)
10788 && TREE_CODE (inner2
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner2
))
10790 unsigned int prec
= MAX (TYPE_PRECISION (inner1
),
10791 TYPE_PRECISION (inner2
)) + 1;
10792 return prec
< TYPE_PRECISION (TREE_TYPE (t
));
10798 if (FLOAT_TYPE_P (TREE_TYPE (t
)))
10800 /* x * x for floating point x is always non-negative. */
10801 if (operand_equal_p (TREE_OPERAND (t
, 0), TREE_OPERAND (t
, 1), 0))
10803 return tree_expr_nonnegative_p (TREE_OPERAND (t
, 0))
10804 && tree_expr_nonnegative_p (TREE_OPERAND (t
, 1));
10807 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
10808 both unsigned and their total bits is shorter than the result. */
10809 if (TREE_CODE (TREE_TYPE (t
)) == INTEGER_TYPE
10810 && TREE_CODE (TREE_OPERAND (t
, 0)) == NOP_EXPR
10811 && TREE_CODE (TREE_OPERAND (t
, 1)) == NOP_EXPR
)
10813 tree inner1
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t
, 0), 0));
10814 tree inner2
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t
, 1), 0));
10815 if (TREE_CODE (inner1
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner1
)
10816 && TREE_CODE (inner2
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner2
))
10817 return TYPE_PRECISION (inner1
) + TYPE_PRECISION (inner2
)
10818 < TYPE_PRECISION (TREE_TYPE (t
));
10824 return tree_expr_nonnegative_p (TREE_OPERAND (t
, 0))
10825 || tree_expr_nonnegative_p (TREE_OPERAND (t
, 1));
10831 case TRUNC_DIV_EXPR
:
10832 case CEIL_DIV_EXPR
:
10833 case FLOOR_DIV_EXPR
:
10834 case ROUND_DIV_EXPR
:
10835 return tree_expr_nonnegative_p (TREE_OPERAND (t
, 0))
10836 && tree_expr_nonnegative_p (TREE_OPERAND (t
, 1));
10838 case TRUNC_MOD_EXPR
:
10839 case CEIL_MOD_EXPR
:
10840 case FLOOR_MOD_EXPR
:
10841 case ROUND_MOD_EXPR
:
10843 case NON_LVALUE_EXPR
:
10845 return tree_expr_nonnegative_p (TREE_OPERAND (t
, 0));
10847 case COMPOUND_EXPR
:
10849 return tree_expr_nonnegative_p (TREE_OPERAND (t
, 1));
10852 return tree_expr_nonnegative_p (expr_last (TREE_OPERAND (t
, 1)));
10855 return tree_expr_nonnegative_p (TREE_OPERAND (t
, 1))
10856 && tree_expr_nonnegative_p (TREE_OPERAND (t
, 2));
10860 tree inner_type
= TREE_TYPE (TREE_OPERAND (t
, 0));
10861 tree outer_type
= TREE_TYPE (t
);
10863 if (TREE_CODE (outer_type
) == REAL_TYPE
)
10865 if (TREE_CODE (inner_type
) == REAL_TYPE
)
10866 return tree_expr_nonnegative_p (TREE_OPERAND (t
, 0));
10867 if (TREE_CODE (inner_type
) == INTEGER_TYPE
)
10869 if (TYPE_UNSIGNED (inner_type
))
10871 return tree_expr_nonnegative_p (TREE_OPERAND (t
, 0));
10874 else if (TREE_CODE (outer_type
) == INTEGER_TYPE
)
10876 if (TREE_CODE (inner_type
) == REAL_TYPE
)
10877 return tree_expr_nonnegative_p (TREE_OPERAND (t
,0));
10878 if (TREE_CODE (inner_type
) == INTEGER_TYPE
)
10879 return TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
)
10880 && TYPE_UNSIGNED (inner_type
);
10887 tree temp
= TARGET_EXPR_SLOT (t
);
10888 t
= TARGET_EXPR_INITIAL (t
);
10890 /* If the initializer is non-void, then it's a normal expression
10891 that will be assigned to the slot. */
10892 if (!VOID_TYPE_P (t
))
10893 return tree_expr_nonnegative_p (t
);
10895 /* Otherwise, the initializer sets the slot in some way. One common
10896 way is an assignment statement at the end of the initializer. */
10899 if (TREE_CODE (t
) == BIND_EXPR
)
10900 t
= expr_last (BIND_EXPR_BODY (t
));
10901 else if (TREE_CODE (t
) == TRY_FINALLY_EXPR
10902 || TREE_CODE (t
) == TRY_CATCH_EXPR
)
10903 t
= expr_last (TREE_OPERAND (t
, 0));
10904 else if (TREE_CODE (t
) == STATEMENT_LIST
)
10909 if (TREE_CODE (t
) == MODIFY_EXPR
10910 && TREE_OPERAND (t
, 0) == temp
)
10911 return tree_expr_nonnegative_p (TREE_OPERAND (t
, 1));
10918 tree fndecl
= get_callee_fndecl (t
);
10919 tree arglist
= TREE_OPERAND (t
, 1);
10920 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
10921 switch (DECL_FUNCTION_CODE (fndecl
))
10923 #define CASE_BUILTIN_F(BUILT_IN_FN) \
10924 case BUILT_IN_FN: case BUILT_IN_FN##F: case BUILT_IN_FN##L:
10925 #define CASE_BUILTIN_I(BUILT_IN_FN) \
10926 case BUILT_IN_FN: case BUILT_IN_FN##L: case BUILT_IN_FN##LL:
10928 CASE_BUILTIN_F (BUILT_IN_ACOS
)
10929 CASE_BUILTIN_F (BUILT_IN_ACOSH
)
10930 CASE_BUILTIN_F (BUILT_IN_CABS
)
10931 CASE_BUILTIN_F (BUILT_IN_COSH
)
10932 CASE_BUILTIN_F (BUILT_IN_ERFC
)
10933 CASE_BUILTIN_F (BUILT_IN_EXP
)
10934 CASE_BUILTIN_F (BUILT_IN_EXP10
)
10935 CASE_BUILTIN_F (BUILT_IN_EXP2
)
10936 CASE_BUILTIN_F (BUILT_IN_FABS
)
10937 CASE_BUILTIN_F (BUILT_IN_FDIM
)
10938 CASE_BUILTIN_F (BUILT_IN_HYPOT
)
10939 CASE_BUILTIN_F (BUILT_IN_POW10
)
10940 CASE_BUILTIN_I (BUILT_IN_FFS
)
10941 CASE_BUILTIN_I (BUILT_IN_PARITY
)
10942 CASE_BUILTIN_I (BUILT_IN_POPCOUNT
)
10946 CASE_BUILTIN_F (BUILT_IN_SQRT
)
10947 /* sqrt(-0.0) is -0.0. */
10948 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (t
))))
10950 return tree_expr_nonnegative_p (TREE_VALUE (arglist
));
10952 CASE_BUILTIN_F (BUILT_IN_ASINH
)
10953 CASE_BUILTIN_F (BUILT_IN_ATAN
)
10954 CASE_BUILTIN_F (BUILT_IN_ATANH
)
10955 CASE_BUILTIN_F (BUILT_IN_CBRT
)
10956 CASE_BUILTIN_F (BUILT_IN_CEIL
)
10957 CASE_BUILTIN_F (BUILT_IN_ERF
)
10958 CASE_BUILTIN_F (BUILT_IN_EXPM1
)
10959 CASE_BUILTIN_F (BUILT_IN_FLOOR
)
10960 CASE_BUILTIN_F (BUILT_IN_FMOD
)
10961 CASE_BUILTIN_F (BUILT_IN_FREXP
)
10962 CASE_BUILTIN_F (BUILT_IN_LCEIL
)
10963 CASE_BUILTIN_F (BUILT_IN_LDEXP
)
10964 CASE_BUILTIN_F (BUILT_IN_LFLOOR
)
10965 CASE_BUILTIN_F (BUILT_IN_LLCEIL
)
10966 CASE_BUILTIN_F (BUILT_IN_LLFLOOR
)
10967 CASE_BUILTIN_F (BUILT_IN_LLRINT
)
10968 CASE_BUILTIN_F (BUILT_IN_LLROUND
)
10969 CASE_BUILTIN_F (BUILT_IN_LRINT
)
10970 CASE_BUILTIN_F (BUILT_IN_LROUND
)
10971 CASE_BUILTIN_F (BUILT_IN_MODF
)
10972 CASE_BUILTIN_F (BUILT_IN_NEARBYINT
)
10973 CASE_BUILTIN_F (BUILT_IN_POW
)
10974 CASE_BUILTIN_F (BUILT_IN_RINT
)
10975 CASE_BUILTIN_F (BUILT_IN_ROUND
)
10976 CASE_BUILTIN_F (BUILT_IN_SIGNBIT
)
10977 CASE_BUILTIN_F (BUILT_IN_SINH
)
10978 CASE_BUILTIN_F (BUILT_IN_TANH
)
10979 CASE_BUILTIN_F (BUILT_IN_TRUNC
)
10980 /* True if the 1st argument is nonnegative. */
10981 return tree_expr_nonnegative_p (TREE_VALUE (arglist
));
10983 CASE_BUILTIN_F (BUILT_IN_FMAX
)
10984 /* True if the 1st OR 2nd arguments are nonnegative. */
10985 return tree_expr_nonnegative_p (TREE_VALUE (arglist
))
10986 || tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist
)));
10988 CASE_BUILTIN_F (BUILT_IN_FMIN
)
10989 /* True if the 1st AND 2nd arguments are nonnegative. */
10990 return tree_expr_nonnegative_p (TREE_VALUE (arglist
))
10991 && tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist
)));
10993 CASE_BUILTIN_F (BUILT_IN_COPYSIGN
)
10994 /* True if the 2nd argument is nonnegative. */
10995 return tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist
)));
10999 #undef CASE_BUILTIN_F
11000 #undef CASE_BUILTIN_I
11004 /* ... fall through ... */
11007 if (truth_value_p (TREE_CODE (t
)))
11008 /* Truth values evaluate to 0 or 1, which is nonnegative. */
11012 /* We don't know sign of `t', so be conservative and return false. */
11016 /* Return true when T is an address and is known to be nonzero.
11017 For floating point we further ensure that T is not denormal.
11018 Similar logic is present in nonzero_address in rtlanal.h. */
11021 tree_expr_nonzero_p (tree t
)
11023 tree type
= TREE_TYPE (t
);
11025 /* Doing something useful for floating point would need more work. */
11026 if (!INTEGRAL_TYPE_P (type
) && !POINTER_TYPE_P (type
))
11029 switch (TREE_CODE (t
))
11032 return tree_expr_nonzero_p (TREE_OPERAND (t
, 0));
11035 /* We used to test for !integer_zerop here. This does not work correctly
11036 if TREE_CONSTANT_OVERFLOW (t). */
11037 return (TREE_INT_CST_LOW (t
) != 0
11038 || TREE_INT_CST_HIGH (t
) != 0);
11041 if (!TYPE_UNSIGNED (type
) && !flag_wrapv
)
11043 /* With the presence of negative values it is hard
11044 to say something. */
11045 if (!tree_expr_nonnegative_p (TREE_OPERAND (t
, 0))
11046 || !tree_expr_nonnegative_p (TREE_OPERAND (t
, 1)))
11048 /* One of operands must be positive and the other non-negative. */
11049 return (tree_expr_nonzero_p (TREE_OPERAND (t
, 0))
11050 || tree_expr_nonzero_p (TREE_OPERAND (t
, 1)));
11055 if (!TYPE_UNSIGNED (type
) && !flag_wrapv
)
11057 return (tree_expr_nonzero_p (TREE_OPERAND (t
, 0))
11058 && tree_expr_nonzero_p (TREE_OPERAND (t
, 1)));
11064 tree inner_type
= TREE_TYPE (TREE_OPERAND (t
, 0));
11065 tree outer_type
= TREE_TYPE (t
);
11067 return (TYPE_PRECISION (inner_type
) >= TYPE_PRECISION (outer_type
)
11068 && tree_expr_nonzero_p (TREE_OPERAND (t
, 0)));
11074 tree base
= get_base_address (TREE_OPERAND (t
, 0));
11079 /* Weak declarations may link to NULL. */
11080 if (VAR_OR_FUNCTION_DECL_P (base
))
11081 return !DECL_WEAK (base
);
11083 /* Constants are never weak. */
11084 if (CONSTANT_CLASS_P (base
))
11091 return (tree_expr_nonzero_p (TREE_OPERAND (t
, 1))
11092 && tree_expr_nonzero_p (TREE_OPERAND (t
, 2)));
11095 return (tree_expr_nonzero_p (TREE_OPERAND (t
, 0))
11096 && tree_expr_nonzero_p (TREE_OPERAND (t
, 1)));
11099 if (tree_expr_nonzero_p (TREE_OPERAND (t
, 0)))
11101 /* When both operands are nonzero, then MAX must be too. */
11102 if (tree_expr_nonzero_p (TREE_OPERAND (t
, 1)))
11105 /* MAX where operand 0 is positive is positive. */
11106 return tree_expr_nonnegative_p (TREE_OPERAND (t
, 0));
11108 /* MAX where operand 1 is positive is positive. */
11109 else if (tree_expr_nonzero_p (TREE_OPERAND (t
, 1))
11110 && tree_expr_nonnegative_p (TREE_OPERAND (t
, 1)))
11114 case COMPOUND_EXPR
:
11117 return tree_expr_nonzero_p (TREE_OPERAND (t
, 1));
11120 case NON_LVALUE_EXPR
:
11121 return tree_expr_nonzero_p (TREE_OPERAND (t
, 0));
11124 return tree_expr_nonzero_p (TREE_OPERAND (t
, 1))
11125 || tree_expr_nonzero_p (TREE_OPERAND (t
, 0));
11128 return alloca_call_p (t
);
11136 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
11137 attempt to fold the expression to a constant without modifying TYPE,
11140 If the expression could be simplified to a constant, then return
11141 the constant. If the expression would not be simplified to a
11142 constant, then return NULL_TREE. */
11145 fold_binary_to_constant (enum tree_code code
, tree type
, tree op0
, tree op1
)
11147 tree tem
= fold_binary (code
, type
, op0
, op1
);
11148 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
11151 /* Given the components of a unary expression CODE, TYPE and OP0,
11152 attempt to fold the expression to a constant without modifying
11155 If the expression could be simplified to a constant, then return
11156 the constant. If the expression would not be simplified to a
11157 constant, then return NULL_TREE. */
11160 fold_unary_to_constant (enum tree_code code
, tree type
, tree op0
)
11162 tree tem
= fold_unary (code
, type
, op0
);
11163 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
11166 /* If EXP represents referencing an element in a constant string
11167 (either via pointer arithmetic or array indexing), return the
11168 tree representing the value accessed, otherwise return NULL. */
11171 fold_read_from_constant_string (tree exp
)
11173 if (TREE_CODE (exp
) == INDIRECT_REF
|| TREE_CODE (exp
) == ARRAY_REF
)
11175 tree exp1
= TREE_OPERAND (exp
, 0);
11179 if (TREE_CODE (exp
) == INDIRECT_REF
)
11180 string
= string_constant (exp1
, &index
);
11183 tree low_bound
= array_ref_low_bound (exp
);
11184 index
= fold_convert (sizetype
, TREE_OPERAND (exp
, 1));
11186 /* Optimize the special-case of a zero lower bound.
11188 We convert the low_bound to sizetype to avoid some problems
11189 with constant folding. (E.g. suppose the lower bound is 1,
11190 and its mode is QI. Without the conversion,l (ARRAY
11191 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
11192 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
11193 if (! integer_zerop (low_bound
))
11194 index
= size_diffop (index
, fold_convert (sizetype
, low_bound
));
11200 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (string
))
11201 && TREE_CODE (string
) == STRING_CST
11202 && TREE_CODE (index
) == INTEGER_CST
11203 && compare_tree_int (index
, TREE_STRING_LENGTH (string
)) < 0
11204 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
))))
11206 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
)))) == 1))
11207 return fold_convert (TREE_TYPE (exp
),
11208 build_int_cst (NULL_TREE
,
11209 (TREE_STRING_POINTER (string
)
11210 [TREE_INT_CST_LOW (index
)])));
11215 /* Return the tree for neg (ARG0) when ARG0 is known to be either
11216 an integer constant or real constant.
11218 TYPE is the type of the result. */
11221 fold_negate_const (tree arg0
, tree type
)
11223 tree t
= NULL_TREE
;
11225 switch (TREE_CODE (arg0
))
11229 unsigned HOST_WIDE_INT low
;
11230 HOST_WIDE_INT high
;
11231 int overflow
= neg_double (TREE_INT_CST_LOW (arg0
),
11232 TREE_INT_CST_HIGH (arg0
),
11234 t
= build_int_cst_wide (type
, low
, high
);
11235 t
= force_fit_type (t
, 1,
11236 (overflow
| TREE_OVERFLOW (arg0
))
11237 && !TYPE_UNSIGNED (type
),
11238 TREE_CONSTANT_OVERFLOW (arg0
));
11243 t
= build_real (type
, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0
)));
11247 gcc_unreachable ();
11253 /* Return the tree for abs (ARG0) when ARG0 is known to be either
11254 an integer constant or real constant.
11256 TYPE is the type of the result. */
11259 fold_abs_const (tree arg0
, tree type
)
11261 tree t
= NULL_TREE
;
11263 switch (TREE_CODE (arg0
))
11266 /* If the value is unsigned, then the absolute value is
11267 the same as the ordinary value. */
11268 if (TYPE_UNSIGNED (type
))
11270 /* Similarly, if the value is non-negative. */
11271 else if (INT_CST_LT (integer_minus_one_node
, arg0
))
11273 /* If the value is negative, then the absolute value is
11277 unsigned HOST_WIDE_INT low
;
11278 HOST_WIDE_INT high
;
11279 int overflow
= neg_double (TREE_INT_CST_LOW (arg0
),
11280 TREE_INT_CST_HIGH (arg0
),
11282 t
= build_int_cst_wide (type
, low
, high
);
11283 t
= force_fit_type (t
, -1, overflow
| TREE_OVERFLOW (arg0
),
11284 TREE_CONSTANT_OVERFLOW (arg0
));
11289 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0
)))
11290 t
= build_real (type
, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0
)));
11296 gcc_unreachable ();
11302 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
11303 constant. TYPE is the type of the result. */
11306 fold_not_const (tree arg0
, tree type
)
11308 tree t
= NULL_TREE
;
11310 gcc_assert (TREE_CODE (arg0
) == INTEGER_CST
);
11312 t
= build_int_cst_wide (type
,
11313 ~ TREE_INT_CST_LOW (arg0
),
11314 ~ TREE_INT_CST_HIGH (arg0
));
11315 t
= force_fit_type (t
, 0, TREE_OVERFLOW (arg0
),
11316 TREE_CONSTANT_OVERFLOW (arg0
));
11321 /* Given CODE, a relational operator, the target type, TYPE and two
11322 constant operands OP0 and OP1, return the result of the
11323 relational operation. If the result is not a compile time
11324 constant, then return NULL_TREE. */
11327 fold_relational_const (enum tree_code code
, tree type
, tree op0
, tree op1
)
11329 int result
, invert
;
11331 /* From here on, the only cases we handle are when the result is
11332 known to be a constant. */
11334 if (TREE_CODE (op0
) == REAL_CST
&& TREE_CODE (op1
) == REAL_CST
)
11336 const REAL_VALUE_TYPE
*c0
= TREE_REAL_CST_PTR (op0
);
11337 const REAL_VALUE_TYPE
*c1
= TREE_REAL_CST_PTR (op1
);
11339 /* Handle the cases where either operand is a NaN. */
11340 if (real_isnan (c0
) || real_isnan (c1
))
11350 case UNORDERED_EXPR
:
11364 if (flag_trapping_math
)
11370 gcc_unreachable ();
11373 return constant_boolean_node (result
, type
);
11376 return constant_boolean_node (real_compare (code
, c0
, c1
), type
);
11379 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
11381 To compute GT, swap the arguments and do LT.
11382 To compute GE, do LT and invert the result.
11383 To compute LE, swap the arguments, do LT and invert the result.
11384 To compute NE, do EQ and invert the result.
11386 Therefore, the code below must handle only EQ and LT. */
11388 if (code
== LE_EXPR
|| code
== GT_EXPR
)
11393 code
= swap_tree_comparison (code
);
11396 /* Note that it is safe to invert for real values here because we
11397 have already handled the one case that it matters. */
11400 if (code
== NE_EXPR
|| code
== GE_EXPR
)
11403 code
= invert_tree_comparison (code
, false);
11406 /* Compute a result for LT or EQ if args permit;
11407 Otherwise return T. */
11408 if (TREE_CODE (op0
) == INTEGER_CST
&& TREE_CODE (op1
) == INTEGER_CST
)
11410 if (code
== EQ_EXPR
)
11411 result
= tree_int_cst_equal (op0
, op1
);
11412 else if (TYPE_UNSIGNED (TREE_TYPE (op0
)))
11413 result
= INT_CST_LT_UNSIGNED (op0
, op1
);
11415 result
= INT_CST_LT (op0
, op1
);
11422 return constant_boolean_node (result
, type
);
11425 /* Build an expression for the a clean point containing EXPR with type TYPE.
11426 Don't build a cleanup point expression for EXPR which don't have side
11430 fold_build_cleanup_point_expr (tree type
, tree expr
)
11432 /* If the expression does not have side effects then we don't have to wrap
11433 it with a cleanup point expression. */
11434 if (!TREE_SIDE_EFFECTS (expr
))
11437 /* If the expression is a return, check to see if the expression inside the
11438 return has no side effects or the right hand side of the modify expression
11439 inside the return. If either don't have side effects set we don't need to
11440 wrap the expression in a cleanup point expression. Note we don't check the
11441 left hand side of the modify because it should always be a return decl. */
11442 if (TREE_CODE (expr
) == RETURN_EXPR
)
11444 tree op
= TREE_OPERAND (expr
, 0);
11445 if (!op
|| !TREE_SIDE_EFFECTS (op
))
11447 op
= TREE_OPERAND (op
, 1);
11448 if (!TREE_SIDE_EFFECTS (op
))
11452 return build1 (CLEANUP_POINT_EXPR
, type
, expr
);
11455 /* Build an expression for the address of T. Folds away INDIRECT_REF to
11456 avoid confusing the gimplify process. */
11459 build_fold_addr_expr_with_type (tree t
, tree ptrtype
)
11461 /* The size of the object is not relevant when talking about its address. */
11462 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
11463 t
= TREE_OPERAND (t
, 0);
11465 /* Note: doesn't apply to ALIGN_INDIRECT_REF */
11466 if (TREE_CODE (t
) == INDIRECT_REF
11467 || TREE_CODE (t
) == MISALIGNED_INDIRECT_REF
)
11469 t
= TREE_OPERAND (t
, 0);
11470 if (TREE_TYPE (t
) != ptrtype
)
11471 t
= build1 (NOP_EXPR
, ptrtype
, t
);
11477 while (handled_component_p (base
))
11478 base
= TREE_OPERAND (base
, 0);
11480 TREE_ADDRESSABLE (base
) = 1;
11482 t
= build1 (ADDR_EXPR
, ptrtype
, t
);
11489 build_fold_addr_expr (tree t
)
11491 return build_fold_addr_expr_with_type (t
, build_pointer_type (TREE_TYPE (t
)));
11494 /* Given a pointer value OP0 and a type TYPE, return a simplified version
11495 of an indirection through OP0, or NULL_TREE if no simplification is
11499 fold_indirect_ref_1 (tree type
, tree op0
)
11505 subtype
= TREE_TYPE (sub
);
11506 if (!POINTER_TYPE_P (subtype
))
11509 if (TREE_CODE (sub
) == ADDR_EXPR
)
11511 tree op
= TREE_OPERAND (sub
, 0);
11512 tree optype
= TREE_TYPE (op
);
11514 if (type
== optype
)
11516 /* *(foo *)&fooarray => fooarray[0] */
11517 else if (TREE_CODE (optype
) == ARRAY_TYPE
11518 && type
== TREE_TYPE (optype
))
11520 tree type_domain
= TYPE_DOMAIN (optype
);
11521 tree min_val
= size_zero_node
;
11522 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
11523 min_val
= TYPE_MIN_VALUE (type_domain
);
11524 return build4 (ARRAY_REF
, type
, op
, min_val
, NULL_TREE
, NULL_TREE
);
11528 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
11529 if (TREE_CODE (TREE_TYPE (subtype
)) == ARRAY_TYPE
11530 && type
== TREE_TYPE (TREE_TYPE (subtype
)))
11533 tree min_val
= size_zero_node
;
11534 sub
= build_fold_indirect_ref (sub
);
11535 type_domain
= TYPE_DOMAIN (TREE_TYPE (sub
));
11536 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
11537 min_val
= TYPE_MIN_VALUE (type_domain
);
11538 return build4 (ARRAY_REF
, type
, sub
, min_val
, NULL_TREE
, NULL_TREE
);
11544 /* Builds an expression for an indirection through T, simplifying some
11548 build_fold_indirect_ref (tree t
)
11550 tree type
= TREE_TYPE (TREE_TYPE (t
));
11551 tree sub
= fold_indirect_ref_1 (type
, t
);
11556 return build1 (INDIRECT_REF
, type
, t
);
11559 /* Given an INDIRECT_REF T, return either T or a simplified version. */
11562 fold_indirect_ref (tree t
)
11564 tree sub
= fold_indirect_ref_1 (TREE_TYPE (t
), TREE_OPERAND (t
, 0));
11572 /* Strip non-trapping, non-side-effecting tree nodes from an expression
11573 whose result is ignored. The type of the returned tree need not be
11574 the same as the original expression. */
11577 fold_ignored_result (tree t
)
11579 if (!TREE_SIDE_EFFECTS (t
))
11580 return integer_zero_node
;
11583 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
11586 t
= TREE_OPERAND (t
, 0);
11590 case tcc_comparison
:
11591 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
11592 t
= TREE_OPERAND (t
, 0);
11593 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 0)))
11594 t
= TREE_OPERAND (t
, 1);
11599 case tcc_expression
:
11600 switch (TREE_CODE (t
))
11602 case COMPOUND_EXPR
:
11603 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
11605 t
= TREE_OPERAND (t
, 0);
11609 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1))
11610 || TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 2)))
11612 t
= TREE_OPERAND (t
, 0);
11625 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
11626 This can only be applied to objects of a sizetype. */
11629 round_up (tree value
, int divisor
)
11631 tree div
= NULL_TREE
;
11633 gcc_assert (divisor
> 0);
11637 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
11638 have to do anything. Only do this when we are not given a const,
11639 because in that case, this check is more expensive than just
11641 if (TREE_CODE (value
) != INTEGER_CST
)
11643 div
= build_int_cst (TREE_TYPE (value
), divisor
);
11645 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
11649 /* If divisor is a power of two, simplify this to bit manipulation. */
11650 if (divisor
== (divisor
& -divisor
))
11654 t
= build_int_cst (TREE_TYPE (value
), divisor
- 1);
11655 value
= size_binop (PLUS_EXPR
, value
, t
);
11656 t
= build_int_cst (TREE_TYPE (value
), -divisor
);
11657 value
= size_binop (BIT_AND_EXPR
, value
, t
);
11662 div
= build_int_cst (TREE_TYPE (value
), divisor
);
11663 value
= size_binop (CEIL_DIV_EXPR
, value
, div
);
11664 value
= size_binop (MULT_EXPR
, value
, div
);
11670 /* Likewise, but round down. */
11673 round_down (tree value
, int divisor
)
11675 tree div
= NULL_TREE
;
11677 gcc_assert (divisor
> 0);
11681 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
11682 have to do anything. Only do this when we are not given a const,
11683 because in that case, this check is more expensive than just
11685 if (TREE_CODE (value
) != INTEGER_CST
)
11687 div
= build_int_cst (TREE_TYPE (value
), divisor
);
11689 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
11693 /* If divisor is a power of two, simplify this to bit manipulation. */
11694 if (divisor
== (divisor
& -divisor
))
11698 t
= build_int_cst (TREE_TYPE (value
), -divisor
);
11699 value
= size_binop (BIT_AND_EXPR
, value
, t
);
11704 div
= build_int_cst (TREE_TYPE (value
), divisor
);
11705 value
= size_binop (FLOOR_DIV_EXPR
, value
, div
);
11706 value
= size_binop (MULT_EXPR
, value
, div
);
11712 /* Returns the pointer to the base of the object addressed by EXP and
11713 extracts the information about the offset of the access, storing it
11714 to PBITPOS and POFFSET. */
11717 split_address_to_core_and_offset (tree exp
,
11718 HOST_WIDE_INT
*pbitpos
, tree
*poffset
)
11721 enum machine_mode mode
;
11722 int unsignedp
, volatilep
;
11723 HOST_WIDE_INT bitsize
;
11725 if (TREE_CODE (exp
) == ADDR_EXPR
)
11727 core
= get_inner_reference (TREE_OPERAND (exp
, 0), &bitsize
, pbitpos
,
11728 poffset
, &mode
, &unsignedp
, &volatilep
,
11730 core
= build_fold_addr_expr (core
);
11736 *poffset
= NULL_TREE
;
11742 /* Returns true if addresses of E1 and E2 differ by a constant, false
11743 otherwise. If they do, E1 - E2 is stored in *DIFF. */
11746 ptr_difference_const (tree e1
, tree e2
, HOST_WIDE_INT
*diff
)
11749 HOST_WIDE_INT bitpos1
, bitpos2
;
11750 tree toffset1
, toffset2
, tdiff
, type
;
11752 core1
= split_address_to_core_and_offset (e1
, &bitpos1
, &toffset1
);
11753 core2
= split_address_to_core_and_offset (e2
, &bitpos2
, &toffset2
);
11755 if (bitpos1
% BITS_PER_UNIT
!= 0
11756 || bitpos2
% BITS_PER_UNIT
!= 0
11757 || !operand_equal_p (core1
, core2
, 0))
11760 if (toffset1
&& toffset2
)
11762 type
= TREE_TYPE (toffset1
);
11763 if (type
!= TREE_TYPE (toffset2
))
11764 toffset2
= fold_convert (type
, toffset2
);
11766 tdiff
= fold_build2 (MINUS_EXPR
, type
, toffset1
, toffset2
);
11767 if (!cst_and_fits_in_hwi (tdiff
))
11770 *diff
= int_cst_value (tdiff
);
11772 else if (toffset1
|| toffset2
)
11774 /* If only one of the offsets is non-constant, the difference cannot
11781 *diff
+= (bitpos1
- bitpos2
) / BITS_PER_UNIT
;
11785 /* Simplify the floating point expression EXP when the sign of the
11786 result is not significant. Return NULL_TREE if no simplification
11790 fold_strip_sign_ops (tree exp
)
11794 switch (TREE_CODE (exp
))
11798 arg0
= fold_strip_sign_ops (TREE_OPERAND (exp
, 0));
11799 return arg0
? arg0
: TREE_OPERAND (exp
, 0);
11803 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (exp
))))
11805 arg0
= fold_strip_sign_ops (TREE_OPERAND (exp
, 0));
11806 arg1
= fold_strip_sign_ops (TREE_OPERAND (exp
, 1));
11807 if (arg0
!= NULL_TREE
|| arg1
!= NULL_TREE
)
11808 return fold_build2 (TREE_CODE (exp
), TREE_TYPE (exp
),
11809 arg0
? arg0
: TREE_OPERAND (exp
, 0),
11810 arg1
? arg1
: TREE_OPERAND (exp
, 1));