Fix typo.
[official-gcc.git] / gcc / emit-rtl.c
blob830ce1dc91050b2c3aa177cbf2f28d863a2320c2
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
62 /* Commonly used modes. */
64 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
66 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
67 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
69 /* Datastructures maintained for currently processed function in RTL form. */
71 struct rtl_data x_rtl;
73 /* Indexed by pseudo register number, gives the rtx for that pseudo.
74 Allocated in parallel with regno_pointer_align.
75 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
76 with length attribute nested in top level structures. */
78 rtx * regno_reg_rtx;
80 /* This is *not* reset after each function. It gives each CODE_LABEL
81 in the entire compilation a unique label number. */
83 static GTY(()) int label_num = 1;
85 /* Nonzero means do not generate NOTEs for source line numbers. */
87 static int no_line_numbers;
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
94 rtx global_rtl[GR_MAX];
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
108 rtx const_true_rtx;
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconsthalf;
116 /* Record fixed-point constant 0 and 1. */
117 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
118 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
171 /* A hash table storing all CONST_FIXEDs. */
172 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
173 htab_t const_fixed_htab;
175 #define first_insn (crtl->emit.x_first_insn)
176 #define last_insn (crtl->emit.x_last_insn)
177 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
178 #define last_location (crtl->emit.x_last_location)
179 #define first_label_num (crtl->emit.x_first_label_num)
181 static rtx make_call_insn_raw (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void set_used_decls (tree);
184 static void mark_label_nuses (rtx);
185 static hashval_t const_int_htab_hash (const void *);
186 static int const_int_htab_eq (const void *, const void *);
187 static hashval_t const_double_htab_hash (const void *);
188 static int const_double_htab_eq (const void *, const void *);
189 static rtx lookup_const_double (rtx);
190 static hashval_t const_fixed_htab_hash (const void *);
191 static int const_fixed_htab_eq (const void *, const void *);
192 static rtx lookup_const_fixed (rtx);
193 static hashval_t mem_attrs_htab_hash (const void *);
194 static int mem_attrs_htab_eq (const void *, const void *);
195 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
196 enum machine_mode);
197 static hashval_t reg_attrs_htab_hash (const void *);
198 static int reg_attrs_htab_eq (const void *, const void *);
199 static reg_attrs *get_reg_attrs (tree, int);
200 static tree component_ref_for_mem_expr (tree);
201 static rtx gen_const_vector (enum machine_mode, int);
202 static void copy_rtx_if_shared_1 (rtx *orig);
204 /* Probability of the conditional branch currently proceeded by try_split.
205 Set to -1 otherwise. */
206 int split_branch_probability = -1;
208 /* Returns a hash code for X (which is a really a CONST_INT). */
210 static hashval_t
211 const_int_htab_hash (const void *x)
213 return (hashval_t) INTVAL ((const_rtx) x);
216 /* Returns nonzero if the value represented by X (which is really a
217 CONST_INT) is the same as that given by Y (which is really a
218 HOST_WIDE_INT *). */
220 static int
221 const_int_htab_eq (const void *x, const void *y)
223 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
226 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
227 static hashval_t
228 const_double_htab_hash (const void *x)
230 const_rtx const value = (const_rtx) x;
231 hashval_t h;
233 if (GET_MODE (value) == VOIDmode)
234 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
235 else
237 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
238 /* MODE is used in the comparison, so it should be in the hash. */
239 h ^= GET_MODE (value);
241 return h;
244 /* Returns nonzero if the value represented by X (really a ...)
245 is the same as that represented by Y (really a ...) */
246 static int
247 const_double_htab_eq (const void *x, const void *y)
249 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
251 if (GET_MODE (a) != GET_MODE (b))
252 return 0;
253 if (GET_MODE (a) == VOIDmode)
254 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
255 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
256 else
257 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
258 CONST_DOUBLE_REAL_VALUE (b));
261 /* Returns a hash code for X (which is really a CONST_FIXED). */
263 static hashval_t
264 const_fixed_htab_hash (const void *x)
266 const_rtx const value = (const_rtx) x;
267 hashval_t h;
269 h = fixed_hash (CONST_FIXED_VALUE (value));
270 /* MODE is used in the comparison, so it should be in the hash. */
271 h ^= GET_MODE (value);
272 return h;
275 /* Returns nonzero if the value represented by X (really a ...)
276 is the same as that represented by Y (really a ...). */
278 static int
279 const_fixed_htab_eq (const void *x, const void *y)
281 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
283 if (GET_MODE (a) != GET_MODE (b))
284 return 0;
285 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
288 /* Returns a hash code for X (which is a really a mem_attrs *). */
290 static hashval_t
291 mem_attrs_htab_hash (const void *x)
293 const mem_attrs *const p = (const mem_attrs *) x;
295 return (p->alias ^ (p->align * 1000)
296 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
297 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
298 ^ (size_t) iterative_hash_expr (p->expr, 0));
301 /* Returns nonzero if the value represented by X (which is really a
302 mem_attrs *) is the same as that given by Y (which is also really a
303 mem_attrs *). */
305 static int
306 mem_attrs_htab_eq (const void *x, const void *y)
308 const mem_attrs *const p = (const mem_attrs *) x;
309 const mem_attrs *const q = (const mem_attrs *) y;
311 return (p->alias == q->alias && p->offset == q->offset
312 && p->size == q->size && p->align == q->align
313 && (p->expr == q->expr
314 || (p->expr != NULL_TREE && q->expr != NULL_TREE
315 && operand_equal_p (p->expr, q->expr, 0))));
318 /* Allocate a new mem_attrs structure and insert it into the hash table if
319 one identical to it is not already in the table. We are doing this for
320 MEM of mode MODE. */
322 static mem_attrs *
323 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
324 unsigned int align, enum machine_mode mode)
326 mem_attrs attrs;
327 void **slot;
329 /* If everything is the default, we can just return zero.
330 This must match what the corresponding MEM_* macros return when the
331 field is not present. */
332 if (alias == 0 && expr == 0 && offset == 0
333 && (size == 0
334 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
335 && (STRICT_ALIGNMENT && mode != BLKmode
336 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
337 return 0;
339 attrs.alias = alias;
340 attrs.expr = expr;
341 attrs.offset = offset;
342 attrs.size = size;
343 attrs.align = align;
345 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
346 if (*slot == 0)
348 *slot = ggc_alloc (sizeof (mem_attrs));
349 memcpy (*slot, &attrs, sizeof (mem_attrs));
352 return (mem_attrs *) *slot;
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
357 static hashval_t
358 reg_attrs_htab_hash (const void *x)
360 const reg_attrs *const p = (const reg_attrs *) x;
362 return ((p->offset * 1000) ^ (long) p->decl);
365 /* Returns nonzero if the value represented by X (which is really a
366 reg_attrs *) is the same as that given by Y (which is also really a
367 reg_attrs *). */
369 static int
370 reg_attrs_htab_eq (const void *x, const void *y)
372 const reg_attrs *const p = (const reg_attrs *) x;
373 const reg_attrs *const q = (const reg_attrs *) y;
375 return (p->decl == q->decl && p->offset == q->offset);
377 /* Allocate a new reg_attrs structure and insert it into the hash table if
378 one identical to it is not already in the table. We are doing this for
379 MEM of mode MODE. */
381 static reg_attrs *
382 get_reg_attrs (tree decl, int offset)
384 reg_attrs attrs;
385 void **slot;
387 /* If everything is the default, we can just return zero. */
388 if (decl == 0 && offset == 0)
389 return 0;
391 attrs.decl = decl;
392 attrs.offset = offset;
394 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
395 if (*slot == 0)
397 *slot = ggc_alloc (sizeof (reg_attrs));
398 memcpy (*slot, &attrs, sizeof (reg_attrs));
401 return (reg_attrs *) *slot;
405 #if !HAVE_blockage
406 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
407 across this insn. */
410 gen_blockage (void)
412 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
413 MEM_VOLATILE_P (x) = true;
414 return x;
416 #endif
419 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
420 don't attempt to share with the various global pieces of rtl (such as
421 frame_pointer_rtx). */
424 gen_raw_REG (enum machine_mode mode, int regno)
426 rtx x = gen_rtx_raw_REG (mode, regno);
427 ORIGINAL_REGNO (x) = regno;
428 return x;
431 /* There are some RTL codes that require special attention; the generation
432 functions do the raw handling. If you add to this list, modify
433 special_rtx in gengenrtl.c as well. */
436 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
438 void **slot;
440 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
441 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
443 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
444 if (const_true_rtx && arg == STORE_FLAG_VALUE)
445 return const_true_rtx;
446 #endif
448 /* Look up the CONST_INT in the hash table. */
449 slot = htab_find_slot_with_hash (const_int_htab, &arg,
450 (hashval_t) arg, INSERT);
451 if (*slot == 0)
452 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
454 return (rtx) *slot;
458 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
460 return GEN_INT (trunc_int_for_mode (c, mode));
463 /* CONST_DOUBLEs might be created from pairs of integers, or from
464 REAL_VALUE_TYPEs. Also, their length is known only at run time,
465 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
467 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
468 hash table. If so, return its counterpart; otherwise add it
469 to the hash table and return it. */
470 static rtx
471 lookup_const_double (rtx real)
473 void **slot = htab_find_slot (const_double_htab, real, INSERT);
474 if (*slot == 0)
475 *slot = real;
477 return (rtx) *slot;
480 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
481 VALUE in mode MODE. */
483 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
485 rtx real = rtx_alloc (CONST_DOUBLE);
486 PUT_MODE (real, mode);
488 real->u.rv = value;
490 return lookup_const_double (real);
493 /* Determine whether FIXED, a CONST_FIXED, already exists in the
494 hash table. If so, return its counterpart; otherwise add it
495 to the hash table and return it. */
497 static rtx
498 lookup_const_fixed (rtx fixed)
500 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
501 if (*slot == 0)
502 *slot = fixed;
504 return (rtx) *slot;
507 /* Return a CONST_FIXED rtx for a fixed-point value specified by
508 VALUE in mode MODE. */
511 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
513 rtx fixed = rtx_alloc (CONST_FIXED);
514 PUT_MODE (fixed, mode);
516 fixed->u.fv = value;
518 return lookup_const_fixed (fixed);
521 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
522 of ints: I0 is the low-order word and I1 is the high-order word.
523 Do not use this routine for non-integer modes; convert to
524 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
527 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
529 rtx value;
530 unsigned int i;
532 /* There are the following cases (note that there are no modes with
533 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
535 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
536 gen_int_mode.
537 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
538 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
539 from copies of the sign bit, and sign of i0 and i1 are the same), then
540 we return a CONST_INT for i0.
541 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
542 if (mode != VOIDmode)
544 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
545 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
546 /* We can get a 0 for an error mark. */
547 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
548 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
550 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
551 return gen_int_mode (i0, mode);
553 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
556 /* If this integer fits in one word, return a CONST_INT. */
557 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
558 return GEN_INT (i0);
560 /* We use VOIDmode for integers. */
561 value = rtx_alloc (CONST_DOUBLE);
562 PUT_MODE (value, VOIDmode);
564 CONST_DOUBLE_LOW (value) = i0;
565 CONST_DOUBLE_HIGH (value) = i1;
567 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
568 XWINT (value, i) = 0;
570 return lookup_const_double (value);
574 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
576 /* In case the MD file explicitly references the frame pointer, have
577 all such references point to the same frame pointer. This is
578 used during frame pointer elimination to distinguish the explicit
579 references to these registers from pseudos that happened to be
580 assigned to them.
582 If we have eliminated the frame pointer or arg pointer, we will
583 be using it as a normal register, for example as a spill
584 register. In such cases, we might be accessing it in a mode that
585 is not Pmode and therefore cannot use the pre-allocated rtx.
587 Also don't do this when we are making new REGs in reload, since
588 we don't want to get confused with the real pointers. */
590 if (mode == Pmode && !reload_in_progress)
592 if (regno == FRAME_POINTER_REGNUM
593 && (!reload_completed || frame_pointer_needed))
594 return frame_pointer_rtx;
595 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
596 if (regno == HARD_FRAME_POINTER_REGNUM
597 && (!reload_completed || frame_pointer_needed))
598 return hard_frame_pointer_rtx;
599 #endif
600 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
601 if (regno == ARG_POINTER_REGNUM)
602 return arg_pointer_rtx;
603 #endif
604 #ifdef RETURN_ADDRESS_POINTER_REGNUM
605 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
606 return return_address_pointer_rtx;
607 #endif
608 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
609 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
610 return pic_offset_table_rtx;
611 if (regno == STACK_POINTER_REGNUM)
612 return stack_pointer_rtx;
615 #if 0
616 /* If the per-function register table has been set up, try to re-use
617 an existing entry in that table to avoid useless generation of RTL.
619 This code is disabled for now until we can fix the various backends
620 which depend on having non-shared hard registers in some cases. Long
621 term we want to re-enable this code as it can significantly cut down
622 on the amount of useless RTL that gets generated.
624 We'll also need to fix some code that runs after reload that wants to
625 set ORIGINAL_REGNO. */
627 if (cfun
628 && cfun->emit
629 && regno_reg_rtx
630 && regno < FIRST_PSEUDO_REGISTER
631 && reg_raw_mode[regno] == mode)
632 return regno_reg_rtx[regno];
633 #endif
635 return gen_raw_REG (mode, regno);
639 gen_rtx_MEM (enum machine_mode mode, rtx addr)
641 rtx rt = gen_rtx_raw_MEM (mode, addr);
643 /* This field is not cleared by the mere allocation of the rtx, so
644 we clear it here. */
645 MEM_ATTRS (rt) = 0;
647 return rt;
650 /* Generate a memory referring to non-trapping constant memory. */
653 gen_const_mem (enum machine_mode mode, rtx addr)
655 rtx mem = gen_rtx_MEM (mode, addr);
656 MEM_READONLY_P (mem) = 1;
657 MEM_NOTRAP_P (mem) = 1;
658 return mem;
661 /* Generate a MEM referring to fixed portions of the frame, e.g., register
662 save areas. */
665 gen_frame_mem (enum machine_mode mode, rtx addr)
667 rtx mem = gen_rtx_MEM (mode, addr);
668 MEM_NOTRAP_P (mem) = 1;
669 set_mem_alias_set (mem, get_frame_alias_set ());
670 return mem;
673 /* Generate a MEM referring to a temporary use of the stack, not part
674 of the fixed stack frame. For example, something which is pushed
675 by a target splitter. */
677 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
679 rtx mem = gen_rtx_MEM (mode, addr);
680 MEM_NOTRAP_P (mem) = 1;
681 if (!cfun->calls_alloca)
682 set_mem_alias_set (mem, get_frame_alias_set ());
683 return mem;
686 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
687 this construct would be valid, and false otherwise. */
689 bool
690 validate_subreg (enum machine_mode omode, enum machine_mode imode,
691 const_rtx reg, unsigned int offset)
693 unsigned int isize = GET_MODE_SIZE (imode);
694 unsigned int osize = GET_MODE_SIZE (omode);
696 /* All subregs must be aligned. */
697 if (offset % osize != 0)
698 return false;
700 /* The subreg offset cannot be outside the inner object. */
701 if (offset >= isize)
702 return false;
704 /* ??? This should not be here. Temporarily continue to allow word_mode
705 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
706 Generally, backends are doing something sketchy but it'll take time to
707 fix them all. */
708 if (omode == word_mode)
710 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
711 is the culprit here, and not the backends. */
712 else if (osize >= UNITS_PER_WORD && isize >= osize)
714 /* Allow component subregs of complex and vector. Though given the below
715 extraction rules, it's not always clear what that means. */
716 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
717 && GET_MODE_INNER (imode) == omode)
719 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
720 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
721 represent this. It's questionable if this ought to be represented at
722 all -- why can't this all be hidden in post-reload splitters that make
723 arbitrarily mode changes to the registers themselves. */
724 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
726 /* Subregs involving floating point modes are not allowed to
727 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
728 (subreg:SI (reg:DF) 0) isn't. */
729 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
731 if (isize != osize)
732 return false;
735 /* Paradoxical subregs must have offset zero. */
736 if (osize > isize)
737 return offset == 0;
739 /* This is a normal subreg. Verify that the offset is representable. */
741 /* For hard registers, we already have most of these rules collected in
742 subreg_offset_representable_p. */
743 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
745 unsigned int regno = REGNO (reg);
747 #ifdef CANNOT_CHANGE_MODE_CLASS
748 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
749 && GET_MODE_INNER (imode) == omode)
751 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
752 return false;
753 #endif
755 return subreg_offset_representable_p (regno, imode, offset, omode);
758 /* For pseudo registers, we want most of the same checks. Namely:
759 If the register no larger than a word, the subreg must be lowpart.
760 If the register is larger than a word, the subreg must be the lowpart
761 of a subword. A subreg does *not* perform arbitrary bit extraction.
762 Given that we've already checked mode/offset alignment, we only have
763 to check subword subregs here. */
764 if (osize < UNITS_PER_WORD)
766 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
767 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
768 if (offset % UNITS_PER_WORD != low_off)
769 return false;
771 return true;
775 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
777 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
778 return gen_rtx_raw_SUBREG (mode, reg, offset);
781 /* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
785 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
787 enum machine_mode inmode;
789 inmode = GET_MODE (reg);
790 if (inmode == VOIDmode)
791 inmode = mode;
792 return gen_rtx_SUBREG (mode, reg,
793 subreg_lowpart_offset (mode, inmode));
797 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
799 rtvec
800 gen_rtvec (int n, ...)
802 int i;
803 rtvec rt_val;
804 va_list p;
806 va_start (p, n);
808 /* Don't allocate an empty rtvec... */
809 if (n == 0)
810 return NULL_RTVEC;
812 rt_val = rtvec_alloc (n);
814 for (i = 0; i < n; i++)
815 rt_val->elem[i] = va_arg (p, rtx);
817 va_end (p);
818 return rt_val;
821 rtvec
822 gen_rtvec_v (int n, rtx *argp)
824 int i;
825 rtvec rt_val;
827 /* Don't allocate an empty rtvec... */
828 if (n == 0)
829 return NULL_RTVEC;
831 rt_val = rtvec_alloc (n);
833 for (i = 0; i < n; i++)
834 rt_val->elem[i] = *argp++;
836 return rt_val;
839 /* Return the number of bytes between the start of an OUTER_MODE
840 in-memory value and the start of an INNER_MODE in-memory value,
841 given that the former is a lowpart of the latter. It may be a
842 paradoxical lowpart, in which case the offset will be negative
843 on big-endian targets. */
846 byte_lowpart_offset (enum machine_mode outer_mode,
847 enum machine_mode inner_mode)
849 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
850 return subreg_lowpart_offset (outer_mode, inner_mode);
851 else
852 return -subreg_lowpart_offset (inner_mode, outer_mode);
855 /* Generate a REG rtx for a new pseudo register of mode MODE.
856 This pseudo is assigned the next sequential register number. */
859 gen_reg_rtx (enum machine_mode mode)
861 rtx val;
862 unsigned int align = GET_MODE_ALIGNMENT (mode);
864 gcc_assert (can_create_pseudo_p ());
866 /* If a virtual register with bigger mode alignment is generated,
867 increase stack alignment estimation because it might be spilled
868 to stack later. */
869 if (SUPPORTS_STACK_ALIGNMENT
870 && crtl->stack_alignment_estimated < align
871 && !crtl->stack_realign_processed)
872 crtl->stack_alignment_estimated = align;
874 if (generating_concat_p
875 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
876 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
878 /* For complex modes, don't make a single pseudo.
879 Instead, make a CONCAT of two pseudos.
880 This allows noncontiguous allocation of the real and imaginary parts,
881 which makes much better code. Besides, allocating DCmode
882 pseudos overstrains reload on some machines like the 386. */
883 rtx realpart, imagpart;
884 enum machine_mode partmode = GET_MODE_INNER (mode);
886 realpart = gen_reg_rtx (partmode);
887 imagpart = gen_reg_rtx (partmode);
888 return gen_rtx_CONCAT (mode, realpart, imagpart);
891 /* Make sure regno_pointer_align, and regno_reg_rtx are large
892 enough to have an element for this pseudo reg number. */
894 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
896 int old_size = crtl->emit.regno_pointer_align_length;
897 char *tmp;
898 rtx *new1;
900 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
901 memset (tmp + old_size, 0, old_size);
902 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
904 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
905 memset (new1 + old_size, 0, old_size * sizeof (rtx));
906 regno_reg_rtx = new1;
908 crtl->emit.regno_pointer_align_length = old_size * 2;
911 val = gen_raw_REG (mode, reg_rtx_no);
912 regno_reg_rtx[reg_rtx_no++] = val;
913 return val;
916 /* Update NEW with the same attributes as REG, but with OFFSET added
917 to the REG_OFFSET. */
919 static void
920 update_reg_offset (rtx new_rtx, rtx reg, int offset)
922 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
923 REG_OFFSET (reg) + offset);
926 /* Generate a register with same attributes as REG, but with OFFSET
927 added to the REG_OFFSET. */
930 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
931 int offset)
933 rtx new_rtx = gen_rtx_REG (mode, regno);
935 update_reg_offset (new_rtx, reg, offset);
936 return new_rtx;
939 /* Generate a new pseudo-register with the same attributes as REG, but
940 with OFFSET added to the REG_OFFSET. */
943 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
945 rtx new_rtx = gen_reg_rtx (mode);
947 update_reg_offset (new_rtx, reg, offset);
948 return new_rtx;
951 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
952 new register is a (possibly paradoxical) lowpart of the old one. */
954 void
955 adjust_reg_mode (rtx reg, enum machine_mode mode)
957 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
958 PUT_MODE (reg, mode);
961 /* Copy REG's attributes from X, if X has any attributes. If REG and X
962 have different modes, REG is a (possibly paradoxical) lowpart of X. */
964 void
965 set_reg_attrs_from_value (rtx reg, rtx x)
967 int offset;
969 /* Hard registers can be reused for multiple purposes within the same
970 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
971 on them is wrong. */
972 if (HARD_REGISTER_P (reg))
973 return;
975 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
976 if (MEM_P (x))
978 if (MEM_OFFSET (x) && GET_CODE (MEM_OFFSET (x)) == CONST_INT)
979 REG_ATTRS (reg)
980 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
981 if (MEM_POINTER (x))
982 mark_reg_pointer (reg, 0);
984 else if (REG_P (x))
986 if (REG_ATTRS (x))
987 update_reg_offset (reg, x, offset);
988 if (REG_POINTER (x))
989 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
993 /* Generate a REG rtx for a new pseudo register, copying the mode
994 and attributes from X. */
997 gen_reg_rtx_and_attrs (rtx x)
999 rtx reg = gen_reg_rtx (GET_MODE (x));
1000 set_reg_attrs_from_value (reg, x);
1001 return reg;
1004 /* Set the register attributes for registers contained in PARM_RTX.
1005 Use needed values from memory attributes of MEM. */
1007 void
1008 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1010 if (REG_P (parm_rtx))
1011 set_reg_attrs_from_value (parm_rtx, mem);
1012 else if (GET_CODE (parm_rtx) == PARALLEL)
1014 /* Check for a NULL entry in the first slot, used to indicate that the
1015 parameter goes both on the stack and in registers. */
1016 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1017 for (; i < XVECLEN (parm_rtx, 0); i++)
1019 rtx x = XVECEXP (parm_rtx, 0, i);
1020 if (REG_P (XEXP (x, 0)))
1021 REG_ATTRS (XEXP (x, 0))
1022 = get_reg_attrs (MEM_EXPR (mem),
1023 INTVAL (XEXP (x, 1)));
1028 /* Set the REG_ATTRS for registers in value X, given that X represents
1029 decl T. */
1031 static void
1032 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1034 if (GET_CODE (x) == SUBREG)
1036 gcc_assert (subreg_lowpart_p (x));
1037 x = SUBREG_REG (x);
1039 if (REG_P (x))
1040 REG_ATTRS (x)
1041 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1042 DECL_MODE (t)));
1043 if (GET_CODE (x) == CONCAT)
1045 if (REG_P (XEXP (x, 0)))
1046 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1047 if (REG_P (XEXP (x, 1)))
1048 REG_ATTRS (XEXP (x, 1))
1049 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1051 if (GET_CODE (x) == PARALLEL)
1053 int i, start;
1055 /* Check for a NULL entry, used to indicate that the parameter goes
1056 both on the stack and in registers. */
1057 if (XEXP (XVECEXP (x, 0, 0), 0))
1058 start = 0;
1059 else
1060 start = 1;
1062 for (i = start; i < XVECLEN (x, 0); i++)
1064 rtx y = XVECEXP (x, 0, i);
1065 if (REG_P (XEXP (y, 0)))
1066 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1071 /* Assign the RTX X to declaration T. */
1073 void
1074 set_decl_rtl (tree t, rtx x)
1076 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1077 if (x)
1078 set_reg_attrs_for_decl_rtl (t, x);
1081 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1082 if the ABI requires the parameter to be passed by reference. */
1084 void
1085 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1087 DECL_INCOMING_RTL (t) = x;
1088 if (x && !by_reference_p)
1089 set_reg_attrs_for_decl_rtl (t, x);
1092 /* Identify REG (which may be a CONCAT) as a user register. */
1094 void
1095 mark_user_reg (rtx reg)
1097 if (GET_CODE (reg) == CONCAT)
1099 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1100 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1102 else
1104 gcc_assert (REG_P (reg));
1105 REG_USERVAR_P (reg) = 1;
1109 /* Identify REG as a probable pointer register and show its alignment
1110 as ALIGN, if nonzero. */
1112 void
1113 mark_reg_pointer (rtx reg, int align)
1115 if (! REG_POINTER (reg))
1117 REG_POINTER (reg) = 1;
1119 if (align)
1120 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1122 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1123 /* We can no-longer be sure just how aligned this pointer is. */
1124 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1127 /* Return 1 plus largest pseudo reg number used in the current function. */
1130 max_reg_num (void)
1132 return reg_rtx_no;
1135 /* Return 1 + the largest label number used so far in the current function. */
1138 max_label_num (void)
1140 return label_num;
1143 /* Return first label number used in this function (if any were used). */
1146 get_first_label_num (void)
1148 return first_label_num;
1151 /* If the rtx for label was created during the expansion of a nested
1152 function, then first_label_num won't include this label number.
1153 Fix this now so that array indices work later. */
1155 void
1156 maybe_set_first_label_num (rtx x)
1158 if (CODE_LABEL_NUMBER (x) < first_label_num)
1159 first_label_num = CODE_LABEL_NUMBER (x);
1162 /* Return a value representing some low-order bits of X, where the number
1163 of low-order bits is given by MODE. Note that no conversion is done
1164 between floating-point and fixed-point values, rather, the bit
1165 representation is returned.
1167 This function handles the cases in common between gen_lowpart, below,
1168 and two variants in cse.c and combine.c. These are the cases that can
1169 be safely handled at all points in the compilation.
1171 If this is not a case we can handle, return 0. */
1174 gen_lowpart_common (enum machine_mode mode, rtx x)
1176 int msize = GET_MODE_SIZE (mode);
1177 int xsize;
1178 int offset = 0;
1179 enum machine_mode innermode;
1181 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1182 so we have to make one up. Yuk. */
1183 innermode = GET_MODE (x);
1184 if (GET_CODE (x) == CONST_INT
1185 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1186 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1187 else if (innermode == VOIDmode)
1188 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1190 xsize = GET_MODE_SIZE (innermode);
1192 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1194 if (innermode == mode)
1195 return x;
1197 /* MODE must occupy no more words than the mode of X. */
1198 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1199 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1200 return 0;
1202 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1203 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1204 return 0;
1206 offset = subreg_lowpart_offset (mode, innermode);
1208 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1209 && (GET_MODE_CLASS (mode) == MODE_INT
1210 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1212 /* If we are getting the low-order part of something that has been
1213 sign- or zero-extended, we can either just use the object being
1214 extended or make a narrower extension. If we want an even smaller
1215 piece than the size of the object being extended, call ourselves
1216 recursively.
1218 This case is used mostly by combine and cse. */
1220 if (GET_MODE (XEXP (x, 0)) == mode)
1221 return XEXP (x, 0);
1222 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1223 return gen_lowpart_common (mode, XEXP (x, 0));
1224 else if (msize < xsize)
1225 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1227 else if (GET_CODE (x) == SUBREG || REG_P (x)
1228 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1229 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1230 return simplify_gen_subreg (mode, x, innermode, offset);
1232 /* Otherwise, we can't do this. */
1233 return 0;
1237 gen_highpart (enum machine_mode mode, rtx x)
1239 unsigned int msize = GET_MODE_SIZE (mode);
1240 rtx result;
1242 /* This case loses if X is a subreg. To catch bugs early,
1243 complain if an invalid MODE is used even in other cases. */
1244 gcc_assert (msize <= UNITS_PER_WORD
1245 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1247 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1248 subreg_highpart_offset (mode, GET_MODE (x)));
1249 gcc_assert (result);
1251 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1252 the target if we have a MEM. gen_highpart must return a valid operand,
1253 emitting code if necessary to do so. */
1254 if (MEM_P (result))
1256 result = validize_mem (result);
1257 gcc_assert (result);
1260 return result;
1263 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1264 be VOIDmode constant. */
1266 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1268 if (GET_MODE (exp) != VOIDmode)
1270 gcc_assert (GET_MODE (exp) == innermode);
1271 return gen_highpart (outermode, exp);
1273 return simplify_gen_subreg (outermode, exp, innermode,
1274 subreg_highpart_offset (outermode, innermode));
1277 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1279 unsigned int
1280 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1282 unsigned int offset = 0;
1283 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1285 if (difference > 0)
1287 if (WORDS_BIG_ENDIAN)
1288 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1289 if (BYTES_BIG_ENDIAN)
1290 offset += difference % UNITS_PER_WORD;
1293 return offset;
1296 /* Return offset in bytes to get OUTERMODE high part
1297 of the value in mode INNERMODE stored in memory in target format. */
1298 unsigned int
1299 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1301 unsigned int offset = 0;
1302 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1304 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1306 if (difference > 0)
1308 if (! WORDS_BIG_ENDIAN)
1309 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1310 if (! BYTES_BIG_ENDIAN)
1311 offset += difference % UNITS_PER_WORD;
1314 return offset;
1317 /* Return 1 iff X, assumed to be a SUBREG,
1318 refers to the least significant part of its containing reg.
1319 If X is not a SUBREG, always return 1 (it is its own low part!). */
1322 subreg_lowpart_p (const_rtx x)
1324 if (GET_CODE (x) != SUBREG)
1325 return 1;
1326 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1327 return 0;
1329 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1330 == SUBREG_BYTE (x));
1333 /* Return subword OFFSET of operand OP.
1334 The word number, OFFSET, is interpreted as the word number starting
1335 at the low-order address. OFFSET 0 is the low-order word if not
1336 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1338 If we cannot extract the required word, we return zero. Otherwise,
1339 an rtx corresponding to the requested word will be returned.
1341 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1342 reload has completed, a valid address will always be returned. After
1343 reload, if a valid address cannot be returned, we return zero.
1345 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1346 it is the responsibility of the caller.
1348 MODE is the mode of OP in case it is a CONST_INT.
1350 ??? This is still rather broken for some cases. The problem for the
1351 moment is that all callers of this thing provide no 'goal mode' to
1352 tell us to work with. This exists because all callers were written
1353 in a word based SUBREG world.
1354 Now use of this function can be deprecated by simplify_subreg in most
1355 cases.
1359 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1361 if (mode == VOIDmode)
1362 mode = GET_MODE (op);
1364 gcc_assert (mode != VOIDmode);
1366 /* If OP is narrower than a word, fail. */
1367 if (mode != BLKmode
1368 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1369 return 0;
1371 /* If we want a word outside OP, return zero. */
1372 if (mode != BLKmode
1373 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1374 return const0_rtx;
1376 /* Form a new MEM at the requested address. */
1377 if (MEM_P (op))
1379 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1381 if (! validate_address)
1382 return new_rtx;
1384 else if (reload_completed)
1386 if (! strict_memory_address_p (word_mode, XEXP (new_rtx, 0)))
1387 return 0;
1389 else
1390 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1393 /* Rest can be handled by simplify_subreg. */
1394 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1397 /* Similar to `operand_subword', but never return 0. If we can't
1398 extract the required subword, put OP into a register and try again.
1399 The second attempt must succeed. We always validate the address in
1400 this case.
1402 MODE is the mode of OP, in case it is CONST_INT. */
1405 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1407 rtx result = operand_subword (op, offset, 1, mode);
1409 if (result)
1410 return result;
1412 if (mode != BLKmode && mode != VOIDmode)
1414 /* If this is a register which can not be accessed by words, copy it
1415 to a pseudo register. */
1416 if (REG_P (op))
1417 op = copy_to_reg (op);
1418 else
1419 op = force_reg (mode, op);
1422 result = operand_subword (op, offset, 1, mode);
1423 gcc_assert (result);
1425 return result;
1428 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1429 or (2) a component ref of something variable. Represent the later with
1430 a NULL expression. */
1432 static tree
1433 component_ref_for_mem_expr (tree ref)
1435 tree inner = TREE_OPERAND (ref, 0);
1437 if (TREE_CODE (inner) == COMPONENT_REF)
1438 inner = component_ref_for_mem_expr (inner);
1439 else
1441 /* Now remove any conversions: they don't change what the underlying
1442 object is. Likewise for SAVE_EXPR. */
1443 while (CONVERT_EXPR_P (inner)
1444 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1445 || TREE_CODE (inner) == SAVE_EXPR)
1446 inner = TREE_OPERAND (inner, 0);
1448 if (! DECL_P (inner))
1449 inner = NULL_TREE;
1452 if (inner == TREE_OPERAND (ref, 0))
1453 return ref;
1454 else
1455 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1456 TREE_OPERAND (ref, 1), NULL_TREE);
1459 /* Returns 1 if both MEM_EXPR can be considered equal
1460 and 0 otherwise. */
1463 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1465 if (expr1 == expr2)
1466 return 1;
1468 if (! expr1 || ! expr2)
1469 return 0;
1471 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1472 return 0;
1474 if (TREE_CODE (expr1) == COMPONENT_REF)
1475 return
1476 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1477 TREE_OPERAND (expr2, 0))
1478 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1479 TREE_OPERAND (expr2, 1));
1481 if (INDIRECT_REF_P (expr1))
1482 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1483 TREE_OPERAND (expr2, 0));
1485 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1486 have been resolved here. */
1487 gcc_assert (DECL_P (expr1));
1489 /* Decls with different pointers can't be equal. */
1490 return 0;
1493 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1494 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1495 -1 if not known. */
1498 get_mem_align_offset (rtx mem, int align)
1500 tree expr;
1501 unsigned HOST_WIDE_INT offset;
1503 /* This function can't use
1504 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1505 || !CONST_INT_P (MEM_OFFSET (mem))
1506 || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1507 < align))
1508 return -1;
1509 else
1510 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1511 for two reasons:
1512 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1513 for <variable>. get_inner_reference doesn't handle it and
1514 even if it did, the alignment in that case needs to be determined
1515 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1516 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1517 isn't sufficiently aligned, the object it is in might be. */
1518 gcc_assert (MEM_P (mem));
1519 expr = MEM_EXPR (mem);
1520 if (expr == NULL_TREE
1521 || MEM_OFFSET (mem) == NULL_RTX
1522 || !CONST_INT_P (MEM_OFFSET (mem)))
1523 return -1;
1525 offset = INTVAL (MEM_OFFSET (mem));
1526 if (DECL_P (expr))
1528 if (DECL_ALIGN (expr) < align)
1529 return -1;
1531 else if (INDIRECT_REF_P (expr))
1533 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1534 return -1;
1536 else if (TREE_CODE (expr) == COMPONENT_REF)
1538 while (1)
1540 tree inner = TREE_OPERAND (expr, 0);
1541 tree field = TREE_OPERAND (expr, 1);
1542 tree byte_offset = component_ref_field_offset (expr);
1543 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1545 if (!byte_offset
1546 || !host_integerp (byte_offset, 1)
1547 || !host_integerp (bit_offset, 1))
1548 return -1;
1550 offset += tree_low_cst (byte_offset, 1);
1551 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1553 if (inner == NULL_TREE)
1555 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1556 < (unsigned int) align)
1557 return -1;
1558 break;
1560 else if (DECL_P (inner))
1562 if (DECL_ALIGN (inner) < align)
1563 return -1;
1564 break;
1566 else if (TREE_CODE (inner) != COMPONENT_REF)
1567 return -1;
1568 expr = inner;
1571 else
1572 return -1;
1574 return offset & ((align / BITS_PER_UNIT) - 1);
1577 /* Given REF (a MEM) and T, either the type of X or the expression
1578 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1579 if we are making a new object of this type. BITPOS is nonzero if
1580 there is an offset outstanding on T that will be applied later. */
1582 void
1583 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1584 HOST_WIDE_INT bitpos)
1586 alias_set_type alias = MEM_ALIAS_SET (ref);
1587 tree expr = MEM_EXPR (ref);
1588 rtx offset = MEM_OFFSET (ref);
1589 rtx size = MEM_SIZE (ref);
1590 unsigned int align = MEM_ALIGN (ref);
1591 HOST_WIDE_INT apply_bitpos = 0;
1592 tree type;
1594 /* It can happen that type_for_mode was given a mode for which there
1595 is no language-level type. In which case it returns NULL, which
1596 we can see here. */
1597 if (t == NULL_TREE)
1598 return;
1600 type = TYPE_P (t) ? t : TREE_TYPE (t);
1601 if (type == error_mark_node)
1602 return;
1604 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1605 wrong answer, as it assumes that DECL_RTL already has the right alias
1606 info. Callers should not set DECL_RTL until after the call to
1607 set_mem_attributes. */
1608 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1610 /* Get the alias set from the expression or type (perhaps using a
1611 front-end routine) and use it. */
1612 alias = get_alias_set (t);
1614 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1615 MEM_IN_STRUCT_P (ref)
1616 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1617 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1619 /* If we are making an object of this type, or if this is a DECL, we know
1620 that it is a scalar if the type is not an aggregate. */
1621 if ((objectp || DECL_P (t))
1622 && ! AGGREGATE_TYPE_P (type)
1623 && TREE_CODE (type) != COMPLEX_TYPE)
1624 MEM_SCALAR_P (ref) = 1;
1626 /* We can set the alignment from the type if we are making an object,
1627 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1628 if (objectp || TREE_CODE (t) == INDIRECT_REF
1629 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1630 || TYPE_ALIGN_OK (type))
1631 align = MAX (align, TYPE_ALIGN (type));
1632 else
1633 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1635 if (integer_zerop (TREE_OPERAND (t, 1)))
1636 /* We don't know anything about the alignment. */
1637 align = BITS_PER_UNIT;
1638 else
1639 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1642 /* If the size is known, we can set that. */
1643 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1644 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1646 /* If T is not a type, we may be able to deduce some more information about
1647 the expression. */
1648 if (! TYPE_P (t))
1650 tree base;
1651 bool align_computed = false;
1653 if (TREE_THIS_VOLATILE (t))
1654 MEM_VOLATILE_P (ref) = 1;
1656 /* Now remove any conversions: they don't change what the underlying
1657 object is. Likewise for SAVE_EXPR. */
1658 while (CONVERT_EXPR_P (t)
1659 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1660 || TREE_CODE (t) == SAVE_EXPR)
1661 t = TREE_OPERAND (t, 0);
1663 /* We may look through structure-like accesses for the purposes of
1664 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1665 base = t;
1666 while (TREE_CODE (base) == COMPONENT_REF
1667 || TREE_CODE (base) == REALPART_EXPR
1668 || TREE_CODE (base) == IMAGPART_EXPR
1669 || TREE_CODE (base) == BIT_FIELD_REF)
1670 base = TREE_OPERAND (base, 0);
1672 if (DECL_P (base))
1674 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1675 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1676 else
1677 MEM_NOTRAP_P (ref) = 1;
1679 else
1680 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1682 base = get_base_address (base);
1683 if (base && DECL_P (base)
1684 && TREE_READONLY (base)
1685 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1687 tree base_type = TREE_TYPE (base);
1688 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1689 || DECL_ARTIFICIAL (base));
1690 MEM_READONLY_P (ref) = 1;
1693 /* If this expression uses it's parent's alias set, mark it such
1694 that we won't change it. */
1695 if (component_uses_parent_alias_set (t))
1696 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1698 /* If this is a decl, set the attributes of the MEM from it. */
1699 if (DECL_P (t))
1701 expr = t;
1702 offset = const0_rtx;
1703 apply_bitpos = bitpos;
1704 size = (DECL_SIZE_UNIT (t)
1705 && host_integerp (DECL_SIZE_UNIT (t), 1)
1706 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1707 align = DECL_ALIGN (t);
1708 align_computed = true;
1711 /* If this is a constant, we know the alignment. */
1712 else if (CONSTANT_CLASS_P (t))
1714 align = TYPE_ALIGN (type);
1715 #ifdef CONSTANT_ALIGNMENT
1716 align = CONSTANT_ALIGNMENT (t, align);
1717 #endif
1718 align_computed = true;
1721 /* If this is a field reference and not a bit-field, record it. */
1722 /* ??? There is some information that can be gleaned from bit-fields,
1723 such as the word offset in the structure that might be modified.
1724 But skip it for now. */
1725 else if (TREE_CODE (t) == COMPONENT_REF
1726 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1728 expr = component_ref_for_mem_expr (t);
1729 offset = const0_rtx;
1730 apply_bitpos = bitpos;
1731 /* ??? Any reason the field size would be different than
1732 the size we got from the type? */
1735 /* If this is an array reference, look for an outer field reference. */
1736 else if (TREE_CODE (t) == ARRAY_REF)
1738 tree off_tree = size_zero_node;
1739 /* We can't modify t, because we use it at the end of the
1740 function. */
1741 tree t2 = t;
1745 tree index = TREE_OPERAND (t2, 1);
1746 tree low_bound = array_ref_low_bound (t2);
1747 tree unit_size = array_ref_element_size (t2);
1749 /* We assume all arrays have sizes that are a multiple of a byte.
1750 First subtract the lower bound, if any, in the type of the
1751 index, then convert to sizetype and multiply by the size of
1752 the array element. */
1753 if (! integer_zerop (low_bound))
1754 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1755 index, low_bound);
1757 off_tree = size_binop (PLUS_EXPR,
1758 size_binop (MULT_EXPR,
1759 fold_convert (sizetype,
1760 index),
1761 unit_size),
1762 off_tree);
1763 t2 = TREE_OPERAND (t2, 0);
1765 while (TREE_CODE (t2) == ARRAY_REF);
1767 if (DECL_P (t2))
1769 expr = t2;
1770 offset = NULL;
1771 if (host_integerp (off_tree, 1))
1773 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1774 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1775 align = DECL_ALIGN (t2);
1776 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1777 align = aoff;
1778 align_computed = true;
1779 offset = GEN_INT (ioff);
1780 apply_bitpos = bitpos;
1783 else if (TREE_CODE (t2) == COMPONENT_REF)
1785 expr = component_ref_for_mem_expr (t2);
1786 if (host_integerp (off_tree, 1))
1788 offset = GEN_INT (tree_low_cst (off_tree, 1));
1789 apply_bitpos = bitpos;
1791 /* ??? Any reason the field size would be different than
1792 the size we got from the type? */
1794 else if (flag_argument_noalias > 1
1795 && (INDIRECT_REF_P (t2))
1796 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1798 expr = t2;
1799 offset = NULL;
1803 /* If this is a Fortran indirect argument reference, record the
1804 parameter decl. */
1805 else if (flag_argument_noalias > 1
1806 && (INDIRECT_REF_P (t))
1807 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1809 expr = t;
1810 offset = NULL;
1813 if (!align_computed && !INDIRECT_REF_P (t))
1815 unsigned int obj_align
1816 = get_object_alignment (t, align, BIGGEST_ALIGNMENT);
1817 align = MAX (align, obj_align);
1821 /* If we modified OFFSET based on T, then subtract the outstanding
1822 bit position offset. Similarly, increase the size of the accessed
1823 object to contain the negative offset. */
1824 if (apply_bitpos)
1826 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1827 if (size)
1828 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1831 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1833 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1834 we're overlapping. */
1835 offset = NULL;
1836 expr = NULL;
1839 /* Now set the attributes we computed above. */
1840 MEM_ATTRS (ref)
1841 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1843 /* If this is already known to be a scalar or aggregate, we are done. */
1844 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1845 return;
1847 /* If it is a reference into an aggregate, this is part of an aggregate.
1848 Otherwise we don't know. */
1849 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1850 || TREE_CODE (t) == ARRAY_RANGE_REF
1851 || TREE_CODE (t) == BIT_FIELD_REF)
1852 MEM_IN_STRUCT_P (ref) = 1;
1855 void
1856 set_mem_attributes (rtx ref, tree t, int objectp)
1858 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1861 /* Set MEM to the decl that REG refers to. */
1863 void
1864 set_mem_attrs_from_reg (rtx mem, rtx reg)
1866 MEM_ATTRS (mem)
1867 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1868 GEN_INT (REG_OFFSET (reg)),
1869 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1872 /* Set the alias set of MEM to SET. */
1874 void
1875 set_mem_alias_set (rtx mem, alias_set_type set)
1877 #ifdef ENABLE_CHECKING
1878 /* If the new and old alias sets don't conflict, something is wrong. */
1879 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1880 #endif
1882 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1883 MEM_SIZE (mem), MEM_ALIGN (mem),
1884 GET_MODE (mem));
1887 /* Set the alignment of MEM to ALIGN bits. */
1889 void
1890 set_mem_align (rtx mem, unsigned int align)
1892 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1893 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1894 GET_MODE (mem));
1897 /* Set the expr for MEM to EXPR. */
1899 void
1900 set_mem_expr (rtx mem, tree expr)
1902 MEM_ATTRS (mem)
1903 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1904 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1907 /* Set the offset of MEM to OFFSET. */
1909 void
1910 set_mem_offset (rtx mem, rtx offset)
1912 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1913 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1914 GET_MODE (mem));
1917 /* Set the size of MEM to SIZE. */
1919 void
1920 set_mem_size (rtx mem, rtx size)
1922 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1923 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1924 GET_MODE (mem));
1927 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1928 and its address changed to ADDR. (VOIDmode means don't change the mode.
1929 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1930 returned memory location is required to be valid. The memory
1931 attributes are not changed. */
1933 static rtx
1934 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1936 rtx new_rtx;
1938 gcc_assert (MEM_P (memref));
1939 if (mode == VOIDmode)
1940 mode = GET_MODE (memref);
1941 if (addr == 0)
1942 addr = XEXP (memref, 0);
1943 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1944 && (!validate || memory_address_p (mode, addr)))
1945 return memref;
1947 if (validate)
1949 if (reload_in_progress || reload_completed)
1950 gcc_assert (memory_address_p (mode, addr));
1951 else
1952 addr = memory_address (mode, addr);
1955 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1956 return memref;
1958 new_rtx = gen_rtx_MEM (mode, addr);
1959 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1960 return new_rtx;
1963 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1964 way we are changing MEMREF, so we only preserve the alias set. */
1967 change_address (rtx memref, enum machine_mode mode, rtx addr)
1969 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1970 enum machine_mode mmode = GET_MODE (new_rtx);
1971 unsigned int align;
1973 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1974 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1976 /* If there are no changes, just return the original memory reference. */
1977 if (new_rtx == memref)
1979 if (MEM_ATTRS (memref) == 0
1980 || (MEM_EXPR (memref) == NULL
1981 && MEM_OFFSET (memref) == NULL
1982 && MEM_SIZE (memref) == size
1983 && MEM_ALIGN (memref) == align))
1984 return new_rtx;
1986 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1987 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1990 MEM_ATTRS (new_rtx)
1991 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1993 return new_rtx;
1996 /* Return a memory reference like MEMREF, but with its mode changed
1997 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1998 nonzero, the memory address is forced to be valid.
1999 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2000 and caller is responsible for adjusting MEMREF base register. */
2003 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2004 int validate, int adjust)
2006 rtx addr = XEXP (memref, 0);
2007 rtx new_rtx;
2008 rtx memoffset = MEM_OFFSET (memref);
2009 rtx size = 0;
2010 unsigned int memalign = MEM_ALIGN (memref);
2012 /* If there are no changes, just return the original memory reference. */
2013 if (mode == GET_MODE (memref) && !offset
2014 && (!validate || memory_address_p (mode, addr)))
2015 return memref;
2017 /* ??? Prefer to create garbage instead of creating shared rtl.
2018 This may happen even if offset is nonzero -- consider
2019 (plus (plus reg reg) const_int) -- so do this always. */
2020 addr = copy_rtx (addr);
2022 if (adjust)
2024 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2025 object, we can merge it into the LO_SUM. */
2026 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2027 && offset >= 0
2028 && (unsigned HOST_WIDE_INT) offset
2029 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2030 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2031 plus_constant (XEXP (addr, 1), offset));
2032 else
2033 addr = plus_constant (addr, offset);
2036 new_rtx = change_address_1 (memref, mode, addr, validate);
2038 /* Compute the new values of the memory attributes due to this adjustment.
2039 We add the offsets and update the alignment. */
2040 if (memoffset)
2041 memoffset = GEN_INT (offset + INTVAL (memoffset));
2043 /* Compute the new alignment by taking the MIN of the alignment and the
2044 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2045 if zero. */
2046 if (offset != 0)
2047 memalign
2048 = MIN (memalign,
2049 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2051 /* We can compute the size in a number of ways. */
2052 if (GET_MODE (new_rtx) != BLKmode)
2053 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2054 else if (MEM_SIZE (memref))
2055 size = plus_constant (MEM_SIZE (memref), -offset);
2057 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2058 memoffset, size, memalign, GET_MODE (new_rtx));
2060 /* At some point, we should validate that this offset is within the object,
2061 if all the appropriate values are known. */
2062 return new_rtx;
2065 /* Return a memory reference like MEMREF, but with its mode changed
2066 to MODE and its address changed to ADDR, which is assumed to be
2067 MEMREF offset by OFFSET bytes. If VALIDATE is
2068 nonzero, the memory address is forced to be valid. */
2071 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2072 HOST_WIDE_INT offset, int validate)
2074 memref = change_address_1 (memref, VOIDmode, addr, validate);
2075 return adjust_address_1 (memref, mode, offset, validate, 0);
2078 /* Return a memory reference like MEMREF, but whose address is changed by
2079 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2080 known to be in OFFSET (possibly 1). */
2083 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2085 rtx new_rtx, addr = XEXP (memref, 0);
2087 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2089 /* At this point we don't know _why_ the address is invalid. It
2090 could have secondary memory references, multiplies or anything.
2092 However, if we did go and rearrange things, we can wind up not
2093 being able to recognize the magic around pic_offset_table_rtx.
2094 This stuff is fragile, and is yet another example of why it is
2095 bad to expose PIC machinery too early. */
2096 if (! memory_address_p (GET_MODE (memref), new_rtx)
2097 && GET_CODE (addr) == PLUS
2098 && XEXP (addr, 0) == pic_offset_table_rtx)
2100 addr = force_reg (GET_MODE (addr), addr);
2101 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2104 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2105 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2107 /* If there are no changes, just return the original memory reference. */
2108 if (new_rtx == memref)
2109 return new_rtx;
2111 /* Update the alignment to reflect the offset. Reset the offset, which
2112 we don't know. */
2113 MEM_ATTRS (new_rtx)
2114 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2115 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2116 GET_MODE (new_rtx));
2117 return new_rtx;
2120 /* Return a memory reference like MEMREF, but with its address changed to
2121 ADDR. The caller is asserting that the actual piece of memory pointed
2122 to is the same, just the form of the address is being changed, such as
2123 by putting something into a register. */
2126 replace_equiv_address (rtx memref, rtx addr)
2128 /* change_address_1 copies the memory attribute structure without change
2129 and that's exactly what we want here. */
2130 update_temp_slot_address (XEXP (memref, 0), addr);
2131 return change_address_1 (memref, VOIDmode, addr, 1);
2134 /* Likewise, but the reference is not required to be valid. */
2137 replace_equiv_address_nv (rtx memref, rtx addr)
2139 return change_address_1 (memref, VOIDmode, addr, 0);
2142 /* Return a memory reference like MEMREF, but with its mode widened to
2143 MODE and offset by OFFSET. This would be used by targets that e.g.
2144 cannot issue QImode memory operations and have to use SImode memory
2145 operations plus masking logic. */
2148 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2150 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2151 tree expr = MEM_EXPR (new_rtx);
2152 rtx memoffset = MEM_OFFSET (new_rtx);
2153 unsigned int size = GET_MODE_SIZE (mode);
2155 /* If there are no changes, just return the original memory reference. */
2156 if (new_rtx == memref)
2157 return new_rtx;
2159 /* If we don't know what offset we were at within the expression, then
2160 we can't know if we've overstepped the bounds. */
2161 if (! memoffset)
2162 expr = NULL_TREE;
2164 while (expr)
2166 if (TREE_CODE (expr) == COMPONENT_REF)
2168 tree field = TREE_OPERAND (expr, 1);
2169 tree offset = component_ref_field_offset (expr);
2171 if (! DECL_SIZE_UNIT (field))
2173 expr = NULL_TREE;
2174 break;
2177 /* Is the field at least as large as the access? If so, ok,
2178 otherwise strip back to the containing structure. */
2179 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2180 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2181 && INTVAL (memoffset) >= 0)
2182 break;
2184 if (! host_integerp (offset, 1))
2186 expr = NULL_TREE;
2187 break;
2190 expr = TREE_OPERAND (expr, 0);
2191 memoffset
2192 = (GEN_INT (INTVAL (memoffset)
2193 + tree_low_cst (offset, 1)
2194 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2195 / BITS_PER_UNIT)));
2197 /* Similarly for the decl. */
2198 else if (DECL_P (expr)
2199 && DECL_SIZE_UNIT (expr)
2200 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2201 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2202 && (! memoffset || INTVAL (memoffset) >= 0))
2203 break;
2204 else
2206 /* The widened memory access overflows the expression, which means
2207 that it could alias another expression. Zap it. */
2208 expr = NULL_TREE;
2209 break;
2213 if (! expr)
2214 memoffset = NULL_RTX;
2216 /* The widened memory may alias other stuff, so zap the alias set. */
2217 /* ??? Maybe use get_alias_set on any remaining expression. */
2219 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2220 MEM_ALIGN (new_rtx), mode);
2222 return new_rtx;
2225 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2226 static GTY(()) tree spill_slot_decl;
2228 tree
2229 get_spill_slot_decl (bool force_build_p)
2231 tree d = spill_slot_decl;
2232 rtx rd;
2234 if (d || !force_build_p)
2235 return d;
2237 d = build_decl (VAR_DECL, get_identifier ("%sfp"), void_type_node);
2238 DECL_ARTIFICIAL (d) = 1;
2239 DECL_IGNORED_P (d) = 1;
2240 TREE_USED (d) = 1;
2241 TREE_THIS_NOTRAP (d) = 1;
2242 spill_slot_decl = d;
2244 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2245 MEM_NOTRAP_P (rd) = 1;
2246 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2247 NULL_RTX, 0, BLKmode);
2248 SET_DECL_RTL (d, rd);
2250 return d;
2253 /* Given MEM, a result from assign_stack_local, fill in the memory
2254 attributes as appropriate for a register allocator spill slot.
2255 These slots are not aliasable by other memory. We arrange for
2256 them all to use a single MEM_EXPR, so that the aliasing code can
2257 work properly in the case of shared spill slots. */
2259 void
2260 set_mem_attrs_for_spill (rtx mem)
2262 alias_set_type alias;
2263 rtx addr, offset;
2264 tree expr;
2266 expr = get_spill_slot_decl (true);
2267 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2269 /* We expect the incoming memory to be of the form:
2270 (mem:MODE (plus (reg sfp) (const_int offset)))
2271 with perhaps the plus missing for offset = 0. */
2272 addr = XEXP (mem, 0);
2273 offset = const0_rtx;
2274 if (GET_CODE (addr) == PLUS
2275 && GET_CODE (XEXP (addr, 1)) == CONST_INT)
2276 offset = XEXP (addr, 1);
2278 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2279 MEM_SIZE (mem), MEM_ALIGN (mem),
2280 GET_MODE (mem));
2281 MEM_NOTRAP_P (mem) = 1;
2284 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2287 gen_label_rtx (void)
2289 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2290 NULL, label_num++, NULL);
2293 /* For procedure integration. */
2295 /* Install new pointers to the first and last insns in the chain.
2296 Also, set cur_insn_uid to one higher than the last in use.
2297 Used for an inline-procedure after copying the insn chain. */
2299 void
2300 set_new_first_and_last_insn (rtx first, rtx last)
2302 rtx insn;
2304 first_insn = first;
2305 last_insn = last;
2306 cur_insn_uid = 0;
2308 for (insn = first; insn; insn = NEXT_INSN (insn))
2309 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2311 cur_insn_uid++;
2314 /* Go through all the RTL insn bodies and copy any invalid shared
2315 structure. This routine should only be called once. */
2317 static void
2318 unshare_all_rtl_1 (rtx insn)
2320 /* Unshare just about everything else. */
2321 unshare_all_rtl_in_chain (insn);
2323 /* Make sure the addresses of stack slots found outside the insn chain
2324 (such as, in DECL_RTL of a variable) are not shared
2325 with the insn chain.
2327 This special care is necessary when the stack slot MEM does not
2328 actually appear in the insn chain. If it does appear, its address
2329 is unshared from all else at that point. */
2330 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2333 /* Go through all the RTL insn bodies and copy any invalid shared
2334 structure, again. This is a fairly expensive thing to do so it
2335 should be done sparingly. */
2337 void
2338 unshare_all_rtl_again (rtx insn)
2340 rtx p;
2341 tree decl;
2343 for (p = insn; p; p = NEXT_INSN (p))
2344 if (INSN_P (p))
2346 reset_used_flags (PATTERN (p));
2347 reset_used_flags (REG_NOTES (p));
2350 /* Make sure that virtual stack slots are not shared. */
2351 set_used_decls (DECL_INITIAL (cfun->decl));
2353 /* Make sure that virtual parameters are not shared. */
2354 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2355 set_used_flags (DECL_RTL (decl));
2357 reset_used_flags (stack_slot_list);
2359 unshare_all_rtl_1 (insn);
2362 unsigned int
2363 unshare_all_rtl (void)
2365 unshare_all_rtl_1 (get_insns ());
2366 return 0;
2369 struct rtl_opt_pass pass_unshare_all_rtl =
2372 RTL_PASS,
2373 "unshare", /* name */
2374 NULL, /* gate */
2375 unshare_all_rtl, /* execute */
2376 NULL, /* sub */
2377 NULL, /* next */
2378 0, /* static_pass_number */
2379 0, /* tv_id */
2380 0, /* properties_required */
2381 0, /* properties_provided */
2382 0, /* properties_destroyed */
2383 0, /* todo_flags_start */
2384 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2389 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2390 Recursively does the same for subexpressions. */
2392 static void
2393 verify_rtx_sharing (rtx orig, rtx insn)
2395 rtx x = orig;
2396 int i;
2397 enum rtx_code code;
2398 const char *format_ptr;
2400 if (x == 0)
2401 return;
2403 code = GET_CODE (x);
2405 /* These types may be freely shared. */
2407 switch (code)
2409 case REG:
2410 case CONST_INT:
2411 case CONST_DOUBLE:
2412 case CONST_FIXED:
2413 case CONST_VECTOR:
2414 case SYMBOL_REF:
2415 case LABEL_REF:
2416 case CODE_LABEL:
2417 case PC:
2418 case CC0:
2419 case SCRATCH:
2420 return;
2421 /* SCRATCH must be shared because they represent distinct values. */
2422 case CLOBBER:
2423 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2424 return;
2425 break;
2427 case CONST:
2428 if (shared_const_p (orig))
2429 return;
2430 break;
2432 case MEM:
2433 /* A MEM is allowed to be shared if its address is constant. */
2434 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2435 || reload_completed || reload_in_progress)
2436 return;
2438 break;
2440 default:
2441 break;
2444 /* This rtx may not be shared. If it has already been seen,
2445 replace it with a copy of itself. */
2446 #ifdef ENABLE_CHECKING
2447 if (RTX_FLAG (x, used))
2449 error ("invalid rtl sharing found in the insn");
2450 debug_rtx (insn);
2451 error ("shared rtx");
2452 debug_rtx (x);
2453 internal_error ("internal consistency failure");
2455 #endif
2456 gcc_assert (!RTX_FLAG (x, used));
2458 RTX_FLAG (x, used) = 1;
2460 /* Now scan the subexpressions recursively. */
2462 format_ptr = GET_RTX_FORMAT (code);
2464 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2466 switch (*format_ptr++)
2468 case 'e':
2469 verify_rtx_sharing (XEXP (x, i), insn);
2470 break;
2472 case 'E':
2473 if (XVEC (x, i) != NULL)
2475 int j;
2476 int len = XVECLEN (x, i);
2478 for (j = 0; j < len; j++)
2480 /* We allow sharing of ASM_OPERANDS inside single
2481 instruction. */
2482 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2483 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2484 == ASM_OPERANDS))
2485 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2486 else
2487 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2490 break;
2493 return;
2496 /* Go through all the RTL insn bodies and check that there is no unexpected
2497 sharing in between the subexpressions. */
2499 void
2500 verify_rtl_sharing (void)
2502 rtx p;
2504 for (p = get_insns (); p; p = NEXT_INSN (p))
2505 if (INSN_P (p))
2507 reset_used_flags (PATTERN (p));
2508 reset_used_flags (REG_NOTES (p));
2509 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2511 int i;
2512 rtx q, sequence = PATTERN (p);
2514 for (i = 0; i < XVECLEN (sequence, 0); i++)
2516 q = XVECEXP (sequence, 0, i);
2517 gcc_assert (INSN_P (q));
2518 reset_used_flags (PATTERN (q));
2519 reset_used_flags (REG_NOTES (q));
2524 for (p = get_insns (); p; p = NEXT_INSN (p))
2525 if (INSN_P (p))
2527 verify_rtx_sharing (PATTERN (p), p);
2528 verify_rtx_sharing (REG_NOTES (p), p);
2532 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2533 Assumes the mark bits are cleared at entry. */
2535 void
2536 unshare_all_rtl_in_chain (rtx insn)
2538 for (; insn; insn = NEXT_INSN (insn))
2539 if (INSN_P (insn))
2541 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2542 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2546 /* Go through all virtual stack slots of a function and mark them as
2547 shared. We never replace the DECL_RTLs themselves with a copy,
2548 but expressions mentioned into a DECL_RTL cannot be shared with
2549 expressions in the instruction stream.
2551 Note that reload may convert pseudo registers into memories in-place.
2552 Pseudo registers are always shared, but MEMs never are. Thus if we
2553 reset the used flags on MEMs in the instruction stream, we must set
2554 them again on MEMs that appear in DECL_RTLs. */
2556 static void
2557 set_used_decls (tree blk)
2559 tree t;
2561 /* Mark decls. */
2562 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2563 if (DECL_RTL_SET_P (t))
2564 set_used_flags (DECL_RTL (t));
2566 /* Now process sub-blocks. */
2567 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2568 set_used_decls (t);
2571 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2572 Recursively does the same for subexpressions. Uses
2573 copy_rtx_if_shared_1 to reduce stack space. */
2576 copy_rtx_if_shared (rtx orig)
2578 copy_rtx_if_shared_1 (&orig);
2579 return orig;
2582 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2583 use. Recursively does the same for subexpressions. */
2585 static void
2586 copy_rtx_if_shared_1 (rtx *orig1)
2588 rtx x;
2589 int i;
2590 enum rtx_code code;
2591 rtx *last_ptr;
2592 const char *format_ptr;
2593 int copied = 0;
2594 int length;
2596 /* Repeat is used to turn tail-recursion into iteration. */
2597 repeat:
2598 x = *orig1;
2600 if (x == 0)
2601 return;
2603 code = GET_CODE (x);
2605 /* These types may be freely shared. */
2607 switch (code)
2609 case REG:
2610 case CONST_INT:
2611 case CONST_DOUBLE:
2612 case CONST_FIXED:
2613 case CONST_VECTOR:
2614 case SYMBOL_REF:
2615 case LABEL_REF:
2616 case CODE_LABEL:
2617 case PC:
2618 case CC0:
2619 case SCRATCH:
2620 /* SCRATCH must be shared because they represent distinct values. */
2621 return;
2622 case CLOBBER:
2623 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2624 return;
2625 break;
2627 case CONST:
2628 if (shared_const_p (x))
2629 return;
2630 break;
2632 case INSN:
2633 case JUMP_INSN:
2634 case CALL_INSN:
2635 case NOTE:
2636 case BARRIER:
2637 /* The chain of insns is not being copied. */
2638 return;
2640 default:
2641 break;
2644 /* This rtx may not be shared. If it has already been seen,
2645 replace it with a copy of itself. */
2647 if (RTX_FLAG (x, used))
2649 x = shallow_copy_rtx (x);
2650 copied = 1;
2652 RTX_FLAG (x, used) = 1;
2654 /* Now scan the subexpressions recursively.
2655 We can store any replaced subexpressions directly into X
2656 since we know X is not shared! Any vectors in X
2657 must be copied if X was copied. */
2659 format_ptr = GET_RTX_FORMAT (code);
2660 length = GET_RTX_LENGTH (code);
2661 last_ptr = NULL;
2663 for (i = 0; i < length; i++)
2665 switch (*format_ptr++)
2667 case 'e':
2668 if (last_ptr)
2669 copy_rtx_if_shared_1 (last_ptr);
2670 last_ptr = &XEXP (x, i);
2671 break;
2673 case 'E':
2674 if (XVEC (x, i) != NULL)
2676 int j;
2677 int len = XVECLEN (x, i);
2679 /* Copy the vector iff I copied the rtx and the length
2680 is nonzero. */
2681 if (copied && len > 0)
2682 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2684 /* Call recursively on all inside the vector. */
2685 for (j = 0; j < len; j++)
2687 if (last_ptr)
2688 copy_rtx_if_shared_1 (last_ptr);
2689 last_ptr = &XVECEXP (x, i, j);
2692 break;
2695 *orig1 = x;
2696 if (last_ptr)
2698 orig1 = last_ptr;
2699 goto repeat;
2701 return;
2704 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2705 to look for shared sub-parts. */
2707 void
2708 reset_used_flags (rtx x)
2710 int i, j;
2711 enum rtx_code code;
2712 const char *format_ptr;
2713 int length;
2715 /* Repeat is used to turn tail-recursion into iteration. */
2716 repeat:
2717 if (x == 0)
2718 return;
2720 code = GET_CODE (x);
2722 /* These types may be freely shared so we needn't do any resetting
2723 for them. */
2725 switch (code)
2727 case REG:
2728 case CONST_INT:
2729 case CONST_DOUBLE:
2730 case CONST_FIXED:
2731 case CONST_VECTOR:
2732 case SYMBOL_REF:
2733 case CODE_LABEL:
2734 case PC:
2735 case CC0:
2736 return;
2738 case INSN:
2739 case JUMP_INSN:
2740 case CALL_INSN:
2741 case NOTE:
2742 case LABEL_REF:
2743 case BARRIER:
2744 /* The chain of insns is not being copied. */
2745 return;
2747 default:
2748 break;
2751 RTX_FLAG (x, used) = 0;
2753 format_ptr = GET_RTX_FORMAT (code);
2754 length = GET_RTX_LENGTH (code);
2756 for (i = 0; i < length; i++)
2758 switch (*format_ptr++)
2760 case 'e':
2761 if (i == length-1)
2763 x = XEXP (x, i);
2764 goto repeat;
2766 reset_used_flags (XEXP (x, i));
2767 break;
2769 case 'E':
2770 for (j = 0; j < XVECLEN (x, i); j++)
2771 reset_used_flags (XVECEXP (x, i, j));
2772 break;
2777 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2778 to look for shared sub-parts. */
2780 void
2781 set_used_flags (rtx x)
2783 int i, j;
2784 enum rtx_code code;
2785 const char *format_ptr;
2787 if (x == 0)
2788 return;
2790 code = GET_CODE (x);
2792 /* These types may be freely shared so we needn't do any resetting
2793 for them. */
2795 switch (code)
2797 case REG:
2798 case CONST_INT:
2799 case CONST_DOUBLE:
2800 case CONST_FIXED:
2801 case CONST_VECTOR:
2802 case SYMBOL_REF:
2803 case CODE_LABEL:
2804 case PC:
2805 case CC0:
2806 return;
2808 case INSN:
2809 case JUMP_INSN:
2810 case CALL_INSN:
2811 case NOTE:
2812 case LABEL_REF:
2813 case BARRIER:
2814 /* The chain of insns is not being copied. */
2815 return;
2817 default:
2818 break;
2821 RTX_FLAG (x, used) = 1;
2823 format_ptr = GET_RTX_FORMAT (code);
2824 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2826 switch (*format_ptr++)
2828 case 'e':
2829 set_used_flags (XEXP (x, i));
2830 break;
2832 case 'E':
2833 for (j = 0; j < XVECLEN (x, i); j++)
2834 set_used_flags (XVECEXP (x, i, j));
2835 break;
2840 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2841 Return X or the rtx for the pseudo reg the value of X was copied into.
2842 OTHER must be valid as a SET_DEST. */
2845 make_safe_from (rtx x, rtx other)
2847 while (1)
2848 switch (GET_CODE (other))
2850 case SUBREG:
2851 other = SUBREG_REG (other);
2852 break;
2853 case STRICT_LOW_PART:
2854 case SIGN_EXTEND:
2855 case ZERO_EXTEND:
2856 other = XEXP (other, 0);
2857 break;
2858 default:
2859 goto done;
2861 done:
2862 if ((MEM_P (other)
2863 && ! CONSTANT_P (x)
2864 && !REG_P (x)
2865 && GET_CODE (x) != SUBREG)
2866 || (REG_P (other)
2867 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2868 || reg_mentioned_p (other, x))))
2870 rtx temp = gen_reg_rtx (GET_MODE (x));
2871 emit_move_insn (temp, x);
2872 return temp;
2874 return x;
2877 /* Emission of insns (adding them to the doubly-linked list). */
2879 /* Return the first insn of the current sequence or current function. */
2882 get_insns (void)
2884 return first_insn;
2887 /* Specify a new insn as the first in the chain. */
2889 void
2890 set_first_insn (rtx insn)
2892 gcc_assert (!PREV_INSN (insn));
2893 first_insn = insn;
2896 /* Return the last insn emitted in current sequence or current function. */
2899 get_last_insn (void)
2901 return last_insn;
2904 /* Specify a new insn as the last in the chain. */
2906 void
2907 set_last_insn (rtx insn)
2909 gcc_assert (!NEXT_INSN (insn));
2910 last_insn = insn;
2913 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2916 get_last_insn_anywhere (void)
2918 struct sequence_stack *stack;
2919 if (last_insn)
2920 return last_insn;
2921 for (stack = seq_stack; stack; stack = stack->next)
2922 if (stack->last != 0)
2923 return stack->last;
2924 return 0;
2927 /* Return the first nonnote insn emitted in current sequence or current
2928 function. This routine looks inside SEQUENCEs. */
2931 get_first_nonnote_insn (void)
2933 rtx insn = first_insn;
2935 if (insn)
2937 if (NOTE_P (insn))
2938 for (insn = next_insn (insn);
2939 insn && NOTE_P (insn);
2940 insn = next_insn (insn))
2941 continue;
2942 else
2944 if (NONJUMP_INSN_P (insn)
2945 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2946 insn = XVECEXP (PATTERN (insn), 0, 0);
2950 return insn;
2953 /* Return the last nonnote insn emitted in current sequence or current
2954 function. This routine looks inside SEQUENCEs. */
2957 get_last_nonnote_insn (void)
2959 rtx insn = last_insn;
2961 if (insn)
2963 if (NOTE_P (insn))
2964 for (insn = previous_insn (insn);
2965 insn && NOTE_P (insn);
2966 insn = previous_insn (insn))
2967 continue;
2968 else
2970 if (NONJUMP_INSN_P (insn)
2971 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2972 insn = XVECEXP (PATTERN (insn), 0,
2973 XVECLEN (PATTERN (insn), 0) - 1);
2977 return insn;
2980 /* Return a number larger than any instruction's uid in this function. */
2983 get_max_uid (void)
2985 return cur_insn_uid;
2988 /* Return the next insn. If it is a SEQUENCE, return the first insn
2989 of the sequence. */
2992 next_insn (rtx insn)
2994 if (insn)
2996 insn = NEXT_INSN (insn);
2997 if (insn && NONJUMP_INSN_P (insn)
2998 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2999 insn = XVECEXP (PATTERN (insn), 0, 0);
3002 return insn;
3005 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3006 of the sequence. */
3009 previous_insn (rtx insn)
3011 if (insn)
3013 insn = PREV_INSN (insn);
3014 if (insn && NONJUMP_INSN_P (insn)
3015 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3016 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3019 return insn;
3022 /* Return the next insn after INSN that is not a NOTE. This routine does not
3023 look inside SEQUENCEs. */
3026 next_nonnote_insn (rtx insn)
3028 while (insn)
3030 insn = NEXT_INSN (insn);
3031 if (insn == 0 || !NOTE_P (insn))
3032 break;
3035 return insn;
3038 /* Return the previous insn before INSN that is not a NOTE. This routine does
3039 not look inside SEQUENCEs. */
3042 prev_nonnote_insn (rtx insn)
3044 while (insn)
3046 insn = PREV_INSN (insn);
3047 if (insn == 0 || !NOTE_P (insn))
3048 break;
3051 return insn;
3054 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3055 or 0, if there is none. This routine does not look inside
3056 SEQUENCEs. */
3059 next_real_insn (rtx insn)
3061 while (insn)
3063 insn = NEXT_INSN (insn);
3064 if (insn == 0 || INSN_P (insn))
3065 break;
3068 return insn;
3071 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3072 or 0, if there is none. This routine does not look inside
3073 SEQUENCEs. */
3076 prev_real_insn (rtx insn)
3078 while (insn)
3080 insn = PREV_INSN (insn);
3081 if (insn == 0 || INSN_P (insn))
3082 break;
3085 return insn;
3088 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3089 This routine does not look inside SEQUENCEs. */
3092 last_call_insn (void)
3094 rtx insn;
3096 for (insn = get_last_insn ();
3097 insn && !CALL_P (insn);
3098 insn = PREV_INSN (insn))
3101 return insn;
3104 /* Find the next insn after INSN that really does something. This routine
3105 does not look inside SEQUENCEs. Until reload has completed, this is the
3106 same as next_real_insn. */
3109 active_insn_p (const_rtx insn)
3111 return (CALL_P (insn) || JUMP_P (insn)
3112 || (NONJUMP_INSN_P (insn)
3113 && (! reload_completed
3114 || (GET_CODE (PATTERN (insn)) != USE
3115 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3119 next_active_insn (rtx insn)
3121 while (insn)
3123 insn = NEXT_INSN (insn);
3124 if (insn == 0 || active_insn_p (insn))
3125 break;
3128 return insn;
3131 /* Find the last insn before INSN that really does something. This routine
3132 does not look inside SEQUENCEs. Until reload has completed, this is the
3133 same as prev_real_insn. */
3136 prev_active_insn (rtx insn)
3138 while (insn)
3140 insn = PREV_INSN (insn);
3141 if (insn == 0 || active_insn_p (insn))
3142 break;
3145 return insn;
3148 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3151 next_label (rtx insn)
3153 while (insn)
3155 insn = NEXT_INSN (insn);
3156 if (insn == 0 || LABEL_P (insn))
3157 break;
3160 return insn;
3163 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3166 prev_label (rtx insn)
3168 while (insn)
3170 insn = PREV_INSN (insn);
3171 if (insn == 0 || LABEL_P (insn))
3172 break;
3175 return insn;
3178 /* Return the last label to mark the same position as LABEL. Return null
3179 if LABEL itself is null. */
3182 skip_consecutive_labels (rtx label)
3184 rtx insn;
3186 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3187 if (LABEL_P (insn))
3188 label = insn;
3190 return label;
3193 #ifdef HAVE_cc0
3194 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3195 and REG_CC_USER notes so we can find it. */
3197 void
3198 link_cc0_insns (rtx insn)
3200 rtx user = next_nonnote_insn (insn);
3202 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3203 user = XVECEXP (PATTERN (user), 0, 0);
3205 add_reg_note (user, REG_CC_SETTER, insn);
3206 add_reg_note (insn, REG_CC_USER, user);
3209 /* Return the next insn that uses CC0 after INSN, which is assumed to
3210 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3211 applied to the result of this function should yield INSN).
3213 Normally, this is simply the next insn. However, if a REG_CC_USER note
3214 is present, it contains the insn that uses CC0.
3216 Return 0 if we can't find the insn. */
3219 next_cc0_user (rtx insn)
3221 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3223 if (note)
3224 return XEXP (note, 0);
3226 insn = next_nonnote_insn (insn);
3227 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3228 insn = XVECEXP (PATTERN (insn), 0, 0);
3230 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3231 return insn;
3233 return 0;
3236 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3237 note, it is the previous insn. */
3240 prev_cc0_setter (rtx insn)
3242 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3244 if (note)
3245 return XEXP (note, 0);
3247 insn = prev_nonnote_insn (insn);
3248 gcc_assert (sets_cc0_p (PATTERN (insn)));
3250 return insn;
3252 #endif
3254 #ifdef AUTO_INC_DEC
3255 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3257 static int
3258 find_auto_inc (rtx *xp, void *data)
3260 rtx x = *xp;
3261 rtx reg = (rtx) data;
3263 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3264 return 0;
3266 switch (GET_CODE (x))
3268 case PRE_DEC:
3269 case PRE_INC:
3270 case POST_DEC:
3271 case POST_INC:
3272 case PRE_MODIFY:
3273 case POST_MODIFY:
3274 if (rtx_equal_p (reg, XEXP (x, 0)))
3275 return 1;
3276 break;
3278 default:
3279 gcc_unreachable ();
3281 return -1;
3283 #endif
3285 /* Increment the label uses for all labels present in rtx. */
3287 static void
3288 mark_label_nuses (rtx x)
3290 enum rtx_code code;
3291 int i, j;
3292 const char *fmt;
3294 code = GET_CODE (x);
3295 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3296 LABEL_NUSES (XEXP (x, 0))++;
3298 fmt = GET_RTX_FORMAT (code);
3299 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3301 if (fmt[i] == 'e')
3302 mark_label_nuses (XEXP (x, i));
3303 else if (fmt[i] == 'E')
3304 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3305 mark_label_nuses (XVECEXP (x, i, j));
3310 /* Try splitting insns that can be split for better scheduling.
3311 PAT is the pattern which might split.
3312 TRIAL is the insn providing PAT.
3313 LAST is nonzero if we should return the last insn of the sequence produced.
3315 If this routine succeeds in splitting, it returns the first or last
3316 replacement insn depending on the value of LAST. Otherwise, it
3317 returns TRIAL. If the insn to be returned can be split, it will be. */
3320 try_split (rtx pat, rtx trial, int last)
3322 rtx before = PREV_INSN (trial);
3323 rtx after = NEXT_INSN (trial);
3324 int has_barrier = 0;
3325 rtx note, seq, tem;
3326 int probability;
3327 rtx insn_last, insn;
3328 int njumps = 0;
3330 if (any_condjump_p (trial)
3331 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3332 split_branch_probability = INTVAL (XEXP (note, 0));
3333 probability = split_branch_probability;
3335 seq = split_insns (pat, trial);
3337 split_branch_probability = -1;
3339 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3340 We may need to handle this specially. */
3341 if (after && BARRIER_P (after))
3343 has_barrier = 1;
3344 after = NEXT_INSN (after);
3347 if (!seq)
3348 return trial;
3350 /* Avoid infinite loop if any insn of the result matches
3351 the original pattern. */
3352 insn_last = seq;
3353 while (1)
3355 if (INSN_P (insn_last)
3356 && rtx_equal_p (PATTERN (insn_last), pat))
3357 return trial;
3358 if (!NEXT_INSN (insn_last))
3359 break;
3360 insn_last = NEXT_INSN (insn_last);
3363 /* We will be adding the new sequence to the function. The splitters
3364 may have introduced invalid RTL sharing, so unshare the sequence now. */
3365 unshare_all_rtl_in_chain (seq);
3367 /* Mark labels. */
3368 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3370 if (JUMP_P (insn))
3372 mark_jump_label (PATTERN (insn), insn, 0);
3373 njumps++;
3374 if (probability != -1
3375 && any_condjump_p (insn)
3376 && !find_reg_note (insn, REG_BR_PROB, 0))
3378 /* We can preserve the REG_BR_PROB notes only if exactly
3379 one jump is created, otherwise the machine description
3380 is responsible for this step using
3381 split_branch_probability variable. */
3382 gcc_assert (njumps == 1);
3383 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3388 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3389 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3390 if (CALL_P (trial))
3392 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3393 if (CALL_P (insn))
3395 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3396 while (*p)
3397 p = &XEXP (*p, 1);
3398 *p = CALL_INSN_FUNCTION_USAGE (trial);
3399 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3403 /* Copy notes, particularly those related to the CFG. */
3404 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3406 switch (REG_NOTE_KIND (note))
3408 case REG_EH_REGION:
3409 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3411 if (CALL_P (insn)
3412 || (flag_non_call_exceptions && INSN_P (insn)
3413 && may_trap_p (PATTERN (insn))))
3414 add_reg_note (insn, REG_EH_REGION, XEXP (note, 0));
3416 break;
3418 case REG_NORETURN:
3419 case REG_SETJMP:
3420 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3422 if (CALL_P (insn))
3423 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3425 break;
3427 case REG_NON_LOCAL_GOTO:
3428 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3430 if (JUMP_P (insn))
3431 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3433 break;
3435 #ifdef AUTO_INC_DEC
3436 case REG_INC:
3437 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3439 rtx reg = XEXP (note, 0);
3440 if (!FIND_REG_INC_NOTE (insn, reg)
3441 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3442 add_reg_note (insn, REG_INC, reg);
3444 break;
3445 #endif
3447 default:
3448 break;
3452 /* If there are LABELS inside the split insns increment the
3453 usage count so we don't delete the label. */
3454 if (INSN_P (trial))
3456 insn = insn_last;
3457 while (insn != NULL_RTX)
3459 /* JUMP_P insns have already been "marked" above. */
3460 if (NONJUMP_INSN_P (insn))
3461 mark_label_nuses (PATTERN (insn));
3463 insn = PREV_INSN (insn);
3467 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3469 delete_insn (trial);
3470 if (has_barrier)
3471 emit_barrier_after (tem);
3473 /* Recursively call try_split for each new insn created; by the
3474 time control returns here that insn will be fully split, so
3475 set LAST and continue from the insn after the one returned.
3476 We can't use next_active_insn here since AFTER may be a note.
3477 Ignore deleted insns, which can be occur if not optimizing. */
3478 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3479 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3480 tem = try_split (PATTERN (tem), tem, 1);
3482 /* Return either the first or the last insn, depending on which was
3483 requested. */
3484 return last
3485 ? (after ? PREV_INSN (after) : last_insn)
3486 : NEXT_INSN (before);
3489 /* Make and return an INSN rtx, initializing all its slots.
3490 Store PATTERN in the pattern slots. */
3493 make_insn_raw (rtx pattern)
3495 rtx insn;
3497 insn = rtx_alloc (INSN);
3499 INSN_UID (insn) = cur_insn_uid++;
3500 PATTERN (insn) = pattern;
3501 INSN_CODE (insn) = -1;
3502 REG_NOTES (insn) = NULL;
3503 INSN_LOCATOR (insn) = curr_insn_locator ();
3504 BLOCK_FOR_INSN (insn) = NULL;
3506 #ifdef ENABLE_RTL_CHECKING
3507 if (insn
3508 && INSN_P (insn)
3509 && (returnjump_p (insn)
3510 || (GET_CODE (insn) == SET
3511 && SET_DEST (insn) == pc_rtx)))
3513 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3514 debug_rtx (insn);
3516 #endif
3518 return insn;
3521 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3524 make_jump_insn_raw (rtx pattern)
3526 rtx insn;
3528 insn = rtx_alloc (JUMP_INSN);
3529 INSN_UID (insn) = cur_insn_uid++;
3531 PATTERN (insn) = pattern;
3532 INSN_CODE (insn) = -1;
3533 REG_NOTES (insn) = NULL;
3534 JUMP_LABEL (insn) = NULL;
3535 INSN_LOCATOR (insn) = curr_insn_locator ();
3536 BLOCK_FOR_INSN (insn) = NULL;
3538 return insn;
3541 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3543 static rtx
3544 make_call_insn_raw (rtx pattern)
3546 rtx insn;
3548 insn = rtx_alloc (CALL_INSN);
3549 INSN_UID (insn) = cur_insn_uid++;
3551 PATTERN (insn) = pattern;
3552 INSN_CODE (insn) = -1;
3553 REG_NOTES (insn) = NULL;
3554 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3555 INSN_LOCATOR (insn) = curr_insn_locator ();
3556 BLOCK_FOR_INSN (insn) = NULL;
3558 return insn;
3561 /* Add INSN to the end of the doubly-linked list.
3562 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3564 void
3565 add_insn (rtx insn)
3567 PREV_INSN (insn) = last_insn;
3568 NEXT_INSN (insn) = 0;
3570 if (NULL != last_insn)
3571 NEXT_INSN (last_insn) = insn;
3573 if (NULL == first_insn)
3574 first_insn = insn;
3576 last_insn = insn;
3579 /* Add INSN into the doubly-linked list after insn AFTER. This and
3580 the next should be the only functions called to insert an insn once
3581 delay slots have been filled since only they know how to update a
3582 SEQUENCE. */
3584 void
3585 add_insn_after (rtx insn, rtx after, basic_block bb)
3587 rtx next = NEXT_INSN (after);
3589 gcc_assert (!optimize || !INSN_DELETED_P (after));
3591 NEXT_INSN (insn) = next;
3592 PREV_INSN (insn) = after;
3594 if (next)
3596 PREV_INSN (next) = insn;
3597 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3598 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3600 else if (last_insn == after)
3601 last_insn = insn;
3602 else
3604 struct sequence_stack *stack = seq_stack;
3605 /* Scan all pending sequences too. */
3606 for (; stack; stack = stack->next)
3607 if (after == stack->last)
3609 stack->last = insn;
3610 break;
3613 gcc_assert (stack);
3616 if (!BARRIER_P (after)
3617 && !BARRIER_P (insn)
3618 && (bb = BLOCK_FOR_INSN (after)))
3620 set_block_for_insn (insn, bb);
3621 if (INSN_P (insn))
3622 df_insn_rescan (insn);
3623 /* Should not happen as first in the BB is always
3624 either NOTE or LABEL. */
3625 if (BB_END (bb) == after
3626 /* Avoid clobbering of structure when creating new BB. */
3627 && !BARRIER_P (insn)
3628 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3629 BB_END (bb) = insn;
3632 NEXT_INSN (after) = insn;
3633 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3635 rtx sequence = PATTERN (after);
3636 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3640 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3641 the previous should be the only functions called to insert an insn
3642 once delay slots have been filled since only they know how to
3643 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3644 bb from before. */
3646 void
3647 add_insn_before (rtx insn, rtx before, basic_block bb)
3649 rtx prev = PREV_INSN (before);
3651 gcc_assert (!optimize || !INSN_DELETED_P (before));
3653 PREV_INSN (insn) = prev;
3654 NEXT_INSN (insn) = before;
3656 if (prev)
3658 NEXT_INSN (prev) = insn;
3659 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3661 rtx sequence = PATTERN (prev);
3662 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3665 else if (first_insn == before)
3666 first_insn = insn;
3667 else
3669 struct sequence_stack *stack = seq_stack;
3670 /* Scan all pending sequences too. */
3671 for (; stack; stack = stack->next)
3672 if (before == stack->first)
3674 stack->first = insn;
3675 break;
3678 gcc_assert (stack);
3681 if (!bb
3682 && !BARRIER_P (before)
3683 && !BARRIER_P (insn))
3684 bb = BLOCK_FOR_INSN (before);
3686 if (bb)
3688 set_block_for_insn (insn, bb);
3689 if (INSN_P (insn))
3690 df_insn_rescan (insn);
3691 /* Should not happen as first in the BB is always either NOTE or
3692 LABEL. */
3693 gcc_assert (BB_HEAD (bb) != insn
3694 /* Avoid clobbering of structure when creating new BB. */
3695 || BARRIER_P (insn)
3696 || NOTE_INSN_BASIC_BLOCK_P (insn));
3699 PREV_INSN (before) = insn;
3700 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3701 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3705 /* Replace insn with an deleted instruction note. */
3707 void
3708 set_insn_deleted (rtx insn)
3710 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3711 PUT_CODE (insn, NOTE);
3712 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3716 /* Remove an insn from its doubly-linked list. This function knows how
3717 to handle sequences. */
3718 void
3719 remove_insn (rtx insn)
3721 rtx next = NEXT_INSN (insn);
3722 rtx prev = PREV_INSN (insn);
3723 basic_block bb;
3725 /* Later in the code, the block will be marked dirty. */
3726 df_insn_delete (NULL, INSN_UID (insn));
3728 if (prev)
3730 NEXT_INSN (prev) = next;
3731 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3733 rtx sequence = PATTERN (prev);
3734 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3737 else if (first_insn == insn)
3738 first_insn = next;
3739 else
3741 struct sequence_stack *stack = seq_stack;
3742 /* Scan all pending sequences too. */
3743 for (; stack; stack = stack->next)
3744 if (insn == stack->first)
3746 stack->first = next;
3747 break;
3750 gcc_assert (stack);
3753 if (next)
3755 PREV_INSN (next) = prev;
3756 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3757 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3759 else if (last_insn == insn)
3760 last_insn = prev;
3761 else
3763 struct sequence_stack *stack = seq_stack;
3764 /* Scan all pending sequences too. */
3765 for (; stack; stack = stack->next)
3766 if (insn == stack->last)
3768 stack->last = prev;
3769 break;
3772 gcc_assert (stack);
3774 if (!BARRIER_P (insn)
3775 && (bb = BLOCK_FOR_INSN (insn)))
3777 if (INSN_P (insn))
3778 df_set_bb_dirty (bb);
3779 if (BB_HEAD (bb) == insn)
3781 /* Never ever delete the basic block note without deleting whole
3782 basic block. */
3783 gcc_assert (!NOTE_P (insn));
3784 BB_HEAD (bb) = next;
3786 if (BB_END (bb) == insn)
3787 BB_END (bb) = prev;
3791 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3793 void
3794 add_function_usage_to (rtx call_insn, rtx call_fusage)
3796 gcc_assert (call_insn && CALL_P (call_insn));
3798 /* Put the register usage information on the CALL. If there is already
3799 some usage information, put ours at the end. */
3800 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3802 rtx link;
3804 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3805 link = XEXP (link, 1))
3808 XEXP (link, 1) = call_fusage;
3810 else
3811 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3814 /* Delete all insns made since FROM.
3815 FROM becomes the new last instruction. */
3817 void
3818 delete_insns_since (rtx from)
3820 if (from == 0)
3821 first_insn = 0;
3822 else
3823 NEXT_INSN (from) = 0;
3824 last_insn = from;
3827 /* This function is deprecated, please use sequences instead.
3829 Move a consecutive bunch of insns to a different place in the chain.
3830 The insns to be moved are those between FROM and TO.
3831 They are moved to a new position after the insn AFTER.
3832 AFTER must not be FROM or TO or any insn in between.
3834 This function does not know about SEQUENCEs and hence should not be
3835 called after delay-slot filling has been done. */
3837 void
3838 reorder_insns_nobb (rtx from, rtx to, rtx after)
3840 /* Splice this bunch out of where it is now. */
3841 if (PREV_INSN (from))
3842 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3843 if (NEXT_INSN (to))
3844 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3845 if (last_insn == to)
3846 last_insn = PREV_INSN (from);
3847 if (first_insn == from)
3848 first_insn = NEXT_INSN (to);
3850 /* Make the new neighbors point to it and it to them. */
3851 if (NEXT_INSN (after))
3852 PREV_INSN (NEXT_INSN (after)) = to;
3854 NEXT_INSN (to) = NEXT_INSN (after);
3855 PREV_INSN (from) = after;
3856 NEXT_INSN (after) = from;
3857 if (after == last_insn)
3858 last_insn = to;
3861 /* Same as function above, but take care to update BB boundaries. */
3862 void
3863 reorder_insns (rtx from, rtx to, rtx after)
3865 rtx prev = PREV_INSN (from);
3866 basic_block bb, bb2;
3868 reorder_insns_nobb (from, to, after);
3870 if (!BARRIER_P (after)
3871 && (bb = BLOCK_FOR_INSN (after)))
3873 rtx x;
3874 df_set_bb_dirty (bb);
3876 if (!BARRIER_P (from)
3877 && (bb2 = BLOCK_FOR_INSN (from)))
3879 if (BB_END (bb2) == to)
3880 BB_END (bb2) = prev;
3881 df_set_bb_dirty (bb2);
3884 if (BB_END (bb) == after)
3885 BB_END (bb) = to;
3887 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3888 if (!BARRIER_P (x))
3889 df_insn_change_bb (x, bb);
3894 /* Emit insn(s) of given code and pattern
3895 at a specified place within the doubly-linked list.
3897 All of the emit_foo global entry points accept an object
3898 X which is either an insn list or a PATTERN of a single
3899 instruction.
3901 There are thus a few canonical ways to generate code and
3902 emit it at a specific place in the instruction stream. For
3903 example, consider the instruction named SPOT and the fact that
3904 we would like to emit some instructions before SPOT. We might
3905 do it like this:
3907 start_sequence ();
3908 ... emit the new instructions ...
3909 insns_head = get_insns ();
3910 end_sequence ();
3912 emit_insn_before (insns_head, SPOT);
3914 It used to be common to generate SEQUENCE rtl instead, but that
3915 is a relic of the past which no longer occurs. The reason is that
3916 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3917 generated would almost certainly die right after it was created. */
3919 /* Make X be output before the instruction BEFORE. */
3922 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
3924 rtx last = before;
3925 rtx insn;
3927 gcc_assert (before);
3929 if (x == NULL_RTX)
3930 return last;
3932 switch (GET_CODE (x))
3934 case INSN:
3935 case JUMP_INSN:
3936 case CALL_INSN:
3937 case CODE_LABEL:
3938 case BARRIER:
3939 case NOTE:
3940 insn = x;
3941 while (insn)
3943 rtx next = NEXT_INSN (insn);
3944 add_insn_before (insn, before, bb);
3945 last = insn;
3946 insn = next;
3948 break;
3950 #ifdef ENABLE_RTL_CHECKING
3951 case SEQUENCE:
3952 gcc_unreachable ();
3953 break;
3954 #endif
3956 default:
3957 last = make_insn_raw (x);
3958 add_insn_before (last, before, bb);
3959 break;
3962 return last;
3965 /* Make an instruction with body X and code JUMP_INSN
3966 and output it before the instruction BEFORE. */
3969 emit_jump_insn_before_noloc (rtx x, rtx before)
3971 rtx insn, last = NULL_RTX;
3973 gcc_assert (before);
3975 switch (GET_CODE (x))
3977 case INSN:
3978 case JUMP_INSN:
3979 case CALL_INSN:
3980 case CODE_LABEL:
3981 case BARRIER:
3982 case NOTE:
3983 insn = x;
3984 while (insn)
3986 rtx next = NEXT_INSN (insn);
3987 add_insn_before (insn, before, NULL);
3988 last = insn;
3989 insn = next;
3991 break;
3993 #ifdef ENABLE_RTL_CHECKING
3994 case SEQUENCE:
3995 gcc_unreachable ();
3996 break;
3997 #endif
3999 default:
4000 last = make_jump_insn_raw (x);
4001 add_insn_before (last, before, NULL);
4002 break;
4005 return last;
4008 /* Make an instruction with body X and code CALL_INSN
4009 and output it before the instruction BEFORE. */
4012 emit_call_insn_before_noloc (rtx x, rtx before)
4014 rtx last = NULL_RTX, insn;
4016 gcc_assert (before);
4018 switch (GET_CODE (x))
4020 case INSN:
4021 case JUMP_INSN:
4022 case CALL_INSN:
4023 case CODE_LABEL:
4024 case BARRIER:
4025 case NOTE:
4026 insn = x;
4027 while (insn)
4029 rtx next = NEXT_INSN (insn);
4030 add_insn_before (insn, before, NULL);
4031 last = insn;
4032 insn = next;
4034 break;
4036 #ifdef ENABLE_RTL_CHECKING
4037 case SEQUENCE:
4038 gcc_unreachable ();
4039 break;
4040 #endif
4042 default:
4043 last = make_call_insn_raw (x);
4044 add_insn_before (last, before, NULL);
4045 break;
4048 return last;
4051 /* Make an insn of code BARRIER
4052 and output it before the insn BEFORE. */
4055 emit_barrier_before (rtx before)
4057 rtx insn = rtx_alloc (BARRIER);
4059 INSN_UID (insn) = cur_insn_uid++;
4061 add_insn_before (insn, before, NULL);
4062 return insn;
4065 /* Emit the label LABEL before the insn BEFORE. */
4068 emit_label_before (rtx label, rtx before)
4070 /* This can be called twice for the same label as a result of the
4071 confusion that follows a syntax error! So make it harmless. */
4072 if (INSN_UID (label) == 0)
4074 INSN_UID (label) = cur_insn_uid++;
4075 add_insn_before (label, before, NULL);
4078 return label;
4081 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4084 emit_note_before (enum insn_note subtype, rtx before)
4086 rtx note = rtx_alloc (NOTE);
4087 INSN_UID (note) = cur_insn_uid++;
4088 NOTE_KIND (note) = subtype;
4089 BLOCK_FOR_INSN (note) = NULL;
4090 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4092 add_insn_before (note, before, NULL);
4093 return note;
4096 /* Helper for emit_insn_after, handles lists of instructions
4097 efficiently. */
4099 static rtx
4100 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4102 rtx last;
4103 rtx after_after;
4104 if (!bb && !BARRIER_P (after))
4105 bb = BLOCK_FOR_INSN (after);
4107 if (bb)
4109 df_set_bb_dirty (bb);
4110 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4111 if (!BARRIER_P (last))
4113 set_block_for_insn (last, bb);
4114 df_insn_rescan (last);
4116 if (!BARRIER_P (last))
4118 set_block_for_insn (last, bb);
4119 df_insn_rescan (last);
4121 if (BB_END (bb) == after)
4122 BB_END (bb) = last;
4124 else
4125 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4126 continue;
4128 after_after = NEXT_INSN (after);
4130 NEXT_INSN (after) = first;
4131 PREV_INSN (first) = after;
4132 NEXT_INSN (last) = after_after;
4133 if (after_after)
4134 PREV_INSN (after_after) = last;
4136 if (after == last_insn)
4137 last_insn = last;
4139 return last;
4142 /* Make X be output after the insn AFTER and set the BB of insn. If
4143 BB is NULL, an attempt is made to infer the BB from AFTER. */
4146 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4148 rtx last = after;
4150 gcc_assert (after);
4152 if (x == NULL_RTX)
4153 return last;
4155 switch (GET_CODE (x))
4157 case INSN:
4158 case JUMP_INSN:
4159 case CALL_INSN:
4160 case CODE_LABEL:
4161 case BARRIER:
4162 case NOTE:
4163 last = emit_insn_after_1 (x, after, bb);
4164 break;
4166 #ifdef ENABLE_RTL_CHECKING
4167 case SEQUENCE:
4168 gcc_unreachable ();
4169 break;
4170 #endif
4172 default:
4173 last = make_insn_raw (x);
4174 add_insn_after (last, after, bb);
4175 break;
4178 return last;
4182 /* Make an insn of code JUMP_INSN with body X
4183 and output it after the insn AFTER. */
4186 emit_jump_insn_after_noloc (rtx x, rtx after)
4188 rtx last;
4190 gcc_assert (after);
4192 switch (GET_CODE (x))
4194 case INSN:
4195 case JUMP_INSN:
4196 case CALL_INSN:
4197 case CODE_LABEL:
4198 case BARRIER:
4199 case NOTE:
4200 last = emit_insn_after_1 (x, after, NULL);
4201 break;
4203 #ifdef ENABLE_RTL_CHECKING
4204 case SEQUENCE:
4205 gcc_unreachable ();
4206 break;
4207 #endif
4209 default:
4210 last = make_jump_insn_raw (x);
4211 add_insn_after (last, after, NULL);
4212 break;
4215 return last;
4218 /* Make an instruction with body X and code CALL_INSN
4219 and output it after the instruction AFTER. */
4222 emit_call_insn_after_noloc (rtx x, rtx after)
4224 rtx last;
4226 gcc_assert (after);
4228 switch (GET_CODE (x))
4230 case INSN:
4231 case JUMP_INSN:
4232 case CALL_INSN:
4233 case CODE_LABEL:
4234 case BARRIER:
4235 case NOTE:
4236 last = emit_insn_after_1 (x, after, NULL);
4237 break;
4239 #ifdef ENABLE_RTL_CHECKING
4240 case SEQUENCE:
4241 gcc_unreachable ();
4242 break;
4243 #endif
4245 default:
4246 last = make_call_insn_raw (x);
4247 add_insn_after (last, after, NULL);
4248 break;
4251 return last;
4254 /* Make an insn of code BARRIER
4255 and output it after the insn AFTER. */
4258 emit_barrier_after (rtx after)
4260 rtx insn = rtx_alloc (BARRIER);
4262 INSN_UID (insn) = cur_insn_uid++;
4264 add_insn_after (insn, after, NULL);
4265 return insn;
4268 /* Emit the label LABEL after the insn AFTER. */
4271 emit_label_after (rtx label, rtx after)
4273 /* This can be called twice for the same label
4274 as a result of the confusion that follows a syntax error!
4275 So make it harmless. */
4276 if (INSN_UID (label) == 0)
4278 INSN_UID (label) = cur_insn_uid++;
4279 add_insn_after (label, after, NULL);
4282 return label;
4285 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4288 emit_note_after (enum insn_note subtype, rtx after)
4290 rtx note = rtx_alloc (NOTE);
4291 INSN_UID (note) = cur_insn_uid++;
4292 NOTE_KIND (note) = subtype;
4293 BLOCK_FOR_INSN (note) = NULL;
4294 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4295 add_insn_after (note, after, NULL);
4296 return note;
4299 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4301 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4303 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4305 if (pattern == NULL_RTX || !loc)
4306 return last;
4308 after = NEXT_INSN (after);
4309 while (1)
4311 if (active_insn_p (after) && !INSN_LOCATOR (after))
4312 INSN_LOCATOR (after) = loc;
4313 if (after == last)
4314 break;
4315 after = NEXT_INSN (after);
4317 return last;
4320 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4322 emit_insn_after (rtx pattern, rtx after)
4324 if (INSN_P (after))
4325 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4326 else
4327 return emit_insn_after_noloc (pattern, after, NULL);
4330 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4332 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4334 rtx last = emit_jump_insn_after_noloc (pattern, after);
4336 if (pattern == NULL_RTX || !loc)
4337 return last;
4339 after = NEXT_INSN (after);
4340 while (1)
4342 if (active_insn_p (after) && !INSN_LOCATOR (after))
4343 INSN_LOCATOR (after) = loc;
4344 if (after == last)
4345 break;
4346 after = NEXT_INSN (after);
4348 return last;
4351 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4353 emit_jump_insn_after (rtx pattern, rtx after)
4355 if (INSN_P (after))
4356 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4357 else
4358 return emit_jump_insn_after_noloc (pattern, after);
4361 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4363 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4365 rtx last = emit_call_insn_after_noloc (pattern, after);
4367 if (pattern == NULL_RTX || !loc)
4368 return last;
4370 after = NEXT_INSN (after);
4371 while (1)
4373 if (active_insn_p (after) && !INSN_LOCATOR (after))
4374 INSN_LOCATOR (after) = loc;
4375 if (after == last)
4376 break;
4377 after = NEXT_INSN (after);
4379 return last;
4382 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4384 emit_call_insn_after (rtx pattern, rtx after)
4386 if (INSN_P (after))
4387 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4388 else
4389 return emit_call_insn_after_noloc (pattern, after);
4392 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4394 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4396 rtx first = PREV_INSN (before);
4397 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4399 if (pattern == NULL_RTX || !loc)
4400 return last;
4402 if (!first)
4403 first = get_insns ();
4404 else
4405 first = NEXT_INSN (first);
4406 while (1)
4408 if (active_insn_p (first) && !INSN_LOCATOR (first))
4409 INSN_LOCATOR (first) = loc;
4410 if (first == last)
4411 break;
4412 first = NEXT_INSN (first);
4414 return last;
4417 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4419 emit_insn_before (rtx pattern, rtx before)
4421 if (INSN_P (before))
4422 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4423 else
4424 return emit_insn_before_noloc (pattern, before, NULL);
4427 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4429 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4431 rtx first = PREV_INSN (before);
4432 rtx last = emit_jump_insn_before_noloc (pattern, before);
4434 if (pattern == NULL_RTX)
4435 return last;
4437 first = NEXT_INSN (first);
4438 while (1)
4440 if (active_insn_p (first) && !INSN_LOCATOR (first))
4441 INSN_LOCATOR (first) = loc;
4442 if (first == last)
4443 break;
4444 first = NEXT_INSN (first);
4446 return last;
4449 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4451 emit_jump_insn_before (rtx pattern, rtx before)
4453 if (INSN_P (before))
4454 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4455 else
4456 return emit_jump_insn_before_noloc (pattern, before);
4459 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4461 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4463 rtx first = PREV_INSN (before);
4464 rtx last = emit_call_insn_before_noloc (pattern, before);
4466 if (pattern == NULL_RTX)
4467 return last;
4469 first = NEXT_INSN (first);
4470 while (1)
4472 if (active_insn_p (first) && !INSN_LOCATOR (first))
4473 INSN_LOCATOR (first) = loc;
4474 if (first == last)
4475 break;
4476 first = NEXT_INSN (first);
4478 return last;
4481 /* like emit_call_insn_before_noloc,
4482 but set insn_locator according to before. */
4484 emit_call_insn_before (rtx pattern, rtx before)
4486 if (INSN_P (before))
4487 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4488 else
4489 return emit_call_insn_before_noloc (pattern, before);
4492 /* Take X and emit it at the end of the doubly-linked
4493 INSN list.
4495 Returns the last insn emitted. */
4498 emit_insn (rtx x)
4500 rtx last = last_insn;
4501 rtx insn;
4503 if (x == NULL_RTX)
4504 return last;
4506 switch (GET_CODE (x))
4508 case INSN:
4509 case JUMP_INSN:
4510 case CALL_INSN:
4511 case CODE_LABEL:
4512 case BARRIER:
4513 case NOTE:
4514 insn = x;
4515 while (insn)
4517 rtx next = NEXT_INSN (insn);
4518 add_insn (insn);
4519 last = insn;
4520 insn = next;
4522 break;
4524 #ifdef ENABLE_RTL_CHECKING
4525 case SEQUENCE:
4526 gcc_unreachable ();
4527 break;
4528 #endif
4530 default:
4531 last = make_insn_raw (x);
4532 add_insn (last);
4533 break;
4536 return last;
4539 /* Make an insn of code JUMP_INSN with pattern X
4540 and add it to the end of the doubly-linked list. */
4543 emit_jump_insn (rtx x)
4545 rtx last = NULL_RTX, insn;
4547 switch (GET_CODE (x))
4549 case INSN:
4550 case JUMP_INSN:
4551 case CALL_INSN:
4552 case CODE_LABEL:
4553 case BARRIER:
4554 case NOTE:
4555 insn = x;
4556 while (insn)
4558 rtx next = NEXT_INSN (insn);
4559 add_insn (insn);
4560 last = insn;
4561 insn = next;
4563 break;
4565 #ifdef ENABLE_RTL_CHECKING
4566 case SEQUENCE:
4567 gcc_unreachable ();
4568 break;
4569 #endif
4571 default:
4572 last = make_jump_insn_raw (x);
4573 add_insn (last);
4574 break;
4577 return last;
4580 /* Make an insn of code CALL_INSN with pattern X
4581 and add it to the end of the doubly-linked list. */
4584 emit_call_insn (rtx x)
4586 rtx insn;
4588 switch (GET_CODE (x))
4590 case INSN:
4591 case JUMP_INSN:
4592 case CALL_INSN:
4593 case CODE_LABEL:
4594 case BARRIER:
4595 case NOTE:
4596 insn = emit_insn (x);
4597 break;
4599 #ifdef ENABLE_RTL_CHECKING
4600 case SEQUENCE:
4601 gcc_unreachable ();
4602 break;
4603 #endif
4605 default:
4606 insn = make_call_insn_raw (x);
4607 add_insn (insn);
4608 break;
4611 return insn;
4614 /* Add the label LABEL to the end of the doubly-linked list. */
4617 emit_label (rtx label)
4619 /* This can be called twice for the same label
4620 as a result of the confusion that follows a syntax error!
4621 So make it harmless. */
4622 if (INSN_UID (label) == 0)
4624 INSN_UID (label) = cur_insn_uid++;
4625 add_insn (label);
4627 return label;
4630 /* Make an insn of code BARRIER
4631 and add it to the end of the doubly-linked list. */
4634 emit_barrier (void)
4636 rtx barrier = rtx_alloc (BARRIER);
4637 INSN_UID (barrier) = cur_insn_uid++;
4638 add_insn (barrier);
4639 return barrier;
4642 /* Emit a copy of note ORIG. */
4645 emit_note_copy (rtx orig)
4647 rtx note;
4649 note = rtx_alloc (NOTE);
4651 INSN_UID (note) = cur_insn_uid++;
4652 NOTE_DATA (note) = NOTE_DATA (orig);
4653 NOTE_KIND (note) = NOTE_KIND (orig);
4654 BLOCK_FOR_INSN (note) = NULL;
4655 add_insn (note);
4657 return note;
4660 /* Make an insn of code NOTE or type NOTE_NO
4661 and add it to the end of the doubly-linked list. */
4664 emit_note (enum insn_note kind)
4666 rtx note;
4668 note = rtx_alloc (NOTE);
4669 INSN_UID (note) = cur_insn_uid++;
4670 NOTE_KIND (note) = kind;
4671 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4672 BLOCK_FOR_INSN (note) = NULL;
4673 add_insn (note);
4674 return note;
4677 /* Emit a clobber of lvalue X. */
4680 emit_clobber (rtx x)
4682 /* CONCATs should not appear in the insn stream. */
4683 if (GET_CODE (x) == CONCAT)
4685 emit_clobber (XEXP (x, 0));
4686 return emit_clobber (XEXP (x, 1));
4688 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4691 /* Return a sequence of insns to clobber lvalue X. */
4694 gen_clobber (rtx x)
4696 rtx seq;
4698 start_sequence ();
4699 emit_clobber (x);
4700 seq = get_insns ();
4701 end_sequence ();
4702 return seq;
4705 /* Emit a use of rvalue X. */
4708 emit_use (rtx x)
4710 /* CONCATs should not appear in the insn stream. */
4711 if (GET_CODE (x) == CONCAT)
4713 emit_use (XEXP (x, 0));
4714 return emit_use (XEXP (x, 1));
4716 return emit_insn (gen_rtx_USE (VOIDmode, x));
4719 /* Return a sequence of insns to use rvalue X. */
4722 gen_use (rtx x)
4724 rtx seq;
4726 start_sequence ();
4727 emit_use (x);
4728 seq = get_insns ();
4729 end_sequence ();
4730 return seq;
4733 /* Cause next statement to emit a line note even if the line number
4734 has not changed. */
4736 void
4737 force_next_line_note (void)
4739 last_location = -1;
4742 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4743 note of this type already exists, remove it first. */
4746 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4748 rtx note = find_reg_note (insn, kind, NULL_RTX);
4750 switch (kind)
4752 case REG_EQUAL:
4753 case REG_EQUIV:
4754 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4755 has multiple sets (some callers assume single_set
4756 means the insn only has one set, when in fact it
4757 means the insn only has one * useful * set). */
4758 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4760 gcc_assert (!note);
4761 return NULL_RTX;
4764 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4765 It serves no useful purpose and breaks eliminate_regs. */
4766 if (GET_CODE (datum) == ASM_OPERANDS)
4767 return NULL_RTX;
4769 if (note)
4771 XEXP (note, 0) = datum;
4772 df_notes_rescan (insn);
4773 return note;
4775 break;
4777 default:
4778 if (note)
4780 XEXP (note, 0) = datum;
4781 return note;
4783 break;
4786 add_reg_note (insn, kind, datum);
4788 switch (kind)
4790 case REG_EQUAL:
4791 case REG_EQUIV:
4792 df_notes_rescan (insn);
4793 break;
4794 default:
4795 break;
4798 return REG_NOTES (insn);
4801 /* Return an indication of which type of insn should have X as a body.
4802 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4804 static enum rtx_code
4805 classify_insn (rtx x)
4807 if (LABEL_P (x))
4808 return CODE_LABEL;
4809 if (GET_CODE (x) == CALL)
4810 return CALL_INSN;
4811 if (GET_CODE (x) == RETURN)
4812 return JUMP_INSN;
4813 if (GET_CODE (x) == SET)
4815 if (SET_DEST (x) == pc_rtx)
4816 return JUMP_INSN;
4817 else if (GET_CODE (SET_SRC (x)) == CALL)
4818 return CALL_INSN;
4819 else
4820 return INSN;
4822 if (GET_CODE (x) == PARALLEL)
4824 int j;
4825 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4826 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4827 return CALL_INSN;
4828 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4829 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4830 return JUMP_INSN;
4831 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4832 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4833 return CALL_INSN;
4835 return INSN;
4838 /* Emit the rtl pattern X as an appropriate kind of insn.
4839 If X is a label, it is simply added into the insn chain. */
4842 emit (rtx x)
4844 enum rtx_code code = classify_insn (x);
4846 switch (code)
4848 case CODE_LABEL:
4849 return emit_label (x);
4850 case INSN:
4851 return emit_insn (x);
4852 case JUMP_INSN:
4854 rtx insn = emit_jump_insn (x);
4855 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4856 return emit_barrier ();
4857 return insn;
4859 case CALL_INSN:
4860 return emit_call_insn (x);
4861 default:
4862 gcc_unreachable ();
4866 /* Space for free sequence stack entries. */
4867 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4869 /* Begin emitting insns to a sequence. If this sequence will contain
4870 something that might cause the compiler to pop arguments to function
4871 calls (because those pops have previously been deferred; see
4872 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4873 before calling this function. That will ensure that the deferred
4874 pops are not accidentally emitted in the middle of this sequence. */
4876 void
4877 start_sequence (void)
4879 struct sequence_stack *tem;
4881 if (free_sequence_stack != NULL)
4883 tem = free_sequence_stack;
4884 free_sequence_stack = tem->next;
4886 else
4887 tem = GGC_NEW (struct sequence_stack);
4889 tem->next = seq_stack;
4890 tem->first = first_insn;
4891 tem->last = last_insn;
4893 seq_stack = tem;
4895 first_insn = 0;
4896 last_insn = 0;
4899 /* Set up the insn chain starting with FIRST as the current sequence,
4900 saving the previously current one. See the documentation for
4901 start_sequence for more information about how to use this function. */
4903 void
4904 push_to_sequence (rtx first)
4906 rtx last;
4908 start_sequence ();
4910 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4912 first_insn = first;
4913 last_insn = last;
4916 /* Like push_to_sequence, but take the last insn as an argument to avoid
4917 looping through the list. */
4919 void
4920 push_to_sequence2 (rtx first, rtx last)
4922 start_sequence ();
4924 first_insn = first;
4925 last_insn = last;
4928 /* Set up the outer-level insn chain
4929 as the current sequence, saving the previously current one. */
4931 void
4932 push_topmost_sequence (void)
4934 struct sequence_stack *stack, *top = NULL;
4936 start_sequence ();
4938 for (stack = seq_stack; stack; stack = stack->next)
4939 top = stack;
4941 first_insn = top->first;
4942 last_insn = top->last;
4945 /* After emitting to the outer-level insn chain, update the outer-level
4946 insn chain, and restore the previous saved state. */
4948 void
4949 pop_topmost_sequence (void)
4951 struct sequence_stack *stack, *top = NULL;
4953 for (stack = seq_stack; stack; stack = stack->next)
4954 top = stack;
4956 top->first = first_insn;
4957 top->last = last_insn;
4959 end_sequence ();
4962 /* After emitting to a sequence, restore previous saved state.
4964 To get the contents of the sequence just made, you must call
4965 `get_insns' *before* calling here.
4967 If the compiler might have deferred popping arguments while
4968 generating this sequence, and this sequence will not be immediately
4969 inserted into the instruction stream, use do_pending_stack_adjust
4970 before calling get_insns. That will ensure that the deferred
4971 pops are inserted into this sequence, and not into some random
4972 location in the instruction stream. See INHIBIT_DEFER_POP for more
4973 information about deferred popping of arguments. */
4975 void
4976 end_sequence (void)
4978 struct sequence_stack *tem = seq_stack;
4980 first_insn = tem->first;
4981 last_insn = tem->last;
4982 seq_stack = tem->next;
4984 memset (tem, 0, sizeof (*tem));
4985 tem->next = free_sequence_stack;
4986 free_sequence_stack = tem;
4989 /* Return 1 if currently emitting into a sequence. */
4992 in_sequence_p (void)
4994 return seq_stack != 0;
4997 /* Put the various virtual registers into REGNO_REG_RTX. */
4999 static void
5000 init_virtual_regs (void)
5002 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5003 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5004 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5005 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5006 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5010 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5011 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5012 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5013 static int copy_insn_n_scratches;
5015 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5016 copied an ASM_OPERANDS.
5017 In that case, it is the original input-operand vector. */
5018 static rtvec orig_asm_operands_vector;
5020 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5021 copied an ASM_OPERANDS.
5022 In that case, it is the copied input-operand vector. */
5023 static rtvec copy_asm_operands_vector;
5025 /* Likewise for the constraints vector. */
5026 static rtvec orig_asm_constraints_vector;
5027 static rtvec copy_asm_constraints_vector;
5029 /* Recursively create a new copy of an rtx for copy_insn.
5030 This function differs from copy_rtx in that it handles SCRATCHes and
5031 ASM_OPERANDs properly.
5032 Normally, this function is not used directly; use copy_insn as front end.
5033 However, you could first copy an insn pattern with copy_insn and then use
5034 this function afterwards to properly copy any REG_NOTEs containing
5035 SCRATCHes. */
5038 copy_insn_1 (rtx orig)
5040 rtx copy;
5041 int i, j;
5042 RTX_CODE code;
5043 const char *format_ptr;
5045 code = GET_CODE (orig);
5047 switch (code)
5049 case REG:
5050 case CONST_INT:
5051 case CONST_DOUBLE:
5052 case CONST_FIXED:
5053 case CONST_VECTOR:
5054 case SYMBOL_REF:
5055 case CODE_LABEL:
5056 case PC:
5057 case CC0:
5058 return orig;
5059 case CLOBBER:
5060 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5061 return orig;
5062 break;
5064 case SCRATCH:
5065 for (i = 0; i < copy_insn_n_scratches; i++)
5066 if (copy_insn_scratch_in[i] == orig)
5067 return copy_insn_scratch_out[i];
5068 break;
5070 case CONST:
5071 if (shared_const_p (orig))
5072 return orig;
5073 break;
5075 /* A MEM with a constant address is not sharable. The problem is that
5076 the constant address may need to be reloaded. If the mem is shared,
5077 then reloading one copy of this mem will cause all copies to appear
5078 to have been reloaded. */
5080 default:
5081 break;
5084 /* Copy the various flags, fields, and other information. We assume
5085 that all fields need copying, and then clear the fields that should
5086 not be copied. That is the sensible default behavior, and forces
5087 us to explicitly document why we are *not* copying a flag. */
5088 copy = shallow_copy_rtx (orig);
5090 /* We do not copy the USED flag, which is used as a mark bit during
5091 walks over the RTL. */
5092 RTX_FLAG (copy, used) = 0;
5094 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5095 if (INSN_P (orig))
5097 RTX_FLAG (copy, jump) = 0;
5098 RTX_FLAG (copy, call) = 0;
5099 RTX_FLAG (copy, frame_related) = 0;
5102 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5104 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5105 switch (*format_ptr++)
5107 case 'e':
5108 if (XEXP (orig, i) != NULL)
5109 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5110 break;
5112 case 'E':
5113 case 'V':
5114 if (XVEC (orig, i) == orig_asm_constraints_vector)
5115 XVEC (copy, i) = copy_asm_constraints_vector;
5116 else if (XVEC (orig, i) == orig_asm_operands_vector)
5117 XVEC (copy, i) = copy_asm_operands_vector;
5118 else if (XVEC (orig, i) != NULL)
5120 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5121 for (j = 0; j < XVECLEN (copy, i); j++)
5122 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5124 break;
5126 case 't':
5127 case 'w':
5128 case 'i':
5129 case 's':
5130 case 'S':
5131 case 'u':
5132 case '0':
5133 /* These are left unchanged. */
5134 break;
5136 default:
5137 gcc_unreachable ();
5140 if (code == SCRATCH)
5142 i = copy_insn_n_scratches++;
5143 gcc_assert (i < MAX_RECOG_OPERANDS);
5144 copy_insn_scratch_in[i] = orig;
5145 copy_insn_scratch_out[i] = copy;
5147 else if (code == ASM_OPERANDS)
5149 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5150 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5151 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5152 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5155 return copy;
5158 /* Create a new copy of an rtx.
5159 This function differs from copy_rtx in that it handles SCRATCHes and
5160 ASM_OPERANDs properly.
5161 INSN doesn't really have to be a full INSN; it could be just the
5162 pattern. */
5164 copy_insn (rtx insn)
5166 copy_insn_n_scratches = 0;
5167 orig_asm_operands_vector = 0;
5168 orig_asm_constraints_vector = 0;
5169 copy_asm_operands_vector = 0;
5170 copy_asm_constraints_vector = 0;
5171 return copy_insn_1 (insn);
5174 /* Initialize data structures and variables in this file
5175 before generating rtl for each function. */
5177 void
5178 init_emit (void)
5180 first_insn = NULL;
5181 last_insn = NULL;
5182 cur_insn_uid = 1;
5183 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5184 last_location = UNKNOWN_LOCATION;
5185 first_label_num = label_num;
5186 seq_stack = NULL;
5188 /* Init the tables that describe all the pseudo regs. */
5190 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5192 crtl->emit.regno_pointer_align
5193 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5195 regno_reg_rtx
5196 = GGC_NEWVEC (rtx, crtl->emit.regno_pointer_align_length);
5198 /* Put copies of all the hard registers into regno_reg_rtx. */
5199 memcpy (regno_reg_rtx,
5200 static_regno_reg_rtx,
5201 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5203 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5204 init_virtual_regs ();
5206 /* Indicate that the virtual registers and stack locations are
5207 all pointers. */
5208 REG_POINTER (stack_pointer_rtx) = 1;
5209 REG_POINTER (frame_pointer_rtx) = 1;
5210 REG_POINTER (hard_frame_pointer_rtx) = 1;
5211 REG_POINTER (arg_pointer_rtx) = 1;
5213 REG_POINTER (virtual_incoming_args_rtx) = 1;
5214 REG_POINTER (virtual_stack_vars_rtx) = 1;
5215 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5216 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5217 REG_POINTER (virtual_cfa_rtx) = 1;
5219 #ifdef STACK_BOUNDARY
5220 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5221 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5222 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5223 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5225 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5226 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5227 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5228 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5229 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5230 #endif
5232 #ifdef INIT_EXPANDERS
5233 INIT_EXPANDERS;
5234 #endif
5237 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5239 static rtx
5240 gen_const_vector (enum machine_mode mode, int constant)
5242 rtx tem;
5243 rtvec v;
5244 int units, i;
5245 enum machine_mode inner;
5247 units = GET_MODE_NUNITS (mode);
5248 inner = GET_MODE_INNER (mode);
5250 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5252 v = rtvec_alloc (units);
5254 /* We need to call this function after we set the scalar const_tiny_rtx
5255 entries. */
5256 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5258 for (i = 0; i < units; ++i)
5259 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5261 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5262 return tem;
5265 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5266 all elements are zero, and the one vector when all elements are one. */
5268 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5270 enum machine_mode inner = GET_MODE_INNER (mode);
5271 int nunits = GET_MODE_NUNITS (mode);
5272 rtx x;
5273 int i;
5275 /* Check to see if all of the elements have the same value. */
5276 x = RTVEC_ELT (v, nunits - 1);
5277 for (i = nunits - 2; i >= 0; i--)
5278 if (RTVEC_ELT (v, i) != x)
5279 break;
5281 /* If the values are all the same, check to see if we can use one of the
5282 standard constant vectors. */
5283 if (i == -1)
5285 if (x == CONST0_RTX (inner))
5286 return CONST0_RTX (mode);
5287 else if (x == CONST1_RTX (inner))
5288 return CONST1_RTX (mode);
5291 return gen_rtx_raw_CONST_VECTOR (mode, v);
5294 /* Initialise global register information required by all functions. */
5296 void
5297 init_emit_regs (void)
5299 int i;
5301 /* Reset register attributes */
5302 htab_empty (reg_attrs_htab);
5304 /* We need reg_raw_mode, so initialize the modes now. */
5305 init_reg_modes_target ();
5307 /* Assign register numbers to the globally defined register rtx. */
5308 pc_rtx = gen_rtx_PC (VOIDmode);
5309 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5310 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5311 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5312 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5313 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5314 virtual_incoming_args_rtx =
5315 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5316 virtual_stack_vars_rtx =
5317 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5318 virtual_stack_dynamic_rtx =
5319 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5320 virtual_outgoing_args_rtx =
5321 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5322 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5324 /* Initialize RTL for commonly used hard registers. These are
5325 copied into regno_reg_rtx as we begin to compile each function. */
5326 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5327 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5329 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5330 return_address_pointer_rtx
5331 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5332 #endif
5334 #ifdef STATIC_CHAIN_REGNUM
5335 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5337 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5338 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5339 static_chain_incoming_rtx
5340 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5341 else
5342 #endif
5343 static_chain_incoming_rtx = static_chain_rtx;
5344 #endif
5346 #ifdef STATIC_CHAIN
5347 static_chain_rtx = STATIC_CHAIN;
5349 #ifdef STATIC_CHAIN_INCOMING
5350 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5351 #else
5352 static_chain_incoming_rtx = static_chain_rtx;
5353 #endif
5354 #endif
5356 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5357 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5358 else
5359 pic_offset_table_rtx = NULL_RTX;
5362 /* Create some permanent unique rtl objects shared between all functions.
5363 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5365 void
5366 init_emit_once (int line_numbers)
5368 int i;
5369 enum machine_mode mode;
5370 enum machine_mode double_mode;
5372 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5373 hash tables. */
5374 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5375 const_int_htab_eq, NULL);
5377 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5378 const_double_htab_eq, NULL);
5380 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5381 const_fixed_htab_eq, NULL);
5383 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5384 mem_attrs_htab_eq, NULL);
5385 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5386 reg_attrs_htab_eq, NULL);
5388 no_line_numbers = ! line_numbers;
5390 /* Compute the word and byte modes. */
5392 byte_mode = VOIDmode;
5393 word_mode = VOIDmode;
5394 double_mode = VOIDmode;
5396 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5397 mode != VOIDmode;
5398 mode = GET_MODE_WIDER_MODE (mode))
5400 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5401 && byte_mode == VOIDmode)
5402 byte_mode = mode;
5404 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5405 && word_mode == VOIDmode)
5406 word_mode = mode;
5409 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5410 mode != VOIDmode;
5411 mode = GET_MODE_WIDER_MODE (mode))
5413 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5414 && double_mode == VOIDmode)
5415 double_mode = mode;
5418 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5420 #ifdef INIT_EXPANDERS
5421 /* This is to initialize {init|mark|free}_machine_status before the first
5422 call to push_function_context_to. This is needed by the Chill front
5423 end which calls push_function_context_to before the first call to
5424 init_function_start. */
5425 INIT_EXPANDERS;
5426 #endif
5428 /* Create the unique rtx's for certain rtx codes and operand values. */
5430 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5431 tries to use these variables. */
5432 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5433 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5434 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5436 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5437 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5438 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5439 else
5440 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5442 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5443 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5444 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5446 dconstm1 = dconst1;
5447 dconstm1.sign = 1;
5449 dconsthalf = dconst1;
5450 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5452 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5454 const REAL_VALUE_TYPE *const r =
5455 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5457 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5458 mode != VOIDmode;
5459 mode = GET_MODE_WIDER_MODE (mode))
5460 const_tiny_rtx[i][(int) mode] =
5461 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5463 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5464 mode != VOIDmode;
5465 mode = GET_MODE_WIDER_MODE (mode))
5466 const_tiny_rtx[i][(int) mode] =
5467 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5469 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5471 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5472 mode != VOIDmode;
5473 mode = GET_MODE_WIDER_MODE (mode))
5474 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5476 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5477 mode != VOIDmode;
5478 mode = GET_MODE_WIDER_MODE (mode))
5479 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5482 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5483 mode != VOIDmode;
5484 mode = GET_MODE_WIDER_MODE (mode))
5486 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5487 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5490 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5491 mode != VOIDmode;
5492 mode = GET_MODE_WIDER_MODE (mode))
5494 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5495 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5498 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5499 mode != VOIDmode;
5500 mode = GET_MODE_WIDER_MODE (mode))
5502 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5503 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5506 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5507 mode != VOIDmode;
5508 mode = GET_MODE_WIDER_MODE (mode))
5510 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5511 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5514 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5515 mode != VOIDmode;
5516 mode = GET_MODE_WIDER_MODE (mode))
5518 FCONST0(mode).data.high = 0;
5519 FCONST0(mode).data.low = 0;
5520 FCONST0(mode).mode = mode;
5521 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5522 FCONST0 (mode), mode);
5525 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5526 mode != VOIDmode;
5527 mode = GET_MODE_WIDER_MODE (mode))
5529 FCONST0(mode).data.high = 0;
5530 FCONST0(mode).data.low = 0;
5531 FCONST0(mode).mode = mode;
5532 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5533 FCONST0 (mode), mode);
5536 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5537 mode != VOIDmode;
5538 mode = GET_MODE_WIDER_MODE (mode))
5540 FCONST0(mode).data.high = 0;
5541 FCONST0(mode).data.low = 0;
5542 FCONST0(mode).mode = mode;
5543 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5544 FCONST0 (mode), mode);
5546 /* We store the value 1. */
5547 FCONST1(mode).data.high = 0;
5548 FCONST1(mode).data.low = 0;
5549 FCONST1(mode).mode = mode;
5550 lshift_double (1, 0, GET_MODE_FBIT (mode),
5551 2 * HOST_BITS_PER_WIDE_INT,
5552 &FCONST1(mode).data.low,
5553 &FCONST1(mode).data.high,
5554 SIGNED_FIXED_POINT_MODE_P (mode));
5555 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5556 FCONST1 (mode), mode);
5559 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5560 mode != VOIDmode;
5561 mode = GET_MODE_WIDER_MODE (mode))
5563 FCONST0(mode).data.high = 0;
5564 FCONST0(mode).data.low = 0;
5565 FCONST0(mode).mode = mode;
5566 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5567 FCONST0 (mode), mode);
5569 /* We store the value 1. */
5570 FCONST1(mode).data.high = 0;
5571 FCONST1(mode).data.low = 0;
5572 FCONST1(mode).mode = mode;
5573 lshift_double (1, 0, GET_MODE_FBIT (mode),
5574 2 * HOST_BITS_PER_WIDE_INT,
5575 &FCONST1(mode).data.low,
5576 &FCONST1(mode).data.high,
5577 SIGNED_FIXED_POINT_MODE_P (mode));
5578 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5579 FCONST1 (mode), mode);
5582 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5583 mode != VOIDmode;
5584 mode = GET_MODE_WIDER_MODE (mode))
5586 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5589 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5590 mode != VOIDmode;
5591 mode = GET_MODE_WIDER_MODE (mode))
5593 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5596 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5597 mode != VOIDmode;
5598 mode = GET_MODE_WIDER_MODE (mode))
5600 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5601 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5604 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5605 mode != VOIDmode;
5606 mode = GET_MODE_WIDER_MODE (mode))
5608 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5609 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5612 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5613 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5614 const_tiny_rtx[0][i] = const0_rtx;
5616 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5617 if (STORE_FLAG_VALUE == 1)
5618 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5621 /* Produce exact duplicate of insn INSN after AFTER.
5622 Care updating of libcall regions if present. */
5625 emit_copy_of_insn_after (rtx insn, rtx after)
5627 rtx new_rtx, link;
5629 switch (GET_CODE (insn))
5631 case INSN:
5632 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5633 break;
5635 case JUMP_INSN:
5636 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5637 break;
5639 case CALL_INSN:
5640 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5641 if (CALL_INSN_FUNCTION_USAGE (insn))
5642 CALL_INSN_FUNCTION_USAGE (new_rtx)
5643 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5644 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5645 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5646 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5647 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5648 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5649 break;
5651 default:
5652 gcc_unreachable ();
5655 /* Update LABEL_NUSES. */
5656 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5658 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5660 /* If the old insn is frame related, then so is the new one. This is
5661 primarily needed for IA-64 unwind info which marks epilogue insns,
5662 which may be duplicated by the basic block reordering code. */
5663 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5665 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5666 will make them. REG_LABEL_TARGETs are created there too, but are
5667 supposed to be sticky, so we copy them. */
5668 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5669 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5671 if (GET_CODE (link) == EXPR_LIST)
5672 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5673 copy_insn_1 (XEXP (link, 0)));
5674 else
5675 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5678 INSN_CODE (new_rtx) = INSN_CODE (insn);
5679 return new_rtx;
5682 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5684 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5686 if (hard_reg_clobbers[mode][regno])
5687 return hard_reg_clobbers[mode][regno];
5688 else
5689 return (hard_reg_clobbers[mode][regno] =
5690 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5693 #include "gt-emit-rtl.h"