Allow HIGH/LO_SUM in the prologue
[official-gcc.git] / libiberty / hashtab.c
blob57b40417c9595ddc9436540403357d09baaf5ad3
1 /* An expandable hash tables datatype.
2 Copyright (C) 1999, 2000 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB. If
18 not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 /* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
24 Elements in the table are generic pointers.
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
38 #include <sys/types.h>
40 #ifdef HAVE_STDLIB_H
41 #include <stdlib.h>
42 #endif
44 #ifdef HAVE_STRING_H
45 #include <string.h>
46 #endif
48 #include <stdio.h>
50 #include "libiberty.h"
51 #include "hashtab.h"
53 /* This macro defines reserved value for empty table entry. */
55 #define EMPTY_ENTRY ((void *) 0)
57 /* This macro defines reserved value for table entry which contained
58 a deleted element. */
60 #define DELETED_ENTRY ((void *) 1)
62 static unsigned long higher_prime_number PARAMS ((unsigned long));
63 static hashval_t hash_pointer PARAMS ((const void *));
64 static int eq_pointer PARAMS ((const void *, const void *));
65 static void htab_expand PARAMS ((htab_t));
66 static void **find_empty_slot_for_expand PARAMS ((htab_t, hashval_t));
68 /* At some point, we could make these be NULL, and modify the
69 hash-table routines to handle NULL specially; that would avoid
70 function-call overhead for the common case of hashing pointers. */
71 htab_hash htab_hash_pointer = hash_pointer;
72 htab_eq htab_eq_pointer = eq_pointer;
74 /* The following function returns the nearest prime number which is
75 greater than a given source number, N. */
77 static unsigned long
78 higher_prime_number (n)
79 unsigned long n;
81 unsigned long i;
83 /* Ensure we have a larger number and then force to odd. */
84 n++;
85 n |= 0x01;
87 /* All odd numbers < 9 are prime. */
88 if (n < 9)
89 return n;
91 /* Otherwise find the next prime using a sieve. */
93 next:
95 for (i = 3; i * i <= n; i += 2)
96 if (n % i == 0)
98 n += 2;
99 goto next;
102 return n;
105 /* Returns a hash code for P. */
107 static hashval_t
108 hash_pointer (p)
109 const void *p;
111 return (hashval_t) ((long)p >> 3);
114 /* Returns non-zero if P1 and P2 are equal. */
116 static int
117 eq_pointer (p1, p2)
118 const void *p1;
119 const void *p2;
121 return p1 == p2;
124 /* This function creates table with length slightly longer than given
125 source length. Created hash table is initiated as empty (all the
126 hash table entries are EMPTY_ENTRY). The function returns the
127 created hash table. */
129 htab_t
130 htab_create (size, hash_f, eq_f, del_f)
131 size_t size;
132 htab_hash hash_f;
133 htab_eq eq_f;
134 htab_del del_f;
136 htab_t result;
138 size = higher_prime_number (size);
139 result = (htab_t) xcalloc (1, sizeof (struct htab));
140 result->entries = (void **) xcalloc (size, sizeof (void *));
141 result->size = size;
142 result->hash_f = hash_f;
143 result->eq_f = eq_f;
144 result->del_f = del_f;
145 return result;
148 /* This function frees all memory allocated for given hash table.
149 Naturally the hash table must already exist. */
151 void
152 htab_delete (htab)
153 htab_t htab;
155 int i;
157 if (htab->del_f)
158 for (i = htab->size - 1; i >= 0; i--)
159 if (htab->entries[i] != EMPTY_ENTRY
160 && htab->entries[i] != DELETED_ENTRY)
161 (*htab->del_f) (htab->entries[i]);
163 free (htab->entries);
164 free (htab);
167 /* This function clears all entries in the given hash table. */
169 void
170 htab_empty (htab)
171 htab_t htab;
173 int i;
175 if (htab->del_f)
176 for (i = htab->size - 1; i >= 0; i--)
177 if (htab->entries[i] != EMPTY_ENTRY
178 && htab->entries[i] != DELETED_ENTRY)
179 (*htab->del_f) (htab->entries[i]);
181 memset (htab->entries, 0, htab->size * sizeof (void *));
184 /* Similar to htab_find_slot, but without several unwanted side effects:
185 - Does not call htab->eq_f when it finds an existing entry.
186 - Does not change the count of elements/searches/collisions in the
187 hash table.
188 This function also assumes there are no deleted entries in the table.
189 HASH is the hash value for the element to be inserted. */
191 static void **
192 find_empty_slot_for_expand (htab, hash)
193 htab_t htab;
194 hashval_t hash;
196 size_t size = htab->size;
197 hashval_t hash2 = 1 + hash % (size - 2);
198 unsigned int index = hash % size;
200 for (;;)
202 void **slot = htab->entries + index;
204 if (*slot == EMPTY_ENTRY)
205 return slot;
206 else if (*slot == DELETED_ENTRY)
207 abort ();
209 index += hash2;
210 if (index >= size)
211 index -= size;
215 /* The following function changes size of memory allocated for the
216 entries and repeatedly inserts the table elements. The occupancy
217 of the table after the call will be about 50%. Naturally the hash
218 table must already exist. Remember also that the place of the
219 table entries is changed. */
221 static void
222 htab_expand (htab)
223 htab_t htab;
225 void **oentries;
226 void **olimit;
227 void **p;
229 oentries = htab->entries;
230 olimit = oentries + htab->size;
232 htab->size = higher_prime_number (htab->size * 2);
233 htab->entries = (void **) xcalloc (htab->size, sizeof (void **));
235 htab->n_elements -= htab->n_deleted;
236 htab->n_deleted = 0;
238 p = oentries;
241 void *x = *p;
243 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
245 void **q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
247 *q = x;
250 p++;
252 while (p < olimit);
254 free (oentries);
257 /* This function searches for a hash table entry equal to the given
258 element. It cannot be used to insert or delete an element. */
260 void *
261 htab_find_with_hash (htab, element, hash)
262 htab_t htab;
263 const void *element;
264 hashval_t hash;
266 unsigned int index;
267 hashval_t hash2;
268 size_t size;
269 void *entry;
271 htab->searches++;
272 size = htab->size;
273 index = hash % size;
275 entry = htab->entries[index];
276 if (entry == EMPTY_ENTRY
277 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
278 return entry;
280 hash2 = 1 + hash % (size - 2);
282 for (;;)
284 htab->collisions++;
285 index += hash2;
286 if (index >= size)
287 index -= size;
289 entry = htab->entries[index];
290 if (entry == EMPTY_ENTRY
291 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
292 return entry;
296 /* Like htab_find_slot_with_hash, but compute the hash value from the
297 element. */
299 void *
300 htab_find (htab, element)
301 htab_t htab;
302 const void *element;
304 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
307 /* This function searches for a hash table slot containing an entry
308 equal to the given element. To delete an entry, call this with
309 INSERT = 0, then call htab_clear_slot on the slot returned (possibly
310 after doing some checks). To insert an entry, call this with
311 INSERT = 1, then write the value you want into the returned slot. */
313 void **
314 htab_find_slot_with_hash (htab, element, hash, insert)
315 htab_t htab;
316 const void *element;
317 hashval_t hash;
318 enum insert_option insert;
320 void **first_deleted_slot;
321 unsigned int index;
322 hashval_t hash2;
323 size_t size;
325 if (insert == INSERT && htab->size * 3 <= htab->n_elements * 4)
326 htab_expand (htab);
328 size = htab->size;
329 hash2 = 1 + hash % (size - 2);
330 index = hash % size;
332 htab->searches++;
333 first_deleted_slot = NULL;
335 for (;;)
337 void *entry = htab->entries[index];
338 if (entry == EMPTY_ENTRY)
340 if (insert == NO_INSERT)
341 return NULL;
343 htab->n_elements++;
345 if (first_deleted_slot)
347 *first_deleted_slot = EMPTY_ENTRY;
348 return first_deleted_slot;
351 return &htab->entries[index];
354 if (entry == DELETED_ENTRY)
356 if (!first_deleted_slot)
357 first_deleted_slot = &htab->entries[index];
359 else if ((*htab->eq_f) (entry, element))
360 return &htab->entries[index];
362 htab->collisions++;
363 index += hash2;
364 if (index >= size)
365 index -= size;
369 /* Like htab_find_slot_with_hash, but compute the hash value from the
370 element. */
372 void **
373 htab_find_slot (htab, element, insert)
374 htab_t htab;
375 const void *element;
376 enum insert_option insert;
378 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
379 insert);
382 /* This function deletes an element with the given value from hash
383 table. If there is no matching element in the hash table, this
384 function does nothing. */
386 void
387 htab_remove_elt (htab, element)
388 htab_t htab;
389 void *element;
391 void **slot;
393 slot = htab_find_slot (htab, element, NO_INSERT);
394 if (*slot == EMPTY_ENTRY)
395 return;
397 if (htab->del_f)
398 (*htab->del_f) (*slot);
400 *slot = DELETED_ENTRY;
401 htab->n_deleted++;
404 /* This function clears a specified slot in a hash table. It is
405 useful when you've already done the lookup and don't want to do it
406 again. */
408 void
409 htab_clear_slot (htab, slot)
410 htab_t htab;
411 void **slot;
413 if (slot < htab->entries || slot >= htab->entries + htab->size
414 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
415 abort ();
417 if (htab->del_f)
418 (*htab->del_f) (*slot);
420 *slot = DELETED_ENTRY;
421 htab->n_deleted++;
424 /* This function scans over the entire hash table calling
425 CALLBACK for each live entry. If CALLBACK returns false,
426 the iteration stops. INFO is passed as CALLBACK's second
427 argument. */
429 void
430 htab_traverse (htab, callback, info)
431 htab_t htab;
432 htab_trav callback;
433 void *info;
435 void **slot = htab->entries;
436 void **limit = slot + htab->size;
440 void *x = *slot;
442 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
443 if (!(*callback) (slot, info))
444 break;
446 while (++slot < limit);
449 /* Return the current size of given hash table. */
451 size_t
452 htab_size (htab)
453 htab_t htab;
455 return htab->size;
458 /* Return the current number of elements in given hash table. */
460 size_t
461 htab_elements (htab)
462 htab_t htab;
464 return htab->n_elements - htab->n_deleted;
467 /* Return the fraction of fixed collisions during all work with given
468 hash table. */
470 double
471 htab_collisions (htab)
472 htab_t htab;
474 if (htab->searches == 0)
475 return 0.0;
477 return (double) htab->collisions / (double) htab->searches;