2 Copyright (C) 2002-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
40 /* This pass performs loop unrolling. We only perform this
41 optimization on innermost loops (with single exception) because
42 the impact on performance is greatest here, and we want to avoid
43 unnecessary code size growth. The gain is caused by greater sequentiality
44 of code, better code to optimize for further passes and in some cases
45 by fewer testings of exit conditions. The main problem is code growth,
46 that impacts performance negatively due to effect of caches.
50 -- unrolling of loops that roll constant times; this is almost always
51 win, as we get rid of exit condition tests.
52 -- unrolling of loops that roll number of times that we can compute
53 in runtime; we also get rid of exit condition tests here, but there
54 is the extra expense for calculating the number of iterations
55 -- simple unrolling of remaining loops; this is performed only if we
56 are asked to, as the gain is questionable in this case and often
57 it may even slow down the code
58 For more detailed descriptions of each of those, see comments at
59 appropriate function below.
61 There is a lot of parameters (defined and described in params.def) that
62 control how much we unroll.
64 ??? A great problem is that we don't have a good way how to determine
65 how many times we should unroll the loop; the experiments I have made
66 showed that this choice may affect performance in order of several %.
69 /* Information about induction variables to split. */
73 rtx_insn
*insn
; /* The insn in that the induction variable occurs. */
74 rtx orig_var
; /* The variable (register) for the IV before split. */
75 rtx base_var
; /* The variable on that the values in the further
76 iterations are based. */
77 rtx step
; /* Step of the induction variable. */
78 struct iv_to_split
*next
; /* Next entry in walking order. */
81 /* Information about accumulators to expand. */
85 rtx_insn
*insn
; /* The insn in that the variable expansion occurs. */
86 rtx reg
; /* The accumulator which is expanded. */
87 vec
<rtx
> var_expansions
; /* The copies of the accumulator which is expanded. */
88 struct var_to_expand
*next
; /* Next entry in walking order. */
89 enum rtx_code op
; /* The type of the accumulation - addition, subtraction
91 int expansion_count
; /* Count the number of expansions generated so far. */
92 int reuse_expansion
; /* The expansion we intend to reuse to expand
93 the accumulator. If REUSE_EXPANSION is 0 reuse
94 the original accumulator. Else use
95 var_expansions[REUSE_EXPANSION - 1]. */
98 /* Hashtable helper for iv_to_split. */
100 struct iv_split_hasher
: free_ptr_hash
<iv_to_split
>
102 static inline hashval_t
hash (const iv_to_split
*);
103 static inline bool equal (const iv_to_split
*, const iv_to_split
*);
107 /* A hash function for information about insns to split. */
110 iv_split_hasher::hash (const iv_to_split
*ivts
)
112 return (hashval_t
) INSN_UID (ivts
->insn
);
115 /* An equality functions for information about insns to split. */
118 iv_split_hasher::equal (const iv_to_split
*i1
, const iv_to_split
*i2
)
120 return i1
->insn
== i2
->insn
;
123 /* Hashtable helper for iv_to_split. */
125 struct var_expand_hasher
: free_ptr_hash
<var_to_expand
>
127 static inline hashval_t
hash (const var_to_expand
*);
128 static inline bool equal (const var_to_expand
*, const var_to_expand
*);
131 /* Return a hash for VES. */
134 var_expand_hasher::hash (const var_to_expand
*ves
)
136 return (hashval_t
) INSN_UID (ves
->insn
);
139 /* Return true if I1 and I2 refer to the same instruction. */
142 var_expand_hasher::equal (const var_to_expand
*i1
, const var_to_expand
*i2
)
144 return i1
->insn
== i2
->insn
;
147 /* Information about optimization applied in
148 the unrolled loop. */
152 hash_table
<iv_split_hasher
> *insns_to_split
; /* A hashtable of insns to
154 struct iv_to_split
*iv_to_split_head
; /* The first iv to split. */
155 struct iv_to_split
**iv_to_split_tail
; /* Pointer to the tail of the list. */
156 hash_table
<var_expand_hasher
> *insns_with_var_to_expand
; /* A hashtable of
157 insns with accumulators to expand. */
158 struct var_to_expand
*var_to_expand_head
; /* The first var to expand. */
159 struct var_to_expand
**var_to_expand_tail
; /* Pointer to the tail of the list. */
160 unsigned first_new_block
; /* The first basic block that was
162 basic_block loop_exit
; /* The loop exit basic block. */
163 basic_block loop_preheader
; /* The loop preheader basic block. */
166 static void decide_unroll_stupid (struct loop
*, int);
167 static void decide_unroll_constant_iterations (struct loop
*, int);
168 static void decide_unroll_runtime_iterations (struct loop
*, int);
169 static void unroll_loop_stupid (struct loop
*);
170 static void decide_unrolling (int);
171 static void unroll_loop_constant_iterations (struct loop
*);
172 static void unroll_loop_runtime_iterations (struct loop
*);
173 static struct opt_info
*analyze_insns_in_loop (struct loop
*);
174 static void opt_info_start_duplication (struct opt_info
*);
175 static void apply_opt_in_copies (struct opt_info
*, unsigned, bool, bool);
176 static void free_opt_info (struct opt_info
*);
177 static struct var_to_expand
*analyze_insn_to_expand_var (struct loop
*, rtx_insn
*);
178 static bool referenced_in_one_insn_in_loop_p (struct loop
*, rtx
, int *);
179 static struct iv_to_split
*analyze_iv_to_split_insn (rtx_insn
*);
180 static void expand_var_during_unrolling (struct var_to_expand
*, rtx_insn
*);
181 static void insert_var_expansion_initialization (struct var_to_expand
*,
183 static void combine_var_copies_in_loop_exit (struct var_to_expand
*,
185 static rtx
get_expansion (struct var_to_expand
*);
187 /* Emit a message summarizing the unroll that will be
188 performed for LOOP, along with the loop's location LOCUS, if
189 appropriate given the dump or -fopt-info settings. */
192 report_unroll (struct loop
*loop
, location_t locus
)
194 int report_flags
= MSG_OPTIMIZED_LOCATIONS
| TDF_RTL
| TDF_DETAILS
;
196 if (loop
->lpt_decision
.decision
== LPT_NONE
)
199 if (!dump_enabled_p ())
202 dump_printf_loc (report_flags
, locus
,
203 "loop unrolled %d times",
204 loop
->lpt_decision
.times
);
206 dump_printf (report_flags
,
207 " (header execution count %d)",
208 (int)loop
->header
->count
);
210 dump_printf (report_flags
, "\n");
213 /* Decide whether unroll loops and how much. */
215 decide_unrolling (int flags
)
219 /* Scan the loops, inner ones first. */
220 FOR_EACH_LOOP (loop
, LI_FROM_INNERMOST
)
222 loop
->lpt_decision
.decision
= LPT_NONE
;
223 location_t locus
= get_loop_location (loop
);
225 if (dump_enabled_p ())
226 dump_printf_loc (TDF_RTL
, locus
,
227 ";; *** Considering loop %d at BB %d for "
229 loop
->num
, loop
->header
->index
);
231 /* Do not peel cold areas. */
232 if (optimize_loop_for_size_p (loop
))
235 fprintf (dump_file
, ";; Not considering loop, cold area\n");
239 /* Can the loop be manipulated? */
240 if (!can_duplicate_loop_p (loop
))
244 ";; Not considering loop, cannot duplicate\n");
248 /* Skip non-innermost loops. */
252 fprintf (dump_file
, ";; Not considering loop, is not innermost\n");
256 loop
->ninsns
= num_loop_insns (loop
);
257 loop
->av_ninsns
= average_num_loop_insns (loop
);
259 /* Try transformations one by one in decreasing order of
262 decide_unroll_constant_iterations (loop
, flags
);
263 if (loop
->lpt_decision
.decision
== LPT_NONE
)
264 decide_unroll_runtime_iterations (loop
, flags
);
265 if (loop
->lpt_decision
.decision
== LPT_NONE
)
266 decide_unroll_stupid (loop
, flags
);
268 report_unroll (loop
, locus
);
274 unroll_loops (int flags
)
277 bool changed
= false;
279 /* Now decide rest of unrolling. */
280 decide_unrolling (flags
);
282 /* Scan the loops, inner ones first. */
283 FOR_EACH_LOOP (loop
, LI_FROM_INNERMOST
)
285 /* And perform the appropriate transformations. */
286 switch (loop
->lpt_decision
.decision
)
288 case LPT_UNROLL_CONSTANT
:
289 unroll_loop_constant_iterations (loop
);
292 case LPT_UNROLL_RUNTIME
:
293 unroll_loop_runtime_iterations (loop
);
296 case LPT_UNROLL_STUPID
:
297 unroll_loop_stupid (loop
);
309 calculate_dominance_info (CDI_DOMINATORS
);
310 fix_loop_structure (NULL
);
316 /* Check whether exit of the LOOP is at the end of loop body. */
319 loop_exit_at_end_p (struct loop
*loop
)
321 struct niter_desc
*desc
= get_simple_loop_desc (loop
);
324 /* We should never have conditional in latch block. */
325 gcc_assert (desc
->in_edge
->dest
!= loop
->header
);
327 if (desc
->in_edge
->dest
!= loop
->latch
)
330 /* Check that the latch is empty. */
331 FOR_BB_INSNS (loop
->latch
, insn
)
333 if (INSN_P (insn
) && active_insn_p (insn
))
340 /* Decide whether to unroll LOOP iterating constant number of times
344 decide_unroll_constant_iterations (struct loop
*loop
, int flags
)
346 unsigned nunroll
, nunroll_by_av
, best_copies
, best_unroll
= 0, n_copies
, i
;
347 struct niter_desc
*desc
;
348 widest_int iterations
;
350 if (!(flags
& UAP_UNROLL
))
352 /* We were not asked to, just return back silently. */
358 "\n;; Considering unrolling loop with constant "
359 "number of iterations\n");
361 /* nunroll = total number of copies of the original loop body in
362 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
363 nunroll
= PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS
) / loop
->ninsns
;
365 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS
) / loop
->av_ninsns
;
366 if (nunroll
> nunroll_by_av
)
367 nunroll
= nunroll_by_av
;
368 if (nunroll
> (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
))
369 nunroll
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
371 if (targetm
.loop_unroll_adjust
)
372 nunroll
= targetm
.loop_unroll_adjust (nunroll
, loop
);
374 /* Skip big loops. */
378 fprintf (dump_file
, ";; Not considering loop, is too big\n");
382 /* Check for simple loops. */
383 desc
= get_simple_loop_desc (loop
);
385 /* Check number of iterations. */
386 if (!desc
->simple_p
|| !desc
->const_iter
|| desc
->assumptions
)
390 ";; Unable to prove that the loop iterates constant times\n");
394 /* Check whether the loop rolls enough to consider.
395 Consult also loop bounds and profile; in the case the loop has more
396 than one exit it may well loop less than determined maximal number
398 if (desc
->niter
< 2 * nunroll
399 || ((get_estimated_loop_iterations (loop
, &iterations
)
400 || get_likely_max_loop_iterations (loop
, &iterations
))
401 && wi::ltu_p (iterations
, 2 * nunroll
)))
404 fprintf (dump_file
, ";; Not unrolling loop, doesn't roll\n");
408 /* Success; now compute number of iterations to unroll. We alter
409 nunroll so that as few as possible copies of loop body are
410 necessary, while still not decreasing the number of unrollings
411 too much (at most by 1). */
412 best_copies
= 2 * nunroll
+ 10;
415 if (i
- 1 >= desc
->niter
)
418 for (; i
>= nunroll
- 1; i
--)
420 unsigned exit_mod
= desc
->niter
% (i
+ 1);
422 if (!loop_exit_at_end_p (loop
))
423 n_copies
= exit_mod
+ i
+ 1;
424 else if (exit_mod
!= (unsigned) i
425 || desc
->noloop_assumptions
!= NULL_RTX
)
426 n_copies
= exit_mod
+ i
+ 2;
430 if (n_copies
< best_copies
)
432 best_copies
= n_copies
;
437 loop
->lpt_decision
.decision
= LPT_UNROLL_CONSTANT
;
438 loop
->lpt_decision
.times
= best_unroll
;
441 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES times.
442 The transformation does this:
444 for (i = 0; i < 102; i++)
447 ==> (LOOP->LPT_DECISION.TIMES == 3)
461 unroll_loop_constant_iterations (struct loop
*loop
)
463 unsigned HOST_WIDE_INT niter
;
467 unsigned max_unroll
= loop
->lpt_decision
.times
;
468 struct niter_desc
*desc
= get_simple_loop_desc (loop
);
469 bool exit_at_end
= loop_exit_at_end_p (loop
);
470 struct opt_info
*opt_info
= NULL
;
475 /* Should not get here (such loop should be peeled instead). */
476 gcc_assert (niter
> max_unroll
+ 1);
478 exit_mod
= niter
% (max_unroll
+ 1);
480 auto_sbitmap
wont_exit (max_unroll
+ 1);
481 bitmap_ones (wont_exit
);
483 auto_vec
<edge
> remove_edges
;
484 if (flag_split_ivs_in_unroller
485 || flag_variable_expansion_in_unroller
)
486 opt_info
= analyze_insns_in_loop (loop
);
490 /* The exit is not at the end of the loop; leave exit test
491 in the first copy, so that the loops that start with test
492 of exit condition have continuous body after unrolling. */
495 fprintf (dump_file
, ";; Condition at beginning of loop.\n");
497 /* Peel exit_mod iterations. */
498 bitmap_clear_bit (wont_exit
, 0);
499 if (desc
->noloop_assumptions
)
500 bitmap_clear_bit (wont_exit
, 1);
504 opt_info_start_duplication (opt_info
);
505 ok
= duplicate_loop_to_header_edge (loop
, loop_preheader_edge (loop
),
507 wont_exit
, desc
->out_edge
,
509 DLTHE_FLAG_UPDATE_FREQ
510 | (opt_info
&& exit_mod
> 1
511 ? DLTHE_RECORD_COPY_NUMBER
515 if (opt_info
&& exit_mod
> 1)
516 apply_opt_in_copies (opt_info
, exit_mod
, false, false);
518 desc
->noloop_assumptions
= NULL_RTX
;
519 desc
->niter
-= exit_mod
;
520 loop
->nb_iterations_upper_bound
-= exit_mod
;
521 if (loop
->any_estimate
522 && wi::leu_p (exit_mod
, loop
->nb_iterations_estimate
))
523 loop
->nb_iterations_estimate
-= exit_mod
;
525 loop
->any_estimate
= false;
526 if (loop
->any_likely_upper_bound
527 && wi::leu_p (exit_mod
, loop
->nb_iterations_likely_upper_bound
))
528 loop
->nb_iterations_likely_upper_bound
-= exit_mod
;
530 loop
->any_likely_upper_bound
= false;
533 bitmap_set_bit (wont_exit
, 1);
537 /* Leave exit test in last copy, for the same reason as above if
538 the loop tests the condition at the end of loop body. */
541 fprintf (dump_file
, ";; Condition at end of loop.\n");
543 /* We know that niter >= max_unroll + 2; so we do not need to care of
544 case when we would exit before reaching the loop. So just peel
545 exit_mod + 1 iterations. */
546 if (exit_mod
!= max_unroll
547 || desc
->noloop_assumptions
)
549 bitmap_clear_bit (wont_exit
, 0);
550 if (desc
->noloop_assumptions
)
551 bitmap_clear_bit (wont_exit
, 1);
553 opt_info_start_duplication (opt_info
);
554 ok
= duplicate_loop_to_header_edge (loop
, loop_preheader_edge (loop
),
556 wont_exit
, desc
->out_edge
,
558 DLTHE_FLAG_UPDATE_FREQ
559 | (opt_info
&& exit_mod
> 0
560 ? DLTHE_RECORD_COPY_NUMBER
564 if (opt_info
&& exit_mod
> 0)
565 apply_opt_in_copies (opt_info
, exit_mod
+ 1, false, false);
567 desc
->niter
-= exit_mod
+ 1;
568 loop
->nb_iterations_upper_bound
-= exit_mod
+ 1;
569 if (loop
->any_estimate
570 && wi::leu_p (exit_mod
+ 1, loop
->nb_iterations_estimate
))
571 loop
->nb_iterations_estimate
-= exit_mod
+ 1;
573 loop
->any_estimate
= false;
574 if (loop
->any_likely_upper_bound
575 && wi::leu_p (exit_mod
+ 1, loop
->nb_iterations_likely_upper_bound
))
576 loop
->nb_iterations_likely_upper_bound
-= exit_mod
+ 1;
578 loop
->any_likely_upper_bound
= false;
579 desc
->noloop_assumptions
= NULL_RTX
;
581 bitmap_set_bit (wont_exit
, 0);
582 bitmap_set_bit (wont_exit
, 1);
585 bitmap_clear_bit (wont_exit
, max_unroll
);
588 /* Now unroll the loop. */
590 opt_info_start_duplication (opt_info
);
591 ok
= duplicate_loop_to_header_edge (loop
, loop_latch_edge (loop
),
593 wont_exit
, desc
->out_edge
,
595 DLTHE_FLAG_UPDATE_FREQ
597 ? DLTHE_RECORD_COPY_NUMBER
603 apply_opt_in_copies (opt_info
, max_unroll
, true, true);
604 free_opt_info (opt_info
);
609 basic_block exit_block
= get_bb_copy (desc
->in_edge
->src
);
610 /* Find a new in and out edge; they are in the last copy we have made. */
612 if (EDGE_SUCC (exit_block
, 0)->dest
== desc
->out_edge
->dest
)
614 desc
->out_edge
= EDGE_SUCC (exit_block
, 0);
615 desc
->in_edge
= EDGE_SUCC (exit_block
, 1);
619 desc
->out_edge
= EDGE_SUCC (exit_block
, 1);
620 desc
->in_edge
= EDGE_SUCC (exit_block
, 0);
624 desc
->niter
/= max_unroll
+ 1;
625 loop
->nb_iterations_upper_bound
626 = wi::udiv_trunc (loop
->nb_iterations_upper_bound
, max_unroll
+ 1);
627 if (loop
->any_estimate
)
628 loop
->nb_iterations_estimate
629 = wi::udiv_trunc (loop
->nb_iterations_estimate
, max_unroll
+ 1);
630 if (loop
->any_likely_upper_bound
)
631 loop
->nb_iterations_likely_upper_bound
632 = wi::udiv_trunc (loop
->nb_iterations_likely_upper_bound
, max_unroll
+ 1);
633 desc
->niter_expr
= GEN_INT (desc
->niter
);
635 /* Remove the edges. */
636 FOR_EACH_VEC_ELT (remove_edges
, i
, e
)
641 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
642 max_unroll
, num_loop_insns (loop
));
645 /* Decide whether to unroll LOOP iterating runtime computable number of times
648 decide_unroll_runtime_iterations (struct loop
*loop
, int flags
)
650 unsigned nunroll
, nunroll_by_av
, i
;
651 struct niter_desc
*desc
;
652 widest_int iterations
;
654 if (!(flags
& UAP_UNROLL
))
656 /* We were not asked to, just return back silently. */
662 "\n;; Considering unrolling loop with runtime "
663 "computable number of iterations\n");
665 /* nunroll = total number of copies of the original loop body in
666 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
667 nunroll
= PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS
) / loop
->ninsns
;
668 nunroll_by_av
= PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS
) / loop
->av_ninsns
;
669 if (nunroll
> nunroll_by_av
)
670 nunroll
= nunroll_by_av
;
671 if (nunroll
> (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
))
672 nunroll
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
674 if (targetm
.loop_unroll_adjust
)
675 nunroll
= targetm
.loop_unroll_adjust (nunroll
, loop
);
677 /* Skip big loops. */
681 fprintf (dump_file
, ";; Not considering loop, is too big\n");
685 /* Check for simple loops. */
686 desc
= get_simple_loop_desc (loop
);
688 /* Check simpleness. */
689 if (!desc
->simple_p
|| desc
->assumptions
)
693 ";; Unable to prove that the number of iterations "
694 "can be counted in runtime\n");
698 if (desc
->const_iter
)
701 fprintf (dump_file
, ";; Loop iterates constant times\n");
705 /* Check whether the loop rolls. */
706 if ((get_estimated_loop_iterations (loop
, &iterations
)
707 || get_likely_max_loop_iterations (loop
, &iterations
))
708 && wi::ltu_p (iterations
, 2 * nunroll
))
711 fprintf (dump_file
, ";; Not unrolling loop, doesn't roll\n");
715 /* Success; now force nunroll to be power of 2, as we are unable to
716 cope with overflows in computation of number of iterations. */
717 for (i
= 1; 2 * i
<= nunroll
; i
*= 2)
720 loop
->lpt_decision
.decision
= LPT_UNROLL_RUNTIME
;
721 loop
->lpt_decision
.times
= i
- 1;
724 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
725 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
726 and NULL is returned instead. */
729 split_edge_and_insert (edge e
, rtx_insn
*insns
)
736 emit_insn_after (insns
, BB_END (bb
));
738 /* ??? We used to assume that INSNS can contain control flow insns, and
739 that we had to try to find sub basic blocks in BB to maintain a valid
740 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
741 and call break_superblocks when going out of cfglayout mode. But it
742 turns out that this never happens; and that if it does ever happen,
743 the verify_flow_info at the end of the RTL loop passes would fail.
745 There are two reasons why we expected we could have control flow insns
746 in INSNS. The first is when a comparison has to be done in parts, and
747 the second is when the number of iterations is computed for loops with
748 the number of iterations known at runtime. In both cases, test cases
749 to get control flow in INSNS appear to be impossible to construct:
751 * If do_compare_rtx_and_jump needs several branches to do comparison
752 in a mode that needs comparison by parts, we cannot analyze the
753 number of iterations of the loop, and we never get to unrolling it.
755 * The code in expand_divmod that was suspected to cause creation of
756 branching code seems to be only accessed for signed division. The
757 divisions used by # of iterations analysis are always unsigned.
758 Problems might arise on architectures that emits branching code
759 for some operations that may appear in the unroller (especially
760 for division), but we have no such architectures.
762 Considering all this, it was decided that we should for now assume
763 that INSNS can in theory contain control flow insns, but in practice
764 it never does. So we don't handle the theoretical case, and should
765 a real failure ever show up, we have a pretty good clue for how to
771 /* Prepare a sequence comparing OP0 with OP1 using COMP and jumping to LABEL if
772 true, with probability PROB. If CINSN is not NULL, it is the insn to copy
773 in order to create a jump. */
776 compare_and_jump_seq (rtx op0
, rtx op1
, enum rtx_code comp
,
777 rtx_code_label
*label
, int prob
, rtx_insn
*cinsn
)
784 mode
= GET_MODE (op0
);
785 if (mode
== VOIDmode
)
786 mode
= GET_MODE (op1
);
789 if (GET_MODE_CLASS (mode
) == MODE_CC
)
791 /* A hack -- there seems to be no easy generic way how to make a
792 conditional jump from a ccmode comparison. */
794 cond
= XEXP (SET_SRC (pc_set (cinsn
)), 0);
795 gcc_assert (GET_CODE (cond
) == comp
);
796 gcc_assert (rtx_equal_p (op0
, XEXP (cond
, 0)));
797 gcc_assert (rtx_equal_p (op1
, XEXP (cond
, 1)));
798 emit_jump_insn (copy_insn (PATTERN (cinsn
)));
799 jump
= as_a
<rtx_jump_insn
*> (get_last_insn ());
800 JUMP_LABEL (jump
) = JUMP_LABEL (cinsn
);
801 LABEL_NUSES (JUMP_LABEL (jump
))++;
802 redirect_jump (jump
, label
, 0);
808 op0
= force_operand (op0
, NULL_RTX
);
809 op1
= force_operand (op1
, NULL_RTX
);
810 do_compare_rtx_and_jump (op0
, op1
, comp
, 0,
811 mode
, NULL_RTX
, NULL
, label
, -1);
812 jump
= as_a
<rtx_jump_insn
*> (get_last_insn ());
813 jump
->set_jump_target (label
);
814 LABEL_NUSES (label
)++;
816 add_int_reg_note (jump
, REG_BR_PROB
, prob
);
824 /* Unroll LOOP for which we are able to count number of iterations in runtime
825 LOOP->LPT_DECISION.TIMES times. The transformation does this (with some
826 extra care for case n < 0):
828 for (i = 0; i < n; i++)
831 ==> (LOOP->LPT_DECISION.TIMES == 3)
856 unroll_loop_runtime_iterations (struct loop
*loop
)
858 rtx old_niter
, niter
, tmp
;
859 rtx_insn
*init_code
, *branch_code
;
861 basic_block preheader
, *body
, swtch
, ezc_swtch
= NULL
;
862 int may_exit_copy
, iter_freq
, new_freq
;
863 gcov_type iter_count
, new_count
;
866 bool extra_zero_check
, last_may_exit
;
867 unsigned max_unroll
= loop
->lpt_decision
.times
;
868 struct niter_desc
*desc
= get_simple_loop_desc (loop
);
869 bool exit_at_end
= loop_exit_at_end_p (loop
);
870 struct opt_info
*opt_info
= NULL
;
873 if (flag_split_ivs_in_unroller
874 || flag_variable_expansion_in_unroller
)
875 opt_info
= analyze_insns_in_loop (loop
);
877 /* Remember blocks whose dominators will have to be updated. */
878 auto_vec
<basic_block
> dom_bbs
;
880 body
= get_loop_body (loop
);
881 for (i
= 0; i
< loop
->num_nodes
; i
++)
883 vec
<basic_block
> ldom
;
886 ldom
= get_dominated_by (CDI_DOMINATORS
, body
[i
]);
887 FOR_EACH_VEC_ELT (ldom
, j
, bb
)
888 if (!flow_bb_inside_loop_p (loop
, bb
))
889 dom_bbs
.safe_push (bb
);
897 /* Leave exit in first copy (for explanation why see comment in
898 unroll_loop_constant_iterations). */
900 n_peel
= max_unroll
- 1;
901 extra_zero_check
= true;
902 last_may_exit
= false;
906 /* Leave exit in last copy (for explanation why see comment in
907 unroll_loop_constant_iterations). */
908 may_exit_copy
= max_unroll
;
910 extra_zero_check
= false;
911 last_may_exit
= true;
914 /* Get expression for number of iterations. */
916 old_niter
= niter
= gen_reg_rtx (desc
->mode
);
917 tmp
= force_operand (copy_rtx (desc
->niter_expr
), niter
);
919 emit_move_insn (niter
, tmp
);
921 /* For loops that exit at end, add one to niter to account for first pass
922 through loop body before reaching exit test. */
925 niter
= expand_simple_binop (desc
->mode
, PLUS
,
927 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
931 /* Count modulo by ANDing it with max_unroll; we use the fact that
932 the number of unrollings is a power of two, and thus this is correct
933 even if there is overflow in the computation. */
934 niter
= expand_simple_binop (desc
->mode
, AND
,
935 niter
, gen_int_mode (max_unroll
, desc
->mode
),
936 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
938 init_code
= get_insns ();
940 unshare_all_rtl_in_chain (init_code
);
942 /* Precondition the loop. */
943 split_edge_and_insert (loop_preheader_edge (loop
), init_code
);
945 auto_vec
<edge
> remove_edges
;
947 auto_sbitmap
wont_exit (max_unroll
+ 2);
949 if (extra_zero_check
)
951 /* Peel the first copy of loop body. Leave the exit test if the number
952 of iterations is not reliable. Also record the place of the extra zero
954 bitmap_clear (wont_exit
);
955 if (!desc
->noloop_assumptions
)
956 bitmap_set_bit (wont_exit
, 1);
957 ezc_swtch
= loop_preheader_edge (loop
)->src
;
958 ok
= duplicate_loop_to_header_edge (loop
, loop_preheader_edge (loop
),
959 1, wont_exit
, desc
->out_edge
,
961 DLTHE_FLAG_UPDATE_FREQ
);
965 /* Record the place where switch will be built for preconditioning. */
966 swtch
= split_edge (loop_preheader_edge (loop
));
968 /* Compute frequency/count increments for each switch block and initialize
969 innermost switch block. Switch blocks and peeled loop copies are built
970 from innermost outward. */
971 iter_freq
= new_freq
= swtch
->frequency
/ (max_unroll
+ 1);
972 iter_count
= new_count
= swtch
->count
/ (max_unroll
+ 1);
973 swtch
->frequency
= new_freq
;
974 swtch
->count
= new_count
;
975 single_succ_edge (swtch
)->count
= new_count
;
977 for (i
= 0; i
< n_peel
; i
++)
980 bitmap_clear (wont_exit
);
981 if (i
!= n_peel
- 1 || !last_may_exit
)
982 bitmap_set_bit (wont_exit
, 1);
983 ok
= duplicate_loop_to_header_edge (loop
, loop_preheader_edge (loop
),
984 1, wont_exit
, desc
->out_edge
,
986 DLTHE_FLAG_UPDATE_FREQ
);
989 /* Create item for switch. */
990 j
= n_peel
- i
- (extra_zero_check
? 0 : 1);
991 p
= REG_BR_PROB_BASE
/ (i
+ 2);
993 preheader
= split_edge (loop_preheader_edge (loop
));
994 /* Add in frequency/count of edge from switch block. */
995 preheader
->frequency
+= iter_freq
;
996 preheader
->count
+= iter_count
;
997 single_succ_edge (preheader
)->count
= preheader
->count
;
998 branch_code
= compare_and_jump_seq (copy_rtx (niter
), GEN_INT (j
), EQ
,
999 block_label (preheader
), p
,
1002 /* We rely on the fact that the compare and jump cannot be optimized out,
1003 and hence the cfg we create is correct. */
1004 gcc_assert (branch_code
!= NULL_RTX
);
1006 swtch
= split_edge_and_insert (single_pred_edge (swtch
), branch_code
);
1007 set_immediate_dominator (CDI_DOMINATORS
, preheader
, swtch
);
1008 single_succ_edge (swtch
)->probability
= REG_BR_PROB_BASE
- p
;
1009 single_succ_edge (swtch
)->count
= new_count
;
1010 new_freq
+= iter_freq
;
1011 new_count
+= iter_count
;
1012 swtch
->frequency
= new_freq
;
1013 swtch
->count
= new_count
;
1014 e
= make_edge (swtch
, preheader
,
1015 single_succ_edge (swtch
)->flags
& EDGE_IRREDUCIBLE_LOOP
);
1016 e
->count
= iter_count
;
1020 if (extra_zero_check
)
1022 /* Add branch for zero iterations. */
1023 p
= REG_BR_PROB_BASE
/ (max_unroll
+ 1);
1025 preheader
= split_edge (loop_preheader_edge (loop
));
1026 /* Recompute frequency/count adjustments since initial peel copy may
1027 have exited and reduced those values that were computed above. */
1028 iter_freq
= swtch
->frequency
/ (max_unroll
+ 1);
1029 iter_count
= swtch
->count
/ (max_unroll
+ 1);
1030 /* Add in frequency/count of edge from switch block. */
1031 preheader
->frequency
+= iter_freq
;
1032 preheader
->count
+= iter_count
;
1033 single_succ_edge (preheader
)->count
= preheader
->count
;
1034 branch_code
= compare_and_jump_seq (copy_rtx (niter
), const0_rtx
, EQ
,
1035 block_label (preheader
), p
,
1037 gcc_assert (branch_code
!= NULL_RTX
);
1039 swtch
= split_edge_and_insert (single_succ_edge (swtch
), branch_code
);
1040 set_immediate_dominator (CDI_DOMINATORS
, preheader
, swtch
);
1041 single_succ_edge (swtch
)->probability
= REG_BR_PROB_BASE
- p
;
1042 single_succ_edge (swtch
)->count
-= iter_count
;
1043 e
= make_edge (swtch
, preheader
,
1044 single_succ_edge (swtch
)->flags
& EDGE_IRREDUCIBLE_LOOP
);
1045 e
->count
= iter_count
;
1049 /* Recount dominators for outer blocks. */
1050 iterate_fix_dominators (CDI_DOMINATORS
, dom_bbs
, false);
1052 /* And unroll loop. */
1054 bitmap_ones (wont_exit
);
1055 bitmap_clear_bit (wont_exit
, may_exit_copy
);
1056 opt_info_start_duplication (opt_info
);
1058 ok
= duplicate_loop_to_header_edge (loop
, loop_latch_edge (loop
),
1060 wont_exit
, desc
->out_edge
,
1062 DLTHE_FLAG_UPDATE_FREQ
1064 ? DLTHE_RECORD_COPY_NUMBER
1070 apply_opt_in_copies (opt_info
, max_unroll
, true, true);
1071 free_opt_info (opt_info
);
1076 basic_block exit_block
= get_bb_copy (desc
->in_edge
->src
);
1077 /* Find a new in and out edge; they are in the last copy we have
1080 if (EDGE_SUCC (exit_block
, 0)->dest
== desc
->out_edge
->dest
)
1082 desc
->out_edge
= EDGE_SUCC (exit_block
, 0);
1083 desc
->in_edge
= EDGE_SUCC (exit_block
, 1);
1087 desc
->out_edge
= EDGE_SUCC (exit_block
, 1);
1088 desc
->in_edge
= EDGE_SUCC (exit_block
, 0);
1092 /* Remove the edges. */
1093 FOR_EACH_VEC_ELT (remove_edges
, i
, e
)
1096 /* We must be careful when updating the number of iterations due to
1097 preconditioning and the fact that the value must be valid at entry
1098 of the loop. After passing through the above code, we see that
1099 the correct new number of iterations is this: */
1100 gcc_assert (!desc
->const_iter
);
1102 simplify_gen_binary (UDIV
, desc
->mode
, old_niter
,
1103 gen_int_mode (max_unroll
+ 1, desc
->mode
));
1104 loop
->nb_iterations_upper_bound
1105 = wi::udiv_trunc (loop
->nb_iterations_upper_bound
, max_unroll
+ 1);
1106 if (loop
->any_estimate
)
1107 loop
->nb_iterations_estimate
1108 = wi::udiv_trunc (loop
->nb_iterations_estimate
, max_unroll
+ 1);
1109 if (loop
->any_likely_upper_bound
)
1110 loop
->nb_iterations_likely_upper_bound
1111 = wi::udiv_trunc (loop
->nb_iterations_likely_upper_bound
, max_unroll
+ 1);
1115 simplify_gen_binary (MINUS
, desc
->mode
, desc
->niter_expr
, const1_rtx
);
1116 desc
->noloop_assumptions
= NULL_RTX
;
1117 --loop
->nb_iterations_upper_bound
;
1118 if (loop
->any_estimate
1119 && loop
->nb_iterations_estimate
!= 0)
1120 --loop
->nb_iterations_estimate
;
1122 loop
->any_estimate
= false;
1123 if (loop
->any_likely_upper_bound
1124 && loop
->nb_iterations_likely_upper_bound
!= 0)
1125 --loop
->nb_iterations_likely_upper_bound
;
1127 loop
->any_likely_upper_bound
= false;
1132 ";; Unrolled loop %d times, counting # of iterations "
1133 "in runtime, %i insns\n",
1134 max_unroll
, num_loop_insns (loop
));
1137 /* Decide whether to unroll LOOP stupidly and how much. */
1139 decide_unroll_stupid (struct loop
*loop
, int flags
)
1141 unsigned nunroll
, nunroll_by_av
, i
;
1142 struct niter_desc
*desc
;
1143 widest_int iterations
;
1145 if (!(flags
& UAP_UNROLL_ALL
))
1147 /* We were not asked to, just return back silently. */
1152 fprintf (dump_file
, "\n;; Considering unrolling loop stupidly\n");
1154 /* nunroll = total number of copies of the original loop body in
1155 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1156 nunroll
= PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS
) / loop
->ninsns
;
1158 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS
) / loop
->av_ninsns
;
1159 if (nunroll
> nunroll_by_av
)
1160 nunroll
= nunroll_by_av
;
1161 if (nunroll
> (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
))
1162 nunroll
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
1164 if (targetm
.loop_unroll_adjust
)
1165 nunroll
= targetm
.loop_unroll_adjust (nunroll
, loop
);
1167 /* Skip big loops. */
1171 fprintf (dump_file
, ";; Not considering loop, is too big\n");
1175 /* Check for simple loops. */
1176 desc
= get_simple_loop_desc (loop
);
1178 /* Check simpleness. */
1179 if (desc
->simple_p
&& !desc
->assumptions
)
1182 fprintf (dump_file
, ";; The loop is simple\n");
1186 /* Do not unroll loops with branches inside -- it increases number
1188 TODO: this heuristic needs tunning; call inside the loop body
1189 is also relatively good reason to not unroll. */
1190 if (num_loop_branches (loop
) > 1)
1193 fprintf (dump_file
, ";; Not unrolling, contains branches\n");
1197 /* Check whether the loop rolls. */
1198 if ((get_estimated_loop_iterations (loop
, &iterations
)
1199 || get_likely_max_loop_iterations (loop
, &iterations
))
1200 && wi::ltu_p (iterations
, 2 * nunroll
))
1203 fprintf (dump_file
, ";; Not unrolling loop, doesn't roll\n");
1207 /* Success. Now force nunroll to be power of 2, as it seems that this
1208 improves results (partially because of better alignments, partially
1209 because of some dark magic). */
1210 for (i
= 1; 2 * i
<= nunroll
; i
*= 2)
1213 loop
->lpt_decision
.decision
= LPT_UNROLL_STUPID
;
1214 loop
->lpt_decision
.times
= i
- 1;
1217 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1222 ==> (LOOP->LPT_DECISION.TIMES == 3)
1236 unroll_loop_stupid (struct loop
*loop
)
1238 unsigned nunroll
= loop
->lpt_decision
.times
;
1239 struct niter_desc
*desc
= get_simple_loop_desc (loop
);
1240 struct opt_info
*opt_info
= NULL
;
1243 if (flag_split_ivs_in_unroller
1244 || flag_variable_expansion_in_unroller
)
1245 opt_info
= analyze_insns_in_loop (loop
);
1247 auto_sbitmap
wont_exit (nunroll
+ 1);
1248 bitmap_clear (wont_exit
);
1249 opt_info_start_duplication (opt_info
);
1251 ok
= duplicate_loop_to_header_edge (loop
, loop_latch_edge (loop
),
1254 DLTHE_FLAG_UPDATE_FREQ
1256 ? DLTHE_RECORD_COPY_NUMBER
1262 apply_opt_in_copies (opt_info
, nunroll
, true, true);
1263 free_opt_info (opt_info
);
1268 /* We indeed may get here provided that there are nontrivial assumptions
1269 for a loop to be really simple. We could update the counts, but the
1270 problem is that we are unable to decide which exit will be taken
1271 (not really true in case the number of iterations is constant,
1272 but no one will do anything with this information, so we do not
1274 desc
->simple_p
= false;
1278 fprintf (dump_file
, ";; Unrolled loop %d times, %i insns\n",
1279 nunroll
, num_loop_insns (loop
));
1282 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1283 Set *DEBUG_USES to the number of debug insns that reference the
1287 referenced_in_one_insn_in_loop_p (struct loop
*loop
, rtx reg
,
1290 basic_block
*body
, bb
;
1295 body
= get_loop_body (loop
);
1296 for (i
= 0; i
< loop
->num_nodes
; i
++)
1300 FOR_BB_INSNS (bb
, insn
)
1301 if (!rtx_referenced_p (reg
, insn
))
1303 else if (DEBUG_INSN_P (insn
))
1305 else if (++count_ref
> 1)
1309 return (count_ref
== 1);
1312 /* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
1315 reset_debug_uses_in_loop (struct loop
*loop
, rtx reg
, int debug_uses
)
1317 basic_block
*body
, bb
;
1321 body
= get_loop_body (loop
);
1322 for (i
= 0; debug_uses
&& i
< loop
->num_nodes
; i
++)
1326 FOR_BB_INSNS (bb
, insn
)
1327 if (!DEBUG_INSN_P (insn
) || !rtx_referenced_p (reg
, insn
))
1331 validate_change (insn
, &INSN_VAR_LOCATION_LOC (insn
),
1332 gen_rtx_UNKNOWN_VAR_LOC (), 0);
1340 /* Determine whether INSN contains an accumulator
1341 which can be expanded into separate copies,
1342 one for each copy of the LOOP body.
1344 for (i = 0 ; i < n; i++)
1358 Return NULL if INSN contains no opportunity for expansion of accumulator.
1359 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1360 information and return a pointer to it.
1363 static struct var_to_expand
*
1364 analyze_insn_to_expand_var (struct loop
*loop
, rtx_insn
*insn
)
1367 struct var_to_expand
*ves
;
1372 set
= single_set (insn
);
1376 dest
= SET_DEST (set
);
1377 src
= SET_SRC (set
);
1378 code
= GET_CODE (src
);
1380 if (code
!= PLUS
&& code
!= MINUS
&& code
!= MULT
&& code
!= FMA
)
1383 if (FLOAT_MODE_P (GET_MODE (dest
)))
1385 if (!flag_associative_math
)
1387 /* In the case of FMA, we're also changing the rounding. */
1388 if (code
== FMA
&& !flag_unsafe_math_optimizations
)
1392 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1393 in MD. But if there is no optab to generate the insn, we can not
1394 perform the variable expansion. This can happen if an MD provides
1395 an insn but not a named pattern to generate it, for example to avoid
1396 producing code that needs additional mode switches like for x87/mmx.
1398 So we check have_insn_for which looks for an optab for the operation
1399 in SRC. If it doesn't exist, we can't perform the expansion even
1400 though INSN is valid. */
1401 if (!have_insn_for (code
, GET_MODE (src
)))
1405 && !(GET_CODE (dest
) == SUBREG
1406 && REG_P (SUBREG_REG (dest
))))
1409 /* Find the accumulator use within the operation. */
1412 /* We only support accumulation via FMA in the ADD position. */
1413 if (!rtx_equal_p (dest
, XEXP (src
, 2)))
1417 else if (rtx_equal_p (dest
, XEXP (src
, 0)))
1419 else if (rtx_equal_p (dest
, XEXP (src
, 1)))
1421 /* The method of expansion that we are using; which includes the
1422 initialization of the expansions with zero and the summation of
1423 the expansions at the end of the computation will yield wrong
1424 results for (x = something - x) thus avoid using it in that case. */
1432 /* It must not otherwise be used. */
1435 if (rtx_referenced_p (dest
, XEXP (src
, 0))
1436 || rtx_referenced_p (dest
, XEXP (src
, 1)))
1439 else if (rtx_referenced_p (dest
, XEXP (src
, 1 - accum_pos
)))
1442 /* It must be used in exactly one insn. */
1443 if (!referenced_in_one_insn_in_loop_p (loop
, dest
, &debug_uses
))
1448 fprintf (dump_file
, "\n;; Expanding Accumulator ");
1449 print_rtl (dump_file
, dest
);
1450 fprintf (dump_file
, "\n");
1454 /* Instead of resetting the debug insns, we could replace each
1455 debug use in the loop with the sum or product of all expanded
1456 accummulators. Since we'll only know of all expansions at the
1457 end, we'd have to keep track of which vars_to_expand a debug
1458 insn in the loop references, take note of each copy of the
1459 debug insn during unrolling, and when it's all done, compute
1460 the sum or product of each variable and adjust the original
1461 debug insn and each copy thereof. What a pain! */
1462 reset_debug_uses_in_loop (loop
, dest
, debug_uses
);
1464 /* Record the accumulator to expand. */
1465 ves
= XNEW (struct var_to_expand
);
1467 ves
->reg
= copy_rtx (dest
);
1468 ves
->var_expansions
.create (1);
1470 ves
->op
= GET_CODE (src
);
1471 ves
->expansion_count
= 0;
1472 ves
->reuse_expansion
= 0;
1476 /* Determine whether there is an induction variable in INSN that
1477 we would like to split during unrolling.
1497 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1498 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1501 static struct iv_to_split
*
1502 analyze_iv_to_split_insn (rtx_insn
*insn
)
1506 struct iv_to_split
*ivts
;
1509 /* For now we just split the basic induction variables. Later this may be
1510 extended for example by selecting also addresses of memory references. */
1511 set
= single_set (insn
);
1515 dest
= SET_DEST (set
);
1519 if (!biv_p (insn
, dest
))
1522 ok
= iv_analyze_result (insn
, dest
, &iv
);
1524 /* This used to be an assert under the assumption that if biv_p returns
1525 true that iv_analyze_result must also return true. However, that
1526 assumption is not strictly correct as evidenced by pr25569.
1528 Returning NULL when iv_analyze_result returns false is safe and
1529 avoids the problems in pr25569 until the iv_analyze_* routines
1530 can be fixed, which is apparently hard and time consuming
1531 according to their author. */
1535 if (iv
.step
== const0_rtx
1536 || iv
.mode
!= iv
.extend_mode
)
1539 /* Record the insn to split. */
1540 ivts
= XNEW (struct iv_to_split
);
1542 ivts
->orig_var
= dest
;
1543 ivts
->base_var
= NULL_RTX
;
1544 ivts
->step
= iv
.step
;
1550 /* Determines which of insns in LOOP can be optimized.
1551 Return a OPT_INFO struct with the relevant hash tables filled
1552 with all insns to be optimized. The FIRST_NEW_BLOCK field
1553 is undefined for the return value. */
1555 static struct opt_info
*
1556 analyze_insns_in_loop (struct loop
*loop
)
1558 basic_block
*body
, bb
;
1560 struct opt_info
*opt_info
= XCNEW (struct opt_info
);
1562 struct iv_to_split
*ivts
= NULL
;
1563 struct var_to_expand
*ves
= NULL
;
1564 iv_to_split
**slot1
;
1565 var_to_expand
**slot2
;
1566 vec
<edge
> edges
= get_loop_exit_edges (loop
);
1568 bool can_apply
= false;
1570 iv_analysis_loop_init (loop
);
1572 body
= get_loop_body (loop
);
1574 if (flag_split_ivs_in_unroller
)
1576 opt_info
->insns_to_split
1577 = new hash_table
<iv_split_hasher
> (5 * loop
->num_nodes
);
1578 opt_info
->iv_to_split_head
= NULL
;
1579 opt_info
->iv_to_split_tail
= &opt_info
->iv_to_split_head
;
1582 /* Record the loop exit bb and loop preheader before the unrolling. */
1583 opt_info
->loop_preheader
= loop_preheader_edge (loop
)->src
;
1585 if (edges
.length () == 1)
1588 if (!(exit
->flags
& EDGE_COMPLEX
))
1590 opt_info
->loop_exit
= split_edge (exit
);
1595 if (flag_variable_expansion_in_unroller
1598 opt_info
->insns_with_var_to_expand
1599 = new hash_table
<var_expand_hasher
> (5 * loop
->num_nodes
);
1600 opt_info
->var_to_expand_head
= NULL
;
1601 opt_info
->var_to_expand_tail
= &opt_info
->var_to_expand_head
;
1604 for (i
= 0; i
< loop
->num_nodes
; i
++)
1607 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
))
1610 FOR_BB_INSNS (bb
, insn
)
1615 if (opt_info
->insns_to_split
)
1616 ivts
= analyze_iv_to_split_insn (insn
);
1620 slot1
= opt_info
->insns_to_split
->find_slot (ivts
, INSERT
);
1621 gcc_assert (*slot1
== NULL
);
1623 *opt_info
->iv_to_split_tail
= ivts
;
1624 opt_info
->iv_to_split_tail
= &ivts
->next
;
1628 if (opt_info
->insns_with_var_to_expand
)
1629 ves
= analyze_insn_to_expand_var (loop
, insn
);
1633 slot2
= opt_info
->insns_with_var_to_expand
->find_slot (ves
, INSERT
);
1634 gcc_assert (*slot2
== NULL
);
1636 *opt_info
->var_to_expand_tail
= ves
;
1637 opt_info
->var_to_expand_tail
= &ves
->next
;
1647 /* Called just before loop duplication. Records start of duplicated area
1651 opt_info_start_duplication (struct opt_info
*opt_info
)
1654 opt_info
->first_new_block
= last_basic_block_for_fn (cfun
);
1657 /* Determine the number of iterations between initialization of the base
1658 variable and the current copy (N_COPY). N_COPIES is the total number
1659 of newly created copies. UNROLLING is true if we are unrolling
1660 (not peeling) the loop. */
1663 determine_split_iv_delta (unsigned n_copy
, unsigned n_copies
, bool unrolling
)
1667 /* If we are unrolling, initialization is done in the original loop
1673 /* If we are peeling, the copy in that the initialization occurs has
1674 number 1. The original loop (number 0) is the last. */
1682 /* Allocate basic variable for the induction variable chain. */
1685 allocate_basic_variable (struct iv_to_split
*ivts
)
1687 rtx expr
= SET_SRC (single_set (ivts
->insn
));
1689 ivts
->base_var
= gen_reg_rtx (GET_MODE (expr
));
1692 /* Insert initialization of basic variable of IVTS before INSN, taking
1693 the initial value from INSN. */
1696 insert_base_initialization (struct iv_to_split
*ivts
, rtx_insn
*insn
)
1698 rtx expr
= copy_rtx (SET_SRC (single_set (insn
)));
1702 expr
= force_operand (expr
, ivts
->base_var
);
1703 if (expr
!= ivts
->base_var
)
1704 emit_move_insn (ivts
->base_var
, expr
);
1708 emit_insn_before (seq
, insn
);
1711 /* Replace the use of induction variable described in IVTS in INSN
1712 by base variable + DELTA * step. */
1715 split_iv (struct iv_to_split
*ivts
, rtx_insn
*insn
, unsigned delta
)
1717 rtx expr
, *loc
, incr
, var
;
1719 machine_mode mode
= GET_MODE (ivts
->base_var
);
1722 /* Construct base + DELTA * step. */
1724 expr
= ivts
->base_var
;
1727 incr
= simplify_gen_binary (MULT
, mode
,
1728 ivts
->step
, gen_int_mode (delta
, mode
));
1729 expr
= simplify_gen_binary (PLUS
, GET_MODE (ivts
->base_var
),
1730 ivts
->base_var
, incr
);
1733 /* Figure out where to do the replacement. */
1734 loc
= &SET_SRC (single_set (insn
));
1736 /* If we can make the replacement right away, we're done. */
1737 if (validate_change (insn
, loc
, expr
, 0))
1740 /* Otherwise, force EXPR into a register and try again. */
1742 var
= gen_reg_rtx (mode
);
1743 expr
= force_operand (expr
, var
);
1745 emit_move_insn (var
, expr
);
1748 emit_insn_before (seq
, insn
);
1750 if (validate_change (insn
, loc
, var
, 0))
1753 /* The last chance. Try recreating the assignment in insn
1754 completely from scratch. */
1755 set
= single_set (insn
);
1760 src
= copy_rtx (SET_SRC (set
));
1761 dest
= copy_rtx (SET_DEST (set
));
1762 src
= force_operand (src
, dest
);
1764 emit_move_insn (dest
, src
);
1768 emit_insn_before (seq
, insn
);
1773 /* Return one expansion of the accumulator recorded in struct VE. */
1776 get_expansion (struct var_to_expand
*ve
)
1780 if (ve
->reuse_expansion
== 0)
1783 reg
= ve
->var_expansions
[ve
->reuse_expansion
- 1];
1785 if (ve
->var_expansions
.length () == (unsigned) ve
->reuse_expansion
)
1786 ve
->reuse_expansion
= 0;
1788 ve
->reuse_expansion
++;
1794 /* Given INSN replace the uses of the accumulator recorded in VE
1795 with a new register. */
1798 expand_var_during_unrolling (struct var_to_expand
*ve
, rtx_insn
*insn
)
1801 bool really_new_expansion
= false;
1803 set
= single_set (insn
);
1806 /* Generate a new register only if the expansion limit has not been
1807 reached. Else reuse an already existing expansion. */
1808 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS
) > ve
->expansion_count
)
1810 really_new_expansion
= true;
1811 new_reg
= gen_reg_rtx (GET_MODE (ve
->reg
));
1814 new_reg
= get_expansion (ve
);
1816 validate_replace_rtx_group (SET_DEST (set
), new_reg
, insn
);
1817 if (apply_change_group ())
1818 if (really_new_expansion
)
1820 ve
->var_expansions
.safe_push (new_reg
);
1821 ve
->expansion_count
++;
1825 /* Initialize the variable expansions in loop preheader. PLACE is the
1826 loop-preheader basic block where the initialization of the
1827 expansions should take place. The expansions are initialized with
1828 (-0) when the operation is plus or minus to honor sign zero. This
1829 way we can prevent cases where the sign of the final result is
1830 effected by the sign of the expansion. Here is an example to
1833 for (i = 0 ; i < n; i++)
1847 When SUM is initialized with -zero and SOMETHING is also -zero; the
1848 final result of sum should be -zero thus the expansions sum1 and sum2
1849 should be initialized with -zero as well (otherwise we will get +zero
1850 as the final result). */
1853 insert_var_expansion_initialization (struct var_to_expand
*ve
,
1859 machine_mode mode
= GET_MODE (ve
->reg
);
1860 bool honor_signed_zero_p
= HONOR_SIGNED_ZEROS (mode
);
1862 if (ve
->var_expansions
.length () == 0)
1869 /* Note that we only accumulate FMA via the ADD operand. */
1872 FOR_EACH_VEC_ELT (ve
->var_expansions
, i
, var
)
1874 if (honor_signed_zero_p
)
1875 zero_init
= simplify_gen_unary (NEG
, mode
, CONST0_RTX (mode
), mode
);
1877 zero_init
= CONST0_RTX (mode
);
1878 emit_move_insn (var
, zero_init
);
1883 FOR_EACH_VEC_ELT (ve
->var_expansions
, i
, var
)
1885 zero_init
= CONST1_RTX (GET_MODE (var
));
1886 emit_move_insn (var
, zero_init
);
1897 emit_insn_after (seq
, BB_END (place
));
1900 /* Combine the variable expansions at the loop exit. PLACE is the
1901 loop exit basic block where the summation of the expansions should
1905 combine_var_copies_in_loop_exit (struct var_to_expand
*ve
, basic_block place
)
1909 rtx_insn
*seq
, *insn
;
1912 if (ve
->var_expansions
.length () == 0)
1919 /* Note that we only accumulate FMA via the ADD operand. */
1922 FOR_EACH_VEC_ELT (ve
->var_expansions
, i
, var
)
1923 sum
= simplify_gen_binary (PLUS
, GET_MODE (ve
->reg
), var
, sum
);
1927 FOR_EACH_VEC_ELT (ve
->var_expansions
, i
, var
)
1928 sum
= simplify_gen_binary (MULT
, GET_MODE (ve
->reg
), var
, sum
);
1935 expr
= force_operand (sum
, ve
->reg
);
1936 if (expr
!= ve
->reg
)
1937 emit_move_insn (ve
->reg
, expr
);
1941 insn
= BB_HEAD (place
);
1942 while (!NOTE_INSN_BASIC_BLOCK_P (insn
))
1943 insn
= NEXT_INSN (insn
);
1945 emit_insn_after (seq
, insn
);
1948 /* Strip away REG_EQUAL notes for IVs we're splitting.
1950 Updating REG_EQUAL notes for IVs we split is tricky: We
1951 cannot tell until after unrolling, DF-rescanning, and liveness
1952 updating, whether an EQ_USE is reached by the split IV while
1953 the IV reg is still live. See PR55006.
1955 ??? We cannot use remove_reg_equal_equiv_notes_for_regno,
1956 because RTL loop-iv requires us to defer rescanning insns and
1957 any notes attached to them. So resort to old techniques... */
1960 maybe_strip_eq_note_for_split_iv (struct opt_info
*opt_info
, rtx_insn
*insn
)
1962 struct iv_to_split
*ivts
;
1963 rtx note
= find_reg_equal_equiv_note (insn
);
1966 for (ivts
= opt_info
->iv_to_split_head
; ivts
; ivts
= ivts
->next
)
1967 if (reg_mentioned_p (ivts
->orig_var
, note
))
1969 remove_note (insn
, note
);
1974 /* Apply loop optimizations in loop copies using the
1975 data which gathered during the unrolling. Structure
1976 OPT_INFO record that data.
1978 UNROLLING is true if we unrolled (not peeled) the loop.
1979 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
1980 the loop (as it should happen in complete unrolling, but not in ordinary
1981 peeling of the loop). */
1984 apply_opt_in_copies (struct opt_info
*opt_info
,
1985 unsigned n_copies
, bool unrolling
,
1986 bool rewrite_original_loop
)
1989 basic_block bb
, orig_bb
;
1990 rtx_insn
*insn
, *orig_insn
, *next
;
1991 struct iv_to_split ivts_templ
, *ivts
;
1992 struct var_to_expand ve_templ
, *ves
;
1994 /* Sanity check -- we need to put initialization in the original loop
1996 gcc_assert (!unrolling
|| rewrite_original_loop
);
1998 /* Allocate the basic variables (i0). */
1999 if (opt_info
->insns_to_split
)
2000 for (ivts
= opt_info
->iv_to_split_head
; ivts
; ivts
= ivts
->next
)
2001 allocate_basic_variable (ivts
);
2003 for (i
= opt_info
->first_new_block
;
2004 i
< (unsigned) last_basic_block_for_fn (cfun
);
2007 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
2008 orig_bb
= get_bb_original (bb
);
2010 /* bb->aux holds position in copy sequence initialized by
2011 duplicate_loop_to_header_edge. */
2012 delta
= determine_split_iv_delta ((size_t)bb
->aux
, n_copies
,
2015 orig_insn
= BB_HEAD (orig_bb
);
2016 FOR_BB_INSNS_SAFE (bb
, insn
, next
)
2019 || (DEBUG_INSN_P (insn
)
2020 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn
)) == LABEL_DECL
))
2023 while (!INSN_P (orig_insn
)
2024 || (DEBUG_INSN_P (orig_insn
)
2025 && (TREE_CODE (INSN_VAR_LOCATION_DECL (orig_insn
))
2027 orig_insn
= NEXT_INSN (orig_insn
);
2029 ivts_templ
.insn
= orig_insn
;
2030 ve_templ
.insn
= orig_insn
;
2032 /* Apply splitting iv optimization. */
2033 if (opt_info
->insns_to_split
)
2035 maybe_strip_eq_note_for_split_iv (opt_info
, insn
);
2037 ivts
= opt_info
->insns_to_split
->find (&ivts_templ
);
2041 gcc_assert (GET_CODE (PATTERN (insn
))
2042 == GET_CODE (PATTERN (orig_insn
)));
2045 insert_base_initialization (ivts
, insn
);
2046 split_iv (ivts
, insn
, delta
);
2049 /* Apply variable expansion optimization. */
2050 if (unrolling
&& opt_info
->insns_with_var_to_expand
)
2052 ves
= (struct var_to_expand
*)
2053 opt_info
->insns_with_var_to_expand
->find (&ve_templ
);
2056 gcc_assert (GET_CODE (PATTERN (insn
))
2057 == GET_CODE (PATTERN (orig_insn
)));
2058 expand_var_during_unrolling (ves
, insn
);
2061 orig_insn
= NEXT_INSN (orig_insn
);
2065 if (!rewrite_original_loop
)
2068 /* Initialize the variable expansions in the loop preheader
2069 and take care of combining them at the loop exit. */
2070 if (opt_info
->insns_with_var_to_expand
)
2072 for (ves
= opt_info
->var_to_expand_head
; ves
; ves
= ves
->next
)
2073 insert_var_expansion_initialization (ves
, opt_info
->loop_preheader
);
2074 for (ves
= opt_info
->var_to_expand_head
; ves
; ves
= ves
->next
)
2075 combine_var_copies_in_loop_exit (ves
, opt_info
->loop_exit
);
2078 /* Rewrite also the original loop body. Find them as originals of the blocks
2079 in the last copied iteration, i.e. those that have
2080 get_bb_copy (get_bb_original (bb)) == bb. */
2081 for (i
= opt_info
->first_new_block
;
2082 i
< (unsigned) last_basic_block_for_fn (cfun
);
2085 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
2086 orig_bb
= get_bb_original (bb
);
2087 if (get_bb_copy (orig_bb
) != bb
)
2090 delta
= determine_split_iv_delta (0, n_copies
, unrolling
);
2091 for (orig_insn
= BB_HEAD (orig_bb
);
2092 orig_insn
!= NEXT_INSN (BB_END (bb
));
2095 next
= NEXT_INSN (orig_insn
);
2097 if (!INSN_P (orig_insn
))
2100 ivts_templ
.insn
= orig_insn
;
2101 if (opt_info
->insns_to_split
)
2103 maybe_strip_eq_note_for_split_iv (opt_info
, orig_insn
);
2105 ivts
= (struct iv_to_split
*)
2106 opt_info
->insns_to_split
->find (&ivts_templ
);
2110 insert_base_initialization (ivts
, orig_insn
);
2111 split_iv (ivts
, orig_insn
, delta
);
2120 /* Release OPT_INFO. */
2123 free_opt_info (struct opt_info
*opt_info
)
2125 delete opt_info
->insns_to_split
;
2126 opt_info
->insns_to_split
= NULL
;
2127 if (opt_info
->insns_with_var_to_expand
)
2129 struct var_to_expand
*ves
;
2131 for (ves
= opt_info
->var_to_expand_head
; ves
; ves
= ves
->next
)
2132 ves
->var_expansions
.release ();
2133 delete opt_info
->insns_with_var_to_expand
;
2134 opt_info
->insns_with_var_to_expand
= NULL
;