2016-10-18 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / fwprop.c
blob4365ff0db90ecd8e7cfbaf65e85a561e54832ccb
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005-2016 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
35 #include "sparseset.h"
36 #include "cfgrtl.h"
37 #include "cfgcleanup.h"
38 #include "cfgloop.h"
39 #include "tree-pass.h"
40 #include "domwalk.h"
41 #include "rtl-iter.h"
44 /* This pass does simple forward propagation and simplification when an
45 operand of an insn can only come from a single def. This pass uses
46 df.c, so it is global. However, we only do limited analysis of
47 available expressions.
49 1) The pass tries to propagate the source of the def into the use,
50 and checks if the result is independent of the substituted value.
51 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
52 zero, independent of the source register.
54 In particular, we propagate constants into the use site. Sometimes
55 RTL expansion did not put the constant in the same insn on purpose,
56 to satisfy a predicate, and the result will fail to be recognized;
57 but this happens rarely and in this case we can still create a
58 REG_EQUAL note. For multi-word operations, this
60 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
61 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
62 (set (subreg:SI (reg:DI 122) 0)
63 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
64 (set (subreg:SI (reg:DI 122) 4)
65 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
67 can be simplified to the much simpler
69 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
70 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
72 This particular propagation is also effective at putting together
73 complex addressing modes. We are more aggressive inside MEMs, in
74 that all definitions are propagated if the use is in a MEM; if the
75 result is a valid memory address we check address_cost to decide
76 whether the substitution is worthwhile.
78 2) The pass propagates register copies. This is not as effective as
79 the copy propagation done by CSE's canon_reg, which works by walking
80 the instruction chain, it can help the other transformations.
82 We should consider removing this optimization, and instead reorder the
83 RTL passes, because GCSE does this transformation too. With some luck,
84 the CSE pass at the end of rest_of_handle_gcse could also go away.
86 3) The pass looks for paradoxical subregs that are actually unnecessary.
87 Things like this:
89 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
90 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
91 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
92 (subreg:SI (reg:QI 121) 0)))
94 are very common on machines that can only do word-sized operations.
95 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
96 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
97 we can replace the paradoxical subreg with simply (reg:WIDE M). The
98 above will simplify this to
100 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
101 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
102 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
104 where the first two insns are now dead.
106 We used to use reaching definitions to find which uses have a
107 single reaching definition (sounds obvious...), but this is too
108 complex a problem in nasty testcases like PR33928. Now we use the
109 multiple definitions problem in df-problems.c. The similarity
110 between that problem and SSA form creation is taken further, in
111 that fwprop does a dominator walk to create its chains; however,
112 instead of creating a PHI function where multiple definitions meet
113 I just punt and record only singleton use-def chains, which is
114 all that is needed by fwprop. */
117 static int num_changes;
119 static vec<df_ref> use_def_ref;
120 static vec<df_ref> reg_defs;
121 static vec<df_ref> reg_defs_stack;
123 /* The MD bitmaps are trimmed to include only live registers to cut
124 memory usage on testcases like insn-recog.c. Track live registers
125 in the basic block and do not perform forward propagation if the
126 destination is a dead pseudo occurring in a note. */
127 static bitmap local_md;
128 static bitmap local_lr;
130 /* Return the only def in USE's use-def chain, or NULL if there is
131 more than one def in the chain. */
133 static inline df_ref
134 get_def_for_use (df_ref use)
136 return use_def_ref[DF_REF_ID (use)];
140 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
141 TOP_FLAG says which artificials uses should be used, when DEF_REC
142 is an artificial def vector. LOCAL_MD is modified as after a
143 df_md_simulate_* function; we do more or less the same processing
144 done there, so we do not use those functions. */
146 #define DF_MD_GEN_FLAGS \
147 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
149 static void
150 process_defs (df_ref def, int top_flag)
152 for (; def; def = DF_REF_NEXT_LOC (def))
154 df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
155 unsigned int dregno;
157 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
158 continue;
160 dregno = DF_REF_REGNO (def);
161 if (curr_def)
162 reg_defs_stack.safe_push (curr_def);
163 else
165 /* Do not store anything if "transitioning" from NULL to NULL. But
166 otherwise, push a special entry on the stack to tell the
167 leave_block callback that the entry in reg_defs was NULL. */
168 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
170 else
171 reg_defs_stack.safe_push (def);
174 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
176 bitmap_set_bit (local_md, dregno);
177 reg_defs[dregno] = NULL;
179 else
181 bitmap_clear_bit (local_md, dregno);
182 reg_defs[dregno] = def;
188 /* Fill the use_def_ref vector with values for the uses in USE_REC,
189 taking reaching definitions info from LOCAL_MD and REG_DEFS.
190 TOP_FLAG says which artificials uses should be used, when USE_REC
191 is an artificial use vector. */
193 static void
194 process_uses (df_ref use, int top_flag)
196 for (; use; use = DF_REF_NEXT_LOC (use))
197 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
199 unsigned int uregno = DF_REF_REGNO (use);
200 if (reg_defs[uregno]
201 && !bitmap_bit_p (local_md, uregno)
202 && bitmap_bit_p (local_lr, uregno))
203 use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
207 class single_def_use_dom_walker : public dom_walker
209 public:
210 single_def_use_dom_walker (cdi_direction direction)
211 : dom_walker (direction) {}
212 virtual edge before_dom_children (basic_block);
213 virtual void after_dom_children (basic_block);
216 edge
217 single_def_use_dom_walker::before_dom_children (basic_block bb)
219 int bb_index = bb->index;
220 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
221 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
222 rtx_insn *insn;
224 bitmap_copy (local_md, &md_bb_info->in);
225 bitmap_copy (local_lr, &lr_bb_info->in);
227 /* Push a marker for the leave_block callback. */
228 reg_defs_stack.safe_push (NULL);
230 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
231 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
233 /* We don't call df_simulate_initialize_forwards, as it may overestimate
234 the live registers if there are unused artificial defs. We prefer
235 liveness to be underestimated. */
237 FOR_BB_INSNS (bb, insn)
238 if (INSN_P (insn))
240 unsigned int uid = INSN_UID (insn);
241 process_uses (DF_INSN_UID_USES (uid), 0);
242 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
243 process_defs (DF_INSN_UID_DEFS (uid), 0);
244 df_simulate_one_insn_forwards (bb, insn, local_lr);
247 process_uses (df_get_artificial_uses (bb_index), 0);
248 process_defs (df_get_artificial_defs (bb_index), 0);
250 return NULL;
253 /* Pop the definitions created in this basic block when leaving its
254 dominated parts. */
256 void
257 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
259 df_ref saved_def;
260 while ((saved_def = reg_defs_stack.pop ()) != NULL)
262 unsigned int dregno = DF_REF_REGNO (saved_def);
264 /* See also process_defs. */
265 if (saved_def == reg_defs[dregno])
266 reg_defs[dregno] = NULL;
267 else
268 reg_defs[dregno] = saved_def;
273 /* Build a vector holding the reaching definitions of uses reached by a
274 single dominating definition. */
276 static void
277 build_single_def_use_links (void)
279 /* We use the multiple definitions problem to compute our restricted
280 use-def chains. */
281 df_set_flags (DF_EQ_NOTES);
282 df_md_add_problem ();
283 df_note_add_problem ();
284 df_analyze ();
285 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
287 use_def_ref.create (DF_USES_TABLE_SIZE ());
288 use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
290 reg_defs.create (max_reg_num ());
291 reg_defs.safe_grow_cleared (max_reg_num ());
293 reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
294 local_md = BITMAP_ALLOC (NULL);
295 local_lr = BITMAP_ALLOC (NULL);
297 /* Walk the dominator tree looking for single reaching definitions
298 dominating the uses. This is similar to how SSA form is built. */
299 single_def_use_dom_walker (CDI_DOMINATORS)
300 .walk (cfun->cfg->x_entry_block_ptr);
302 BITMAP_FREE (local_lr);
303 BITMAP_FREE (local_md);
304 reg_defs.release ();
305 reg_defs_stack.release ();
309 /* Do not try to replace constant addresses or addresses of local and
310 argument slots. These MEM expressions are made only once and inserted
311 in many instructions, as well as being used to control symbol table
312 output. It is not safe to clobber them.
314 There are some uncommon cases where the address is already in a register
315 for some reason, but we cannot take advantage of that because we have
316 no easy way to unshare the MEM. In addition, looking up all stack
317 addresses is costly. */
319 static bool
320 can_simplify_addr (rtx addr)
322 rtx reg;
324 if (CONSTANT_ADDRESS_P (addr))
325 return false;
327 if (GET_CODE (addr) == PLUS)
328 reg = XEXP (addr, 0);
329 else
330 reg = addr;
332 return (!REG_P (reg)
333 || (REGNO (reg) != FRAME_POINTER_REGNUM
334 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
335 && REGNO (reg) != ARG_POINTER_REGNUM));
338 /* Returns a canonical version of X for the address, from the point of view,
339 that all multiplications are represented as MULT instead of the multiply
340 by a power of 2 being represented as ASHIFT.
342 Every ASHIFT we find has been made by simplify_gen_binary and was not
343 there before, so it is not shared. So we can do this in place. */
345 static void
346 canonicalize_address (rtx x)
348 for (;;)
349 switch (GET_CODE (x))
351 case ASHIFT:
352 if (CONST_INT_P (XEXP (x, 1))
353 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
354 && INTVAL (XEXP (x, 1)) >= 0)
356 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
357 PUT_CODE (x, MULT);
358 XEXP (x, 1) = gen_int_mode (HOST_WIDE_INT_1 << shift,
359 GET_MODE (x));
362 x = XEXP (x, 0);
363 break;
365 case PLUS:
366 if (GET_CODE (XEXP (x, 0)) == PLUS
367 || GET_CODE (XEXP (x, 0)) == ASHIFT
368 || GET_CODE (XEXP (x, 0)) == CONST)
369 canonicalize_address (XEXP (x, 0));
371 x = XEXP (x, 1);
372 break;
374 case CONST:
375 x = XEXP (x, 0);
376 break;
378 default:
379 return;
383 /* OLD is a memory address. Return whether it is good to use NEW instead,
384 for a memory access in the given MODE. */
386 static bool
387 should_replace_address (rtx old_rtx, rtx new_rtx, machine_mode mode,
388 addr_space_t as, bool speed)
390 int gain;
392 if (rtx_equal_p (old_rtx, new_rtx)
393 || !memory_address_addr_space_p (mode, new_rtx, as))
394 return false;
396 /* Copy propagation is always ok. */
397 if (REG_P (old_rtx) && REG_P (new_rtx))
398 return true;
400 /* Prefer the new address if it is less expensive. */
401 gain = (address_cost (old_rtx, mode, as, speed)
402 - address_cost (new_rtx, mode, as, speed));
404 /* If the addresses have equivalent cost, prefer the new address
405 if it has the highest `set_src_cost'. That has the potential of
406 eliminating the most insns without additional costs, and it
407 is the same that cse.c used to do. */
408 if (gain == 0)
409 gain = (set_src_cost (new_rtx, VOIDmode, speed)
410 - set_src_cost (old_rtx, VOIDmode, speed));
412 return (gain > 0);
416 /* Flags for the last parameter of propagate_rtx_1. */
418 enum {
419 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
420 if it is false, propagate_rtx_1 returns false if, for at least
421 one occurrence OLD, it failed to collapse the result to a constant.
422 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
423 collapse to zero if replacing (reg:M B) with (reg:M A).
425 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
426 propagate_rtx_1 just tries to make cheaper and valid memory
427 addresses. */
428 PR_CAN_APPEAR = 1,
430 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
431 outside memory addresses. This is needed because propagate_rtx_1 does
432 not do any analysis on memory; thus it is very conservative and in general
433 it will fail if non-read-only MEMs are found in the source expression.
435 PR_HANDLE_MEM is set when the source of the propagation was not
436 another MEM. Then, it is safe not to treat non-read-only MEMs as
437 ``opaque'' objects. */
438 PR_HANDLE_MEM = 2,
440 /* Set when costs should be optimized for speed. */
441 PR_OPTIMIZE_FOR_SPEED = 4
445 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
446 resulting expression. Replace *PX with a new RTL expression if an
447 occurrence of OLD was found.
449 This is only a wrapper around simplify-rtx.c: do not add any pattern
450 matching code here. (The sole exception is the handling of LO_SUM, but
451 that is because there is no simplify_gen_* function for LO_SUM). */
453 static bool
454 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
456 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
457 enum rtx_code code = GET_CODE (x);
458 machine_mode mode = GET_MODE (x);
459 machine_mode op_mode;
460 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
461 bool valid_ops = true;
463 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
465 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
466 they have side effects or not). */
467 *px = (side_effects_p (x)
468 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
469 : gen_rtx_SCRATCH (GET_MODE (x)));
470 return false;
473 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
474 address, and we are *not* inside one. */
475 if (x == old_rtx)
477 *px = new_rtx;
478 return can_appear;
481 /* If this is an expression, try recursive substitution. */
482 switch (GET_RTX_CLASS (code))
484 case RTX_UNARY:
485 op0 = XEXP (x, 0);
486 op_mode = GET_MODE (op0);
487 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
488 if (op0 == XEXP (x, 0))
489 return true;
490 tem = simplify_gen_unary (code, mode, op0, op_mode);
491 break;
493 case RTX_BIN_ARITH:
494 case RTX_COMM_ARITH:
495 op0 = XEXP (x, 0);
496 op1 = XEXP (x, 1);
497 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
498 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
499 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
500 return true;
501 tem = simplify_gen_binary (code, mode, op0, op1);
502 break;
504 case RTX_COMPARE:
505 case RTX_COMM_COMPARE:
506 op0 = XEXP (x, 0);
507 op1 = XEXP (x, 1);
508 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
509 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
510 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
511 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
512 return true;
513 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
514 break;
516 case RTX_TERNARY:
517 case RTX_BITFIELD_OPS:
518 op0 = XEXP (x, 0);
519 op1 = XEXP (x, 1);
520 op2 = XEXP (x, 2);
521 op_mode = GET_MODE (op0);
522 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
523 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
524 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
525 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
526 return true;
527 if (op_mode == VOIDmode)
528 op_mode = GET_MODE (op0);
529 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
530 break;
532 case RTX_EXTRA:
533 /* The only case we try to handle is a SUBREG. */
534 if (code == SUBREG)
536 op0 = XEXP (x, 0);
537 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
538 if (op0 == XEXP (x, 0))
539 return true;
540 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
541 SUBREG_BYTE (x));
543 break;
545 case RTX_OBJ:
546 if (code == MEM && x != new_rtx)
548 rtx new_op0;
549 op0 = XEXP (x, 0);
551 /* There are some addresses that we cannot work on. */
552 if (!can_simplify_addr (op0))
553 return true;
555 op0 = new_op0 = targetm.delegitimize_address (op0);
556 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
557 flags | PR_CAN_APPEAR);
559 /* Dismiss transformation that we do not want to carry on. */
560 if (!valid_ops
561 || new_op0 == op0
562 || !(GET_MODE (new_op0) == GET_MODE (op0)
563 || GET_MODE (new_op0) == VOIDmode))
564 return true;
566 canonicalize_address (new_op0);
568 /* Copy propagations are always ok. Otherwise check the costs. */
569 if (!(REG_P (old_rtx) && REG_P (new_rtx))
570 && !should_replace_address (op0, new_op0, GET_MODE (x),
571 MEM_ADDR_SPACE (x),
572 flags & PR_OPTIMIZE_FOR_SPEED))
573 return true;
575 tem = replace_equiv_address_nv (x, new_op0);
578 else if (code == LO_SUM)
580 op0 = XEXP (x, 0);
581 op1 = XEXP (x, 1);
583 /* The only simplification we do attempts to remove references to op0
584 or make it constant -- in both cases, op0's invalidity will not
585 make the result invalid. */
586 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
587 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
588 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
589 return true;
591 /* (lo_sum (high x) x) -> x */
592 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
593 tem = op1;
594 else
595 tem = gen_rtx_LO_SUM (mode, op0, op1);
597 /* OP1 is likely not a legitimate address, otherwise there would have
598 been no LO_SUM. We want it to disappear if it is invalid, return
599 false in that case. */
600 return memory_address_p (mode, tem);
603 else if (code == REG)
605 if (rtx_equal_p (x, old_rtx))
607 *px = new_rtx;
608 return can_appear;
611 break;
613 default:
614 break;
617 /* No change, no trouble. */
618 if (tem == NULL_RTX)
619 return true;
621 *px = tem;
623 /* Allow replacements that simplify operations on a vector or complex
624 value to a component. The most prominent case is
625 (subreg ([vec_]concat ...)). */
626 if (REG_P (tem) && !HARD_REGISTER_P (tem)
627 && (VECTOR_MODE_P (GET_MODE (new_rtx))
628 || COMPLEX_MODE_P (GET_MODE (new_rtx)))
629 && GET_MODE (tem) == GET_MODE_INNER (GET_MODE (new_rtx)))
630 return true;
632 /* The replacement we made so far is valid, if all of the recursive
633 replacements were valid, or we could simplify everything to
634 a constant. */
635 return valid_ops || can_appear || CONSTANT_P (tem);
639 /* Return true if X constains a non-constant mem. */
641 static bool
642 varying_mem_p (const_rtx x)
644 subrtx_iterator::array_type array;
645 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
646 if (MEM_P (*iter) && !MEM_READONLY_P (*iter))
647 return true;
648 return false;
652 /* Replace all occurrences of OLD in X with NEW and try to simplify the
653 resulting expression (in mode MODE). Return a new expression if it is
654 a constant, otherwise X.
656 Simplifications where occurrences of NEW collapse to a constant are always
657 accepted. All simplifications are accepted if NEW is a pseudo too.
658 Otherwise, we accept simplifications that have a lower or equal cost. */
660 static rtx
661 propagate_rtx (rtx x, machine_mode mode, rtx old_rtx, rtx new_rtx,
662 bool speed)
664 rtx tem;
665 bool collapsed;
666 int flags;
668 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
669 return NULL_RTX;
671 flags = 0;
672 if (REG_P (new_rtx)
673 || CONSTANT_P (new_rtx)
674 || (GET_CODE (new_rtx) == SUBREG
675 && REG_P (SUBREG_REG (new_rtx))
676 && (GET_MODE_SIZE (mode)
677 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
678 flags |= PR_CAN_APPEAR;
679 if (!varying_mem_p (new_rtx))
680 flags |= PR_HANDLE_MEM;
682 if (speed)
683 flags |= PR_OPTIMIZE_FOR_SPEED;
685 tem = x;
686 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
687 if (tem == x || !collapsed)
688 return NULL_RTX;
690 /* gen_lowpart_common will not be able to process VOIDmode entities other
691 than CONST_INTs. */
692 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
693 return NULL_RTX;
695 if (GET_MODE (tem) == VOIDmode)
696 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
697 else
698 gcc_assert (GET_MODE (tem) == mode);
700 return tem;
706 /* Return true if the register from reference REF is killed
707 between FROM to (but not including) TO. */
709 static bool
710 local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to)
712 rtx_insn *insn;
714 for (insn = from; insn != to; insn = NEXT_INSN (insn))
716 df_ref def;
717 if (!INSN_P (insn))
718 continue;
720 FOR_EACH_INSN_DEF (def, insn)
721 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
722 return true;
724 return false;
728 /* Check if the given DEF is available in INSN. This would require full
729 computation of available expressions; we check only restricted conditions:
730 - if DEF is the sole definition of its register, go ahead;
731 - in the same basic block, we check for no definitions killing the
732 definition of DEF_INSN;
733 - if USE's basic block has DEF's basic block as the sole predecessor,
734 we check if the definition is killed after DEF_INSN or before
735 TARGET_INSN insn, in their respective basic blocks. */
736 static bool
737 use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn)
739 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
740 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
741 int regno;
742 df_ref def;
744 /* We used to have a def reaching a use that is _before_ the def,
745 with the def not dominating the use even though the use and def
746 are in the same basic block, when a register may be used
747 uninitialized in a loop. This should not happen anymore since
748 we do not use reaching definitions, but still we test for such
749 cases and assume that DEF is not available. */
750 if (def_bb == target_bb
751 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
752 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
753 return true;
755 /* Check if the reg in USE has only one definition. We already
756 know that this definition reaches use, or we wouldn't be here.
757 However, this is invalid for hard registers because if they are
758 live at the beginning of the function it does not mean that we
759 have an uninitialized access. */
760 regno = DF_REF_REGNO (use);
761 def = DF_REG_DEF_CHAIN (regno);
762 if (def
763 && DF_REF_NEXT_REG (def) == NULL
764 && regno >= FIRST_PSEUDO_REGISTER)
765 return false;
767 /* Check locally if we are in the same basic block. */
768 if (def_bb == target_bb)
769 return local_ref_killed_between_p (use, def_insn, target_insn);
771 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
772 if (single_pred_p (target_bb)
773 && single_pred (target_bb) == def_bb)
775 df_ref x;
777 /* See if USE is killed between DEF_INSN and the last insn in the
778 basic block containing DEF_INSN. */
779 x = df_bb_regno_last_def_find (def_bb, regno);
780 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
781 return true;
783 /* See if USE is killed between TARGET_INSN and the first insn in the
784 basic block containing TARGET_INSN. */
785 x = df_bb_regno_first_def_find (target_bb, regno);
786 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
787 return true;
789 return false;
792 /* Otherwise assume the worst case. */
793 return true;
797 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
798 would require full computation of available expressions;
799 we check only restricted conditions, see use_killed_between. */
800 static bool
801 all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn)
803 df_ref use;
804 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
805 rtx def_set = single_set (def_insn);
806 rtx_insn *next;
808 gcc_assert (def_set);
810 /* If target_insn comes right after def_insn, which is very common
811 for addresses, we can use a quicker test. Ignore debug insns
812 other than target insns for this. */
813 next = NEXT_INSN (def_insn);
814 while (next && next != target_insn && DEBUG_INSN_P (next))
815 next = NEXT_INSN (next);
816 if (next == target_insn && REG_P (SET_DEST (def_set)))
818 rtx def_reg = SET_DEST (def_set);
820 /* If the insn uses the reg that it defines, the substitution is
821 invalid. */
822 FOR_EACH_INSN_INFO_USE (use, insn_info)
823 if (rtx_equal_p (DF_REF_REG (use), def_reg))
824 return false;
825 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
826 if (rtx_equal_p (DF_REF_REG (use), def_reg))
827 return false;
829 else
831 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
833 /* Look at all the uses of DEF_INSN, and see if they are not
834 killed between DEF_INSN and TARGET_INSN. */
835 FOR_EACH_INSN_INFO_USE (use, insn_info)
837 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
838 return false;
839 if (use_killed_between (use, def_insn, target_insn))
840 return false;
842 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
844 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
845 return false;
846 if (use_killed_between (use, def_insn, target_insn))
847 return false;
851 return true;
855 static df_ref *active_defs;
856 static sparseset active_defs_check;
858 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
859 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
860 too, for checking purposes. */
862 static void
863 register_active_defs (df_ref use)
865 for (; use; use = DF_REF_NEXT_LOC (use))
867 df_ref def = get_def_for_use (use);
868 int regno = DF_REF_REGNO (use);
870 if (flag_checking)
871 sparseset_set_bit (active_defs_check, regno);
872 active_defs[regno] = def;
877 /* Build the use->def links that we use to update the dataflow info
878 for new uses. Note that building the links is very cheap and if
879 it were done earlier, they could be used to rule out invalid
880 propagations (in addition to what is done in all_uses_available_at).
881 I'm not doing this yet, though. */
883 static void
884 update_df_init (rtx_insn *def_insn, rtx_insn *insn)
886 if (flag_checking)
887 sparseset_clear (active_defs_check);
888 register_active_defs (DF_INSN_USES (def_insn));
889 register_active_defs (DF_INSN_USES (insn));
890 register_active_defs (DF_INSN_EQ_USES (insn));
894 /* Update the USE_DEF_REF array for the given use, using the active definitions
895 in the ACTIVE_DEFS array to match pseudos to their def. */
897 static inline void
898 update_uses (df_ref use)
900 for (; use; use = DF_REF_NEXT_LOC (use))
902 int regno = DF_REF_REGNO (use);
904 /* Set up the use-def chain. */
905 if (DF_REF_ID (use) >= (int) use_def_ref.length ())
906 use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
908 if (flag_checking)
909 gcc_assert (sparseset_bit_p (active_defs_check, regno));
910 use_def_ref[DF_REF_ID (use)] = active_defs[regno];
915 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
916 uses if NOTES_ONLY is true. */
918 static void
919 update_df (rtx_insn *insn, rtx note)
921 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
923 if (note)
925 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
926 df_notes_rescan (insn);
928 else
930 df_uses_create (&PATTERN (insn), insn, 0);
931 df_insn_rescan (insn);
932 update_uses (DF_INSN_INFO_USES (insn_info));
935 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
939 /* Try substituting NEW into LOC, which originated from forward propagation
940 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
941 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
942 new insn is not recognized. Return whether the substitution was
943 performed. */
945 static bool
946 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn,
947 bool set_reg_equal)
949 rtx_insn *insn = DF_REF_INSN (use);
950 rtx set = single_set (insn);
951 rtx note = NULL_RTX;
952 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
953 int old_cost = 0;
954 bool ok;
956 update_df_init (def_insn, insn);
958 /* forward_propagate_subreg may be operating on an instruction with
959 multiple sets. If so, assume the cost of the new instruction is
960 not greater than the old one. */
961 if (set)
962 old_cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
963 if (dump_file)
965 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
966 print_inline_rtx (dump_file, *loc, 2);
967 fprintf (dump_file, "\n with ");
968 print_inline_rtx (dump_file, new_rtx, 2);
969 fprintf (dump_file, "\n");
972 validate_unshare_change (insn, loc, new_rtx, true);
973 if (!verify_changes (0))
975 if (dump_file)
976 fprintf (dump_file, "Changes to insn %d not recognized\n",
977 INSN_UID (insn));
978 ok = false;
981 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
982 && set
983 && (set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed)
984 > old_cost))
986 if (dump_file)
987 fprintf (dump_file, "Changes to insn %d not profitable\n",
988 INSN_UID (insn));
989 ok = false;
992 else
994 if (dump_file)
995 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
996 ok = true;
999 if (ok)
1001 confirm_change_group ();
1002 num_changes++;
1004 else
1006 cancel_changes (0);
1008 /* Can also record a simplified value in a REG_EQUAL note,
1009 making a new one if one does not already exist. */
1010 if (set_reg_equal)
1012 /* If there are any paradoxical SUBREGs, don't add REG_EQUAL note,
1013 because the bits in there can be anything and so might not
1014 match the REG_EQUAL note content. See PR70574. */
1015 subrtx_var_iterator::array_type array;
1016 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
1018 rtx x = *iter;
1019 if (SUBREG_P (x) && paradoxical_subreg_p (x))
1021 set_reg_equal = false;
1022 break;
1026 if (set_reg_equal)
1028 if (dump_file)
1029 fprintf (dump_file, " Setting REG_EQUAL note\n");
1031 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1036 if ((ok || note) && !CONSTANT_P (new_rtx))
1037 update_df (insn, note);
1039 return ok;
1042 /* For the given single_set INSN, containing SRC known to be a
1043 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1044 is redundant due to the register being set by a LOAD_EXTEND_OP
1045 load from memory. */
1047 static bool
1048 free_load_extend (rtx src, rtx_insn *insn)
1050 rtx reg;
1051 df_ref def, use;
1053 reg = XEXP (src, 0);
1054 #ifdef LOAD_EXTEND_OP
1055 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1056 #endif
1057 return false;
1059 FOR_EACH_INSN_USE (use, insn)
1060 if (!DF_REF_IS_ARTIFICIAL (use)
1061 && DF_REF_TYPE (use) == DF_REF_REG_USE
1062 && DF_REF_REG (use) == reg)
1063 break;
1064 if (!use)
1065 return false;
1067 def = get_def_for_use (use);
1068 if (!def)
1069 return false;
1071 if (DF_REF_IS_ARTIFICIAL (def))
1072 return false;
1074 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1076 rtx patt = PATTERN (DF_REF_INSN (def));
1078 if (GET_CODE (patt) == SET
1079 && GET_CODE (SET_SRC (patt)) == MEM
1080 && rtx_equal_p (SET_DEST (patt), reg))
1081 return true;
1083 return false;
1086 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1088 static bool
1089 forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set)
1091 rtx use_reg = DF_REF_REG (use);
1092 rtx_insn *use_insn;
1093 rtx src;
1095 /* Only consider subregs... */
1096 machine_mode use_mode = GET_MODE (use_reg);
1097 if (GET_CODE (use_reg) != SUBREG
1098 || !REG_P (SET_DEST (def_set)))
1099 return false;
1101 /* If this is a paradoxical SUBREG... */
1102 if (GET_MODE_SIZE (use_mode)
1103 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1105 /* If this is a paradoxical SUBREG, we have no idea what value the
1106 extra bits would have. However, if the operand is equivalent to
1107 a SUBREG whose operand is the same as our mode, and all the modes
1108 are within a word, we can just use the inner operand because
1109 these SUBREGs just say how to treat the register. */
1110 use_insn = DF_REF_INSN (use);
1111 src = SET_SRC (def_set);
1112 if (GET_CODE (src) == SUBREG
1113 && REG_P (SUBREG_REG (src))
1114 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1115 && GET_MODE (SUBREG_REG (src)) == use_mode
1116 && subreg_lowpart_p (src)
1117 && all_uses_available_at (def_insn, use_insn))
1118 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1119 def_insn, false);
1122 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1123 is the low part of the reg being extended then just use the inner
1124 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1125 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1126 or due to the operation being a no-op when applied to registers.
1127 For example, if we have:
1129 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1130 B: (... (subreg:SI (reg:DI X)) ...)
1132 and mode_rep_extended says that Y is already sign-extended,
1133 the backend will typically allow A to be combined with the
1134 definition of Y or, failing that, allow A to be deleted after
1135 reload through register tying. Introducing more uses of Y
1136 prevents both optimisations. */
1137 else if (subreg_lowpart_p (use_reg))
1139 use_insn = DF_REF_INSN (use);
1140 src = SET_SRC (def_set);
1141 if ((GET_CODE (src) == ZERO_EXTEND
1142 || GET_CODE (src) == SIGN_EXTEND)
1143 && REG_P (XEXP (src, 0))
1144 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1145 && GET_MODE (XEXP (src, 0)) == use_mode
1146 && !free_load_extend (src, def_insn)
1147 && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1148 != (int) GET_CODE (src))
1149 && all_uses_available_at (def_insn, use_insn))
1150 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1151 def_insn, false);
1154 return false;
1157 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1159 static bool
1160 forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg)
1162 rtx_insn *use_insn = DF_REF_INSN (use);
1163 rtx src, use_pat, asm_operands, new_rtx, *loc;
1164 int speed_p, i;
1165 df_ref uses;
1167 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1169 src = SET_SRC (def_set);
1170 use_pat = PATTERN (use_insn);
1172 /* In __asm don't replace if src might need more registers than
1173 reg, as that could increase register pressure on the __asm. */
1174 uses = DF_INSN_USES (def_insn);
1175 if (uses && DF_REF_NEXT_LOC (uses))
1176 return false;
1178 update_df_init (def_insn, use_insn);
1179 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1180 asm_operands = NULL_RTX;
1181 switch (GET_CODE (use_pat))
1183 case ASM_OPERANDS:
1184 asm_operands = use_pat;
1185 break;
1186 case SET:
1187 if (MEM_P (SET_DEST (use_pat)))
1189 loc = &SET_DEST (use_pat);
1190 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1191 if (new_rtx)
1192 validate_unshare_change (use_insn, loc, new_rtx, true);
1194 asm_operands = SET_SRC (use_pat);
1195 break;
1196 case PARALLEL:
1197 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1198 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1200 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1202 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1203 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1204 src, speed_p);
1205 if (new_rtx)
1206 validate_unshare_change (use_insn, loc, new_rtx, true);
1208 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1210 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1211 asm_operands = XVECEXP (use_pat, 0, i);
1212 break;
1213 default:
1214 gcc_unreachable ();
1217 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1218 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1220 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1221 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1222 if (new_rtx)
1223 validate_unshare_change (use_insn, loc, new_rtx, true);
1226 if (num_changes_pending () == 0 || !apply_change_group ())
1227 return false;
1229 update_df (use_insn, NULL);
1230 num_changes++;
1231 return true;
1234 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1235 result. */
1237 static bool
1238 forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set)
1240 rtx_insn *use_insn = DF_REF_INSN (use);
1241 rtx use_set = single_set (use_insn);
1242 rtx src, reg, new_rtx, *loc;
1243 bool set_reg_equal;
1244 machine_mode mode;
1245 int asm_use = -1;
1247 if (INSN_CODE (use_insn) < 0)
1248 asm_use = asm_noperands (PATTERN (use_insn));
1250 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1251 return false;
1253 /* Do not propagate into PC, CC0, etc. */
1254 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1255 return false;
1257 /* If def and use are subreg, check if they match. */
1258 reg = DF_REF_REG (use);
1259 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1261 if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1262 return false;
1264 /* Check if the def had a subreg, but the use has the whole reg. */
1265 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1266 return false;
1267 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1268 previous case, the optimization is possible and often useful indeed. */
1269 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1270 reg = SUBREG_REG (reg);
1272 /* Make sure that we can treat REG as having the same mode as the
1273 source of DEF_SET. */
1274 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1275 return false;
1277 /* Check if the substitution is valid (last, because it's the most
1278 expensive check!). */
1279 src = SET_SRC (def_set);
1280 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1281 return false;
1283 /* Check if the def is loading something from the constant pool; in this
1284 case we would undo optimization such as compress_float_constant.
1285 Still, we can set a REG_EQUAL note. */
1286 if (MEM_P (src) && MEM_READONLY_P (src))
1288 rtx x = avoid_constant_pool_reference (src);
1289 if (x != src && use_set)
1291 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1292 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1293 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1294 if (old_rtx != new_rtx)
1295 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1297 return false;
1300 if (asm_use >= 0)
1301 return forward_propagate_asm (use, def_insn, def_set, reg);
1303 /* Else try simplifying. */
1305 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1307 loc = &SET_DEST (use_set);
1308 set_reg_equal = false;
1310 else if (!use_set)
1312 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1313 set_reg_equal = false;
1315 else
1317 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1318 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1319 loc = &XEXP (note, 0);
1320 else
1321 loc = &SET_SRC (use_set);
1323 /* Do not replace an existing REG_EQUAL note if the insn is not
1324 recognized. Either we're already replacing in the note, or we'll
1325 separately try plugging the definition in the note and simplifying.
1326 And only install a REQ_EQUAL note when the destination is a REG
1327 that isn't mentioned in USE_SET, as the note would be invalid
1328 otherwise. We also don't want to install a note if we are merely
1329 propagating a pseudo since verifying that this pseudo isn't dead
1330 is a pain; moreover such a note won't help anything.
1331 If the use is a paradoxical subreg, make sure we don't add a
1332 REG_EQUAL note for it, because it is not equivalent, it is one
1333 possible value for it, but we can't rely on it holding that value.
1334 See PR70574. */
1335 set_reg_equal = (note == NULL_RTX
1336 && REG_P (SET_DEST (use_set))
1337 && !REG_P (src)
1338 && !(GET_CODE (src) == SUBREG
1339 && REG_P (SUBREG_REG (src)))
1340 && !reg_mentioned_p (SET_DEST (use_set),
1341 SET_SRC (use_set))
1342 && !paradoxical_subreg_p (DF_REF_REG (use)));
1345 if (GET_MODE (*loc) == VOIDmode)
1346 mode = GET_MODE (SET_DEST (use_set));
1347 else
1348 mode = GET_MODE (*loc);
1350 new_rtx = propagate_rtx (*loc, mode, reg, src,
1351 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1353 if (!new_rtx)
1354 return false;
1356 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1360 /* Given a use USE of an insn, if it has a single reaching
1361 definition, try to forward propagate it into that insn.
1362 Return true if cfg cleanup will be needed. */
1364 static bool
1365 forward_propagate_into (df_ref use)
1367 df_ref def;
1368 rtx_insn *def_insn, *use_insn;
1369 rtx def_set;
1370 rtx parent;
1372 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1373 return false;
1374 if (DF_REF_IS_ARTIFICIAL (use))
1375 return false;
1377 /* Only consider uses that have a single definition. */
1378 def = get_def_for_use (use);
1379 if (!def)
1380 return false;
1381 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1382 return false;
1383 if (DF_REF_IS_ARTIFICIAL (def))
1384 return false;
1386 /* Do not propagate loop invariant definitions inside the loop. */
1387 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1388 return false;
1390 /* Check if the use is still present in the insn! */
1391 use_insn = DF_REF_INSN (use);
1392 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1393 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1394 else
1395 parent = PATTERN (use_insn);
1397 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1398 return false;
1400 def_insn = DF_REF_INSN (def);
1401 if (multiple_sets (def_insn))
1402 return false;
1403 def_set = single_set (def_insn);
1404 if (!def_set)
1405 return false;
1407 /* Only try one kind of propagation. If two are possible, we'll
1408 do it on the following iterations. */
1409 if (forward_propagate_and_simplify (use, def_insn, def_set)
1410 || forward_propagate_subreg (use, def_insn, def_set))
1412 if (cfun->can_throw_non_call_exceptions
1413 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1414 && purge_dead_edges (DF_REF_BB (use)))
1415 return true;
1417 return false;
1421 static void
1422 fwprop_init (void)
1424 num_changes = 0;
1425 calculate_dominance_info (CDI_DOMINATORS);
1427 /* We do not always want to propagate into loops, so we have to find
1428 loops and be careful about them. Avoid CFG modifications so that
1429 we don't have to update dominance information afterwards for
1430 build_single_def_use_links. */
1431 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1433 build_single_def_use_links ();
1434 df_set_flags (DF_DEFER_INSN_RESCAN);
1436 active_defs = XNEWVEC (df_ref, max_reg_num ());
1437 if (flag_checking)
1438 active_defs_check = sparseset_alloc (max_reg_num ());
1441 static void
1442 fwprop_done (void)
1444 loop_optimizer_finalize ();
1446 use_def_ref.release ();
1447 free (active_defs);
1448 if (flag_checking)
1449 sparseset_free (active_defs_check);
1451 free_dominance_info (CDI_DOMINATORS);
1452 cleanup_cfg (0);
1453 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1455 if (dump_file)
1456 fprintf (dump_file,
1457 "\nNumber of successful forward propagations: %d\n\n",
1458 num_changes);
1462 /* Main entry point. */
1464 static bool
1465 gate_fwprop (void)
1467 return optimize > 0 && flag_forward_propagate;
1470 static unsigned int
1471 fwprop (void)
1473 unsigned i;
1475 fwprop_init ();
1477 /* Go through all the uses. df_uses_create will create new ones at the
1478 end, and we'll go through them as well.
1480 Do not forward propagate addresses into loops until after unrolling.
1481 CSE did so because it was able to fix its own mess, but we are not. */
1483 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1485 df_ref use = DF_USES_GET (i);
1486 if (use)
1487 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1488 || DF_REF_BB (use)->loop_father == NULL
1489 /* The outer most loop is not really a loop. */
1490 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1491 forward_propagate_into (use);
1494 fwprop_done ();
1495 return 0;
1498 namespace {
1500 const pass_data pass_data_rtl_fwprop =
1502 RTL_PASS, /* type */
1503 "fwprop1", /* name */
1504 OPTGROUP_NONE, /* optinfo_flags */
1505 TV_FWPROP, /* tv_id */
1506 0, /* properties_required */
1507 0, /* properties_provided */
1508 0, /* properties_destroyed */
1509 0, /* todo_flags_start */
1510 TODO_df_finish, /* todo_flags_finish */
1513 class pass_rtl_fwprop : public rtl_opt_pass
1515 public:
1516 pass_rtl_fwprop (gcc::context *ctxt)
1517 : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
1520 /* opt_pass methods: */
1521 virtual bool gate (function *) { return gate_fwprop (); }
1522 virtual unsigned int execute (function *) { return fwprop (); }
1524 }; // class pass_rtl_fwprop
1526 } // anon namespace
1528 rtl_opt_pass *
1529 make_pass_rtl_fwprop (gcc::context *ctxt)
1531 return new pass_rtl_fwprop (ctxt);
1534 static unsigned int
1535 fwprop_addr (void)
1537 unsigned i;
1539 fwprop_init ();
1541 /* Go through all the uses. df_uses_create will create new ones at the
1542 end, and we'll go through them as well. */
1543 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1545 df_ref use = DF_USES_GET (i);
1546 if (use)
1547 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1548 && DF_REF_BB (use)->loop_father != NULL
1549 /* The outer most loop is not really a loop. */
1550 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1551 forward_propagate_into (use);
1554 fwprop_done ();
1555 return 0;
1558 namespace {
1560 const pass_data pass_data_rtl_fwprop_addr =
1562 RTL_PASS, /* type */
1563 "fwprop2", /* name */
1564 OPTGROUP_NONE, /* optinfo_flags */
1565 TV_FWPROP, /* tv_id */
1566 0, /* properties_required */
1567 0, /* properties_provided */
1568 0, /* properties_destroyed */
1569 0, /* todo_flags_start */
1570 TODO_df_finish, /* todo_flags_finish */
1573 class pass_rtl_fwprop_addr : public rtl_opt_pass
1575 public:
1576 pass_rtl_fwprop_addr (gcc::context *ctxt)
1577 : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
1580 /* opt_pass methods: */
1581 virtual bool gate (function *) { return gate_fwprop (); }
1582 virtual unsigned int execute (function *) { return fwprop_addr (); }
1584 }; // class pass_rtl_fwprop_addr
1586 } // anon namespace
1588 rtl_opt_pass *
1589 make_pass_rtl_fwprop_addr (gcc::context *ctxt)
1591 return new pass_rtl_fwprop_addr (ctxt);