2016-10-18 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / explow.c
blob1c59c862f93722639d0a702e246d397de692a532
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "expmed.h"
31 #include "optabs.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
34 #include "diagnostic-core.h"
35 #include "stor-layout.h"
36 #include "except.h"
37 #include "dojump.h"
38 #include "explow.h"
39 #include "expr.h"
40 #include "common/common-target.h"
41 #include "output.h"
43 static rtx break_out_memory_refs (rtx);
46 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
48 HOST_WIDE_INT
49 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
51 int width = GET_MODE_PRECISION (mode);
53 /* You want to truncate to a _what_? */
54 gcc_assert (SCALAR_INT_MODE_P (mode)
55 || POINTER_BOUNDS_MODE_P (mode));
57 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
58 if (mode == BImode)
59 return c & 1 ? STORE_FLAG_VALUE : 0;
61 /* Sign-extend for the requested mode. */
63 if (width < HOST_BITS_PER_WIDE_INT)
65 HOST_WIDE_INT sign = 1;
66 sign <<= width - 1;
67 c &= (sign << 1) - 1;
68 c ^= sign;
69 c -= sign;
72 return c;
75 /* Return an rtx for the sum of X and the integer C, given that X has
76 mode MODE. INPLACE is true if X can be modified inplace or false
77 if it must be treated as immutable. */
79 rtx
80 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
81 bool inplace)
83 RTX_CODE code;
84 rtx y;
85 rtx tem;
86 int all_constant = 0;
88 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
90 if (c == 0)
91 return x;
93 restart:
95 code = GET_CODE (x);
96 y = x;
98 switch (code)
100 CASE_CONST_SCALAR_INT:
101 return immed_wide_int_const (wi::add (std::make_pair (x, mode), c),
102 mode);
103 case MEM:
104 /* If this is a reference to the constant pool, try replacing it with
105 a reference to a new constant. If the resulting address isn't
106 valid, don't return it because we have no way to validize it. */
107 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
108 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
110 rtx cst = get_pool_constant (XEXP (x, 0));
112 if (GET_CODE (cst) == CONST_VECTOR
113 && GET_MODE_INNER (GET_MODE (cst)) == mode)
115 cst = gen_lowpart (mode, cst);
116 gcc_assert (cst);
118 if (GET_MODE (cst) == VOIDmode || GET_MODE (cst) == mode)
120 tem = plus_constant (mode, cst, c);
121 tem = force_const_mem (GET_MODE (x), tem);
122 /* Targets may disallow some constants in the constant pool, thus
123 force_const_mem may return NULL_RTX. */
124 if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
125 return tem;
128 break;
130 case CONST:
131 /* If adding to something entirely constant, set a flag
132 so that we can add a CONST around the result. */
133 if (inplace && shared_const_p (x))
134 inplace = false;
135 x = XEXP (x, 0);
136 all_constant = 1;
137 goto restart;
139 case SYMBOL_REF:
140 case LABEL_REF:
141 all_constant = 1;
142 break;
144 case PLUS:
145 /* The interesting case is adding the integer to a sum. Look
146 for constant term in the sum and combine with C. For an
147 integer constant term or a constant term that is not an
148 explicit integer, we combine or group them together anyway.
150 We may not immediately return from the recursive call here, lest
151 all_constant gets lost. */
153 if (CONSTANT_P (XEXP (x, 1)))
155 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
156 if (term == const0_rtx)
157 x = XEXP (x, 0);
158 else if (inplace)
159 XEXP (x, 1) = term;
160 else
161 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
162 c = 0;
164 else if (rtx *const_loc = find_constant_term_loc (&y))
166 if (!inplace)
168 /* We need to be careful since X may be shared and we can't
169 modify it in place. */
170 x = copy_rtx (x);
171 const_loc = find_constant_term_loc (&x);
173 *const_loc = plus_constant (mode, *const_loc, c, true);
174 c = 0;
176 break;
178 default:
179 break;
182 if (c != 0)
183 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
185 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
186 return x;
187 else if (all_constant)
188 return gen_rtx_CONST (mode, x);
189 else
190 return x;
193 /* If X is a sum, return a new sum like X but lacking any constant terms.
194 Add all the removed constant terms into *CONSTPTR.
195 X itself is not altered. The result != X if and only if
196 it is not isomorphic to X. */
199 eliminate_constant_term (rtx x, rtx *constptr)
201 rtx x0, x1;
202 rtx tem;
204 if (GET_CODE (x) != PLUS)
205 return x;
207 /* First handle constants appearing at this level explicitly. */
208 if (CONST_INT_P (XEXP (x, 1))
209 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
210 XEXP (x, 1)))
211 && CONST_INT_P (tem))
213 *constptr = tem;
214 return eliminate_constant_term (XEXP (x, 0), constptr);
217 tem = const0_rtx;
218 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
219 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
220 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
221 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
222 *constptr, tem))
223 && CONST_INT_P (tem))
225 *constptr = tem;
226 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
229 return x;
233 /* Return a copy of X in which all memory references
234 and all constants that involve symbol refs
235 have been replaced with new temporary registers.
236 Also emit code to load the memory locations and constants
237 into those registers.
239 If X contains no such constants or memory references,
240 X itself (not a copy) is returned.
242 If a constant is found in the address that is not a legitimate constant
243 in an insn, it is left alone in the hope that it might be valid in the
244 address.
246 X may contain no arithmetic except addition, subtraction and multiplication.
247 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
249 static rtx
250 break_out_memory_refs (rtx x)
252 if (MEM_P (x)
253 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
254 && GET_MODE (x) != VOIDmode))
255 x = force_reg (GET_MODE (x), x);
256 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
257 || GET_CODE (x) == MULT)
259 rtx op0 = break_out_memory_refs (XEXP (x, 0));
260 rtx op1 = break_out_memory_refs (XEXP (x, 1));
262 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
263 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
266 return x;
269 /* Given X, a memory address in address space AS' pointer mode, convert it to
270 an address in the address space's address mode, or vice versa (TO_MODE says
271 which way). We take advantage of the fact that pointers are not allowed to
272 overflow by commuting arithmetic operations over conversions so that address
273 arithmetic insns can be used. IN_CONST is true if this conversion is inside
274 a CONST. NO_EMIT is true if no insns should be emitted, and instead
275 it should return NULL if it can't be simplified without emitting insns. */
278 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
279 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
280 bool in_const ATTRIBUTE_UNUSED,
281 bool no_emit ATTRIBUTE_UNUSED)
283 #ifndef POINTERS_EXTEND_UNSIGNED
284 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
285 return x;
286 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
287 machine_mode pointer_mode, address_mode, from_mode;
288 rtx temp;
289 enum rtx_code code;
291 /* If X already has the right mode, just return it. */
292 if (GET_MODE (x) == to_mode)
293 return x;
295 pointer_mode = targetm.addr_space.pointer_mode (as);
296 address_mode = targetm.addr_space.address_mode (as);
297 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
299 /* Here we handle some special cases. If none of them apply, fall through
300 to the default case. */
301 switch (GET_CODE (x))
303 CASE_CONST_SCALAR_INT:
304 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
305 code = TRUNCATE;
306 else if (POINTERS_EXTEND_UNSIGNED < 0)
307 break;
308 else if (POINTERS_EXTEND_UNSIGNED > 0)
309 code = ZERO_EXTEND;
310 else
311 code = SIGN_EXTEND;
312 temp = simplify_unary_operation (code, to_mode, x, from_mode);
313 if (temp)
314 return temp;
315 break;
317 case SUBREG:
318 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
319 && GET_MODE (SUBREG_REG (x)) == to_mode)
320 return SUBREG_REG (x);
321 break;
323 case LABEL_REF:
324 temp = gen_rtx_LABEL_REF (to_mode, LABEL_REF_LABEL (x));
325 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
326 return temp;
328 case SYMBOL_REF:
329 temp = shallow_copy_rtx (x);
330 PUT_MODE (temp, to_mode);
331 return temp;
333 case CONST:
334 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
335 true, no_emit);
336 return temp ? gen_rtx_CONST (to_mode, temp) : temp;
338 case PLUS:
339 case MULT:
340 /* For addition we can safely permute the conversion and addition
341 operation if one operand is a constant and converting the constant
342 does not change it or if one operand is a constant and we are
343 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
344 We can always safely permute them if we are making the address
345 narrower. Inside a CONST RTL, this is safe for both pointers
346 zero or sign extended as pointers cannot wrap. */
347 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
348 || (GET_CODE (x) == PLUS
349 && CONST_INT_P (XEXP (x, 1))
350 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
351 || XEXP (x, 1) == convert_memory_address_addr_space_1
352 (to_mode, XEXP (x, 1), as, in_const,
353 no_emit)
354 || POINTERS_EXTEND_UNSIGNED < 0)))
356 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
357 as, in_const, no_emit);
358 return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
359 temp, XEXP (x, 1))
360 : temp);
362 break;
364 default:
365 break;
368 if (no_emit)
369 return NULL_RTX;
371 return convert_modes (to_mode, from_mode,
372 x, POINTERS_EXTEND_UNSIGNED);
373 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
376 /* Given X, a memory address in address space AS' pointer mode, convert it to
377 an address in the address space's address mode, or vice versa (TO_MODE says
378 which way). We take advantage of the fact that pointers are not allowed to
379 overflow by commuting arithmetic operations over conversions so that address
380 arithmetic insns can be used. */
383 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
385 return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
389 /* Return something equivalent to X but valid as a memory address for something
390 of mode MODE in the named address space AS. When X is not itself valid,
391 this works by copying X or subexpressions of it into registers. */
394 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
396 rtx oldx = x;
397 machine_mode address_mode = targetm.addr_space.address_mode (as);
399 x = convert_memory_address_addr_space (address_mode, x, as);
401 /* By passing constant addresses through registers
402 we get a chance to cse them. */
403 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
404 x = force_reg (address_mode, x);
406 /* We get better cse by rejecting indirect addressing at this stage.
407 Let the combiner create indirect addresses where appropriate.
408 For now, generate the code so that the subexpressions useful to share
409 are visible. But not if cse won't be done! */
410 else
412 if (! cse_not_expected && !REG_P (x))
413 x = break_out_memory_refs (x);
415 /* At this point, any valid address is accepted. */
416 if (memory_address_addr_space_p (mode, x, as))
417 goto done;
419 /* If it was valid before but breaking out memory refs invalidated it,
420 use it the old way. */
421 if (memory_address_addr_space_p (mode, oldx, as))
423 x = oldx;
424 goto done;
427 /* Perform machine-dependent transformations on X
428 in certain cases. This is not necessary since the code
429 below can handle all possible cases, but machine-dependent
430 transformations can make better code. */
432 rtx orig_x = x;
433 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
434 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
435 goto done;
438 /* PLUS and MULT can appear in special ways
439 as the result of attempts to make an address usable for indexing.
440 Usually they are dealt with by calling force_operand, below.
441 But a sum containing constant terms is special
442 if removing them makes the sum a valid address:
443 then we generate that address in a register
444 and index off of it. We do this because it often makes
445 shorter code, and because the addresses thus generated
446 in registers often become common subexpressions. */
447 if (GET_CODE (x) == PLUS)
449 rtx constant_term = const0_rtx;
450 rtx y = eliminate_constant_term (x, &constant_term);
451 if (constant_term == const0_rtx
452 || ! memory_address_addr_space_p (mode, y, as))
453 x = force_operand (x, NULL_RTX);
454 else
456 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
457 if (! memory_address_addr_space_p (mode, y, as))
458 x = force_operand (x, NULL_RTX);
459 else
460 x = y;
464 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
465 x = force_operand (x, NULL_RTX);
467 /* If we have a register that's an invalid address,
468 it must be a hard reg of the wrong class. Copy it to a pseudo. */
469 else if (REG_P (x))
470 x = copy_to_reg (x);
472 /* Last resort: copy the value to a register, since
473 the register is a valid address. */
474 else
475 x = force_reg (address_mode, x);
478 done:
480 gcc_assert (memory_address_addr_space_p (mode, x, as));
481 /* If we didn't change the address, we are done. Otherwise, mark
482 a reg as a pointer if we have REG or REG + CONST_INT. */
483 if (oldx == x)
484 return x;
485 else if (REG_P (x))
486 mark_reg_pointer (x, BITS_PER_UNIT);
487 else if (GET_CODE (x) == PLUS
488 && REG_P (XEXP (x, 0))
489 && CONST_INT_P (XEXP (x, 1)))
490 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
492 /* OLDX may have been the address on a temporary. Update the address
493 to indicate that X is now used. */
494 update_temp_slot_address (oldx, x);
496 return x;
499 /* Convert a mem ref into one with a valid memory address.
500 Pass through anything else unchanged. */
503 validize_mem (rtx ref)
505 if (!MEM_P (ref))
506 return ref;
507 ref = use_anchored_address (ref);
508 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
509 MEM_ADDR_SPACE (ref)))
510 return ref;
512 /* Don't alter REF itself, since that is probably a stack slot. */
513 return replace_equiv_address (ref, XEXP (ref, 0));
516 /* If X is a memory reference to a member of an object block, try rewriting
517 it to use an anchor instead. Return the new memory reference on success
518 and the old one on failure. */
521 use_anchored_address (rtx x)
523 rtx base;
524 HOST_WIDE_INT offset;
525 machine_mode mode;
527 if (!flag_section_anchors)
528 return x;
530 if (!MEM_P (x))
531 return x;
533 /* Split the address into a base and offset. */
534 base = XEXP (x, 0);
535 offset = 0;
536 if (GET_CODE (base) == CONST
537 && GET_CODE (XEXP (base, 0)) == PLUS
538 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
540 offset += INTVAL (XEXP (XEXP (base, 0), 1));
541 base = XEXP (XEXP (base, 0), 0);
544 /* Check whether BASE is suitable for anchors. */
545 if (GET_CODE (base) != SYMBOL_REF
546 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
547 || SYMBOL_REF_ANCHOR_P (base)
548 || SYMBOL_REF_BLOCK (base) == NULL
549 || !targetm.use_anchors_for_symbol_p (base))
550 return x;
552 /* Decide where BASE is going to be. */
553 place_block_symbol (base);
555 /* Get the anchor we need to use. */
556 offset += SYMBOL_REF_BLOCK_OFFSET (base);
557 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
558 SYMBOL_REF_TLS_MODEL (base));
560 /* Work out the offset from the anchor. */
561 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
563 /* If we're going to run a CSE pass, force the anchor into a register.
564 We will then be able to reuse registers for several accesses, if the
565 target costs say that that's worthwhile. */
566 mode = GET_MODE (base);
567 if (!cse_not_expected)
568 base = force_reg (mode, base);
570 return replace_equiv_address (x, plus_constant (mode, base, offset));
573 /* Copy the value or contents of X to a new temp reg and return that reg. */
576 copy_to_reg (rtx x)
578 rtx temp = gen_reg_rtx (GET_MODE (x));
580 /* If not an operand, must be an address with PLUS and MULT so
581 do the computation. */
582 if (! general_operand (x, VOIDmode))
583 x = force_operand (x, temp);
585 if (x != temp)
586 emit_move_insn (temp, x);
588 return temp;
591 /* Like copy_to_reg but always give the new register mode Pmode
592 in case X is a constant. */
595 copy_addr_to_reg (rtx x)
597 return copy_to_mode_reg (Pmode, x);
600 /* Like copy_to_reg but always give the new register mode MODE
601 in case X is a constant. */
604 copy_to_mode_reg (machine_mode mode, rtx x)
606 rtx temp = gen_reg_rtx (mode);
608 /* If not an operand, must be an address with PLUS and MULT so
609 do the computation. */
610 if (! general_operand (x, VOIDmode))
611 x = force_operand (x, temp);
613 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
614 if (x != temp)
615 emit_move_insn (temp, x);
616 return temp;
619 /* Load X into a register if it is not already one.
620 Use mode MODE for the register.
621 X should be valid for mode MODE, but it may be a constant which
622 is valid for all integer modes; that's why caller must specify MODE.
624 The caller must not alter the value in the register we return,
625 since we mark it as a "constant" register. */
628 force_reg (machine_mode mode, rtx x)
630 rtx temp, set;
631 rtx_insn *insn;
633 if (REG_P (x))
634 return x;
636 if (general_operand (x, mode))
638 temp = gen_reg_rtx (mode);
639 insn = emit_move_insn (temp, x);
641 else
643 temp = force_operand (x, NULL_RTX);
644 if (REG_P (temp))
645 insn = get_last_insn ();
646 else
648 rtx temp2 = gen_reg_rtx (mode);
649 insn = emit_move_insn (temp2, temp);
650 temp = temp2;
654 /* Let optimizers know that TEMP's value never changes
655 and that X can be substituted for it. Don't get confused
656 if INSN set something else (such as a SUBREG of TEMP). */
657 if (CONSTANT_P (x)
658 && (set = single_set (insn)) != 0
659 && SET_DEST (set) == temp
660 && ! rtx_equal_p (x, SET_SRC (set)))
661 set_unique_reg_note (insn, REG_EQUAL, x);
663 /* Let optimizers know that TEMP is a pointer, and if so, the
664 known alignment of that pointer. */
666 unsigned align = 0;
667 if (GET_CODE (x) == SYMBOL_REF)
669 align = BITS_PER_UNIT;
670 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
671 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
673 else if (GET_CODE (x) == LABEL_REF)
674 align = BITS_PER_UNIT;
675 else if (GET_CODE (x) == CONST
676 && GET_CODE (XEXP (x, 0)) == PLUS
677 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
678 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
680 rtx s = XEXP (XEXP (x, 0), 0);
681 rtx c = XEXP (XEXP (x, 0), 1);
682 unsigned sa, ca;
684 sa = BITS_PER_UNIT;
685 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
686 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
688 if (INTVAL (c) == 0)
689 align = sa;
690 else
692 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
693 align = MIN (sa, ca);
697 if (align || (MEM_P (x) && MEM_POINTER (x)))
698 mark_reg_pointer (temp, align);
701 return temp;
704 /* If X is a memory ref, copy its contents to a new temp reg and return
705 that reg. Otherwise, return X. */
708 force_not_mem (rtx x)
710 rtx temp;
712 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
713 return x;
715 temp = gen_reg_rtx (GET_MODE (x));
717 if (MEM_POINTER (x))
718 REG_POINTER (temp) = 1;
720 emit_move_insn (temp, x);
721 return temp;
724 /* Copy X to TARGET (if it's nonzero and a reg)
725 or to a new temp reg and return that reg.
726 MODE is the mode to use for X in case it is a constant. */
729 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
731 rtx temp;
733 if (target && REG_P (target))
734 temp = target;
735 else
736 temp = gen_reg_rtx (mode);
738 emit_move_insn (temp, x);
739 return temp;
742 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
743 PUNSIGNEDP points to the signedness of the type and may be adjusted
744 to show what signedness to use on extension operations.
746 FOR_RETURN is nonzero if the caller is promoting the return value
747 of FNDECL, else it is for promoting args. */
749 machine_mode
750 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
751 const_tree funtype, int for_return)
753 /* Called without a type node for a libcall. */
754 if (type == NULL_TREE)
756 if (INTEGRAL_MODE_P (mode))
757 return targetm.calls.promote_function_mode (NULL_TREE, mode,
758 punsignedp, funtype,
759 for_return);
760 else
761 return mode;
764 switch (TREE_CODE (type))
766 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
767 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
768 case POINTER_TYPE: case REFERENCE_TYPE:
769 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
770 for_return);
772 default:
773 return mode;
776 /* Return the mode to use to store a scalar of TYPE and MODE.
777 PUNSIGNEDP points to the signedness of the type and may be adjusted
778 to show what signedness to use on extension operations. */
780 machine_mode
781 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
782 int *punsignedp ATTRIBUTE_UNUSED)
784 #ifdef PROMOTE_MODE
785 enum tree_code code;
786 int unsignedp;
787 #endif
789 /* For libcalls this is invoked without TYPE from the backends
790 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
791 case. */
792 if (type == NULL_TREE)
793 return mode;
795 /* FIXME: this is the same logic that was there until GCC 4.4, but we
796 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
797 is not defined. The affected targets are M32C, S390, SPARC. */
798 #ifdef PROMOTE_MODE
799 code = TREE_CODE (type);
800 unsignedp = *punsignedp;
802 switch (code)
804 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
805 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
806 PROMOTE_MODE (mode, unsignedp, type);
807 *punsignedp = unsignedp;
808 return mode;
810 #ifdef POINTERS_EXTEND_UNSIGNED
811 case REFERENCE_TYPE:
812 case POINTER_TYPE:
813 *punsignedp = POINTERS_EXTEND_UNSIGNED;
814 return targetm.addr_space.address_mode
815 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
816 #endif
818 default:
819 return mode;
821 #else
822 return mode;
823 #endif
827 /* Use one of promote_mode or promote_function_mode to find the promoted
828 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
829 of DECL after promotion. */
831 machine_mode
832 promote_decl_mode (const_tree decl, int *punsignedp)
834 tree type = TREE_TYPE (decl);
835 int unsignedp = TYPE_UNSIGNED (type);
836 machine_mode mode = DECL_MODE (decl);
837 machine_mode pmode;
839 if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl))
840 pmode = promote_function_mode (type, mode, &unsignedp,
841 TREE_TYPE (current_function_decl), 1);
842 else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL)
843 pmode = promote_function_mode (type, mode, &unsignedp,
844 TREE_TYPE (current_function_decl), 2);
845 else
846 pmode = promote_mode (type, mode, &unsignedp);
848 if (punsignedp)
849 *punsignedp = unsignedp;
850 return pmode;
853 /* Return the promoted mode for name. If it is a named SSA_NAME, it
854 is the same as promote_decl_mode. Otherwise, it is the promoted
855 mode of a temp decl of same type as the SSA_NAME, if we had created
856 one. */
858 machine_mode
859 promote_ssa_mode (const_tree name, int *punsignedp)
861 gcc_assert (TREE_CODE (name) == SSA_NAME);
863 /* Partitions holding parms and results must be promoted as expected
864 by function.c. */
865 if (SSA_NAME_VAR (name)
866 && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL
867 || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL))
869 machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp);
870 if (mode != BLKmode)
871 return mode;
874 tree type = TREE_TYPE (name);
875 int unsignedp = TYPE_UNSIGNED (type);
876 machine_mode mode = TYPE_MODE (type);
878 /* Bypass TYPE_MODE when it maps vector modes to BLKmode. */
879 if (mode == BLKmode)
881 gcc_assert (VECTOR_TYPE_P (type));
882 mode = type->type_common.mode;
885 machine_mode pmode = promote_mode (type, mode, &unsignedp);
886 if (punsignedp)
887 *punsignedp = unsignedp;
889 return pmode;
894 /* Controls the behavior of {anti_,}adjust_stack. */
895 static bool suppress_reg_args_size;
897 /* A helper for adjust_stack and anti_adjust_stack. */
899 static void
900 adjust_stack_1 (rtx adjust, bool anti_p)
902 rtx temp;
903 rtx_insn *insn;
905 /* Hereafter anti_p means subtract_p. */
906 if (!STACK_GROWS_DOWNWARD)
907 anti_p = !anti_p;
909 temp = expand_binop (Pmode,
910 anti_p ? sub_optab : add_optab,
911 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
912 OPTAB_LIB_WIDEN);
914 if (temp != stack_pointer_rtx)
915 insn = emit_move_insn (stack_pointer_rtx, temp);
916 else
918 insn = get_last_insn ();
919 temp = single_set (insn);
920 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
923 if (!suppress_reg_args_size)
924 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
927 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
928 This pops when ADJUST is positive. ADJUST need not be constant. */
930 void
931 adjust_stack (rtx adjust)
933 if (adjust == const0_rtx)
934 return;
936 /* We expect all variable sized adjustments to be multiple of
937 PREFERRED_STACK_BOUNDARY. */
938 if (CONST_INT_P (adjust))
939 stack_pointer_delta -= INTVAL (adjust);
941 adjust_stack_1 (adjust, false);
944 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
945 This pushes when ADJUST is positive. ADJUST need not be constant. */
947 void
948 anti_adjust_stack (rtx adjust)
950 if (adjust == const0_rtx)
951 return;
953 /* We expect all variable sized adjustments to be multiple of
954 PREFERRED_STACK_BOUNDARY. */
955 if (CONST_INT_P (adjust))
956 stack_pointer_delta += INTVAL (adjust);
958 adjust_stack_1 (adjust, true);
961 /* Round the size of a block to be pushed up to the boundary required
962 by this machine. SIZE is the desired size, which need not be constant. */
964 static rtx
965 round_push (rtx size)
967 rtx align_rtx, alignm1_rtx;
969 if (!SUPPORTS_STACK_ALIGNMENT
970 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
972 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
974 if (align == 1)
975 return size;
977 if (CONST_INT_P (size))
979 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
981 if (INTVAL (size) != new_size)
982 size = GEN_INT (new_size);
983 return size;
986 align_rtx = GEN_INT (align);
987 alignm1_rtx = GEN_INT (align - 1);
989 else
991 /* If crtl->preferred_stack_boundary might still grow, use
992 virtual_preferred_stack_boundary_rtx instead. This will be
993 substituted by the right value in vregs pass and optimized
994 during combine. */
995 align_rtx = virtual_preferred_stack_boundary_rtx;
996 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
997 NULL_RTX);
1000 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1001 but we know it can't. So add ourselves and then do
1002 TRUNC_DIV_EXPR. */
1003 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
1004 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1005 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
1006 NULL_RTX, 1);
1007 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
1009 return size;
1012 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1013 to a previously-created save area. If no save area has been allocated,
1014 this function will allocate one. If a save area is specified, it
1015 must be of the proper mode. */
1017 void
1018 emit_stack_save (enum save_level save_level, rtx *psave)
1020 rtx sa = *psave;
1021 /* The default is that we use a move insn and save in a Pmode object. */
1022 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1023 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1025 /* See if this machine has anything special to do for this kind of save. */
1026 switch (save_level)
1028 case SAVE_BLOCK:
1029 if (targetm.have_save_stack_block ())
1030 fcn = targetm.gen_save_stack_block;
1031 break;
1032 case SAVE_FUNCTION:
1033 if (targetm.have_save_stack_function ())
1034 fcn = targetm.gen_save_stack_function;
1035 break;
1036 case SAVE_NONLOCAL:
1037 if (targetm.have_save_stack_nonlocal ())
1038 fcn = targetm.gen_save_stack_nonlocal;
1039 break;
1040 default:
1041 break;
1044 /* If there is no save area and we have to allocate one, do so. Otherwise
1045 verify the save area is the proper mode. */
1047 if (sa == 0)
1049 if (mode != VOIDmode)
1051 if (save_level == SAVE_NONLOCAL)
1052 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1053 else
1054 *psave = sa = gen_reg_rtx (mode);
1058 do_pending_stack_adjust ();
1059 if (sa != 0)
1060 sa = validize_mem (sa);
1061 emit_insn (fcn (sa, stack_pointer_rtx));
1064 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1065 area made by emit_stack_save. If it is zero, we have nothing to do. */
1067 void
1068 emit_stack_restore (enum save_level save_level, rtx sa)
1070 /* The default is that we use a move insn. */
1071 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1073 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1074 STACK_POINTER and HARD_FRAME_POINTER.
1075 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1076 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1077 aligned variables, which is reflected in ix86_can_eliminate.
1078 We normally still have the realigned STACK_POINTER that we can use.
1079 But if there is a stack restore still present at reload, it can trigger
1080 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1081 FRAME_POINTER into a hard reg.
1082 To prevent this situation, we force need_drap if we emit a stack
1083 restore. */
1084 if (SUPPORTS_STACK_ALIGNMENT)
1085 crtl->need_drap = true;
1087 /* See if this machine has anything special to do for this kind of save. */
1088 switch (save_level)
1090 case SAVE_BLOCK:
1091 if (targetm.have_restore_stack_block ())
1092 fcn = targetm.gen_restore_stack_block;
1093 break;
1094 case SAVE_FUNCTION:
1095 if (targetm.have_restore_stack_function ())
1096 fcn = targetm.gen_restore_stack_function;
1097 break;
1098 case SAVE_NONLOCAL:
1099 if (targetm.have_restore_stack_nonlocal ())
1100 fcn = targetm.gen_restore_stack_nonlocal;
1101 break;
1102 default:
1103 break;
1106 if (sa != 0)
1108 sa = validize_mem (sa);
1109 /* These clobbers prevent the scheduler from moving
1110 references to variable arrays below the code
1111 that deletes (pops) the arrays. */
1112 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1113 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1116 discard_pending_stack_adjust ();
1118 emit_insn (fcn (stack_pointer_rtx, sa));
1121 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1122 function. This should be called whenever we allocate or deallocate
1123 dynamic stack space. */
1125 void
1126 update_nonlocal_goto_save_area (void)
1128 tree t_save;
1129 rtx r_save;
1131 /* The nonlocal_goto_save_area object is an array of N pointers. The
1132 first one is used for the frame pointer save; the rest are sized by
1133 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1134 of the stack save area slots. */
1135 t_save = build4 (ARRAY_REF,
1136 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1137 cfun->nonlocal_goto_save_area,
1138 integer_one_node, NULL_TREE, NULL_TREE);
1139 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1141 emit_stack_save (SAVE_NONLOCAL, &r_save);
1144 /* Record a new stack level for the current function. This should be called
1145 whenever we allocate or deallocate dynamic stack space. */
1147 void
1148 record_new_stack_level (void)
1150 /* Record the new stack level for nonlocal gotos. */
1151 if (cfun->nonlocal_goto_save_area)
1152 update_nonlocal_goto_save_area ();
1154 /* Record the new stack level for SJLJ exceptions. */
1155 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1156 update_sjlj_context ();
1159 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET. */
1160 static rtx
1161 align_dynamic_address (rtx target, unsigned required_align)
1163 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1164 but we know it can't. So add ourselves and then do
1165 TRUNC_DIV_EXPR. */
1166 target = expand_binop (Pmode, add_optab, target,
1167 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1168 Pmode),
1169 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1170 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1171 gen_int_mode (required_align / BITS_PER_UNIT,
1172 Pmode),
1173 NULL_RTX, 1);
1174 target = expand_mult (Pmode, target,
1175 gen_int_mode (required_align / BITS_PER_UNIT,
1176 Pmode),
1177 NULL_RTX, 1);
1179 return target;
1182 /* Return an rtx through *PSIZE, representing the size of an area of memory to
1183 be dynamically pushed on the stack.
1185 *PSIZE is an rtx representing the size of the area.
1187 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1188 parameter may be zero. If so, a proper value will be extracted
1189 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1191 REQUIRED_ALIGN is the alignment (in bits) required for the region
1192 of memory.
1194 If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
1195 the additional size returned. */
1196 void
1197 get_dynamic_stack_size (rtx *psize, unsigned size_align,
1198 unsigned required_align,
1199 HOST_WIDE_INT *pstack_usage_size)
1201 unsigned extra = 0;
1202 rtx size = *psize;
1204 /* Ensure the size is in the proper mode. */
1205 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1206 size = convert_to_mode (Pmode, size, 1);
1208 if (CONST_INT_P (size))
1210 unsigned HOST_WIDE_INT lsb;
1212 lsb = INTVAL (size);
1213 lsb &= -lsb;
1215 /* Watch out for overflow truncating to "unsigned". */
1216 if (lsb > UINT_MAX / BITS_PER_UNIT)
1217 size_align = 1u << (HOST_BITS_PER_INT - 1);
1218 else
1219 size_align = (unsigned)lsb * BITS_PER_UNIT;
1221 else if (size_align < BITS_PER_UNIT)
1222 size_align = BITS_PER_UNIT;
1224 /* We can't attempt to minimize alignment necessary, because we don't
1225 know the final value of preferred_stack_boundary yet while executing
1226 this code. */
1227 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1228 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1230 /* We will need to ensure that the address we return is aligned to
1231 REQUIRED_ALIGN. At this point in the compilation, we don't always
1232 know the final value of the STACK_DYNAMIC_OFFSET used in function.c
1233 (it might depend on the size of the outgoing parameter lists, for
1234 example), so we must preventively align the value. We leave space
1235 in SIZE for the hole that might result from the alignment operation. */
1237 extra = (required_align - BITS_PER_UNIT) / BITS_PER_UNIT;
1238 size = plus_constant (Pmode, size, extra);
1239 size = force_operand (size, NULL_RTX);
1241 if (flag_stack_usage_info && pstack_usage_size)
1242 *pstack_usage_size += extra;
1244 if (extra && size_align > BITS_PER_UNIT)
1245 size_align = BITS_PER_UNIT;
1247 /* Round the size to a multiple of the required stack alignment.
1248 Since the stack is presumed to be rounded before this allocation,
1249 this will maintain the required alignment.
1251 If the stack grows downward, we could save an insn by subtracting
1252 SIZE from the stack pointer and then aligning the stack pointer.
1253 The problem with this is that the stack pointer may be unaligned
1254 between the execution of the subtraction and alignment insns and
1255 some machines do not allow this. Even on those that do, some
1256 signal handlers malfunction if a signal should occur between those
1257 insns. Since this is an extremely rare event, we have no reliable
1258 way of knowing which systems have this problem. So we avoid even
1259 momentarily mis-aligning the stack. */
1260 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1262 size = round_push (size);
1264 if (flag_stack_usage_info && pstack_usage_size)
1266 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1267 *pstack_usage_size =
1268 (*pstack_usage_size + align - 1) / align * align;
1272 *psize = size;
1275 /* Return an rtx representing the address of an area of memory dynamically
1276 pushed on the stack.
1278 Any required stack pointer alignment is preserved.
1280 SIZE is an rtx representing the size of the area.
1282 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1283 parameter may be zero. If so, a proper value will be extracted
1284 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1286 REQUIRED_ALIGN is the alignment (in bits) required for the region
1287 of memory.
1289 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1290 stack space allocated by the generated code cannot be added with itself
1291 in the course of the execution of the function. It is always safe to
1292 pass FALSE here and the following criterion is sufficient in order to
1293 pass TRUE: every path in the CFG that starts at the allocation point and
1294 loops to it executes the associated deallocation code. */
1297 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1298 unsigned required_align, bool cannot_accumulate)
1300 HOST_WIDE_INT stack_usage_size = -1;
1301 rtx_code_label *final_label;
1302 rtx final_target, target;
1304 /* If we're asking for zero bytes, it doesn't matter what we point
1305 to since we can't dereference it. But return a reasonable
1306 address anyway. */
1307 if (size == const0_rtx)
1308 return virtual_stack_dynamic_rtx;
1310 /* Otherwise, show we're calling alloca or equivalent. */
1311 cfun->calls_alloca = 1;
1313 /* If stack usage info is requested, look into the size we are passed.
1314 We need to do so this early to avoid the obfuscation that may be
1315 introduced later by the various alignment operations. */
1316 if (flag_stack_usage_info)
1318 if (CONST_INT_P (size))
1319 stack_usage_size = INTVAL (size);
1320 else if (REG_P (size))
1322 /* Look into the last emitted insn and see if we can deduce
1323 something for the register. */
1324 rtx_insn *insn;
1325 rtx set, note;
1326 insn = get_last_insn ();
1327 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1329 if (CONST_INT_P (SET_SRC (set)))
1330 stack_usage_size = INTVAL (SET_SRC (set));
1331 else if ((note = find_reg_equal_equiv_note (insn))
1332 && CONST_INT_P (XEXP (note, 0)))
1333 stack_usage_size = INTVAL (XEXP (note, 0));
1337 /* If the size is not constant, we can't say anything. */
1338 if (stack_usage_size == -1)
1340 current_function_has_unbounded_dynamic_stack_size = 1;
1341 stack_usage_size = 0;
1345 get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size);
1347 target = gen_reg_rtx (Pmode);
1349 /* The size is supposed to be fully adjusted at this point so record it
1350 if stack usage info is requested. */
1351 if (flag_stack_usage_info)
1353 current_function_dynamic_stack_size += stack_usage_size;
1355 /* ??? This is gross but the only safe stance in the absence
1356 of stack usage oriented flow analysis. */
1357 if (!cannot_accumulate)
1358 current_function_has_unbounded_dynamic_stack_size = 1;
1361 do_pending_stack_adjust ();
1363 final_label = NULL;
1364 final_target = NULL_RTX;
1366 /* If we are splitting the stack, we need to ask the backend whether
1367 there is enough room on the current stack. If there isn't, or if
1368 the backend doesn't know how to tell is, then we need to call a
1369 function to allocate memory in some other way. This memory will
1370 be released when we release the current stack segment. The
1371 effect is that stack allocation becomes less efficient, but at
1372 least it doesn't cause a stack overflow. */
1373 if (flag_split_stack)
1375 rtx_code_label *available_label;
1376 rtx ask, space, func;
1378 available_label = NULL;
1380 if (targetm.have_split_stack_space_check ())
1382 available_label = gen_label_rtx ();
1384 /* This instruction will branch to AVAILABLE_LABEL if there
1385 are SIZE bytes available on the stack. */
1386 emit_insn (targetm.gen_split_stack_space_check
1387 (size, available_label));
1390 /* The __morestack_allocate_stack_space function will allocate
1391 memory using malloc. If the alignment of the memory returned
1392 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1393 make sure we allocate enough space. */
1394 if (MALLOC_ABI_ALIGNMENT >= required_align)
1395 ask = size;
1396 else
1397 ask = expand_binop (Pmode, add_optab, size,
1398 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1399 Pmode),
1400 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1402 func = init_one_libfunc ("__morestack_allocate_stack_space");
1404 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1405 1, ask, Pmode);
1407 if (available_label == NULL_RTX)
1408 return space;
1410 final_target = gen_reg_rtx (Pmode);
1412 emit_move_insn (final_target, space);
1414 final_label = gen_label_rtx ();
1415 emit_jump (final_label);
1417 emit_label (available_label);
1420 /* We ought to be called always on the toplevel and stack ought to be aligned
1421 properly. */
1422 gcc_assert (!(stack_pointer_delta
1423 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1425 /* If needed, check that we have the required amount of stack. Take into
1426 account what has already been checked. */
1427 if (STACK_CHECK_MOVING_SP)
1429 else if (flag_stack_check == GENERIC_STACK_CHECK)
1430 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1431 size);
1432 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1433 probe_stack_range (STACK_CHECK_PROTECT, size);
1435 /* Don't let anti_adjust_stack emit notes. */
1436 suppress_reg_args_size = true;
1438 /* Perform the required allocation from the stack. Some systems do
1439 this differently than simply incrementing/decrementing from the
1440 stack pointer, such as acquiring the space by calling malloc(). */
1441 if (targetm.have_allocate_stack ())
1443 struct expand_operand ops[2];
1444 /* We don't have to check against the predicate for operand 0 since
1445 TARGET is known to be a pseudo of the proper mode, which must
1446 be valid for the operand. */
1447 create_fixed_operand (&ops[0], target);
1448 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1449 expand_insn (targetm.code_for_allocate_stack, 2, ops);
1451 else
1453 int saved_stack_pointer_delta;
1455 if (!STACK_GROWS_DOWNWARD)
1456 emit_move_insn (target, virtual_stack_dynamic_rtx);
1458 /* Check stack bounds if necessary. */
1459 if (crtl->limit_stack)
1461 rtx available;
1462 rtx_code_label *space_available = gen_label_rtx ();
1463 if (STACK_GROWS_DOWNWARD)
1464 available = expand_binop (Pmode, sub_optab,
1465 stack_pointer_rtx, stack_limit_rtx,
1466 NULL_RTX, 1, OPTAB_WIDEN);
1467 else
1468 available = expand_binop (Pmode, sub_optab,
1469 stack_limit_rtx, stack_pointer_rtx,
1470 NULL_RTX, 1, OPTAB_WIDEN);
1472 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1473 space_available);
1474 if (targetm.have_trap ())
1475 emit_insn (targetm.gen_trap ());
1476 else
1477 error ("stack limits not supported on this target");
1478 emit_barrier ();
1479 emit_label (space_available);
1482 saved_stack_pointer_delta = stack_pointer_delta;
1484 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1485 anti_adjust_stack_and_probe (size, false);
1486 else
1487 anti_adjust_stack (size);
1489 /* Even if size is constant, don't modify stack_pointer_delta.
1490 The constant size alloca should preserve
1491 crtl->preferred_stack_boundary alignment. */
1492 stack_pointer_delta = saved_stack_pointer_delta;
1494 if (STACK_GROWS_DOWNWARD)
1495 emit_move_insn (target, virtual_stack_dynamic_rtx);
1498 suppress_reg_args_size = false;
1500 /* Finish up the split stack handling. */
1501 if (final_label != NULL_RTX)
1503 gcc_assert (flag_split_stack);
1504 emit_move_insn (final_target, target);
1505 emit_label (final_label);
1506 target = final_target;
1509 target = align_dynamic_address (target, required_align);
1511 /* Now that we've committed to a return value, mark its alignment. */
1512 mark_reg_pointer (target, required_align);
1514 /* Record the new stack level. */
1515 record_new_stack_level ();
1517 return target;
1520 /* Return an rtx representing the address of an area of memory already
1521 statically pushed onto the stack in the virtual stack vars area. (It is
1522 assumed that the area is allocated in the function prologue.)
1524 Any required stack pointer alignment is preserved.
1526 OFFSET is the offset of the area into the virtual stack vars area.
1528 REQUIRED_ALIGN is the alignment (in bits) required for the region
1529 of memory. */
1532 get_dynamic_stack_base (HOST_WIDE_INT offset, unsigned required_align)
1534 rtx target;
1536 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1537 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1539 target = gen_reg_rtx (Pmode);
1540 emit_move_insn (target, virtual_stack_vars_rtx);
1541 target = expand_binop (Pmode, add_optab, target,
1542 gen_int_mode (offset, Pmode),
1543 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1544 target = align_dynamic_address (target, required_align);
1546 /* Now that we've committed to a return value, mark its alignment. */
1547 mark_reg_pointer (target, required_align);
1549 return target;
1552 /* A front end may want to override GCC's stack checking by providing a
1553 run-time routine to call to check the stack, so provide a mechanism for
1554 calling that routine. */
1556 static GTY(()) rtx stack_check_libfunc;
1558 void
1559 set_stack_check_libfunc (const char *libfunc_name)
1561 gcc_assert (stack_check_libfunc == NULL_RTX);
1562 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1565 /* Emit one stack probe at ADDRESS, an address within the stack. */
1567 void
1568 emit_stack_probe (rtx address)
1570 if (targetm.have_probe_stack_address ())
1571 emit_insn (targetm.gen_probe_stack_address (address));
1572 else
1574 rtx memref = gen_rtx_MEM (word_mode, address);
1576 MEM_VOLATILE_P (memref) = 1;
1578 /* See if we have an insn to probe the stack. */
1579 if (targetm.have_probe_stack ())
1580 emit_insn (targetm.gen_probe_stack (memref));
1581 else
1582 emit_move_insn (memref, const0_rtx);
1586 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1587 FIRST is a constant and size is a Pmode RTX. These are offsets from
1588 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1589 or subtract them from the stack pointer. */
1591 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1593 #if STACK_GROWS_DOWNWARD
1594 #define STACK_GROW_OP MINUS
1595 #define STACK_GROW_OPTAB sub_optab
1596 #define STACK_GROW_OFF(off) -(off)
1597 #else
1598 #define STACK_GROW_OP PLUS
1599 #define STACK_GROW_OPTAB add_optab
1600 #define STACK_GROW_OFF(off) (off)
1601 #endif
1603 void
1604 probe_stack_range (HOST_WIDE_INT first, rtx size)
1606 /* First ensure SIZE is Pmode. */
1607 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1608 size = convert_to_mode (Pmode, size, 1);
1610 /* Next see if we have a function to check the stack. */
1611 if (stack_check_libfunc)
1613 rtx addr = memory_address (Pmode,
1614 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1615 stack_pointer_rtx,
1616 plus_constant (Pmode,
1617 size, first)));
1618 emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode, 1, addr,
1619 Pmode);
1622 /* Next see if we have an insn to check the stack. */
1623 else if (targetm.have_check_stack ())
1625 struct expand_operand ops[1];
1626 rtx addr = memory_address (Pmode,
1627 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1628 stack_pointer_rtx,
1629 plus_constant (Pmode,
1630 size, first)));
1631 bool success;
1632 create_input_operand (&ops[0], addr, Pmode);
1633 success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
1634 gcc_assert (success);
1637 /* Otherwise we have to generate explicit probes. If we have a constant
1638 small number of them to generate, that's the easy case. */
1639 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1641 HOST_WIDE_INT isize = INTVAL (size), i;
1642 rtx addr;
1644 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1645 it exceeds SIZE. If only one probe is needed, this will not
1646 generate any code. Then probe at FIRST + SIZE. */
1647 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1649 addr = memory_address (Pmode,
1650 plus_constant (Pmode, stack_pointer_rtx,
1651 STACK_GROW_OFF (first + i)));
1652 emit_stack_probe (addr);
1655 addr = memory_address (Pmode,
1656 plus_constant (Pmode, stack_pointer_rtx,
1657 STACK_GROW_OFF (first + isize)));
1658 emit_stack_probe (addr);
1661 /* In the variable case, do the same as above, but in a loop. Note that we
1662 must be extra careful with variables wrapping around because we might be
1663 at the very top (or the very bottom) of the address space and we have to
1664 be able to handle this case properly; in particular, we use an equality
1665 test for the loop condition. */
1666 else
1668 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1669 rtx_code_label *loop_lab = gen_label_rtx ();
1670 rtx_code_label *end_lab = gen_label_rtx ();
1672 /* Step 1: round SIZE to the previous multiple of the interval. */
1674 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1675 rounded_size
1676 = simplify_gen_binary (AND, Pmode, size,
1677 gen_int_mode (-PROBE_INTERVAL, Pmode));
1678 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1681 /* Step 2: compute initial and final value of the loop counter. */
1683 /* TEST_ADDR = SP + FIRST. */
1684 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1685 stack_pointer_rtx,
1686 gen_int_mode (first, Pmode)),
1687 NULL_RTX);
1689 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1690 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1691 test_addr,
1692 rounded_size_op), NULL_RTX);
1695 /* Step 3: the loop
1697 while (TEST_ADDR != LAST_ADDR)
1699 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1700 probe at TEST_ADDR
1703 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1704 until it is equal to ROUNDED_SIZE. */
1706 emit_label (loop_lab);
1708 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1709 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1710 end_lab);
1712 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1713 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1714 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1715 1, OPTAB_WIDEN);
1717 gcc_assert (temp == test_addr);
1719 /* Probe at TEST_ADDR. */
1720 emit_stack_probe (test_addr);
1722 emit_jump (loop_lab);
1724 emit_label (end_lab);
1727 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1728 that SIZE is equal to ROUNDED_SIZE. */
1730 /* TEMP = SIZE - ROUNDED_SIZE. */
1731 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1732 if (temp != const0_rtx)
1734 rtx addr;
1736 if (CONST_INT_P (temp))
1738 /* Use [base + disp} addressing mode if supported. */
1739 HOST_WIDE_INT offset = INTVAL (temp);
1740 addr = memory_address (Pmode,
1741 plus_constant (Pmode, last_addr,
1742 STACK_GROW_OFF (offset)));
1744 else
1746 /* Manual CSE if the difference is not known at compile-time. */
1747 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1748 addr = memory_address (Pmode,
1749 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1750 last_addr, temp));
1753 emit_stack_probe (addr);
1757 /* Make sure nothing is scheduled before we are done. */
1758 emit_insn (gen_blockage ());
1761 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1762 while probing it. This pushes when SIZE is positive. SIZE need not
1763 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1764 by plus SIZE at the end. */
1766 void
1767 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1769 /* We skip the probe for the first interval + a small dope of 4 words and
1770 probe that many bytes past the specified size to maintain a protection
1771 area at the botton of the stack. */
1772 const int dope = 4 * UNITS_PER_WORD;
1774 /* First ensure SIZE is Pmode. */
1775 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1776 size = convert_to_mode (Pmode, size, 1);
1778 /* If we have a constant small number of probes to generate, that's the
1779 easy case. */
1780 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1782 HOST_WIDE_INT isize = INTVAL (size), i;
1783 bool first_probe = true;
1785 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1786 values of N from 1 until it exceeds SIZE. If only one probe is
1787 needed, this will not generate any code. Then adjust and probe
1788 to PROBE_INTERVAL + SIZE. */
1789 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1791 if (first_probe)
1793 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1794 first_probe = false;
1796 else
1797 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1798 emit_stack_probe (stack_pointer_rtx);
1801 if (first_probe)
1802 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1803 else
1804 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1805 emit_stack_probe (stack_pointer_rtx);
1808 /* In the variable case, do the same as above, but in a loop. Note that we
1809 must be extra careful with variables wrapping around because we might be
1810 at the very top (or the very bottom) of the address space and we have to
1811 be able to handle this case properly; in particular, we use an equality
1812 test for the loop condition. */
1813 else
1815 rtx rounded_size, rounded_size_op, last_addr, temp;
1816 rtx_code_label *loop_lab = gen_label_rtx ();
1817 rtx_code_label *end_lab = gen_label_rtx ();
1820 /* Step 1: round SIZE to the previous multiple of the interval. */
1822 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1823 rounded_size
1824 = simplify_gen_binary (AND, Pmode, size,
1825 gen_int_mode (-PROBE_INTERVAL, Pmode));
1826 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1829 /* Step 2: compute initial and final value of the loop counter. */
1831 /* SP = SP_0 + PROBE_INTERVAL. */
1832 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1834 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1835 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1836 stack_pointer_rtx,
1837 rounded_size_op), NULL_RTX);
1840 /* Step 3: the loop
1842 while (SP != LAST_ADDR)
1844 SP = SP + PROBE_INTERVAL
1845 probe at SP
1848 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1849 values of N from 1 until it is equal to ROUNDED_SIZE. */
1851 emit_label (loop_lab);
1853 /* Jump to END_LAB if SP == LAST_ADDR. */
1854 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1855 Pmode, 1, end_lab);
1857 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1858 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1859 emit_stack_probe (stack_pointer_rtx);
1861 emit_jump (loop_lab);
1863 emit_label (end_lab);
1866 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1867 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1869 /* TEMP = SIZE - ROUNDED_SIZE. */
1870 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1871 if (temp != const0_rtx)
1873 /* Manual CSE if the difference is not known at compile-time. */
1874 if (GET_CODE (temp) != CONST_INT)
1875 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1876 anti_adjust_stack (temp);
1877 emit_stack_probe (stack_pointer_rtx);
1881 /* Adjust back and account for the additional first interval. */
1882 if (adjust_back)
1883 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1884 else
1885 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1888 /* Return an rtx representing the register or memory location
1889 in which a scalar value of data type VALTYPE
1890 was returned by a function call to function FUNC.
1891 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1892 function is known, otherwise 0.
1893 OUTGOING is 1 if on a machine with register windows this function
1894 should return the register in which the function will put its result
1895 and 0 otherwise. */
1898 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1899 int outgoing ATTRIBUTE_UNUSED)
1901 rtx val;
1903 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1905 if (REG_P (val)
1906 && GET_MODE (val) == BLKmode)
1908 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1909 machine_mode tmpmode;
1911 /* int_size_in_bytes can return -1. We don't need a check here
1912 since the value of bytes will then be large enough that no
1913 mode will match anyway. */
1915 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1916 tmpmode != VOIDmode;
1917 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1919 /* Have we found a large enough mode? */
1920 if (GET_MODE_SIZE (tmpmode) >= bytes)
1921 break;
1924 /* No suitable mode found. */
1925 gcc_assert (tmpmode != VOIDmode);
1927 PUT_MODE (val, tmpmode);
1929 return val;
1932 /* Return an rtx representing the register or memory location
1933 in which a scalar value of mode MODE was returned by a library call. */
1936 hard_libcall_value (machine_mode mode, rtx fun)
1938 return targetm.calls.libcall_value (mode, fun);
1941 /* Look up the tree code for a given rtx code
1942 to provide the arithmetic operation for real_arithmetic.
1943 The function returns an int because the caller may not know
1944 what `enum tree_code' means. */
1947 rtx_to_tree_code (enum rtx_code code)
1949 enum tree_code tcode;
1951 switch (code)
1953 case PLUS:
1954 tcode = PLUS_EXPR;
1955 break;
1956 case MINUS:
1957 tcode = MINUS_EXPR;
1958 break;
1959 case MULT:
1960 tcode = MULT_EXPR;
1961 break;
1962 case DIV:
1963 tcode = RDIV_EXPR;
1964 break;
1965 case SMIN:
1966 tcode = MIN_EXPR;
1967 break;
1968 case SMAX:
1969 tcode = MAX_EXPR;
1970 break;
1971 default:
1972 tcode = LAST_AND_UNUSED_TREE_CODE;
1973 break;
1975 return ((int) tcode);
1978 #include "gt-explow.h"