1 /* Output Dwarf format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 2002,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Ron Guilmette (rfg@monkeys.com) of Network Computing Devices.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 Notes on the GNU Implementation of DWARF Debugging Information
26 --------------------------------------------------------------
27 Last Major Update: Sun Jul 17 08:17:42 PDT 1994 by rfg@segfault.us.com
28 ------------------------------------------------------------
30 This file describes special and unique aspects of the GNU implementation of
31 the DWARF Version 1 debugging information language, as provided in the GNU
32 version 2.x compiler(s).
34 For general information about the DWARF debugging information language,
35 you should obtain the DWARF version 1.1 specification document (and perhaps
36 also the DWARF version 2 draft specification document) developed by the
37 (now defunct) UNIX International Programming Languages Special Interest Group.
39 To obtain a copy of the DWARF Version 1 and/or DWARF Version 2
40 specification, visit the web page for the DWARF Version 2 committee, at
42 http://www.eagercon.com/dwarf/dwarf2std.htm
44 The generation of DWARF debugging information by the GNU version 2.x C
45 compiler has now been tested rather extensively for m88k, i386, i860, and
46 SPARC targets. The DWARF output of the GNU C compiler appears to inter-
47 operate well with the standard SVR4 SDB debugger on these kinds of target
48 systems (but of course, there are no guarantees).
50 DWARF 1 generation for the GNU g++ compiler is implemented, but limited.
51 C++ users should definitely use DWARF 2 instead.
53 Future plans for the dwarfout.c module of the GNU compiler(s) includes the
54 addition of full support for GNU FORTRAN. (This should, in theory, be a
55 lot simpler to add than adding support for g++... but we'll see.)
57 Many features of the DWARF version 2 specification have been adapted to
58 (and used in) the GNU implementation of DWARF (version 1). In most of
59 these cases, a DWARF version 2 approach is used in place of (or in addition
60 to) DWARF version 1 stuff simply because it is apparent that DWARF version
61 1 is not sufficiently expressive to provide the kinds of information which
62 may be necessary to support really robust debugging. In all of these cases
63 however, the use of DWARF version 2 features should not interfere in any
64 way with the interoperability (of GNU compilers) with generally available
65 "classic" (pre version 1) DWARF consumer tools (e.g. SVR4 SDB).
67 The DWARF generation enhancement for the GNU compiler(s) was initially
68 donated to the Free Software Foundation by Network Computing Devices.
69 (Thanks NCD!) Additional development and maintenance of dwarfout.c has
70 been largely supported (i.e. funded) by Intel Corporation. (Thanks Intel!)
72 If you have questions or comments about the DWARF generation feature, please
73 send mail to me <rfg@netcom.com>. I will be happy to investigate any bugs
74 reported and I may even provide fixes (but of course, I can make no promises).
76 The DWARF debugging information produced by GCC may deviate in a few minor
77 (but perhaps significant) respects from the DWARF debugging information
78 currently produced by other C compilers. A serious attempt has been made
79 however to conform to the published specifications, to existing practice,
80 and to generally accepted norms in the GNU implementation of DWARF.
82 ** IMPORTANT NOTE ** ** IMPORTANT NOTE ** ** IMPORTANT NOTE **
84 Under normal circumstances, the DWARF information generated by the GNU
85 compilers (in an assembly language file) is essentially impossible for
86 a human being to read. This fact can make it very difficult to debug
87 certain DWARF-related problems. In order to overcome this difficulty,
88 a feature has been added to dwarfout.c (enabled by the -dA
89 option) which causes additional comments to be placed into the assembly
90 language output file, out to the right-hand side of most bits of DWARF
91 material. The comments indicate (far more clearly that the obscure
92 DWARF hex codes do) what is actually being encoded in DWARF. Thus, the
93 -dA option can be highly useful for those who must study the
94 DWARF output from the GNU compilers in detail.
98 (Footnote: Within this file, the term `Debugging Information Entry' will
99 be abbreviated as `DIE'.)
102 Release Notes (aka known bugs)
103 -------------------------------
105 In one very obscure case involving dynamically sized arrays, the DWARF
106 "location information" for such an array may make it appear that the
107 array has been totally optimized out of existence, when in fact it
108 *must* actually exist. (This only happens when you are using *both* -g
109 *and* -O.) This is due to aggressive dead store elimination in the
110 compiler, and to the fact that the DECL_RTL expressions associated with
111 variables are not always updated to correctly reflect the effects of
112 GCC's aggressive dead store elimination.
114 -------------------------------
116 When attempting to set a breakpoint at the "start" of a function compiled
117 with -g1, the debugger currently has no way of knowing exactly where the
118 end of the prologue code for the function is. Thus, for most targets,
119 all the debugger can do is to set the breakpoint at the AT_low_pc address
120 for the function. But if you stop there and then try to look at one or
121 more of the formal parameter values, they may not have been "homed" yet,
122 so you may get inaccurate answers (or perhaps even addressing errors).
124 Some people may consider this simply a non-feature, but I consider it a
125 bug, and I hope to provide some GNU-specific attributes (on function
126 DIEs) which will specify the address of the end of the prologue and the
127 address of the beginning of the epilogue in a future release.
129 -------------------------------
131 It is believed at this time that old bugs relating to the AT_bit_offset
132 values for bit-fields have been fixed.
134 There may still be some very obscure bugs relating to the DWARF description
135 of type `long long' bit-fields for target machines (e.g. 80x86 machines)
136 where the alignment of type `long long' data objects is different from
137 (and less than) the size of a type `long long' data object.
139 Please report any problems with the DWARF description of bit-fields as you
140 would any other GCC bug. (Procedures for bug reporting are given in the
141 GNU C compiler manual.)
143 --------------------------------
145 At this time, GCC does not know how to handle the GNU C "nested functions"
146 extension. (See the GCC manual for more info on this extension to ANSI C.)
148 --------------------------------
150 The GNU compilers now represent inline functions (and inlined instances
151 thereof) in exactly the manner described by the current DWARF version 2
152 (draft) specification. The version 1 specification for handling inline
153 functions (and inlined instances) was known to be brain-damaged (by the
154 PLSIG) when the version 1 spec was finalized, but it was simply too late
155 in the cycle to get it removed before the version 1 spec was formally
156 released to the public (by UI).
158 --------------------------------
160 At this time, GCC does not generate the kind of really precise information
161 about the exact declared types of entities with signed integral types which
162 is required by the current DWARF draft specification.
164 Specifically, the current DWARF draft specification seems to require that
165 the type of a non-unsigned integral bit-field member of a struct or union
166 type be represented as either a "signed" type or as a "plain" type,
167 depending upon the exact set of keywords that were used in the
168 type specification for the given bit-field member. It was felt (by the
169 UI/PLSIG) that this distinction between "plain" and "signed" integral types
170 could have some significance (in the case of bit-fields) because ANSI C
171 does not constrain the signedness of a plain bit-field, whereas it does
172 constrain the signedness of an explicitly "signed" bit-field. For this
173 reason, the current DWARF specification calls for compilers to produce
174 type information (for *all* integral typed entities... not just bit-fields)
175 which explicitly indicates the signedness of the relevant type to be
176 "signed" or "plain" or "unsigned".
178 Unfortunately, the GNU DWARF implementation is currently incapable of making
181 --------------------------------
184 Known Interoperability Problems
185 -------------------------------
187 Although the GNU implementation of DWARF conforms (for the most part) with
188 the current UI/PLSIG DWARF version 1 specification (with many compatible
189 version 2 features added in as "vendor specific extensions" just for good
190 measure) there are a few known cases where GCC's DWARF output can cause
191 some confusion for "classic" (pre version 1) DWARF consumers such as the
192 System V Release 4 SDB debugger. These cases are described in this section.
194 --------------------------------
196 The DWARF version 1 specification includes the fundamental type codes
197 FT_ext_prec_float, FT_complex, FT_dbl_prec_complex, and FT_ext_prec_complex.
198 Since GNU C is only a C compiler (and since C doesn't provide any "complex"
199 data types) the only one of these fundamental type codes which GCC ever
200 generates is FT_ext_prec_float. This fundamental type code is generated
201 by GCC for the `long double' data type. Unfortunately, due to an apparent
202 bug in the SVR4 SDB debugger, SDB can become very confused wherever any
203 attempt is made to print a variable, parameter, or field whose type was
204 given in terms of FT_ext_prec_float.
206 (Actually, SVR4 SDB fails to understand *any* of the four fundamental type
207 codes mentioned here. This will fact will cause additional problems when
208 there is a GNU FORTRAN front-end.)
210 --------------------------------
212 In general, it appears that SVR4 SDB is not able to effectively ignore
213 fundamental type codes in the "implementation defined" range. This can
214 cause problems when a program being debugged uses the `long long' data
215 type (or the signed or unsigned varieties thereof) because these types
216 are not defined by ANSI C, and thus, GCC must use its own private fundamental
217 type codes (from the implementation-defined range) to represent these types.
219 --------------------------------
222 General GNU DWARF extensions
223 ----------------------------
225 In the current DWARF version 1 specification, no mechanism is specified by
226 which accurate information about executable code from include files can be
227 properly (and fully) described. (The DWARF version 2 specification *does*
228 specify such a mechanism, but it is about 10 times more complicated than
229 it needs to be so I'm not terribly anxious to try to implement it right
232 In the GNU implementation of DWARF version 1, a fully downward-compatible
233 extension has been implemented which permits the GNU compilers to specify
234 which executable lines come from which files. This extension places
235 additional information (about source file names) in GNU-specific sections
236 (which should be totally ignored by all non-GNU DWARF consumers) so that
237 this extended information can be provided (to GNU DWARF consumers) in a way
238 which is totally transparent (and invisible) to non-GNU DWARF consumers
239 (e.g. the SVR4 SDB debugger). The additional information is placed *only*
240 in specialized GNU-specific sections, where it should never even be seen
241 by non-GNU DWARF consumers.
243 To understand this GNU DWARF extension, imagine that the sequence of entries
244 in the .lines section is broken up into several subsections. Each contiguous
245 sequence of .line entries which relates to a sequence of lines (or statements)
246 from one particular file (either a `base' file or an `include' file) could
247 be called a `line entries chunk' (LEC).
249 For each LEC there is one entry in the .debug_srcinfo section.
251 Each normal entry in the .debug_srcinfo section consists of two 4-byte
252 words of data as follows:
254 (1) The starting address (relative to the entire .line section)
255 of the first .line entry in the relevant LEC.
257 (2) The starting address (relative to the entire .debug_sfnames
258 section) of a NUL terminated string representing the
259 relevant filename. (This filename name be either a
260 relative or an absolute filename, depending upon how the
261 given source file was located during compilation.)
263 Obviously, each .debug_srcinfo entry allows you to find the relevant filename,
264 and it also points you to the first .line entry that was generated as a result
265 of having compiled a given source line from the given source file.
267 Each subsequent .line entry should also be assumed to have been produced
268 as a result of compiling yet more lines from the same file. The end of
269 any given LEC is easily found by looking at the first 4-byte pointer in
270 the *next* .debug_srcinfo entry. That next .debug_srcinfo entry points
271 to a new and different LEC, so the preceding LEC (implicitly) must have
272 ended with the last .line section entry which occurs at the 2 1/2 words
273 just before the address given in the first pointer of the new .debug_srcinfo
276 The following picture may help to clarify this feature. Let's assume that
277 `LE' stands for `.line entry'. Also, assume that `* 'stands for a pointer.
280 .line section .debug_srcinfo section .debug_sfnames section
281 ----------------------------------------------------------------
283 LE <---------------------- *
284 LE * -----------------> "foobar.c" <---
287 LE <---------------------- * |
288 LE * -----------------> "foobar.h" <| |
291 LE <---------------------- * | |
292 LE * -----------------> "inner.h" | |
294 LE <---------------------- * | |
295 LE * ------------------------------- |
300 LE <---------------------- * |
301 LE * -----------------------------------
306 In effect, each entry in the .debug_srcinfo section points to *both* a
307 filename (in the .debug_sfnames section) and to the start of a block of
308 consecutive LEs (in the .line section).
310 Note that just like in the .line section, there are specialized first and
311 last entries in the .debug_srcinfo section for each object file. These
312 special first and last entries for the .debug_srcinfo section are very
313 different from the normal .debug_srcinfo section entries. They provide
314 additional information which may be helpful to a debugger when it is
315 interpreting the data in the .debug_srcinfo, .debug_sfnames, and .line
318 The first entry in the .debug_srcinfo section for each compilation unit
319 consists of five 4-byte words of data. The contents of these five words
320 should be interpreted (by debuggers) as follows:
322 (1) The starting address (relative to the entire .line section)
323 of the .line section for this compilation unit.
325 (2) The starting address (relative to the entire .debug_sfnames
326 section) of the .debug_sfnames section for this compilation
329 (3) The starting address (in the execution virtual address space)
330 of the .text section for this compilation unit.
332 (4) The ending address plus one (in the execution virtual address
333 space) of the .text section for this compilation unit.
335 (5) The date/time (in seconds since midnight 1/1/70) at which the
336 compilation of this compilation unit occurred. This value
337 should be interpreted as an unsigned quantity because gcc
338 might be configured to generate a default value of 0xffffffff
339 in this field (in cases where it is desired to have object
340 files created at different times from identical source files
341 be byte-for-byte identical). By default, these timestamps
342 are *not* generated by dwarfout.c (so that object files
343 compiled at different times will be byte-for-byte identical).
344 If you wish to enable this "timestamp" feature however, you
345 can simply place a #define for the symbol `DWARF_TIMESTAMPS'
346 in your target configuration file and then rebuild the GNU
349 Note that the first string placed into the .debug_sfnames section for each
350 compilation unit is the name of the directory in which compilation occurred.
351 This string ends with a `/' (to help indicate that it is the pathname of a
352 directory). Thus, the second word of each specialized initial .debug_srcinfo
353 entry for each compilation unit may be used as a pointer to the (string)
354 name of the compilation directory, and that string may in turn be used to
355 "absolutize" any relative pathnames which may appear later on in the
356 .debug_sfnames section entries for the same compilation unit.
358 The fifth and last word of each specialized starting entry for a compilation
359 unit in the .debug_srcinfo section may (depending upon your configuration)
360 indicate the date/time of compilation, and this may be used (by a debugger)
361 to determine if any of the source files which contributed code to this
362 compilation unit are newer than the object code for the compilation unit
363 itself. If so, the debugger may wish to print an "out-of-date" warning
364 about the compilation unit.
366 The .debug_srcinfo section associated with each compilation will also have
367 a specialized terminating entry. This terminating .debug_srcinfo section
368 entry will consist of the following two 4-byte words of data:
370 (1) The offset, measured from the start of the .line section to
371 the beginning of the terminating entry for the .line section.
373 (2) A word containing the value 0xffffffff.
375 --------------------------------
377 In the current DWARF version 1 specification, no mechanism is specified by
378 which information about macro definitions and un-definitions may be provided
379 to the DWARF consumer.
381 The DWARF version 2 (draft) specification does specify such a mechanism.
382 That specification was based on the GNU ("vendor specific extension")
383 which provided some support for macro definitions and un-definitions,
384 but the "official" DWARF version 2 (draft) specification mechanism for
385 handling macros and the GNU implementation have diverged somewhat. I
386 plan to update the GNU implementation to conform to the "official"
387 DWARF version 2 (draft) specification as soon as I get time to do that.
389 Note that in the GNU implementation, additional information about macro
390 definitions and un-definitions is *only* provided when the -g3 level of
391 debug-info production is selected. (The default level is -g2 and the
392 plain old -g option is considered to be identical to -g2.)
394 GCC records information about macro definitions and undefinitions primarily
395 in a section called the .debug_macinfo section. Normal entries in the
396 .debug_macinfo section consist of the following three parts:
398 (1) A special "type" byte.
400 (2) A 3-byte line-number/filename-offset field.
402 (3) A NUL terminated string.
404 The interpretation of the second and third parts is dependent upon the
405 value of the leading (type) byte.
407 The type byte may have one of four values depending upon the type of the
408 .debug_macinfo entry which follows. The 1-byte MACINFO type codes presently
409 used, and their meanings are as follows:
411 MACINFO_start A base file or an include file starts here.
412 MACINFO_resume The current base or include file ends here.
413 MACINFO_define A #define directive occurs here.
414 MACINFO_undef A #undef directive occur here.
416 (Note that the MACINFO_... codes mentioned here are simply symbolic names
417 for constants which are defined in the GNU dwarf.h file.)
419 For MACINFO_define and MACINFO_undef entries, the second (3-byte) field
420 contains the number of the source line (relative to the start of the current
421 base source file or the current include files) when the #define or #undef
422 directive appears. For a MACINFO_define entry, the following string field
423 contains the name of the macro which is defined, followed by its definition.
424 Note that the definition is always separated from the name of the macro
425 by at least one whitespace character. For a MACINFO_undef entry, the
426 string which follows the 3-byte line number field contains just the name
427 of the macro which is being undef'ed.
429 For a MACINFO_start entry, the 3-byte field following the type byte contains
430 the offset, relative to the start of the .debug_sfnames section for the
431 current compilation unit, of a string which names the new source file which
432 is beginning its inclusion at this point. Following that 3-byte field,
433 each MACINFO_start entry always contains a zero length NUL terminated
436 For a MACINFO_resume entry, the 3-byte field following the type byte contains
437 the line number WITHIN THE INCLUDING FILE at which the inclusion of the
438 current file (whose inclusion ends here) was initiated. Following that
439 3-byte field, each MACINFO_resume entry always contains a zero length NUL
442 Each set of .debug_macinfo entries for each compilation unit is terminated
443 by a special .debug_macinfo entry consisting of a 4-byte zero value followed
444 by a single NUL byte.
446 --------------------------------
448 In the current DWARF draft specification, no provision is made for providing
449 a separate level of (limited) debugging information necessary to support
450 tracebacks (only) through fully-debugged code (e.g. code in system libraries).
452 A proposal to define such a level was submitted (by me) to the UI/PLSIG.
453 This proposal was rejected by the UI/PLSIG for inclusion into the DWARF
454 version 1 specification for two reasons. First, it was felt (by the PLSIG)
455 that the issues involved in supporting a "traceback only" subset of DWARF
456 were not well understood. Second, and perhaps more importantly, the PLSIG
457 is already having enough trouble agreeing on what it means to be "conforming"
458 to the DWARF specification, and it was felt that trying to specify multiple
459 different *levels* of conformance would only complicate our discussions of
460 this already divisive issue. Nonetheless, the GNU implementation of DWARF
461 provides an abbreviated "traceback only" level of debug-info production for
462 use with fully-debugged "system library" code. This level should only be
463 used for fully debugged system library code, and even then, it should only
464 be used where there is a very strong need to conserve disk space. This
465 abbreviated level of debug-info production can be used by specifying the
466 -g1 option on the compilation command line.
468 --------------------------------
470 As mentioned above, the GNU implementation of DWARF currently uses the DWARF
471 version 2 (draft) approach for inline functions (and inlined instances
472 thereof). This is used in preference to the version 1 approach because
473 (quite simply) the version 1 approach is highly brain-damaged and probably
476 --------------------------------
479 GNU DWARF Representation of GNU C Extensions to ANSI C
480 ------------------------------------------------------
482 The file dwarfout.c has been designed and implemented so as to provide
483 some reasonable DWARF representation for each and every declarative
484 construct which is accepted by the GNU C compiler. Since the GNU C
485 compiler accepts a superset of ANSI C, this means that there are some
486 cases in which the DWARF information produced by GCC must take some
487 liberties in improvising DWARF representations for declarations which
488 are only valid in (extended) GNU C.
490 In particular, GNU C provides at least three significant extensions to
491 ANSI C when it comes to declarations. These are (1) inline functions,
492 and (2) dynamic arrays, and (3) incomplete enum types. (See the GCC
493 manual for more information on these GNU extensions to ANSI C.) When
494 used, these GNU C extensions are represented (in the generated DWARF
495 output of GCC) in the most natural and intuitively obvious ways.
497 In the case of inline functions, the DWARF representation is exactly as
498 called for in the DWARF version 2 (draft) specification for an identical
499 function written in C++; i.e. we "reuse" the representation of inline
500 functions which has been defined for C++ to support this GNU C extension.
502 In the case of dynamic arrays, we use the most obvious representational
503 mechanism available; i.e. an array type in which the upper bound of
504 some dimension (usually the first and only dimension) is a variable
505 rather than a constant. (See the DWARF version 1 specification for more
508 In the case of incomplete enum types, such types are represented simply
509 as TAG_enumeration_type DIEs which DO NOT contain either AT_byte_size
510 attributes or AT_element_list attributes.
512 --------------------------------
518 The codes, formats, and other paraphernalia necessary to provide proper
519 support for symbolic debugging for the C++ language are still being worked
520 on by the UI/PLSIG. The vast majority of the additions to DWARF which will
521 be needed to completely support C++ have already been hashed out and agreed
522 upon, but a few small issues (e.g. anonymous unions, access declarations)
523 are still being discussed. Also, we in the PLSIG are still discussing
524 whether or not we need to do anything special for C++ templates. (At this
525 time it is not yet clear whether we even need to do anything special for
528 With regard to FORTRAN, the UI/PLSIG has defined what is believed to be a
529 complete and sufficient set of codes and rules for adequately representing
530 all of FORTRAN 77, and most of Fortran 90 in DWARF. While some support for
531 this has been implemented in dwarfout.c, further implementation and testing
534 GNU DWARF support for other languages (i.e. Pascal and Modula) is a moot
535 issue until there are GNU front-ends for these other languages.
537 As currently defined, DWARF only describes a (binary) language which can
538 be used to communicate symbolic debugging information from a compiler
539 through an assembler and a linker, to a debugger. There is no clear
540 specification of what processing should be (or must be) done by the
541 assembler and/or the linker. Fortunately, the role of the assembler
542 is easily inferred (by anyone knowledgeable about assemblers) just by
543 looking at examples of assembly-level DWARF code. Sadly though, the
544 allowable (or required) processing steps performed by a linker are
545 harder to infer and (perhaps) even harder to agree upon. There are
546 several forms of very useful `post-processing' steps which intelligent
547 linkers *could* (in theory) perform on object files containing DWARF,
548 but any and all such link-time transformations are currently both disallowed
551 In particular, possible link-time transformations of DWARF code which could
552 provide significant benefits include (but are not limited to):
554 Commonization of duplicate DIEs obtained from multiple input
557 Cross-compilation type checking based upon DWARF type information
558 for objects and functions.
560 Other possible `compacting' transformations designed to save disk
561 space and to reduce linker & debugger I/O activity.
567 #include "coretypes.h"
570 #ifdef DWARF_DEBUGGING_INFO
574 #include "function.h"
576 #include "hard-reg-set.h"
577 #include "insn-config.h"
580 #include "dwarf2asm.h"
584 #include "langhooks.h"
586 /* NOTE: In the comments in this file, many references are made to
587 so called "Debugging Information Entries". For the sake of brevity,
588 this term is abbreviated to `DIE' throughout the remainder of this
591 /* Note that the implementation of C++ support herein is (as yet) unfinished.
592 If you want to try to complete it, more power to you. */
594 /* How to start an assembler comment. */
595 #ifndef ASM_COMMENT_START
596 #define ASM_COMMENT_START ";#"
599 /* How to print out a register name. */
601 #define PRINT_REG(RTX, CODE, FILE) \
602 fprintf ((FILE), "%s", reg_names[REGNO (RTX)])
605 /* Define a macro which returns nonzero for any tagged type which is
606 used (directly or indirectly) in the specification of either some
607 function's return type or some formal parameter of some function.
608 We use this macro when we are operating in "terse" mode to help us
609 know what tagged types have to be represented in Dwarf (even in
610 terse mode) and which ones don't.
612 A flag bit with this meaning really should be a part of the normal
613 GCC ..._TYPE nodes, but at the moment, there is no such bit defined
614 for these nodes. For now, we have to just fake it. It it safe for
615 us to simply return zero for all complete tagged types (which will
616 get forced out anyway if they were used in the specification of some
617 formal or return type) and nonzero for all incomplete tagged types.
620 #define TYPE_USED_FOR_FUNCTION(tagged_type) (TYPE_SIZE (tagged_type) == 0)
622 /* Define a macro which returns nonzero for a TYPE_DECL which was
623 implicitly generated for a tagged type.
625 Note that unlike the gcc front end (which generates a NULL named
626 TYPE_DECL node for each complete tagged type, each array type, and
627 each function type node created) the g++ front end generates a
628 _named_ TYPE_DECL node for each tagged type node created.
629 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
630 generate a DW_TAG_typedef DIE for them. */
631 #define TYPE_DECL_IS_STUB(decl) \
632 (DECL_NAME (decl) == NULL \
633 || (DECL_ARTIFICIAL (decl) \
634 && is_tagged_type (TREE_TYPE (decl)) \
635 && decl == TYPE_STUB_DECL (TREE_TYPE (decl))))
637 /* Maximum size (in bytes) of an artificially generated label. */
639 #define MAX_ARTIFICIAL_LABEL_BYTES 30
641 /* Structure to keep track of source filenames. */
643 struct filename_entry
{
648 typedef struct filename_entry filename_entry
;
650 /* Pointer to an array of elements, each one having the structure above. */
652 static filename_entry
*filename_table
;
654 /* Total number of entries in the table (i.e. array) pointed to by
655 `filename_table'. This is the *total* and includes both used and
658 static unsigned ft_entries_allocated
;
660 /* Number of entries in the filename_table which are actually in use. */
662 static unsigned ft_entries
;
664 /* Size (in elements) of increments by which we may expand the filename
665 table. Actually, a single hunk of space of this size should be enough
666 for most typical programs. */
668 #define FT_ENTRIES_INCREMENT 64
670 /* Local pointer to the name of the main input file. Initialized in
673 static const char *primary_filename
;
675 /* Counter to generate unique names for DIEs. */
677 static unsigned next_unused_dienum
= 1;
679 /* Number of the DIE which is currently being generated. */
681 static unsigned current_dienum
;
683 /* Number to use for the special "pubname" label on the next DIE which
684 represents a function or data object defined in this compilation
685 unit which has "extern" linkage. */
687 static int next_pubname_number
= 0;
689 #define NEXT_DIE_NUM pending_sibling_stack[pending_siblings-1]
691 /* Pointer to a dynamically allocated list of pre-reserved and still
692 pending sibling DIE numbers. Note that this list will grow as needed. */
694 static unsigned *pending_sibling_stack
;
696 /* Counter to keep track of the number of pre-reserved and still pending
697 sibling DIE numbers. */
699 static unsigned pending_siblings
;
701 /* The currently allocated size of the above list (expressed in number of
704 static unsigned pending_siblings_allocated
;
706 /* Size (in elements) of increments by which we may expand the pending
707 sibling stack. Actually, a single hunk of space of this size should
708 be enough for most typical programs. */
710 #define PENDING_SIBLINGS_INCREMENT 64
712 /* Nonzero if we are performing our file-scope finalization pass and if
713 we should force out Dwarf descriptions of any and all file-scope
714 tagged types which are still incomplete types. */
716 static int finalizing
= 0;
718 /* A pointer to the base of a list of pending types which we haven't
719 generated DIEs for yet, but which we will have to come back to
722 static tree
*pending_types_list
;
724 /* Number of elements currently allocated for the pending_types_list. */
726 static unsigned pending_types_allocated
;
728 /* Number of elements of pending_types_list currently in use. */
730 static unsigned pending_types
;
732 /* Size (in elements) of increments by which we may expand the pending
733 types list. Actually, a single hunk of space of this size should
734 be enough for most typical programs. */
736 #define PENDING_TYPES_INCREMENT 64
738 /* A pointer to the base of a list of incomplete types which might be
739 completed at some later time. */
741 static tree
*incomplete_types_list
;
743 /* Number of elements currently allocated for the incomplete_types_list. */
744 static unsigned incomplete_types_allocated
;
746 /* Number of elements of incomplete_types_list currently in use. */
747 static unsigned incomplete_types
;
749 /* Size (in elements) of increments by which we may expand the incomplete
750 types list. Actually, a single hunk of space of this size should
751 be enough for most typical programs. */
752 #define INCOMPLETE_TYPES_INCREMENT 64
754 /* Pointer to an artificial RECORD_TYPE which we create in dwarfout_init.
755 This is used in a hack to help us get the DIEs describing types of
756 formal parameters to come *after* all of the DIEs describing the formal
757 parameters themselves. That's necessary in order to be compatible
758 with what the brain-damaged svr4 SDB debugger requires. */
760 static tree fake_containing_scope
;
762 /* A pointer to the ..._DECL node which we have most recently been working
763 on. We keep this around just in case something about it looks screwy
764 and we want to tell the user what the source coordinates for the actual
767 static tree dwarf_last_decl
;
769 /* A flag indicating that we are emitting the member declarations of a
770 class, so member functions and variables should not be entirely emitted.
771 This is a kludge to avoid passing a second argument to output_*_die. */
775 /* Forward declarations for functions defined in this file. */
777 static void dwarfout_init
PARAMS ((const char *));
778 static void dwarfout_finish
PARAMS ((const char *));
779 static void dwarfout_define
PARAMS ((unsigned int, const char *));
780 static void dwarfout_undef
PARAMS ((unsigned int, const char *));
781 static void dwarfout_start_source_file
PARAMS ((unsigned, const char *));
782 static void dwarfout_start_source_file_check
PARAMS ((unsigned, const char *));
783 static void dwarfout_end_source_file
PARAMS ((unsigned));
784 static void dwarfout_end_source_file_check
PARAMS ((unsigned));
785 static void dwarfout_begin_block
PARAMS ((unsigned, unsigned));
786 static void dwarfout_end_block
PARAMS ((unsigned, unsigned));
787 static void dwarfout_end_epilogue
PARAMS ((unsigned int, const char *));
788 static void dwarfout_source_line
PARAMS ((unsigned int, const char *));
789 static void dwarfout_end_prologue
PARAMS ((unsigned int, const char *));
790 static void dwarfout_end_function
PARAMS ((unsigned int));
791 static void dwarfout_function_decl
PARAMS ((tree
));
792 static void dwarfout_global_decl
PARAMS ((tree
));
793 static void dwarfout_deferred_inline_function
PARAMS ((tree
));
794 static void dwarfout_file_scope_decl
PARAMS ((tree
, int));
795 static const char *dwarf_tag_name
PARAMS ((unsigned));
796 static const char *dwarf_attr_name
PARAMS ((unsigned));
797 static const char *dwarf_stack_op_name
PARAMS ((unsigned));
798 static const char *dwarf_typemod_name
PARAMS ((unsigned));
799 static const char *dwarf_fmt_byte_name
PARAMS ((unsigned));
800 static const char *dwarf_fund_type_name
PARAMS ((unsigned));
801 static tree decl_ultimate_origin
PARAMS ((tree
));
802 static tree block_ultimate_origin
PARAMS ((tree
));
803 static tree decl_class_context
PARAMS ((tree
));
805 static void output_unsigned_leb128
PARAMS ((unsigned long));
806 static void output_signed_leb128
PARAMS ((long));
808 static int fundamental_type_code
PARAMS ((tree
));
809 static tree root_type_1
PARAMS ((tree
, int));
810 static tree root_type
PARAMS ((tree
));
811 static void write_modifier_bytes_1
PARAMS ((tree
, int, int, int));
812 static void write_modifier_bytes
PARAMS ((tree
, int, int));
813 static inline int type_is_fundamental
PARAMS ((tree
));
814 static void equate_decl_number_to_die_number
PARAMS ((tree
));
815 static inline void equate_type_number_to_die_number
PARAMS ((tree
));
816 static void output_reg_number
PARAMS ((rtx
));
817 static void output_mem_loc_descriptor
PARAMS ((rtx
));
818 static void output_loc_descriptor
PARAMS ((rtx
));
819 static void output_bound_representation
PARAMS ((tree
, unsigned, int));
820 static void output_enumeral_list
PARAMS ((tree
));
821 static inline HOST_WIDE_INT ceiling
PARAMS ((HOST_WIDE_INT
, unsigned int));
822 static inline tree field_type
PARAMS ((tree
));
823 static inline unsigned int simple_type_align_in_bits
PARAMS ((tree
));
824 static inline unsigned HOST_WIDE_INT simple_type_size_in_bits
PARAMS ((tree
));
825 static HOST_WIDE_INT field_byte_offset
PARAMS ((tree
));
826 static inline void sibling_attribute
PARAMS ((void));
827 static void location_attribute
PARAMS ((rtx
));
828 static void data_member_location_attribute
PARAMS ((tree
));
829 static void const_value_attribute
PARAMS ((rtx
));
830 static void location_or_const_value_attribute
PARAMS ((tree
));
831 static inline void name_attribute
PARAMS ((const char *));
832 static inline void fund_type_attribute
PARAMS ((unsigned));
833 static void mod_fund_type_attribute
PARAMS ((tree
, int, int));
834 static inline void user_def_type_attribute
PARAMS ((tree
));
835 static void mod_u_d_type_attribute
PARAMS ((tree
, int, int));
836 #ifdef USE_ORDERING_ATTRIBUTE
837 static inline void ordering_attribute
PARAMS ((unsigned));
838 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
839 static void subscript_data_attribute
PARAMS ((tree
));
840 static void byte_size_attribute
PARAMS ((tree
));
841 static inline void bit_offset_attribute
PARAMS ((tree
));
842 static inline void bit_size_attribute
PARAMS ((tree
));
843 static inline void element_list_attribute
PARAMS ((tree
));
844 static inline void stmt_list_attribute
PARAMS ((const char *));
845 static inline void low_pc_attribute
PARAMS ((const char *));
846 static inline void high_pc_attribute
PARAMS ((const char *));
847 static inline void body_begin_attribute
PARAMS ((const char *));
848 static inline void body_end_attribute
PARAMS ((const char *));
849 static inline void language_attribute
PARAMS ((unsigned));
850 static inline void member_attribute
PARAMS ((tree
));
852 static inline void string_length_attribute
PARAMS ((tree
));
854 static inline void comp_dir_attribute
PARAMS ((const char *));
855 static inline void sf_names_attribute
PARAMS ((const char *));
856 static inline void src_info_attribute
PARAMS ((const char *));
857 static inline void mac_info_attribute
PARAMS ((const char *));
858 static inline void prototyped_attribute
PARAMS ((tree
));
859 static inline void producer_attribute
PARAMS ((const char *));
860 static inline void inline_attribute
PARAMS ((tree
));
861 static inline void containing_type_attribute
PARAMS ((tree
));
862 static inline void abstract_origin_attribute
PARAMS ((tree
));
863 #ifdef DWARF_DECL_COORDINATES
864 static inline void src_coords_attribute
PARAMS ((unsigned, unsigned));
865 #endif /* defined(DWARF_DECL_COORDINATES) */
866 static inline void pure_or_virtual_attribute
PARAMS ((tree
));
867 static void name_and_src_coords_attributes
PARAMS ((tree
));
868 static void type_attribute
PARAMS ((tree
, int, int));
869 static const char *type_tag
PARAMS ((tree
));
870 static inline void dienum_push
PARAMS ((void));
871 static inline void dienum_pop
PARAMS ((void));
872 static inline tree member_declared_type
PARAMS ((tree
));
873 static const char *function_start_label
PARAMS ((tree
));
874 static void output_array_type_die
PARAMS ((void *));
875 static void output_set_type_die
PARAMS ((void *));
877 static void output_entry_point_die
PARAMS ((void *));
879 static void output_inlined_enumeration_type_die
PARAMS ((void *));
880 static void output_inlined_structure_type_die
PARAMS ((void *));
881 static void output_inlined_union_type_die
PARAMS ((void *));
882 static void output_enumeration_type_die
PARAMS ((void *));
883 static void output_formal_parameter_die
PARAMS ((void *));
884 static void output_global_subroutine_die
PARAMS ((void *));
885 static void output_global_variable_die
PARAMS ((void *));
886 static void output_label_die
PARAMS ((void *));
887 static void output_lexical_block_die
PARAMS ((void *));
888 static void output_inlined_subroutine_die
PARAMS ((void *));
889 static void output_local_variable_die
PARAMS ((void *));
890 static void output_member_die
PARAMS ((void *));
892 static void output_pointer_type_die
PARAMS ((void *));
893 static void output_reference_type_die
PARAMS ((void *));
895 static void output_ptr_to_mbr_type_die
PARAMS ((void *));
896 static void output_compile_unit_die
PARAMS ((void *));
897 static void output_string_type_die
PARAMS ((void *));
898 static void output_inheritance_die
PARAMS ((void *));
899 static void output_structure_type_die
PARAMS ((void *));
900 static void output_local_subroutine_die
PARAMS ((void *));
901 static void output_subroutine_type_die
PARAMS ((void *));
902 static void output_typedef_die
PARAMS ((void *));
903 static void output_union_type_die
PARAMS ((void *));
904 static void output_unspecified_parameters_die
PARAMS ((void *));
905 static void output_padded_null_die
PARAMS ((void *));
906 static void output_die
PARAMS ((void (*)(void *), void *));
907 static void end_sibling_chain
PARAMS ((void));
908 static void output_formal_types
PARAMS ((tree
));
909 static void pend_type
PARAMS ((tree
));
910 static int type_ok_for_scope
PARAMS ((tree
, tree
));
911 static void output_pending_types_for_scope
PARAMS ((tree
));
912 static void output_type
PARAMS ((tree
, tree
));
913 static void output_tagged_type_instantiation
PARAMS ((tree
));
914 static void output_block
PARAMS ((tree
, int));
915 static void output_decls_for_scope
PARAMS ((tree
, int));
916 static void output_decl
PARAMS ((tree
, tree
));
917 static void shuffle_filename_entry
PARAMS ((filename_entry
*));
918 static void generate_new_sfname_entry
PARAMS ((void));
919 static unsigned lookup_filename
PARAMS ((const char *));
920 static void generate_srcinfo_entry
PARAMS ((unsigned, unsigned));
921 static void generate_macinfo_entry
PARAMS ((unsigned int, rtx
,
923 static int is_pseudo_reg
PARAMS ((rtx
));
924 static tree type_main_variant
PARAMS ((tree
));
925 static int is_tagged_type
PARAMS ((tree
));
926 static int is_redundant_typedef
PARAMS ((tree
));
927 static void add_incomplete_type
PARAMS ((tree
));
928 static void retry_incomplete_types
PARAMS ((void));
930 /* Definitions of defaults for assembler-dependent names of various
931 pseudo-ops and section names.
933 Theses may be overridden in your tm.h file (if necessary) for your
934 particular assembler. The default values provided here correspond to
935 what is expected by "standard" AT&T System V.4 assemblers. */
938 #define FILE_ASM_OP "\t.file\t"
941 #define SET_ASM_OP "\t.set\t"
944 /* Pseudo-ops for pushing the current section onto the section stack (and
945 simultaneously changing to a new section) and for poping back to the
946 section we were in immediately before this one. Note that most svr4
947 assemblers only maintain a one level stack... you can push all the
948 sections you want, but you can only pop out one level. (The sparc
949 svr4 assembler is an exception to this general rule.) That's
950 OK because we only use at most one level of the section stack herein. */
952 #ifndef PUSHSECTION_ASM_OP
953 #define PUSHSECTION_ASM_OP "\t.section\t"
955 #ifndef POPSECTION_ASM_OP
956 #define POPSECTION_ASM_OP "\t.previous"
959 /* The default format used by the ASM_OUTPUT_PUSH_SECTION macro (see below)
960 to print the PUSHSECTION_ASM_OP and the section name. The default here
961 works for almost all svr4 assemblers, except for the sparc, where the
962 section name must be enclosed in double quotes. (See sparcv4.h.) */
964 #ifndef PUSHSECTION_FORMAT
965 #define PUSHSECTION_FORMAT "%s%s\n"
968 #ifndef DEBUG_SECTION
969 #define DEBUG_SECTION ".debug"
972 #define LINE_SECTION ".line"
974 #ifndef DEBUG_SFNAMES_SECTION
975 #define DEBUG_SFNAMES_SECTION ".debug_sfnames"
977 #ifndef DEBUG_SRCINFO_SECTION
978 #define DEBUG_SRCINFO_SECTION ".debug_srcinfo"
980 #ifndef DEBUG_MACINFO_SECTION
981 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
983 #ifndef DEBUG_PUBNAMES_SECTION
984 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
986 #ifndef DEBUG_ARANGES_SECTION
987 #define DEBUG_ARANGES_SECTION ".debug_aranges"
989 #ifndef TEXT_SECTION_NAME
990 #define TEXT_SECTION_NAME ".text"
992 #ifndef DATA_SECTION_NAME
993 #define DATA_SECTION_NAME ".data"
995 #ifndef DATA1_SECTION_NAME
996 #define DATA1_SECTION_NAME ".data1"
998 #ifndef RODATA_SECTION_NAME
999 #define RODATA_SECTION_NAME ".rodata"
1001 #ifndef RODATA1_SECTION_NAME
1002 #define RODATA1_SECTION_NAME ".rodata1"
1004 #ifndef BSS_SECTION_NAME
1005 #define BSS_SECTION_NAME ".bss"
1008 /* Definitions of defaults for formats and names of various special
1009 (artificial) labels which may be generated within this file (when
1010 the -g options is used and DWARF_DEBUGGING_INFO is in effect.
1012 If necessary, these may be overridden from within your tm.h file,
1013 but typically, you should never need to override these.
1015 These labels have been hacked (temporarily) so that they all begin with
1016 a `.L' sequence so as to appease the stock sparc/svr4 assembler and the
1017 stock m88k/svr4 assembler, both of which need to see .L at the start of
1018 a label in order to prevent that label from going into the linker symbol
1019 table). When I get time, I'll have to fix this the right way so that we
1020 will use ASM_GENERATE_INTERNAL_LABEL and (*targetm.asm_out.internal_label) herein,
1021 but that will require a rather massive set of changes. For the moment,
1022 the following definitions out to produce the right results for all svr4
1023 and svr3 assemblers. -- rfg
1026 #ifndef TEXT_BEGIN_LABEL
1027 #define TEXT_BEGIN_LABEL "*.L_text_b"
1029 #ifndef TEXT_END_LABEL
1030 #define TEXT_END_LABEL "*.L_text_e"
1033 #ifndef DATA_BEGIN_LABEL
1034 #define DATA_BEGIN_LABEL "*.L_data_b"
1036 #ifndef DATA_END_LABEL
1037 #define DATA_END_LABEL "*.L_data_e"
1040 #ifndef DATA1_BEGIN_LABEL
1041 #define DATA1_BEGIN_LABEL "*.L_data1_b"
1043 #ifndef DATA1_END_LABEL
1044 #define DATA1_END_LABEL "*.L_data1_e"
1047 #ifndef RODATA_BEGIN_LABEL
1048 #define RODATA_BEGIN_LABEL "*.L_rodata_b"
1050 #ifndef RODATA_END_LABEL
1051 #define RODATA_END_LABEL "*.L_rodata_e"
1054 #ifndef RODATA1_BEGIN_LABEL
1055 #define RODATA1_BEGIN_LABEL "*.L_rodata1_b"
1057 #ifndef RODATA1_END_LABEL
1058 #define RODATA1_END_LABEL "*.L_rodata1_e"
1061 #ifndef BSS_BEGIN_LABEL
1062 #define BSS_BEGIN_LABEL "*.L_bss_b"
1064 #ifndef BSS_END_LABEL
1065 #define BSS_END_LABEL "*.L_bss_e"
1068 #ifndef LINE_BEGIN_LABEL
1069 #define LINE_BEGIN_LABEL "*.L_line_b"
1071 #ifndef LINE_LAST_ENTRY_LABEL
1072 #define LINE_LAST_ENTRY_LABEL "*.L_line_last"
1074 #ifndef LINE_END_LABEL
1075 #define LINE_END_LABEL "*.L_line_e"
1078 #ifndef DEBUG_BEGIN_LABEL
1079 #define DEBUG_BEGIN_LABEL "*.L_debug_b"
1081 #ifndef SFNAMES_BEGIN_LABEL
1082 #define SFNAMES_BEGIN_LABEL "*.L_sfnames_b"
1084 #ifndef SRCINFO_BEGIN_LABEL
1085 #define SRCINFO_BEGIN_LABEL "*.L_srcinfo_b"
1087 #ifndef MACINFO_BEGIN_LABEL
1088 #define MACINFO_BEGIN_LABEL "*.L_macinfo_b"
1091 #ifndef DEBUG_ARANGES_BEGIN_LABEL
1092 #define DEBUG_ARANGES_BEGIN_LABEL "*.L_debug_aranges_begin"
1094 #ifndef DEBUG_ARANGES_END_LABEL
1095 #define DEBUG_ARANGES_END_LABEL "*.L_debug_aranges_end"
1098 #ifndef DIE_BEGIN_LABEL_FMT
1099 #define DIE_BEGIN_LABEL_FMT "*.L_D%u"
1101 #ifndef DIE_END_LABEL_FMT
1102 #define DIE_END_LABEL_FMT "*.L_D%u_e"
1104 #ifndef PUB_DIE_LABEL_FMT
1105 #define PUB_DIE_LABEL_FMT "*.L_P%u"
1107 #ifndef BLOCK_BEGIN_LABEL_FMT
1108 #define BLOCK_BEGIN_LABEL_FMT "*.L_B%u"
1110 #ifndef BLOCK_END_LABEL_FMT
1111 #define BLOCK_END_LABEL_FMT "*.L_B%u_e"
1113 #ifndef SS_BEGIN_LABEL_FMT
1114 #define SS_BEGIN_LABEL_FMT "*.L_s%u"
1116 #ifndef SS_END_LABEL_FMT
1117 #define SS_END_LABEL_FMT "*.L_s%u_e"
1119 #ifndef EE_BEGIN_LABEL_FMT
1120 #define EE_BEGIN_LABEL_FMT "*.L_e%u"
1122 #ifndef EE_END_LABEL_FMT
1123 #define EE_END_LABEL_FMT "*.L_e%u_e"
1125 #ifndef MT_BEGIN_LABEL_FMT
1126 #define MT_BEGIN_LABEL_FMT "*.L_t%u"
1128 #ifndef MT_END_LABEL_FMT
1129 #define MT_END_LABEL_FMT "*.L_t%u_e"
1131 #ifndef LOC_BEGIN_LABEL_FMT
1132 #define LOC_BEGIN_LABEL_FMT "*.L_l%u"
1134 #ifndef LOC_END_LABEL_FMT
1135 #define LOC_END_LABEL_FMT "*.L_l%u_e"
1137 #ifndef BOUND_BEGIN_LABEL_FMT
1138 #define BOUND_BEGIN_LABEL_FMT "*.L_b%u_%u_%c"
1140 #ifndef BOUND_END_LABEL_FMT
1141 #define BOUND_END_LABEL_FMT "*.L_b%u_%u_%c_e"
1143 #ifndef BODY_BEGIN_LABEL_FMT
1144 #define BODY_BEGIN_LABEL_FMT "*.L_b%u"
1146 #ifndef BODY_END_LABEL_FMT
1147 #define BODY_END_LABEL_FMT "*.L_b%u_e"
1149 #ifndef FUNC_END_LABEL_FMT
1150 #define FUNC_END_LABEL_FMT "*.L_f%u_e"
1152 #ifndef TYPE_NAME_FMT
1153 #define TYPE_NAME_FMT "*.L_T%u"
1155 #ifndef DECL_NAME_FMT
1156 #define DECL_NAME_FMT "*.L_E%u"
1158 #ifndef LINE_CODE_LABEL_FMT
1159 #define LINE_CODE_LABEL_FMT "*.L_LC%u"
1161 #ifndef SFNAMES_ENTRY_LABEL_FMT
1162 #define SFNAMES_ENTRY_LABEL_FMT "*.L_F%u"
1164 #ifndef LINE_ENTRY_LABEL_FMT
1165 #define LINE_ENTRY_LABEL_FMT "*.L_LE%u"
1168 /* Definitions of defaults for various types of primitive assembly language
1171 If necessary, these may be overridden from within your tm.h file,
1172 but typically, you shouldn't need to override these. */
1174 #ifndef ASM_OUTPUT_PUSH_SECTION
1175 #define ASM_OUTPUT_PUSH_SECTION(FILE, SECTION) \
1176 fprintf ((FILE), PUSHSECTION_FORMAT, PUSHSECTION_ASM_OP, SECTION)
1179 #ifndef ASM_OUTPUT_POP_SECTION
1180 #define ASM_OUTPUT_POP_SECTION(FILE) \
1181 fprintf ((FILE), "%s\n", POPSECTION_ASM_OP)
1184 #ifndef ASM_OUTPUT_DWARF_DELTA2
1185 #define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2) \
1186 dw2_asm_output_delta (2, LABEL1, LABEL2, NULL)
1189 #ifndef ASM_OUTPUT_DWARF_DELTA4
1190 #define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2) \
1191 dw2_asm_output_delta (4, LABEL1, LABEL2, NULL)
1194 #ifndef ASM_OUTPUT_DWARF_TAG
1195 #define ASM_OUTPUT_DWARF_TAG(FILE,TAG) \
1196 dw2_asm_output_data (2, TAG, "%s", dwarf_tag_name (TAG));
1199 #ifndef ASM_OUTPUT_DWARF_ATTRIBUTE
1200 #define ASM_OUTPUT_DWARF_ATTRIBUTE(FILE,ATTR) \
1201 dw2_asm_output_data (2, ATTR, "%s", dwarf_attr_name (ATTR))
1204 #ifndef ASM_OUTPUT_DWARF_STACK_OP
1205 #define ASM_OUTPUT_DWARF_STACK_OP(FILE,OP) \
1206 dw2_asm_output_data (1, OP, "%s", dwarf_stack_op_name (OP))
1209 #ifndef ASM_OUTPUT_DWARF_FUND_TYPE
1210 #define ASM_OUTPUT_DWARF_FUND_TYPE(FILE,FT) \
1211 dw2_asm_output_data (2, FT, "%s", dwarf_fund_type_name (FT))
1214 #ifndef ASM_OUTPUT_DWARF_FMT_BYTE
1215 #define ASM_OUTPUT_DWARF_FMT_BYTE(FILE,FMT) \
1216 dw2_asm_output_data (1, FMT, "%s", dwarf_fmt_byte_name (FMT));
1219 #ifndef ASM_OUTPUT_DWARF_TYPE_MODIFIER
1220 #define ASM_OUTPUT_DWARF_TYPE_MODIFIER(FILE,MOD) \
1221 dw2_asm_output_data (1, MOD, "%s", dwarf_typemod_name (MOD));
1224 #ifndef ASM_OUTPUT_DWARF_ADDR
1225 #define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL) \
1226 dw2_asm_output_addr (4, LABEL, NULL)
1229 #ifndef ASM_OUTPUT_DWARF_ADDR_CONST
1230 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,RTX) \
1231 dw2_asm_output_addr_rtx (4, RTX, NULL)
1234 #ifndef ASM_OUTPUT_DWARF_REF
1235 #define ASM_OUTPUT_DWARF_REF(FILE,LABEL) \
1236 dw2_asm_output_addr (4, LABEL, NULL)
1239 #ifndef ASM_OUTPUT_DWARF_DATA1
1240 #define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
1241 dw2_asm_output_data (1, VALUE, NULL)
1244 #ifndef ASM_OUTPUT_DWARF_DATA2
1245 #define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
1246 dw2_asm_output_data (2, VALUE, NULL)
1249 #ifndef ASM_OUTPUT_DWARF_DATA4
1250 #define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
1251 dw2_asm_output_data (4, VALUE, NULL)
1254 #ifndef ASM_OUTPUT_DWARF_DATA8
1255 #define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE) \
1256 dw2_asm_output_data (8, VALUE, NULL)
1259 /* ASM_OUTPUT_DWARF_STRING is defined to output an ascii string, but to
1260 NOT issue a trailing newline. We define ASM_OUTPUT_DWARF_STRING_NEWLINE
1261 based on whether ASM_OUTPUT_DWARF_STRING is defined or not. If it is
1262 defined, we call it, then issue the line feed. If not, we supply a
1263 default definition of calling ASM_OUTPUT_ASCII */
1265 #ifndef ASM_OUTPUT_DWARF_STRING
1266 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
1267 ASM_OUTPUT_ASCII ((FILE), P, strlen (P)+1)
1269 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
1270 ASM_OUTPUT_DWARF_STRING (FILE,P), ASM_OUTPUT_DWARF_STRING (FILE,"\n")
1274 /* The debug hooks structure. */
1275 const struct gcc_debug_hooks dwarf_debug_hooks
=
1281 dwarfout_start_source_file_check
,
1282 dwarfout_end_source_file_check
,
1283 dwarfout_begin_block
,
1285 debug_true_tree
, /* ignore_block */
1286 dwarfout_source_line
, /* source_line */
1287 dwarfout_source_line
, /* begin_prologue */
1288 dwarfout_end_prologue
,
1289 dwarfout_end_epilogue
,
1290 debug_nothing_tree
, /* begin_function */
1291 dwarfout_end_function
,
1292 dwarfout_function_decl
,
1293 dwarfout_global_decl
,
1294 dwarfout_deferred_inline_function
,
1295 debug_nothing_tree
, /* outlining_inline_function */
1296 debug_nothing_rtx
/* label */
1299 /************************ general utility functions **************************/
1305 return (((GET_CODE (rtl
) == REG
) && (REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
))
1306 || ((GET_CODE (rtl
) == SUBREG
)
1307 && (REGNO (SUBREG_REG (rtl
)) >= FIRST_PSEUDO_REGISTER
)));
1311 type_main_variant (type
)
1314 type
= TYPE_MAIN_VARIANT (type
);
1316 /* There really should be only one main variant among any group of variants
1317 of a given type (and all of the MAIN_VARIANT values for all members of
1318 the group should point to that one type) but sometimes the C front-end
1319 messes this up for array types, so we work around that bug here. */
1321 if (TREE_CODE (type
) == ARRAY_TYPE
)
1323 while (type
!= TYPE_MAIN_VARIANT (type
))
1324 type
= TYPE_MAIN_VARIANT (type
);
1330 /* Return nonzero if the given type node represents a tagged type. */
1333 is_tagged_type (type
)
1336 enum tree_code code
= TREE_CODE (type
);
1338 return (code
== RECORD_TYPE
|| code
== UNION_TYPE
1339 || code
== QUAL_UNION_TYPE
|| code
== ENUMERAL_TYPE
);
1343 dwarf_tag_name (tag
)
1348 case TAG_padding
: return "TAG_padding";
1349 case TAG_array_type
: return "TAG_array_type";
1350 case TAG_class_type
: return "TAG_class_type";
1351 case TAG_entry_point
: return "TAG_entry_point";
1352 case TAG_enumeration_type
: return "TAG_enumeration_type";
1353 case TAG_formal_parameter
: return "TAG_formal_parameter";
1354 case TAG_global_subroutine
: return "TAG_global_subroutine";
1355 case TAG_global_variable
: return "TAG_global_variable";
1356 case TAG_label
: return "TAG_label";
1357 case TAG_lexical_block
: return "TAG_lexical_block";
1358 case TAG_local_variable
: return "TAG_local_variable";
1359 case TAG_member
: return "TAG_member";
1360 case TAG_pointer_type
: return "TAG_pointer_type";
1361 case TAG_reference_type
: return "TAG_reference_type";
1362 case TAG_compile_unit
: return "TAG_compile_unit";
1363 case TAG_string_type
: return "TAG_string_type";
1364 case TAG_structure_type
: return "TAG_structure_type";
1365 case TAG_subroutine
: return "TAG_subroutine";
1366 case TAG_subroutine_type
: return "TAG_subroutine_type";
1367 case TAG_typedef
: return "TAG_typedef";
1368 case TAG_union_type
: return "TAG_union_type";
1369 case TAG_unspecified_parameters
: return "TAG_unspecified_parameters";
1370 case TAG_variant
: return "TAG_variant";
1371 case TAG_common_block
: return "TAG_common_block";
1372 case TAG_common_inclusion
: return "TAG_common_inclusion";
1373 case TAG_inheritance
: return "TAG_inheritance";
1374 case TAG_inlined_subroutine
: return "TAG_inlined_subroutine";
1375 case TAG_module
: return "TAG_module";
1376 case TAG_ptr_to_member_type
: return "TAG_ptr_to_member_type";
1377 case TAG_set_type
: return "TAG_set_type";
1378 case TAG_subrange_type
: return "TAG_subrange_type";
1379 case TAG_with_stmt
: return "TAG_with_stmt";
1381 /* GNU extensions. */
1383 case TAG_format_label
: return "TAG_format_label";
1384 case TAG_namelist
: return "TAG_namelist";
1385 case TAG_function_template
: return "TAG_function_template";
1386 case TAG_class_template
: return "TAG_class_template";
1388 default: return "TAG_<unknown>";
1393 dwarf_attr_name (attr
)
1398 case AT_sibling
: return "AT_sibling";
1399 case AT_location
: return "AT_location";
1400 case AT_name
: return "AT_name";
1401 case AT_fund_type
: return "AT_fund_type";
1402 case AT_mod_fund_type
: return "AT_mod_fund_type";
1403 case AT_user_def_type
: return "AT_user_def_type";
1404 case AT_mod_u_d_type
: return "AT_mod_u_d_type";
1405 case AT_ordering
: return "AT_ordering";
1406 case AT_subscr_data
: return "AT_subscr_data";
1407 case AT_byte_size
: return "AT_byte_size";
1408 case AT_bit_offset
: return "AT_bit_offset";
1409 case AT_bit_size
: return "AT_bit_size";
1410 case AT_element_list
: return "AT_element_list";
1411 case AT_stmt_list
: return "AT_stmt_list";
1412 case AT_low_pc
: return "AT_low_pc";
1413 case AT_high_pc
: return "AT_high_pc";
1414 case AT_language
: return "AT_language";
1415 case AT_member
: return "AT_member";
1416 case AT_discr
: return "AT_discr";
1417 case AT_discr_value
: return "AT_discr_value";
1418 case AT_string_length
: return "AT_string_length";
1419 case AT_common_reference
: return "AT_common_reference";
1420 case AT_comp_dir
: return "AT_comp_dir";
1421 case AT_const_value_string
: return "AT_const_value_string";
1422 case AT_const_value_data2
: return "AT_const_value_data2";
1423 case AT_const_value_data4
: return "AT_const_value_data4";
1424 case AT_const_value_data8
: return "AT_const_value_data8";
1425 case AT_const_value_block2
: return "AT_const_value_block2";
1426 case AT_const_value_block4
: return "AT_const_value_block4";
1427 case AT_containing_type
: return "AT_containing_type";
1428 case AT_default_value_addr
: return "AT_default_value_addr";
1429 case AT_default_value_data2
: return "AT_default_value_data2";
1430 case AT_default_value_data4
: return "AT_default_value_data4";
1431 case AT_default_value_data8
: return "AT_default_value_data8";
1432 case AT_default_value_string
: return "AT_default_value_string";
1433 case AT_friends
: return "AT_friends";
1434 case AT_inline
: return "AT_inline";
1435 case AT_is_optional
: return "AT_is_optional";
1436 case AT_lower_bound_ref
: return "AT_lower_bound_ref";
1437 case AT_lower_bound_data2
: return "AT_lower_bound_data2";
1438 case AT_lower_bound_data4
: return "AT_lower_bound_data4";
1439 case AT_lower_bound_data8
: return "AT_lower_bound_data8";
1440 case AT_private
: return "AT_private";
1441 case AT_producer
: return "AT_producer";
1442 case AT_program
: return "AT_program";
1443 case AT_protected
: return "AT_protected";
1444 case AT_prototyped
: return "AT_prototyped";
1445 case AT_public
: return "AT_public";
1446 case AT_pure_virtual
: return "AT_pure_virtual";
1447 case AT_return_addr
: return "AT_return_addr";
1448 case AT_abstract_origin
: return "AT_abstract_origin";
1449 case AT_start_scope
: return "AT_start_scope";
1450 case AT_stride_size
: return "AT_stride_size";
1451 case AT_upper_bound_ref
: return "AT_upper_bound_ref";
1452 case AT_upper_bound_data2
: return "AT_upper_bound_data2";
1453 case AT_upper_bound_data4
: return "AT_upper_bound_data4";
1454 case AT_upper_bound_data8
: return "AT_upper_bound_data8";
1455 case AT_virtual
: return "AT_virtual";
1457 /* GNU extensions */
1459 case AT_sf_names
: return "AT_sf_names";
1460 case AT_src_info
: return "AT_src_info";
1461 case AT_mac_info
: return "AT_mac_info";
1462 case AT_src_coords
: return "AT_src_coords";
1463 case AT_body_begin
: return "AT_body_begin";
1464 case AT_body_end
: return "AT_body_end";
1466 default: return "AT_<unknown>";
1471 dwarf_stack_op_name (op
)
1476 case OP_REG
: return "OP_REG";
1477 case OP_BASEREG
: return "OP_BASEREG";
1478 case OP_ADDR
: return "OP_ADDR";
1479 case OP_CONST
: return "OP_CONST";
1480 case OP_DEREF2
: return "OP_DEREF2";
1481 case OP_DEREF4
: return "OP_DEREF4";
1482 case OP_ADD
: return "OP_ADD";
1483 default: return "OP_<unknown>";
1488 dwarf_typemod_name (mod
)
1493 case MOD_pointer_to
: return "MOD_pointer_to";
1494 case MOD_reference_to
: return "MOD_reference_to";
1495 case MOD_const
: return "MOD_const";
1496 case MOD_volatile
: return "MOD_volatile";
1497 default: return "MOD_<unknown>";
1502 dwarf_fmt_byte_name (fmt
)
1507 case FMT_FT_C_C
: return "FMT_FT_C_C";
1508 case FMT_FT_C_X
: return "FMT_FT_C_X";
1509 case FMT_FT_X_C
: return "FMT_FT_X_C";
1510 case FMT_FT_X_X
: return "FMT_FT_X_X";
1511 case FMT_UT_C_C
: return "FMT_UT_C_C";
1512 case FMT_UT_C_X
: return "FMT_UT_C_X";
1513 case FMT_UT_X_C
: return "FMT_UT_X_C";
1514 case FMT_UT_X_X
: return "FMT_UT_X_X";
1515 case FMT_ET
: return "FMT_ET";
1516 default: return "FMT_<unknown>";
1521 dwarf_fund_type_name (ft
)
1526 case FT_char
: return "FT_char";
1527 case FT_signed_char
: return "FT_signed_char";
1528 case FT_unsigned_char
: return "FT_unsigned_char";
1529 case FT_short
: return "FT_short";
1530 case FT_signed_short
: return "FT_signed_short";
1531 case FT_unsigned_short
: return "FT_unsigned_short";
1532 case FT_integer
: return "FT_integer";
1533 case FT_signed_integer
: return "FT_signed_integer";
1534 case FT_unsigned_integer
: return "FT_unsigned_integer";
1535 case FT_long
: return "FT_long";
1536 case FT_signed_long
: return "FT_signed_long";
1537 case FT_unsigned_long
: return "FT_unsigned_long";
1538 case FT_pointer
: return "FT_pointer";
1539 case FT_float
: return "FT_float";
1540 case FT_dbl_prec_float
: return "FT_dbl_prec_float";
1541 case FT_ext_prec_float
: return "FT_ext_prec_float";
1542 case FT_complex
: return "FT_complex";
1543 case FT_dbl_prec_complex
: return "FT_dbl_prec_complex";
1544 case FT_void
: return "FT_void";
1545 case FT_boolean
: return "FT_boolean";
1546 case FT_ext_prec_complex
: return "FT_ext_prec_complex";
1547 case FT_label
: return "FT_label";
1549 /* GNU extensions. */
1551 case FT_long_long
: return "FT_long_long";
1552 case FT_signed_long_long
: return "FT_signed_long_long";
1553 case FT_unsigned_long_long
: return "FT_unsigned_long_long";
1555 case FT_int8
: return "FT_int8";
1556 case FT_signed_int8
: return "FT_signed_int8";
1557 case FT_unsigned_int8
: return "FT_unsigned_int8";
1558 case FT_int16
: return "FT_int16";
1559 case FT_signed_int16
: return "FT_signed_int16";
1560 case FT_unsigned_int16
: return "FT_unsigned_int16";
1561 case FT_int32
: return "FT_int32";
1562 case FT_signed_int32
: return "FT_signed_int32";
1563 case FT_unsigned_int32
: return "FT_unsigned_int32";
1564 case FT_int64
: return "FT_int64";
1565 case FT_signed_int64
: return "FT_signed_int64";
1566 case FT_unsigned_int64
: return "FT_unsigned_int64";
1567 case FT_int128
: return "FT_int128";
1568 case FT_signed_int128
: return "FT_signed_int128";
1569 case FT_unsigned_int128
: return "FT_unsigned_int128";
1571 case FT_real32
: return "FT_real32";
1572 case FT_real64
: return "FT_real64";
1573 case FT_real96
: return "FT_real96";
1574 case FT_real128
: return "FT_real128";
1576 default: return "FT_<unknown>";
1580 /* Determine the "ultimate origin" of a decl. The decl may be an
1581 inlined instance of an inlined instance of a decl which is local
1582 to an inline function, so we have to trace all of the way back
1583 through the origin chain to find out what sort of node actually
1584 served as the original seed for the given block. */
1587 decl_ultimate_origin (decl
)
1590 #ifdef ENABLE_CHECKING
1591 if (DECL_FROM_INLINE (DECL_ORIGIN (decl
)))
1592 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
1593 most distant ancestor, this should never happen. */
1597 return DECL_ABSTRACT_ORIGIN (decl
);
1600 /* Determine the "ultimate origin" of a block. The block may be an
1601 inlined instance of an inlined instance of a block which is local
1602 to an inline function, so we have to trace all of the way back
1603 through the origin chain to find out what sort of node actually
1604 served as the original seed for the given block. */
1607 block_ultimate_origin (block
)
1610 tree immediate_origin
= BLOCK_ABSTRACT_ORIGIN (block
);
1612 if (immediate_origin
== NULL
)
1617 tree lookahead
= immediate_origin
;
1621 ret_val
= lookahead
;
1622 lookahead
= (TREE_CODE (ret_val
) == BLOCK
)
1623 ? BLOCK_ABSTRACT_ORIGIN (ret_val
)
1626 while (lookahead
!= NULL
&& lookahead
!= ret_val
);
1631 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
1632 of a virtual function may refer to a base class, so we check the 'this'
1636 decl_class_context (decl
)
1639 tree context
= NULL_TREE
;
1640 if (TREE_CODE (decl
) != FUNCTION_DECL
|| ! DECL_VINDEX (decl
))
1641 context
= DECL_CONTEXT (decl
);
1643 context
= TYPE_MAIN_VARIANT
1644 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
1646 if (context
&& !TYPE_P (context
))
1647 context
= NULL_TREE
;
1654 output_unsigned_leb128 (value
)
1655 unsigned long value
;
1657 unsigned long orig_value
= value
;
1661 unsigned byte
= (value
& 0x7f);
1664 if (value
!= 0) /* more bytes to follow */
1666 dw2_asm_output_data (1, byte
, "\t%s ULEB128 number - value = %lu",
1673 output_signed_leb128 (value
)
1676 long orig_value
= value
;
1677 int negative
= (value
< 0);
1682 unsigned byte
= (value
& 0x7f);
1686 value
|= 0xfe000000; /* manually sign extend */
1687 if (((value
== 0) && ((byte
& 0x40) == 0))
1688 || ((value
== -1) && ((byte
& 0x40) == 1)))
1695 dw2_asm_output_data (1, byte
, "\t%s SLEB128 number - value = %ld",
1702 /**************** utility functions for attribute functions ******************/
1704 /* Given a pointer to a tree node for some type, return a Dwarf fundamental
1705 type code for the given type.
1707 This routine must only be called for GCC type nodes that correspond to
1708 Dwarf fundamental types.
1710 The current Dwarf draft specification calls for Dwarf fundamental types
1711 to accurately reflect the fact that a given type was either a "plain"
1712 integral type or an explicitly "signed" integral type. Unfortunately,
1713 we can't always do this, because GCC may already have thrown away the
1714 information about the precise way in which the type was originally
1717 typedef signed int my_type;
1719 struct s { my_type f; };
1721 Since we may be stuck here without enough information to do exactly
1722 what is called for in the Dwarf draft specification, we do the best
1723 that we can under the circumstances and always use the "plain" integral
1724 fundamental type codes for int, short, and long types. That's probably
1725 good enough. The additional accuracy called for in the current DWARF
1726 draft specification is probably never even useful in practice. */
1729 fundamental_type_code (type
)
1732 if (TREE_CODE (type
) == ERROR_MARK
)
1735 switch (TREE_CODE (type
))
1744 /* Carefully distinguish all the standard types of C,
1745 without messing up if the language is not C.
1746 Note that we check only for the names that contain spaces;
1747 other names might occur by coincidence in other languages. */
1748 if (TYPE_NAME (type
) != 0
1749 && TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
1750 && DECL_NAME (TYPE_NAME (type
)) != 0
1751 && TREE_CODE (DECL_NAME (TYPE_NAME (type
))) == IDENTIFIER_NODE
)
1753 const char *const name
=
1754 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type
)));
1756 if (!strcmp (name
, "unsigned char"))
1757 return FT_unsigned_char
;
1758 if (!strcmp (name
, "signed char"))
1759 return FT_signed_char
;
1760 if (!strcmp (name
, "unsigned int"))
1761 return FT_unsigned_integer
;
1762 if (!strcmp (name
, "short int"))
1764 if (!strcmp (name
, "short unsigned int"))
1765 return FT_unsigned_short
;
1766 if (!strcmp (name
, "long int"))
1768 if (!strcmp (name
, "long unsigned int"))
1769 return FT_unsigned_long
;
1770 if (!strcmp (name
, "long long int"))
1771 return FT_long_long
; /* Not grok'ed by svr4 SDB */
1772 if (!strcmp (name
, "long long unsigned int"))
1773 return FT_unsigned_long_long
; /* Not grok'ed by svr4 SDB */
1776 /* Most integer types will be sorted out above, however, for the
1777 sake of special `array index' integer types, the following code
1778 is also provided. */
1780 if (TYPE_PRECISION (type
) == INT_TYPE_SIZE
)
1781 return (TREE_UNSIGNED (type
) ? FT_unsigned_integer
: FT_integer
);
1783 if (TYPE_PRECISION (type
) == LONG_TYPE_SIZE
)
1784 return (TREE_UNSIGNED (type
) ? FT_unsigned_long
: FT_long
);
1786 if (TYPE_PRECISION (type
) == LONG_LONG_TYPE_SIZE
)
1787 return (TREE_UNSIGNED (type
) ? FT_unsigned_long_long
: FT_long_long
);
1789 if (TYPE_PRECISION (type
) == SHORT_TYPE_SIZE
)
1790 return (TREE_UNSIGNED (type
) ? FT_unsigned_short
: FT_short
);
1792 if (TYPE_PRECISION (type
) == CHAR_TYPE_SIZE
)
1793 return (TREE_UNSIGNED (type
) ? FT_unsigned_char
: FT_char
);
1795 if (TYPE_MODE (type
) == TImode
)
1796 return (TREE_UNSIGNED (type
) ? FT_unsigned_int128
: FT_int128
);
1798 /* In C++, __java_boolean is an INTEGER_TYPE with precision == 1 */
1799 if (TYPE_PRECISION (type
) == 1)
1805 /* Carefully distinguish all the standard types of C,
1806 without messing up if the language is not C. */
1807 if (TYPE_NAME (type
) != 0
1808 && TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
1809 && DECL_NAME (TYPE_NAME (type
)) != 0
1810 && TREE_CODE (DECL_NAME (TYPE_NAME (type
))) == IDENTIFIER_NODE
)
1812 const char *const name
=
1813 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type
)));
1815 /* Note that here we can run afoul of a serious bug in "classic"
1816 svr4 SDB debuggers. They don't seem to understand the
1817 FT_ext_prec_float type (even though they should). */
1819 if (!strcmp (name
, "long double"))
1820 return FT_ext_prec_float
;
1823 if (TYPE_PRECISION (type
) == DOUBLE_TYPE_SIZE
)
1825 /* On the SH, when compiling with -m3e or -m4-single-only, both
1826 float and double are 32 bits. But since the debugger doesn't
1827 know about the subtarget, it always thinks double is 64 bits.
1828 So we have to tell the debugger that the type is float to
1829 make the output of the 'print' command etc. readable. */
1830 if (DOUBLE_TYPE_SIZE
== FLOAT_TYPE_SIZE
&& FLOAT_TYPE_SIZE
== 32)
1832 return FT_dbl_prec_float
;
1834 if (TYPE_PRECISION (type
) == FLOAT_TYPE_SIZE
)
1837 /* Note that here we can run afoul of a serious bug in "classic"
1838 svr4 SDB debuggers. They don't seem to understand the
1839 FT_ext_prec_float type (even though they should). */
1841 if (TYPE_PRECISION (type
) == LONG_DOUBLE_TYPE_SIZE
)
1842 return FT_ext_prec_float
;
1846 return FT_complex
; /* GNU FORTRAN COMPLEX type. */
1849 return FT_char
; /* GNU Pascal CHAR type. Not used in C. */
1852 return FT_boolean
; /* GNU FORTRAN BOOLEAN type. */
1855 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
1860 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
1861 the Dwarf "root" type for the given input type. The Dwarf "root" type
1862 of a given type is generally the same as the given type, except that if
1863 the given type is a pointer or reference type, then the root type of
1864 the given type is the root type of the "basis" type for the pointer or
1865 reference type. (This definition of the "root" type is recursive.)
1866 Also, the root type of a `const' qualified type or a `volatile'
1867 qualified type is the root type of the given type without the
1871 root_type_1 (type
, count
)
1875 /* Give up after searching 1000 levels, in case this is a recursive
1876 pointer type. Such types are possible in Ada, but it is not possible
1877 to represent them in DWARF1 debug info. */
1879 return error_mark_node
;
1881 switch (TREE_CODE (type
))
1884 return error_mark_node
;
1887 case REFERENCE_TYPE
:
1888 return root_type_1 (TREE_TYPE (type
), count
+1);
1899 type
= root_type_1 (type
, 0);
1900 if (type
!= error_mark_node
)
1901 type
= type_main_variant (type
);
1905 /* Given a pointer to an arbitrary ..._TYPE tree node, write out a sequence
1906 of zero or more Dwarf "type-modifier" bytes applicable to the type. */
1909 write_modifier_bytes_1 (type
, decl_const
, decl_volatile
, count
)
1915 if (TREE_CODE (type
) == ERROR_MARK
)
1918 /* Give up after searching 1000 levels, in case this is a recursive
1919 pointer type. Such types are possible in Ada, but it is not possible
1920 to represent them in DWARF1 debug info. */
1924 if (TYPE_READONLY (type
) || decl_const
)
1925 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file
, MOD_const
);
1926 if (TYPE_VOLATILE (type
) || decl_volatile
)
1927 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file
, MOD_volatile
);
1928 switch (TREE_CODE (type
))
1931 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file
, MOD_pointer_to
);
1932 write_modifier_bytes_1 (TREE_TYPE (type
), 0, 0, count
+1);
1935 case REFERENCE_TYPE
:
1936 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file
, MOD_reference_to
);
1937 write_modifier_bytes_1 (TREE_TYPE (type
), 0, 0, count
+1);
1947 write_modifier_bytes (type
, decl_const
, decl_volatile
)
1952 write_modifier_bytes_1 (type
, decl_const
, decl_volatile
, 0);
1955 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
1956 given input type is a Dwarf "fundamental" type. Otherwise return zero. */
1959 type_is_fundamental (type
)
1962 switch (TREE_CODE (type
))
1977 case QUAL_UNION_TYPE
:
1982 case REFERENCE_TYPE
:
1995 /* Given a pointer to some ..._DECL tree node, generate an assembly language
1996 equate directive which will associate a symbolic name with the current DIE.
1998 The name used is an artificial label generated from the DECL_UID number
1999 associated with the given decl node. The name it gets equated to is the
2000 symbolic label that we (previously) output at the start of the DIE that
2001 we are currently generating.
2003 Calling this function while generating some "decl related" form of DIE
2004 makes it possible to later refer to the DIE which represents the given
2005 decl simply by re-generating the symbolic name from the ..._DECL node's
2009 equate_decl_number_to_die_number (decl
)
2012 /* In the case where we are generating a DIE for some ..._DECL node
2013 which represents either some inline function declaration or some
2014 entity declared within an inline function declaration/definition,
2015 setup a symbolic name for the current DIE so that we have a name
2016 for this DIE that we can easily refer to later on within
2017 AT_abstract_origin attributes. */
2019 char decl_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2020 char die_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2022 sprintf (decl_label
, DECL_NAME_FMT
, DECL_UID (decl
));
2023 sprintf (die_label
, DIE_BEGIN_LABEL_FMT
, current_dienum
);
2024 ASM_OUTPUT_DEF (asm_out_file
, decl_label
, die_label
);
2027 /* Given a pointer to some ..._TYPE tree node, generate an assembly language
2028 equate directive which will associate a symbolic name with the current DIE.
2030 The name used is an artificial label generated from the TYPE_UID number
2031 associated with the given type node. The name it gets equated to is the
2032 symbolic label that we (previously) output at the start of the DIE that
2033 we are currently generating.
2035 Calling this function while generating some "type related" form of DIE
2036 makes it easy to later refer to the DIE which represents the given type
2037 simply by re-generating the alternative name from the ..._TYPE node's
2041 equate_type_number_to_die_number (type
)
2044 char type_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2045 char die_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2047 /* We are generating a DIE to represent the main variant of this type
2048 (i.e the type without any const or volatile qualifiers) so in order
2049 to get the equate to come out right, we need to get the main variant
2052 type
= type_main_variant (type
);
2054 sprintf (type_label
, TYPE_NAME_FMT
, TYPE_UID (type
));
2055 sprintf (die_label
, DIE_BEGIN_LABEL_FMT
, current_dienum
);
2056 ASM_OUTPUT_DEF (asm_out_file
, type_label
, die_label
);
2060 output_reg_number (rtl
)
2063 unsigned regno
= REGNO (rtl
);
2065 if (regno
>= DWARF_FRAME_REGISTERS
)
2067 warning_with_decl (dwarf_last_decl
,
2068 "internal regno botch: `%s' has regno = %d\n",
2072 dw2_assemble_integer (4, GEN_INT (DBX_REGISTER_NUMBER (regno
)));
2075 fprintf (asm_out_file
, "\t%s ", ASM_COMMENT_START
);
2076 PRINT_REG (rtl
, 0, asm_out_file
);
2078 fputc ('\n', asm_out_file
);
2081 /* The following routine is a nice and simple transducer. It converts the
2082 RTL for a variable or parameter (resident in memory) into an equivalent
2083 Dwarf representation of a mechanism for getting the address of that same
2084 variable onto the top of a hypothetical "address evaluation" stack.
2086 When creating memory location descriptors, we are effectively trans-
2087 forming the RTL for a memory-resident object into its Dwarf postfix
2088 expression equivalent. This routine just recursively descends an
2089 RTL tree, turning it into Dwarf postfix code as it goes. */
2092 output_mem_loc_descriptor (rtl
)
2095 /* Note that for a dynamically sized array, the location we will
2096 generate a description of here will be the lowest numbered location
2097 which is actually within the array. That's *not* necessarily the
2098 same as the zeroth element of the array. */
2100 #ifdef ASM_SIMPLIFY_DWARF_ADDR
2101 rtl
= ASM_SIMPLIFY_DWARF_ADDR (rtl
);
2104 switch (GET_CODE (rtl
))
2108 /* The case of a subreg may arise when we have a local (register)
2109 variable or a formal (register) parameter which doesn't quite
2110 fill up an entire register. For now, just assume that it is
2111 legitimate to make the Dwarf info refer to the whole register
2112 which contains the given subreg. */
2114 rtl
= SUBREG_REG (rtl
);
2119 /* Whenever a register number forms a part of the description of
2120 the method for calculating the (dynamic) address of a memory
2121 resident object, DWARF rules require the register number to
2122 be referred to as a "base register". This distinction is not
2123 based in any way upon what category of register the hardware
2124 believes the given register belongs to. This is strictly
2125 DWARF terminology we're dealing with here.
2127 Note that in cases where the location of a memory-resident data
2128 object could be expressed as:
2130 OP_ADD (OP_BASEREG (basereg), OP_CONST (0))
2132 the actual DWARF location descriptor that we generate may just
2133 be OP_BASEREG (basereg). This may look deceptively like the
2134 object in question was allocated to a register (rather than
2135 in memory) so DWARF consumers need to be aware of the subtle
2136 distinction between OP_REG and OP_BASEREG. */
2138 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_BASEREG
);
2139 output_reg_number (rtl
);
2143 output_mem_loc_descriptor (XEXP (rtl
, 0));
2144 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_DEREF4
);
2149 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_ADDR
);
2150 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file
, rtl
);
2154 output_mem_loc_descriptor (XEXP (rtl
, 0));
2155 output_mem_loc_descriptor (XEXP (rtl
, 1));
2156 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_ADD
);
2160 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_CONST
);
2161 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, INTVAL (rtl
));
2165 /* If a pseudo-reg is optimized away, it is possible for it to
2166 be replaced with a MEM containing a multiply. Use a GNU extension
2168 output_mem_loc_descriptor (XEXP (rtl
, 0));
2169 output_mem_loc_descriptor (XEXP (rtl
, 1));
2170 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_MULT
);
2178 /* Output a proper Dwarf location descriptor for a variable or parameter
2179 which is either allocated in a register or in a memory location. For
2180 a register, we just generate an OP_REG and the register number. For a
2181 memory location we provide a Dwarf postfix expression describing how to
2182 generate the (dynamic) address of the object onto the address stack. */
2185 output_loc_descriptor (rtl
)
2188 switch (GET_CODE (rtl
))
2192 /* The case of a subreg may arise when we have a local (register)
2193 variable or a formal (register) parameter which doesn't quite
2194 fill up an entire register. For now, just assume that it is
2195 legitimate to make the Dwarf info refer to the whole register
2196 which contains the given subreg. */
2198 rtl
= SUBREG_REG (rtl
);
2202 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_REG
);
2203 output_reg_number (rtl
);
2207 output_mem_loc_descriptor (XEXP (rtl
, 0));
2211 abort (); /* Should never happen */
2215 /* Given a tree node describing an array bound (either lower or upper)
2216 output a representation for that bound. */
2219 output_bound_representation (bound
, dim_num
, u_or_l
)
2221 unsigned dim_num
; /* For multi-dimensional arrays. */
2222 char u_or_l
; /* Designates upper or lower bound. */
2224 switch (TREE_CODE (bound
))
2230 /* All fixed-bounds are represented by INTEGER_CST nodes. */
2233 if (host_integerp (bound
, 0))
2234 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, tree_low_cst (bound
, 0));
2239 /* Dynamic bounds may be represented by NOP_EXPR nodes containing
2240 SAVE_EXPR nodes, in which case we can do something, or as
2241 an expression, which we cannot represent. */
2243 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2244 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2246 sprintf (begin_label
, BOUND_BEGIN_LABEL_FMT
,
2247 current_dienum
, dim_num
, u_or_l
);
2249 sprintf (end_label
, BOUND_END_LABEL_FMT
,
2250 current_dienum
, dim_num
, u_or_l
);
2252 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
2253 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2255 /* If optimization is turned on, the SAVE_EXPRs that describe
2256 how to access the upper bound values are essentially bogus.
2257 They only describe (at best) how to get at these values at
2258 the points in the generated code right after they have just
2259 been computed. Worse yet, in the typical case, the upper
2260 bound values will not even *be* computed in the optimized
2261 code, so these SAVE_EXPRs are entirely bogus.
2263 In order to compensate for this fact, we check here to see
2264 if optimization is enabled, and if so, we effectively create
2265 an empty location description for the (unknown and unknowable)
2268 This should not cause too much trouble for existing (stupid?)
2269 debuggers because they have to deal with empty upper bounds
2270 location descriptions anyway in order to be able to deal with
2271 incomplete array types.
2273 Of course an intelligent debugger (GDB?) should be able to
2274 comprehend that a missing upper bound specification in a
2275 array type used for a storage class `auto' local array variable
2276 indicates that the upper bound is both unknown (at compile-
2277 time) and unknowable (at run-time) due to optimization. */
2281 while (TREE_CODE (bound
) == NOP_EXPR
2282 || TREE_CODE (bound
) == CONVERT_EXPR
)
2283 bound
= TREE_OPERAND (bound
, 0);
2285 if (TREE_CODE (bound
) == SAVE_EXPR
2286 && SAVE_EXPR_RTL (bound
))
2287 output_loc_descriptor
2288 (eliminate_regs (SAVE_EXPR_RTL (bound
), 0, NULL_RTX
));
2291 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2298 /* Recursive function to output a sequence of value/name pairs for
2299 enumeration constants in reversed order. This is called from
2300 enumeration_type_die. */
2303 output_enumeral_list (link
)
2308 output_enumeral_list (TREE_CHAIN (link
));
2310 if (host_integerp (TREE_VALUE (link
), 0))
2311 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
,
2312 tree_low_cst (TREE_VALUE (link
), 0));
2314 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
,
2315 IDENTIFIER_POINTER (TREE_PURPOSE (link
)));
2319 /* Given an unsigned value, round it up to the lowest multiple of `boundary'
2320 which is not less than the value itself. */
2322 static inline HOST_WIDE_INT
2323 ceiling (value
, boundary
)
2324 HOST_WIDE_INT value
;
2325 unsigned int boundary
;
2327 return (((value
+ boundary
- 1) / boundary
) * boundary
);
2330 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
2331 pointer to the declared type for the relevant field variable, or return
2332 `integer_type_node' if the given node turns out to be an ERROR_MARK node. */
2340 if (TREE_CODE (decl
) == ERROR_MARK
)
2341 return integer_type_node
;
2343 type
= DECL_BIT_FIELD_TYPE (decl
);
2345 type
= TREE_TYPE (decl
);
2349 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
2350 node, return the alignment in bits for the type, or else return
2351 BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node. */
2353 static inline unsigned int
2354 simple_type_align_in_bits (type
)
2357 return (TREE_CODE (type
) != ERROR_MARK
) ? TYPE_ALIGN (type
) : BITS_PER_WORD
;
2360 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
2361 node, return the size in bits for the type if it is a constant, or
2362 else return the alignment for the type if the type's size is not
2363 constant, or else return BITS_PER_WORD if the type actually turns out
2364 to be an ERROR_MARK node. */
2366 static inline unsigned HOST_WIDE_INT
2367 simple_type_size_in_bits (type
)
2370 tree type_size_tree
;
2372 if (TREE_CODE (type
) == ERROR_MARK
)
2373 return BITS_PER_WORD
;
2374 type_size_tree
= TYPE_SIZE (type
);
2376 if (type_size_tree
== NULL_TREE
)
2378 if (! host_integerp (type_size_tree
, 1))
2379 return TYPE_ALIGN (type
);
2380 return tree_low_cst (type_size_tree
, 1);
2383 /* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
2384 return the byte offset of the lowest addressed byte of the "containing
2385 object" for the given FIELD_DECL, or return 0 if we are unable to deter-
2386 mine what that offset is, either because the argument turns out to be a
2387 pointer to an ERROR_MARK node, or because the offset is actually variable.
2388 (We can't handle the latter case just yet.) */
2390 static HOST_WIDE_INT
2391 field_byte_offset (decl
)
2394 unsigned int type_align_in_bytes
;
2395 unsigned int type_align_in_bits
;
2396 unsigned HOST_WIDE_INT type_size_in_bits
;
2397 HOST_WIDE_INT object_offset_in_align_units
;
2398 HOST_WIDE_INT object_offset_in_bits
;
2399 HOST_WIDE_INT object_offset_in_bytes
;
2401 tree field_size_tree
;
2402 HOST_WIDE_INT bitpos_int
;
2403 HOST_WIDE_INT deepest_bitpos
;
2404 unsigned HOST_WIDE_INT field_size_in_bits
;
2406 if (TREE_CODE (decl
) == ERROR_MARK
)
2409 if (TREE_CODE (decl
) != FIELD_DECL
)
2412 type
= field_type (decl
);
2413 field_size_tree
= DECL_SIZE (decl
);
2415 /* The size could be unspecified if there was an error, or for
2416 a flexible array member. */
2417 if (! field_size_tree
)
2418 field_size_tree
= bitsize_zero_node
;
2420 /* We cannot yet cope with fields whose positions or sizes are variable,
2421 so for now, when we see such things, we simply return 0. Someday,
2422 we may be able to handle such cases, but it will be damn difficult. */
2424 if (! host_integerp (bit_position (decl
), 0)
2425 || ! host_integerp (field_size_tree
, 1))
2428 bitpos_int
= int_bit_position (decl
);
2429 field_size_in_bits
= tree_low_cst (field_size_tree
, 1);
2431 type_size_in_bits
= simple_type_size_in_bits (type
);
2432 type_align_in_bits
= simple_type_align_in_bits (type
);
2433 type_align_in_bytes
= type_align_in_bits
/ BITS_PER_UNIT
;
2435 /* Note that the GCC front-end doesn't make any attempt to keep track
2436 of the starting bit offset (relative to the start of the containing
2437 structure type) of the hypothetical "containing object" for a bit-
2438 field. Thus, when computing the byte offset value for the start of
2439 the "containing object" of a bit-field, we must deduce this infor-
2442 This can be rather tricky to do in some cases. For example, handling
2443 the following structure type definition when compiling for an i386/i486
2444 target (which only aligns long long's to 32-bit boundaries) can be very
2449 long long field2:31;
2452 Fortunately, there is a simple rule-of-thumb which can be used in such
2453 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for
2454 the structure shown above. It decides to do this based upon one simple
2455 rule for bit-field allocation. Quite simply, GCC allocates each "con-
2456 taining object" for each bit-field at the first (i.e. lowest addressed)
2457 legitimate alignment boundary (based upon the required minimum alignment
2458 for the declared type of the field) which it can possibly use, subject
2459 to the condition that there is still enough available space remaining
2460 in the containing object (when allocated at the selected point) to
2461 fully accommodate all of the bits of the bit-field itself.
2463 This simple rule makes it obvious why GCC allocates 8 bytes for each
2464 object of the structure type shown above. When looking for a place to
2465 allocate the "containing object" for `field2', the compiler simply tries
2466 to allocate a 64-bit "containing object" at each successive 32-bit
2467 boundary (starting at zero) until it finds a place to allocate that 64-
2468 bit field such that at least 31 contiguous (and previously unallocated)
2469 bits remain within that selected 64 bit field. (As it turns out, for
2470 the example above, the compiler finds that it is OK to allocate the
2471 "containing object" 64-bit field at bit-offset zero within the
2474 Here we attempt to work backwards from the limited set of facts we're
2475 given, and we try to deduce from those facts, where GCC must have
2476 believed that the containing object started (within the structure type).
2478 The value we deduce is then used (by the callers of this routine) to
2479 generate AT_location and AT_bit_offset attributes for fields (both
2480 bit-fields and, in the case of AT_location, regular fields as well). */
2482 /* Figure out the bit-distance from the start of the structure to the
2483 "deepest" bit of the bit-field. */
2484 deepest_bitpos
= bitpos_int
+ field_size_in_bits
;
2486 /* This is the tricky part. Use some fancy footwork to deduce where the
2487 lowest addressed bit of the containing object must be. */
2488 object_offset_in_bits
2489 = ceiling (deepest_bitpos
, type_align_in_bits
) - type_size_in_bits
;
2491 /* Compute the offset of the containing object in "alignment units". */
2492 object_offset_in_align_units
= object_offset_in_bits
/ type_align_in_bits
;
2494 /* Compute the offset of the containing object in bytes. */
2495 object_offset_in_bytes
= object_offset_in_align_units
* type_align_in_bytes
;
2497 /* The above code assumes that the field does not cross an alignment
2498 boundary. This can happen if PCC_BITFIELD_TYPE_MATTERS is not defined,
2499 or if the structure is packed. If this happens, then we get an object
2500 which starts after the bitfield, which means that the bit offset is
2501 negative. Gdb fails when given negative bit offsets. We avoid this
2502 by recomputing using the first bit of the bitfield. This will give
2503 us an object which does not completely contain the bitfield, but it
2504 will be aligned, and it will contain the first bit of the bitfield.
2506 However, only do this for a BYTES_BIG_ENDIAN target. For a
2507 ! BYTES_BIG_ENDIAN target, bitpos_int + field_size_in_bits is the first
2508 first bit of the bitfield. If we recompute using bitpos_int + 1 below,
2509 then we end up computing the object byte offset for the wrong word of the
2510 desired bitfield, which in turn causes the field offset to be negative
2511 in bit_offset_attribute. */
2512 if (BYTES_BIG_ENDIAN
2513 && object_offset_in_bits
> bitpos_int
)
2515 deepest_bitpos
= bitpos_int
+ 1;
2516 object_offset_in_bits
2517 = ceiling (deepest_bitpos
, type_align_in_bits
) - type_size_in_bits
;
2518 object_offset_in_align_units
= (object_offset_in_bits
2519 / type_align_in_bits
);
2520 object_offset_in_bytes
= (object_offset_in_align_units
2521 * type_align_in_bytes
);
2524 return object_offset_in_bytes
;
2527 /****************************** attributes *********************************/
2529 /* The following routines are responsible for writing out the various types
2530 of Dwarf attributes (and any following data bytes associated with them).
2531 These routines are listed in order based on the numerical codes of their
2532 associated attributes. */
2534 /* Generate an AT_sibling attribute. */
2537 sibling_attribute ()
2539 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2541 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_sibling
);
2542 sprintf (label
, DIE_BEGIN_LABEL_FMT
, NEXT_DIE_NUM
);
2543 ASM_OUTPUT_DWARF_REF (asm_out_file
, label
);
2546 /* Output the form of location attributes suitable for whole variables and
2547 whole parameters. Note that the location attributes for struct fields
2548 are generated by the routine `data_member_location_attribute' below. */
2551 location_attribute (rtl
)
2554 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2555 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2557 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_location
);
2558 sprintf (begin_label
, LOC_BEGIN_LABEL_FMT
, current_dienum
);
2559 sprintf (end_label
, LOC_END_LABEL_FMT
, current_dienum
);
2560 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
2561 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2563 /* Handle a special case. If we are about to output a location descriptor
2564 for a variable or parameter which has been optimized out of existence,
2565 don't do that. Instead we output a zero-length location descriptor
2566 value as part of the location attribute.
2568 A variable which has been optimized out of existence will have a
2569 DECL_RTL value which denotes a pseudo-reg.
2571 Currently, in some rare cases, variables can have DECL_RTL values
2572 which look like (MEM (REG pseudo-reg#)). These cases are due to
2573 bugs elsewhere in the compiler. We treat such cases
2574 as if the variable(s) in question had been optimized out of existence.
2576 Note that in all cases where we wish to express the fact that a
2577 variable has been optimized out of existence, we do not simply
2578 suppress the generation of the entire location attribute because
2579 the absence of a location attribute in certain kinds of DIEs is
2580 used to indicate something else entirely... i.e. that the DIE
2581 represents an object declaration, but not a definition. So saith
2585 if (! is_pseudo_reg (rtl
)
2586 && (GET_CODE (rtl
) != MEM
|| ! is_pseudo_reg (XEXP (rtl
, 0))))
2587 output_loc_descriptor (rtl
);
2589 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2592 /* Output the specialized form of location attribute used for data members
2593 of struct and union types.
2595 In the special case of a FIELD_DECL node which represents a bit-field,
2596 the "offset" part of this special location descriptor must indicate the
2597 distance in bytes from the lowest-addressed byte of the containing
2598 struct or union type to the lowest-addressed byte of the "containing
2599 object" for the bit-field. (See the `field_byte_offset' function above.)
2601 For any given bit-field, the "containing object" is a hypothetical
2602 object (of some integral or enum type) within which the given bit-field
2603 lives. The type of this hypothetical "containing object" is always the
2604 same as the declared type of the individual bit-field itself (for GCC
2605 anyway... the DWARF spec doesn't actually mandate this).
2607 Note that it is the size (in bytes) of the hypothetical "containing
2608 object" which will be given in the AT_byte_size attribute for this
2609 bit-field. (See the `byte_size_attribute' function below.) It is
2610 also used when calculating the value of the AT_bit_offset attribute.
2611 (See the `bit_offset_attribute' function below.) */
2614 data_member_location_attribute (t
)
2617 unsigned object_offset_in_bytes
;
2618 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2619 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2621 if (TREE_CODE (t
) == TREE_VEC
)
2622 object_offset_in_bytes
= tree_low_cst (BINFO_OFFSET (t
), 0);
2624 object_offset_in_bytes
= field_byte_offset (t
);
2626 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_location
);
2627 sprintf (begin_label
, LOC_BEGIN_LABEL_FMT
, current_dienum
);
2628 sprintf (end_label
, LOC_END_LABEL_FMT
, current_dienum
);
2629 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
2630 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2631 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_CONST
);
2632 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, object_offset_in_bytes
);
2633 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_ADD
);
2634 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2637 /* Output an AT_const_value attribute for a variable or a parameter which
2638 does not have a "location" either in memory or in a register. These
2639 things can arise in GNU C when a constant is passed as an actual
2640 parameter to an inlined function. They can also arise in C++ where
2641 declared constants do not necessarily get memory "homes". */
2644 const_value_attribute (rtl
)
2647 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2648 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2650 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_const_value_block4
);
2651 sprintf (begin_label
, LOC_BEGIN_LABEL_FMT
, current_dienum
);
2652 sprintf (end_label
, LOC_END_LABEL_FMT
, current_dienum
);
2653 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, end_label
, begin_label
);
2654 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2656 switch (GET_CODE (rtl
))
2659 /* Note that a CONST_INT rtx could represent either an integer or
2660 a floating-point constant. A CONST_INT is used whenever the
2661 constant will fit into a single word. In all such cases, the
2662 original mode of the constant value is wiped out, and the
2663 CONST_INT rtx is assigned VOIDmode. Since we no longer have
2664 precise mode information for these constants, we always just
2665 output them using 4 bytes. */
2667 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, (unsigned) INTVAL (rtl
));
2671 /* Note that a CONST_DOUBLE rtx could represent either an integer
2672 or a floating-point constant. A CONST_DOUBLE is used whenever
2673 the constant requires more than one word in order to be adequately
2674 represented. In all such cases, the original mode of the constant
2675 value is preserved as the mode of the CONST_DOUBLE rtx, but for
2676 simplicity we always just output CONST_DOUBLEs using 8 bytes. */
2678 ASM_OUTPUT_DWARF_DATA8 (asm_out_file
,
2679 (unsigned int) CONST_DOUBLE_HIGH (rtl
),
2680 (unsigned int) CONST_DOUBLE_LOW (rtl
));
2684 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, XSTR (rtl
, 0));
2690 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file
, rtl
);
2694 /* In cases where an inlined instance of an inline function is passed
2695 the address of an `auto' variable (which is local to the caller)
2696 we can get a situation where the DECL_RTL of the artificial
2697 local variable (for the inlining) which acts as a stand-in for
2698 the corresponding formal parameter (of the inline function)
2699 will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).
2700 This is not exactly a compile-time constant expression, but it
2701 isn't the address of the (artificial) local variable either.
2702 Rather, it represents the *value* which the artificial local
2703 variable always has during its lifetime. We currently have no
2704 way to represent such quasi-constant values in Dwarf, so for now
2705 we just punt and generate an AT_const_value attribute with form
2706 FORM_BLOCK4 and a length of zero. */
2710 abort (); /* No other kinds of rtx should be possible here. */
2713 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2716 /* Generate *either* an AT_location attribute or else an AT_const_value
2717 data attribute for a variable or a parameter. We generate the
2718 AT_const_value attribute only in those cases where the given
2719 variable or parameter does not have a true "location" either in
2720 memory or in a register. This can happen (for example) when a
2721 constant is passed as an actual argument in a call to an inline
2722 function. (It's possible that these things can crop up in other
2723 ways also.) Note that one type of constant value which can be
2724 passed into an inlined function is a constant pointer. This can
2725 happen for example if an actual argument in an inlined function
2726 call evaluates to a compile-time constant address. */
2729 location_or_const_value_attribute (decl
)
2734 if (TREE_CODE (decl
) == ERROR_MARK
)
2737 if ((TREE_CODE (decl
) != VAR_DECL
) && (TREE_CODE (decl
) != PARM_DECL
))
2739 /* Should never happen. */
2744 /* Here we have to decide where we are going to say the parameter "lives"
2745 (as far as the debugger is concerned). We only have a couple of choices.
2746 GCC provides us with DECL_RTL and with DECL_INCOMING_RTL. DECL_RTL
2747 normally indicates where the parameter lives during most of the activa-
2748 tion of the function. If optimization is enabled however, this could
2749 be either NULL or else a pseudo-reg. Both of those cases indicate that
2750 the parameter doesn't really live anywhere (as far as the code generation
2751 parts of GCC are concerned) during most of the function's activation.
2752 That will happen (for example) if the parameter is never referenced
2753 within the function.
2755 We could just generate a location descriptor here for all non-NULL
2756 non-pseudo values of DECL_RTL and ignore all of the rest, but we can
2757 be a little nicer than that if we also consider DECL_INCOMING_RTL in
2758 cases where DECL_RTL is NULL or is a pseudo-reg.
2760 Note however that we can only get away with using DECL_INCOMING_RTL as
2761 a backup substitute for DECL_RTL in certain limited cases. In cases
2762 where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl)
2763 we can be sure that the parameter was passed using the same type as it
2764 is declared to have within the function, and that its DECL_INCOMING_RTL
2765 points us to a place where a value of that type is passed. In cases
2766 where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types
2767 however, we cannot (in general) use DECL_INCOMING_RTL as a backup
2768 substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL
2769 points us to a value of some type which is *different* from the type
2770 of the parameter itself. Thus, if we tried to use DECL_INCOMING_RTL
2771 to generate a location attribute in such cases, the debugger would
2772 end up (for example) trying to fetch a `float' from a place which
2773 actually contains the first part of a `double'. That would lead to
2774 really incorrect and confusing output at debug-time, and we don't
2775 want that now do we?
2777 So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL
2778 in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl). There are a
2779 couple of cute exceptions however. On little-endian machines we can
2780 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is
2781 not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is
2782 an integral type which is smaller than TREE_TYPE(decl). These cases
2783 arise when (on a little-endian machine) a non-prototyped function has
2784 a parameter declared to be of type `short' or `char'. In such cases,
2785 TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be
2786 `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
2787 passed `int' value. If the debugger then uses that address to fetch a
2788 `short' or a `char' (on a little-endian machine) the result will be the
2789 correct data, so we allow for such exceptional cases below.
2791 Note that our goal here is to describe the place where the given formal
2792 parameter lives during most of the function's activation (i.e. between
2793 the end of the prologue and the start of the epilogue). We'll do that
2794 as best as we can. Note however that if the given formal parameter is
2795 modified sometime during the execution of the function, then a stack
2796 backtrace (at debug-time) will show the function as having been called
2797 with the *new* value rather than the value which was originally passed
2798 in. This happens rarely enough that it is not a major problem, but it
2799 *is* a problem, and I'd like to fix it. A future version of dwarfout.c
2800 may generate two additional attributes for any given TAG_formal_parameter
2801 DIE which will describe the "passed type" and the "passed location" for
2802 the given formal parameter in addition to the attributes we now generate
2803 to indicate the "declared type" and the "active location" for each
2804 parameter. This additional set of attributes could be used by debuggers
2805 for stack backtraces.
2807 Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL
2808 can be NULL also. This happens (for example) for inlined-instances of
2809 inline function formal parameters which are never referenced. This really
2810 shouldn't be happening. All PARM_DECL nodes should get valid non-NULL
2811 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate
2812 these values for inlined instances of inline function parameters, so
2813 when we see such cases, we are just out-of-luck for the time
2814 being (until integrate.c gets fixed).
2817 /* Use DECL_RTL as the "location" unless we find something better. */
2818 rtl
= DECL_RTL (decl
);
2820 if (TREE_CODE (decl
) == PARM_DECL
)
2821 if (rtl
== NULL_RTX
|| is_pseudo_reg (rtl
))
2823 /* This decl represents a formal parameter which was optimized out. */
2824 tree declared_type
= type_main_variant (TREE_TYPE (decl
));
2825 tree passed_type
= type_main_variant (DECL_ARG_TYPE (decl
));
2827 /* Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2828 *all* cases where (rtl == NULL_RTX) just below. */
2830 if (declared_type
== passed_type
)
2831 rtl
= DECL_INCOMING_RTL (decl
);
2832 else if (! BYTES_BIG_ENDIAN
)
2833 if (TREE_CODE (declared_type
) == INTEGER_TYPE
)
2835 if (TYPE_SIZE (declared_type
) <= TYPE_SIZE (passed_type
))
2836 rtl
= DECL_INCOMING_RTL (decl
);
2839 if (rtl
== NULL_RTX
)
2842 rtl
= eliminate_regs (rtl
, 0, NULL_RTX
);
2843 #ifdef LEAF_REG_REMAP
2844 if (current_function_uses_only_leaf_regs
)
2845 leaf_renumber_regs_insn (rtl
);
2848 switch (GET_CODE (rtl
))
2851 /* The address of a variable that was optimized away; don't emit
2861 case PLUS
: /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
2862 const_value_attribute (rtl
);
2868 location_attribute (rtl
);
2872 /* ??? CONCAT is used for complex variables, which may have the real
2873 part stored in one place and the imag part stored somewhere else.
2874 DWARF1 has no way to describe a variable that lives in two different
2875 places, so we just describe where the first part lives, and hope that
2876 the second part is stored after it. */
2877 location_attribute (XEXP (rtl
, 0));
2881 abort (); /* Should never happen. */
2885 /* Generate an AT_name attribute given some string value to be included as
2886 the value of the attribute. */
2889 name_attribute (name_string
)
2890 const char *name_string
;
2892 if (name_string
&& *name_string
)
2894 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_name
);
2895 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, name_string
);
2900 fund_type_attribute (ft_code
)
2903 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_fund_type
);
2904 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file
, ft_code
);
2908 mod_fund_type_attribute (type
, decl_const
, decl_volatile
)
2913 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2914 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2916 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_mod_fund_type
);
2917 sprintf (begin_label
, MT_BEGIN_LABEL_FMT
, current_dienum
);
2918 sprintf (end_label
, MT_END_LABEL_FMT
, current_dienum
);
2919 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
2920 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2921 write_modifier_bytes (type
, decl_const
, decl_volatile
);
2922 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file
,
2923 fundamental_type_code (root_type (type
)));
2924 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2928 user_def_type_attribute (type
)
2931 char ud_type_name
[MAX_ARTIFICIAL_LABEL_BYTES
];
2933 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_user_def_type
);
2934 sprintf (ud_type_name
, TYPE_NAME_FMT
, TYPE_UID (type
));
2935 ASM_OUTPUT_DWARF_REF (asm_out_file
, ud_type_name
);
2939 mod_u_d_type_attribute (type
, decl_const
, decl_volatile
)
2944 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2945 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2946 char ud_type_name
[MAX_ARTIFICIAL_LABEL_BYTES
];
2948 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_mod_u_d_type
);
2949 sprintf (begin_label
, MT_BEGIN_LABEL_FMT
, current_dienum
);
2950 sprintf (end_label
, MT_END_LABEL_FMT
, current_dienum
);
2951 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
2952 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2953 write_modifier_bytes (type
, decl_const
, decl_volatile
);
2954 sprintf (ud_type_name
, TYPE_NAME_FMT
, TYPE_UID (root_type (type
)));
2955 ASM_OUTPUT_DWARF_REF (asm_out_file
, ud_type_name
);
2956 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2959 #ifdef USE_ORDERING_ATTRIBUTE
2961 ordering_attribute (ordering
)
2964 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_ordering
);
2965 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, ordering
);
2967 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
2969 /* Note that the block of subscript information for an array type also
2970 includes information about the element type of type given array type. */
2973 subscript_data_attribute (type
)
2976 unsigned dimension_number
;
2977 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2978 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2980 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_subscr_data
);
2981 sprintf (begin_label
, SS_BEGIN_LABEL_FMT
, current_dienum
);
2982 sprintf (end_label
, SS_END_LABEL_FMT
, current_dienum
);
2983 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
2984 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2986 /* The GNU compilers represent multidimensional array types as sequences
2987 of one dimensional array types whose element types are themselves array
2988 types. Here we squish that down, so that each multidimensional array
2989 type gets only one array_type DIE in the Dwarf debugging info. The
2990 draft Dwarf specification say that we are allowed to do this kind
2991 of compression in C (because there is no difference between an
2992 array or arrays and a multidimensional array in C) but for other
2993 source languages (e.g. Ada) we probably shouldn't do this. */
2995 for (dimension_number
= 0;
2996 TREE_CODE (type
) == ARRAY_TYPE
;
2997 type
= TREE_TYPE (type
), dimension_number
++)
2999 tree domain
= TYPE_DOMAIN (type
);
3001 /* Arrays come in three flavors. Unspecified bounds, fixed
3002 bounds, and (in GNU C only) variable bounds. Handle all
3003 three forms here. */
3007 /* We have an array type with specified bounds. */
3009 tree lower
= TYPE_MIN_VALUE (domain
);
3010 tree upper
= TYPE_MAX_VALUE (domain
);
3012 /* Handle only fundamental types as index types for now. */
3013 if (! type_is_fundamental (domain
))
3016 /* Output the representation format byte for this dimension. */
3017 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file
,
3018 FMT_CODE (1, TREE_CODE (lower
) == INTEGER_CST
,
3019 upper
&& TREE_CODE (upper
) == INTEGER_CST
));
3021 /* Output the index type for this dimension. */
3022 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file
,
3023 fundamental_type_code (domain
));
3025 /* Output the representation for the lower bound. */
3026 output_bound_representation (lower
, dimension_number
, 'l');
3028 /* Output the representation for the upper bound. */
3030 output_bound_representation (upper
, dimension_number
, 'u');
3032 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, 0);
3036 /* We have an array type with an unspecified length. For C and
3037 C++ we can assume that this really means that (a) the index
3038 type is an integral type, and (b) the lower bound is zero.
3039 Note that Dwarf defines the representation of an unspecified
3040 (upper) bound as being a zero-length location description. */
3042 /* Output the array-bounds format byte. */
3044 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file
, FMT_FT_C_X
);
3046 /* Output the (assumed) index type. */
3048 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file
, FT_integer
);
3050 /* Output the (assumed) lower bound (constant) value. */
3052 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 0);
3054 /* Output the (empty) location description for the upper bound. */
3056 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, 0);
3060 /* Output the prefix byte that says that the element type is coming up. */
3062 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file
, FMT_ET
);
3064 /* Output a representation of the type of the elements of this array type. */
3066 type_attribute (type
, 0, 0);
3068 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
3072 byte_size_attribute (tree_node
)
3077 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_byte_size
);
3078 switch (TREE_CODE (tree_node
))
3087 case QUAL_UNION_TYPE
:
3089 size
= int_size_in_bytes (tree_node
);
3093 /* For a data member of a struct or union, the AT_byte_size is
3094 generally given as the number of bytes normally allocated for
3095 an object of the *declared* type of the member itself. This
3096 is true even for bit-fields. */
3097 size
= simple_type_size_in_bits (field_type (tree_node
))
3105 /* Note that `size' might be -1 when we get to this point. If it
3106 is, that indicates that the byte size of the entity in question
3107 is variable. We have no good way of expressing this fact in Dwarf
3108 at the present time, so just let the -1 pass on through. */
3110 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, size
);
3113 /* For a FIELD_DECL node which represents a bit-field, output an attribute
3114 which specifies the distance in bits from the highest order bit of the
3115 "containing object" for the bit-field to the highest order bit of the
3118 For any given bit-field, the "containing object" is a hypothetical
3119 object (of some integral or enum type) within which the given bit-field
3120 lives. The type of this hypothetical "containing object" is always the
3121 same as the declared type of the individual bit-field itself.
3123 The determination of the exact location of the "containing object" for
3124 a bit-field is rather complicated. It's handled by the `field_byte_offset'
3127 Note that it is the size (in bytes) of the hypothetical "containing
3128 object" which will be given in the AT_byte_size attribute for this
3129 bit-field. (See `byte_size_attribute' above.) */
3132 bit_offset_attribute (decl
)
3135 HOST_WIDE_INT object_offset_in_bytes
= field_byte_offset (decl
);
3136 tree type
= DECL_BIT_FIELD_TYPE (decl
);
3137 HOST_WIDE_INT bitpos_int
;
3138 HOST_WIDE_INT highest_order_object_bit_offset
;
3139 HOST_WIDE_INT highest_order_field_bit_offset
;
3140 HOST_WIDE_INT bit_offset
;
3142 /* Must be a bit field. */
3144 || TREE_CODE (decl
) != FIELD_DECL
)
3147 /* We can't yet handle bit-fields whose offsets or sizes are variable, so
3148 if we encounter such things, just return without generating any
3149 attribute whatsoever. */
3151 if (! host_integerp (bit_position (decl
), 0)
3152 || ! host_integerp (DECL_SIZE (decl
), 1))
3155 bitpos_int
= int_bit_position (decl
);
3157 /* Note that the bit offset is always the distance (in bits) from the
3158 highest-order bit of the "containing object" to the highest-order
3159 bit of the bit-field itself. Since the "high-order end" of any
3160 object or field is different on big-endian and little-endian machines,
3161 the computation below must take account of these differences. */
3163 highest_order_object_bit_offset
= object_offset_in_bytes
* BITS_PER_UNIT
;
3164 highest_order_field_bit_offset
= bitpos_int
;
3166 if (! BYTES_BIG_ENDIAN
)
3168 highest_order_field_bit_offset
+= tree_low_cst (DECL_SIZE (decl
), 1);
3169 highest_order_object_bit_offset
+= simple_type_size_in_bits (type
);
3174 ? highest_order_object_bit_offset
- highest_order_field_bit_offset
3175 : highest_order_field_bit_offset
- highest_order_object_bit_offset
);
3177 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_bit_offset
);
3178 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, bit_offset
);
3181 /* For a FIELD_DECL node which represents a bit field, output an attribute
3182 which specifies the length in bits of the given field. */
3185 bit_size_attribute (decl
)
3188 /* Must be a field and a bit field. */
3189 if (TREE_CODE (decl
) != FIELD_DECL
3190 || ! DECL_BIT_FIELD_TYPE (decl
))
3193 if (host_integerp (DECL_SIZE (decl
), 1))
3195 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_bit_size
);
3196 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
,
3197 tree_low_cst (DECL_SIZE (decl
), 1));
3201 /* The following routine outputs the `element_list' attribute for enumeration
3202 type DIEs. The element_lits attribute includes the names and values of
3203 all of the enumeration constants associated with the given enumeration
3207 element_list_attribute (element
)
3210 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3211 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3213 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_element_list
);
3214 sprintf (begin_label
, EE_BEGIN_LABEL_FMT
, current_dienum
);
3215 sprintf (end_label
, EE_END_LABEL_FMT
, current_dienum
);
3216 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, end_label
, begin_label
);
3217 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
3219 /* Here we output a list of value/name pairs for each enumeration constant
3220 defined for this enumeration type (as required), but we do it in REVERSE
3221 order. The order is the one required by the draft #5 Dwarf specification
3222 published by the UI/PLSIG. */
3224 output_enumeral_list (element
); /* Recursively output the whole list. */
3226 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
3229 /* Generate an AT_stmt_list attribute. These are normally present only in
3230 DIEs with a TAG_compile_unit tag. */
3233 stmt_list_attribute (label
)
3236 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_stmt_list
);
3237 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3238 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, label
);
3241 /* Generate an AT_low_pc attribute for a label DIE, a lexical_block DIE or
3242 for a subroutine DIE. */
3245 low_pc_attribute (asm_low_label
)
3246 const char *asm_low_label
;
3248 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_low_pc
);
3249 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, asm_low_label
);
3252 /* Generate an AT_high_pc attribute for a lexical_block DIE or for a
3256 high_pc_attribute (asm_high_label
)
3257 const char *asm_high_label
;
3259 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_high_pc
);
3260 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, asm_high_label
);
3263 /* Generate an AT_body_begin attribute for a subroutine DIE. */
3266 body_begin_attribute (asm_begin_label
)
3267 const char *asm_begin_label
;
3269 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_body_begin
);
3270 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, asm_begin_label
);
3273 /* Generate an AT_body_end attribute for a subroutine DIE. */
3276 body_end_attribute (asm_end_label
)
3277 const char *asm_end_label
;
3279 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_body_end
);
3280 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, asm_end_label
);
3283 /* Generate an AT_language attribute given a LANG value. These attributes
3284 are used only within TAG_compile_unit DIEs. */
3287 language_attribute (language_code
)
3288 unsigned language_code
;
3290 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_language
);
3291 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, language_code
);
3295 member_attribute (context
)
3298 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3300 /* Generate this attribute only for members in C++. */
3302 if (context
!= NULL
&& is_tagged_type (context
))
3304 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_member
);
3305 sprintf (label
, TYPE_NAME_FMT
, TYPE_UID (context
));
3306 ASM_OUTPUT_DWARF_REF (asm_out_file
, label
);
3311 #ifndef SL_BEGIN_LABEL_FMT
3312 #define SL_BEGIN_LABEL_FMT "*.L_sl%u"
3314 #ifndef SL_END_LABEL_FMT
3315 #define SL_END_LABEL_FMT "*.L_sl%u_e"
3319 string_length_attribute (upper_bound
)
3322 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3323 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3325 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_string_length
);
3326 sprintf (begin_label
, SL_BEGIN_LABEL_FMT
, current_dienum
);
3327 sprintf (end_label
, SL_END_LABEL_FMT
, current_dienum
);
3328 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
3329 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
3330 output_bound_representation (upper_bound
, 0, 'u');
3331 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
3336 comp_dir_attribute (dirname
)
3337 const char *dirname
;
3339 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_comp_dir
);
3340 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, dirname
);
3344 sf_names_attribute (sf_names_start_label
)
3345 const char *sf_names_start_label
;
3347 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_sf_names
);
3348 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3349 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, sf_names_start_label
);
3353 src_info_attribute (src_info_start_label
)
3354 const char *src_info_start_label
;
3356 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_src_info
);
3357 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3358 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, src_info_start_label
);
3362 mac_info_attribute (mac_info_start_label
)
3363 const char *mac_info_start_label
;
3365 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_mac_info
);
3366 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3367 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, mac_info_start_label
);
3371 prototyped_attribute (func_type
)
3374 if ((strcmp (lang_hooks
.name
, "GNU C") == 0)
3375 && (TYPE_ARG_TYPES (func_type
) != NULL
))
3377 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_prototyped
);
3378 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
3383 producer_attribute (producer
)
3384 const char *producer
;
3386 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_producer
);
3387 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, producer
);
3391 inline_attribute (decl
)
3394 if (DECL_INLINE (decl
))
3396 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_inline
);
3397 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
3402 containing_type_attribute (containing_type
)
3403 tree containing_type
;
3405 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3407 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_containing_type
);
3408 sprintf (label
, TYPE_NAME_FMT
, TYPE_UID (containing_type
));
3409 ASM_OUTPUT_DWARF_REF (asm_out_file
, label
);
3413 abstract_origin_attribute (origin
)
3416 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3418 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_abstract_origin
);
3419 switch (TREE_CODE_CLASS (TREE_CODE (origin
)))
3422 sprintf (label
, DECL_NAME_FMT
, DECL_UID (origin
));
3426 sprintf (label
, TYPE_NAME_FMT
, TYPE_UID (origin
));
3430 abort (); /* Should never happen. */
3433 ASM_OUTPUT_DWARF_REF (asm_out_file
, label
);
3436 #ifdef DWARF_DECL_COORDINATES
3438 src_coords_attribute (src_fileno
, src_lineno
)
3439 unsigned src_fileno
;
3440 unsigned src_lineno
;
3442 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_src_coords
);
3443 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, src_fileno
);
3444 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, src_lineno
);
3446 #endif /* defined(DWARF_DECL_COORDINATES) */
3449 pure_or_virtual_attribute (func_decl
)
3452 if (DECL_VIRTUAL_P (func_decl
))
3454 #if 0 /* DECL_ABSTRACT_VIRTUAL_P is C++-specific. */
3455 if (DECL_ABSTRACT_VIRTUAL_P (func_decl
))
3456 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_pure_virtual
);
3459 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_virtual
);
3460 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
3464 /************************* end of attributes *****************************/
3466 /********************* utility routines for DIEs *************************/
3468 /* Output an AT_name attribute and an AT_src_coords attribute for the
3469 given decl, but only if it actually has a name. */
3472 name_and_src_coords_attributes (decl
)
3475 tree decl_name
= DECL_NAME (decl
);
3477 if (decl_name
&& IDENTIFIER_POINTER (decl_name
))
3479 name_attribute (IDENTIFIER_POINTER (decl_name
));
3480 #ifdef DWARF_DECL_COORDINATES
3482 register unsigned file_index
;
3484 /* This is annoying, but we have to pop out of the .debug section
3485 for a moment while we call `lookup_filename' because calling it
3486 may cause a temporary switch into the .debug_sfnames section and
3487 most svr4 assemblers are not smart enough to be able to nest
3488 section switches to any depth greater than one. Note that we
3489 also can't skirt this issue by delaying all output to the
3490 .debug_sfnames section unit the end of compilation because that
3491 would cause us to have inter-section forward references and
3492 Fred Fish sez that m68k/svr4 assemblers botch those. */
3494 ASM_OUTPUT_POP_SECTION (asm_out_file
);
3495 file_index
= lookup_filename (DECL_SOURCE_FILE (decl
));
3496 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SECTION
);
3498 src_coords_attribute (file_index
, DECL_SOURCE_LINE (decl
));
3500 #endif /* defined(DWARF_DECL_COORDINATES) */
3504 /* Many forms of DIEs contain a "type description" part. The following
3505 routine writes out these "type descriptor" parts. */
3508 type_attribute (type
, decl_const
, decl_volatile
)
3513 enum tree_code code
= TREE_CODE (type
);
3514 int root_type_modified
;
3516 if (code
== ERROR_MARK
)
3519 /* Handle a special case. For functions whose return type is void,
3520 we generate *no* type attribute. (Note that no object may have
3521 type `void', so this only applies to function return types. */
3523 if (code
== VOID_TYPE
)
3526 /* If this is a subtype, find the underlying type. Eventually,
3527 this should write out the appropriate subtype info. */
3528 while ((code
== INTEGER_TYPE
|| code
== REAL_TYPE
)
3529 && TREE_TYPE (type
) != 0)
3530 type
= TREE_TYPE (type
), code
= TREE_CODE (type
);
3532 root_type_modified
= (code
== POINTER_TYPE
|| code
== REFERENCE_TYPE
3533 || decl_const
|| decl_volatile
3534 || TYPE_READONLY (type
) || TYPE_VOLATILE (type
));
3536 if (type_is_fundamental (root_type (type
)))
3538 if (root_type_modified
)
3539 mod_fund_type_attribute (type
, decl_const
, decl_volatile
);
3541 fund_type_attribute (fundamental_type_code (type
));
3545 if (root_type_modified
)
3546 mod_u_d_type_attribute (type
, decl_const
, decl_volatile
);
3548 /* We have to get the type_main_variant here (and pass that to the
3549 `user_def_type_attribute' routine) because the ..._TYPE node we
3550 have might simply be a *copy* of some original type node (where
3551 the copy was created to help us keep track of typedef names)
3552 and that copy might have a different TYPE_UID from the original
3553 ..._TYPE node. (Note that when `equate_type_number_to_die_number'
3554 is labeling a given type DIE for future reference, it always and
3555 only creates labels for DIEs representing *main variants*, and it
3556 never even knows about non-main-variants.) */
3557 user_def_type_attribute (type_main_variant (type
));
3561 /* Given a tree pointer to a struct, class, union, or enum type node, return
3562 a pointer to the (string) tag name for the given type, or zero if the
3563 type was declared without a tag. */
3569 const char *name
= 0;
3571 if (TYPE_NAME (type
) != 0)
3575 /* Find the IDENTIFIER_NODE for the type name. */
3576 if (TREE_CODE (TYPE_NAME (type
)) == IDENTIFIER_NODE
)
3577 t
= TYPE_NAME (type
);
3579 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
3580 a TYPE_DECL node, regardless of whether or not a `typedef' was
3582 else if (TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
3583 && ! DECL_IGNORED_P (TYPE_NAME (type
)))
3584 t
= DECL_NAME (TYPE_NAME (type
));
3586 /* Now get the name as a string, or invent one. */
3588 name
= IDENTIFIER_POINTER (t
);
3591 return (name
== 0 || *name
== '\0') ? 0 : name
;
3597 /* Start by checking if the pending_sibling_stack needs to be expanded.
3598 If necessary, expand it. */
3600 if (pending_siblings
== pending_siblings_allocated
)
3602 pending_siblings_allocated
+= PENDING_SIBLINGS_INCREMENT
;
3603 pending_sibling_stack
3604 = (unsigned *) xrealloc (pending_sibling_stack
,
3605 pending_siblings_allocated
* sizeof(unsigned));
3609 NEXT_DIE_NUM
= next_unused_dienum
++;
3612 /* Pop the sibling stack so that the most recently pushed DIEnum becomes the
3622 member_declared_type (member
)
3625 return (DECL_BIT_FIELD_TYPE (member
))
3626 ? DECL_BIT_FIELD_TYPE (member
)
3627 : TREE_TYPE (member
);
3630 /* Get the function's label, as described by its RTL.
3631 This may be different from the DECL_NAME name used
3632 in the source file. */
3635 function_start_label (decl
)
3641 x
= DECL_RTL (decl
);
3642 if (GET_CODE (x
) != MEM
)
3645 if (GET_CODE (x
) != SYMBOL_REF
)
3647 fnname
= XSTR (x
, 0);
3652 /******************************* DIEs ************************************/
3654 /* Output routines for individual types of DIEs. */
3656 /* Note that every type of DIE (except a null DIE) gets a sibling. */
3659 output_array_type_die (arg
)
3664 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_array_type
);
3665 sibling_attribute ();
3666 equate_type_number_to_die_number (type
);
3667 member_attribute (TYPE_CONTEXT (type
));
3669 /* I believe that we can default the array ordering. SDB will probably
3670 do the right things even if AT_ordering is not present. It's not
3671 even an issue until we start to get into multidimensional arrays
3672 anyway. If SDB is ever caught doing the Wrong Thing for multi-
3673 dimensional arrays, then we'll have to put the AT_ordering attribute
3674 back in. (But if and when we find out that we need to put these in,
3675 we will only do so for multidimensional arrays. After all, we don't
3676 want to waste space in the .debug section now do we?) */
3678 #ifdef USE_ORDERING_ATTRIBUTE
3679 ordering_attribute (ORD_row_major
);
3680 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
3682 subscript_data_attribute (type
);
3686 output_set_type_die (arg
)
3691 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_set_type
);
3692 sibling_attribute ();
3693 equate_type_number_to_die_number (type
);
3694 member_attribute (TYPE_CONTEXT (type
));
3695 type_attribute (TREE_TYPE (type
), 0, 0);
3699 /* Implement this when there is a GNU FORTRAN or GNU Ada front end. */
3702 output_entry_point_die (arg
)
3706 tree origin
= decl_ultimate_origin (decl
);
3708 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_entry_point
);
3709 sibling_attribute ();
3712 abstract_origin_attribute (origin
);
3715 name_and_src_coords_attributes (decl
);
3716 member_attribute (DECL_CONTEXT (decl
));
3717 type_attribute (TREE_TYPE (TREE_TYPE (decl
)), 0, 0);
3719 if (DECL_ABSTRACT (decl
))
3720 equate_decl_number_to_die_number (decl
);
3722 low_pc_attribute (function_start_label (decl
));
3726 /* Output a DIE to represent an inlined instance of an enumeration type. */
3729 output_inlined_enumeration_type_die (arg
)
3734 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_enumeration_type
);
3735 sibling_attribute ();
3736 if (!TREE_ASM_WRITTEN (type
))
3738 abstract_origin_attribute (type
);
3741 /* Output a DIE to represent an inlined instance of a structure type. */
3744 output_inlined_structure_type_die (arg
)
3749 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_structure_type
);
3750 sibling_attribute ();
3751 if (!TREE_ASM_WRITTEN (type
))
3753 abstract_origin_attribute (type
);
3756 /* Output a DIE to represent an inlined instance of a union type. */
3759 output_inlined_union_type_die (arg
)
3764 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_union_type
);
3765 sibling_attribute ();
3766 if (!TREE_ASM_WRITTEN (type
))
3768 abstract_origin_attribute (type
);
3771 /* Output a DIE to represent an enumeration type. Note that these DIEs
3772 include all of the information about the enumeration values also.
3773 This information is encoded into the element_list attribute. */
3776 output_enumeration_type_die (arg
)
3781 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_enumeration_type
);
3782 sibling_attribute ();
3783 equate_type_number_to_die_number (type
);
3784 name_attribute (type_tag (type
));
3785 member_attribute (TYPE_CONTEXT (type
));
3787 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
3788 given enum type is incomplete, do not generate the AT_byte_size
3789 attribute or the AT_element_list attribute. */
3791 if (COMPLETE_TYPE_P (type
))
3793 byte_size_attribute (type
);
3794 element_list_attribute (TYPE_FIELDS (type
));
3798 /* Output a DIE to represent either a real live formal parameter decl or
3799 to represent just the type of some formal parameter position in some
3802 Note that this routine is a bit unusual because its argument may be
3803 a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
3804 represents an inlining of some PARM_DECL) or else some sort of a
3805 ..._TYPE node. If it's the former then this function is being called
3806 to output a DIE to represent a formal parameter object (or some inlining
3807 thereof). If it's the latter, then this function is only being called
3808 to output a TAG_formal_parameter DIE to stand as a placeholder for some
3809 formal argument type of some subprogram type. */
3812 output_formal_parameter_die (arg
)
3817 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_formal_parameter
);
3818 sibling_attribute ();
3820 switch (TREE_CODE_CLASS (TREE_CODE (node
)))
3822 case 'd': /* We were called with some kind of a ..._DECL node. */
3824 register tree origin
= decl_ultimate_origin (node
);
3827 abstract_origin_attribute (origin
);
3830 name_and_src_coords_attributes (node
);
3831 type_attribute (TREE_TYPE (node
),
3832 TREE_READONLY (node
), TREE_THIS_VOLATILE (node
));
3834 if (DECL_ABSTRACT (node
))
3835 equate_decl_number_to_die_number (node
);
3837 location_or_const_value_attribute (node
);
3841 case 't': /* We were called with some kind of a ..._TYPE node. */
3842 type_attribute (node
, 0, 0);
3846 abort (); /* Should never happen. */
3850 /* Output a DIE to represent a declared function (either file-scope
3851 or block-local) which has "external linkage" (according to ANSI-C). */
3854 output_global_subroutine_die (arg
)
3858 tree origin
= decl_ultimate_origin (decl
);
3860 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_global_subroutine
);
3861 sibling_attribute ();
3864 abstract_origin_attribute (origin
);
3867 tree type
= TREE_TYPE (decl
);
3869 name_and_src_coords_attributes (decl
);
3870 inline_attribute (decl
);
3871 prototyped_attribute (type
);
3872 member_attribute (DECL_CONTEXT (decl
));
3873 type_attribute (TREE_TYPE (type
), 0, 0);
3874 pure_or_virtual_attribute (decl
);
3876 if (DECL_ABSTRACT (decl
))
3877 equate_decl_number_to_die_number (decl
);
3880 if (! DECL_EXTERNAL (decl
) && ! in_class
3881 && decl
== current_function_decl
)
3883 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3885 low_pc_attribute (function_start_label (decl
));
3886 sprintf (label
, FUNC_END_LABEL_FMT
, current_function_funcdef_no
);
3887 high_pc_attribute (label
);
3888 if (use_gnu_debug_info_extensions
)
3890 sprintf (label
, BODY_BEGIN_LABEL_FMT
,
3891 current_function_funcdef_no
);
3892 body_begin_attribute (label
);
3893 sprintf (label
, BODY_END_LABEL_FMT
, current_function_funcdef_no
);
3894 body_end_attribute (label
);
3900 /* Output a DIE to represent a declared data object (either file-scope
3901 or block-local) which has "external linkage" (according to ANSI-C). */
3904 output_global_variable_die (arg
)
3908 tree origin
= decl_ultimate_origin (decl
);
3910 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_global_variable
);
3911 sibling_attribute ();
3913 abstract_origin_attribute (origin
);
3916 name_and_src_coords_attributes (decl
);
3917 member_attribute (DECL_CONTEXT (decl
));
3918 type_attribute (TREE_TYPE (decl
),
3919 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
));
3921 if (DECL_ABSTRACT (decl
))
3922 equate_decl_number_to_die_number (decl
);
3925 if (! DECL_EXTERNAL (decl
) && ! in_class
3926 && current_function_decl
== decl_function_context (decl
))
3927 location_or_const_value_attribute (decl
);
3932 output_label_die (arg
)
3936 tree origin
= decl_ultimate_origin (decl
);
3938 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_label
);
3939 sibling_attribute ();
3941 abstract_origin_attribute (origin
);
3943 name_and_src_coords_attributes (decl
);
3944 if (DECL_ABSTRACT (decl
))
3945 equate_decl_number_to_die_number (decl
);
3948 rtx insn
= DECL_RTL (decl
);
3950 /* Deleted labels are programmer specified labels which have been
3951 eliminated because of various optimisations. We still emit them
3952 here so that it is possible to put breakpoints on them. */
3953 if (GET_CODE (insn
) == CODE_LABEL
3954 || ((GET_CODE (insn
) == NOTE
3955 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_DELETED_LABEL
)))
3957 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3959 /* When optimization is enabled (via -O) some parts of the compiler
3960 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
3961 represent source-level labels which were explicitly declared by
3962 the user. This really shouldn't be happening though, so catch
3963 it if it ever does happen. */
3965 if (INSN_DELETED_P (insn
))
3966 abort (); /* Should never happen. */
3968 ASM_GENERATE_INTERNAL_LABEL (label
, "L", CODE_LABEL_NUMBER (insn
));
3969 low_pc_attribute (label
);
3975 output_lexical_block_die (arg
)
3980 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_lexical_block
);
3981 sibling_attribute ();
3983 if (! BLOCK_ABSTRACT (stmt
))
3985 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3986 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3988 sprintf (begin_label
, BLOCK_BEGIN_LABEL_FMT
, BLOCK_NUMBER (stmt
));
3989 low_pc_attribute (begin_label
);
3990 sprintf (end_label
, BLOCK_END_LABEL_FMT
, BLOCK_NUMBER (stmt
));
3991 high_pc_attribute (end_label
);
3996 output_inlined_subroutine_die (arg
)
4001 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_inlined_subroutine
);
4002 sibling_attribute ();
4004 abstract_origin_attribute (block_ultimate_origin (stmt
));
4005 if (! BLOCK_ABSTRACT (stmt
))
4007 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4008 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4010 sprintf (begin_label
, BLOCK_BEGIN_LABEL_FMT
, BLOCK_NUMBER (stmt
));
4011 low_pc_attribute (begin_label
);
4012 sprintf (end_label
, BLOCK_END_LABEL_FMT
, BLOCK_NUMBER (stmt
));
4013 high_pc_attribute (end_label
);
4017 /* Output a DIE to represent a declared data object (either file-scope
4018 or block-local) which has "internal linkage" (according to ANSI-C). */
4021 output_local_variable_die (arg
)
4025 tree origin
= decl_ultimate_origin (decl
);
4027 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_local_variable
);
4028 sibling_attribute ();
4030 abstract_origin_attribute (origin
);
4033 name_and_src_coords_attributes (decl
);
4034 member_attribute (DECL_CONTEXT (decl
));
4035 type_attribute (TREE_TYPE (decl
),
4036 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
));
4038 if (DECL_ABSTRACT (decl
))
4039 equate_decl_number_to_die_number (decl
);
4041 location_or_const_value_attribute (decl
);
4045 output_member_die (arg
)
4050 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_member
);
4051 sibling_attribute ();
4052 name_and_src_coords_attributes (decl
);
4053 member_attribute (DECL_CONTEXT (decl
));
4054 type_attribute (member_declared_type (decl
),
4055 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
));
4056 if (DECL_BIT_FIELD_TYPE (decl
)) /* If this is a bit field... */
4058 byte_size_attribute (decl
);
4059 bit_size_attribute (decl
);
4060 bit_offset_attribute (decl
);
4062 data_member_location_attribute (decl
);
4066 /* Don't generate either pointer_type DIEs or reference_type DIEs. Use
4067 modified types instead.
4069 We keep this code here just in case these types of DIEs may be
4070 needed to represent certain things in other languages (e.g. Pascal)
4074 output_pointer_type_die (arg
)
4079 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_pointer_type
);
4080 sibling_attribute ();
4081 equate_type_number_to_die_number (type
);
4082 member_attribute (TYPE_CONTEXT (type
));
4083 type_attribute (TREE_TYPE (type
), 0, 0);
4087 output_reference_type_die (arg
)
4092 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_reference_type
);
4093 sibling_attribute ();
4094 equate_type_number_to_die_number (type
);
4095 member_attribute (TYPE_CONTEXT (type
));
4096 type_attribute (TREE_TYPE (type
), 0, 0);
4101 output_ptr_to_mbr_type_die (arg
)
4106 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_ptr_to_member_type
);
4107 sibling_attribute ();
4108 equate_type_number_to_die_number (type
);
4109 member_attribute (TYPE_CONTEXT (type
));
4110 containing_type_attribute (TYPE_OFFSET_BASETYPE (type
));
4111 type_attribute (TREE_TYPE (type
), 0, 0);
4115 output_compile_unit_die (arg
)
4118 const char *main_input_filename
= arg
;
4119 const char *language_string
= lang_hooks
.name
;
4121 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_compile_unit
);
4122 sibling_attribute ();
4124 name_attribute (main_input_filename
);
4129 sprintf (producer
, "%s %s", language_string
, version_string
);
4130 producer_attribute (producer
);
4133 if (strcmp (language_string
, "GNU C++") == 0)
4134 language_attribute (LANG_C_PLUS_PLUS
);
4135 else if (strcmp (language_string
, "GNU Ada") == 0)
4136 language_attribute (LANG_ADA83
);
4137 else if (strcmp (language_string
, "GNU F77") == 0)
4138 language_attribute (LANG_FORTRAN77
);
4139 else if (strcmp (language_string
, "GNU Pascal") == 0)
4140 language_attribute (LANG_PASCAL83
);
4141 else if (strcmp (language_string
, "GNU Java") == 0)
4142 language_attribute (LANG_JAVA
);
4144 language_attribute (LANG_C89
);
4145 low_pc_attribute (TEXT_BEGIN_LABEL
);
4146 high_pc_attribute (TEXT_END_LABEL
);
4147 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
4148 stmt_list_attribute (LINE_BEGIN_LABEL
);
4151 const char *wd
= getpwd ();
4153 comp_dir_attribute (wd
);
4156 if (debug_info_level
>= DINFO_LEVEL_NORMAL
&& use_gnu_debug_info_extensions
)
4158 sf_names_attribute (SFNAMES_BEGIN_LABEL
);
4159 src_info_attribute (SRCINFO_BEGIN_LABEL
);
4160 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
4161 mac_info_attribute (MACINFO_BEGIN_LABEL
);
4166 output_string_type_die (arg
)
4171 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_string_type
);
4172 sibling_attribute ();
4173 equate_type_number_to_die_number (type
);
4174 member_attribute (TYPE_CONTEXT (type
));
4175 /* this is a fixed length string */
4176 byte_size_attribute (type
);
4180 output_inheritance_die (arg
)
4185 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_inheritance
);
4186 sibling_attribute ();
4187 type_attribute (BINFO_TYPE (binfo
), 0, 0);
4188 data_member_location_attribute (binfo
);
4189 if (TREE_VIA_VIRTUAL (binfo
))
4191 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_virtual
);
4192 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
4194 if (TREE_VIA_PUBLIC (binfo
))
4196 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_public
);
4197 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
4199 else if (TREE_VIA_PROTECTED (binfo
))
4201 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_protected
);
4202 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
4207 output_structure_type_die (arg
)
4212 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_structure_type
);
4213 sibling_attribute ();
4214 equate_type_number_to_die_number (type
);
4215 name_attribute (type_tag (type
));
4216 member_attribute (TYPE_CONTEXT (type
));
4218 /* If this type has been completed, then give it a byte_size attribute
4219 and prepare to give a list of members. Otherwise, don't do either of
4220 these things. In the latter case, we will not be generating a list
4221 of members (since we don't have any idea what they might be for an
4222 incomplete type). */
4224 if (COMPLETE_TYPE_P (type
))
4227 byte_size_attribute (type
);
4231 /* Output a DIE to represent a declared function (either file-scope
4232 or block-local) which has "internal linkage" (according to ANSI-C). */
4235 output_local_subroutine_die (arg
)
4239 tree origin
= decl_ultimate_origin (decl
);
4241 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_subroutine
);
4242 sibling_attribute ();
4245 abstract_origin_attribute (origin
);
4248 tree type
= TREE_TYPE (decl
);
4250 name_and_src_coords_attributes (decl
);
4251 inline_attribute (decl
);
4252 prototyped_attribute (type
);
4253 member_attribute (DECL_CONTEXT (decl
));
4254 type_attribute (TREE_TYPE (type
), 0, 0);
4255 pure_or_virtual_attribute (decl
);
4257 if (DECL_ABSTRACT (decl
))
4258 equate_decl_number_to_die_number (decl
);
4261 /* Avoid getting screwed up in cases where a function was declared
4262 static but where no definition was ever given for it. */
4264 if (TREE_ASM_WRITTEN (decl
))
4266 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4267 low_pc_attribute (function_start_label (decl
));
4268 sprintf (label
, FUNC_END_LABEL_FMT
, current_function_funcdef_no
);
4269 high_pc_attribute (label
);
4270 if (use_gnu_debug_info_extensions
)
4272 sprintf (label
, BODY_BEGIN_LABEL_FMT
,
4273 current_function_funcdef_no
);
4274 body_begin_attribute (label
);
4275 sprintf (label
, BODY_END_LABEL_FMT
, current_function_funcdef_no
);
4276 body_end_attribute (label
);
4283 output_subroutine_type_die (arg
)
4287 tree return_type
= TREE_TYPE (type
);
4289 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_subroutine_type
);
4290 sibling_attribute ();
4292 equate_type_number_to_die_number (type
);
4293 prototyped_attribute (type
);
4294 member_attribute (TYPE_CONTEXT (type
));
4295 type_attribute (return_type
, 0, 0);
4299 output_typedef_die (arg
)
4303 tree origin
= decl_ultimate_origin (decl
);
4305 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_typedef
);
4306 sibling_attribute ();
4308 abstract_origin_attribute (origin
);
4311 name_and_src_coords_attributes (decl
);
4312 member_attribute (DECL_CONTEXT (decl
));
4313 type_attribute (TREE_TYPE (decl
),
4314 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
));
4316 if (DECL_ABSTRACT (decl
))
4317 equate_decl_number_to_die_number (decl
);
4321 output_union_type_die (arg
)
4326 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_union_type
);
4327 sibling_attribute ();
4328 equate_type_number_to_die_number (type
);
4329 name_attribute (type_tag (type
));
4330 member_attribute (TYPE_CONTEXT (type
));
4332 /* If this type has been completed, then give it a byte_size attribute
4333 and prepare to give a list of members. Otherwise, don't do either of
4334 these things. In the latter case, we will not be generating a list
4335 of members (since we don't have any idea what they might be for an
4336 incomplete type). */
4338 if (COMPLETE_TYPE_P (type
))
4341 byte_size_attribute (type
);
4345 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
4346 at the end of an (ANSI prototyped) formal parameters list. */
4349 output_unspecified_parameters_die (arg
)
4352 tree decl_or_type
= arg
;
4354 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_unspecified_parameters
);
4355 sibling_attribute ();
4357 /* This kludge is here only for the sake of being compatible with what
4358 the USL CI5 C compiler does. The specification of Dwarf Version 1
4359 doesn't say that TAG_unspecified_parameters DIEs should contain any
4360 attributes other than the AT_sibling attribute, but they are certainly
4361 allowed to contain additional attributes, and the CI5 compiler
4362 generates AT_name, AT_fund_type, and AT_location attributes within
4363 TAG_unspecified_parameters DIEs which appear in the child lists for
4364 DIEs representing function definitions, so we do likewise here. */
4366 if (TREE_CODE (decl_or_type
) == FUNCTION_DECL
&& DECL_INITIAL (decl_or_type
))
4368 name_attribute ("...");
4369 fund_type_attribute (FT_pointer
);
4370 /* location_attribute (?); */
4375 output_padded_null_die (arg
)
4376 void *arg ATTRIBUTE_UNUSED
;
4378 ASM_OUTPUT_ALIGN (asm_out_file
, 2); /* 2**2 == 4 */
4381 /*************************** end of DIEs *********************************/
4383 /* Generate some type of DIE. This routine generates the generic outer
4384 wrapper stuff which goes around all types of DIE's (regardless of their
4385 TAGs. All forms of DIEs start with a DIE-specific label, followed by a
4386 DIE-length word, followed by the guts of the DIE itself. After the guts
4387 of the DIE, there must always be a terminator label for the DIE. */
4390 output_die (die_specific_output_function
, param
)
4391 void (*die_specific_output_function
) PARAMS ((void *));
4394 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4395 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4397 current_dienum
= NEXT_DIE_NUM
;
4398 NEXT_DIE_NUM
= next_unused_dienum
;
4400 sprintf (begin_label
, DIE_BEGIN_LABEL_FMT
, current_dienum
);
4401 sprintf (end_label
, DIE_END_LABEL_FMT
, current_dienum
);
4403 /* Write a label which will act as the name for the start of this DIE. */
4405 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
4407 /* Write the DIE-length word. */
4409 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, end_label
, begin_label
);
4411 /* Fill in the guts of the DIE. */
4413 next_unused_dienum
++;
4414 die_specific_output_function (param
);
4416 /* Write a label which will act as the name for the end of this DIE. */
4418 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
4422 end_sibling_chain ()
4424 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4426 current_dienum
= NEXT_DIE_NUM
;
4427 NEXT_DIE_NUM
= next_unused_dienum
;
4429 sprintf (begin_label
, DIE_BEGIN_LABEL_FMT
, current_dienum
);
4431 /* Write a label which will act as the name for the start of this DIE. */
4433 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
4435 /* Write the DIE-length word. */
4437 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 4);
4442 /* Generate a list of nameless TAG_formal_parameter DIEs (and perhaps a
4443 TAG_unspecified_parameters DIE) to represent the types of the formal
4444 parameters as specified in some function type specification (except
4445 for those which appear as part of a function *definition*).
4447 Note that we must be careful here to output all of the parameter
4448 DIEs *before* we output any DIEs needed to represent the types of
4449 the formal parameters. This keeps svr4 SDB happy because it
4450 (incorrectly) thinks that the first non-parameter DIE it sees ends
4451 the formal parameter list. */
4454 output_formal_types (function_or_method_type
)
4455 tree function_or_method_type
;
4458 tree formal_type
= NULL
;
4459 tree first_parm_type
= TYPE_ARG_TYPES (function_or_method_type
);
4461 /* Set TREE_ASM_WRITTEN while processing the parameters, lest we
4462 get bogus recursion when outputting tagged types local to a
4463 function declaration. */
4464 int save_asm_written
= TREE_ASM_WRITTEN (function_or_method_type
);
4465 TREE_ASM_WRITTEN (function_or_method_type
) = 1;
4467 /* In the case where we are generating a formal types list for a C++
4468 non-static member function type, skip over the first thing on the
4469 TYPE_ARG_TYPES list because it only represents the type of the
4470 hidden `this pointer'. The debugger should be able to figure
4471 out (without being explicitly told) that this non-static member
4472 function type takes a `this pointer' and should be able to figure
4473 what the type of that hidden parameter is from the AT_member
4474 attribute of the parent TAG_subroutine_type DIE. */
4476 if (TREE_CODE (function_or_method_type
) == METHOD_TYPE
)
4477 first_parm_type
= TREE_CHAIN (first_parm_type
);
4479 /* Make our first pass over the list of formal parameter types and output
4480 a TAG_formal_parameter DIE for each one. */
4482 for (link
= first_parm_type
; link
; link
= TREE_CHAIN (link
))
4484 formal_type
= TREE_VALUE (link
);
4485 if (formal_type
== void_type_node
)
4488 /* Output a (nameless) DIE to represent the formal parameter itself. */
4490 output_die (output_formal_parameter_die
, formal_type
);
4493 /* If this function type has an ellipsis, add a TAG_unspecified_parameters
4494 DIE to the end of the parameter list. */
4496 if (formal_type
!= void_type_node
)
4497 output_die (output_unspecified_parameters_die
, function_or_method_type
);
4499 /* Make our second (and final) pass over the list of formal parameter types
4500 and output DIEs to represent those types (as necessary). */
4502 for (link
= TYPE_ARG_TYPES (function_or_method_type
);
4504 link
= TREE_CHAIN (link
))
4506 formal_type
= TREE_VALUE (link
);
4507 if (formal_type
== void_type_node
)
4510 output_type (formal_type
, function_or_method_type
);
4513 TREE_ASM_WRITTEN (function_or_method_type
) = save_asm_written
;
4516 /* Remember a type in the pending_types_list. */
4522 if (pending_types
== pending_types_allocated
)
4524 pending_types_allocated
+= PENDING_TYPES_INCREMENT
;
4526 = (tree
*) xrealloc (pending_types_list
,
4527 sizeof (tree
) * pending_types_allocated
);
4529 pending_types_list
[pending_types
++] = type
;
4531 /* Mark the pending type as having been output already (even though
4532 it hasn't been). This prevents the type from being added to the
4533 pending_types_list more than once. */
4535 TREE_ASM_WRITTEN (type
) = 1;
4538 /* Return nonzero if it is legitimate to output DIEs to represent a
4539 given type while we are generating the list of child DIEs for some
4540 DIE (e.g. a function or lexical block DIE) associated with a given scope.
4542 See the comments within the function for a description of when it is
4543 considered legitimate to output DIEs for various kinds of types.
4545 Note that TYPE_CONTEXT(type) may be NULL (to indicate global scope)
4546 or it may point to a BLOCK node (for types local to a block), or to a
4547 FUNCTION_DECL node (for types local to the heading of some function
4548 definition), or to a FUNCTION_TYPE node (for types local to the
4549 prototyped parameter list of a function type specification), or to a
4550 RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE node
4551 (in the case of C++ nested types).
4553 The `scope' parameter should likewise be NULL or should point to a
4554 BLOCK node, a FUNCTION_DECL node, a FUNCTION_TYPE node, a RECORD_TYPE
4555 node, a UNION_TYPE node, or a QUAL_UNION_TYPE node.
4557 This function is used only for deciding when to "pend" and when to
4558 "un-pend" types to/from the pending_types_list.
4560 Note that we sometimes make use of this "type pending" feature in a
4561 rather twisted way to temporarily delay the production of DIEs for the
4562 types of formal parameters. (We do this just to make svr4 SDB happy.)
4563 It order to delay the production of DIEs representing types of formal
4564 parameters, callers of this function supply `fake_containing_scope' as
4565 the `scope' parameter to this function. Given that fake_containing_scope
4566 is a tagged type which is *not* the containing scope for *any* other type,
4567 the desired effect is achieved, i.e. output of DIEs representing types
4568 is temporarily suspended, and any type DIEs which would have otherwise
4569 been output are instead placed onto the pending_types_list. Later on,
4570 we force these (temporarily pended) types to be output simply by calling
4571 `output_pending_types_for_scope' with an actual argument equal to the
4572 true scope of the types we temporarily pended. */
4575 type_ok_for_scope (type
, scope
)
4579 /* Tagged types (i.e. struct, union, and enum types) must always be
4580 output only in the scopes where they actually belong (or else the
4581 scoping of their own tag names and the scoping of their member
4582 names will be incorrect). Non-tagged-types on the other hand can
4583 generally be output anywhere, except that svr4 SDB really doesn't
4584 want to see them nested within struct or union types, so here we
4585 say it is always OK to immediately output any such a (non-tagged)
4586 type, so long as we are not within such a context. Note that the
4587 only kinds of non-tagged types which we will be dealing with here
4588 (for C and C++ anyway) will be array types and function types. */
4590 return is_tagged_type (type
)
4591 ? (TYPE_CONTEXT (type
) == scope
4592 /* Ignore namespaces for the moment. */
4593 || (scope
== NULL_TREE
4594 && TREE_CODE (TYPE_CONTEXT (type
)) == NAMESPACE_DECL
)
4595 || (scope
== NULL_TREE
&& is_tagged_type (TYPE_CONTEXT (type
))
4596 && TREE_ASM_WRITTEN (TYPE_CONTEXT (type
))))
4597 : (scope
== NULL_TREE
|| ! is_tagged_type (scope
));
4600 /* Output any pending types (from the pending_types list) which we can output
4601 now (taking into account the scope that we are working on now).
4603 For each type output, remove the given type from the pending_types_list
4604 *before* we try to output it.
4606 Note that we have to process the list in beginning-to-end order,
4607 because the call made here to output_type may cause yet more types
4608 to be added to the end of the list, and we may have to output some
4612 output_pending_types_for_scope (containing_scope
)
4613 tree containing_scope
;
4617 for (i
= 0; i
< pending_types
; )
4619 tree type
= pending_types_list
[i
];
4621 if (type_ok_for_scope (type
, containing_scope
))
4627 limit
= &pending_types_list
[pending_types
];
4628 for (mover
= &pending_types_list
[i
]; mover
< limit
; mover
++)
4629 *mover
= *(mover
+1);
4631 /* Un-mark the type as having been output already (because it
4632 hasn't been, really). Then call output_type to generate a
4633 Dwarf representation of it. */
4635 TREE_ASM_WRITTEN (type
) = 0;
4636 output_type (type
, containing_scope
);
4638 /* Don't increment the loop counter in this case because we
4639 have shifted all of the subsequent pending types down one
4640 element in the pending_types_list array. */
4647 /* Remember a type in the incomplete_types_list. */
4650 add_incomplete_type (type
)
4653 if (incomplete_types
== incomplete_types_allocated
)
4655 incomplete_types_allocated
+= INCOMPLETE_TYPES_INCREMENT
;
4656 incomplete_types_list
4657 = (tree
*) xrealloc (incomplete_types_list
,
4658 sizeof (tree
) * incomplete_types_allocated
);
4661 incomplete_types_list
[incomplete_types
++] = type
;
4664 /* Walk through the list of incomplete types again, trying once more to
4665 emit full debugging info for them. */
4668 retry_incomplete_types ()
4673 while (incomplete_types
)
4676 type
= incomplete_types_list
[incomplete_types
];
4677 output_type (type
, NULL_TREE
);
4682 output_type (type
, containing_scope
)
4684 tree containing_scope
;
4686 if (type
== 0 || type
== error_mark_node
)
4689 /* We are going to output a DIE to represent the unqualified version of
4690 this type (i.e. without any const or volatile qualifiers) so get
4691 the main variant (i.e. the unqualified version) of this type now. */
4693 type
= type_main_variant (type
);
4695 if (TREE_ASM_WRITTEN (type
))
4697 if (finalizing
&& AGGREGATE_TYPE_P (type
))
4701 /* Some of our nested types might not have been defined when we
4702 were written out before; force them out now. */
4704 for (member
= TYPE_FIELDS (type
); member
;
4705 member
= TREE_CHAIN (member
))
4706 if (TREE_CODE (member
) == TYPE_DECL
4707 && ! TREE_ASM_WRITTEN (TREE_TYPE (member
)))
4708 output_type (TREE_TYPE (member
), containing_scope
);
4713 /* If this is a nested type whose containing class hasn't been
4714 written out yet, writing it out will cover this one, too. */
4716 if (TYPE_CONTEXT (type
)
4717 && TYPE_P (TYPE_CONTEXT (type
))
4718 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type
)))
4720 output_type (TYPE_CONTEXT (type
), containing_scope
);
4724 /* Don't generate any DIEs for this type now unless it is OK to do so
4725 (based upon what `type_ok_for_scope' tells us). */
4727 if (! type_ok_for_scope (type
, containing_scope
))
4733 switch (TREE_CODE (type
))
4739 output_type (TYPE_DEBUG_REPRESENTATION_TYPE (type
), containing_scope
);
4743 case REFERENCE_TYPE
:
4744 /* Prevent infinite recursion in cases where this is a recursive
4745 type. Recursive types are possible in Ada. */
4746 TREE_ASM_WRITTEN (type
) = 1;
4747 /* For these types, all that is required is that we output a DIE
4748 (or a set of DIEs) to represent the "basis" type. */
4749 output_type (TREE_TYPE (type
), containing_scope
);
4753 /* This code is used for C++ pointer-to-data-member types. */
4754 /* Output a description of the relevant class type. */
4755 output_type (TYPE_OFFSET_BASETYPE (type
), containing_scope
);
4756 /* Output a description of the type of the object pointed to. */
4757 output_type (TREE_TYPE (type
), containing_scope
);
4758 /* Now output a DIE to represent this pointer-to-data-member type
4760 output_die (output_ptr_to_mbr_type_die
, type
);
4764 output_type (TYPE_DOMAIN (type
), containing_scope
);
4765 output_die (output_set_type_die
, type
);
4769 output_type (TREE_TYPE (type
), containing_scope
);
4770 abort (); /* No way to represent these in Dwarf yet! */
4774 /* Force out return type (in case it wasn't forced out already). */
4775 output_type (TREE_TYPE (type
), containing_scope
);
4776 output_die (output_subroutine_type_die
, type
);
4777 output_formal_types (type
);
4778 end_sibling_chain ();
4782 /* Force out return type (in case it wasn't forced out already). */
4783 output_type (TREE_TYPE (type
), containing_scope
);
4784 output_die (output_subroutine_type_die
, type
);
4785 output_formal_types (type
);
4786 end_sibling_chain ();
4790 if (TYPE_STRING_FLAG (type
) && TREE_CODE(TREE_TYPE(type
)) == CHAR_TYPE
)
4792 output_type (TREE_TYPE (type
), containing_scope
);
4793 output_die (output_string_type_die
, type
);
4799 element_type
= TREE_TYPE (type
);
4800 while (TREE_CODE (element_type
) == ARRAY_TYPE
)
4801 element_type
= TREE_TYPE (element_type
);
4803 output_type (element_type
, containing_scope
);
4804 output_die (output_array_type_die
, type
);
4811 case QUAL_UNION_TYPE
:
4813 /* For a non-file-scope tagged type, we can always go ahead and
4814 output a Dwarf description of this type right now, even if
4815 the type in question is still incomplete, because if this
4816 local type *was* ever completed anywhere within its scope,
4817 that complete definition would already have been attached to
4818 this RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
4819 node by the time we reach this point. That's true because of the
4820 way the front-end does its processing of file-scope declarations (of
4821 functions and class types) within which other types might be
4822 nested. The C and C++ front-ends always gobble up such "local
4823 scope" things en-mass before they try to output *any* debugging
4824 information for any of the stuff contained inside them and thus,
4825 we get the benefit here of what is (in effect) a pre-resolution
4826 of forward references to tagged types in local scopes.
4828 Note however that for file-scope tagged types we cannot assume
4829 that such pre-resolution of forward references has taken place.
4830 A given file-scope tagged type may appear to be incomplete when
4831 we reach this point, but it may yet be given a full definition
4832 (at file-scope) later on during compilation. In order to avoid
4833 generating a premature (and possibly incorrect) set of Dwarf
4834 DIEs for such (as yet incomplete) file-scope tagged types, we
4835 generate nothing at all for as-yet incomplete file-scope tagged
4836 types here unless we are making our special "finalization" pass
4837 for file-scope things at the very end of compilation. At that
4838 time, we will certainly know as much about each file-scope tagged
4839 type as we are ever going to know, so at that point in time, we
4840 can safely generate correct Dwarf descriptions for these file-
4841 scope tagged types. */
4843 if (!COMPLETE_TYPE_P (type
)
4844 && (TYPE_CONTEXT (type
) == NULL
4845 || AGGREGATE_TYPE_P (TYPE_CONTEXT (type
))
4846 || TREE_CODE (TYPE_CONTEXT (type
)) == NAMESPACE_DECL
)
4849 /* We don't need to do this for function-local types. */
4850 if (! decl_function_context (TYPE_STUB_DECL (type
)))
4851 add_incomplete_type (type
);
4852 return; /* EARLY EXIT! Avoid setting TREE_ASM_WRITTEN. */
4855 /* Prevent infinite recursion in cases where the type of some
4856 member of this type is expressed in terms of this type itself. */
4858 TREE_ASM_WRITTEN (type
) = 1;
4860 /* Output a DIE to represent the tagged type itself. */
4862 switch (TREE_CODE (type
))
4865 output_die (output_enumeration_type_die
, type
);
4866 return; /* a special case -- nothing left to do so just return */
4869 output_die (output_structure_type_die
, type
);
4873 case QUAL_UNION_TYPE
:
4874 output_die (output_union_type_die
, type
);
4878 abort (); /* Should never happen. */
4881 /* If this is not an incomplete type, output descriptions of
4882 each of its members.
4884 Note that as we output the DIEs necessary to represent the
4885 members of this record or union type, we will also be trying
4886 to output DIEs to represent the *types* of those members.
4887 However the `output_type' function (above) will specifically
4888 avoid generating type DIEs for member types *within* the list
4889 of member DIEs for this (containing) type except for those
4890 types (of members) which are explicitly marked as also being
4891 members of this (containing) type themselves. The g++ front-
4892 end can force any given type to be treated as a member of some
4893 other (containing) type by setting the TYPE_CONTEXT of the
4894 given (member) type to point to the TREE node representing the
4895 appropriate (containing) type.
4898 if (COMPLETE_TYPE_P (type
))
4900 /* First output info about the base classes. */
4901 if (TYPE_BINFO (type
) && TYPE_BINFO_BASETYPES (type
))
4903 register tree bases
= TYPE_BINFO_BASETYPES (type
);
4904 register int n_bases
= TREE_VEC_LENGTH (bases
);
4907 for (i
= 0; i
< n_bases
; i
++)
4909 tree binfo
= TREE_VEC_ELT (bases
, i
);
4910 output_type (BINFO_TYPE (binfo
), containing_scope
);
4911 output_die (output_inheritance_die
, binfo
);
4920 /* Now output info about the data members and type members. */
4922 for (normal_member
= TYPE_FIELDS (type
);
4924 normal_member
= TREE_CHAIN (normal_member
))
4925 output_decl (normal_member
, type
);
4931 /* Now output info about the function members (if any). */
4933 for (func_member
= TYPE_METHODS (type
);
4935 func_member
= TREE_CHAIN (func_member
))
4937 /* Don't include clones in the member list. */
4938 if (DECL_ABSTRACT_ORIGIN (func_member
))
4941 output_decl (func_member
, type
);
4947 /* RECORD_TYPEs, UNION_TYPEs, and QUAL_UNION_TYPEs are themselves
4948 scopes (at least in C++) so we must now output any nested
4949 pending types which are local just to this type. */
4951 output_pending_types_for_scope (type
);
4953 end_sibling_chain (); /* Terminate member chain. */
4964 break; /* No DIEs needed for fundamental types. */
4966 case LANG_TYPE
: /* No Dwarf representation currently defined. */
4973 TREE_ASM_WRITTEN (type
) = 1;
4977 output_tagged_type_instantiation (type
)
4980 if (type
== 0 || type
== error_mark_node
)
4983 /* We are going to output a DIE to represent the unqualified version of
4984 this type (i.e. without any const or volatile qualifiers) so make
4985 sure that we have the main variant (i.e. the unqualified version) of
4988 if (type
!= type_main_variant (type
))
4991 if (!TREE_ASM_WRITTEN (type
))
4994 switch (TREE_CODE (type
))
5000 output_die (output_inlined_enumeration_type_die
, type
);
5004 output_die (output_inlined_structure_type_die
, type
);
5008 case QUAL_UNION_TYPE
:
5009 output_die (output_inlined_union_type_die
, type
);
5013 abort (); /* Should never happen. */
5017 /* Output a TAG_lexical_block DIE followed by DIEs to represent all of
5018 the things which are local to the given block. */
5021 output_block (stmt
, depth
)
5025 int must_output_die
= 0;
5027 enum tree_code origin_code
;
5029 /* Ignore blocks never really used to make RTL. */
5031 if (! stmt
|| ! TREE_USED (stmt
)
5032 || (!TREE_ASM_WRITTEN (stmt
) && !BLOCK_ABSTRACT (stmt
)))
5035 /* Determine the "ultimate origin" of this block. This block may be an
5036 inlined instance of an inlined instance of inline function, so we
5037 have to trace all of the way back through the origin chain to find
5038 out what sort of node actually served as the original seed for the
5039 creation of the current block. */
5041 origin
= block_ultimate_origin (stmt
);
5042 origin_code
= (origin
!= NULL
) ? TREE_CODE (origin
) : ERROR_MARK
;
5044 /* Determine if we need to output any Dwarf DIEs at all to represent this
5047 if (origin_code
== FUNCTION_DECL
)
5048 /* The outer scopes for inlinings *must* always be represented. We
5049 generate TAG_inlined_subroutine DIEs for them. (See below.) */
5050 must_output_die
= 1;
5053 /* In the case where the current block represents an inlining of the
5054 "body block" of an inline function, we must *NOT* output any DIE
5055 for this block because we have already output a DIE to represent
5056 the whole inlined function scope and the "body block" of any
5057 function doesn't really represent a different scope according to
5058 ANSI C rules. So we check here to make sure that this block does
5059 not represent a "body block inlining" before trying to set the
5060 `must_output_die' flag. */
5062 if (! is_body_block (origin
? origin
: stmt
))
5064 /* Determine if this block directly contains any "significant"
5065 local declarations which we will need to output DIEs for. */
5067 if (debug_info_level
> DINFO_LEVEL_TERSE
)
5068 /* We are not in terse mode so *any* local declaration counts
5069 as being a "significant" one. */
5070 must_output_die
= (BLOCK_VARS (stmt
) != NULL
);
5075 /* We are in terse mode, so only local (nested) function
5076 definitions count as "significant" local declarations. */
5078 for (decl
= BLOCK_VARS (stmt
); decl
; decl
= TREE_CHAIN (decl
))
5079 if (TREE_CODE (decl
) == FUNCTION_DECL
&& DECL_INITIAL (decl
))
5081 must_output_die
= 1;
5088 /* It would be a waste of space to generate a Dwarf TAG_lexical_block
5089 DIE for any block which contains no significant local declarations
5090 at all. Rather, in such cases we just call `output_decls_for_scope'
5091 so that any needed Dwarf info for any sub-blocks will get properly
5092 generated. Note that in terse mode, our definition of what constitutes
5093 a "significant" local declaration gets restricted to include only
5094 inlined function instances and local (nested) function definitions. */
5096 if (origin_code
== FUNCTION_DECL
&& BLOCK_ABSTRACT (stmt
))
5097 /* We don't care about an abstract inlined subroutine. */;
5098 else if (must_output_die
)
5100 output_die ((origin_code
== FUNCTION_DECL
)
5101 ? output_inlined_subroutine_die
5102 : output_lexical_block_die
,
5104 output_decls_for_scope (stmt
, depth
);
5105 end_sibling_chain ();
5108 output_decls_for_scope (stmt
, depth
);
5111 /* Output all of the decls declared within a given scope (also called
5112 a `binding contour') and (recursively) all of it's sub-blocks. */
5115 output_decls_for_scope (stmt
, depth
)
5119 /* Ignore blocks never really used to make RTL. */
5121 if (! stmt
|| ! TREE_USED (stmt
))
5124 /* Output the DIEs to represent all of the data objects, functions,
5125 typedefs, and tagged types declared directly within this block
5126 but not within any nested sub-blocks. */
5131 for (decl
= BLOCK_VARS (stmt
); decl
; decl
= TREE_CHAIN (decl
))
5132 output_decl (decl
, stmt
);
5135 output_pending_types_for_scope (stmt
);
5137 /* Output the DIEs to represent all sub-blocks (and the items declared
5138 therein) of this block. */
5143 for (subblocks
= BLOCK_SUBBLOCKS (stmt
);
5145 subblocks
= BLOCK_CHAIN (subblocks
))
5146 output_block (subblocks
, depth
+ 1);
5150 /* Is this a typedef we can avoid emitting? */
5153 is_redundant_typedef (decl
)
5156 if (TYPE_DECL_IS_STUB (decl
))
5158 if (DECL_ARTIFICIAL (decl
)
5159 && DECL_CONTEXT (decl
)
5160 && is_tagged_type (DECL_CONTEXT (decl
))
5161 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl
))) == TYPE_DECL
5162 && DECL_NAME (decl
) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl
))))
5163 /* Also ignore the artificial member typedef for the class name. */
5168 /* Output Dwarf .debug information for a decl described by DECL. */
5171 output_decl (decl
, containing_scope
)
5173 tree containing_scope
;
5175 /* Make a note of the decl node we are going to be working on. We may
5176 need to give the user the source coordinates of where it appeared in
5177 case we notice (later on) that something about it looks screwy. */
5179 dwarf_last_decl
= decl
;
5181 if (TREE_CODE (decl
) == ERROR_MARK
)
5184 /* If a structure is declared within an initialization, e.g. as the
5185 operand of a sizeof, then it will not have a name. We don't want
5186 to output a DIE for it, as the tree nodes are in the temporary obstack */
5188 if ((TREE_CODE (TREE_TYPE (decl
)) == RECORD_TYPE
5189 || TREE_CODE (TREE_TYPE (decl
)) == UNION_TYPE
)
5190 && ((DECL_NAME (decl
) == 0 && TYPE_NAME (TREE_TYPE (decl
)) == 0)
5191 || (TYPE_FIELDS (TREE_TYPE (decl
))
5192 && (TREE_CODE (TYPE_FIELDS (TREE_TYPE (decl
))) == ERROR_MARK
))))
5195 /* If this ..._DECL node is marked to be ignored, then ignore it. */
5197 if (DECL_IGNORED_P (decl
))
5200 switch (TREE_CODE (decl
))
5203 /* The individual enumerators of an enum type get output when we
5204 output the Dwarf representation of the relevant enum type itself. */
5208 /* If we are in terse mode, don't output any DIEs to represent
5209 mere function declarations. Also, if we are conforming
5210 to the DWARF version 1 specification, don't output DIEs for
5211 mere function declarations. */
5213 if (DECL_INITIAL (decl
) == NULL_TREE
)
5214 #if (DWARF_VERSION > 1)
5215 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
5219 /* Before we describe the FUNCTION_DECL itself, make sure that we
5220 have described its return type. */
5222 output_type (TREE_TYPE (TREE_TYPE (decl
)), containing_scope
);
5225 /* And its containing type. */
5226 register tree origin
= decl_class_context (decl
);
5228 output_type (origin
, containing_scope
);
5231 /* If we're emitting an out-of-line copy of an inline function,
5232 set up to refer to the abstract instance emitted from
5233 dwarfout_deferred_inline_function. */
5234 if (DECL_INLINE (decl
) && ! DECL_ABSTRACT (decl
)
5235 && ! (containing_scope
&& TYPE_P (containing_scope
)))
5236 set_decl_origin_self (decl
);
5238 /* If the following DIE will represent a function definition for a
5239 function with "extern" linkage, output a special "pubnames" DIE
5240 label just ahead of the actual DIE. A reference to this label
5241 was already generated in the .debug_pubnames section sub-entry
5242 for this function definition. */
5244 if (TREE_PUBLIC (decl
))
5246 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5248 sprintf (label
, PUB_DIE_LABEL_FMT
, next_pubname_number
++);
5249 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5252 /* Now output a DIE to represent the function itself. */
5254 output_die (TREE_PUBLIC (decl
) || DECL_EXTERNAL (decl
)
5255 ? output_global_subroutine_die
5256 : output_local_subroutine_die
,
5259 /* Now output descriptions of the arguments for this function.
5260 This gets (unnecessarily?) complex because of the fact that
5261 the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate
5262 cases where there was a trailing `...' at the end of the formal
5263 parameter list. In order to find out if there was a trailing
5264 ellipsis or not, we must instead look at the type associated
5265 with the FUNCTION_DECL. This will be a node of type FUNCTION_TYPE.
5266 If the chain of type nodes hanging off of this FUNCTION_TYPE node
5267 ends with a void_type_node then there should *not* be an ellipsis
5270 /* In the case where we are describing a mere function declaration, all
5271 we need to do here (and all we *can* do here) is to describe
5272 the *types* of its formal parameters. */
5274 if (decl
!= current_function_decl
|| in_class
)
5275 output_formal_types (TREE_TYPE (decl
));
5278 /* Generate DIEs to represent all known formal parameters */
5280 tree arg_decls
= DECL_ARGUMENTS (decl
);
5283 /* WARNING! Kludge zone ahead! Here we have a special
5284 hack for svr4 SDB compatibility. Instead of passing the
5285 current FUNCTION_DECL node as the second parameter (i.e.
5286 the `containing_scope' parameter) to `output_decl' (as
5287 we ought to) we instead pass a pointer to our own private
5288 fake_containing_scope node. That node is a RECORD_TYPE
5289 node which NO OTHER TYPE may ever actually be a member of.
5291 This pointer will ultimately get passed into `output_type'
5292 as its `containing_scope' parameter. `Output_type' will
5293 then perform its part in the hack... i.e. it will pend
5294 the type of the formal parameter onto the pending_types
5295 list. Later on, when we are done generating the whole
5296 sequence of formal parameter DIEs for this function
5297 definition, we will un-pend all previously pended types
5298 of formal parameters for this function definition.
5300 This whole kludge prevents any type DIEs from being
5301 mixed in with the formal parameter DIEs. That's good
5302 because svr4 SDB believes that the list of formal
5303 parameter DIEs for a function ends wherever the first
5304 non-formal-parameter DIE appears. Thus, we have to
5305 keep the formal parameter DIEs segregated. They must
5306 all appear (consecutively) at the start of the list of
5307 children for the DIE representing the function definition.
5308 Then (and only then) may we output any additional DIEs
5309 needed to represent the types of these formal parameters.
5313 When generating DIEs, generate the unspecified_parameters
5314 DIE instead if we come across the arg "__builtin_va_alist"
5317 for (parm
= arg_decls
; parm
; parm
= TREE_CHAIN (parm
))
5318 if (TREE_CODE (parm
) == PARM_DECL
)
5320 if (DECL_NAME(parm
) &&
5321 !strcmp(IDENTIFIER_POINTER(DECL_NAME(parm
)),
5322 "__builtin_va_alist") )
5323 output_die (output_unspecified_parameters_die
, decl
);
5325 output_decl (parm
, fake_containing_scope
);
5329 Now that we have finished generating all of the DIEs to
5330 represent the formal parameters themselves, force out
5331 any DIEs needed to represent their types. We do this
5332 simply by un-pending all previously pended types which
5333 can legitimately go into the chain of children DIEs for
5334 the current FUNCTION_DECL.
5337 output_pending_types_for_scope (decl
);
5340 Decide whether we need an unspecified_parameters DIE at the end.
5341 There are 2 more cases to do this for:
5342 1) the ansi ... declaration - this is detectable when the end
5343 of the arg list is not a void_type_node
5344 2) an unprototyped function declaration (not a definition). This
5345 just means that we have no info about the parameters at all.
5349 tree fn_arg_types
= TYPE_ARG_TYPES (TREE_TYPE (decl
));
5353 /* this is the prototyped case, check for ... */
5354 if (TREE_VALUE (tree_last (fn_arg_types
)) != void_type_node
)
5355 output_die (output_unspecified_parameters_die
, decl
);
5359 /* this is unprototyped, check for undefined (just declaration) */
5360 if (!DECL_INITIAL (decl
))
5361 output_die (output_unspecified_parameters_die
, decl
);
5365 /* Output Dwarf info for all of the stuff within the body of the
5366 function (if it has one - it may be just a declaration). */
5369 tree outer_scope
= DECL_INITIAL (decl
);
5371 if (outer_scope
&& TREE_CODE (outer_scope
) != ERROR_MARK
)
5373 /* Note that here, `outer_scope' is a pointer to the outermost
5374 BLOCK node created to represent a function.
5375 This outermost BLOCK actually represents the outermost
5376 binding contour for the function, i.e. the contour in which
5377 the function's formal parameters and labels get declared.
5379 Curiously, it appears that the front end doesn't actually
5380 put the PARM_DECL nodes for the current function onto the
5381 BLOCK_VARS list for this outer scope. (They are strung
5382 off of the DECL_ARGUMENTS list for the function instead.)
5383 The BLOCK_VARS list for the `outer_scope' does provide us
5384 with a list of the LABEL_DECL nodes for the function however,
5385 and we output DWARF info for those here.
5387 Just within the `outer_scope' there will be a BLOCK node
5388 representing the function's outermost pair of curly braces,
5389 and any blocks used for the base and member initializers of
5390 a C++ constructor function. */
5392 output_decls_for_scope (outer_scope
, 0);
5394 /* Finally, force out any pending types which are local to the
5395 outermost block of this function definition. These will
5396 all have a TYPE_CONTEXT which points to the FUNCTION_DECL
5399 output_pending_types_for_scope (decl
);
5404 /* Generate a terminator for the list of stuff `owned' by this
5407 end_sibling_chain ();
5412 /* If we are in terse mode, don't generate any DIEs to represent
5413 any actual typedefs. Note that even when we are in terse mode,
5414 we must still output DIEs to represent those tagged types which
5415 are used (directly or indirectly) in the specification of either
5416 a return type or a formal parameter type of some function. */
5418 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
5419 if (! TYPE_DECL_IS_STUB (decl
)
5420 || (! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl
)) && ! in_class
))
5423 /* In the special case of a TYPE_DECL node representing
5424 the declaration of some type tag, if the given TYPE_DECL is
5425 marked as having been instantiated from some other (original)
5426 TYPE_DECL node (e.g. one which was generated within the original
5427 definition of an inline function) we have to generate a special
5428 (abbreviated) TAG_structure_type, TAG_union_type, or
5429 TAG_enumeration-type DIE here. */
5431 if (TYPE_DECL_IS_STUB (decl
) && DECL_ABSTRACT_ORIGIN (decl
))
5433 output_tagged_type_instantiation (TREE_TYPE (decl
));
5437 output_type (TREE_TYPE (decl
), containing_scope
);
5439 if (! is_redundant_typedef (decl
))
5440 /* Output a DIE to represent the typedef itself. */
5441 output_die (output_typedef_die
, decl
);
5445 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
5446 output_die (output_label_die
, decl
);
5450 /* If we are conforming to the DWARF version 1 specification, don't
5451 generated any DIEs to represent mere external object declarations. */
5453 #if (DWARF_VERSION <= 1)
5454 if (DECL_EXTERNAL (decl
) && ! TREE_PUBLIC (decl
))
5458 /* If we are in terse mode, don't generate any DIEs to represent
5459 any variable declarations or definitions. */
5461 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
5464 /* Output any DIEs that are needed to specify the type of this data
5467 output_type (TREE_TYPE (decl
), containing_scope
);
5470 /* And its containing type. */
5471 register tree origin
= decl_class_context (decl
);
5473 output_type (origin
, containing_scope
);
5476 /* If the following DIE will represent a data object definition for a
5477 data object with "extern" linkage, output a special "pubnames" DIE
5478 label just ahead of the actual DIE. A reference to this label
5479 was already generated in the .debug_pubnames section sub-entry
5480 for this data object definition. */
5482 if (TREE_PUBLIC (decl
) && ! DECL_ABSTRACT (decl
))
5484 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5486 sprintf (label
, PUB_DIE_LABEL_FMT
, next_pubname_number
++);
5487 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5490 /* Now output the DIE to represent the data object itself. This gets
5491 complicated because of the possibility that the VAR_DECL really
5492 represents an inlined instance of a formal parameter for an inline
5496 void (*func
) PARAMS ((void *));
5497 register tree origin
= decl_ultimate_origin (decl
);
5499 if (origin
!= NULL
&& TREE_CODE (origin
) == PARM_DECL
)
5500 func
= output_formal_parameter_die
;
5503 if (TREE_PUBLIC (decl
) || DECL_EXTERNAL (decl
))
5504 func
= output_global_variable_die
;
5506 func
= output_local_variable_die
;
5508 output_die (func
, decl
);
5513 /* Ignore the nameless fields that are used to skip bits. */
5514 if (DECL_NAME (decl
) != 0)
5516 output_type (member_declared_type (decl
), containing_scope
);
5517 output_die (output_member_die
, decl
);
5522 /* Force out the type of this formal, if it was not forced out yet.
5523 Note that here we can run afoul of a bug in "classic" svr4 SDB.
5524 It should be able to grok the presence of type DIEs within a list
5525 of TAG_formal_parameter DIEs, but it doesn't. */
5527 output_type (TREE_TYPE (decl
), containing_scope
);
5528 output_die (output_formal_parameter_die
, decl
);
5531 case NAMESPACE_DECL
:
5532 /* Ignore for now. */
5540 /* Output debug information for a function. */
5542 dwarfout_function_decl (decl
)
5545 dwarfout_file_scope_decl (decl
, 0);
5548 /* Debug information for a global DECL. Called from toplev.c after
5549 compilation proper has finished. */
5551 dwarfout_global_decl (decl
)
5554 /* Output DWARF information for file-scope tentative data object
5555 declarations, file-scope (extern) function declarations (which
5556 had no corresponding body) and file-scope tagged type
5557 declarations and definitions which have not yet been forced out. */
5559 if (TREE_CODE (decl
) != FUNCTION_DECL
|| !DECL_INITIAL (decl
))
5560 dwarfout_file_scope_decl (decl
, 1);
5563 /* DECL is an inline function, whose body is present, but which is not
5564 being output at this point. (We're putting that off until we need
5567 dwarfout_deferred_inline_function (decl
)
5570 /* Generate the DWARF info for the "abstract" instance of a function
5571 which we may later generate inlined and/or out-of-line instances
5573 if ((DECL_INLINE (decl
) || DECL_ABSTRACT (decl
))
5574 && ! DECL_ABSTRACT_ORIGIN (decl
))
5576 /* The front-end may not have set CURRENT_FUNCTION_DECL, but the
5577 DWARF code expects it to be set in this case. Intuitively,
5578 DECL is the function we just finished defining, so setting
5579 CURRENT_FUNCTION_DECL is sensible. */
5580 tree saved_cfd
= current_function_decl
;
5581 int was_abstract
= DECL_ABSTRACT (decl
);
5582 current_function_decl
= decl
;
5584 /* Let the DWARF code do its work. */
5585 set_decl_abstract_flags (decl
, 1);
5586 dwarfout_file_scope_decl (decl
, 0);
5588 set_decl_abstract_flags (decl
, 0);
5590 /* Reset CURRENT_FUNCTION_DECL. */
5591 current_function_decl
= saved_cfd
;
5596 dwarfout_file_scope_decl (decl
, set_finalizing
)
5600 if (TREE_CODE (decl
) == ERROR_MARK
)
5603 /* If this ..._DECL node is marked to be ignored, then ignore it. */
5605 if (DECL_IGNORED_P (decl
))
5608 switch (TREE_CODE (decl
))
5612 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of
5613 a builtin function. Explicit programmer-supplied declarations of
5614 these same functions should NOT be ignored however. */
5616 if (DECL_EXTERNAL (decl
) && DECL_FUNCTION_CODE (decl
))
5619 /* What we would really like to do here is to filter out all mere
5620 file-scope declarations of file-scope functions which are never
5621 referenced later within this translation unit (and keep all of
5622 ones that *are* referenced later on) but we aren't clairvoyant,
5623 so we have no idea which functions will be referenced in the
5624 future (i.e. later on within the current translation unit).
5625 So here we just ignore all file-scope function declarations
5626 which are not also definitions. If and when the debugger needs
5627 to know something about these functions, it will have to hunt
5628 around and find the DWARF information associated with the
5629 *definition* of the function.
5631 Note that we can't just check `DECL_EXTERNAL' to find out which
5632 FUNCTION_DECL nodes represent definitions and which ones represent
5633 mere declarations. We have to check `DECL_INITIAL' instead. That's
5634 because the C front-end supports some weird semantics for "extern
5635 inline" function definitions. These can get inlined within the
5636 current translation unit (an thus, we need to generate DWARF info
5637 for their abstract instances so that the DWARF info for the
5638 concrete inlined instances can have something to refer to) but
5639 the compiler never generates any out-of-lines instances of such
5640 things (despite the fact that they *are* definitions). The
5641 important point is that the C front-end marks these "extern inline"
5642 functions as DECL_EXTERNAL, but we need to generate DWARF for them
5645 Note that the C++ front-end also plays some similar games for inline
5646 function definitions appearing within include files which also
5647 contain `#pragma interface' pragmas. */
5649 if (DECL_INITIAL (decl
) == NULL_TREE
)
5652 if (TREE_PUBLIC (decl
)
5653 && ! DECL_EXTERNAL (decl
)
5654 && ! DECL_ABSTRACT (decl
))
5656 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5658 /* Output a .debug_pubnames entry for a public function
5659 defined in this compilation unit. */
5661 fputc ('\n', asm_out_file
);
5662 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_PUBNAMES_SECTION
);
5663 sprintf (label
, PUB_DIE_LABEL_FMT
, next_pubname_number
);
5664 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, label
);
5665 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
,
5666 IDENTIFIER_POINTER (DECL_NAME (decl
)));
5667 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5674 /* Ignore this VAR_DECL if it refers to a file-scope extern data
5675 object declaration and if the declaration was never even
5676 referenced from within this entire compilation unit. We
5677 suppress these DIEs in order to save space in the .debug section
5678 (by eliminating entries which are probably useless). Note that
5679 we must not suppress block-local extern declarations (whether
5680 used or not) because that would screw-up the debugger's name
5681 lookup mechanism and cause it to miss things which really ought
5682 to be in scope at a given point. */
5684 if (DECL_EXTERNAL (decl
) && !TREE_USED (decl
))
5687 if (TREE_PUBLIC (decl
)
5688 && ! DECL_EXTERNAL (decl
)
5689 && GET_CODE (DECL_RTL (decl
)) == MEM
5690 && ! DECL_ABSTRACT (decl
))
5692 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5694 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
5696 /* Output a .debug_pubnames entry for a public variable
5697 defined in this compilation unit. */
5699 fputc ('\n', asm_out_file
);
5700 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_PUBNAMES_SECTION
);
5701 sprintf (label
, PUB_DIE_LABEL_FMT
, next_pubname_number
);
5702 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, label
);
5703 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
,
5704 IDENTIFIER_POINTER (DECL_NAME (decl
)));
5705 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5708 if (DECL_INITIAL (decl
) == NULL
)
5710 /* Output a .debug_aranges entry for a public variable
5711 which is tentatively defined in this compilation unit. */
5713 fputc ('\n', asm_out_file
);
5714 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_ARANGES_SECTION
);
5715 ASM_OUTPUT_DWARF_ADDR (asm_out_file
,
5716 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
)));
5717 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
,
5718 (unsigned) int_size_in_bytes (TREE_TYPE (decl
)));
5719 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5723 /* If we are in terse mode, don't generate any DIEs to represent
5724 any variable declarations or definitions. */
5726 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
5732 /* Don't bother trying to generate any DIEs to represent any of the
5733 normal built-in types for the language we are compiling, except
5734 in cases where the types in question are *not* DWARF fundamental
5735 types. We make an exception in the case of non-fundamental types
5736 for the sake of objective C (and perhaps C++) because the GNU
5737 front-ends for these languages may in fact create certain "built-in"
5738 types which are (for example) RECORD_TYPEs. In such cases, we
5739 really need to output these (non-fundamental) types because other
5740 DIEs may contain references to them. */
5742 /* Also ignore language dependent types here, because they are probably
5743 also built-in types. If we didn't ignore them, then we would get
5744 references to undefined labels because output_type doesn't support
5745 them. So, for now, we need to ignore them to avoid assembler
5748 /* ??? This code is different than the equivalent code in dwarf2out.c.
5749 The dwarf2out.c code is probably more correct. */
5751 if (DECL_SOURCE_LINE (decl
) == 0
5752 && (type_is_fundamental (TREE_TYPE (decl
))
5753 || TREE_CODE (TREE_TYPE (decl
)) == LANG_TYPE
))
5756 /* If we are in terse mode, don't generate any DIEs to represent
5757 any actual typedefs. Note that even when we are in terse mode,
5758 we must still output DIEs to represent those tagged types which
5759 are used (directly or indirectly) in the specification of either
5760 a return type or a formal parameter type of some function. */
5762 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
5763 if (! TYPE_DECL_IS_STUB (decl
)
5764 || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl
)))
5773 fputc ('\n', asm_out_file
);
5774 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SECTION
);
5775 finalizing
= set_finalizing
;
5776 output_decl (decl
, NULL_TREE
);
5778 /* NOTE: The call above to `output_decl' may have caused one or more
5779 file-scope named types (i.e. tagged types) to be placed onto the
5780 pending_types_list. We have to get those types off of that list
5781 at some point, and this is the perfect time to do it. If we didn't
5782 take them off now, they might still be on the list when cc1 finally
5783 exits. That might be OK if it weren't for the fact that when we put
5784 types onto the pending_types_list, we set the TREE_ASM_WRITTEN flag
5785 for these types, and that causes them never to be output unless
5786 `output_pending_types_for_scope' takes them off of the list and un-sets
5787 their TREE_ASM_WRITTEN flags. */
5789 output_pending_types_for_scope (NULL_TREE
);
5791 /* The above call should have totally emptied the pending_types_list
5792 if this is not a nested function or class. If this is a nested type,
5793 then the remaining pending_types will be emitted when the containing type
5796 if (! DECL_CONTEXT (decl
))
5798 if (pending_types
!= 0)
5802 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5805 /* Output a marker (i.e. a label) for the beginning of the generated code
5806 for a lexical block. */
5809 dwarfout_begin_block (line
, blocknum
)
5810 unsigned int line ATTRIBUTE_UNUSED
;
5811 unsigned int blocknum
;
5813 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5815 function_section (current_function_decl
);
5816 sprintf (label
, BLOCK_BEGIN_LABEL_FMT
, blocknum
);
5817 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5820 /* Output a marker (i.e. a label) for the end of the generated code
5821 for a lexical block. */
5824 dwarfout_end_block (line
, blocknum
)
5825 unsigned int line ATTRIBUTE_UNUSED
;
5826 unsigned int blocknum
;
5828 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5830 function_section (current_function_decl
);
5831 sprintf (label
, BLOCK_END_LABEL_FMT
, blocknum
);
5832 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5835 /* Output a marker (i.e. a label) for the point in the generated code where
5836 the real body of the function begins (after parameters have been moved
5837 to their home locations). */
5840 dwarfout_end_prologue (line
, file
)
5841 unsigned int line ATTRIBUTE_UNUSED
;
5842 const char *file ATTRIBUTE_UNUSED
;
5844 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5846 if (! use_gnu_debug_info_extensions
)
5849 function_section (current_function_decl
);
5850 sprintf (label
, BODY_BEGIN_LABEL_FMT
, current_function_funcdef_no
);
5851 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5854 /* Output a marker (i.e. a label) for the point in the generated code where
5855 the real body of the function ends (just before the epilogue code). */
5858 dwarfout_end_function (line
)
5859 unsigned int line ATTRIBUTE_UNUSED
;
5861 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5863 if (! use_gnu_debug_info_extensions
)
5865 function_section (current_function_decl
);
5866 sprintf (label
, BODY_END_LABEL_FMT
, current_function_funcdef_no
);
5867 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5870 /* Output a marker (i.e. a label) for the absolute end of the generated code
5871 for a function definition. This gets called *after* the epilogue code
5872 has been generated. */
5875 dwarfout_end_epilogue (line
, file
)
5876 unsigned int line ATTRIBUTE_UNUSED
;
5877 const char *file ATTRIBUTE_UNUSED
;
5879 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5881 /* Output a label to mark the endpoint of the code generated for this
5884 sprintf (label
, FUNC_END_LABEL_FMT
, current_function_funcdef_no
);
5885 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5889 shuffle_filename_entry (new_zeroth
)
5890 filename_entry
*new_zeroth
;
5892 filename_entry temp_entry
;
5893 filename_entry
*limit_p
;
5894 filename_entry
*move_p
;
5896 if (new_zeroth
== &filename_table
[0])
5899 temp_entry
= *new_zeroth
;
5901 /* Shift entries up in the table to make room at [0]. */
5903 limit_p
= &filename_table
[0];
5904 for (move_p
= new_zeroth
; move_p
> limit_p
; move_p
--)
5905 *move_p
= *(move_p
-1);
5907 /* Install the found entry at [0]. */
5909 filename_table
[0] = temp_entry
;
5912 /* Create a new (string) entry for the .debug_sfnames section. */
5915 generate_new_sfname_entry ()
5917 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5919 fputc ('\n', asm_out_file
);
5920 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SFNAMES_SECTION
);
5921 sprintf (label
, SFNAMES_ENTRY_LABEL_FMT
, filename_table
[0].number
);
5922 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5923 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
,
5924 filename_table
[0].name
5925 ? filename_table
[0].name
5927 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5930 /* Lookup a filename (in the list of filenames that we know about here in
5931 dwarfout.c) and return its "index". The index of each (known) filename
5932 is just a unique number which is associated with only that one filename.
5933 We need such numbers for the sake of generating labels (in the
5934 .debug_sfnames section) and references to those unique labels (in the
5935 .debug_srcinfo and .debug_macinfo sections).
5937 If the filename given as an argument is not found in our current list,
5938 add it to the list and assign it the next available unique index number.
5940 Whatever we do (i.e. whether we find a pre-existing filename or add a new
5941 one), we shuffle the filename found (or added) up to the zeroth entry of
5942 our list of filenames (which is always searched linearly). We do this so
5943 as to optimize the most common case for these filename lookups within
5944 dwarfout.c. The most common case by far is the case where we call
5945 lookup_filename to lookup the very same filename that we did a lookup
5946 on the last time we called lookup_filename. We make sure that this
5947 common case is fast because such cases will constitute 99.9% of the
5948 lookups we ever do (in practice).
5950 If we add a new filename entry to our table, we go ahead and generate
5951 the corresponding entry in the .debug_sfnames section right away.
5952 Doing so allows us to avoid tickling an assembler bug (present in some
5953 m68k assemblers) which yields assembly-time errors in cases where the
5954 difference of two label addresses is taken and where the two labels
5955 are in a section *other* than the one where the difference is being
5956 calculated, and where at least one of the two symbol references is a
5957 forward reference. (This bug could be tickled by our .debug_srcinfo
5958 entries if we don't output their corresponding .debug_sfnames entries
5962 lookup_filename (file_name
)
5963 const char *file_name
;
5965 filename_entry
*search_p
;
5966 filename_entry
*limit_p
= &filename_table
[ft_entries
];
5968 for (search_p
= filename_table
; search_p
< limit_p
; search_p
++)
5969 if (!strcmp (file_name
, search_p
->name
))
5971 /* When we get here, we have found the filename that we were
5972 looking for in the filename_table. Now we want to make sure
5973 that it gets moved to the zero'th entry in the table (if it
5974 is not already there) so that subsequent attempts to find the
5975 same filename will find it as quickly as possible. */
5977 shuffle_filename_entry (search_p
);
5978 return filename_table
[0].number
;
5981 /* We come here whenever we have a new filename which is not registered
5982 in the current table. Here we add it to the table. */
5984 /* Prepare to add a new table entry by making sure there is enough space
5985 in the table to do so. If not, expand the current table. */
5987 if (ft_entries
== ft_entries_allocated
)
5989 ft_entries_allocated
+= FT_ENTRIES_INCREMENT
;
5991 = (filename_entry
*)
5992 xrealloc (filename_table
,
5993 ft_entries_allocated
* sizeof (filename_entry
));
5996 /* Initially, add the new entry at the end of the filename table. */
5998 filename_table
[ft_entries
].number
= ft_entries
;
5999 filename_table
[ft_entries
].name
= xstrdup (file_name
);
6001 /* Shuffle the new entry into filename_table[0]. */
6003 shuffle_filename_entry (&filename_table
[ft_entries
]);
6005 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
6006 generate_new_sfname_entry ();
6009 return filename_table
[0].number
;
6013 generate_srcinfo_entry (line_entry_num
, files_entry_num
)
6014 unsigned line_entry_num
;
6015 unsigned files_entry_num
;
6017 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
6019 fputc ('\n', asm_out_file
);
6020 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SRCINFO_SECTION
);
6021 sprintf (label
, LINE_ENTRY_LABEL_FMT
, line_entry_num
);
6022 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, label
, LINE_BEGIN_LABEL
);
6023 sprintf (label
, SFNAMES_ENTRY_LABEL_FMT
, files_entry_num
);
6024 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, label
, SFNAMES_BEGIN_LABEL
);
6025 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6029 dwarfout_source_line (line
, filename
)
6031 const char *filename
;
6033 if (debug_info_level
>= DINFO_LEVEL_NORMAL
6034 /* We can't emit line number info for functions in separate sections,
6035 because the assembler can't subtract labels in different sections. */
6036 && DECL_SECTION_NAME (current_function_decl
) == NULL_TREE
)
6038 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
6039 static unsigned last_line_entry_num
= 0;
6040 static unsigned prev_file_entry_num
= (unsigned) -1;
6041 unsigned this_file_entry_num
;
6043 function_section (current_function_decl
);
6044 sprintf (label
, LINE_CODE_LABEL_FMT
, ++last_line_entry_num
);
6045 ASM_OUTPUT_LABEL (asm_out_file
, label
);
6047 fputc ('\n', asm_out_file
);
6049 if (use_gnu_debug_info_extensions
)
6050 this_file_entry_num
= lookup_filename (filename
);
6052 this_file_entry_num
= (unsigned) -1;
6054 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, LINE_SECTION
);
6055 if (this_file_entry_num
!= prev_file_entry_num
)
6057 char line_entry_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
6059 sprintf (line_entry_label
, LINE_ENTRY_LABEL_FMT
, last_line_entry_num
);
6060 ASM_OUTPUT_LABEL (asm_out_file
, line_entry_label
);
6064 const char *tail
= strrchr (filename
, '/');
6070 dw2_asm_output_data (4, line
, "%s:%u", filename
, line
);
6071 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, 0xffff);
6072 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, label
, TEXT_BEGIN_LABEL
);
6073 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6075 if (this_file_entry_num
!= prev_file_entry_num
)
6076 generate_srcinfo_entry (last_line_entry_num
, this_file_entry_num
);
6077 prev_file_entry_num
= this_file_entry_num
;
6081 /* Generate an entry in the .debug_macinfo section. */
6084 generate_macinfo_entry (type
, offset
, string
)
6089 if (! use_gnu_debug_info_extensions
)
6092 fputc ('\n', asm_out_file
);
6093 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_MACINFO_SECTION
);
6094 assemble_integer (gen_rtx_PLUS (SImode
, GEN_INT (type
<< 24), offset
),
6095 4, BITS_PER_UNIT
, 1);
6096 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, string
);
6097 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6100 /* Wrapper for toplev.c callback to check debug info level. */
6102 dwarfout_start_source_file_check (line
, filename
)
6104 const char *filename
;
6106 if (debug_info_level
== DINFO_LEVEL_VERBOSE
)
6107 dwarfout_start_source_file (line
, filename
);
6111 dwarfout_start_source_file (line
, filename
)
6112 unsigned int line ATTRIBUTE_UNUSED
;
6113 const char *filename
;
6115 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
6116 const char *label1
, *label2
;
6118 sprintf (label
, SFNAMES_ENTRY_LABEL_FMT
, lookup_filename (filename
));
6119 label1
= (*label
== '*') + label
;
6120 label2
= (*SFNAMES_BEGIN_LABEL
== '*') + SFNAMES_BEGIN_LABEL
;
6121 generate_macinfo_entry (MACINFO_start
,
6122 gen_rtx_MINUS (Pmode
,
6123 gen_rtx_SYMBOL_REF (Pmode
, label1
),
6124 gen_rtx_SYMBOL_REF (Pmode
, label2
)),
6128 /* Wrapper for toplev.c callback to check debug info level. */
6130 dwarfout_end_source_file_check (lineno
)
6133 if (debug_info_level
== DINFO_LEVEL_VERBOSE
)
6134 dwarfout_end_source_file (lineno
);
6138 dwarfout_end_source_file (lineno
)
6141 generate_macinfo_entry (MACINFO_resume
, GEN_INT (lineno
), "");
6144 /* Called from check_newline in c-parse.y. The `buffer' parameter
6145 contains the tail part of the directive line, i.e. the part which
6146 is past the initial whitespace, #, whitespace, directive-name,
6150 dwarfout_define (lineno
, buffer
)
6154 static int initialized
= 0;
6158 dwarfout_start_source_file (0, primary_filename
);
6161 generate_macinfo_entry (MACINFO_define
, GEN_INT (lineno
), buffer
);
6164 /* Called from check_newline in c-parse.y. The `buffer' parameter
6165 contains the tail part of the directive line, i.e. the part which
6166 is past the initial whitespace, #, whitespace, directive-name,
6170 dwarfout_undef (lineno
, buffer
)
6174 generate_macinfo_entry (MACINFO_undef
, GEN_INT (lineno
), buffer
);
6177 /* Set up for Dwarf output at the start of compilation. */
6180 dwarfout_init (main_input_filename
)
6181 const char *main_input_filename
;
6183 warning ("support for the DWARF1 debugging format is deprecated");
6185 /* Remember the name of the primary input file. */
6187 primary_filename
= main_input_filename
;
6189 /* Allocate the initial hunk of the pending_sibling_stack. */
6191 pending_sibling_stack
6193 xmalloc (PENDING_SIBLINGS_INCREMENT
* sizeof (unsigned));
6194 pending_siblings_allocated
= PENDING_SIBLINGS_INCREMENT
;
6195 pending_siblings
= 1;
6197 /* Allocate the initial hunk of the filename_table. */
6200 = (filename_entry
*)
6201 xmalloc (FT_ENTRIES_INCREMENT
* sizeof (filename_entry
));
6202 ft_entries_allocated
= FT_ENTRIES_INCREMENT
;
6205 /* Allocate the initial hunk of the pending_types_list. */
6208 = (tree
*) xmalloc (PENDING_TYPES_INCREMENT
* sizeof (tree
));
6209 pending_types_allocated
= PENDING_TYPES_INCREMENT
;
6212 /* Create an artificial RECORD_TYPE node which we can use in our hack
6213 to get the DIEs representing types of formal parameters to come out
6214 only *after* the DIEs for the formal parameters themselves. */
6216 fake_containing_scope
= make_node (RECORD_TYPE
);
6218 /* Output a starting label for the .text section. */
6220 fputc ('\n', asm_out_file
);
6221 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, TEXT_SECTION_NAME
);
6222 ASM_OUTPUT_LABEL (asm_out_file
, TEXT_BEGIN_LABEL
);
6223 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6225 /* Output a starting label for the .data section. */
6227 fputc ('\n', asm_out_file
);
6228 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DATA_SECTION_NAME
);
6229 ASM_OUTPUT_LABEL (asm_out_file
, DATA_BEGIN_LABEL
);
6230 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6232 #if 0 /* GNU C doesn't currently use .data1. */
6233 /* Output a starting label for the .data1 section. */
6235 fputc ('\n', asm_out_file
);
6236 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DATA1_SECTION_NAME
);
6237 ASM_OUTPUT_LABEL (asm_out_file
, DATA1_BEGIN_LABEL
);
6238 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6241 /* Output a starting label for the .rodata section. */
6243 fputc ('\n', asm_out_file
);
6244 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, RODATA_SECTION_NAME
);
6245 ASM_OUTPUT_LABEL (asm_out_file
, RODATA_BEGIN_LABEL
);
6246 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6248 #if 0 /* GNU C doesn't currently use .rodata1. */
6249 /* Output a starting label for the .rodata1 section. */
6251 fputc ('\n', asm_out_file
);
6252 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, RODATA1_SECTION_NAME
);
6253 ASM_OUTPUT_LABEL (asm_out_file
, RODATA1_BEGIN_LABEL
);
6254 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6257 /* Output a starting label for the .bss section. */
6259 fputc ('\n', asm_out_file
);
6260 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, BSS_SECTION_NAME
);
6261 ASM_OUTPUT_LABEL (asm_out_file
, BSS_BEGIN_LABEL
);
6262 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6264 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
6266 if (use_gnu_debug_info_extensions
)
6268 /* Output a starting label and an initial (compilation directory)
6269 entry for the .debug_sfnames section. The starting label will be
6270 referenced by the initial entry in the .debug_srcinfo section. */
6272 fputc ('\n', asm_out_file
);
6273 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SFNAMES_SECTION
);
6274 ASM_OUTPUT_LABEL (asm_out_file
, SFNAMES_BEGIN_LABEL
);
6276 const char *pwd
= getpwd ();
6280 fatal_io_error ("can't get current directory");
6282 dirname
= concat (pwd
, "/", NULL
);
6283 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, dirname
);
6286 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6289 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
6290 && use_gnu_debug_info_extensions
)
6292 /* Output a starting label for the .debug_macinfo section. This
6293 label will be referenced by the AT_mac_info attribute in the
6294 TAG_compile_unit DIE. */
6296 fputc ('\n', asm_out_file
);
6297 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_MACINFO_SECTION
);
6298 ASM_OUTPUT_LABEL (asm_out_file
, MACINFO_BEGIN_LABEL
);
6299 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6302 /* Generate the initial entry for the .line section. */
6304 fputc ('\n', asm_out_file
);
6305 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, LINE_SECTION
);
6306 ASM_OUTPUT_LABEL (asm_out_file
, LINE_BEGIN_LABEL
);
6307 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, LINE_END_LABEL
, LINE_BEGIN_LABEL
);
6308 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, TEXT_BEGIN_LABEL
);
6309 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6311 if (use_gnu_debug_info_extensions
)
6313 /* Generate the initial entry for the .debug_srcinfo section. */
6315 fputc ('\n', asm_out_file
);
6316 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SRCINFO_SECTION
);
6317 ASM_OUTPUT_LABEL (asm_out_file
, SRCINFO_BEGIN_LABEL
);
6318 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, LINE_BEGIN_LABEL
);
6319 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, SFNAMES_BEGIN_LABEL
);
6320 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, TEXT_BEGIN_LABEL
);
6321 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, TEXT_END_LABEL
);
6322 #ifdef DWARF_TIMESTAMPS
6323 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, time (NULL
));
6325 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, -1);
6327 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6330 /* Generate the initial entry for the .debug_pubnames section. */
6332 fputc ('\n', asm_out_file
);
6333 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_PUBNAMES_SECTION
);
6334 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, DEBUG_BEGIN_LABEL
);
6335 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6337 /* Generate the initial entry for the .debug_aranges section. */
6339 fputc ('\n', asm_out_file
);
6340 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_ARANGES_SECTION
);
6341 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
,
6342 DEBUG_ARANGES_END_LABEL
,
6343 DEBUG_ARANGES_BEGIN_LABEL
);
6344 ASM_OUTPUT_LABEL (asm_out_file
, DEBUG_ARANGES_BEGIN_LABEL
);
6345 ASM_OUTPUT_DWARF_DATA1 (asm_out_file
, 1);
6346 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, DEBUG_BEGIN_LABEL
);
6347 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6350 /* Setup first DIE number == 1. */
6351 NEXT_DIE_NUM
= next_unused_dienum
++;
6353 /* Generate the initial DIE for the .debug section. Note that the
6354 (string) value given in the AT_name attribute of the TAG_compile_unit
6355 DIE will (typically) be a relative pathname and that this pathname
6356 should be taken as being relative to the directory from which the
6357 compiler was invoked when the given (base) source file was compiled. */
6359 fputc ('\n', asm_out_file
);
6360 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SECTION
);
6361 ASM_OUTPUT_LABEL (asm_out_file
, DEBUG_BEGIN_LABEL
);
6362 output_die (output_compile_unit_die
, (PTR
) main_input_filename
);
6363 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6365 fputc ('\n', asm_out_file
);
6368 /* Output stuff that dwarf requires at the end of every file. */
6371 dwarfout_finish (main_input_filename
)
6372 const char *main_input_filename ATTRIBUTE_UNUSED
;
6374 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
6376 fputc ('\n', asm_out_file
);
6377 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SECTION
);
6378 retry_incomplete_types ();
6379 fputc ('\n', asm_out_file
);
6381 /* Mark the end of the chain of siblings which represent all file-scope
6382 declarations in this compilation unit. */
6384 /* The (null) DIE which represents the terminator for the (sibling linked)
6385 list of file-scope items is *special*. Normally, we would just call
6386 end_sibling_chain at this point in order to output a word with the
6387 value `4' and that word would act as the terminator for the list of
6388 DIEs describing file-scope items. Unfortunately, if we were to simply
6389 do that, the label that would follow this DIE in the .debug section
6390 (i.e. `..D2') would *not* be properly aligned (as it must be on some
6391 machines) to a 4 byte boundary.
6393 In order to force the label `..D2' to get aligned to a 4 byte boundary,
6394 the trick used is to insert extra (otherwise useless) padding bytes
6395 into the (null) DIE that we know must precede the ..D2 label in the
6396 .debug section. The amount of padding required can be anywhere between
6397 0 and 3 bytes. The length word at the start of this DIE (i.e. the one
6398 with the padding) would normally contain the value 4, but now it will
6399 also have to include the padding bytes, so it will instead have some
6400 value in the range 4..7.
6402 Fortunately, the rules of Dwarf say that any DIE whose length word
6403 contains *any* value less than 8 should be treated as a null DIE, so
6404 this trick works out nicely. Clever, eh? Don't give me any credit
6405 (or blame). I didn't think of this scheme. I just conformed to it.
6408 output_die (output_padded_null_die
, (void *) 0);
6411 sprintf (label
, DIE_BEGIN_LABEL_FMT
, NEXT_DIE_NUM
);
6412 ASM_OUTPUT_LABEL (asm_out_file
, label
); /* should be ..D2 */
6413 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6415 /* Output a terminator label for the .text section. */
6417 fputc ('\n', asm_out_file
);
6418 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, TEXT_SECTION_NAME
);
6419 ASM_OUTPUT_LABEL (asm_out_file
, TEXT_END_LABEL
);
6420 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6422 /* Output a terminator label for the .data section. */
6424 fputc ('\n', asm_out_file
);
6425 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DATA_SECTION_NAME
);
6426 ASM_OUTPUT_LABEL (asm_out_file
, DATA_END_LABEL
);
6427 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6429 #if 0 /* GNU C doesn't currently use .data1. */
6430 /* Output a terminator label for the .data1 section. */
6432 fputc ('\n', asm_out_file
);
6433 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DATA1_SECTION_NAME
);
6434 ASM_OUTPUT_LABEL (asm_out_file
, DATA1_END_LABEL
);
6435 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6438 /* Output a terminator label for the .rodata section. */
6440 fputc ('\n', asm_out_file
);
6441 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, RODATA_SECTION_NAME
);
6442 ASM_OUTPUT_LABEL (asm_out_file
, RODATA_END_LABEL
);
6443 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6445 #if 0 /* GNU C doesn't currently use .rodata1. */
6446 /* Output a terminator label for the .rodata1 section. */
6448 fputc ('\n', asm_out_file
);
6449 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, RODATA1_SECTION_NAME
);
6450 ASM_OUTPUT_LABEL (asm_out_file
, RODATA1_END_LABEL
);
6451 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6454 /* Output a terminator label for the .bss section. */
6456 fputc ('\n', asm_out_file
);
6457 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, BSS_SECTION_NAME
);
6458 ASM_OUTPUT_LABEL (asm_out_file
, BSS_END_LABEL
);
6459 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6461 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
6463 /* Output a terminating entry for the .line section. */
6465 fputc ('\n', asm_out_file
);
6466 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, LINE_SECTION
);
6467 ASM_OUTPUT_LABEL (asm_out_file
, LINE_LAST_ENTRY_LABEL
);
6468 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 0);
6469 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, 0xffff);
6470 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, TEXT_END_LABEL
, TEXT_BEGIN_LABEL
);
6471 ASM_OUTPUT_LABEL (asm_out_file
, LINE_END_LABEL
);
6472 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6474 if (use_gnu_debug_info_extensions
)
6476 /* Output a terminating entry for the .debug_srcinfo section. */
6478 fputc ('\n', asm_out_file
);
6479 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SRCINFO_SECTION
);
6480 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
,
6481 LINE_LAST_ENTRY_LABEL
, LINE_BEGIN_LABEL
);
6482 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, -1);
6483 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6486 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
6488 /* Output terminating entries for the .debug_macinfo section. */
6490 dwarfout_end_source_file (0);
6492 fputc ('\n', asm_out_file
);
6493 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_MACINFO_SECTION
);
6494 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 0);
6495 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
6496 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6499 /* Generate the terminating entry for the .debug_pubnames section. */
6501 fputc ('\n', asm_out_file
);
6502 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_PUBNAMES_SECTION
);
6503 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 0);
6504 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
6505 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6507 /* Generate the terminating entries for the .debug_aranges section.
6509 Note that we want to do this only *after* we have output the end
6510 labels (for the various program sections) which we are going to
6511 refer to here. This allows us to work around a bug in the m68k
6512 svr4 assembler. That assembler gives bogus assembly-time errors
6513 if (within any given section) you try to take the difference of
6514 two relocatable symbols, both of which are located within some
6515 other section, and if one (or both?) of the symbols involved is
6516 being forward-referenced. By generating the .debug_aranges
6517 entries at this late point in the assembly output, we skirt the
6518 issue simply by avoiding forward-references.
6521 fputc ('\n', asm_out_file
);
6522 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_ARANGES_SECTION
);
6524 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, TEXT_BEGIN_LABEL
);
6525 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, TEXT_END_LABEL
, TEXT_BEGIN_LABEL
);
6527 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, DATA_BEGIN_LABEL
);
6528 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, DATA_END_LABEL
, DATA_BEGIN_LABEL
);
6530 #if 0 /* GNU C doesn't currently use .data1. */
6531 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, DATA1_BEGIN_LABEL
);
6532 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, DATA1_END_LABEL
,
6536 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, RODATA_BEGIN_LABEL
);
6537 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, RODATA_END_LABEL
,
6538 RODATA_BEGIN_LABEL
);
6540 #if 0 /* GNU C doesn't currently use .rodata1. */
6541 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, RODATA1_BEGIN_LABEL
);
6542 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, RODATA1_END_LABEL
,
6543 RODATA1_BEGIN_LABEL
);
6546 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, BSS_BEGIN_LABEL
);
6547 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, BSS_END_LABEL
, BSS_BEGIN_LABEL
);
6549 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 0);
6550 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 0);
6552 ASM_OUTPUT_LABEL (asm_out_file
, DEBUG_ARANGES_END_LABEL
);
6553 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6556 /* There should not be any pending types left at the end. We need
6557 this now because it may not have been checked on the last call to
6558 dwarfout_file_scope_decl. */
6559 if (pending_types
!= 0)
6563 #endif /* DWARF_DEBUGGING_INFO */