Daily bump.
[official-gcc.git] / libsanitizer / interception / interception_win.cpp
blob1b681ada37b170d8259ae97446b7faa6d97da754
1 //===-- interception_win.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
11 // Windows-specific interception methods.
13 // This file is implementing several hooking techniques to intercept calls
14 // to functions. The hooks are dynamically installed by modifying the assembly
15 // code.
17 // The hooking techniques are making assumptions on the way the code is
18 // generated and are safe under these assumptions.
20 // On 64-bit architecture, there is no direct 64-bit jump instruction. To allow
21 // arbitrary branching on the whole memory space, the notion of trampoline
22 // region is used. A trampoline region is a memory space withing 2G boundary
23 // where it is safe to add custom assembly code to build 64-bit jumps.
25 // Hooking techniques
26 // ==================
28 // 1) Detour
30 // The Detour hooking technique is assuming the presence of an header with
31 // padding and an overridable 2-bytes nop instruction (mov edi, edi). The
32 // nop instruction can safely be replaced by a 2-bytes jump without any need
33 // to save the instruction. A jump to the target is encoded in the function
34 // header and the nop instruction is replaced by a short jump to the header.
36 // head: 5 x nop head: jmp <hook>
37 // func: mov edi, edi --> func: jmp short <head>
38 // [...] real: [...]
40 // This technique is only implemented on 32-bit architecture.
41 // Most of the time, Windows API are hookable with the detour technique.
43 // 2) Redirect Jump
45 // The redirect jump is applicable when the first instruction is a direct
46 // jump. The instruction is replaced by jump to the hook.
48 // func: jmp <label> --> func: jmp <hook>
50 // On an 64-bit architecture, a trampoline is inserted.
52 // func: jmp <label> --> func: jmp <tramp>
53 // [...]
55 // [trampoline]
56 // tramp: jmp QWORD [addr]
57 // addr: .bytes <hook>
59 // Note: <real> is equivalent to <label>.
61 // 3) HotPatch
63 // The HotPatch hooking is assuming the presence of an header with padding
64 // and a first instruction with at least 2-bytes.
66 // The reason to enforce the 2-bytes limitation is to provide the minimal
67 // space to encode a short jump. HotPatch technique is only rewriting one
68 // instruction to avoid breaking a sequence of instructions containing a
69 // branching target.
71 // Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag.
72 // see: https://msdn.microsoft.com/en-us/library/ms173507.aspx
73 // Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits.
75 // head: 5 x nop head: jmp <hook>
76 // func: <instr> --> func: jmp short <head>
77 // [...] body: [...]
79 // [trampoline]
80 // real: <instr>
81 // jmp <body>
83 // On an 64-bit architecture:
85 // head: 6 x nop head: jmp QWORD [addr1]
86 // func: <instr> --> func: jmp short <head>
87 // [...] body: [...]
89 // [trampoline]
90 // addr1: .bytes <hook>
91 // real: <instr>
92 // jmp QWORD [addr2]
93 // addr2: .bytes <body>
95 // 4) Trampoline
97 // The Trampoline hooking technique is the most aggressive one. It is
98 // assuming that there is a sequence of instructions that can be safely
99 // replaced by a jump (enough room and no incoming branches).
101 // Unfortunately, these assumptions can't be safely presumed and code may
102 // be broken after hooking.
104 // func: <instr> --> func: jmp <hook>
105 // <instr>
106 // [...] body: [...]
108 // [trampoline]
109 // real: <instr>
110 // <instr>
111 // jmp <body>
113 // On an 64-bit architecture:
115 // func: <instr> --> func: jmp QWORD [addr1]
116 // <instr>
117 // [...] body: [...]
119 // [trampoline]
120 // addr1: .bytes <hook>
121 // real: <instr>
122 // <instr>
123 // jmp QWORD [addr2]
124 // addr2: .bytes <body>
125 //===----------------------------------------------------------------------===//
127 #include "interception.h"
129 #if SANITIZER_WINDOWS
130 #include "sanitizer_common/sanitizer_platform.h"
131 #define WIN32_LEAN_AND_MEAN
132 #include <windows.h>
134 namespace __interception {
136 static const int kAddressLength = FIRST_32_SECOND_64(4, 8);
137 static const int kJumpInstructionLength = 5;
138 static const int kShortJumpInstructionLength = 2;
139 UNUSED static const int kIndirectJumpInstructionLength = 6;
140 static const int kBranchLength =
141 FIRST_32_SECOND_64(kJumpInstructionLength, kIndirectJumpInstructionLength);
142 static const int kDirectBranchLength = kBranchLength + kAddressLength;
144 # if defined(_MSC_VER)
145 # define INTERCEPTION_FORMAT(f, a)
146 # else
147 # define INTERCEPTION_FORMAT(f, a) __attribute__((format(printf, f, a)))
148 # endif
150 static void (*ErrorReportCallback)(const char *format, ...)
151 INTERCEPTION_FORMAT(1, 2);
153 void SetErrorReportCallback(void (*callback)(const char *format, ...)) {
154 ErrorReportCallback = callback;
157 # define ReportError(...) \
158 do { \
159 if (ErrorReportCallback) \
160 ErrorReportCallback(__VA_ARGS__); \
161 } while (0)
163 static void InterceptionFailed() {
164 ReportError("interception_win: failed due to an unrecoverable error.\n");
165 // This acts like an abort when no debugger is attached. According to an old
166 // comment, calling abort() leads to an infinite recursion in CheckFailed.
167 __debugbreak();
170 static bool DistanceIsWithin2Gig(uptr from, uptr target) {
171 #if SANITIZER_WINDOWS64
172 if (from < target)
173 return target - from <= (uptr)0x7FFFFFFFU;
174 else
175 return from - target <= (uptr)0x80000000U;
176 #else
177 // In a 32-bit address space, the address calculation will wrap, so this check
178 // is unnecessary.
179 return true;
180 #endif
183 static uptr GetMmapGranularity() {
184 SYSTEM_INFO si;
185 GetSystemInfo(&si);
186 return si.dwAllocationGranularity;
189 UNUSED static uptr RoundUpTo(uptr size, uptr boundary) {
190 return (size + boundary - 1) & ~(boundary - 1);
193 // FIXME: internal_str* and internal_mem* functions should be moved from the
194 // ASan sources into interception/.
196 static size_t _strlen(const char *str) {
197 const char* p = str;
198 while (*p != '\0') ++p;
199 return p - str;
202 static char* _strchr(char* str, char c) {
203 while (*str) {
204 if (*str == c)
205 return str;
206 ++str;
208 return nullptr;
211 static void _memset(void *p, int value, size_t sz) {
212 for (size_t i = 0; i < sz; ++i)
213 ((char*)p)[i] = (char)value;
216 static void _memcpy(void *dst, void *src, size_t sz) {
217 char *dst_c = (char*)dst,
218 *src_c = (char*)src;
219 for (size_t i = 0; i < sz; ++i)
220 dst_c[i] = src_c[i];
223 static bool ChangeMemoryProtection(
224 uptr address, uptr size, DWORD *old_protection) {
225 return ::VirtualProtect((void*)address, size,
226 PAGE_EXECUTE_READWRITE,
227 old_protection) != FALSE;
230 static bool RestoreMemoryProtection(
231 uptr address, uptr size, DWORD old_protection) {
232 DWORD unused;
233 return ::VirtualProtect((void*)address, size,
234 old_protection,
235 &unused) != FALSE;
238 static bool IsMemoryPadding(uptr address, uptr size) {
239 u8* function = (u8*)address;
240 for (size_t i = 0; i < size; ++i)
241 if (function[i] != 0x90 && function[i] != 0xCC)
242 return false;
243 return true;
246 static const u8 kHintNop8Bytes[] = {
247 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00
250 template<class T>
251 static bool FunctionHasPrefix(uptr address, const T &pattern) {
252 u8* function = (u8*)address - sizeof(pattern);
253 for (size_t i = 0; i < sizeof(pattern); ++i)
254 if (function[i] != pattern[i])
255 return false;
256 return true;
259 static bool FunctionHasPadding(uptr address, uptr size) {
260 if (IsMemoryPadding(address - size, size))
261 return true;
262 if (size <= sizeof(kHintNop8Bytes) &&
263 FunctionHasPrefix(address, kHintNop8Bytes))
264 return true;
265 return false;
268 static void WritePadding(uptr from, uptr size) {
269 _memset((void*)from, 0xCC, (size_t)size);
272 static void WriteJumpInstruction(uptr from, uptr target) {
273 if (!DistanceIsWithin2Gig(from + kJumpInstructionLength, target)) {
274 ReportError(
275 "interception_win: cannot write jmp further than 2GB away, from %p to "
276 "%p.\n",
277 (void *)from, (void *)target);
278 InterceptionFailed();
280 ptrdiff_t offset = target - from - kJumpInstructionLength;
281 *(u8*)from = 0xE9;
282 *(u32*)(from + 1) = offset;
285 static void WriteShortJumpInstruction(uptr from, uptr target) {
286 sptr offset = target - from - kShortJumpInstructionLength;
287 if (offset < -128 || offset > 127)
288 InterceptionFailed();
289 *(u8*)from = 0xEB;
290 *(u8*)(from + 1) = (u8)offset;
293 #if SANITIZER_WINDOWS64
294 static void WriteIndirectJumpInstruction(uptr from, uptr indirect_target) {
295 // jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative
296 // offset.
297 // The offset is the distance from then end of the jump instruction to the
298 // memory location containing the targeted address. The displacement is still
299 // 32-bit in x64, so indirect_target must be located within +/- 2GB range.
300 int offset = indirect_target - from - kIndirectJumpInstructionLength;
301 if (!DistanceIsWithin2Gig(from + kIndirectJumpInstructionLength,
302 indirect_target)) {
303 ReportError(
304 "interception_win: cannot write indirect jmp with target further than "
305 "2GB away, from %p to %p.\n",
306 (void *)from, (void *)indirect_target);
307 InterceptionFailed();
309 *(u16*)from = 0x25FF;
310 *(u32*)(from + 2) = offset;
312 #endif
314 static void WriteBranch(
315 uptr from, uptr indirect_target, uptr target) {
316 #if SANITIZER_WINDOWS64
317 WriteIndirectJumpInstruction(from, indirect_target);
318 *(u64*)indirect_target = target;
319 #else
320 (void)indirect_target;
321 WriteJumpInstruction(from, target);
322 #endif
325 static void WriteDirectBranch(uptr from, uptr target) {
326 #if SANITIZER_WINDOWS64
327 // Emit an indirect jump through immediately following bytes:
328 // jmp [rip + kBranchLength]
329 // .quad <target>
330 WriteBranch(from, from + kBranchLength, target);
331 #else
332 WriteJumpInstruction(from, target);
333 #endif
336 struct TrampolineMemoryRegion {
337 uptr content;
338 uptr allocated_size;
339 uptr max_size;
342 UNUSED static const uptr kTrampolineScanLimitRange = 1 << 31; // 2 gig
343 static const int kMaxTrampolineRegion = 1024;
344 static TrampolineMemoryRegion TrampolineRegions[kMaxTrampolineRegion];
346 static void *AllocateTrampolineRegion(uptr image_address, size_t granularity) {
347 #if SANITIZER_WINDOWS64
348 uptr address = image_address;
349 uptr scanned = 0;
350 while (scanned < kTrampolineScanLimitRange) {
351 MEMORY_BASIC_INFORMATION info;
352 if (!::VirtualQuery((void*)address, &info, sizeof(info)))
353 return nullptr;
355 // Check whether a region can be allocated at |address|.
356 if (info.State == MEM_FREE && info.RegionSize >= granularity) {
357 void *page = ::VirtualAlloc((void*)RoundUpTo(address, granularity),
358 granularity,
359 MEM_RESERVE | MEM_COMMIT,
360 PAGE_EXECUTE_READWRITE);
361 return page;
364 // Move to the next region.
365 address = (uptr)info.BaseAddress + info.RegionSize;
366 scanned += info.RegionSize;
368 return nullptr;
369 #else
370 return ::VirtualAlloc(nullptr,
371 granularity,
372 MEM_RESERVE | MEM_COMMIT,
373 PAGE_EXECUTE_READWRITE);
374 #endif
377 // Used by unittests to release mapped memory space.
378 void TestOnlyReleaseTrampolineRegions() {
379 for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
380 TrampolineMemoryRegion *current = &TrampolineRegions[bucket];
381 if (current->content == 0)
382 return;
383 ::VirtualFree((void*)current->content, 0, MEM_RELEASE);
384 current->content = 0;
388 static uptr AllocateMemoryForTrampoline(uptr image_address, size_t size) {
389 // Find a region within 2G with enough space to allocate |size| bytes.
390 TrampolineMemoryRegion *region = nullptr;
391 for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
392 TrampolineMemoryRegion* current = &TrampolineRegions[bucket];
393 if (current->content == 0) {
394 // No valid region found, allocate a new region.
395 size_t bucket_size = GetMmapGranularity();
396 void *content = AllocateTrampolineRegion(image_address, bucket_size);
397 if (content == nullptr)
398 return 0U;
400 current->content = (uptr)content;
401 current->allocated_size = 0;
402 current->max_size = bucket_size;
403 region = current;
404 break;
405 } else if (current->max_size - current->allocated_size > size) {
406 #if SANITIZER_WINDOWS64
407 // In 64-bits, the memory space must be allocated within 2G boundary.
408 uptr next_address = current->content + current->allocated_size;
409 if (next_address < image_address ||
410 next_address - image_address >= 0x7FFF0000)
411 continue;
412 #endif
413 // The space can be allocated in the current region.
414 region = current;
415 break;
419 // Failed to find a region.
420 if (region == nullptr)
421 return 0U;
423 // Allocate the space in the current region.
424 uptr allocated_space = region->content + region->allocated_size;
425 region->allocated_size += size;
426 WritePadding(allocated_space, size);
428 return allocated_space;
431 // The following prologues cannot be patched because of the short jump
432 // jumping to the patching region.
434 #if SANITIZER_WINDOWS64
435 // ntdll!wcslen in Win11
436 // 488bc1 mov rax,rcx
437 // 0fb710 movzx edx,word ptr [rax]
438 // 4883c002 add rax,2
439 // 6685d2 test dx,dx
440 // 75f4 jne -12
441 static const u8 kPrologueWithShortJump1[] = {
442 0x48, 0x8b, 0xc1, 0x0f, 0xb7, 0x10, 0x48, 0x83,
443 0xc0, 0x02, 0x66, 0x85, 0xd2, 0x75, 0xf4,
446 // ntdll!strrchr in Win11
447 // 4c8bc1 mov r8,rcx
448 // 8a01 mov al,byte ptr [rcx]
449 // 48ffc1 inc rcx
450 // 84c0 test al,al
451 // 75f7 jne -9
452 static const u8 kPrologueWithShortJump2[] = {
453 0x4c, 0x8b, 0xc1, 0x8a, 0x01, 0x48, 0xff, 0xc1,
454 0x84, 0xc0, 0x75, 0xf7,
456 #endif
458 // Returns 0 on error.
459 static size_t GetInstructionSize(uptr address, size_t* rel_offset = nullptr) {
460 #if SANITIZER_ARM64
461 // An ARM64 instruction is 4 bytes long.
462 return 4;
463 #endif
465 #if SANITIZER_WINDOWS64
466 if (memcmp((u8*)address, kPrologueWithShortJump1,
467 sizeof(kPrologueWithShortJump1)) == 0 ||
468 memcmp((u8*)address, kPrologueWithShortJump2,
469 sizeof(kPrologueWithShortJump2)) == 0) {
470 return 0;
472 #endif
474 switch (*(u64*)address) {
475 case 0x90909090909006EB: // stub: jmp over 6 x nop.
476 return 8;
479 switch (*(u8*)address) {
480 case 0x90: // 90 : nop
481 return 1;
483 case 0x50: // push eax / rax
484 case 0x51: // push ecx / rcx
485 case 0x52: // push edx / rdx
486 case 0x53: // push ebx / rbx
487 case 0x54: // push esp / rsp
488 case 0x55: // push ebp / rbp
489 case 0x56: // push esi / rsi
490 case 0x57: // push edi / rdi
491 case 0x5D: // pop ebp / rbp
492 return 1;
494 case 0x6A: // 6A XX = push XX
495 return 2;
497 case 0xb8: // b8 XX XX XX XX : mov eax, XX XX XX XX
498 case 0xB9: // b9 XX XX XX XX : mov ecx, XX XX XX XX
499 return 5;
501 // Cannot overwrite control-instruction. Return 0 to indicate failure.
502 case 0xE9: // E9 XX XX XX XX : jmp <label>
503 case 0xE8: // E8 XX XX XX XX : call <func>
504 case 0xC3: // C3 : ret
505 case 0xEB: // EB XX : jmp XX (short jump)
506 case 0x70: // 7Y YY : jy XX (short conditional jump)
507 case 0x71:
508 case 0x72:
509 case 0x73:
510 case 0x74:
511 case 0x75:
512 case 0x76:
513 case 0x77:
514 case 0x78:
515 case 0x79:
516 case 0x7A:
517 case 0x7B:
518 case 0x7C:
519 case 0x7D:
520 case 0x7E:
521 case 0x7F:
522 return 0;
525 switch (*(u16*)(address)) {
526 case 0x018A: // 8A 01 : mov al, byte ptr [ecx]
527 case 0xFF8B: // 8B FF : mov edi, edi
528 case 0xEC8B: // 8B EC : mov ebp, esp
529 case 0xc889: // 89 C8 : mov eax, ecx
530 case 0xE589: // 89 E5 : mov ebp, esp
531 case 0xC18B: // 8B C1 : mov eax, ecx
532 case 0xC033: // 33 C0 : xor eax, eax
533 case 0xC933: // 33 C9 : xor ecx, ecx
534 case 0xD233: // 33 D2 : xor edx, edx
535 return 2;
537 // Cannot overwrite control-instruction. Return 0 to indicate failure.
538 case 0x25FF: // FF 25 XX XX XX XX : jmp [XXXXXXXX]
539 return 0;
542 switch (0x00FFFFFF & *(u32*)address) {
543 case 0x24A48D: // 8D A4 24 XX XX XX XX : lea esp, [esp + XX XX XX XX]
544 return 7;
547 #if SANITIZER_WINDOWS64
548 switch (*(u8*)address) {
549 case 0xA1: // A1 XX XX XX XX XX XX XX XX :
550 // movabs eax, dword ptr ds:[XXXXXXXX]
551 return 9;
553 case 0x83:
554 const u8 next_byte = *(u8*)(address + 1);
555 const u8 mod = next_byte >> 6;
556 const u8 rm = next_byte & 7;
557 if (mod == 1 && rm == 4)
558 return 5; // 83 ModR/M SIB Disp8 Imm8
559 // add|or|adc|sbb|and|sub|xor|cmp [r+disp8], imm8
562 switch (*(u16*)address) {
563 case 0x5040: // push rax
564 case 0x5140: // push rcx
565 case 0x5240: // push rdx
566 case 0x5340: // push rbx
567 case 0x5440: // push rsp
568 case 0x5540: // push rbp
569 case 0x5640: // push rsi
570 case 0x5740: // push rdi
571 case 0x5441: // push r12
572 case 0x5541: // push r13
573 case 0x5641: // push r14
574 case 0x5741: // push r15
575 case 0x9066: // Two-byte NOP
576 case 0xc084: // test al, al
577 case 0x018a: // mov al, byte ptr [rcx]
578 return 2;
580 case 0x058B: // 8B 05 XX XX XX XX : mov eax, dword ptr [XX XX XX XX]
581 if (rel_offset)
582 *rel_offset = 2;
583 return 6;
586 switch (0x00FFFFFF & *(u32*)address) {
587 case 0xe58948: // 48 8b c4 : mov rbp, rsp
588 case 0xc18b48: // 48 8b c1 : mov rax, rcx
589 case 0xc48b48: // 48 8b c4 : mov rax, rsp
590 case 0xd9f748: // 48 f7 d9 : neg rcx
591 case 0xd12b48: // 48 2b d1 : sub rdx, rcx
592 case 0x07c1f6: // f6 c1 07 : test cl, 0x7
593 case 0xc98548: // 48 85 C9 : test rcx, rcx
594 case 0xd28548: // 48 85 d2 : test rdx, rdx
595 case 0xc0854d: // 4d 85 c0 : test r8, r8
596 case 0xc2b60f: // 0f b6 c2 : movzx eax, dl
597 case 0xc03345: // 45 33 c0 : xor r8d, r8d
598 case 0xc93345: // 45 33 c9 : xor r9d, r9d
599 case 0xdb3345: // 45 33 DB : xor r11d, r11d
600 case 0xd98b4c: // 4c 8b d9 : mov r11, rcx
601 case 0xd28b4c: // 4c 8b d2 : mov r10, rdx
602 case 0xc98b4c: // 4C 8B C9 : mov r9, rcx
603 case 0xc18b4c: // 4C 8B C1 : mov r8, rcx
604 case 0xd2b60f: // 0f b6 d2 : movzx edx, dl
605 case 0xca2b48: // 48 2b ca : sub rcx, rdx
606 case 0x10b70f: // 0f b7 10 : movzx edx, WORD PTR [rax]
607 case 0xc00b4d: // 3d 0b c0 : or r8, r8
608 case 0xc08b41: // 41 8b c0 : mov eax, r8d
609 case 0xd18b48: // 48 8b d1 : mov rdx, rcx
610 case 0xdc8b4c: // 4c 8b dc : mov r11, rsp
611 case 0xd18b4c: // 4c 8b d1 : mov r10, rcx
612 case 0xE0E483: // 83 E4 E0 : and esp, 0xFFFFFFE0
613 return 3;
615 case 0xec8348: // 48 83 ec XX : sub rsp, XX
616 case 0xf88349: // 49 83 f8 XX : cmp r8, XX
617 case 0x588948: // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx
618 return 4;
620 case 0xec8148: // 48 81 EC XX XX XX XX : sub rsp, XXXXXXXX
621 return 7;
623 case 0x058b48: // 48 8b 05 XX XX XX XX :
624 // mov rax, QWORD PTR [rip + XXXXXXXX]
625 case 0x25ff48: // 48 ff 25 XX XX XX XX :
626 // rex.W jmp QWORD PTR [rip + XXXXXXXX]
627 case 0x158D4C: // 4c 8d 15 XX XX XX XX : lea r10, [rip + XX]
628 // Instructions having offset relative to 'rip' need offset adjustment.
629 if (rel_offset)
630 *rel_offset = 3;
631 return 7;
633 case 0x2444c7: // C7 44 24 XX YY YY YY YY
634 // mov dword ptr [rsp + XX], YYYYYYYY
635 return 8;
638 switch (*(u32*)(address)) {
639 case 0x24448b48: // 48 8b 44 24 XX : mov rax, QWORD ptr [rsp + XX]
640 case 0x246c8948: // 48 89 6C 24 XX : mov QWORD ptr [rsp + XX], rbp
641 case 0x245c8948: // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx
642 case 0x24748948: // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi
643 case 0x247c8948: // 48 89 7c 24 XX : mov QWORD PTR [rsp + XX], rdi
644 case 0x244C8948: // 48 89 4C 24 XX : mov QWORD PTR [rsp + XX], rcx
645 case 0x24548948: // 48 89 54 24 XX : mov QWORD PTR [rsp + XX], rdx
646 case 0x244c894c: // 4c 89 4c 24 XX : mov QWORD PTR [rsp + XX], r9
647 case 0x2444894c: // 4c 89 44 24 XX : mov QWORD PTR [rsp + XX], r8
648 return 5;
649 case 0x24648348: // 48 83 64 24 XX : and QWORD PTR [rsp + XX], YY
650 return 6;
653 #else
655 switch (*(u8*)address) {
656 case 0xA1: // A1 XX XX XX XX : mov eax, dword ptr ds:[XXXXXXXX]
657 return 5;
659 switch (*(u16*)address) {
660 case 0x458B: // 8B 45 XX : mov eax, dword ptr [ebp + XX]
661 case 0x5D8B: // 8B 5D XX : mov ebx, dword ptr [ebp + XX]
662 case 0x7D8B: // 8B 7D XX : mov edi, dword ptr [ebp + XX]
663 case 0xEC83: // 83 EC XX : sub esp, XX
664 case 0x75FF: // FF 75 XX : push dword ptr [ebp + XX]
665 return 3;
666 case 0xC1F7: // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX
667 case 0x25FF: // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX]
668 return 6;
669 case 0x3D83: // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX
670 return 7;
671 case 0x7D83: // 83 7D XX YY : cmp dword ptr [ebp + XX], YY
672 return 4;
675 switch (0x00FFFFFF & *(u32*)address) {
676 case 0x24448A: // 8A 44 24 XX : mov eal, dword ptr [esp + XX]
677 case 0x24448B: // 8B 44 24 XX : mov eax, dword ptr [esp + XX]
678 case 0x244C8B: // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX]
679 case 0x24548B: // 8B 54 24 XX : mov edx, dword ptr [esp + XX]
680 case 0x245C8B: // 8B 5C 24 XX : mov ebx, dword ptr [esp + XX]
681 case 0x246C8B: // 8B 6C 24 XX : mov ebp, dword ptr [esp + XX]
682 case 0x24748B: // 8B 74 24 XX : mov esi, dword ptr [esp + XX]
683 case 0x247C8B: // 8B 7C 24 XX : mov edi, dword ptr [esp + XX]
684 return 4;
687 switch (*(u32*)address) {
688 case 0x2444B60F: // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX]
689 return 5;
691 #endif
693 // Unknown instruction! This might happen when we add a new interceptor, use
694 // a new compiler version, or if Windows changed how some functions are
695 // compiled. In either case, we print the address and 8 bytes of instructions
696 // to notify the user about the error and to help identify the unknown
697 // instruction. Don't treat this as a fatal error, though we can break the
698 // debugger if one has been attached.
699 u8 *bytes = (u8 *)address;
700 ReportError(
701 "interception_win: unhandled instruction at %p: %02x %02x %02x %02x %02x "
702 "%02x %02x %02x\n",
703 (void *)address, bytes[0], bytes[1], bytes[2], bytes[3], bytes[4],
704 bytes[5], bytes[6], bytes[7]);
705 if (::IsDebuggerPresent())
706 __debugbreak();
707 return 0;
710 // Returns 0 on error.
711 static size_t RoundUpToInstrBoundary(size_t size, uptr address) {
712 size_t cursor = 0;
713 while (cursor < size) {
714 size_t instruction_size = GetInstructionSize(address + cursor);
715 if (!instruction_size)
716 return 0;
717 cursor += instruction_size;
719 return cursor;
722 static bool CopyInstructions(uptr to, uptr from, size_t size) {
723 size_t cursor = 0;
724 while (cursor != size) {
725 size_t rel_offset = 0;
726 size_t instruction_size = GetInstructionSize(from + cursor, &rel_offset);
727 if (!instruction_size)
728 return false;
729 _memcpy((void *)(to + cursor), (void *)(from + cursor),
730 (size_t)instruction_size);
731 if (rel_offset) {
732 # if SANITIZER_WINDOWS64
733 // we want to make sure that the new relative offset still fits in 32-bits
734 // this will be untrue if relocated_offset \notin [-2**31, 2**31)
735 s64 delta = to - from;
736 s64 relocated_offset = *(s32 *)(to + cursor + rel_offset) - delta;
737 if (-0x8000'0000ll > relocated_offset || relocated_offset > 0x7FFF'FFFFll)
738 return false;
739 # else
740 // on 32-bit, the relative offset will always be correct
741 s32 delta = to - from;
742 s32 relocated_offset = *(s32 *)(to + cursor + rel_offset) - delta;
743 # endif
744 *(s32 *)(to + cursor + rel_offset) = relocated_offset;
746 cursor += instruction_size;
748 return true;
752 #if !SANITIZER_WINDOWS64
753 bool OverrideFunctionWithDetour(
754 uptr old_func, uptr new_func, uptr *orig_old_func) {
755 const int kDetourHeaderLen = 5;
756 const u16 kDetourInstruction = 0xFF8B;
758 uptr header = (uptr)old_func - kDetourHeaderLen;
759 uptr patch_length = kDetourHeaderLen + kShortJumpInstructionLength;
761 // Validate that the function is hookable.
762 if (*(u16*)old_func != kDetourInstruction ||
763 !IsMemoryPadding(header, kDetourHeaderLen))
764 return false;
766 // Change memory protection to writable.
767 DWORD protection = 0;
768 if (!ChangeMemoryProtection(header, patch_length, &protection))
769 return false;
771 // Write a relative jump to the redirected function.
772 WriteJumpInstruction(header, new_func);
774 // Write the short jump to the function prefix.
775 WriteShortJumpInstruction(old_func, header);
777 // Restore previous memory protection.
778 if (!RestoreMemoryProtection(header, patch_length, protection))
779 return false;
781 if (orig_old_func)
782 *orig_old_func = old_func + kShortJumpInstructionLength;
784 return true;
786 #endif
788 bool OverrideFunctionWithRedirectJump(
789 uptr old_func, uptr new_func, uptr *orig_old_func) {
790 // Check whether the first instruction is a relative jump.
791 if (*(u8*)old_func != 0xE9)
792 return false;
794 if (orig_old_func) {
795 sptr relative_offset = *(s32 *)(old_func + 1);
796 uptr absolute_target = old_func + relative_offset + kJumpInstructionLength;
797 *orig_old_func = absolute_target;
800 #if SANITIZER_WINDOWS64
801 // If needed, get memory space for a trampoline jump.
802 uptr trampoline = AllocateMemoryForTrampoline(old_func, kDirectBranchLength);
803 if (!trampoline)
804 return false;
805 WriteDirectBranch(trampoline, new_func);
806 #endif
808 // Change memory protection to writable.
809 DWORD protection = 0;
810 if (!ChangeMemoryProtection(old_func, kJumpInstructionLength, &protection))
811 return false;
813 // Write a relative jump to the redirected function.
814 WriteJumpInstruction(old_func, FIRST_32_SECOND_64(new_func, trampoline));
816 // Restore previous memory protection.
817 if (!RestoreMemoryProtection(old_func, kJumpInstructionLength, protection))
818 return false;
820 return true;
823 bool OverrideFunctionWithHotPatch(
824 uptr old_func, uptr new_func, uptr *orig_old_func) {
825 const int kHotPatchHeaderLen = kBranchLength;
827 uptr header = (uptr)old_func - kHotPatchHeaderLen;
828 uptr patch_length = kHotPatchHeaderLen + kShortJumpInstructionLength;
830 // Validate that the function is hot patchable.
831 size_t instruction_size = GetInstructionSize(old_func);
832 if (instruction_size < kShortJumpInstructionLength ||
833 !FunctionHasPadding(old_func, kHotPatchHeaderLen))
834 return false;
836 if (orig_old_func) {
837 // Put the needed instructions into the trampoline bytes.
838 uptr trampoline_length = instruction_size + kDirectBranchLength;
839 uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
840 if (!trampoline)
841 return false;
842 if (!CopyInstructions(trampoline, old_func, instruction_size))
843 return false;
844 WriteDirectBranch(trampoline + instruction_size,
845 old_func + instruction_size);
846 *orig_old_func = trampoline;
849 // If needed, get memory space for indirect address.
850 uptr indirect_address = 0;
851 #if SANITIZER_WINDOWS64
852 indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
853 if (!indirect_address)
854 return false;
855 #endif
857 // Change memory protection to writable.
858 DWORD protection = 0;
859 if (!ChangeMemoryProtection(header, patch_length, &protection))
860 return false;
862 // Write jumps to the redirected function.
863 WriteBranch(header, indirect_address, new_func);
864 WriteShortJumpInstruction(old_func, header);
866 // Restore previous memory protection.
867 if (!RestoreMemoryProtection(header, patch_length, protection))
868 return false;
870 return true;
873 bool OverrideFunctionWithTrampoline(
874 uptr old_func, uptr new_func, uptr *orig_old_func) {
876 size_t instructions_length = kBranchLength;
877 size_t padding_length = 0;
878 uptr indirect_address = 0;
880 if (orig_old_func) {
881 // Find out the number of bytes of the instructions we need to copy
882 // to the trampoline.
883 instructions_length = RoundUpToInstrBoundary(kBranchLength, old_func);
884 if (!instructions_length)
885 return false;
887 // Put the needed instructions into the trampoline bytes.
888 uptr trampoline_length = instructions_length + kDirectBranchLength;
889 uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
890 if (!trampoline)
891 return false;
892 if (!CopyInstructions(trampoline, old_func, instructions_length))
893 return false;
894 WriteDirectBranch(trampoline + instructions_length,
895 old_func + instructions_length);
896 *orig_old_func = trampoline;
899 #if SANITIZER_WINDOWS64
900 // Check if the targeted address can be encoded in the function padding.
901 // Otherwise, allocate it in the trampoline region.
902 if (IsMemoryPadding(old_func - kAddressLength, kAddressLength)) {
903 indirect_address = old_func - kAddressLength;
904 padding_length = kAddressLength;
905 } else {
906 indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
907 if (!indirect_address)
908 return false;
910 #endif
912 // Change memory protection to writable.
913 uptr patch_address = old_func - padding_length;
914 uptr patch_length = instructions_length + padding_length;
915 DWORD protection = 0;
916 if (!ChangeMemoryProtection(patch_address, patch_length, &protection))
917 return false;
919 // Patch the original function.
920 WriteBranch(old_func, indirect_address, new_func);
922 // Restore previous memory protection.
923 if (!RestoreMemoryProtection(patch_address, patch_length, protection))
924 return false;
926 return true;
929 bool OverrideFunction(
930 uptr old_func, uptr new_func, uptr *orig_old_func) {
931 #if !SANITIZER_WINDOWS64
932 if (OverrideFunctionWithDetour(old_func, new_func, orig_old_func))
933 return true;
934 #endif
935 if (OverrideFunctionWithRedirectJump(old_func, new_func, orig_old_func))
936 return true;
937 if (OverrideFunctionWithHotPatch(old_func, new_func, orig_old_func))
938 return true;
939 if (OverrideFunctionWithTrampoline(old_func, new_func, orig_old_func))
940 return true;
941 return false;
944 static void **InterestingDLLsAvailable() {
945 static const char *InterestingDLLs[] = {
946 "kernel32.dll",
947 "msvcr100.dll", // VS2010
948 "msvcr110.dll", // VS2012
949 "msvcr120.dll", // VS2013
950 "vcruntime140.dll", // VS2015
951 "ucrtbase.dll", // Universal CRT
952 #if (defined(__MINGW32__) && defined(__i386__))
953 "libc++.dll", // libc++
954 "libunwind.dll", // libunwind
955 #endif
956 // NTDLL should go last as it exports some functions that we should
957 // override in the CRT [presumably only used internally].
958 "ntdll.dll", NULL};
959 static void *result[ARRAY_SIZE(InterestingDLLs)] = { 0 };
960 if (!result[0]) {
961 for (size_t i = 0, j = 0; InterestingDLLs[i]; ++i) {
962 if (HMODULE h = GetModuleHandleA(InterestingDLLs[i]))
963 result[j++] = (void *)h;
966 return &result[0];
969 namespace {
970 // Utility for reading loaded PE images.
971 template <typename T> class RVAPtr {
972 public:
973 RVAPtr(void *module, uptr rva)
974 : ptr_(reinterpret_cast<T *>(reinterpret_cast<char *>(module) + rva)) {}
975 operator T *() { return ptr_; }
976 T *operator->() { return ptr_; }
977 T *operator++() { return ++ptr_; }
979 private:
980 T *ptr_;
982 } // namespace
984 // Internal implementation of GetProcAddress. At least since Windows 8,
985 // GetProcAddress appears to initialize DLLs before returning function pointers
986 // into them. This is problematic for the sanitizers, because they typically
987 // want to intercept malloc *before* MSVCRT initializes. Our internal
988 // implementation walks the export list manually without doing initialization.
989 uptr InternalGetProcAddress(void *module, const char *func_name) {
990 // Check that the module header is full and present.
991 RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
992 RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
993 if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ"
994 headers->Signature != IMAGE_NT_SIGNATURE || // "PE\0\0"
995 headers->FileHeader.SizeOfOptionalHeader <
996 sizeof(IMAGE_OPTIONAL_HEADER)) {
997 return 0;
1000 IMAGE_DATA_DIRECTORY *export_directory =
1001 &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];
1002 if (export_directory->Size == 0)
1003 return 0;
1004 RVAPtr<IMAGE_EXPORT_DIRECTORY> exports(module,
1005 export_directory->VirtualAddress);
1006 RVAPtr<DWORD> functions(module, exports->AddressOfFunctions);
1007 RVAPtr<DWORD> names(module, exports->AddressOfNames);
1008 RVAPtr<WORD> ordinals(module, exports->AddressOfNameOrdinals);
1010 for (DWORD i = 0; i < exports->NumberOfNames; i++) {
1011 RVAPtr<char> name(module, names[i]);
1012 if (!strcmp(func_name, name)) {
1013 DWORD index = ordinals[i];
1014 RVAPtr<char> func(module, functions[index]);
1016 // Handle forwarded functions.
1017 DWORD offset = functions[index];
1018 if (offset >= export_directory->VirtualAddress &&
1019 offset < export_directory->VirtualAddress + export_directory->Size) {
1020 // An entry for a forwarded function is a string with the following
1021 // format: "<module> . <function_name>" that is stored into the
1022 // exported directory.
1023 char function_name[256];
1024 size_t funtion_name_length = _strlen(func);
1025 if (funtion_name_length >= sizeof(function_name) - 1)
1026 InterceptionFailed();
1028 _memcpy(function_name, func, funtion_name_length);
1029 function_name[funtion_name_length] = '\0';
1030 char* separator = _strchr(function_name, '.');
1031 if (!separator)
1032 InterceptionFailed();
1033 *separator = '\0';
1035 void* redirected_module = GetModuleHandleA(function_name);
1036 if (!redirected_module)
1037 InterceptionFailed();
1038 return InternalGetProcAddress(redirected_module, separator + 1);
1041 return (uptr)(char *)func;
1045 return 0;
1048 bool OverrideFunction(
1049 const char *func_name, uptr new_func, uptr *orig_old_func) {
1050 bool hooked = false;
1051 void **DLLs = InterestingDLLsAvailable();
1052 for (size_t i = 0; DLLs[i]; ++i) {
1053 uptr func_addr = InternalGetProcAddress(DLLs[i], func_name);
1054 if (func_addr &&
1055 OverrideFunction(func_addr, new_func, orig_old_func)) {
1056 hooked = true;
1059 return hooked;
1062 bool OverrideImportedFunction(const char *module_to_patch,
1063 const char *imported_module,
1064 const char *function_name, uptr new_function,
1065 uptr *orig_old_func) {
1066 HMODULE module = GetModuleHandleA(module_to_patch);
1067 if (!module)
1068 return false;
1070 // Check that the module header is full and present.
1071 RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
1072 RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
1073 if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ"
1074 headers->Signature != IMAGE_NT_SIGNATURE || // "PE\0\0"
1075 headers->FileHeader.SizeOfOptionalHeader <
1076 sizeof(IMAGE_OPTIONAL_HEADER)) {
1077 return false;
1080 IMAGE_DATA_DIRECTORY *import_directory =
1081 &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
1083 // Iterate the list of imported DLLs. FirstThunk will be null for the last
1084 // entry.
1085 RVAPtr<IMAGE_IMPORT_DESCRIPTOR> imports(module,
1086 import_directory->VirtualAddress);
1087 for (; imports->FirstThunk != 0; ++imports) {
1088 RVAPtr<const char> modname(module, imports->Name);
1089 if (_stricmp(&*modname, imported_module) == 0)
1090 break;
1092 if (imports->FirstThunk == 0)
1093 return false;
1095 // We have two parallel arrays: the import address table (IAT) and the table
1096 // of names. They start out containing the same data, but the loader rewrites
1097 // the IAT to hold imported addresses and leaves the name table in
1098 // OriginalFirstThunk alone.
1099 RVAPtr<IMAGE_THUNK_DATA> name_table(module, imports->OriginalFirstThunk);
1100 RVAPtr<IMAGE_THUNK_DATA> iat(module, imports->FirstThunk);
1101 for (; name_table->u1.Ordinal != 0; ++name_table, ++iat) {
1102 if (!IMAGE_SNAP_BY_ORDINAL(name_table->u1.Ordinal)) {
1103 RVAPtr<IMAGE_IMPORT_BY_NAME> import_by_name(
1104 module, name_table->u1.ForwarderString);
1105 const char *funcname = &import_by_name->Name[0];
1106 if (strcmp(funcname, function_name) == 0)
1107 break;
1110 if (name_table->u1.Ordinal == 0)
1111 return false;
1113 // Now we have the correct IAT entry. Do the swap. We have to make the page
1114 // read/write first.
1115 if (orig_old_func)
1116 *orig_old_func = iat->u1.AddressOfData;
1117 DWORD old_prot, unused_prot;
1118 if (!VirtualProtect(&iat->u1.AddressOfData, 4, PAGE_EXECUTE_READWRITE,
1119 &old_prot))
1120 return false;
1121 iat->u1.AddressOfData = new_function;
1122 if (!VirtualProtect(&iat->u1.AddressOfData, 4, old_prot, &unused_prot))
1123 return false; // Not clear if this failure bothers us.
1124 return true;
1127 } // namespace __interception
1129 #endif // SANITIZER_APPLE