compiler: always initialize mpfr in integer import
[official-gcc.git] / gcc / regrename.cc
blobf65135151d8ed9fa5a94f45e1768592951317b05
1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000-2022 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "df.h"
27 #include "memmodel.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "regs.h"
31 #include "emit-rtl.h"
32 #include "recog.h"
33 #include "addresses.h"
34 #include "cfganal.h"
35 #include "tree-pass.h"
36 #include "function-abi.h"
37 #include "regrename.h"
39 /* This file implements the RTL register renaming pass of the compiler. It is
40 a semi-local pass whose goal is to maximize the usage of the register file
41 of the processor by substituting registers for others in the solution given
42 by the register allocator. The algorithm is as follows:
44 1. Local def/use chains are built: within each basic block, chains are
45 opened and closed; if a chain isn't closed at the end of the block,
46 it is dropped. We pre-open chains if we have already examined a
47 predecessor block and found chains live at the end which match
48 live registers at the start of the new block.
50 2. We try to combine the local chains across basic block boundaries by
51 comparing chains that were open at the start or end of a block to
52 those in successor/predecessor blocks.
54 3. For each chain, the set of possible renaming registers is computed.
55 This takes into account the renaming of previously processed chains.
56 Optionally, a preferred class is computed for the renaming register.
58 4. The best renaming register is computed for the chain in the above set,
59 using a round-robin allocation. If a preferred class exists, then the
60 round-robin allocation is done within the class first, if possible.
61 The round-robin allocation of renaming registers itself is global.
63 5. If a renaming register has been found, it is substituted in the chain.
65 Targets can parameterize the pass by specifying a preferred class for the
66 renaming register for a given (super)class of registers to be renamed.
68 DEBUG_INSNs are treated specially, in particular registers occurring inside
69 them are treated as requiring ALL_REGS as a class. */
71 #if HOST_BITS_PER_WIDE_INT <= MAX_RECOG_OPERANDS
72 #error "Use a different bitmap implementation for untracked_operands."
73 #endif
75 enum scan_actions
77 terminate_write,
78 terminate_dead,
79 mark_all_read,
80 mark_read,
81 mark_write,
82 /* mark_access is for marking the destination regs in
83 REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
84 note is updated properly. */
85 mark_access
88 static const char * const scan_actions_name[] =
90 "terminate_write",
91 "terminate_dead",
92 "mark_all_read",
93 "mark_read",
94 "mark_write",
95 "mark_access"
98 /* TICK and THIS_TICK are used to record the last time we saw each
99 register. */
100 static int tick[FIRST_PSEUDO_REGISTER];
101 static int this_tick = 0;
103 static struct obstack rename_obstack;
105 /* If nonnull, the code calling into the register renamer requested
106 information about insn operands, and we store it here. */
107 vec<insn_rr_info> insn_rr;
109 static void scan_rtx (rtx_insn *, rtx *, enum reg_class, enum scan_actions,
110 enum op_type);
111 static bool build_def_use (basic_block);
113 /* The id to be given to the next opened chain. */
114 static unsigned current_id;
116 /* A mapping of unique id numbers to chains. */
117 static vec<du_head_p> id_to_chain;
119 /* List of currently open chains. */
120 static class du_head *open_chains;
122 /* Bitmap of open chains. The bits set always match the list found in
123 open_chains. */
124 static bitmap_head open_chains_set;
126 /* Record the registers being tracked in open_chains. */
127 static HARD_REG_SET live_in_chains;
129 /* Record the registers that are live but not tracked. The intersection
130 between this and live_in_chains is empty. */
131 static HARD_REG_SET live_hard_regs;
133 /* Set while scanning RTL if INSN_RR is nonnull, i.e. if the current analysis
134 is for a caller that requires operand data. Used in
135 record_operand_use. */
136 static operand_rr_info *cur_operand;
138 /* Set while scanning RTL if a register dies. Used to tie chains. */
139 static class du_head *terminated_this_insn;
141 /* Return the chain corresponding to id number ID. Take into account that
142 chains may have been merged. */
143 du_head_p
144 regrename_chain_from_id (unsigned int id)
146 du_head_p first_chain = id_to_chain[id];
147 du_head_p chain = first_chain;
148 while (chain->id != id)
150 id = chain->id;
151 chain = id_to_chain[id];
153 first_chain->id = id;
154 return chain;
157 /* Dump all def/use chains, starting at id FROM. */
159 static void
160 dump_def_use_chain (int from)
162 du_head_p head;
163 int i;
164 FOR_EACH_VEC_ELT_FROM (id_to_chain, i, head, from)
166 struct du_chain *this_du = head->first;
168 fprintf (dump_file, "Register %s (%d):",
169 reg_names[head->regno], head->nregs);
170 while (this_du)
172 fprintf (dump_file, " %d [%s]", INSN_UID (this_du->insn),
173 reg_class_names[this_du->cl]);
174 this_du = this_du->next_use;
176 fprintf (dump_file, "\n");
177 head = head->next_chain;
181 static void
182 free_chain_data (void)
184 int i;
185 du_head_p ptr;
186 for (i = 0; id_to_chain.iterate (i, &ptr); i++)
187 bitmap_clear (&ptr->conflicts);
189 id_to_chain.release ();
192 /* Walk all chains starting with CHAINS and record that they conflict with
193 another chain whose id is ID. */
195 static void
196 mark_conflict (class du_head *chains, unsigned id)
198 while (chains)
200 bitmap_set_bit (&chains->conflicts, id);
201 chains = chains->next_chain;
205 /* Examine cur_operand, and if it is nonnull, record information about the
206 use THIS_DU which is part of the chain HEAD. */
208 static void
209 record_operand_use (class du_head *head, struct du_chain *this_du)
211 if (cur_operand == NULL || cur_operand->failed)
212 return;
213 if (head->cannot_rename)
215 cur_operand->failed = true;
216 return;
218 gcc_assert (cur_operand->n_chains < MAX_REGS_PER_ADDRESS);
219 cur_operand->heads[cur_operand->n_chains] = head;
220 cur_operand->chains[cur_operand->n_chains++] = this_du;
223 /* Create a new chain for THIS_NREGS registers starting at THIS_REGNO,
224 and record its occurrence in *LOC, which is being written to in INSN.
225 This access requires a register of class CL. */
227 static du_head_p
228 create_new_chain (unsigned this_regno, unsigned this_nregs, rtx *loc,
229 rtx_insn *insn, enum reg_class cl)
231 class du_head *head = XOBNEW (&rename_obstack, class du_head);
232 struct du_chain *this_du;
233 int nregs;
235 memset ((void *)head, 0, sizeof *head);
236 head->next_chain = open_chains;
237 head->regno = this_regno;
238 head->nregs = this_nregs;
240 id_to_chain.safe_push (head);
241 head->id = current_id++;
243 bitmap_initialize (&head->conflicts, &bitmap_default_obstack);
244 bitmap_copy (&head->conflicts, &open_chains_set);
245 mark_conflict (open_chains, head->id);
247 /* Since we're tracking this as a chain now, remove it from the
248 list of conflicting live hard registers and track it in
249 live_in_chains instead. */
250 nregs = head->nregs;
251 while (nregs-- > 0)
253 SET_HARD_REG_BIT (live_in_chains, head->regno + nregs);
254 CLEAR_HARD_REG_BIT (live_hard_regs, head->regno + nregs);
257 head->hard_conflicts = live_hard_regs;
258 bitmap_set_bit (&open_chains_set, head->id);
260 open_chains = head;
262 if (dump_file)
264 fprintf (dump_file, "Creating chain %s (%d)",
265 reg_names[head->regno], head->id);
266 if (insn != NULL_RTX)
267 fprintf (dump_file, " at insn %d", INSN_UID (insn));
268 fprintf (dump_file, "\n");
271 if (insn == NULL_RTX)
273 head->first = head->last = NULL;
274 return head;
277 this_du = XOBNEW (&rename_obstack, struct du_chain);
278 head->first = head->last = this_du;
280 this_du->next_use = 0;
281 this_du->loc = loc;
282 this_du->insn = insn;
283 this_du->cl = cl;
284 record_operand_use (head, this_du);
285 return head;
288 /* For a def-use chain HEAD, find which registers overlap its lifetime and
289 set the corresponding bits in *PSET. */
291 static void
292 merge_overlapping_regs (HARD_REG_SET *pset, class du_head *head)
294 bitmap_iterator bi;
295 unsigned i;
296 *pset |= head->hard_conflicts;
297 EXECUTE_IF_SET_IN_BITMAP (&head->conflicts, 0, i, bi)
299 du_head_p other = regrename_chain_from_id (i);
300 unsigned j = other->nregs;
301 gcc_assert (other != head);
302 while (j-- > 0)
303 SET_HARD_REG_BIT (*pset, other->regno + j);
307 /* Return true if (reg:MODE REGNO) would be clobbered by a call covered
308 by THIS_HEAD. */
310 static bool
311 call_clobbered_in_chain_p (du_head *this_head, machine_mode mode,
312 unsigned int regno)
314 return call_clobbered_in_region_p (this_head->call_abis,
315 this_head->call_clobber_mask,
316 mode, regno);
319 /* Check if NEW_REG can be the candidate register to rename for
320 REG in THIS_HEAD chain. THIS_UNAVAILABLE is a set of unavailable hard
321 registers. */
323 static bool
324 check_new_reg_p (int reg ATTRIBUTE_UNUSED, int new_reg,
325 class du_head *this_head, HARD_REG_SET this_unavailable)
327 int nregs = this_head->nregs;
328 int i;
329 struct du_chain *tmp;
331 for (i = nregs - 1; i >= 0; --i)
332 if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
333 || fixed_regs[new_reg + i]
334 || global_regs[new_reg + i]
335 /* Can't use regs which aren't saved by the prologue. */
336 || (! df_regs_ever_live_p (new_reg + i)
337 && ! crtl->abi->clobbers_full_reg_p (new_reg + i))
338 #ifdef LEAF_REGISTERS
339 /* We can't use a non-leaf register if we're in a
340 leaf function. */
341 || (crtl->is_leaf
342 && !LEAF_REGISTERS[new_reg + i])
343 #endif
344 || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i))
345 return false;
347 /* See whether it accepts all modes that occur in
348 definition and uses. */
349 for (tmp = this_head->first; tmp; tmp = tmp->next_use)
351 /* Completely ignore DEBUG_INSNs, otherwise we can get
352 -fcompare-debug failures. */
353 if (DEBUG_INSN_P (tmp->insn))
354 continue;
356 if (!targetm.hard_regno_mode_ok (new_reg, GET_MODE (*tmp->loc))
357 || call_clobbered_in_chain_p (this_head, GET_MODE (*tmp->loc),
358 new_reg))
359 return false;
362 return true;
365 /* For the chain THIS_HEAD, compute and return the best register to
366 rename to. SUPER_CLASS is the superunion of register classes in
367 the chain. UNAVAILABLE is a set of registers that cannot be used.
368 OLD_REG is the register currently used for the chain. BEST_RENAME
369 controls whether the register chosen must be better than the
370 current one or just respect the given constraint. */
373 find_rename_reg (du_head_p this_head, enum reg_class super_class,
374 HARD_REG_SET *unavailable, int old_reg, bool best_rename)
376 bool has_preferred_class;
377 enum reg_class preferred_class;
378 int pass;
379 int best_new_reg = old_reg;
381 /* Mark registers that overlap this chain's lifetime as unavailable. */
382 merge_overlapping_regs (unavailable, this_head);
384 /* Compute preferred rename class of super union of all the classes
385 in the chain. */
386 preferred_class
387 = (enum reg_class) targetm.preferred_rename_class (super_class);
389 /* Pick and check the register from the tied chain iff the tied chain
390 is not renamed. */
391 if (this_head->tied_chain && !this_head->tied_chain->renamed
392 && check_new_reg_p (old_reg, this_head->tied_chain->regno,
393 this_head, *unavailable))
394 return this_head->tied_chain->regno;
396 /* If the first non-debug insn is a noop move, then do not rename in this
397 chain as doing so would inhibit removal of the noop move. */
398 for (struct du_chain *tmp = this_head->first; tmp; tmp = tmp->next_use)
399 if (DEBUG_INSN_P (tmp->insn))
400 continue;
401 else if (noop_move_p (tmp->insn))
402 return best_new_reg;
403 else
404 break;
406 /* If PREFERRED_CLASS is not NO_REGS, we iterate in the first pass
407 over registers that belong to PREFERRED_CLASS and try to find the
408 best register within the class. If that failed, we iterate in
409 the second pass over registers that don't belong to the class.
410 If PREFERRED_CLASS is NO_REGS, we iterate over all registers in
411 ascending order without any preference. */
412 has_preferred_class = (preferred_class != NO_REGS);
413 for (pass = (has_preferred_class ? 0 : 1); pass < 2; pass++)
415 int new_reg;
416 for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
418 if (has_preferred_class
419 && (pass == 0)
420 != TEST_HARD_REG_BIT (reg_class_contents[preferred_class],
421 new_reg))
422 continue;
424 if (!check_new_reg_p (old_reg, new_reg, this_head, *unavailable))
425 continue;
427 if (!best_rename)
428 return new_reg;
430 /* In the first pass, we force the renaming of registers that
431 don't belong to PREFERRED_CLASS to registers that do, even
432 though the latters were used not very long ago. */
433 if ((pass == 0
434 && !TEST_HARD_REG_BIT (reg_class_contents[preferred_class],
435 best_new_reg))
436 || tick[best_new_reg] > tick[new_reg])
437 best_new_reg = new_reg;
439 if (pass == 0 && best_new_reg != old_reg)
440 break;
442 return best_new_reg;
445 /* Iterate over elements in the chain HEAD in order to:
446 1. Count number of uses, storing it in *PN_USES.
447 2. Narrow the set of registers we can use for renaming, adding
448 unavailable registers to *PUNAVAILABLE, which must be
449 initialized by the caller.
450 3. Compute the superunion of register classes in this chain
451 and return it. */
452 reg_class
453 regrename_find_superclass (du_head_p head, int *pn_uses,
454 HARD_REG_SET *punavailable)
456 int n_uses = 0;
457 reg_class super_class = NO_REGS;
458 for (du_chain *tmp = head->first; tmp; tmp = tmp->next_use)
460 if (DEBUG_INSN_P (tmp->insn))
461 continue;
462 n_uses++;
463 *punavailable |= ~reg_class_contents[tmp->cl];
464 super_class
465 = reg_class_superunion[(int) super_class][(int) tmp->cl];
467 *pn_uses = n_uses;
468 return super_class;
471 /* Perform register renaming on the current function. */
472 static void
473 rename_chains (void)
475 HARD_REG_SET unavailable;
476 du_head_p this_head;
477 int i;
479 memset (tick, 0, sizeof tick);
481 CLEAR_HARD_REG_SET (unavailable);
482 /* Don't clobber traceback for noreturn functions. */
483 if (frame_pointer_needed)
485 add_to_hard_reg_set (&unavailable, Pmode, FRAME_POINTER_REGNUM);
486 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
487 add_to_hard_reg_set (&unavailable, Pmode, HARD_FRAME_POINTER_REGNUM);
490 FOR_EACH_VEC_ELT (id_to_chain, i, this_head)
492 int best_new_reg;
493 int n_uses;
494 HARD_REG_SET this_unavailable;
495 int reg = this_head->regno;
497 if (this_head->cannot_rename)
498 continue;
500 if (fixed_regs[reg] || global_regs[reg]
501 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
502 && reg == HARD_FRAME_POINTER_REGNUM)
503 || (HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
504 && reg == FRAME_POINTER_REGNUM))
505 continue;
507 this_unavailable = unavailable;
509 reg_class super_class = regrename_find_superclass (this_head, &n_uses,
510 &this_unavailable);
511 if (n_uses < 2)
512 continue;
514 best_new_reg = find_rename_reg (this_head, super_class,
515 &this_unavailable, reg, true);
517 if (dump_file)
519 fprintf (dump_file, "Register %s in insn %d",
520 reg_names[reg], INSN_UID (this_head->first->insn));
521 if (this_head->call_abis)
522 fprintf (dump_file, " crosses a call");
525 if (best_new_reg == reg)
527 tick[reg] = ++this_tick;
528 if (dump_file)
529 fprintf (dump_file, "; no available better choice\n");
530 continue;
533 if (regrename_do_replace (this_head, best_new_reg))
535 if (dump_file)
536 fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
537 tick[best_new_reg] = ++this_tick;
538 df_set_regs_ever_live (best_new_reg, true);
540 else
542 if (dump_file)
543 fprintf (dump_file, ", renaming as %s failed\n",
544 reg_names[best_new_reg]);
545 tick[reg] = ++this_tick;
550 /* A structure to record information for each hard register at the start of
551 a basic block. */
552 struct incoming_reg_info {
553 /* Holds the number of registers used in the chain that gave us information
554 about this register. Zero means no information known yet, while a
555 negative value is used for something that is part of, but not the first
556 register in a multi-register value. */
557 int nregs;
558 /* Set to true if we have accesses that conflict in the number of registers
559 used. */
560 bool unusable;
563 /* A structure recording information about each basic block. It is saved
564 and restored around basic block boundaries.
565 A pointer to such a structure is stored in each basic block's aux field
566 during regrename_analyze, except for blocks we know can't be optimized
567 (such as entry and exit blocks). */
568 class bb_rename_info
570 public:
571 /* The basic block corresponding to this structure. */
572 basic_block bb;
573 /* Copies of the global information. */
574 bitmap_head open_chains_set;
575 bitmap_head incoming_open_chains_set;
576 struct incoming_reg_info incoming[FIRST_PSEUDO_REGISTER];
579 /* Initialize a rename_info structure P for basic block BB, which starts a new
580 scan. */
581 static void
582 init_rename_info (class bb_rename_info *p, basic_block bb)
584 int i;
585 df_ref def;
586 HARD_REG_SET start_chains_set;
588 p->bb = bb;
589 bitmap_initialize (&p->open_chains_set, &bitmap_default_obstack);
590 bitmap_initialize (&p->incoming_open_chains_set, &bitmap_default_obstack);
592 open_chains = NULL;
593 bitmap_clear (&open_chains_set);
595 CLEAR_HARD_REG_SET (live_in_chains);
596 REG_SET_TO_HARD_REG_SET (live_hard_regs, df_get_live_in (bb));
597 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
598 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
599 SET_HARD_REG_BIT (live_hard_regs, DF_REF_REGNO (def));
601 /* Open chains based on information from (at least one) predecessor
602 block. This gives us a chance later on to combine chains across
603 basic block boundaries. Inconsistencies (in access sizes) will
604 be caught normally and dealt with conservatively by disabling the
605 chain for renaming, and there is no risk of losing optimization
606 opportunities by opening chains either: if we did not open the
607 chains, we'd have to track the live register as a hard reg, and
608 we'd be unable to rename it in any case. */
609 CLEAR_HARD_REG_SET (start_chains_set);
610 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
612 struct incoming_reg_info *iri = p->incoming + i;
613 if (iri->nregs > 0 && !iri->unusable
614 && range_in_hard_reg_set_p (live_hard_regs, i, iri->nregs))
616 SET_HARD_REG_BIT (start_chains_set, i);
617 remove_range_from_hard_reg_set (&live_hard_regs, i, iri->nregs);
620 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
622 struct incoming_reg_info *iri = p->incoming + i;
623 if (TEST_HARD_REG_BIT (start_chains_set, i))
625 du_head_p chain;
626 if (dump_file)
627 fprintf (dump_file, "opening incoming chain\n");
628 chain = create_new_chain (i, iri->nregs, NULL, NULL, NO_REGS);
629 bitmap_set_bit (&p->incoming_open_chains_set, chain->id);
634 /* Record in RI that the block corresponding to it has an incoming
635 live value, described by CHAIN. */
636 static void
637 set_incoming_from_chain (class bb_rename_info *ri, du_head_p chain)
639 int i;
640 int incoming_nregs = ri->incoming[chain->regno].nregs;
641 int nregs;
643 /* If we've recorded the same information before, everything is fine. */
644 if (incoming_nregs == chain->nregs)
646 if (dump_file)
647 fprintf (dump_file, "reg %d/%d already recorded\n",
648 chain->regno, chain->nregs);
649 return;
652 /* If we have no information for any of the involved registers, update
653 the incoming array. */
654 nregs = chain->nregs;
655 while (nregs-- > 0)
656 if (ri->incoming[chain->regno + nregs].nregs != 0
657 || ri->incoming[chain->regno + nregs].unusable)
658 break;
659 if (nregs < 0)
661 nregs = chain->nregs;
662 ri->incoming[chain->regno].nregs = nregs;
663 while (nregs-- > 1)
664 ri->incoming[chain->regno + nregs].nregs = -nregs;
665 if (dump_file)
666 fprintf (dump_file, "recorded reg %d/%d\n",
667 chain->regno, chain->nregs);
668 return;
671 /* There must be some kind of conflict. Prevent both the old and
672 new ranges from being used. */
673 if (incoming_nregs < 0)
674 ri->incoming[chain->regno + incoming_nregs].unusable = true;
675 for (i = 0; i < chain->nregs; i++)
676 ri->incoming[chain->regno + i].unusable = true;
679 /* Merge the two chains C1 and C2 so that all conflict information is
680 recorded and C1, and the id of C2 is changed to that of C1. */
681 static void
682 merge_chains (du_head_p c1, du_head_p c2)
684 if (c1 == c2)
685 return;
687 if (c2->first != NULL)
689 if (c1->first == NULL)
690 c1->first = c2->first;
691 else
692 c1->last->next_use = c2->first;
693 c1->last = c2->last;
696 c2->first = c2->last = NULL;
697 c2->id = c1->id;
699 c1->hard_conflicts |= c2->hard_conflicts;
700 bitmap_ior_into (&c1->conflicts, &c2->conflicts);
702 c1->call_clobber_mask |= c2->call_clobber_mask;
703 c1->call_abis |= c2->call_abis;
704 c1->cannot_rename |= c2->cannot_rename;
707 /* Analyze the current function and build chains for renaming.
708 If INCLUDE_ALL_BLOCKS_P is set to true, process all blocks,
709 ignoring BB_DISABLE_SCHEDULE. The default value is true. */
711 void
712 regrename_analyze (bitmap bb_mask, bool include_all_block_p)
714 class bb_rename_info *rename_info;
715 int i;
716 basic_block bb;
717 int n_bbs;
718 int *inverse_postorder;
720 inverse_postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
721 n_bbs = pre_and_rev_post_order_compute (NULL, inverse_postorder, false);
723 /* Gather some information about the blocks in this function. */
724 rename_info = XCNEWVEC (class bb_rename_info, n_basic_blocks_for_fn (cfun));
725 i = 0;
726 FOR_EACH_BB_FN (bb, cfun)
728 class bb_rename_info *ri = rename_info + i;
729 ri->bb = bb;
730 if (bb_mask != NULL && !bitmap_bit_p (bb_mask, bb->index))
731 bb->aux = NULL;
732 else
733 bb->aux = ri;
734 i++;
737 current_id = 0;
738 id_to_chain.create (0);
739 bitmap_initialize (&open_chains_set, &bitmap_default_obstack);
741 /* The order in which we visit blocks ensures that whenever
742 possible, we only process a block after at least one of its
743 predecessors, which provides a "seeding" effect to make the logic
744 in set_incoming_from_chain and init_rename_info useful. */
746 for (i = 0; i < n_bbs; i++)
748 basic_block bb1 = BASIC_BLOCK_FOR_FN (cfun, inverse_postorder[i]);
749 class bb_rename_info *this_info;
750 bool success;
751 edge e;
752 edge_iterator ei;
753 int old_length = id_to_chain.length ();
755 this_info = (class bb_rename_info *) bb1->aux;
756 if (this_info == NULL)
757 continue;
759 if (dump_file)
760 fprintf (dump_file, "\nprocessing block %d:\n", bb1->index);
762 if (!include_all_block_p && (bb1->flags & BB_DISABLE_SCHEDULE) != 0)
764 if (dump_file)
765 fprintf (dump_file, "avoid disrupting the sms schedule of bb %d\n",
766 bb1->index);
767 continue;
770 init_rename_info (this_info, bb1);
772 success = build_def_use (bb1);
773 if (!success)
775 if (dump_file)
776 fprintf (dump_file, "failed\n");
777 bb1->aux = NULL;
778 id_to_chain.truncate (old_length);
779 current_id = old_length;
780 bitmap_clear (&this_info->incoming_open_chains_set);
781 open_chains = NULL;
782 if (insn_rr.exists ())
784 rtx_insn *insn;
785 FOR_BB_INSNS (bb1, insn)
787 insn_rr_info *p = &insn_rr[INSN_UID (insn)];
788 p->op_info = NULL;
791 continue;
794 if (dump_file)
795 dump_def_use_chain (old_length);
796 bitmap_copy (&this_info->open_chains_set, &open_chains_set);
798 /* Add successor blocks to the worklist if necessary, and record
799 data about our own open chains at the end of this block, which
800 will be used to pre-open chains when processing the successors. */
801 FOR_EACH_EDGE (e, ei, bb1->succs)
803 class bb_rename_info *dest_ri;
804 class du_head *chain;
806 if (dump_file)
807 fprintf (dump_file, "successor block %d\n", e->dest->index);
809 if (e->flags & (EDGE_EH | EDGE_ABNORMAL))
810 continue;
811 dest_ri = (class bb_rename_info *)e->dest->aux;
812 if (dest_ri == NULL)
813 continue;
814 for (chain = open_chains; chain; chain = chain->next_chain)
815 set_incoming_from_chain (dest_ri, chain);
819 free (inverse_postorder);
821 /* Now, combine the chains data we have gathered across basic block
822 boundaries.
824 For every basic block, there may be chains open at the start, or at the
825 end. Rather than exclude them from renaming, we look for open chains
826 with matching registers at the other side of the CFG edge.
828 For a given chain using register R, open at the start of block B, we
829 must find an open chain using R on the other side of every edge leading
830 to B, if the register is live across this edge. In the code below,
831 N_PREDS_USED counts the number of edges where the register is live, and
832 N_PREDS_JOINED counts those where we found an appropriate chain for
833 joining.
835 We perform the analysis for both incoming and outgoing edges, but we
836 only need to merge once (in the second part, after verifying outgoing
837 edges). */
838 FOR_EACH_BB_FN (bb, cfun)
840 class bb_rename_info *bb_ri = (class bb_rename_info *) bb->aux;
841 unsigned j;
842 bitmap_iterator bi;
844 if (bb_ri == NULL)
845 continue;
847 if (dump_file)
848 fprintf (dump_file, "processing bb %d in edges\n", bb->index);
850 EXECUTE_IF_SET_IN_BITMAP (&bb_ri->incoming_open_chains_set, 0, j, bi)
852 edge e;
853 edge_iterator ei;
854 class du_head *chain = regrename_chain_from_id (j);
855 int n_preds_used = 0, n_preds_joined = 0;
857 FOR_EACH_EDGE (e, ei, bb->preds)
859 class bb_rename_info *src_ri;
860 unsigned k;
861 bitmap_iterator bi2;
862 HARD_REG_SET live;
863 bool success = false;
865 REG_SET_TO_HARD_REG_SET (live, df_get_live_out (e->src));
866 if (!range_overlaps_hard_reg_set_p (live, chain->regno,
867 chain->nregs))
868 continue;
869 n_preds_used++;
871 if (e->flags & (EDGE_EH | EDGE_ABNORMAL))
872 continue;
874 src_ri = (class bb_rename_info *)e->src->aux;
875 if (src_ri == NULL)
876 continue;
878 EXECUTE_IF_SET_IN_BITMAP (&src_ri->open_chains_set,
879 0, k, bi2)
881 class du_head *outgoing_chain = regrename_chain_from_id (k);
883 if (outgoing_chain->regno == chain->regno
884 && outgoing_chain->nregs == chain->nregs)
886 n_preds_joined++;
887 success = true;
888 break;
891 if (!success && dump_file)
892 fprintf (dump_file, "failure to match with pred block %d\n",
893 e->src->index);
895 if (n_preds_joined < n_preds_used)
897 if (dump_file)
898 fprintf (dump_file, "cannot rename chain %d\n", j);
899 chain->cannot_rename = 1;
903 FOR_EACH_BB_FN (bb, cfun)
905 class bb_rename_info *bb_ri = (class bb_rename_info *) bb->aux;
906 unsigned j;
907 bitmap_iterator bi;
909 if (bb_ri == NULL)
910 continue;
912 if (dump_file)
913 fprintf (dump_file, "processing bb %d out edges\n", bb->index);
915 EXECUTE_IF_SET_IN_BITMAP (&bb_ri->open_chains_set, 0, j, bi)
917 edge e;
918 edge_iterator ei;
919 class du_head *chain = regrename_chain_from_id (j);
920 int n_succs_used = 0, n_succs_joined = 0;
922 FOR_EACH_EDGE (e, ei, bb->succs)
924 bool printed = false;
925 class bb_rename_info *dest_ri;
926 unsigned k;
927 bitmap_iterator bi2;
928 HARD_REG_SET live;
930 REG_SET_TO_HARD_REG_SET (live, df_get_live_in (e->dest));
931 if (!range_overlaps_hard_reg_set_p (live, chain->regno,
932 chain->nregs))
933 continue;
935 n_succs_used++;
937 dest_ri = (class bb_rename_info *)e->dest->aux;
938 if (dest_ri == NULL)
939 continue;
941 EXECUTE_IF_SET_IN_BITMAP (&dest_ri->incoming_open_chains_set,
942 0, k, bi2)
944 class du_head *incoming_chain = regrename_chain_from_id (k);
946 if (incoming_chain->regno == chain->regno
947 && incoming_chain->nregs == chain->nregs)
949 if (dump_file)
951 if (!printed)
952 fprintf (dump_file,
953 "merging blocks for edge %d -> %d\n",
954 e->src->index, e->dest->index);
955 printed = true;
956 fprintf (dump_file,
957 " merging chains %d (->%d) and %d (->%d) [%s]\n",
958 k, incoming_chain->id, j, chain->id,
959 reg_names[incoming_chain->regno]);
962 merge_chains (chain, incoming_chain);
963 n_succs_joined++;
964 break;
968 if (n_succs_joined < n_succs_used)
970 if (dump_file)
971 fprintf (dump_file, "cannot rename chain %d\n",
973 chain->cannot_rename = 1;
978 free (rename_info);
980 FOR_EACH_BB_FN (bb, cfun)
981 bb->aux = NULL;
984 /* Attempt to replace all uses of the register in the chain beginning with
985 HEAD with REG. Returns true on success and false if the replacement is
986 rejected because the insns would not validate. The latter can happen
987 e.g. if a match_parallel predicate enforces restrictions on register
988 numbering in its subpatterns. */
990 bool
991 regrename_do_replace (class du_head *head, int reg)
993 struct du_chain *chain;
994 unsigned int base_regno = head->regno;
995 machine_mode mode;
996 rtx last_reg = NULL_RTX, last_repl = NULL_RTX;
998 for (chain = head->first; chain; chain = chain->next_use)
1000 unsigned int regno = ORIGINAL_REGNO (*chain->loc);
1001 class reg_attrs *attr = REG_ATTRS (*chain->loc);
1002 int reg_ptr = REG_POINTER (*chain->loc);
1004 if (DEBUG_INSN_P (chain->insn) && REGNO (*chain->loc) != base_regno)
1005 validate_change (chain->insn, &(INSN_VAR_LOCATION_LOC (chain->insn)),
1006 gen_rtx_UNKNOWN_VAR_LOC (), true);
1007 else
1009 if (*chain->loc != last_reg)
1011 last_repl = gen_raw_REG (GET_MODE (*chain->loc), reg);
1012 if (regno >= FIRST_PSEUDO_REGISTER)
1013 ORIGINAL_REGNO (last_repl) = regno;
1014 REG_ATTRS (last_repl) = attr;
1015 REG_POINTER (last_repl) = reg_ptr;
1016 last_reg = *chain->loc;
1018 validate_change (chain->insn, chain->loc, last_repl, true);
1022 if (!apply_change_group ())
1023 return false;
1025 mode = GET_MODE (*head->first->loc);
1026 head->renamed = 1;
1027 head->regno = reg;
1028 head->nregs = hard_regno_nregs (reg, mode);
1029 return true;
1033 /* True if we found a register with a size mismatch, which means that we
1034 can't track its lifetime accurately. If so, we abort the current block
1035 without renaming. */
1036 static bool fail_current_block;
1038 /* Return true if OP is a reg for which all bits are set in PSET, false
1039 if all bits are clear.
1040 In other cases, set fail_current_block and return false. */
1042 static bool
1043 verify_reg_in_set (rtx op, HARD_REG_SET *pset)
1045 unsigned regno, nregs;
1046 bool all_live, all_dead;
1047 if (!REG_P (op))
1048 return false;
1050 regno = REGNO (op);
1051 nregs = REG_NREGS (op);
1052 all_live = all_dead = true;
1053 while (nregs-- > 0)
1054 if (TEST_HARD_REG_BIT (*pset, regno + nregs))
1055 all_dead = false;
1056 else
1057 all_live = false;
1058 if (!all_dead && !all_live)
1060 fail_current_block = true;
1061 return false;
1063 return all_live;
1066 /* Return true if OP is a reg that is being tracked already in some form.
1067 May set fail_current_block if it sees an unhandled case of overlap. */
1069 static bool
1070 verify_reg_tracked (rtx op)
1072 return (verify_reg_in_set (op, &live_hard_regs)
1073 || verify_reg_in_set (op, &live_in_chains));
1076 /* Called through note_stores. DATA points to a rtx_code, either SET or
1077 CLOBBER, which tells us which kind of rtx to look at. If we have a
1078 match, record the set register in live_hard_regs and in the hard_conflicts
1079 bitmap of open chains. */
1081 static void
1082 note_sets_clobbers (rtx x, const_rtx set, void *data)
1084 enum rtx_code code = *(enum rtx_code *)data;
1085 class du_head *chain;
1087 if (GET_CODE (x) == SUBREG)
1088 x = SUBREG_REG (x);
1089 if (!REG_P (x) || GET_CODE (set) != code)
1090 return;
1091 /* There must not be pseudos at this point. */
1092 gcc_assert (HARD_REGISTER_P (x));
1093 add_to_hard_reg_set (&live_hard_regs, GET_MODE (x), REGNO (x));
1094 for (chain = open_chains; chain; chain = chain->next_chain)
1095 add_to_hard_reg_set (&chain->hard_conflicts, GET_MODE (x), REGNO (x));
1098 static void
1099 scan_rtx_reg (rtx_insn *insn, rtx *loc, enum reg_class cl, enum scan_actions action,
1100 enum op_type type)
1102 class du_head **p;
1103 rtx x = *loc;
1104 unsigned this_regno = REGNO (x);
1105 int this_nregs = REG_NREGS (x);
1107 if (action == mark_write)
1109 if (type == OP_OUT)
1111 du_head_p c;
1112 rtx pat = PATTERN (insn);
1114 c = create_new_chain (this_regno, this_nregs, loc, insn, cl);
1116 /* We try to tie chains in a move instruction for
1117 a single output. */
1118 if (recog_data.n_operands == 2
1119 && GET_CODE (pat) == SET
1120 && GET_CODE (SET_DEST (pat)) == REG
1121 && GET_CODE (SET_SRC (pat)) == REG
1122 && terminated_this_insn
1123 && terminated_this_insn->nregs
1124 == REG_NREGS (recog_data.operand[1]))
1126 gcc_assert (terminated_this_insn->regno
1127 == REGNO (recog_data.operand[1]));
1129 c->tied_chain = terminated_this_insn;
1130 terminated_this_insn->tied_chain = c;
1132 if (dump_file)
1133 fprintf (dump_file, "Tying chain %s (%d) with %s (%d)\n",
1134 reg_names[c->regno], c->id,
1135 reg_names[terminated_this_insn->regno],
1136 terminated_this_insn->id);
1140 return;
1143 if ((type == OP_OUT) != (action == terminate_write || action == mark_access))
1144 return;
1146 for (p = &open_chains; *p;)
1148 class du_head *head = *p;
1149 class du_head *next = head->next_chain;
1150 int exact_match = (head->regno == this_regno
1151 && head->nregs == this_nregs);
1152 int superset = (this_regno <= head->regno
1153 && this_regno + this_nregs >= head->regno + head->nregs);
1154 int subset = (this_regno >= head->regno
1155 && this_regno + this_nregs <= head->regno + head->nregs);
1157 if (!bitmap_bit_p (&open_chains_set, head->id)
1158 || head->regno + head->nregs <= this_regno
1159 || this_regno + this_nregs <= head->regno)
1161 p = &head->next_chain;
1162 continue;
1165 if (action == mark_read || action == mark_access)
1167 /* ??? Class NO_REGS can happen if the md file makes use of
1168 EXTRA_CONSTRAINTS to match registers. Which is arguably
1169 wrong, but there we are. */
1171 if (cl == NO_REGS || (!exact_match && !DEBUG_INSN_P (insn)))
1173 if (dump_file)
1174 fprintf (dump_file,
1175 "Cannot rename chain %s (%d) at insn %d (%s)\n",
1176 reg_names[head->regno], head->id, INSN_UID (insn),
1177 scan_actions_name[(int) action]);
1178 head->cannot_rename = 1;
1179 if (superset)
1181 unsigned nregs = this_nregs;
1182 head->regno = this_regno;
1183 head->nregs = this_nregs;
1184 while (nregs-- > 0)
1185 SET_HARD_REG_BIT (live_in_chains, head->regno + nregs);
1186 if (dump_file)
1187 fprintf (dump_file,
1188 "Widening register in chain %s (%d) at insn %d\n",
1189 reg_names[head->regno], head->id, INSN_UID (insn));
1191 else if (!subset)
1193 fail_current_block = true;
1194 if (dump_file)
1195 fprintf (dump_file,
1196 "Failing basic block due to unhandled overlap\n");
1199 else
1201 struct du_chain *this_du;
1202 this_du = XOBNEW (&rename_obstack, struct du_chain);
1203 this_du->next_use = 0;
1204 this_du->loc = loc;
1205 this_du->insn = insn;
1206 this_du->cl = cl;
1207 if (head->first == NULL)
1208 head->first = this_du;
1209 else
1210 head->last->next_use = this_du;
1211 record_operand_use (head, this_du);
1212 head->last = this_du;
1214 /* Avoid adding the same location in a DEBUG_INSN multiple times,
1215 which could happen with non-exact overlap. */
1216 if (DEBUG_INSN_P (insn))
1217 return;
1218 /* Otherwise, find any other chains that do not match exactly;
1219 ensure they all get marked unrenamable. */
1220 p = &head->next_chain;
1221 continue;
1224 /* Whether the terminated chain can be used for renaming
1225 depends on the action and this being an exact match.
1226 In either case, we remove this element from open_chains. */
1228 if ((action == terminate_dead || action == terminate_write)
1229 && (superset || subset))
1231 unsigned nregs;
1233 if (subset && !superset)
1234 head->cannot_rename = 1;
1235 bitmap_clear_bit (&open_chains_set, head->id);
1237 nregs = head->nregs;
1238 while (nregs-- > 0)
1240 CLEAR_HARD_REG_BIT (live_in_chains, head->regno + nregs);
1241 if (subset && !superset
1242 && (head->regno + nregs < this_regno
1243 || head->regno + nregs >= this_regno + this_nregs))
1244 SET_HARD_REG_BIT (live_hard_regs, head->regno + nregs);
1247 if (action == terminate_dead)
1248 terminated_this_insn = *p;
1249 *p = next;
1250 if (dump_file)
1251 fprintf (dump_file,
1252 "Closing chain %s (%d) at insn %d (%s%s)\n",
1253 reg_names[head->regno], head->id, INSN_UID (insn),
1254 scan_actions_name[(int) action],
1255 superset ? ", superset" : subset ? ", subset" : "");
1257 else if (action == terminate_dead || action == terminate_write)
1259 /* In this case, tracking liveness gets too hard. Fail the
1260 entire basic block. */
1261 if (dump_file)
1262 fprintf (dump_file,
1263 "Failing basic block due to unhandled overlap\n");
1264 fail_current_block = true;
1265 return;
1267 else
1269 head->cannot_rename = 1;
1270 if (dump_file)
1271 fprintf (dump_file,
1272 "Cannot rename chain %s (%d) at insn %d (%s)\n",
1273 reg_names[head->regno], head->id, INSN_UID (insn),
1274 scan_actions_name[(int) action]);
1275 p = &head->next_chain;
1280 /* A wrapper around base_reg_class which returns ALL_REGS if INSN is a
1281 DEBUG_INSN. The arguments MODE, AS, CODE and INDEX_CODE are as for
1282 base_reg_class. */
1284 static reg_class
1285 base_reg_class_for_rename (rtx_insn *insn, machine_mode mode, addr_space_t as,
1286 rtx_code code, rtx_code index_code)
1288 if (DEBUG_INSN_P (insn))
1289 return ALL_REGS;
1290 return base_reg_class (mode, as, code, index_code);
1293 /* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
1294 BASE_REG_CLASS depending on how the register is being considered. */
1296 static void
1297 scan_rtx_address (rtx_insn *insn, rtx *loc, enum reg_class cl,
1298 enum scan_actions action, machine_mode mode,
1299 addr_space_t as)
1301 rtx x = *loc;
1302 RTX_CODE code = GET_CODE (x);
1303 const char *fmt;
1304 int i, j;
1306 if (action == mark_write || action == mark_access)
1307 return;
1309 switch (code)
1311 case PLUS:
1313 rtx orig_op0 = XEXP (x, 0);
1314 rtx orig_op1 = XEXP (x, 1);
1315 RTX_CODE code0 = GET_CODE (orig_op0);
1316 RTX_CODE code1 = GET_CODE (orig_op1);
1317 rtx op0 = orig_op0;
1318 rtx op1 = orig_op1;
1319 rtx *locI = NULL;
1320 rtx *locB = NULL;
1321 enum rtx_code index_code = SCRATCH;
1323 if (GET_CODE (op0) == SUBREG)
1325 op0 = SUBREG_REG (op0);
1326 code0 = GET_CODE (op0);
1329 if (GET_CODE (op1) == SUBREG)
1331 op1 = SUBREG_REG (op1);
1332 code1 = GET_CODE (op1);
1335 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
1336 || code0 == ZERO_EXTEND || code1 == MEM)
1338 locI = &XEXP (x, 0);
1339 locB = &XEXP (x, 1);
1340 index_code = GET_CODE (*locI);
1342 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
1343 || code1 == ZERO_EXTEND || code0 == MEM)
1345 locI = &XEXP (x, 1);
1346 locB = &XEXP (x, 0);
1347 index_code = GET_CODE (*locI);
1349 else if (code0 == CONST_INT || code0 == CONST
1350 || code0 == SYMBOL_REF || code0 == LABEL_REF)
1352 locB = &XEXP (x, 1);
1353 index_code = GET_CODE (XEXP (x, 0));
1355 else if (code1 == CONST_INT || code1 == CONST
1356 || code1 == SYMBOL_REF || code1 == LABEL_REF)
1358 locB = &XEXP (x, 0);
1359 index_code = GET_CODE (XEXP (x, 1));
1361 else if (code0 == REG && code1 == REG)
1363 int index_op;
1364 unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
1366 if (REGNO_OK_FOR_INDEX_P (regno1)
1367 && regno_ok_for_base_p (regno0, mode, as, PLUS, REG))
1368 index_op = 1;
1369 else if (REGNO_OK_FOR_INDEX_P (regno0)
1370 && regno_ok_for_base_p (regno1, mode, as, PLUS, REG))
1371 index_op = 0;
1372 else if (regno_ok_for_base_p (regno0, mode, as, PLUS, REG)
1373 || REGNO_OK_FOR_INDEX_P (regno1))
1374 index_op = 1;
1375 else if (regno_ok_for_base_p (regno1, mode, as, PLUS, REG))
1376 index_op = 0;
1377 else
1378 index_op = 1;
1380 locI = &XEXP (x, index_op);
1381 locB = &XEXP (x, !index_op);
1382 index_code = GET_CODE (*locI);
1384 else if (code0 == REG)
1386 locI = &XEXP (x, 0);
1387 locB = &XEXP (x, 1);
1388 index_code = GET_CODE (*locI);
1390 else if (code1 == REG)
1392 locI = &XEXP (x, 1);
1393 locB = &XEXP (x, 0);
1394 index_code = GET_CODE (*locI);
1397 if (locI)
1399 reg_class iclass = DEBUG_INSN_P (insn) ? ALL_REGS : INDEX_REG_CLASS;
1400 scan_rtx_address (insn, locI, iclass, action, mode, as);
1402 if (locB)
1404 reg_class bclass = base_reg_class_for_rename (insn, mode, as, PLUS,
1405 index_code);
1406 scan_rtx_address (insn, locB, bclass, action, mode, as);
1408 return;
1411 case POST_INC:
1412 case POST_DEC:
1413 case POST_MODIFY:
1414 case PRE_INC:
1415 case PRE_DEC:
1416 case PRE_MODIFY:
1417 /* If the target doesn't claim to handle autoinc, this must be
1418 something special, like a stack push. Kill this chain. */
1419 if (!AUTO_INC_DEC)
1420 action = mark_all_read;
1422 break;
1424 case MEM:
1426 reg_class bclass = base_reg_class_for_rename (insn, GET_MODE (x),
1427 MEM_ADDR_SPACE (x),
1428 MEM, SCRATCH);
1429 scan_rtx_address (insn, &XEXP (x, 0), bclass, action, GET_MODE (x),
1430 MEM_ADDR_SPACE (x));
1432 return;
1434 case REG:
1435 scan_rtx_reg (insn, loc, cl, action, OP_IN);
1436 return;
1438 default:
1439 break;
1442 fmt = GET_RTX_FORMAT (code);
1443 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1445 if (fmt[i] == 'e')
1446 scan_rtx_address (insn, &XEXP (x, i), cl, action, mode, as);
1447 else if (fmt[i] == 'E')
1448 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1449 scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode, as);
1453 static void
1454 scan_rtx (rtx_insn *insn, rtx *loc, enum reg_class cl, enum scan_actions action,
1455 enum op_type type)
1457 const char *fmt;
1458 rtx x = *loc;
1459 int i, j;
1461 enum rtx_code code = GET_CODE (x);
1462 switch (code)
1464 case CONST:
1465 CASE_CONST_ANY:
1466 case SYMBOL_REF:
1467 case LABEL_REF:
1468 case PC:
1469 return;
1471 case REG:
1472 scan_rtx_reg (insn, loc, cl, action, type);
1473 return;
1475 case MEM:
1477 reg_class bclass = base_reg_class_for_rename (insn, GET_MODE (x),
1478 MEM_ADDR_SPACE (x),
1479 MEM, SCRATCH);
1481 scan_rtx_address (insn, &XEXP (x, 0), bclass, action, GET_MODE (x),
1482 MEM_ADDR_SPACE (x));
1484 return;
1486 case SET:
1487 scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN);
1488 scan_rtx (insn, &SET_DEST (x), cl, action,
1489 (GET_CODE (PATTERN (insn)) == COND_EXEC
1490 && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT);
1491 return;
1493 case STRICT_LOW_PART:
1494 scan_rtx (insn, &XEXP (x, 0), cl, action,
1495 verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT);
1496 return;
1498 case ZERO_EXTRACT:
1499 case SIGN_EXTRACT:
1500 scan_rtx (insn, &XEXP (x, 0), cl, action,
1501 (type == OP_IN ? OP_IN :
1502 verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT));
1503 scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN);
1504 scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN);
1505 return;
1507 case POST_INC:
1508 case PRE_INC:
1509 case POST_DEC:
1510 case PRE_DEC:
1511 case POST_MODIFY:
1512 case PRE_MODIFY:
1513 /* Should only happen inside MEM. */
1514 gcc_unreachable ();
1516 case CLOBBER:
1517 scan_rtx (insn, &SET_DEST (x), cl, action,
1518 (GET_CODE (PATTERN (insn)) == COND_EXEC
1519 && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT);
1520 return;
1522 case EXPR_LIST:
1523 scan_rtx (insn, &XEXP (x, 0), cl, action, type);
1524 if (XEXP (x, 1))
1525 scan_rtx (insn, &XEXP (x, 1), cl, action, type);
1526 return;
1528 default:
1529 break;
1532 fmt = GET_RTX_FORMAT (code);
1533 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1535 if (fmt[i] == 'e')
1536 scan_rtx (insn, &XEXP (x, i), cl, action, type);
1537 else if (fmt[i] == 'E')
1538 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1539 scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type);
1543 /* Hide operands of the current insn (of which there are N_OPS) by
1544 substituting pc for them.
1545 Previous values are stored in the OLD_OPERANDS and OLD_DUPS.
1546 For every bit set in DO_NOT_HIDE, we leave the operand alone.
1547 If INOUT_AND_EC_ONLY is set, we only do this for OP_INOUT type operands
1548 and earlyclobbers. */
1550 static void
1551 hide_operands (int n_ops, rtx *old_operands, rtx *old_dups,
1552 unsigned HOST_WIDE_INT do_not_hide, bool inout_and_ec_only)
1554 int i;
1555 const operand_alternative *op_alt = which_op_alt ();
1556 for (i = 0; i < n_ops; i++)
1558 old_operands[i] = recog_data.operand[i];
1559 /* Don't squash match_operator or match_parallel here, since
1560 we don't know that all of the contained registers are
1561 reachable by proper operands. */
1562 if (recog_data.constraints[i][0] == '\0')
1563 continue;
1564 if (do_not_hide & (1 << i))
1565 continue;
1566 if (!inout_and_ec_only || recog_data.operand_type[i] == OP_INOUT
1567 || op_alt[i].earlyclobber)
1568 *recog_data.operand_loc[i] = pc_rtx;
1570 for (i = 0; i < recog_data.n_dups; i++)
1572 int opn = recog_data.dup_num[i];
1573 old_dups[i] = *recog_data.dup_loc[i];
1574 if (do_not_hide & (1 << opn))
1575 continue;
1576 if (!inout_and_ec_only || recog_data.operand_type[opn] == OP_INOUT
1577 || op_alt[opn].earlyclobber)
1578 *recog_data.dup_loc[i] = pc_rtx;
1582 /* Undo the substitution performed by hide_operands. INSN is the insn we
1583 are processing; the arguments are the same as in hide_operands. */
1585 static void
1586 restore_operands (rtx_insn *insn, int n_ops, rtx *old_operands, rtx *old_dups)
1588 int i;
1589 for (i = 0; i < recog_data.n_dups; i++)
1590 *recog_data.dup_loc[i] = old_dups[i];
1591 for (i = 0; i < n_ops; i++)
1592 *recog_data.operand_loc[i] = old_operands[i];
1593 if (recog_data.n_dups)
1594 df_insn_rescan (insn);
1597 /* For each output operand of INSN, call scan_rtx to create a new
1598 open chain. Do this only for normal or earlyclobber outputs,
1599 depending on EARLYCLOBBER. If INSN_INFO is nonnull, use it to
1600 record information about the operands in the insn. */
1602 static void
1603 record_out_operands (rtx_insn *insn, bool earlyclobber, insn_rr_info *insn_info)
1605 int n_ops = recog_data.n_operands;
1606 const operand_alternative *op_alt = which_op_alt ();
1608 int i;
1610 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1612 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1613 rtx *loc = (i < n_ops
1614 ? recog_data.operand_loc[opn]
1615 : recog_data.dup_loc[i - n_ops]);
1616 rtx op = *loc;
1617 enum reg_class cl = alternative_class (op_alt, opn);
1619 class du_head *prev_open;
1621 if (recog_data.operand_type[opn] != OP_OUT
1622 || op_alt[opn].earlyclobber != earlyclobber)
1623 continue;
1625 if (insn_info)
1626 cur_operand = insn_info->op_info + i;
1628 prev_open = open_chains;
1629 if (earlyclobber)
1630 scan_rtx (insn, loc, cl, terminate_write, OP_OUT);
1631 scan_rtx (insn, loc, cl, mark_write, OP_OUT);
1633 /* ??? Many targets have output constraints on the SET_DEST
1634 of a call insn, which is stupid, since these are certainly
1635 ABI defined hard registers. For these, and for asm operands
1636 that originally referenced hard registers, we must record that
1637 the chain cannot be renamed. */
1638 if (CALL_P (insn)
1639 || (asm_noperands (PATTERN (insn)) > 0
1640 && REG_P (op)
1641 && REGNO (op) == ORIGINAL_REGNO (op)))
1643 if (prev_open != open_chains)
1644 open_chains->cannot_rename = 1;
1647 cur_operand = NULL;
1650 /* Build def/use chain. */
1652 static bool
1653 build_def_use (basic_block bb)
1655 rtx_insn *insn;
1656 unsigned HOST_WIDE_INT untracked_operands;
1658 fail_current_block = false;
1660 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1662 if (NONDEBUG_INSN_P (insn))
1664 int n_ops;
1665 rtx note;
1666 rtx old_operands[MAX_RECOG_OPERANDS];
1667 rtx old_dups[MAX_DUP_OPERANDS];
1668 int i;
1669 int predicated;
1670 enum rtx_code set_code = SET;
1671 enum rtx_code clobber_code = CLOBBER;
1672 insn_rr_info *insn_info = NULL;
1673 terminated_this_insn = NULL;
1675 /* Process the insn, determining its effect on the def-use
1676 chains and live hard registers. We perform the following
1677 steps with the register references in the insn, simulating
1678 its effect:
1679 (1) Deal with earlyclobber operands and CLOBBERs of non-operands
1680 by creating chains and marking hard regs live.
1681 (2) Any read outside an operand causes any chain it overlaps
1682 with to be marked unrenamable.
1683 (3) Any read inside an operand is added if there's already
1684 an open chain for it.
1685 (4) For any REG_DEAD note we find, close open chains that
1686 overlap it.
1687 (5) For any non-earlyclobber write we find, close open chains
1688 that overlap it.
1689 (6) For any non-earlyclobber write we find in an operand, make
1690 a new chain or mark the hard register as live.
1691 (7) For any REG_UNUSED, close any chains we just opened.
1692 (8) For any REG_CFA_RESTORE or REG_CFA_REGISTER, kill any chain
1693 containing its dest.
1695 We cannot deal with situations where we track a reg in one mode
1696 and see a reference in another mode; these will cause the chain
1697 to be marked unrenamable or even cause us to abort the entire
1698 basic block. */
1700 extract_constrain_insn (insn);
1701 preprocess_constraints (insn);
1702 const operand_alternative *op_alt = which_op_alt ();
1703 n_ops = recog_data.n_operands;
1704 untracked_operands = 0;
1706 if (insn_rr.exists ())
1708 insn_info = &insn_rr[INSN_UID (insn)];
1709 insn_info->op_info = XOBNEWVEC (&rename_obstack, operand_rr_info,
1710 recog_data.n_operands);
1711 memset (insn_info->op_info, 0,
1712 sizeof (operand_rr_info) * recog_data.n_operands);
1715 /* Simplify the code below by promoting OP_OUT to OP_INOUT in
1716 predicated instructions, but only for register operands
1717 that are already tracked, so that we can create a chain
1718 when the first SET makes a register live. */
1720 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
1721 for (i = 0; i < n_ops; ++i)
1723 rtx op = recog_data.operand[i];
1724 int matches = op_alt[i].matches;
1725 if (matches >= 0 || op_alt[i].matched >= 0
1726 || (predicated && recog_data.operand_type[i] == OP_OUT))
1728 recog_data.operand_type[i] = OP_INOUT;
1729 /* A special case to deal with instruction patterns that
1730 have matching operands with different modes. If we're
1731 not already tracking such a reg, we won't start here,
1732 and we must instead make sure to make the operand visible
1733 to the machinery that tracks hard registers. */
1734 machine_mode i_mode = recog_data.operand_mode[i];
1735 if (matches >= 0)
1737 machine_mode matches_mode
1738 = recog_data.operand_mode[matches];
1740 if (maybe_ne (GET_MODE_SIZE (i_mode),
1741 GET_MODE_SIZE (matches_mode))
1742 && !verify_reg_in_set (op, &live_in_chains))
1744 untracked_operands |= 1 << i;
1745 untracked_operands |= 1 << matches;
1749 #ifdef STACK_REGS
1750 if (regstack_completed
1751 && REG_P (op)
1752 && IN_RANGE (REGNO (op), FIRST_STACK_REG, LAST_STACK_REG))
1753 untracked_operands |= 1 << i;
1754 #endif
1755 /* If there's an in-out operand with a register that is not
1756 being tracked at all yet, open a chain. */
1757 if (recog_data.operand_type[i] == OP_INOUT
1758 && !(untracked_operands & (1 << i))
1759 && REG_P (op)
1760 && !verify_reg_tracked (op))
1761 create_new_chain (REGNO (op), REG_NREGS (op), NULL, NULL,
1762 NO_REGS);
1765 if (fail_current_block)
1766 break;
1768 /* Step 1a: Mark hard registers that are clobbered in this insn,
1769 outside an operand, as live. */
1770 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1771 false);
1772 note_stores (insn, note_sets_clobbers, &clobber_code);
1773 restore_operands (insn, n_ops, old_operands, old_dups);
1775 /* Step 1b: Begin new chains for earlyclobbered writes inside
1776 operands. */
1777 record_out_operands (insn, true, insn_info);
1779 /* Step 2: Mark chains for which we have reads outside operands
1780 as unrenamable.
1781 We do this by munging all operands into PC, and closing
1782 everything remaining. */
1784 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1785 false);
1786 scan_rtx (insn, &PATTERN (insn), NO_REGS, mark_all_read, OP_IN);
1787 restore_operands (insn, n_ops, old_operands, old_dups);
1789 /* Step 2B: Can't rename function call argument registers. */
1790 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
1791 scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
1792 NO_REGS, mark_all_read, OP_IN);
1794 /* Step 2C: Can't rename asm operands that were originally
1795 hard registers. */
1796 if (asm_noperands (PATTERN (insn)) > 0)
1797 for (i = 0; i < n_ops; i++)
1799 rtx *loc = recog_data.operand_loc[i];
1800 rtx op = *loc;
1802 if (REG_P (op)
1803 && REGNO (op) == ORIGINAL_REGNO (op)
1804 && (recog_data.operand_type[i] == OP_IN
1805 || recog_data.operand_type[i] == OP_INOUT))
1806 scan_rtx (insn, loc, NO_REGS, mark_all_read, OP_IN);
1809 /* Step 3: Append to chains for reads inside operands. */
1810 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1812 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1813 rtx *loc = (i < n_ops
1814 ? recog_data.operand_loc[opn]
1815 : recog_data.dup_loc[i - n_ops]);
1816 enum reg_class cl = alternative_class (op_alt, opn);
1817 enum op_type type = recog_data.operand_type[opn];
1819 /* Don't scan match_operand here, since we've no reg class
1820 information to pass down. Any operands that we could
1821 substitute in will be represented elsewhere. */
1822 if (recog_data.constraints[opn][0] == '\0'
1823 || untracked_operands & (1 << opn))
1824 continue;
1826 if (insn_info)
1827 cur_operand = i == opn ? insn_info->op_info + i : NULL;
1828 if (op_alt[opn].is_address)
1829 scan_rtx_address (insn, loc, cl, mark_read,
1830 VOIDmode, ADDR_SPACE_GENERIC);
1831 else
1832 scan_rtx (insn, loc, cl, mark_read, type);
1834 cur_operand = NULL;
1836 /* Step 3B: Record updates for regs in REG_INC notes, and
1837 source regs in REG_FRAME_RELATED_EXPR notes. */
1838 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1839 if (REG_NOTE_KIND (note) == REG_INC
1840 || REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
1841 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
1842 OP_INOUT);
1844 /* Step 4: Close chains for registers that die here, unless
1845 the register is mentioned in a REG_UNUSED note. In that
1846 case we keep the chain open until step #7 below to ensure
1847 it conflicts with other output operands of this insn.
1848 See PR 52573. Arguably the insn should not have both
1849 notes; it has proven difficult to fix that without
1850 other undesirable side effects. */
1851 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1852 if (REG_NOTE_KIND (note) == REG_DEAD
1853 && !find_regno_note (insn, REG_UNUSED, REGNO (XEXP (note, 0))))
1855 remove_from_hard_reg_set (&live_hard_regs,
1856 GET_MODE (XEXP (note, 0)),
1857 REGNO (XEXP (note, 0)));
1858 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
1859 OP_IN);
1862 /* Step 4B: If this is a call, any chain live at this point
1863 requires a caller-saved reg. */
1864 if (CALL_P (insn))
1866 function_abi callee_abi = insn_callee_abi (insn);
1867 class du_head *p;
1868 for (p = open_chains; p; p = p->next_chain)
1870 p->call_abis |= (1 << callee_abi.id ());
1871 p->call_clobber_mask
1872 |= callee_abi.full_and_partial_reg_clobbers ();
1873 p->hard_conflicts |= callee_abi.full_reg_clobbers ();
1877 /* Step 5: Close open chains that overlap writes. Similar to
1878 step 2, we hide in-out operands, since we do not want to
1879 close these chains. We also hide earlyclobber operands,
1880 since we've opened chains for them in step 1, and earlier
1881 chains they would overlap with must have been closed at
1882 the previous insn at the latest, as such operands cannot
1883 possibly overlap with any input operands. */
1885 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1886 true);
1887 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN);
1888 restore_operands (insn, n_ops, old_operands, old_dups);
1890 /* Step 6a: Mark hard registers that are set in this insn,
1891 outside an operand, as live. */
1892 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1893 false);
1894 note_stores (insn, note_sets_clobbers, &set_code);
1895 restore_operands (insn, n_ops, old_operands, old_dups);
1897 /* Step 6b: Begin new chains for writes inside operands. */
1898 record_out_operands (insn, false, insn_info);
1900 /* Step 6c: Record destination regs in REG_FRAME_RELATED_EXPR
1901 notes for update. */
1902 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1903 if (REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
1904 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_access,
1905 OP_INOUT);
1907 /* Step 7: Close chains for registers that were never
1908 really used here. */
1909 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1910 if (REG_NOTE_KIND (note) == REG_UNUSED)
1912 remove_from_hard_reg_set (&live_hard_regs,
1913 GET_MODE (XEXP (note, 0)),
1914 REGNO (XEXP (note, 0)));
1915 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
1916 OP_IN);
1919 /* Step 8: Kill the chains involving register restores. Those
1920 should restore _that_ register. Similar for REG_CFA_REGISTER. */
1921 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1922 if (REG_NOTE_KIND (note) == REG_CFA_RESTORE
1923 || REG_NOTE_KIND (note) == REG_CFA_REGISTER)
1925 rtx *x = &XEXP (note, 0);
1926 if (!*x)
1927 x = &PATTERN (insn);
1928 if (GET_CODE (*x) == PARALLEL)
1929 x = &XVECEXP (*x, 0, 0);
1930 if (GET_CODE (*x) == SET)
1931 x = &SET_DEST (*x);
1932 scan_rtx (insn, x, NO_REGS, mark_all_read, OP_IN);
1935 else if (DEBUG_BIND_INSN_P (insn)
1936 && !VAR_LOC_UNKNOWN_P (INSN_VAR_LOCATION_LOC (insn)))
1938 scan_rtx (insn, &INSN_VAR_LOCATION_LOC (insn),
1939 ALL_REGS, mark_read, OP_IN);
1941 if (insn == BB_END (bb))
1942 break;
1945 if (fail_current_block)
1946 return false;
1948 return true;
1951 /* Initialize the register renamer. If INSN_INFO is true, ensure that
1952 insn_rr is nonnull. */
1953 void
1954 regrename_init (bool insn_info)
1956 gcc_obstack_init (&rename_obstack);
1957 insn_rr.create (0);
1958 if (insn_info)
1959 insn_rr.safe_grow_cleared (get_max_uid (), true);
1962 /* Free all global data used by the register renamer. */
1963 void
1964 regrename_finish (void)
1966 insn_rr.release ();
1967 free_chain_data ();
1968 obstack_free (&rename_obstack, NULL);
1971 /* Perform register renaming on the current function. */
1973 static unsigned int
1974 regrename_optimize (void)
1976 df_set_flags (DF_LR_RUN_DCE);
1977 df_note_add_problem ();
1978 df_analyze ();
1979 df_set_flags (DF_DEFER_INSN_RESCAN);
1981 regrename_init (false);
1983 regrename_analyze (NULL, false);
1985 rename_chains ();
1987 regrename_finish ();
1989 return 0;
1992 namespace {
1994 const pass_data pass_data_regrename =
1996 RTL_PASS, /* type */
1997 "rnreg", /* name */
1998 OPTGROUP_NONE, /* optinfo_flags */
1999 TV_RENAME_REGISTERS, /* tv_id */
2000 0, /* properties_required */
2001 0, /* properties_provided */
2002 0, /* properties_destroyed */
2003 0, /* todo_flags_start */
2004 TODO_df_finish, /* todo_flags_finish */
2007 class pass_regrename : public rtl_opt_pass
2009 public:
2010 pass_regrename (gcc::context *ctxt)
2011 : rtl_opt_pass (pass_data_regrename, ctxt)
2014 /* opt_pass methods: */
2015 virtual bool gate (function *)
2017 return (optimize > 0 && (flag_rename_registers));
2020 virtual unsigned int execute (function *) { return regrename_optimize (); }
2022 }; // class pass_regrename
2024 } // anon namespace
2026 rtl_opt_pass *
2027 make_pass_regrename (gcc::context *ctxt)
2029 return new pass_regrename (ctxt);