2005-09-28 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / lambda-code.c
blobcf995a3f9f41df4131b00acb2837c07e2b4576d2
1 /* Loop transformation code generation
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "target.h"
29 #include "rtl.h"
30 #include "basic-block.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "tree-chrec.h"
39 #include "tree-data-ref.h"
40 #include "tree-pass.h"
41 #include "tree-scalar-evolution.h"
42 #include "vec.h"
43 #include "lambda.h"
45 /* This loop nest code generation is based on non-singular matrix
46 math.
48 A little terminology and a general sketch of the algorithm. See "A singular
49 loop transformation framework based on non-singular matrices" by Wei Li and
50 Keshav Pingali for formal proofs that the various statements below are
51 correct.
53 A loop iteration space represents the points traversed by the loop. A point in the
54 iteration space can be represented by a vector of size <loop depth>. You can
55 therefore represent the iteration space as an integral combinations of a set
56 of basis vectors.
58 A loop iteration space is dense if every integer point between the loop
59 bounds is a point in the iteration space. Every loop with a step of 1
60 therefore has a dense iteration space.
62 for i = 1 to 3, step 1 is a dense iteration space.
64 A loop iteration space is sparse if it is not dense. That is, the iteration
65 space skips integer points that are within the loop bounds.
67 for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
68 2 is skipped.
70 Dense source spaces are easy to transform, because they don't skip any
71 points to begin with. Thus we can compute the exact bounds of the target
72 space using min/max and floor/ceil.
74 For a dense source space, we take the transformation matrix, decompose it
75 into a lower triangular part (H) and a unimodular part (U).
76 We then compute the auxiliary space from the unimodular part (source loop
77 nest . U = auxiliary space) , which has two important properties:
78 1. It traverses the iterations in the same lexicographic order as the source
79 space.
80 2. It is a dense space when the source is a dense space (even if the target
81 space is going to be sparse).
83 Given the auxiliary space, we use the lower triangular part to compute the
84 bounds in the target space by simple matrix multiplication.
85 The gaps in the target space (IE the new loop step sizes) will be the
86 diagonals of the H matrix.
88 Sparse source spaces require another step, because you can't directly compute
89 the exact bounds of the auxiliary and target space from the sparse space.
90 Rather than try to come up with a separate algorithm to handle sparse source
91 spaces directly, we just find a legal transformation matrix that gives you
92 the sparse source space, from a dense space, and then transform the dense
93 space.
95 For a regular sparse space, you can represent the source space as an integer
96 lattice, and the base space of that lattice will always be dense. Thus, we
97 effectively use the lattice to figure out the transformation from the lattice
98 base space, to the sparse iteration space (IE what transform was applied to
99 the dense space to make it sparse). We then compose this transform with the
100 transformation matrix specified by the user (since our matrix transformations
101 are closed under composition, this is okay). We can then use the base space
102 (which is dense) plus the composed transformation matrix, to compute the rest
103 of the transform using the dense space algorithm above.
105 In other words, our sparse source space (B) is decomposed into a dense base
106 space (A), and a matrix (L) that transforms A into B, such that A.L = B.
107 We then compute the composition of L and the user transformation matrix (T),
108 so that T is now a transform from A to the result, instead of from B to the
109 result.
110 IE A.(LT) = result instead of B.T = result
111 Since A is now a dense source space, we can use the dense source space
112 algorithm above to compute the result of applying transform (LT) to A.
114 Fourier-Motzkin elimination is used to compute the bounds of the base space
115 of the lattice. */
117 DEF_VEC_I(int);
118 DEF_VEC_ALLOC_I(int,heap);
120 static bool perfect_nestify (struct loops *,
121 struct loop *, VEC(tree,heap) *,
122 VEC(tree,heap) *, VEC(int,heap) *,
123 VEC(tree,heap) *);
124 /* Lattice stuff that is internal to the code generation algorithm. */
126 typedef struct
128 /* Lattice base matrix. */
129 lambda_matrix base;
130 /* Lattice dimension. */
131 int dimension;
132 /* Origin vector for the coefficients. */
133 lambda_vector origin;
134 /* Origin matrix for the invariants. */
135 lambda_matrix origin_invariants;
136 /* Number of invariants. */
137 int invariants;
138 } *lambda_lattice;
140 #define LATTICE_BASE(T) ((T)->base)
141 #define LATTICE_DIMENSION(T) ((T)->dimension)
142 #define LATTICE_ORIGIN(T) ((T)->origin)
143 #define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
144 #define LATTICE_INVARIANTS(T) ((T)->invariants)
146 static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
147 int, int);
148 static lambda_lattice lambda_lattice_new (int, int);
149 static lambda_lattice lambda_lattice_compute_base (lambda_loopnest);
151 static tree find_induction_var_from_exit_cond (struct loop *);
153 /* Create a new lambda body vector. */
155 lambda_body_vector
156 lambda_body_vector_new (int size)
158 lambda_body_vector ret;
160 ret = ggc_alloc (sizeof (*ret));
161 LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
162 LBV_SIZE (ret) = size;
163 LBV_DENOMINATOR (ret) = 1;
164 return ret;
167 /* Compute the new coefficients for the vector based on the
168 *inverse* of the transformation matrix. */
170 lambda_body_vector
171 lambda_body_vector_compute_new (lambda_trans_matrix transform,
172 lambda_body_vector vect)
174 lambda_body_vector temp;
175 int depth;
177 /* Make sure the matrix is square. */
178 gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
180 depth = LTM_ROWSIZE (transform);
182 temp = lambda_body_vector_new (depth);
183 LBV_DENOMINATOR (temp) =
184 LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
185 lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
186 LTM_MATRIX (transform), depth,
187 LBV_COEFFICIENTS (temp));
188 LBV_SIZE (temp) = LBV_SIZE (vect);
189 return temp;
192 /* Print out a lambda body vector. */
194 void
195 print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
197 print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
200 /* Return TRUE if two linear expressions are equal. */
202 static bool
203 lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
204 int depth, int invariants)
206 int i;
208 if (lle1 == NULL || lle2 == NULL)
209 return false;
210 if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
211 return false;
212 if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
213 return false;
214 for (i = 0; i < depth; i++)
215 if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
216 return false;
217 for (i = 0; i < invariants; i++)
218 if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
219 LLE_INVARIANT_COEFFICIENTS (lle2)[i])
220 return false;
221 return true;
224 /* Create a new linear expression with dimension DIM, and total number
225 of invariants INVARIANTS. */
227 lambda_linear_expression
228 lambda_linear_expression_new (int dim, int invariants)
230 lambda_linear_expression ret;
232 ret = ggc_alloc_cleared (sizeof (*ret));
234 LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
235 LLE_CONSTANT (ret) = 0;
236 LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
237 LLE_DENOMINATOR (ret) = 1;
238 LLE_NEXT (ret) = NULL;
240 return ret;
243 /* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
244 The starting letter used for variable names is START. */
246 static void
247 print_linear_expression (FILE * outfile, lambda_vector expr, int size,
248 char start)
250 int i;
251 bool first = true;
252 for (i = 0; i < size; i++)
254 if (expr[i] != 0)
256 if (first)
258 if (expr[i] < 0)
259 fprintf (outfile, "-");
260 first = false;
262 else if (expr[i] > 0)
263 fprintf (outfile, " + ");
264 else
265 fprintf (outfile, " - ");
266 if (abs (expr[i]) == 1)
267 fprintf (outfile, "%c", start + i);
268 else
269 fprintf (outfile, "%d%c", abs (expr[i]), start + i);
274 /* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
275 depth/number of coefficients is given by DEPTH, the number of invariants is
276 given by INVARIANTS, and the character to start variable names with is given
277 by START. */
279 void
280 print_lambda_linear_expression (FILE * outfile,
281 lambda_linear_expression expr,
282 int depth, int invariants, char start)
284 fprintf (outfile, "\tLinear expression: ");
285 print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
286 fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
287 fprintf (outfile, " invariants: ");
288 print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
289 invariants, 'A');
290 fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr));
293 /* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
294 coefficients is given by DEPTH, the number of invariants is
295 given by INVARIANTS, and the character to start variable names with is given
296 by START. */
298 void
299 print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
300 int invariants, char start)
302 int step;
303 lambda_linear_expression expr;
305 gcc_assert (loop);
307 expr = LL_LINEAR_OFFSET (loop);
308 step = LL_STEP (loop);
309 fprintf (outfile, " step size = %d \n", step);
311 if (expr)
313 fprintf (outfile, " linear offset: \n");
314 print_lambda_linear_expression (outfile, expr, depth, invariants,
315 start);
318 fprintf (outfile, " lower bound: \n");
319 for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
320 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
321 fprintf (outfile, " upper bound: \n");
322 for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
323 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
326 /* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
327 number of invariants. */
329 lambda_loopnest
330 lambda_loopnest_new (int depth, int invariants)
332 lambda_loopnest ret;
333 ret = ggc_alloc (sizeof (*ret));
335 LN_LOOPS (ret) = ggc_alloc_cleared (depth * sizeof (lambda_loop));
336 LN_DEPTH (ret) = depth;
337 LN_INVARIANTS (ret) = invariants;
339 return ret;
342 /* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
343 character to use for loop names is given by START. */
345 void
346 print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
348 int i;
349 for (i = 0; i < LN_DEPTH (nest); i++)
351 fprintf (outfile, "Loop %c\n", start + i);
352 print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
353 LN_INVARIANTS (nest), 'i');
354 fprintf (outfile, "\n");
358 /* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
359 of invariants. */
361 static lambda_lattice
362 lambda_lattice_new (int depth, int invariants)
364 lambda_lattice ret;
365 ret = ggc_alloc (sizeof (*ret));
366 LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
367 LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
368 LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
369 LATTICE_DIMENSION (ret) = depth;
370 LATTICE_INVARIANTS (ret) = invariants;
371 return ret;
374 /* Compute the lattice base for NEST. The lattice base is essentially a
375 non-singular transform from a dense base space to a sparse iteration space.
376 We use it so that we don't have to specially handle the case of a sparse
377 iteration space in other parts of the algorithm. As a result, this routine
378 only does something interesting (IE produce a matrix that isn't the
379 identity matrix) if NEST is a sparse space. */
381 static lambda_lattice
382 lambda_lattice_compute_base (lambda_loopnest nest)
384 lambda_lattice ret;
385 int depth, invariants;
386 lambda_matrix base;
388 int i, j, step;
389 lambda_loop loop;
390 lambda_linear_expression expression;
392 depth = LN_DEPTH (nest);
393 invariants = LN_INVARIANTS (nest);
395 ret = lambda_lattice_new (depth, invariants);
396 base = LATTICE_BASE (ret);
397 for (i = 0; i < depth; i++)
399 loop = LN_LOOPS (nest)[i];
400 gcc_assert (loop);
401 step = LL_STEP (loop);
402 /* If we have a step of 1, then the base is one, and the
403 origin and invariant coefficients are 0. */
404 if (step == 1)
406 for (j = 0; j < depth; j++)
407 base[i][j] = 0;
408 base[i][i] = 1;
409 LATTICE_ORIGIN (ret)[i] = 0;
410 for (j = 0; j < invariants; j++)
411 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
413 else
415 /* Otherwise, we need the lower bound expression (which must
416 be an affine function) to determine the base. */
417 expression = LL_LOWER_BOUND (loop);
418 gcc_assert (expression && !LLE_NEXT (expression)
419 && LLE_DENOMINATOR (expression) == 1);
421 /* The lower triangular portion of the base is going to be the
422 coefficient times the step */
423 for (j = 0; j < i; j++)
424 base[i][j] = LLE_COEFFICIENTS (expression)[j]
425 * LL_STEP (LN_LOOPS (nest)[j]);
426 base[i][i] = step;
427 for (j = i + 1; j < depth; j++)
428 base[i][j] = 0;
430 /* Origin for this loop is the constant of the lower bound
431 expression. */
432 LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
434 /* Coefficient for the invariants are equal to the invariant
435 coefficients in the expression. */
436 for (j = 0; j < invariants; j++)
437 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
438 LLE_INVARIANT_COEFFICIENTS (expression)[j];
441 return ret;
444 /* Compute the greatest common denominator of two numbers (A and B) using
445 Euclid's algorithm. */
447 static int
448 gcd (int a, int b)
451 int x, y, z;
453 x = abs (a);
454 y = abs (b);
456 while (x > 0)
458 z = y % x;
459 y = x;
460 x = z;
463 return (y);
466 /* Compute the greatest common denominator of a VECTOR of SIZE numbers. */
468 static int
469 gcd_vector (lambda_vector vector, int size)
471 int i;
472 int gcd1 = 0;
474 if (size > 0)
476 gcd1 = vector[0];
477 for (i = 1; i < size; i++)
478 gcd1 = gcd (gcd1, vector[i]);
480 return gcd1;
483 /* Compute the least common multiple of two numbers A and B . */
485 static int
486 lcm (int a, int b)
488 return (abs (a) * abs (b) / gcd (a, b));
491 /* Perform Fourier-Motzkin elimination to calculate the bounds of the
492 auxiliary nest.
493 Fourier-Motzkin is a way of reducing systems of linear inequalities so that
494 it is easy to calculate the answer and bounds.
495 A sketch of how it works:
496 Given a system of linear inequalities, ai * xj >= bk, you can always
497 rewrite the constraints so they are all of the form
498 a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
499 in b1 ... bk, and some a in a1...ai)
500 You can then eliminate this x from the non-constant inequalities by
501 rewriting these as a <= b, x >= constant, and delete the x variable.
502 You can then repeat this for any remaining x variables, and then we have
503 an easy to use variable <= constant (or no variables at all) form that we
504 can construct our bounds from.
506 In our case, each time we eliminate, we construct part of the bound from
507 the ith variable, then delete the ith variable.
509 Remember the constant are in our vector a, our coefficient matrix is A,
510 and our invariant coefficient matrix is B.
512 SIZE is the size of the matrices being passed.
513 DEPTH is the loop nest depth.
514 INVARIANTS is the number of loop invariants.
515 A, B, and a are the coefficient matrix, invariant coefficient, and a
516 vector of constants, respectively. */
518 static lambda_loopnest
519 compute_nest_using_fourier_motzkin (int size,
520 int depth,
521 int invariants,
522 lambda_matrix A,
523 lambda_matrix B,
524 lambda_vector a)
527 int multiple, f1, f2;
528 int i, j, k;
529 lambda_linear_expression expression;
530 lambda_loop loop;
531 lambda_loopnest auxillary_nest;
532 lambda_matrix swapmatrix, A1, B1;
533 lambda_vector swapvector, a1;
534 int newsize;
536 A1 = lambda_matrix_new (128, depth);
537 B1 = lambda_matrix_new (128, invariants);
538 a1 = lambda_vector_new (128);
540 auxillary_nest = lambda_loopnest_new (depth, invariants);
542 for (i = depth - 1; i >= 0; i--)
544 loop = lambda_loop_new ();
545 LN_LOOPS (auxillary_nest)[i] = loop;
546 LL_STEP (loop) = 1;
548 for (j = 0; j < size; j++)
550 if (A[j][i] < 0)
552 /* Any linear expression in the matrix with a coefficient less
553 than 0 becomes part of the new lower bound. */
554 expression = lambda_linear_expression_new (depth, invariants);
556 for (k = 0; k < i; k++)
557 LLE_COEFFICIENTS (expression)[k] = A[j][k];
559 for (k = 0; k < invariants; k++)
560 LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
562 LLE_DENOMINATOR (expression) = -1 * A[j][i];
563 LLE_CONSTANT (expression) = -1 * a[j];
565 /* Ignore if identical to the existing lower bound. */
566 if (!lle_equal (LL_LOWER_BOUND (loop),
567 expression, depth, invariants))
569 LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
570 LL_LOWER_BOUND (loop) = expression;
574 else if (A[j][i] > 0)
576 /* Any linear expression with a coefficient greater than 0
577 becomes part of the new upper bound. */
578 expression = lambda_linear_expression_new (depth, invariants);
579 for (k = 0; k < i; k++)
580 LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
582 for (k = 0; k < invariants; k++)
583 LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
585 LLE_DENOMINATOR (expression) = A[j][i];
586 LLE_CONSTANT (expression) = a[j];
588 /* Ignore if identical to the existing upper bound. */
589 if (!lle_equal (LL_UPPER_BOUND (loop),
590 expression, depth, invariants))
592 LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
593 LL_UPPER_BOUND (loop) = expression;
599 /* This portion creates a new system of linear inequalities by deleting
600 the i'th variable, reducing the system by one variable. */
601 newsize = 0;
602 for (j = 0; j < size; j++)
604 /* If the coefficient for the i'th variable is 0, then we can just
605 eliminate the variable straightaway. Otherwise, we have to
606 multiply through by the coefficients we are eliminating. */
607 if (A[j][i] == 0)
609 lambda_vector_copy (A[j], A1[newsize], depth);
610 lambda_vector_copy (B[j], B1[newsize], invariants);
611 a1[newsize] = a[j];
612 newsize++;
614 else if (A[j][i] > 0)
616 for (k = 0; k < size; k++)
618 if (A[k][i] < 0)
620 multiple = lcm (A[j][i], A[k][i]);
621 f1 = multiple / A[j][i];
622 f2 = -1 * multiple / A[k][i];
624 lambda_vector_add_mc (A[j], f1, A[k], f2,
625 A1[newsize], depth);
626 lambda_vector_add_mc (B[j], f1, B[k], f2,
627 B1[newsize], invariants);
628 a1[newsize] = f1 * a[j] + f2 * a[k];
629 newsize++;
635 swapmatrix = A;
636 A = A1;
637 A1 = swapmatrix;
639 swapmatrix = B;
640 B = B1;
641 B1 = swapmatrix;
643 swapvector = a;
644 a = a1;
645 a1 = swapvector;
647 size = newsize;
650 return auxillary_nest;
653 /* Compute the loop bounds for the auxiliary space NEST.
654 Input system used is Ax <= b. TRANS is the unimodular transformation.
655 Given the original nest, this function will
656 1. Convert the nest into matrix form, which consists of a matrix for the
657 coefficients, a matrix for the
658 invariant coefficients, and a vector for the constants.
659 2. Use the matrix form to calculate the lattice base for the nest (which is
660 a dense space)
661 3. Compose the dense space transform with the user specified transform, to
662 get a transform we can easily calculate transformed bounds for.
663 4. Multiply the composed transformation matrix times the matrix form of the
664 loop.
665 5. Transform the newly created matrix (from step 4) back into a loop nest
666 using fourier motzkin elimination to figure out the bounds. */
668 static lambda_loopnest
669 lambda_compute_auxillary_space (lambda_loopnest nest,
670 lambda_trans_matrix trans)
672 lambda_matrix A, B, A1, B1;
673 lambda_vector a, a1;
674 lambda_matrix invertedtrans;
675 int depth, invariants, size;
676 int i, j;
677 lambda_loop loop;
678 lambda_linear_expression expression;
679 lambda_lattice lattice;
681 depth = LN_DEPTH (nest);
682 invariants = LN_INVARIANTS (nest);
684 /* Unfortunately, we can't know the number of constraints we'll have
685 ahead of time, but this should be enough even in ridiculous loop nest
686 cases. We must not go over this limit. */
687 A = lambda_matrix_new (128, depth);
688 B = lambda_matrix_new (128, invariants);
689 a = lambda_vector_new (128);
691 A1 = lambda_matrix_new (128, depth);
692 B1 = lambda_matrix_new (128, invariants);
693 a1 = lambda_vector_new (128);
695 /* Store the bounds in the equation matrix A, constant vector a, and
696 invariant matrix B, so that we have Ax <= a + B.
697 This requires a little equation rearranging so that everything is on the
698 correct side of the inequality. */
699 size = 0;
700 for (i = 0; i < depth; i++)
702 loop = LN_LOOPS (nest)[i];
704 /* First we do the lower bound. */
705 if (LL_STEP (loop) > 0)
706 expression = LL_LOWER_BOUND (loop);
707 else
708 expression = LL_UPPER_BOUND (loop);
710 for (; expression != NULL; expression = LLE_NEXT (expression))
712 /* Fill in the coefficient. */
713 for (j = 0; j < i; j++)
714 A[size][j] = LLE_COEFFICIENTS (expression)[j];
716 /* And the invariant coefficient. */
717 for (j = 0; j < invariants; j++)
718 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
720 /* And the constant. */
721 a[size] = LLE_CONSTANT (expression);
723 /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
724 constants and single variables on */
725 A[size][i] = -1 * LLE_DENOMINATOR (expression);
726 a[size] *= -1;
727 for (j = 0; j < invariants; j++)
728 B[size][j] *= -1;
730 size++;
731 /* Need to increase matrix sizes above. */
732 gcc_assert (size <= 127);
736 /* Then do the exact same thing for the upper bounds. */
737 if (LL_STEP (loop) > 0)
738 expression = LL_UPPER_BOUND (loop);
739 else
740 expression = LL_LOWER_BOUND (loop);
742 for (; expression != NULL; expression = LLE_NEXT (expression))
744 /* Fill in the coefficient. */
745 for (j = 0; j < i; j++)
746 A[size][j] = LLE_COEFFICIENTS (expression)[j];
748 /* And the invariant coefficient. */
749 for (j = 0; j < invariants; j++)
750 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
752 /* And the constant. */
753 a[size] = LLE_CONSTANT (expression);
755 /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
756 for (j = 0; j < i; j++)
757 A[size][j] *= -1;
758 A[size][i] = LLE_DENOMINATOR (expression);
759 size++;
760 /* Need to increase matrix sizes above. */
761 gcc_assert (size <= 127);
766 /* Compute the lattice base x = base * y + origin, where y is the
767 base space. */
768 lattice = lambda_lattice_compute_base (nest);
770 /* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
772 /* A1 = A * L */
773 lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
775 /* a1 = a - A * origin constant. */
776 lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
777 lambda_vector_add_mc (a, 1, a1, -1, a1, size);
779 /* B1 = B - A * origin invariant. */
780 lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
781 invariants);
782 lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
784 /* Now compute the auxiliary space bounds by first inverting U, multiplying
785 it by A1, then performing fourier motzkin. */
787 invertedtrans = lambda_matrix_new (depth, depth);
789 /* Compute the inverse of U. */
790 lambda_matrix_inverse (LTM_MATRIX (trans),
791 invertedtrans, depth);
793 /* A = A1 inv(U). */
794 lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
796 return compute_nest_using_fourier_motzkin (size, depth, invariants,
797 A, B1, a1);
800 /* Compute the loop bounds for the target space, using the bounds of
801 the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
802 The target space loop bounds are computed by multiplying the triangular
803 matrix H by the auxiliary nest, to get the new loop bounds. The sign of
804 the loop steps (positive or negative) is then used to swap the bounds if
805 the loop counts downwards.
806 Return the target loopnest. */
808 static lambda_loopnest
809 lambda_compute_target_space (lambda_loopnest auxillary_nest,
810 lambda_trans_matrix H, lambda_vector stepsigns)
812 lambda_matrix inverse, H1;
813 int determinant, i, j;
814 int gcd1, gcd2;
815 int factor;
817 lambda_loopnest target_nest;
818 int depth, invariants;
819 lambda_matrix target;
821 lambda_loop auxillary_loop, target_loop;
822 lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
824 depth = LN_DEPTH (auxillary_nest);
825 invariants = LN_INVARIANTS (auxillary_nest);
827 inverse = lambda_matrix_new (depth, depth);
828 determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);
830 /* H1 is H excluding its diagonal. */
831 H1 = lambda_matrix_new (depth, depth);
832 lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
834 for (i = 0; i < depth; i++)
835 H1[i][i] = 0;
837 /* Computes the linear offsets of the loop bounds. */
838 target = lambda_matrix_new (depth, depth);
839 lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
841 target_nest = lambda_loopnest_new (depth, invariants);
843 for (i = 0; i < depth; i++)
846 /* Get a new loop structure. */
847 target_loop = lambda_loop_new ();
848 LN_LOOPS (target_nest)[i] = target_loop;
850 /* Computes the gcd of the coefficients of the linear part. */
851 gcd1 = gcd_vector (target[i], i);
853 /* Include the denominator in the GCD. */
854 gcd1 = gcd (gcd1, determinant);
856 /* Now divide through by the gcd. */
857 for (j = 0; j < i; j++)
858 target[i][j] = target[i][j] / gcd1;
860 expression = lambda_linear_expression_new (depth, invariants);
861 lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
862 LLE_DENOMINATOR (expression) = determinant / gcd1;
863 LLE_CONSTANT (expression) = 0;
864 lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
865 invariants);
866 LL_LINEAR_OFFSET (target_loop) = expression;
869 /* For each loop, compute the new bounds from H. */
870 for (i = 0; i < depth; i++)
872 auxillary_loop = LN_LOOPS (auxillary_nest)[i];
873 target_loop = LN_LOOPS (target_nest)[i];
874 LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
875 factor = LTM_MATRIX (H)[i][i];
877 /* First we do the lower bound. */
878 auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
880 for (; auxillary_expr != NULL;
881 auxillary_expr = LLE_NEXT (auxillary_expr))
883 target_expr = lambda_linear_expression_new (depth, invariants);
884 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
885 depth, inverse, depth,
886 LLE_COEFFICIENTS (target_expr));
887 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
888 LLE_COEFFICIENTS (target_expr), depth,
889 factor);
891 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
892 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
893 LLE_INVARIANT_COEFFICIENTS (target_expr),
894 invariants);
895 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
896 LLE_INVARIANT_COEFFICIENTS (target_expr),
897 invariants, factor);
898 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
900 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
902 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
903 * determinant;
904 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
905 (target_expr),
906 LLE_INVARIANT_COEFFICIENTS
907 (target_expr), invariants,
908 determinant);
909 LLE_DENOMINATOR (target_expr) =
910 LLE_DENOMINATOR (target_expr) * determinant;
912 /* Find the gcd and divide by it here, rather than doing it
913 at the tree level. */
914 gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
915 gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
916 invariants);
917 gcd1 = gcd (gcd1, gcd2);
918 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
919 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
920 for (j = 0; j < depth; j++)
921 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
922 for (j = 0; j < invariants; j++)
923 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
924 LLE_CONSTANT (target_expr) /= gcd1;
925 LLE_DENOMINATOR (target_expr) /= gcd1;
926 /* Ignore if identical to existing bound. */
927 if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
928 invariants))
930 LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
931 LL_LOWER_BOUND (target_loop) = target_expr;
934 /* Now do the upper bound. */
935 auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
937 for (; auxillary_expr != NULL;
938 auxillary_expr = LLE_NEXT (auxillary_expr))
940 target_expr = lambda_linear_expression_new (depth, invariants);
941 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
942 depth, inverse, depth,
943 LLE_COEFFICIENTS (target_expr));
944 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
945 LLE_COEFFICIENTS (target_expr), depth,
946 factor);
947 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
948 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
949 LLE_INVARIANT_COEFFICIENTS (target_expr),
950 invariants);
951 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
952 LLE_INVARIANT_COEFFICIENTS (target_expr),
953 invariants, factor);
954 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
956 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
958 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
959 * determinant;
960 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
961 (target_expr),
962 LLE_INVARIANT_COEFFICIENTS
963 (target_expr), invariants,
964 determinant);
965 LLE_DENOMINATOR (target_expr) =
966 LLE_DENOMINATOR (target_expr) * determinant;
968 /* Find the gcd and divide by it here, instead of at the
969 tree level. */
970 gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
971 gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
972 invariants);
973 gcd1 = gcd (gcd1, gcd2);
974 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
975 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
976 for (j = 0; j < depth; j++)
977 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
978 for (j = 0; j < invariants; j++)
979 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
980 LLE_CONSTANT (target_expr) /= gcd1;
981 LLE_DENOMINATOR (target_expr) /= gcd1;
982 /* Ignore if equal to existing bound. */
983 if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
984 invariants))
986 LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
987 LL_UPPER_BOUND (target_loop) = target_expr;
991 for (i = 0; i < depth; i++)
993 target_loop = LN_LOOPS (target_nest)[i];
994 /* If necessary, exchange the upper and lower bounds and negate
995 the step size. */
996 if (stepsigns[i] < 0)
998 LL_STEP (target_loop) *= -1;
999 tmp_expr = LL_LOWER_BOUND (target_loop);
1000 LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
1001 LL_UPPER_BOUND (target_loop) = tmp_expr;
1004 return target_nest;
1007 /* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
1008 result. */
1010 static lambda_vector
1011 lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
1013 lambda_matrix matrix, H;
1014 int size;
1015 lambda_vector newsteps;
1016 int i, j, factor, minimum_column;
1017 int temp;
1019 matrix = LTM_MATRIX (trans);
1020 size = LTM_ROWSIZE (trans);
1021 H = lambda_matrix_new (size, size);
1023 newsteps = lambda_vector_new (size);
1024 lambda_vector_copy (stepsigns, newsteps, size);
1026 lambda_matrix_copy (matrix, H, size, size);
1028 for (j = 0; j < size; j++)
1030 lambda_vector row;
1031 row = H[j];
1032 for (i = j; i < size; i++)
1033 if (row[i] < 0)
1034 lambda_matrix_col_negate (H, size, i);
1035 while (lambda_vector_first_nz (row, size, j + 1) < size)
1037 minimum_column = lambda_vector_min_nz (row, size, j);
1038 lambda_matrix_col_exchange (H, size, j, minimum_column);
1040 temp = newsteps[j];
1041 newsteps[j] = newsteps[minimum_column];
1042 newsteps[minimum_column] = temp;
1044 for (i = j + 1; i < size; i++)
1046 factor = row[i] / row[j];
1047 lambda_matrix_col_add (H, size, j, i, -1 * factor);
1051 return newsteps;
1054 /* Transform NEST according to TRANS, and return the new loopnest.
1055 This involves
1056 1. Computing a lattice base for the transformation
1057 2. Composing the dense base with the specified transformation (TRANS)
1058 3. Decomposing the combined transformation into a lower triangular portion,
1059 and a unimodular portion.
1060 4. Computing the auxiliary nest using the unimodular portion.
1061 5. Computing the target nest using the auxiliary nest and the lower
1062 triangular portion. */
1064 lambda_loopnest
1065 lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
1067 lambda_loopnest auxillary_nest, target_nest;
1069 int depth, invariants;
1070 int i, j;
1071 lambda_lattice lattice;
1072 lambda_trans_matrix trans1, H, U;
1073 lambda_loop loop;
1074 lambda_linear_expression expression;
1075 lambda_vector origin;
1076 lambda_matrix origin_invariants;
1077 lambda_vector stepsigns;
1078 int f;
1080 depth = LN_DEPTH (nest);
1081 invariants = LN_INVARIANTS (nest);
1083 /* Keep track of the signs of the loop steps. */
1084 stepsigns = lambda_vector_new (depth);
1085 for (i = 0; i < depth; i++)
1087 if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
1088 stepsigns[i] = 1;
1089 else
1090 stepsigns[i] = -1;
1093 /* Compute the lattice base. */
1094 lattice = lambda_lattice_compute_base (nest);
1095 trans1 = lambda_trans_matrix_new (depth, depth);
1097 /* Multiply the transformation matrix by the lattice base. */
1099 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
1100 LTM_MATRIX (trans1), depth, depth, depth);
1102 /* Compute the Hermite normal form for the new transformation matrix. */
1103 H = lambda_trans_matrix_new (depth, depth);
1104 U = lambda_trans_matrix_new (depth, depth);
1105 lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
1106 LTM_MATRIX (U));
1108 /* Compute the auxiliary loop nest's space from the unimodular
1109 portion. */
1110 auxillary_nest = lambda_compute_auxillary_space (nest, U);
1112 /* Compute the loop step signs from the old step signs and the
1113 transformation matrix. */
1114 stepsigns = lambda_compute_step_signs (trans1, stepsigns);
1116 /* Compute the target loop nest space from the auxiliary nest and
1117 the lower triangular matrix H. */
1118 target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns);
1119 origin = lambda_vector_new (depth);
1120 origin_invariants = lambda_matrix_new (depth, invariants);
1121 lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
1122 LATTICE_ORIGIN (lattice), origin);
1123 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
1124 origin_invariants, depth, depth, invariants);
1126 for (i = 0; i < depth; i++)
1128 loop = LN_LOOPS (target_nest)[i];
1129 expression = LL_LINEAR_OFFSET (loop);
1130 if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
1131 f = 1;
1132 else
1133 f = LLE_DENOMINATOR (expression);
1135 LLE_CONSTANT (expression) += f * origin[i];
1137 for (j = 0; j < invariants; j++)
1138 LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
1139 f * origin_invariants[i][j];
1142 return target_nest;
1146 /* Convert a gcc tree expression EXPR to a lambda linear expression, and
1147 return the new expression. DEPTH is the depth of the loopnest.
1148 OUTERINDUCTIONVARS is an array of the induction variables for outer loops
1149 in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
1150 is the amount we have to add/subtract from the expression because of the
1151 type of comparison it is used in. */
1153 static lambda_linear_expression
1154 gcc_tree_to_linear_expression (int depth, tree expr,
1155 VEC(tree,heap) *outerinductionvars,
1156 VEC(tree,heap) *invariants, int extra)
1158 lambda_linear_expression lle = NULL;
1159 switch (TREE_CODE (expr))
1161 case INTEGER_CST:
1163 lle = lambda_linear_expression_new (depth, 2 * depth);
1164 LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
1165 if (extra != 0)
1166 LLE_CONSTANT (lle) += extra;
1168 LLE_DENOMINATOR (lle) = 1;
1170 break;
1171 case SSA_NAME:
1173 tree iv, invar;
1174 size_t i;
1175 for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
1176 if (iv != NULL)
1178 if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
1180 lle = lambda_linear_expression_new (depth, 2 * depth);
1181 LLE_COEFFICIENTS (lle)[i] = 1;
1182 if (extra != 0)
1183 LLE_CONSTANT (lle) = extra;
1185 LLE_DENOMINATOR (lle) = 1;
1188 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1189 if (invar != NULL)
1191 if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
1193 lle = lambda_linear_expression_new (depth, 2 * depth);
1194 LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
1195 if (extra != 0)
1196 LLE_CONSTANT (lle) = extra;
1197 LLE_DENOMINATOR (lle) = 1;
1201 break;
1202 default:
1203 return NULL;
1206 return lle;
1209 /* Return the depth of the loopnest NEST */
1211 static int
1212 depth_of_nest (struct loop *nest)
1214 size_t depth = 0;
1215 while (nest)
1217 depth++;
1218 nest = nest->inner;
1220 return depth;
1224 /* Return true if OP is invariant in LOOP and all outer loops. */
1226 static bool
1227 invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
1229 if (is_gimple_min_invariant (op))
1230 return true;
1231 if (loop->depth == 0)
1232 return true;
1233 if (!expr_invariant_in_loop_p (loop, op))
1234 return false;
1235 if (loop->outer
1236 && !invariant_in_loop_and_outer_loops (loop->outer, op))
1237 return false;
1238 return true;
1241 /* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
1242 or NULL if it could not be converted.
1243 DEPTH is the depth of the loop.
1244 INVARIANTS is a pointer to the array of loop invariants.
1245 The induction variable for this loop should be stored in the parameter
1246 OURINDUCTIONVAR.
1247 OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
1249 static lambda_loop
1250 gcc_loop_to_lambda_loop (struct loop *loop, int depth,
1251 VEC(tree,heap) ** invariants,
1252 tree * ourinductionvar,
1253 VEC(tree,heap) * outerinductionvars,
1254 VEC(tree,heap) ** lboundvars,
1255 VEC(tree,heap) ** uboundvars,
1256 VEC(int,heap) ** steps)
1258 tree phi;
1259 tree exit_cond;
1260 tree access_fn, inductionvar;
1261 tree step;
1262 lambda_loop lloop = NULL;
1263 lambda_linear_expression lbound, ubound;
1264 tree test;
1265 int stepint;
1266 int extra = 0;
1267 tree lboundvar, uboundvar, uboundresult;
1269 /* Find out induction var and exit condition. */
1270 inductionvar = find_induction_var_from_exit_cond (loop);
1271 exit_cond = get_loop_exit_condition (loop);
1273 if (inductionvar == NULL || exit_cond == NULL)
1275 if (dump_file && (dump_flags & TDF_DETAILS))
1276 fprintf (dump_file,
1277 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
1278 return NULL;
1281 test = TREE_OPERAND (exit_cond, 0);
1283 if (SSA_NAME_DEF_STMT (inductionvar) == NULL_TREE)
1286 if (dump_file && (dump_flags & TDF_DETAILS))
1287 fprintf (dump_file,
1288 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1290 return NULL;
1293 phi = SSA_NAME_DEF_STMT (inductionvar);
1294 if (TREE_CODE (phi) != PHI_NODE)
1296 phi = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
1297 if (!phi)
1300 if (dump_file && (dump_flags & TDF_DETAILS))
1301 fprintf (dump_file,
1302 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1304 return NULL;
1307 phi = SSA_NAME_DEF_STMT (phi);
1308 if (TREE_CODE (phi) != PHI_NODE)
1311 if (dump_file && (dump_flags & TDF_DETAILS))
1312 fprintf (dump_file,
1313 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1314 return NULL;
1319 /* The induction variable name/version we want to put in the array is the
1320 result of the induction variable phi node. */
1321 *ourinductionvar = PHI_RESULT (phi);
1322 access_fn = instantiate_parameters
1323 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1324 if (access_fn == chrec_dont_know)
1326 if (dump_file && (dump_flags & TDF_DETAILS))
1327 fprintf (dump_file,
1328 "Unable to convert loop: Access function for induction variable phi is unknown\n");
1330 return NULL;
1333 step = evolution_part_in_loop_num (access_fn, loop->num);
1334 if (!step || step == chrec_dont_know)
1336 if (dump_file && (dump_flags & TDF_DETAILS))
1337 fprintf (dump_file,
1338 "Unable to convert loop: Cannot determine step of loop.\n");
1340 return NULL;
1342 if (TREE_CODE (step) != INTEGER_CST)
1345 if (dump_file && (dump_flags & TDF_DETAILS))
1346 fprintf (dump_file,
1347 "Unable to convert loop: Step of loop is not integer.\n");
1348 return NULL;
1351 stepint = TREE_INT_CST_LOW (step);
1353 /* Only want phis for induction vars, which will have two
1354 arguments. */
1355 if (PHI_NUM_ARGS (phi) != 2)
1357 if (dump_file && (dump_flags & TDF_DETAILS))
1358 fprintf (dump_file,
1359 "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
1360 return NULL;
1363 /* Another induction variable check. One argument's source should be
1364 in the loop, one outside the loop. */
1365 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src)
1366 && flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 1)->src))
1369 if (dump_file && (dump_flags & TDF_DETAILS))
1370 fprintf (dump_file,
1371 "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
1373 return NULL;
1376 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src))
1378 lboundvar = PHI_ARG_DEF (phi, 1);
1379 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1380 outerinductionvars, *invariants,
1383 else
1385 lboundvar = PHI_ARG_DEF (phi, 0);
1386 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1387 outerinductionvars, *invariants,
1391 if (!lbound)
1394 if (dump_file && (dump_flags & TDF_DETAILS))
1395 fprintf (dump_file,
1396 "Unable to convert loop: Cannot convert lower bound to linear expression\n");
1398 return NULL;
1400 /* One part of the test may be a loop invariant tree. */
1401 VEC_reserve (tree, heap, *invariants, 1);
1402 if (TREE_CODE (TREE_OPERAND (test, 1)) == SSA_NAME
1403 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 1)))
1404 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 1));
1405 else if (TREE_CODE (TREE_OPERAND (test, 0)) == SSA_NAME
1406 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 0)))
1407 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 0));
1409 /* The non-induction variable part of the test is the upper bound variable.
1411 if (TREE_OPERAND (test, 0) == inductionvar)
1412 uboundvar = TREE_OPERAND (test, 1);
1413 else
1414 uboundvar = TREE_OPERAND (test, 0);
1417 /* We only size the vectors assuming we have, at max, 2 times as many
1418 invariants as we do loops (one for each bound).
1419 This is just an arbitrary number, but it has to be matched against the
1420 code below. */
1421 gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
1424 /* We might have some leftover. */
1425 if (TREE_CODE (test) == LT_EXPR)
1426 extra = -1 * stepint;
1427 else if (TREE_CODE (test) == NE_EXPR)
1428 extra = -1 * stepint;
1429 else if (TREE_CODE (test) == GT_EXPR)
1430 extra = -1 * stepint;
1431 else if (TREE_CODE (test) == EQ_EXPR)
1432 extra = 1 * stepint;
1434 ubound = gcc_tree_to_linear_expression (depth, uboundvar,
1435 outerinductionvars,
1436 *invariants, extra);
1437 uboundresult = build (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
1438 build_int_cst (TREE_TYPE (uboundvar), extra));
1439 VEC_safe_push (tree, heap, *uboundvars, uboundresult);
1440 VEC_safe_push (tree, heap, *lboundvars, lboundvar);
1441 VEC_safe_push (int, heap, *steps, stepint);
1442 if (!ubound)
1444 if (dump_file && (dump_flags & TDF_DETAILS))
1445 fprintf (dump_file,
1446 "Unable to convert loop: Cannot convert upper bound to linear expression\n");
1447 return NULL;
1450 lloop = lambda_loop_new ();
1451 LL_STEP (lloop) = stepint;
1452 LL_LOWER_BOUND (lloop) = lbound;
1453 LL_UPPER_BOUND (lloop) = ubound;
1454 return lloop;
1457 /* Given a LOOP, find the induction variable it is testing against in the exit
1458 condition. Return the induction variable if found, NULL otherwise. */
1460 static tree
1461 find_induction_var_from_exit_cond (struct loop *loop)
1463 tree expr = get_loop_exit_condition (loop);
1464 tree ivarop;
1465 tree test;
1466 if (expr == NULL_TREE)
1467 return NULL_TREE;
1468 if (TREE_CODE (expr) != COND_EXPR)
1469 return NULL_TREE;
1470 test = TREE_OPERAND (expr, 0);
1471 if (!COMPARISON_CLASS_P (test))
1472 return NULL_TREE;
1474 /* Find the side that is invariant in this loop. The ivar must be the other
1475 side. */
1477 if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 0)))
1478 ivarop = TREE_OPERAND (test, 1);
1479 else if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 1)))
1480 ivarop = TREE_OPERAND (test, 0);
1481 else
1482 return NULL_TREE;
1484 if (TREE_CODE (ivarop) != SSA_NAME)
1485 return NULL_TREE;
1486 return ivarop;
1489 DEF_VEC_P(lambda_loop);
1490 DEF_VEC_ALLOC_P(lambda_loop,heap);
1492 /* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
1493 Return the new loop nest.
1494 INDUCTIONVARS is a pointer to an array of induction variables for the
1495 loopnest that will be filled in during this process.
1496 INVARIANTS is a pointer to an array of invariants that will be filled in
1497 during this process. */
1499 lambda_loopnest
1500 gcc_loopnest_to_lambda_loopnest (struct loops *currloops,
1501 struct loop * loop_nest,
1502 VEC(tree,heap) **inductionvars,
1503 VEC(tree,heap) **invariants,
1504 bool need_perfect_nest)
1506 lambda_loopnest ret = NULL;
1507 struct loop *temp;
1508 int depth = 0;
1509 size_t i;
1510 VEC(lambda_loop,heap) *loops = NULL;
1511 VEC(tree,heap) *uboundvars = NULL;
1512 VEC(tree,heap) *lboundvars = NULL;
1513 VEC(int,heap) *steps = NULL;
1514 lambda_loop newloop;
1515 tree inductionvar = NULL;
1517 depth = depth_of_nest (loop_nest);
1518 temp = loop_nest;
1519 while (temp)
1521 newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
1522 &inductionvar, *inductionvars,
1523 &lboundvars, &uboundvars,
1524 &steps);
1525 if (!newloop)
1526 return NULL;
1527 VEC_safe_push (tree, heap, *inductionvars, inductionvar);
1528 VEC_safe_push (lambda_loop, heap, loops, newloop);
1529 temp = temp->inner;
1531 if (need_perfect_nest)
1533 if (!perfect_nestify (currloops, loop_nest,
1534 lboundvars, uboundvars, steps, *inductionvars))
1536 if (dump_file)
1537 fprintf (dump_file,
1538 "Not a perfect loop nest and couldn't convert to one.\n");
1539 goto fail;
1541 else if (dump_file)
1542 fprintf (dump_file,
1543 "Successfully converted loop nest to perfect loop nest.\n");
1545 ret = lambda_loopnest_new (depth, 2 * depth);
1546 for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
1547 LN_LOOPS (ret)[i] = newloop;
1548 fail:
1549 VEC_free (lambda_loop, heap, loops);
1550 VEC_free (tree, heap, uboundvars);
1551 VEC_free (tree, heap, lboundvars);
1552 VEC_free (int, heap, steps);
1554 return ret;
1557 /* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
1558 STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
1559 inserted for us are stored. INDUCTION_VARS is the array of induction
1560 variables for the loop this LBV is from. TYPE is the tree type to use for
1561 the variables and trees involved. */
1563 static tree
1564 lbv_to_gcc_expression (lambda_body_vector lbv,
1565 tree type, VEC(tree,heap) *induction_vars,
1566 tree *stmts_to_insert)
1568 tree stmts, stmt, resvar, name;
1569 tree iv;
1570 size_t i;
1571 tree_stmt_iterator tsi;
1573 /* Create a statement list and a linear expression temporary. */
1574 stmts = alloc_stmt_list ();
1575 resvar = create_tmp_var (type, "lbvtmp");
1576 add_referenced_tmp_var (resvar);
1578 /* Start at 0. */
1579 stmt = build (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
1580 name = make_ssa_name (resvar, stmt);
1581 TREE_OPERAND (stmt, 0) = name;
1582 tsi = tsi_last (stmts);
1583 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1585 for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
1587 if (LBV_COEFFICIENTS (lbv)[i] != 0)
1589 tree newname;
1590 tree coeffmult;
1592 /* newname = coefficient * induction_variable */
1593 coeffmult = build_int_cst (type, LBV_COEFFICIENTS (lbv)[i]);
1594 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1595 fold_build2 (MULT_EXPR, type, iv, coeffmult));
1597 newname = make_ssa_name (resvar, stmt);
1598 TREE_OPERAND (stmt, 0) = newname;
1599 fold_stmt (&stmt);
1600 tsi = tsi_last (stmts);
1601 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1603 /* name = name + newname */
1604 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1605 build (PLUS_EXPR, type, name, newname));
1606 name = make_ssa_name (resvar, stmt);
1607 TREE_OPERAND (stmt, 0) = name;
1608 fold_stmt (&stmt);
1609 tsi = tsi_last (stmts);
1610 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1615 /* Handle any denominator that occurs. */
1616 if (LBV_DENOMINATOR (lbv) != 1)
1618 tree denominator = build_int_cst (type, LBV_DENOMINATOR (lbv));
1619 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1620 build (CEIL_DIV_EXPR, type, name, denominator));
1621 name = make_ssa_name (resvar, stmt);
1622 TREE_OPERAND (stmt, 0) = name;
1623 fold_stmt (&stmt);
1624 tsi = tsi_last (stmts);
1625 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1627 *stmts_to_insert = stmts;
1628 return name;
1631 /* Convert a linear expression from coefficient and constant form to a
1632 gcc tree.
1633 Return the tree that represents the final value of the expression.
1634 LLE is the linear expression to convert.
1635 OFFSET is the linear offset to apply to the expression.
1636 TYPE is the tree type to use for the variables and math.
1637 INDUCTION_VARS is a vector of induction variables for the loops.
1638 INVARIANTS is a vector of the loop nest invariants.
1639 WRAP specifies what tree code to wrap the results in, if there is more than
1640 one (it is either MAX_EXPR, or MIN_EXPR).
1641 STMTS_TO_INSERT Is a pointer to the statement list we fill in with
1642 statements that need to be inserted for the linear expression. */
1644 static tree
1645 lle_to_gcc_expression (lambda_linear_expression lle,
1646 lambda_linear_expression offset,
1647 tree type,
1648 VEC(tree,heap) *induction_vars,
1649 VEC(tree,heap) *invariants,
1650 enum tree_code wrap, tree *stmts_to_insert)
1652 tree stmts, stmt, resvar, name;
1653 size_t i;
1654 tree_stmt_iterator tsi;
1655 tree iv, invar;
1656 VEC(tree,heap) *results = NULL;
1658 gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR);
1659 name = NULL_TREE;
1660 /* Create a statement list and a linear expression temporary. */
1661 stmts = alloc_stmt_list ();
1662 resvar = create_tmp_var (type, "lletmp");
1663 add_referenced_tmp_var (resvar);
1665 /* Build up the linear expressions, and put the variable representing the
1666 result in the results array. */
1667 for (; lle != NULL; lle = LLE_NEXT (lle))
1669 /* Start at name = 0. */
1670 stmt = build (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
1671 name = make_ssa_name (resvar, stmt);
1672 TREE_OPERAND (stmt, 0) = name;
1673 fold_stmt (&stmt);
1674 tsi = tsi_last (stmts);
1675 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1677 /* First do the induction variables.
1678 at the end, name = name + all the induction variables added
1679 together. */
1680 for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
1682 if (LLE_COEFFICIENTS (lle)[i] != 0)
1684 tree newname;
1685 tree mult;
1686 tree coeff;
1688 /* mult = induction variable * coefficient. */
1689 if (LLE_COEFFICIENTS (lle)[i] == 1)
1691 mult = VEC_index (tree, induction_vars, i);
1693 else
1695 coeff = build_int_cst (type,
1696 LLE_COEFFICIENTS (lle)[i]);
1697 mult = fold_build2 (MULT_EXPR, type, iv, coeff);
1700 /* newname = mult */
1701 stmt = build (MODIFY_EXPR, void_type_node, resvar, mult);
1702 newname = make_ssa_name (resvar, stmt);
1703 TREE_OPERAND (stmt, 0) = newname;
1704 fold_stmt (&stmt);
1705 tsi = tsi_last (stmts);
1706 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1708 /* name = name + newname */
1709 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1710 build (PLUS_EXPR, type, name, newname));
1711 name = make_ssa_name (resvar, stmt);
1712 TREE_OPERAND (stmt, 0) = name;
1713 fold_stmt (&stmt);
1714 tsi = tsi_last (stmts);
1715 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1719 /* Handle our invariants.
1720 At the end, we have name = name + result of adding all multiplied
1721 invariants. */
1722 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1724 if (LLE_INVARIANT_COEFFICIENTS (lle)[i] != 0)
1726 tree newname;
1727 tree mult;
1728 tree coeff;
1729 int invcoeff = LLE_INVARIANT_COEFFICIENTS (lle)[i];
1730 /* mult = invariant * coefficient */
1731 if (invcoeff == 1)
1733 mult = invar;
1735 else
1737 coeff = build_int_cst (type, invcoeff);
1738 mult = fold_build2 (MULT_EXPR, type, invar, coeff);
1741 /* newname = mult */
1742 stmt = build (MODIFY_EXPR, void_type_node, resvar, mult);
1743 newname = make_ssa_name (resvar, stmt);
1744 TREE_OPERAND (stmt, 0) = newname;
1745 fold_stmt (&stmt);
1746 tsi = tsi_last (stmts);
1747 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1749 /* name = name + newname */
1750 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1751 build (PLUS_EXPR, type, name, newname));
1752 name = make_ssa_name (resvar, stmt);
1753 TREE_OPERAND (stmt, 0) = name;
1754 fold_stmt (&stmt);
1755 tsi = tsi_last (stmts);
1756 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1760 /* Now handle the constant.
1761 name = name + constant. */
1762 if (LLE_CONSTANT (lle) != 0)
1764 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1765 build (PLUS_EXPR, type, name,
1766 build_int_cst (type, LLE_CONSTANT (lle))));
1767 name = make_ssa_name (resvar, stmt);
1768 TREE_OPERAND (stmt, 0) = name;
1769 fold_stmt (&stmt);
1770 tsi = tsi_last (stmts);
1771 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1774 /* Now handle the offset.
1775 name = name + linear offset. */
1776 if (LLE_CONSTANT (offset) != 0)
1778 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1779 build (PLUS_EXPR, type, name,
1780 build_int_cst (type, LLE_CONSTANT (offset))));
1781 name = make_ssa_name (resvar, stmt);
1782 TREE_OPERAND (stmt, 0) = name;
1783 fold_stmt (&stmt);
1784 tsi = tsi_last (stmts);
1785 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1788 /* Handle any denominator that occurs. */
1789 if (LLE_DENOMINATOR (lle) != 1)
1791 stmt = build_int_cst (type, LLE_DENOMINATOR (lle));
1792 stmt = build (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR,
1793 type, name, stmt);
1794 stmt = build (MODIFY_EXPR, void_type_node, resvar, stmt);
1796 /* name = {ceil, floor}(name/denominator) */
1797 name = make_ssa_name (resvar, stmt);
1798 TREE_OPERAND (stmt, 0) = name;
1799 tsi = tsi_last (stmts);
1800 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1802 VEC_safe_push (tree, heap, results, name);
1805 /* Again, out of laziness, we don't handle this case yet. It's not
1806 hard, it just hasn't occurred. */
1807 gcc_assert (VEC_length (tree, results) <= 2);
1809 /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
1810 if (VEC_length (tree, results) > 1)
1812 tree op1 = VEC_index (tree, results, 0);
1813 tree op2 = VEC_index (tree, results, 1);
1814 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1815 build (wrap, type, op1, op2));
1816 name = make_ssa_name (resvar, stmt);
1817 TREE_OPERAND (stmt, 0) = name;
1818 tsi = tsi_last (stmts);
1819 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1822 VEC_free (tree, heap, results);
1824 *stmts_to_insert = stmts;
1825 return name;
1828 /* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
1829 it, back into gcc code. This changes the
1830 loops, their induction variables, and their bodies, so that they
1831 match the transformed loopnest.
1832 OLD_LOOPNEST is the loopnest before we've replaced it with the new
1833 loopnest.
1834 OLD_IVS is a vector of induction variables from the old loopnest.
1835 INVARIANTS is a vector of loop invariants from the old loopnest.
1836 NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
1837 TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
1838 NEW_LOOPNEST. */
1840 void
1841 lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
1842 VEC(tree,heap) *old_ivs,
1843 VEC(tree,heap) *invariants,
1844 lambda_loopnest new_loopnest,
1845 lambda_trans_matrix transform)
1847 struct loop *temp;
1848 size_t i = 0;
1849 size_t depth = 0;
1850 VEC(tree,heap) *new_ivs = NULL;
1851 tree oldiv;
1853 block_stmt_iterator bsi;
1855 if (dump_file)
1857 transform = lambda_trans_matrix_inverse (transform);
1858 fprintf (dump_file, "Inverse of transformation matrix:\n");
1859 print_lambda_trans_matrix (dump_file, transform);
1861 depth = depth_of_nest (old_loopnest);
1862 temp = old_loopnest;
1864 while (temp)
1866 lambda_loop newloop;
1867 basic_block bb;
1868 edge exit;
1869 tree ivvar, ivvarinced, exitcond, stmts;
1870 enum tree_code testtype;
1871 tree newupperbound, newlowerbound;
1872 lambda_linear_expression offset;
1873 tree type;
1874 bool insert_after;
1875 tree inc_stmt;
1877 oldiv = VEC_index (tree, old_ivs, i);
1878 type = TREE_TYPE (oldiv);
1880 /* First, build the new induction variable temporary */
1882 ivvar = create_tmp_var (type, "lnivtmp");
1883 add_referenced_tmp_var (ivvar);
1885 VEC_safe_push (tree, heap, new_ivs, ivvar);
1887 newloop = LN_LOOPS (new_loopnest)[i];
1889 /* Linear offset is a bit tricky to handle. Punt on the unhandled
1890 cases for now. */
1891 offset = LL_LINEAR_OFFSET (newloop);
1893 gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
1894 lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
1896 /* Now build the new lower bounds, and insert the statements
1897 necessary to generate it on the loop preheader. */
1898 newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
1899 LL_LINEAR_OFFSET (newloop),
1900 type,
1901 new_ivs,
1902 invariants, MAX_EXPR, &stmts);
1903 bsi_insert_on_edge (loop_preheader_edge (temp), stmts);
1904 bsi_commit_edge_inserts ();
1905 /* Build the new upper bound and insert its statements in the
1906 basic block of the exit condition */
1907 newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
1908 LL_LINEAR_OFFSET (newloop),
1909 type,
1910 new_ivs,
1911 invariants, MIN_EXPR, &stmts);
1912 exit = temp->single_exit;
1913 exitcond = get_loop_exit_condition (temp);
1914 bb = bb_for_stmt (exitcond);
1915 bsi = bsi_start (bb);
1916 bsi_insert_after (&bsi, stmts, BSI_NEW_STMT);
1918 /* Create the new iv. */
1920 standard_iv_increment_position (temp, &bsi, &insert_after);
1921 create_iv (newlowerbound,
1922 build_int_cst (type, LL_STEP (newloop)),
1923 ivvar, temp, &bsi, insert_after, &ivvar,
1924 NULL);
1926 /* Unfortunately, the incremented ivvar that create_iv inserted may not
1927 dominate the block containing the exit condition.
1928 So we simply create our own incremented iv to use in the new exit
1929 test, and let redundancy elimination sort it out. */
1930 inc_stmt = build (PLUS_EXPR, type,
1931 ivvar, build_int_cst (type, LL_STEP (newloop)));
1932 inc_stmt = build (MODIFY_EXPR, void_type_node, SSA_NAME_VAR (ivvar),
1933 inc_stmt);
1934 ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
1935 TREE_OPERAND (inc_stmt, 0) = ivvarinced;
1936 bsi = bsi_for_stmt (exitcond);
1937 bsi_insert_before (&bsi, inc_stmt, BSI_SAME_STMT);
1939 /* Replace the exit condition with the new upper bound
1940 comparison. */
1942 testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
1944 /* We want to build a conditional where true means exit the loop, and
1945 false means continue the loop.
1946 So swap the testtype if this isn't the way things are.*/
1948 if (exit->flags & EDGE_FALSE_VALUE)
1949 testtype = swap_tree_comparison (testtype);
1951 COND_EXPR_COND (exitcond) = build (testtype,
1952 boolean_type_node,
1953 newupperbound, ivvarinced);
1954 update_stmt (exitcond);
1955 VEC_replace (tree, new_ivs, i, ivvar);
1957 i++;
1958 temp = temp->inner;
1961 /* Rewrite uses of the old ivs so that they are now specified in terms of
1962 the new ivs. */
1964 for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
1966 imm_use_iterator imm_iter;
1967 use_operand_p imm_use;
1968 tree oldiv_def;
1969 tree oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
1971 if (TREE_CODE (oldiv_stmt) == PHI_NODE)
1972 oldiv_def = PHI_RESULT (oldiv_stmt);
1973 else
1974 oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF);
1975 gcc_assert (oldiv_def != NULL_TREE);
1977 FOR_EACH_IMM_USE_SAFE (imm_use, imm_iter, oldiv_def)
1979 tree stmt = USE_STMT (imm_use);
1980 use_operand_p use_p;
1981 ssa_op_iter iter;
1982 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1983 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1985 if (USE_FROM_PTR (use_p) == oldiv)
1987 tree newiv, stmts;
1988 lambda_body_vector lbv, newlbv;
1989 /* Compute the new expression for the induction
1990 variable. */
1991 depth = VEC_length (tree, new_ivs);
1992 lbv = lambda_body_vector_new (depth);
1993 LBV_COEFFICIENTS (lbv)[i] = 1;
1995 newlbv = lambda_body_vector_compute_new (transform, lbv);
1997 newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
1998 new_ivs, &stmts);
1999 bsi = bsi_for_stmt (stmt);
2000 /* Insert the statements to build that
2001 expression. */
2002 bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
2003 propagate_value (use_p, newiv);
2004 update_stmt (stmt);
2010 VEC_free (tree, heap, new_ivs);
2013 /* Return TRUE if this is not interesting statement from the perspective of
2014 determining if we have a perfect loop nest. */
2016 static bool
2017 not_interesting_stmt (tree stmt)
2019 /* Note that COND_EXPR's aren't interesting because if they were exiting the
2020 loop, we would have already failed the number of exits tests. */
2021 if (TREE_CODE (stmt) == LABEL_EXPR
2022 || TREE_CODE (stmt) == GOTO_EXPR
2023 || TREE_CODE (stmt) == COND_EXPR)
2024 return true;
2025 return false;
2028 /* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */
2030 static bool
2031 phi_loop_edge_uses_def (struct loop *loop, tree phi, tree def)
2033 int i;
2034 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
2035 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, i)->src))
2036 if (PHI_ARG_DEF (phi, i) == def)
2037 return true;
2038 return false;
2041 /* Return TRUE if STMT is a use of PHI_RESULT. */
2043 static bool
2044 stmt_uses_phi_result (tree stmt, tree phi_result)
2046 tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2048 /* This is conservatively true, because we only want SIMPLE bumpers
2049 of the form x +- constant for our pass. */
2050 return (use == phi_result);
2053 /* STMT is a bumper stmt for LOOP if the version it defines is used in the
2054 in-loop-edge in a phi node, and the operand it uses is the result of that
2055 phi node.
2056 I.E. i_29 = i_3 + 1
2057 i_3 = PHI (0, i_29); */
2059 static bool
2060 stmt_is_bumper_for_loop (struct loop *loop, tree stmt)
2062 tree use;
2063 tree def;
2064 imm_use_iterator iter;
2065 use_operand_p use_p;
2067 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
2068 if (!def)
2069 return false;
2071 FOR_EACH_IMM_USE_FAST (use_p, iter, def)
2073 use = USE_STMT (use_p);
2074 if (TREE_CODE (use) == PHI_NODE)
2076 if (phi_loop_edge_uses_def (loop, use, def))
2077 if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
2078 return true;
2081 return false;
2085 /* Return true if LOOP is a perfect loop nest.
2086 Perfect loop nests are those loop nests where all code occurs in the
2087 innermost loop body.
2088 If S is a program statement, then
2090 i.e.
2091 DO I = 1, 20
2093 DO J = 1, 20
2095 END DO
2096 END DO
2097 is not a perfect loop nest because of S1.
2099 DO I = 1, 20
2100 DO J = 1, 20
2103 END DO
2104 END DO
2105 is a perfect loop nest.
2107 Since we don't have high level loops anymore, we basically have to walk our
2108 statements and ignore those that are there because the loop needs them (IE
2109 the induction variable increment, and jump back to the top of the loop). */
2111 bool
2112 perfect_nest_p (struct loop *loop)
2114 basic_block *bbs;
2115 size_t i;
2116 tree exit_cond;
2118 if (!loop->inner)
2119 return true;
2120 bbs = get_loop_body (loop);
2121 exit_cond = get_loop_exit_condition (loop);
2122 for (i = 0; i < loop->num_nodes; i++)
2124 if (bbs[i]->loop_father == loop)
2126 block_stmt_iterator bsi;
2127 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
2129 tree stmt = bsi_stmt (bsi);
2130 if (stmt == exit_cond
2131 || not_interesting_stmt (stmt)
2132 || stmt_is_bumper_for_loop (loop, stmt))
2133 continue;
2134 free (bbs);
2135 return false;
2139 free (bbs);
2140 /* See if the inner loops are perfectly nested as well. */
2141 if (loop->inner)
2142 return perfect_nest_p (loop->inner);
2143 return true;
2146 /* Replace the USES of X in STMT, or uses with the same step as X with Y. */
2148 static void
2149 replace_uses_equiv_to_x_with_y (struct loop *loop, tree stmt, tree x,
2150 int xstep, tree y)
2152 ssa_op_iter iter;
2153 use_operand_p use_p;
2155 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
2157 tree use = USE_FROM_PTR (use_p);
2158 tree step = NULL_TREE;
2159 tree access_fn = NULL_TREE;
2162 access_fn = instantiate_parameters
2163 (loop, analyze_scalar_evolution (loop, use));
2164 if (access_fn != NULL_TREE && access_fn != chrec_dont_know)
2165 step = evolution_part_in_loop_num (access_fn, loop->num);
2166 if ((step && step != chrec_dont_know
2167 && TREE_CODE (step) == INTEGER_CST
2168 && int_cst_value (step) == xstep)
2169 || USE_FROM_PTR (use_p) == x)
2170 SET_USE (use_p, y);
2174 /* Return TRUE if STMT uses tree OP in it's uses. */
2176 static bool
2177 stmt_uses_op (tree stmt, tree op)
2179 ssa_op_iter iter;
2180 tree use;
2182 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2184 if (use == op)
2185 return true;
2187 return false;
2190 /* Return true if STMT is an exit PHI for LOOP */
2192 static bool
2193 exit_phi_for_loop_p (struct loop *loop, tree stmt)
2196 if (TREE_CODE (stmt) != PHI_NODE
2197 || PHI_NUM_ARGS (stmt) != 1
2198 || bb_for_stmt (stmt) != loop->single_exit->dest)
2199 return false;
2201 return true;
2204 /* Return true if STMT can be put back into INNER, a loop by moving it to the
2205 beginning of that loop. */
2207 static bool
2208 can_put_in_inner_loop (struct loop *inner, tree stmt)
2210 imm_use_iterator imm_iter;
2211 use_operand_p use_p;
2212 basic_block use_bb = NULL;
2214 gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
2215 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)
2216 || !expr_invariant_in_loop_p (inner, TREE_OPERAND (stmt, 1)))
2217 return false;
2219 /* We require that the basic block of all uses be the same, or the use be an
2220 exit phi. */
2221 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, TREE_OPERAND (stmt, 0))
2223 if (!exit_phi_for_loop_p (inner, USE_STMT (use_p)))
2225 basic_block immbb = bb_for_stmt (USE_STMT (use_p));
2227 if (!flow_bb_inside_loop_p (inner, immbb))
2228 return false;
2229 if (use_bb == NULL)
2230 use_bb = immbb;
2231 else if (immbb != use_bb)
2232 return false;
2235 return true;
2240 /* Return TRUE if LOOP is an imperfect nest that we can convert to a perfect
2241 one. LOOPIVS is a vector of induction variables, one per loop.
2242 ATM, we only handle imperfect nests of depth 2, where all of the statements
2243 occur after the inner loop. */
2245 static bool
2246 can_convert_to_perfect_nest (struct loop *loop,
2247 VEC(tree,heap) *loopivs)
2249 basic_block *bbs;
2250 tree exit_condition, phi;
2251 size_t i;
2252 block_stmt_iterator bsi;
2253 basic_block exitdest;
2255 /* Can't handle triply nested+ loops yet. */
2256 if (!loop->inner || loop->inner->inner)
2257 return false;
2259 bbs = get_loop_body (loop);
2260 exit_condition = get_loop_exit_condition (loop);
2261 for (i = 0; i < loop->num_nodes; i++)
2263 if (bbs[i]->loop_father == loop)
2265 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
2267 size_t j;
2268 tree stmt = bsi_stmt (bsi);
2269 tree iv;
2271 if (stmt == exit_condition
2272 || not_interesting_stmt (stmt)
2273 || stmt_is_bumper_for_loop (loop, stmt))
2274 continue;
2275 /* If the statement uses inner loop ivs, we == screwed. */
2276 for (j = 1; VEC_iterate (tree, loopivs, j, iv); j++)
2277 if (stmt_uses_op (stmt, iv))
2278 goto fail;
2280 /* If this is a simple operation like a cast that is invariant
2281 in the inner loop, only used there, and we can place it
2282 there, then it's not going to hurt us.
2283 This means that we will propagate casts and other cheap
2284 invariant operations *back*
2285 into the inner loop if we can interchange the loop, on the
2286 theory that we are going to gain a lot more by interchanging
2287 the loop than we are by leaving some invariant code there for
2288 some other pass to clean up. */
2289 if (TREE_CODE (stmt) == MODIFY_EXPR
2290 && is_gimple_cast (TREE_OPERAND (stmt, 1))
2291 && can_put_in_inner_loop (loop->inner, stmt))
2292 continue;
2294 /* Otherwise, if the bb of a statement we care about isn't
2295 dominated by the header of the inner loop, then we can't
2296 handle this case right now. This test ensures that the
2297 statement comes completely *after* the inner loop. */
2298 if (!dominated_by_p (CDI_DOMINATORS,
2299 bb_for_stmt (stmt),
2300 loop->inner->header))
2301 goto fail;
2306 /* We also need to make sure the loop exit only has simple copy phis in it,
2307 otherwise we don't know how to transform it into a perfect nest right
2308 now. */
2309 exitdest = loop->single_exit->dest;
2311 for (phi = phi_nodes (exitdest); phi; phi = PHI_CHAIN (phi))
2312 if (PHI_NUM_ARGS (phi) != 1)
2313 goto fail;
2315 free (bbs);
2316 return true;
2318 fail:
2319 free (bbs);
2320 return false;
2323 /* Transform the loop nest into a perfect nest, if possible.
2324 LOOPS is the current struct loops *
2325 LOOP is the loop nest to transform into a perfect nest
2326 LBOUNDS are the lower bounds for the loops to transform
2327 UBOUNDS are the upper bounds for the loops to transform
2328 STEPS is the STEPS for the loops to transform.
2329 LOOPIVS is the induction variables for the loops to transform.
2331 Basically, for the case of
2333 FOR (i = 0; i < 50; i++)
2335 FOR (j =0; j < 50; j++)
2337 <whatever>
2339 <some code>
2342 This function will transform it into a perfect loop nest by splitting the
2343 outer loop into two loops, like so:
2345 FOR (i = 0; i < 50; i++)
2347 FOR (j = 0; j < 50; j++)
2349 <whatever>
2353 FOR (i = 0; i < 50; i ++)
2355 <some code>
2358 Return FALSE if we can't make this loop into a perfect nest. */
2360 static bool
2361 perfect_nestify (struct loops *loops,
2362 struct loop *loop,
2363 VEC(tree,heap) *lbounds,
2364 VEC(tree,heap) *ubounds,
2365 VEC(int,heap) *steps,
2366 VEC(tree,heap) *loopivs)
2368 basic_block *bbs;
2369 tree exit_condition;
2370 tree then_label, else_label, cond_stmt;
2371 basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
2372 int i;
2373 block_stmt_iterator bsi;
2374 bool insert_after;
2375 edge e;
2376 struct loop *newloop;
2377 tree phi;
2378 tree uboundvar;
2379 tree stmt;
2380 tree oldivvar, ivvar, ivvarinced;
2381 VEC(tree,heap) *phis = NULL;
2383 if (!can_convert_to_perfect_nest (loop, loopivs))
2384 return false;
2386 /* Create the new loop */
2388 olddest = loop->single_exit->dest;
2389 preheaderbb = loop_split_edge_with (loop->single_exit, NULL);
2390 headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2392 /* Push the exit phi nodes that we are moving. */
2393 for (phi = phi_nodes (olddest); phi; phi = PHI_CHAIN (phi))
2395 VEC_reserve (tree, heap, phis, 2);
2396 VEC_quick_push (tree, phis, PHI_RESULT (phi));
2397 VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0));
2399 e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
2401 /* Remove the exit phis from the old basic block. Make sure to set
2402 PHI_RESULT to null so it doesn't get released. */
2403 while (phi_nodes (olddest) != NULL)
2405 SET_PHI_RESULT (phi_nodes (olddest), NULL);
2406 remove_phi_node (phi_nodes (olddest), NULL);
2409 /* and add them back to the new basic block. */
2410 while (VEC_length (tree, phis) != 0)
2412 tree def;
2413 tree phiname;
2414 def = VEC_pop (tree, phis);
2415 phiname = VEC_pop (tree, phis);
2416 phi = create_phi_node (phiname, preheaderbb);
2417 add_phi_arg (phi, def, single_pred_edge (preheaderbb));
2419 flush_pending_stmts (e);
2420 VEC_free (tree, heap, phis);
2422 bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2423 latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2424 make_edge (headerbb, bodybb, EDGE_FALLTHRU);
2425 then_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (latchbb));
2426 else_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (olddest));
2427 cond_stmt = build (COND_EXPR, void_type_node,
2428 build (NE_EXPR, boolean_type_node,
2429 integer_one_node,
2430 integer_zero_node),
2431 then_label, else_label);
2432 bsi = bsi_start (bodybb);
2433 bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
2434 e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
2435 make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
2436 make_edge (latchbb, headerbb, EDGE_FALLTHRU);
2438 /* Update the loop structures. */
2439 newloop = duplicate_loop (loops, loop, olddest->loop_father);
2440 newloop->header = headerbb;
2441 newloop->latch = latchbb;
2442 newloop->single_exit = e;
2443 add_bb_to_loop (latchbb, newloop);
2444 add_bb_to_loop (bodybb, newloop);
2445 add_bb_to_loop (headerbb, newloop);
2446 set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
2447 set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
2448 set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
2449 loop->single_exit->src);
2450 set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
2451 set_immediate_dominator (CDI_DOMINATORS, olddest, bodybb);
2452 /* Create the new iv. */
2453 oldivvar = VEC_index (tree, loopivs, 0);
2454 ivvar = create_tmp_var (TREE_TYPE (oldivvar), "perfectiv");
2455 add_referenced_tmp_var (ivvar);
2456 standard_iv_increment_position (newloop, &bsi, &insert_after);
2457 create_iv (VEC_index (tree, lbounds, 0),
2458 build_int_cst (TREE_TYPE (oldivvar), VEC_index (int, steps, 0)),
2459 ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
2461 /* Create the new upper bound. This may be not just a variable, so we copy
2462 it to one just in case. */
2464 exit_condition = get_loop_exit_condition (newloop);
2465 uboundvar = create_tmp_var (integer_type_node, "uboundvar");
2466 add_referenced_tmp_var (uboundvar);
2467 stmt = build (MODIFY_EXPR, void_type_node, uboundvar,
2468 VEC_index (tree, ubounds, 0));
2469 uboundvar = make_ssa_name (uboundvar, stmt);
2470 TREE_OPERAND (stmt, 0) = uboundvar;
2472 if (insert_after)
2473 bsi_insert_after (&bsi, stmt, BSI_SAME_STMT);
2474 else
2475 bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
2476 update_stmt (stmt);
2477 COND_EXPR_COND (exit_condition) = build (GE_EXPR,
2478 boolean_type_node,
2479 uboundvar,
2480 ivvarinced);
2481 update_stmt (exit_condition);
2482 bbs = get_loop_body_in_dom_order (loop);
2483 /* Now move the statements, and replace the induction variable in the moved
2484 statements with the correct loop induction variable. */
2485 oldivvar = VEC_index (tree, loopivs, 0);
2486 for (i = loop->num_nodes - 1; i >= 0 ; i--)
2488 block_stmt_iterator tobsi = bsi_last (bodybb);
2489 if (bbs[i]->loop_father == loop)
2491 /* If this is true, we are *before* the inner loop.
2492 If this isn't true, we are *after* it.
2494 The only time can_convert_to_perfect_nest returns true when we
2495 have statements before the inner loop is if they can be moved
2496 into the inner loop.
2498 The only time can_convert_to_perfect_nest returns true when we
2499 have statements after the inner loop is if they can be moved into
2500 the new split loop. */
2502 if (dominated_by_p (CDI_DOMINATORS, loop->inner->header, bbs[i]))
2504 for (bsi = bsi_last (bbs[i]); !bsi_end_p (bsi);)
2506 use_operand_p use_p;
2507 imm_use_iterator imm_iter;
2508 tree stmt = bsi_stmt (bsi);
2510 if (stmt == exit_condition
2511 || not_interesting_stmt (stmt)
2512 || stmt_is_bumper_for_loop (loop, stmt))
2514 if (!bsi_end_p (bsi))
2515 bsi_prev (&bsi);
2516 continue;
2518 /* Move this statement back into the inner loop.
2519 This looks a bit confusing, but we are really just
2520 finding the first non-exit phi use and moving the
2521 statement to the beginning of that use's basic
2522 block. */
2523 FOR_EACH_IMM_USE_SAFE (use_p, imm_iter,
2524 TREE_OPERAND (stmt, 0))
2526 tree imm_stmt = USE_STMT (use_p);
2527 if (!exit_phi_for_loop_p (loop->inner, imm_stmt))
2529 block_stmt_iterator tobsi = bsi_after_labels (bb_for_stmt (imm_stmt));
2530 bsi_move_after (&bsi, &tobsi);
2531 update_stmt (stmt);
2532 BREAK_FROM_SAFE_IMM_USE (imm_iter);
2537 else
2539 /* Note that the bsi only needs to be explicitly incremented
2540 when we don't move something, since it is automatically
2541 incremented when we do. */
2542 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2544 ssa_op_iter i;
2545 tree n, stmt = bsi_stmt (bsi);
2547 if (stmt == exit_condition
2548 || not_interesting_stmt (stmt)
2549 || stmt_is_bumper_for_loop (loop, stmt))
2551 bsi_next (&bsi);
2552 continue;
2555 replace_uses_equiv_to_x_with_y (loop, stmt,
2556 oldivvar,
2557 VEC_index (int, steps, 0),
2558 ivvar);
2559 bsi_move_before (&bsi, &tobsi);
2561 /* If the statement has any virtual operands, they may
2562 need to be rewired because the original loop may
2563 still reference them. */
2564 FOR_EACH_SSA_TREE_OPERAND (n, stmt, i, SSA_OP_ALL_VIRTUALS)
2565 mark_sym_for_renaming (SSA_NAME_VAR (n));
2572 free (bbs);
2573 return perfect_nest_p (loop);
2576 /* Return true if TRANS is a legal transformation matrix that respects
2577 the dependence vectors in DISTS and DIRS. The conservative answer
2578 is false.
2580 "Wolfe proves that a unimodular transformation represented by the
2581 matrix T is legal when applied to a loop nest with a set of
2582 lexicographically non-negative distance vectors RDG if and only if
2583 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
2584 i.e.: if and only if it transforms the lexicographically positive
2585 distance vectors to lexicographically positive vectors. Note that
2586 a unimodular matrix must transform the zero vector (and only it) to
2587 the zero vector." S.Muchnick. */
2589 bool
2590 lambda_transform_legal_p (lambda_trans_matrix trans,
2591 int nb_loops,
2592 varray_type dependence_relations)
2594 unsigned int i;
2595 lambda_vector distres;
2596 struct data_dependence_relation *ddr;
2598 gcc_assert (LTM_COLSIZE (trans) == nb_loops
2599 && LTM_ROWSIZE (trans) == nb_loops);
2601 /* When there is an unknown relation in the dependence_relations, we
2602 know that it is no worth looking at this loop nest: give up. */
2603 ddr = (struct data_dependence_relation *)
2604 VARRAY_GENERIC_PTR (dependence_relations, 0);
2605 if (ddr == NULL)
2606 return true;
2607 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2608 return false;
2610 distres = lambda_vector_new (nb_loops);
2612 /* For each distance vector in the dependence graph. */
2613 for (i = 0; i < VARRAY_ACTIVE_SIZE (dependence_relations); i++)
2615 ddr = (struct data_dependence_relation *)
2616 VARRAY_GENERIC_PTR (dependence_relations, i);
2618 /* Don't care about relations for which we know that there is no
2619 dependence, nor about read-read (aka. output-dependences):
2620 these data accesses can happen in any order. */
2621 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
2622 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
2623 continue;
2625 /* Conservatively answer: "this transformation is not valid". */
2626 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2627 return false;
2629 /* If the dependence could not be captured by a distance vector,
2630 conservatively answer that the transform is not valid. */
2631 if (DDR_DIST_VECT (ddr) == NULL)
2632 return false;
2634 /* Compute trans.dist_vect */
2635 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
2636 DDR_DIST_VECT (ddr), distres);
2638 if (!lambda_vector_lexico_pos (distres, nb_loops))
2639 return false;
2641 return true;