[ARM/AArch64][testsuite] Add vmlal_lane and vmlsl_lane tests.
[official-gcc.git] / gcc / jump.c
blob3b8c91e007fe879bff00aa85c24b2b965fc685ce
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "hard-reg-set.h"
44 #include "regs.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
47 #include "recog.h"
48 #include "hashtab.h"
49 #include "hash-set.h"
50 #include "vec.h"
51 #include "machmode.h"
52 #include "input.h"
53 #include "function.h"
54 #include "predict.h"
55 #include "dominance.h"
56 #include "cfg.h"
57 #include "cfgrtl.h"
58 #include "basic-block.h"
59 #include "symtab.h"
60 #include "statistics.h"
61 #include "double-int.h"
62 #include "real.h"
63 #include "fixed-value.h"
64 #include "alias.h"
65 #include "wide-int.h"
66 #include "inchash.h"
67 #include "tree.h"
68 #include "expmed.h"
69 #include "dojump.h"
70 #include "explow.h"
71 #include "calls.h"
72 #include "emit-rtl.h"
73 #include "varasm.h"
74 #include "stmt.h"
75 #include "expr.h"
76 #include "except.h"
77 #include "diagnostic-core.h"
78 #include "reload.h"
79 #include "tree-pass.h"
80 #include "target.h"
81 #include "rtl-iter.h"
83 /* Optimize jump y; x: ... y: jumpif... x?
84 Don't know if it is worth bothering with. */
85 /* Optimize two cases of conditional jump to conditional jump?
86 This can never delete any instruction or make anything dead,
87 or even change what is live at any point.
88 So perhaps let combiner do it. */
90 static void init_label_info (rtx_insn *);
91 static void mark_all_labels (rtx_insn *);
92 static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
93 static void mark_jump_label_asm (rtx, rtx_insn *);
94 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
95 static int invert_exp_1 (rtx, rtx);
97 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
98 static void
99 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
101 rtx_insn_list *insn;
103 timevar_push (TV_REBUILD_JUMP);
104 init_label_info (f);
105 mark_all_labels (f);
107 /* Keep track of labels used from static data; we don't track them
108 closely enough to delete them here, so make sure their reference
109 count doesn't drop to zero. */
111 if (count_forced)
112 for (insn = forced_labels; insn; insn = insn->next ())
113 if (LABEL_P (insn->insn ()))
114 LABEL_NUSES (insn->insn ())++;
115 timevar_pop (TV_REBUILD_JUMP);
118 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
119 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
120 instructions and jumping insns that have labels as operands
121 (e.g. cbranchsi4). */
122 void
123 rebuild_jump_labels (rtx_insn *f)
125 rebuild_jump_labels_1 (f, true);
128 /* This function is like rebuild_jump_labels, but doesn't run over
129 forced_labels. It can be used on insn chains that aren't the
130 main function chain. */
131 void
132 rebuild_jump_labels_chain (rtx_insn *chain)
134 rebuild_jump_labels_1 (chain, false);
137 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
138 non-fallthru insn. This is not generally true, as multiple barriers
139 may have crept in, or the BARRIER may be separated from the last
140 real insn by one or more NOTEs.
142 This simple pass moves barriers and removes duplicates so that the
143 old code is happy.
145 static unsigned int
146 cleanup_barriers (void)
148 rtx_insn *insn;
149 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
151 if (BARRIER_P (insn))
153 rtx_insn *prev = prev_nonnote_insn (insn);
154 if (!prev)
155 continue;
157 if (CALL_P (prev))
159 /* Make sure we do not split a call and its corresponding
160 CALL_ARG_LOCATION note. */
161 rtx_insn *next = NEXT_INSN (prev);
163 if (NOTE_P (next)
164 && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
165 prev = next;
168 if (BARRIER_P (prev))
169 delete_insn (insn);
170 else if (prev != PREV_INSN (insn))
171 reorder_insns_nobb (insn, insn, prev);
174 return 0;
177 namespace {
179 const pass_data pass_data_cleanup_barriers =
181 RTL_PASS, /* type */
182 "barriers", /* name */
183 OPTGROUP_NONE, /* optinfo_flags */
184 TV_NONE, /* tv_id */
185 0, /* properties_required */
186 0, /* properties_provided */
187 0, /* properties_destroyed */
188 0, /* todo_flags_start */
189 0, /* todo_flags_finish */
192 class pass_cleanup_barriers : public rtl_opt_pass
194 public:
195 pass_cleanup_barriers (gcc::context *ctxt)
196 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
199 /* opt_pass methods: */
200 virtual unsigned int execute (function *) { return cleanup_barriers (); }
202 }; // class pass_cleanup_barriers
204 } // anon namespace
206 rtl_opt_pass *
207 make_pass_cleanup_barriers (gcc::context *ctxt)
209 return new pass_cleanup_barriers (ctxt);
213 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
214 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
215 notes whose labels don't occur in the insn any more. */
217 static void
218 init_label_info (rtx_insn *f)
220 rtx_insn *insn;
222 for (insn = f; insn; insn = NEXT_INSN (insn))
224 if (LABEL_P (insn))
225 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
227 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
228 sticky and not reset here; that way we won't lose association
229 with a label when e.g. the source for a target register
230 disappears out of reach for targets that may use jump-target
231 registers. Jump transformations are supposed to transform
232 any REG_LABEL_TARGET notes. The target label reference in a
233 branch may disappear from the branch (and from the
234 instruction before it) for other reasons, like register
235 allocation. */
237 if (INSN_P (insn))
239 rtx note, next;
241 for (note = REG_NOTES (insn); note; note = next)
243 next = XEXP (note, 1);
244 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
245 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
246 remove_note (insn, note);
252 /* A subroutine of mark_all_labels. Trivially propagate a simple label
253 load into a jump_insn that uses it. */
255 static void
256 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
258 rtx label_note, pc, pc_src;
260 pc = pc_set (jump_insn);
261 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
262 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
264 /* If the previous non-jump insn sets something to a label,
265 something that this jump insn uses, make that label the primary
266 target of this insn if we don't yet have any. That previous
267 insn must be a single_set and not refer to more than one label.
268 The jump insn must not refer to other labels as jump targets
269 and must be a plain (set (pc) ...), maybe in a parallel, and
270 may refer to the item being set only directly or as one of the
271 arms in an IF_THEN_ELSE. */
273 if (label_note != NULL && pc_src != NULL)
275 rtx label_set = single_set (prev_nonjump_insn);
276 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
278 if (label_set != NULL
279 /* The source must be the direct LABEL_REF, not a
280 PLUS, UNSPEC, IF_THEN_ELSE etc. */
281 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
282 && (rtx_equal_p (label_dest, pc_src)
283 || (GET_CODE (pc_src) == IF_THEN_ELSE
284 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
285 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
287 /* The CODE_LABEL referred to in the note must be the
288 CODE_LABEL in the LABEL_REF of the "set". We can
289 conveniently use it for the marker function, which
290 requires a LABEL_REF wrapping. */
291 gcc_assert (XEXP (label_note, 0) == LABEL_REF_LABEL (SET_SRC (label_set)));
293 mark_jump_label_1 (label_set, jump_insn, false, true);
295 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
300 /* Mark the label each jump jumps to.
301 Combine consecutive labels, and count uses of labels. */
303 static void
304 mark_all_labels (rtx_insn *f)
306 rtx_insn *insn;
308 if (current_ir_type () == IR_RTL_CFGLAYOUT)
310 basic_block bb;
311 FOR_EACH_BB_FN (bb, cfun)
313 /* In cfglayout mode, we don't bother with trivial next-insn
314 propagation of LABEL_REFs into JUMP_LABEL. This will be
315 handled by other optimizers using better algorithms. */
316 FOR_BB_INSNS (bb, insn)
318 gcc_assert (! insn->deleted ());
319 if (NONDEBUG_INSN_P (insn))
320 mark_jump_label (PATTERN (insn), insn, 0);
323 /* In cfglayout mode, there may be non-insns between the
324 basic blocks. If those non-insns represent tablejump data,
325 they contain label references that we must record. */
326 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
327 if (JUMP_TABLE_DATA_P (insn))
328 mark_jump_label (PATTERN (insn), insn, 0);
329 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
330 if (JUMP_TABLE_DATA_P (insn))
331 mark_jump_label (PATTERN (insn), insn, 0);
334 else
336 rtx_insn *prev_nonjump_insn = NULL;
337 for (insn = f; insn; insn = NEXT_INSN (insn))
339 if (insn->deleted ())
341 else if (LABEL_P (insn))
342 prev_nonjump_insn = NULL;
343 else if (JUMP_TABLE_DATA_P (insn))
344 mark_jump_label (PATTERN (insn), insn, 0);
345 else if (NONDEBUG_INSN_P (insn))
347 mark_jump_label (PATTERN (insn), insn, 0);
348 if (JUMP_P (insn))
350 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
351 maybe_propagate_label_ref (insn, prev_nonjump_insn);
353 else
354 prev_nonjump_insn = insn;
360 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
361 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
362 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
363 know whether it's source is floating point or integer comparison. Machine
364 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
365 to help this function avoid overhead in these cases. */
366 enum rtx_code
367 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
368 const_rtx arg1, const_rtx insn)
370 machine_mode mode;
372 /* If this is not actually a comparison, we can't reverse it. */
373 if (GET_RTX_CLASS (code) != RTX_COMPARE
374 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
375 return UNKNOWN;
377 mode = GET_MODE (arg0);
378 if (mode == VOIDmode)
379 mode = GET_MODE (arg1);
381 /* First see if machine description supplies us way to reverse the
382 comparison. Give it priority over everything else to allow
383 machine description to do tricks. */
384 if (GET_MODE_CLASS (mode) == MODE_CC
385 && REVERSIBLE_CC_MODE (mode))
387 #ifdef REVERSE_CONDITION
388 return REVERSE_CONDITION (code, mode);
389 #else
390 return reverse_condition (code);
391 #endif
394 /* Try a few special cases based on the comparison code. */
395 switch (code)
397 case GEU:
398 case GTU:
399 case LEU:
400 case LTU:
401 case NE:
402 case EQ:
403 /* It is always safe to reverse EQ and NE, even for the floating
404 point. Similarly the unsigned comparisons are never used for
405 floating point so we can reverse them in the default way. */
406 return reverse_condition (code);
407 case ORDERED:
408 case UNORDERED:
409 case LTGT:
410 case UNEQ:
411 /* In case we already see unordered comparison, we can be sure to
412 be dealing with floating point so we don't need any more tests. */
413 return reverse_condition_maybe_unordered (code);
414 case UNLT:
415 case UNLE:
416 case UNGT:
417 case UNGE:
418 /* We don't have safe way to reverse these yet. */
419 return UNKNOWN;
420 default:
421 break;
424 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
426 const_rtx prev;
427 /* Try to search for the comparison to determine the real mode.
428 This code is expensive, but with sane machine description it
429 will be never used, since REVERSIBLE_CC_MODE will return true
430 in all cases. */
431 if (! insn)
432 return UNKNOWN;
434 /* These CONST_CAST's are okay because prev_nonnote_insn just
435 returns its argument and we assign it to a const_rtx
436 variable. */
437 for (prev = prev_nonnote_insn (CONST_CAST_RTX (insn));
438 prev != 0 && !LABEL_P (prev);
439 prev = prev_nonnote_insn (CONST_CAST_RTX (prev)))
441 const_rtx set = set_of (arg0, prev);
442 if (set && GET_CODE (set) == SET
443 && rtx_equal_p (SET_DEST (set), arg0))
445 rtx src = SET_SRC (set);
447 if (GET_CODE (src) == COMPARE)
449 rtx comparison = src;
450 arg0 = XEXP (src, 0);
451 mode = GET_MODE (arg0);
452 if (mode == VOIDmode)
453 mode = GET_MODE (XEXP (comparison, 1));
454 break;
456 /* We can get past reg-reg moves. This may be useful for model
457 of i387 comparisons that first move flag registers around. */
458 if (REG_P (src))
460 arg0 = src;
461 continue;
464 /* If register is clobbered in some ununderstandable way,
465 give up. */
466 if (set)
467 return UNKNOWN;
471 /* Test for an integer condition, or a floating-point comparison
472 in which NaNs can be ignored. */
473 if (CONST_INT_P (arg0)
474 || (GET_MODE (arg0) != VOIDmode
475 && GET_MODE_CLASS (mode) != MODE_CC
476 && !HONOR_NANS (mode)))
477 return reverse_condition (code);
479 return UNKNOWN;
482 /* A wrapper around the previous function to take COMPARISON as rtx
483 expression. This simplifies many callers. */
484 enum rtx_code
485 reversed_comparison_code (const_rtx comparison, const_rtx insn)
487 if (!COMPARISON_P (comparison))
488 return UNKNOWN;
489 return reversed_comparison_code_parts (GET_CODE (comparison),
490 XEXP (comparison, 0),
491 XEXP (comparison, 1), insn);
494 /* Return comparison with reversed code of EXP.
495 Return NULL_RTX in case we fail to do the reversal. */
497 reversed_comparison (const_rtx exp, machine_mode mode)
499 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
500 if (reversed_code == UNKNOWN)
501 return NULL_RTX;
502 else
503 return simplify_gen_relational (reversed_code, mode, VOIDmode,
504 XEXP (exp, 0), XEXP (exp, 1));
508 /* Given an rtx-code for a comparison, return the code for the negated
509 comparison. If no such code exists, return UNKNOWN.
511 WATCH OUT! reverse_condition is not safe to use on a jump that might
512 be acting on the results of an IEEE floating point comparison, because
513 of the special treatment of non-signaling nans in comparisons.
514 Use reversed_comparison_code instead. */
516 enum rtx_code
517 reverse_condition (enum rtx_code code)
519 switch (code)
521 case EQ:
522 return NE;
523 case NE:
524 return EQ;
525 case GT:
526 return LE;
527 case GE:
528 return LT;
529 case LT:
530 return GE;
531 case LE:
532 return GT;
533 case GTU:
534 return LEU;
535 case GEU:
536 return LTU;
537 case LTU:
538 return GEU;
539 case LEU:
540 return GTU;
541 case UNORDERED:
542 return ORDERED;
543 case ORDERED:
544 return UNORDERED;
546 case UNLT:
547 case UNLE:
548 case UNGT:
549 case UNGE:
550 case UNEQ:
551 case LTGT:
552 return UNKNOWN;
554 default:
555 gcc_unreachable ();
559 /* Similar, but we're allowed to generate unordered comparisons, which
560 makes it safe for IEEE floating-point. Of course, we have to recognize
561 that the target will support them too... */
563 enum rtx_code
564 reverse_condition_maybe_unordered (enum rtx_code code)
566 switch (code)
568 case EQ:
569 return NE;
570 case NE:
571 return EQ;
572 case GT:
573 return UNLE;
574 case GE:
575 return UNLT;
576 case LT:
577 return UNGE;
578 case LE:
579 return UNGT;
580 case LTGT:
581 return UNEQ;
582 case UNORDERED:
583 return ORDERED;
584 case ORDERED:
585 return UNORDERED;
586 case UNLT:
587 return GE;
588 case UNLE:
589 return GT;
590 case UNGT:
591 return LE;
592 case UNGE:
593 return LT;
594 case UNEQ:
595 return LTGT;
597 default:
598 gcc_unreachable ();
602 /* Similar, but return the code when two operands of a comparison are swapped.
603 This IS safe for IEEE floating-point. */
605 enum rtx_code
606 swap_condition (enum rtx_code code)
608 switch (code)
610 case EQ:
611 case NE:
612 case UNORDERED:
613 case ORDERED:
614 case UNEQ:
615 case LTGT:
616 return code;
618 case GT:
619 return LT;
620 case GE:
621 return LE;
622 case LT:
623 return GT;
624 case LE:
625 return GE;
626 case GTU:
627 return LTU;
628 case GEU:
629 return LEU;
630 case LTU:
631 return GTU;
632 case LEU:
633 return GEU;
634 case UNLT:
635 return UNGT;
636 case UNLE:
637 return UNGE;
638 case UNGT:
639 return UNLT;
640 case UNGE:
641 return UNLE;
643 default:
644 gcc_unreachable ();
648 /* Given a comparison CODE, return the corresponding unsigned comparison.
649 If CODE is an equality comparison or already an unsigned comparison,
650 CODE is returned. */
652 enum rtx_code
653 unsigned_condition (enum rtx_code code)
655 switch (code)
657 case EQ:
658 case NE:
659 case GTU:
660 case GEU:
661 case LTU:
662 case LEU:
663 return code;
665 case GT:
666 return GTU;
667 case GE:
668 return GEU;
669 case LT:
670 return LTU;
671 case LE:
672 return LEU;
674 default:
675 gcc_unreachable ();
679 /* Similarly, return the signed version of a comparison. */
681 enum rtx_code
682 signed_condition (enum rtx_code code)
684 switch (code)
686 case EQ:
687 case NE:
688 case GT:
689 case GE:
690 case LT:
691 case LE:
692 return code;
694 case GTU:
695 return GT;
696 case GEU:
697 return GE;
698 case LTU:
699 return LT;
700 case LEU:
701 return LE;
703 default:
704 gcc_unreachable ();
708 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
709 truth of CODE1 implies the truth of CODE2. */
712 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
714 /* UNKNOWN comparison codes can happen as a result of trying to revert
715 comparison codes.
716 They can't match anything, so we have to reject them here. */
717 if (code1 == UNKNOWN || code2 == UNKNOWN)
718 return 0;
720 if (code1 == code2)
721 return 1;
723 switch (code1)
725 case UNEQ:
726 if (code2 == UNLE || code2 == UNGE)
727 return 1;
728 break;
730 case EQ:
731 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
732 || code2 == ORDERED)
733 return 1;
734 break;
736 case UNLT:
737 if (code2 == UNLE || code2 == NE)
738 return 1;
739 break;
741 case LT:
742 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
743 return 1;
744 break;
746 case UNGT:
747 if (code2 == UNGE || code2 == NE)
748 return 1;
749 break;
751 case GT:
752 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
753 return 1;
754 break;
756 case GE:
757 case LE:
758 if (code2 == ORDERED)
759 return 1;
760 break;
762 case LTGT:
763 if (code2 == NE || code2 == ORDERED)
764 return 1;
765 break;
767 case LTU:
768 if (code2 == LEU || code2 == NE)
769 return 1;
770 break;
772 case GTU:
773 if (code2 == GEU || code2 == NE)
774 return 1;
775 break;
777 case UNORDERED:
778 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
779 || code2 == UNGE || code2 == UNGT)
780 return 1;
781 break;
783 default:
784 break;
787 return 0;
790 /* Return 1 if INSN is an unconditional jump and nothing else. */
793 simplejump_p (const rtx_insn *insn)
795 return (JUMP_P (insn)
796 && GET_CODE (PATTERN (insn)) == SET
797 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
798 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
801 /* Return nonzero if INSN is a (possibly) conditional jump
802 and nothing more.
804 Use of this function is deprecated, since we need to support combined
805 branch and compare insns. Use any_condjump_p instead whenever possible. */
808 condjump_p (const rtx_insn *insn)
810 const_rtx x = PATTERN (insn);
812 if (GET_CODE (x) != SET
813 || GET_CODE (SET_DEST (x)) != PC)
814 return 0;
816 x = SET_SRC (x);
817 if (GET_CODE (x) == LABEL_REF)
818 return 1;
819 else
820 return (GET_CODE (x) == IF_THEN_ELSE
821 && ((GET_CODE (XEXP (x, 2)) == PC
822 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
823 || ANY_RETURN_P (XEXP (x, 1))))
824 || (GET_CODE (XEXP (x, 1)) == PC
825 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
826 || ANY_RETURN_P (XEXP (x, 2))))));
829 /* Return nonzero if INSN is a (possibly) conditional jump inside a
830 PARALLEL.
832 Use this function is deprecated, since we need to support combined
833 branch and compare insns. Use any_condjump_p instead whenever possible. */
836 condjump_in_parallel_p (const rtx_insn *insn)
838 const_rtx x = PATTERN (insn);
840 if (GET_CODE (x) != PARALLEL)
841 return 0;
842 else
843 x = XVECEXP (x, 0, 0);
845 if (GET_CODE (x) != SET)
846 return 0;
847 if (GET_CODE (SET_DEST (x)) != PC)
848 return 0;
849 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
850 return 1;
851 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
852 return 0;
853 if (XEXP (SET_SRC (x), 2) == pc_rtx
854 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
855 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
856 return 1;
857 if (XEXP (SET_SRC (x), 1) == pc_rtx
858 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
859 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
860 return 1;
861 return 0;
864 /* Return set of PC, otherwise NULL. */
867 pc_set (const rtx_insn *insn)
869 rtx pat;
870 if (!JUMP_P (insn))
871 return NULL_RTX;
872 pat = PATTERN (insn);
874 /* The set is allowed to appear either as the insn pattern or
875 the first set in a PARALLEL. */
876 if (GET_CODE (pat) == PARALLEL)
877 pat = XVECEXP (pat, 0, 0);
878 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
879 return pat;
881 return NULL_RTX;
884 /* Return true when insn is an unconditional direct jump,
885 possibly bundled inside a PARALLEL. */
888 any_uncondjump_p (const rtx_insn *insn)
890 const_rtx x = pc_set (insn);
891 if (!x)
892 return 0;
893 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
894 return 0;
895 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
896 return 0;
897 return 1;
900 /* Return true when insn is a conditional jump. This function works for
901 instructions containing PC sets in PARALLELs. The instruction may have
902 various other effects so before removing the jump you must verify
903 onlyjump_p.
905 Note that unlike condjump_p it returns false for unconditional jumps. */
908 any_condjump_p (const rtx_insn *insn)
910 const_rtx x = pc_set (insn);
911 enum rtx_code a, b;
913 if (!x)
914 return 0;
915 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
916 return 0;
918 a = GET_CODE (XEXP (SET_SRC (x), 1));
919 b = GET_CODE (XEXP (SET_SRC (x), 2));
921 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
922 || (a == PC
923 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
926 /* Return the label of a conditional jump. */
929 condjump_label (const rtx_insn *insn)
931 rtx x = pc_set (insn);
933 if (!x)
934 return NULL_RTX;
935 x = SET_SRC (x);
936 if (GET_CODE (x) == LABEL_REF)
937 return x;
938 if (GET_CODE (x) != IF_THEN_ELSE)
939 return NULL_RTX;
940 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
941 return XEXP (x, 1);
942 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
943 return XEXP (x, 2);
944 return NULL_RTX;
947 /* Return TRUE if INSN is a return jump. */
950 returnjump_p (const rtx_insn *insn)
952 if (JUMP_P (insn))
954 subrtx_iterator::array_type array;
955 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
957 const_rtx x = *iter;
958 switch (GET_CODE (x))
960 case RETURN:
961 case SIMPLE_RETURN:
962 case EH_RETURN:
963 return true;
965 case SET:
966 if (SET_IS_RETURN_P (x))
967 return true;
968 break;
970 default:
971 break;
975 return false;
978 /* Return true if INSN is a (possibly conditional) return insn. */
981 eh_returnjump_p (rtx_insn *insn)
983 if (JUMP_P (insn))
985 subrtx_iterator::array_type array;
986 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
987 if (GET_CODE (*iter) == EH_RETURN)
988 return true;
990 return false;
993 /* Return true if INSN is a jump that only transfers control and
994 nothing more. */
997 onlyjump_p (const rtx_insn *insn)
999 rtx set;
1001 if (!JUMP_P (insn))
1002 return 0;
1004 set = single_set (insn);
1005 if (set == NULL)
1006 return 0;
1007 if (GET_CODE (SET_DEST (set)) != PC)
1008 return 0;
1009 if (side_effects_p (SET_SRC (set)))
1010 return 0;
1012 return 1;
1015 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1016 NULL or a return. */
1017 bool
1018 jump_to_label_p (const rtx_insn *insn)
1020 return (JUMP_P (insn)
1021 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1024 #ifdef HAVE_cc0
1026 /* Return nonzero if X is an RTX that only sets the condition codes
1027 and has no side effects. */
1030 only_sets_cc0_p (const_rtx x)
1032 if (! x)
1033 return 0;
1035 if (INSN_P (x))
1036 x = PATTERN (x);
1038 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1041 /* Return 1 if X is an RTX that does nothing but set the condition codes
1042 and CLOBBER or USE registers.
1043 Return -1 if X does explicitly set the condition codes,
1044 but also does other things. */
1047 sets_cc0_p (const_rtx x)
1049 if (! x)
1050 return 0;
1052 if (INSN_P (x))
1053 x = PATTERN (x);
1055 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1056 return 1;
1057 if (GET_CODE (x) == PARALLEL)
1059 int i;
1060 int sets_cc0 = 0;
1061 int other_things = 0;
1062 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1064 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1065 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1066 sets_cc0 = 1;
1067 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1068 other_things = 1;
1070 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1072 return 0;
1074 #endif
1076 /* Find all CODE_LABELs referred to in X, and increment their use
1077 counts. If INSN is a JUMP_INSN and there is at least one
1078 CODE_LABEL referenced in INSN as a jump target, then store the last
1079 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1080 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1081 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1082 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1083 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1084 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1086 Note that two labels separated by a loop-beginning note
1087 must be kept distinct if we have not yet done loop-optimization,
1088 because the gap between them is where loop-optimize
1089 will want to move invariant code to. CROSS_JUMP tells us
1090 that loop-optimization is done with. */
1092 void
1093 mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
1095 rtx asmop = extract_asm_operands (x);
1096 if (asmop)
1097 mark_jump_label_asm (asmop, insn);
1098 else
1099 mark_jump_label_1 (x, insn, in_mem != 0,
1100 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1103 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1104 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1105 jump-target; when the JUMP_LABEL field of INSN should be set or a
1106 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1107 note. */
1109 static void
1110 mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
1112 RTX_CODE code = GET_CODE (x);
1113 int i;
1114 const char *fmt;
1116 switch (code)
1118 case PC:
1119 case CC0:
1120 case REG:
1121 case CLOBBER:
1122 case CALL:
1123 return;
1125 case RETURN:
1126 case SIMPLE_RETURN:
1127 if (is_target)
1129 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1130 JUMP_LABEL (insn) = x;
1132 return;
1134 case MEM:
1135 in_mem = true;
1136 break;
1138 case SEQUENCE:
1140 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1141 for (i = 0; i < seq->len (); i++)
1142 mark_jump_label (PATTERN (seq->insn (i)),
1143 seq->insn (i), 0);
1145 return;
1147 case SYMBOL_REF:
1148 if (!in_mem)
1149 return;
1151 /* If this is a constant-pool reference, see if it is a label. */
1152 if (CONSTANT_POOL_ADDRESS_P (x))
1153 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1154 break;
1156 /* Handle operands in the condition of an if-then-else as for a
1157 non-jump insn. */
1158 case IF_THEN_ELSE:
1159 if (!is_target)
1160 break;
1161 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1162 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1163 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1164 return;
1166 case LABEL_REF:
1168 rtx label = LABEL_REF_LABEL (x);
1170 /* Ignore remaining references to unreachable labels that
1171 have been deleted. */
1172 if (NOTE_P (label)
1173 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1174 break;
1176 gcc_assert (LABEL_P (label));
1178 /* Ignore references to labels of containing functions. */
1179 if (LABEL_REF_NONLOCAL_P (x))
1180 break;
1182 LABEL_REF_LABEL (x) = label;
1183 if (! insn || ! insn->deleted ())
1184 ++LABEL_NUSES (label);
1186 if (insn)
1188 if (is_target
1189 /* Do not change a previous setting of JUMP_LABEL. If the
1190 JUMP_LABEL slot is occupied by a different label,
1191 create a note for this label. */
1192 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1193 JUMP_LABEL (insn) = label;
1194 else
1196 enum reg_note kind
1197 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1199 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1200 for LABEL unless there already is one. All uses of
1201 a label, except for the primary target of a jump,
1202 must have such a note. */
1203 if (! find_reg_note (insn, kind, label))
1204 add_reg_note (insn, kind, label);
1207 return;
1210 /* Do walk the labels in a vector, but not the first operand of an
1211 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1212 case ADDR_VEC:
1213 case ADDR_DIFF_VEC:
1214 if (! insn->deleted ())
1216 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1218 for (i = 0; i < XVECLEN (x, eltnum); i++)
1219 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
1220 is_target);
1222 return;
1224 default:
1225 break;
1228 fmt = GET_RTX_FORMAT (code);
1230 /* The primary target of a tablejump is the label of the ADDR_VEC,
1231 which is canonically mentioned *last* in the insn. To get it
1232 marked as JUMP_LABEL, we iterate over items in reverse order. */
1233 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1235 if (fmt[i] == 'e')
1236 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1237 else if (fmt[i] == 'E')
1239 int j;
1241 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1242 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1243 is_target);
1248 /* Worker function for mark_jump_label. Handle asm insns specially.
1249 In particular, output operands need not be considered so we can
1250 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1251 need to be considered targets. */
1253 static void
1254 mark_jump_label_asm (rtx asmop, rtx_insn *insn)
1256 int i;
1258 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1259 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1261 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1262 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1265 /* Delete insn INSN from the chain of insns and update label ref counts
1266 and delete insns now unreachable.
1268 Returns the first insn after INSN that was not deleted.
1270 Usage of this instruction is deprecated. Use delete_insn instead and
1271 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1273 rtx_insn *
1274 delete_related_insns (rtx uncast_insn)
1276 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1277 int was_code_label = (LABEL_P (insn));
1278 rtx note;
1279 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1281 while (next && next->deleted ())
1282 next = NEXT_INSN (next);
1284 /* This insn is already deleted => return first following nondeleted. */
1285 if (insn->deleted ())
1286 return next;
1288 delete_insn (insn);
1290 /* If instruction is followed by a barrier,
1291 delete the barrier too. */
1293 if (next != 0 && BARRIER_P (next))
1294 delete_insn (next);
1296 /* If this is a call, then we have to remove the var tracking note
1297 for the call arguments. */
1299 if (CALL_P (insn)
1300 || (NONJUMP_INSN_P (insn)
1301 && GET_CODE (PATTERN (insn)) == SEQUENCE
1302 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1304 rtx_insn *p;
1306 for (p = next && next->deleted () ? NEXT_INSN (next) : next;
1307 p && NOTE_P (p);
1308 p = NEXT_INSN (p))
1309 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1311 remove_insn (p);
1312 break;
1316 /* If deleting a jump, decrement the count of the label,
1317 and delete the label if it is now unused. */
1319 if (jump_to_label_p (insn))
1321 rtx lab = JUMP_LABEL (insn);
1322 rtx_jump_table_data *lab_next;
1324 if (LABEL_NUSES (lab) == 0)
1325 /* This can delete NEXT or PREV,
1326 either directly if NEXT is JUMP_LABEL (INSN),
1327 or indirectly through more levels of jumps. */
1328 delete_related_insns (lab);
1329 else if (tablejump_p (insn, NULL, &lab_next))
1331 /* If we're deleting the tablejump, delete the dispatch table.
1332 We may not be able to kill the label immediately preceding
1333 just yet, as it might be referenced in code leading up to
1334 the tablejump. */
1335 delete_related_insns (lab_next);
1339 /* Likewise if we're deleting a dispatch table. */
1341 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1343 rtvec labels = table->get_labels ();
1344 int i;
1345 int len = GET_NUM_ELEM (labels);
1347 for (i = 0; i < len; i++)
1348 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1349 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
1350 while (next && next->deleted ())
1351 next = NEXT_INSN (next);
1352 return next;
1355 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1356 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1357 if (INSN_P (insn))
1358 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1359 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1360 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1361 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1362 && LABEL_P (XEXP (note, 0)))
1363 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1364 delete_related_insns (XEXP (note, 0));
1366 while (prev && (prev->deleted () || NOTE_P (prev)))
1367 prev = PREV_INSN (prev);
1369 /* If INSN was a label and a dispatch table follows it,
1370 delete the dispatch table. The tablejump must have gone already.
1371 It isn't useful to fall through into a table. */
1373 if (was_code_label
1374 && NEXT_INSN (insn) != 0
1375 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1376 next = delete_related_insns (NEXT_INSN (insn));
1378 /* If INSN was a label, delete insns following it if now unreachable. */
1380 if (was_code_label && prev && BARRIER_P (prev))
1382 enum rtx_code code;
1383 while (next)
1385 code = GET_CODE (next);
1386 if (code == NOTE)
1387 next = NEXT_INSN (next);
1388 /* Keep going past other deleted labels to delete what follows. */
1389 else if (code == CODE_LABEL && next->deleted ())
1390 next = NEXT_INSN (next);
1391 /* Keep the (use (insn))s created by dbr_schedule, which needs
1392 them in order to track liveness relative to a previous
1393 barrier. */
1394 else if (INSN_P (next)
1395 && GET_CODE (PATTERN (next)) == USE
1396 && INSN_P (XEXP (PATTERN (next), 0)))
1397 next = NEXT_INSN (next);
1398 else if (code == BARRIER || INSN_P (next))
1399 /* Note: if this deletes a jump, it can cause more
1400 deletion of unreachable code, after a different label.
1401 As long as the value from this recursive call is correct,
1402 this invocation functions correctly. */
1403 next = delete_related_insns (next);
1404 else
1405 break;
1409 /* I feel a little doubtful about this loop,
1410 but I see no clean and sure alternative way
1411 to find the first insn after INSN that is not now deleted.
1412 I hope this works. */
1413 while (next && next->deleted ())
1414 next = NEXT_INSN (next);
1415 return next;
1418 /* Delete a range of insns from FROM to TO, inclusive.
1419 This is for the sake of peephole optimization, so assume
1420 that whatever these insns do will still be done by a new
1421 peephole insn that will replace them. */
1423 void
1424 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1426 rtx_insn *insn = from;
1428 while (1)
1430 rtx_insn *next = NEXT_INSN (insn);
1431 rtx_insn *prev = PREV_INSN (insn);
1433 if (!NOTE_P (insn))
1435 insn->set_deleted();
1437 /* Patch this insn out of the chain. */
1438 /* We don't do this all at once, because we
1439 must preserve all NOTEs. */
1440 if (prev)
1441 SET_NEXT_INSN (prev) = next;
1443 if (next)
1444 SET_PREV_INSN (next) = prev;
1447 if (insn == to)
1448 break;
1449 insn = next;
1452 /* Note that if TO is an unconditional jump
1453 we *do not* delete the BARRIER that follows,
1454 since the peephole that replaces this sequence
1455 is also an unconditional jump in that case. */
1458 /* A helper function for redirect_exp_1; examines its input X and returns
1459 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1460 static rtx
1461 redirect_target (rtx x)
1463 if (x == NULL_RTX)
1464 return ret_rtx;
1465 if (!ANY_RETURN_P (x))
1466 return gen_rtx_LABEL_REF (Pmode, x);
1467 return x;
1470 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1471 NLABEL as a return. Accrue modifications into the change group. */
1473 static void
1474 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1476 rtx x = *loc;
1477 RTX_CODE code = GET_CODE (x);
1478 int i;
1479 const char *fmt;
1481 if ((code == LABEL_REF && LABEL_REF_LABEL (x) == olabel)
1482 || x == olabel)
1484 x = redirect_target (nlabel);
1485 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1486 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1487 validate_change (insn, loc, x, 1);
1488 return;
1491 if (code == SET && SET_DEST (x) == pc_rtx
1492 && ANY_RETURN_P (nlabel)
1493 && GET_CODE (SET_SRC (x)) == LABEL_REF
1494 && LABEL_REF_LABEL (SET_SRC (x)) == olabel)
1496 validate_change (insn, loc, nlabel, 1);
1497 return;
1500 if (code == IF_THEN_ELSE)
1502 /* Skip the condition of an IF_THEN_ELSE. We only want to
1503 change jump destinations, not eventual label comparisons. */
1504 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1505 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1506 return;
1509 fmt = GET_RTX_FORMAT (code);
1510 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1512 if (fmt[i] == 'e')
1513 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1514 else if (fmt[i] == 'E')
1516 int j;
1517 for (j = 0; j < XVECLEN (x, i); j++)
1518 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1523 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1524 the modifications into the change group. Return false if we did
1525 not see how to do that. */
1528 redirect_jump_1 (rtx jump, rtx nlabel)
1530 int ochanges = num_validated_changes ();
1531 rtx *loc, asmop;
1533 gcc_assert (nlabel != NULL_RTX);
1534 asmop = extract_asm_operands (PATTERN (jump));
1535 if (asmop)
1537 if (nlabel == NULL)
1538 return 0;
1539 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1540 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1542 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1543 loc = &XVECEXP (PATTERN (jump), 0, 0);
1544 else
1545 loc = &PATTERN (jump);
1547 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1548 return num_validated_changes () > ochanges;
1551 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1552 jump target label is unused as a result, it and the code following
1553 it may be deleted.
1555 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1556 in that case we are to turn the jump into a (possibly conditional)
1557 return insn.
1559 The return value will be 1 if the change was made, 0 if it wasn't
1560 (this can only occur when trying to produce return insns). */
1563 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1565 rtx olabel = JUMP_LABEL (jump);
1567 if (!nlabel)
1569 /* If there is no label, we are asked to redirect to the EXIT block.
1570 When before the epilogue is emitted, return/simple_return cannot be
1571 created so we return 0 immediately. After the epilogue is emitted,
1572 we always expect a label, either a non-null label, or a
1573 return/simple_return RTX. */
1575 if (!epilogue_completed)
1576 return 0;
1577 gcc_unreachable ();
1580 if (nlabel == olabel)
1581 return 1;
1583 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1584 return 0;
1586 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1587 return 1;
1590 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1591 NLABEL in JUMP.
1592 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1593 count has dropped to zero. */
1594 void
1595 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1596 int invert)
1598 rtx note;
1600 gcc_assert (JUMP_LABEL (jump) == olabel);
1602 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1603 moving FUNCTION_END note. Just sanity check that no user still worry
1604 about this. */
1605 gcc_assert (delete_unused >= 0);
1606 JUMP_LABEL (jump) = nlabel;
1607 if (!ANY_RETURN_P (nlabel))
1608 ++LABEL_NUSES (nlabel);
1610 /* Update labels in any REG_EQUAL note. */
1611 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1613 if (ANY_RETURN_P (nlabel)
1614 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1615 remove_note (jump, note);
1616 else
1618 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1619 confirm_change_group ();
1623 /* Handle the case where we had a conditional crossing jump to a return
1624 label and are now changing it into a direct conditional return.
1625 The jump is no longer crossing in that case. */
1626 if (ANY_RETURN_P (nlabel))
1627 CROSSING_JUMP_P (jump) = 0;
1629 if (!ANY_RETURN_P (olabel)
1630 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1631 /* Undefined labels will remain outside the insn stream. */
1632 && INSN_UID (olabel))
1633 delete_related_insns (olabel);
1634 if (invert)
1635 invert_br_probabilities (jump);
1638 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1639 modifications into the change group. Return nonzero for success. */
1640 static int
1641 invert_exp_1 (rtx x, rtx insn)
1643 RTX_CODE code = GET_CODE (x);
1645 if (code == IF_THEN_ELSE)
1647 rtx comp = XEXP (x, 0);
1648 rtx tem;
1649 enum rtx_code reversed_code;
1651 /* We can do this in two ways: The preferable way, which can only
1652 be done if this is not an integer comparison, is to reverse
1653 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1654 of the IF_THEN_ELSE. If we can't do either, fail. */
1656 reversed_code = reversed_comparison_code (comp, insn);
1658 if (reversed_code != UNKNOWN)
1660 validate_change (insn, &XEXP (x, 0),
1661 gen_rtx_fmt_ee (reversed_code,
1662 GET_MODE (comp), XEXP (comp, 0),
1663 XEXP (comp, 1)),
1665 return 1;
1668 tem = XEXP (x, 1);
1669 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1670 validate_change (insn, &XEXP (x, 2), tem, 1);
1671 return 1;
1673 else
1674 return 0;
1677 /* Invert the condition of the jump JUMP, and make it jump to label
1678 NLABEL instead of where it jumps now. Accrue changes into the
1679 change group. Return false if we didn't see how to perform the
1680 inversion and redirection. */
1683 invert_jump_1 (rtx_insn *jump, rtx nlabel)
1685 rtx x = pc_set (jump);
1686 int ochanges;
1687 int ok;
1689 ochanges = num_validated_changes ();
1690 if (x == NULL)
1691 return 0;
1692 ok = invert_exp_1 (SET_SRC (x), jump);
1693 gcc_assert (ok);
1695 if (num_validated_changes () == ochanges)
1696 return 0;
1698 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1699 in Pmode, so checking this is not merely an optimization. */
1700 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1703 /* Invert the condition of the jump JUMP, and make it jump to label
1704 NLABEL instead of where it jumps now. Return true if successful. */
1707 invert_jump (rtx_insn *jump, rtx nlabel, int delete_unused)
1709 rtx olabel = JUMP_LABEL (jump);
1711 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1713 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1714 return 1;
1716 cancel_changes (0);
1717 return 0;
1721 /* Like rtx_equal_p except that it considers two REGs as equal
1722 if they renumber to the same value and considers two commutative
1723 operations to be the same if the order of the operands has been
1724 reversed. */
1727 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1729 int i;
1730 const enum rtx_code code = GET_CODE (x);
1731 const char *fmt;
1733 if (x == y)
1734 return 1;
1736 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1737 && (REG_P (y) || (GET_CODE (y) == SUBREG
1738 && REG_P (SUBREG_REG (y)))))
1740 int reg_x = -1, reg_y = -1;
1741 int byte_x = 0, byte_y = 0;
1742 struct subreg_info info;
1744 if (GET_MODE (x) != GET_MODE (y))
1745 return 0;
1747 /* If we haven't done any renumbering, don't
1748 make any assumptions. */
1749 if (reg_renumber == 0)
1750 return rtx_equal_p (x, y);
1752 if (code == SUBREG)
1754 reg_x = REGNO (SUBREG_REG (x));
1755 byte_x = SUBREG_BYTE (x);
1757 if (reg_renumber[reg_x] >= 0)
1759 subreg_get_info (reg_renumber[reg_x],
1760 GET_MODE (SUBREG_REG (x)), byte_x,
1761 GET_MODE (x), &info);
1762 if (!info.representable_p)
1763 return 0;
1764 reg_x = info.offset;
1765 byte_x = 0;
1768 else
1770 reg_x = REGNO (x);
1771 if (reg_renumber[reg_x] >= 0)
1772 reg_x = reg_renumber[reg_x];
1775 if (GET_CODE (y) == SUBREG)
1777 reg_y = REGNO (SUBREG_REG (y));
1778 byte_y = SUBREG_BYTE (y);
1780 if (reg_renumber[reg_y] >= 0)
1782 subreg_get_info (reg_renumber[reg_y],
1783 GET_MODE (SUBREG_REG (y)), byte_y,
1784 GET_MODE (y), &info);
1785 if (!info.representable_p)
1786 return 0;
1787 reg_y = info.offset;
1788 byte_y = 0;
1791 else
1793 reg_y = REGNO (y);
1794 if (reg_renumber[reg_y] >= 0)
1795 reg_y = reg_renumber[reg_y];
1798 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1801 /* Now we have disposed of all the cases
1802 in which different rtx codes can match. */
1803 if (code != GET_CODE (y))
1804 return 0;
1806 switch (code)
1808 case PC:
1809 case CC0:
1810 case ADDR_VEC:
1811 case ADDR_DIFF_VEC:
1812 CASE_CONST_UNIQUE:
1813 return 0;
1815 case LABEL_REF:
1816 /* We can't assume nonlocal labels have their following insns yet. */
1817 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1818 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
1820 /* Two label-refs are equivalent if they point at labels
1821 in the same position in the instruction stream. */
1822 return (next_real_insn (LABEL_REF_LABEL (x))
1823 == next_real_insn (LABEL_REF_LABEL (y)));
1825 case SYMBOL_REF:
1826 return XSTR (x, 0) == XSTR (y, 0);
1828 case CODE_LABEL:
1829 /* If we didn't match EQ equality above, they aren't the same. */
1830 return 0;
1832 default:
1833 break;
1836 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1838 if (GET_MODE (x) != GET_MODE (y))
1839 return 0;
1841 /* MEMs referring to different address space are not equivalent. */
1842 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1843 return 0;
1845 /* For commutative operations, the RTX match if the operand match in any
1846 order. Also handle the simple binary and unary cases without a loop. */
1847 if (targetm.commutative_p (x, UNKNOWN))
1848 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1849 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1850 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1851 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1852 else if (NON_COMMUTATIVE_P (x))
1853 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1854 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1855 else if (UNARY_P (x))
1856 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1858 /* Compare the elements. If any pair of corresponding elements
1859 fail to match, return 0 for the whole things. */
1861 fmt = GET_RTX_FORMAT (code);
1862 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1864 int j;
1865 switch (fmt[i])
1867 case 'w':
1868 if (XWINT (x, i) != XWINT (y, i))
1869 return 0;
1870 break;
1872 case 'i':
1873 if (XINT (x, i) != XINT (y, i))
1875 if (((code == ASM_OPERANDS && i == 6)
1876 || (code == ASM_INPUT && i == 1)))
1877 break;
1878 return 0;
1880 break;
1882 case 't':
1883 if (XTREE (x, i) != XTREE (y, i))
1884 return 0;
1885 break;
1887 case 's':
1888 if (strcmp (XSTR (x, i), XSTR (y, i)))
1889 return 0;
1890 break;
1892 case 'e':
1893 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1894 return 0;
1895 break;
1897 case 'u':
1898 if (XEXP (x, i) != XEXP (y, i))
1899 return 0;
1900 /* Fall through. */
1901 case '0':
1902 break;
1904 case 'E':
1905 if (XVECLEN (x, i) != XVECLEN (y, i))
1906 return 0;
1907 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1908 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1909 return 0;
1910 break;
1912 default:
1913 gcc_unreachable ();
1916 return 1;
1919 /* If X is a hard register or equivalent to one or a subregister of one,
1920 return the hard register number. If X is a pseudo register that was not
1921 assigned a hard register, return the pseudo register number. Otherwise,
1922 return -1. Any rtx is valid for X. */
1925 true_regnum (const_rtx x)
1927 if (REG_P (x))
1929 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1930 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1931 return reg_renumber[REGNO (x)];
1932 return REGNO (x);
1934 if (GET_CODE (x) == SUBREG)
1936 int base = true_regnum (SUBREG_REG (x));
1937 if (base >= 0
1938 && base < FIRST_PSEUDO_REGISTER)
1940 struct subreg_info info;
1942 subreg_get_info (lra_in_progress
1943 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1944 GET_MODE (SUBREG_REG (x)),
1945 SUBREG_BYTE (x), GET_MODE (x), &info);
1947 if (info.representable_p)
1948 return base + info.offset;
1951 return -1;
1954 /* Return regno of the register REG and handle subregs too. */
1955 unsigned int
1956 reg_or_subregno (const_rtx reg)
1958 if (GET_CODE (reg) == SUBREG)
1959 reg = SUBREG_REG (reg);
1960 gcc_assert (REG_P (reg));
1961 return REGNO (reg);