1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
38 #include "coretypes.h"
43 #include "hard-reg-set.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
55 #include "dominance.h"
58 #include "basic-block.h"
60 #include "statistics.h"
61 #include "double-int.h"
63 #include "fixed-value.h"
77 #include "diagnostic-core.h"
79 #include "tree-pass.h"
83 /* Optimize jump y; x: ... y: jumpif... x?
84 Don't know if it is worth bothering with. */
85 /* Optimize two cases of conditional jump to conditional jump?
86 This can never delete any instruction or make anything dead,
87 or even change what is live at any point.
88 So perhaps let combiner do it. */
90 static void init_label_info (rtx_insn
*);
91 static void mark_all_labels (rtx_insn
*);
92 static void mark_jump_label_1 (rtx
, rtx_insn
*, bool, bool);
93 static void mark_jump_label_asm (rtx
, rtx_insn
*);
94 static void redirect_exp_1 (rtx
*, rtx
, rtx
, rtx
);
95 static int invert_exp_1 (rtx
, rtx
);
97 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
99 rebuild_jump_labels_1 (rtx_insn
*f
, bool count_forced
)
103 timevar_push (TV_REBUILD_JUMP
);
107 /* Keep track of labels used from static data; we don't track them
108 closely enough to delete them here, so make sure their reference
109 count doesn't drop to zero. */
112 for (insn
= forced_labels
; insn
; insn
= insn
->next ())
113 if (LABEL_P (insn
->insn ()))
114 LABEL_NUSES (insn
->insn ())++;
115 timevar_pop (TV_REBUILD_JUMP
);
118 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
119 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
120 instructions and jumping insns that have labels as operands
121 (e.g. cbranchsi4). */
123 rebuild_jump_labels (rtx_insn
*f
)
125 rebuild_jump_labels_1 (f
, true);
128 /* This function is like rebuild_jump_labels, but doesn't run over
129 forced_labels. It can be used on insn chains that aren't the
130 main function chain. */
132 rebuild_jump_labels_chain (rtx_insn
*chain
)
134 rebuild_jump_labels_1 (chain
, false);
137 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
138 non-fallthru insn. This is not generally true, as multiple barriers
139 may have crept in, or the BARRIER may be separated from the last
140 real insn by one or more NOTEs.
142 This simple pass moves barriers and removes duplicates so that the
146 cleanup_barriers (void)
149 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
151 if (BARRIER_P (insn
))
153 rtx_insn
*prev
= prev_nonnote_insn (insn
);
159 /* Make sure we do not split a call and its corresponding
160 CALL_ARG_LOCATION note. */
161 rtx_insn
*next
= NEXT_INSN (prev
);
164 && NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
168 if (BARRIER_P (prev
))
170 else if (prev
!= PREV_INSN (insn
))
171 reorder_insns_nobb (insn
, insn
, prev
);
179 const pass_data pass_data_cleanup_barriers
=
182 "barriers", /* name */
183 OPTGROUP_NONE
, /* optinfo_flags */
185 0, /* properties_required */
186 0, /* properties_provided */
187 0, /* properties_destroyed */
188 0, /* todo_flags_start */
189 0, /* todo_flags_finish */
192 class pass_cleanup_barriers
: public rtl_opt_pass
195 pass_cleanup_barriers (gcc::context
*ctxt
)
196 : rtl_opt_pass (pass_data_cleanup_barriers
, ctxt
)
199 /* opt_pass methods: */
200 virtual unsigned int execute (function
*) { return cleanup_barriers (); }
202 }; // class pass_cleanup_barriers
207 make_pass_cleanup_barriers (gcc::context
*ctxt
)
209 return new pass_cleanup_barriers (ctxt
);
213 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
214 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
215 notes whose labels don't occur in the insn any more. */
218 init_label_info (rtx_insn
*f
)
222 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
225 LABEL_NUSES (insn
) = (LABEL_PRESERVE_P (insn
) != 0);
227 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
228 sticky and not reset here; that way we won't lose association
229 with a label when e.g. the source for a target register
230 disappears out of reach for targets that may use jump-target
231 registers. Jump transformations are supposed to transform
232 any REG_LABEL_TARGET notes. The target label reference in a
233 branch may disappear from the branch (and from the
234 instruction before it) for other reasons, like register
241 for (note
= REG_NOTES (insn
); note
; note
= next
)
243 next
= XEXP (note
, 1);
244 if (REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
245 && ! reg_mentioned_p (XEXP (note
, 0), PATTERN (insn
)))
246 remove_note (insn
, note
);
252 /* A subroutine of mark_all_labels. Trivially propagate a simple label
253 load into a jump_insn that uses it. */
256 maybe_propagate_label_ref (rtx_insn
*jump_insn
, rtx_insn
*prev_nonjump_insn
)
258 rtx label_note
, pc
, pc_src
;
260 pc
= pc_set (jump_insn
);
261 pc_src
= pc
!= NULL
? SET_SRC (pc
) : NULL
;
262 label_note
= find_reg_note (prev_nonjump_insn
, REG_LABEL_OPERAND
, NULL
);
264 /* If the previous non-jump insn sets something to a label,
265 something that this jump insn uses, make that label the primary
266 target of this insn if we don't yet have any. That previous
267 insn must be a single_set and not refer to more than one label.
268 The jump insn must not refer to other labels as jump targets
269 and must be a plain (set (pc) ...), maybe in a parallel, and
270 may refer to the item being set only directly or as one of the
271 arms in an IF_THEN_ELSE. */
273 if (label_note
!= NULL
&& pc_src
!= NULL
)
275 rtx label_set
= single_set (prev_nonjump_insn
);
276 rtx label_dest
= label_set
!= NULL
? SET_DEST (label_set
) : NULL
;
278 if (label_set
!= NULL
279 /* The source must be the direct LABEL_REF, not a
280 PLUS, UNSPEC, IF_THEN_ELSE etc. */
281 && GET_CODE (SET_SRC (label_set
)) == LABEL_REF
282 && (rtx_equal_p (label_dest
, pc_src
)
283 || (GET_CODE (pc_src
) == IF_THEN_ELSE
284 && (rtx_equal_p (label_dest
, XEXP (pc_src
, 1))
285 || rtx_equal_p (label_dest
, XEXP (pc_src
, 2))))))
287 /* The CODE_LABEL referred to in the note must be the
288 CODE_LABEL in the LABEL_REF of the "set". We can
289 conveniently use it for the marker function, which
290 requires a LABEL_REF wrapping. */
291 gcc_assert (XEXP (label_note
, 0) == LABEL_REF_LABEL (SET_SRC (label_set
)));
293 mark_jump_label_1 (label_set
, jump_insn
, false, true);
295 gcc_assert (JUMP_LABEL (jump_insn
) == XEXP (label_note
, 0));
300 /* Mark the label each jump jumps to.
301 Combine consecutive labels, and count uses of labels. */
304 mark_all_labels (rtx_insn
*f
)
308 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
311 FOR_EACH_BB_FN (bb
, cfun
)
313 /* In cfglayout mode, we don't bother with trivial next-insn
314 propagation of LABEL_REFs into JUMP_LABEL. This will be
315 handled by other optimizers using better algorithms. */
316 FOR_BB_INSNS (bb
, insn
)
318 gcc_assert (! insn
->deleted ());
319 if (NONDEBUG_INSN_P (insn
))
320 mark_jump_label (PATTERN (insn
), insn
, 0);
323 /* In cfglayout mode, there may be non-insns between the
324 basic blocks. If those non-insns represent tablejump data,
325 they contain label references that we must record. */
326 for (insn
= BB_HEADER (bb
); insn
; insn
= NEXT_INSN (insn
))
327 if (JUMP_TABLE_DATA_P (insn
))
328 mark_jump_label (PATTERN (insn
), insn
, 0);
329 for (insn
= BB_FOOTER (bb
); insn
; insn
= NEXT_INSN (insn
))
330 if (JUMP_TABLE_DATA_P (insn
))
331 mark_jump_label (PATTERN (insn
), insn
, 0);
336 rtx_insn
*prev_nonjump_insn
= NULL
;
337 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
339 if (insn
->deleted ())
341 else if (LABEL_P (insn
))
342 prev_nonjump_insn
= NULL
;
343 else if (JUMP_TABLE_DATA_P (insn
))
344 mark_jump_label (PATTERN (insn
), insn
, 0);
345 else if (NONDEBUG_INSN_P (insn
))
347 mark_jump_label (PATTERN (insn
), insn
, 0);
350 if (JUMP_LABEL (insn
) == NULL
&& prev_nonjump_insn
!= NULL
)
351 maybe_propagate_label_ref (insn
, prev_nonjump_insn
);
354 prev_nonjump_insn
= insn
;
360 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
361 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
362 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
363 know whether it's source is floating point or integer comparison. Machine
364 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
365 to help this function avoid overhead in these cases. */
367 reversed_comparison_code_parts (enum rtx_code code
, const_rtx arg0
,
368 const_rtx arg1
, const_rtx insn
)
372 /* If this is not actually a comparison, we can't reverse it. */
373 if (GET_RTX_CLASS (code
) != RTX_COMPARE
374 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
)
377 mode
= GET_MODE (arg0
);
378 if (mode
== VOIDmode
)
379 mode
= GET_MODE (arg1
);
381 /* First see if machine description supplies us way to reverse the
382 comparison. Give it priority over everything else to allow
383 machine description to do tricks. */
384 if (GET_MODE_CLASS (mode
) == MODE_CC
385 && REVERSIBLE_CC_MODE (mode
))
387 #ifdef REVERSE_CONDITION
388 return REVERSE_CONDITION (code
, mode
);
390 return reverse_condition (code
);
394 /* Try a few special cases based on the comparison code. */
403 /* It is always safe to reverse EQ and NE, even for the floating
404 point. Similarly the unsigned comparisons are never used for
405 floating point so we can reverse them in the default way. */
406 return reverse_condition (code
);
411 /* In case we already see unordered comparison, we can be sure to
412 be dealing with floating point so we don't need any more tests. */
413 return reverse_condition_maybe_unordered (code
);
418 /* We don't have safe way to reverse these yet. */
424 if (GET_MODE_CLASS (mode
) == MODE_CC
|| CC0_P (arg0
))
427 /* Try to search for the comparison to determine the real mode.
428 This code is expensive, but with sane machine description it
429 will be never used, since REVERSIBLE_CC_MODE will return true
434 /* These CONST_CAST's are okay because prev_nonnote_insn just
435 returns its argument and we assign it to a const_rtx
437 for (prev
= prev_nonnote_insn (CONST_CAST_RTX (insn
));
438 prev
!= 0 && !LABEL_P (prev
);
439 prev
= prev_nonnote_insn (CONST_CAST_RTX (prev
)))
441 const_rtx set
= set_of (arg0
, prev
);
442 if (set
&& GET_CODE (set
) == SET
443 && rtx_equal_p (SET_DEST (set
), arg0
))
445 rtx src
= SET_SRC (set
);
447 if (GET_CODE (src
) == COMPARE
)
449 rtx comparison
= src
;
450 arg0
= XEXP (src
, 0);
451 mode
= GET_MODE (arg0
);
452 if (mode
== VOIDmode
)
453 mode
= GET_MODE (XEXP (comparison
, 1));
456 /* We can get past reg-reg moves. This may be useful for model
457 of i387 comparisons that first move flag registers around. */
464 /* If register is clobbered in some ununderstandable way,
471 /* Test for an integer condition, or a floating-point comparison
472 in which NaNs can be ignored. */
473 if (CONST_INT_P (arg0
)
474 || (GET_MODE (arg0
) != VOIDmode
475 && GET_MODE_CLASS (mode
) != MODE_CC
476 && !HONOR_NANS (mode
)))
477 return reverse_condition (code
);
482 /* A wrapper around the previous function to take COMPARISON as rtx
483 expression. This simplifies many callers. */
485 reversed_comparison_code (const_rtx comparison
, const_rtx insn
)
487 if (!COMPARISON_P (comparison
))
489 return reversed_comparison_code_parts (GET_CODE (comparison
),
490 XEXP (comparison
, 0),
491 XEXP (comparison
, 1), insn
);
494 /* Return comparison with reversed code of EXP.
495 Return NULL_RTX in case we fail to do the reversal. */
497 reversed_comparison (const_rtx exp
, machine_mode mode
)
499 enum rtx_code reversed_code
= reversed_comparison_code (exp
, NULL_RTX
);
500 if (reversed_code
== UNKNOWN
)
503 return simplify_gen_relational (reversed_code
, mode
, VOIDmode
,
504 XEXP (exp
, 0), XEXP (exp
, 1));
508 /* Given an rtx-code for a comparison, return the code for the negated
509 comparison. If no such code exists, return UNKNOWN.
511 WATCH OUT! reverse_condition is not safe to use on a jump that might
512 be acting on the results of an IEEE floating point comparison, because
513 of the special treatment of non-signaling nans in comparisons.
514 Use reversed_comparison_code instead. */
517 reverse_condition (enum rtx_code code
)
559 /* Similar, but we're allowed to generate unordered comparisons, which
560 makes it safe for IEEE floating-point. Of course, we have to recognize
561 that the target will support them too... */
564 reverse_condition_maybe_unordered (enum rtx_code code
)
602 /* Similar, but return the code when two operands of a comparison are swapped.
603 This IS safe for IEEE floating-point. */
606 swap_condition (enum rtx_code code
)
648 /* Given a comparison CODE, return the corresponding unsigned comparison.
649 If CODE is an equality comparison or already an unsigned comparison,
653 unsigned_condition (enum rtx_code code
)
679 /* Similarly, return the signed version of a comparison. */
682 signed_condition (enum rtx_code code
)
708 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
709 truth of CODE1 implies the truth of CODE2. */
712 comparison_dominates_p (enum rtx_code code1
, enum rtx_code code2
)
714 /* UNKNOWN comparison codes can happen as a result of trying to revert
716 They can't match anything, so we have to reject them here. */
717 if (code1
== UNKNOWN
|| code2
== UNKNOWN
)
726 if (code2
== UNLE
|| code2
== UNGE
)
731 if (code2
== LE
|| code2
== LEU
|| code2
== GE
|| code2
== GEU
737 if (code2
== UNLE
|| code2
== NE
)
742 if (code2
== LE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
747 if (code2
== UNGE
|| code2
== NE
)
752 if (code2
== GE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
758 if (code2
== ORDERED
)
763 if (code2
== NE
|| code2
== ORDERED
)
768 if (code2
== LEU
|| code2
== NE
)
773 if (code2
== GEU
|| code2
== NE
)
778 if (code2
== NE
|| code2
== UNEQ
|| code2
== UNLE
|| code2
== UNLT
779 || code2
== UNGE
|| code2
== UNGT
)
790 /* Return 1 if INSN is an unconditional jump and nothing else. */
793 simplejump_p (const rtx_insn
*insn
)
795 return (JUMP_P (insn
)
796 && GET_CODE (PATTERN (insn
)) == SET
797 && GET_CODE (SET_DEST (PATTERN (insn
))) == PC
798 && GET_CODE (SET_SRC (PATTERN (insn
))) == LABEL_REF
);
801 /* Return nonzero if INSN is a (possibly) conditional jump
804 Use of this function is deprecated, since we need to support combined
805 branch and compare insns. Use any_condjump_p instead whenever possible. */
808 condjump_p (const rtx_insn
*insn
)
810 const_rtx x
= PATTERN (insn
);
812 if (GET_CODE (x
) != SET
813 || GET_CODE (SET_DEST (x
)) != PC
)
817 if (GET_CODE (x
) == LABEL_REF
)
820 return (GET_CODE (x
) == IF_THEN_ELSE
821 && ((GET_CODE (XEXP (x
, 2)) == PC
822 && (GET_CODE (XEXP (x
, 1)) == LABEL_REF
823 || ANY_RETURN_P (XEXP (x
, 1))))
824 || (GET_CODE (XEXP (x
, 1)) == PC
825 && (GET_CODE (XEXP (x
, 2)) == LABEL_REF
826 || ANY_RETURN_P (XEXP (x
, 2))))));
829 /* Return nonzero if INSN is a (possibly) conditional jump inside a
832 Use this function is deprecated, since we need to support combined
833 branch and compare insns. Use any_condjump_p instead whenever possible. */
836 condjump_in_parallel_p (const rtx_insn
*insn
)
838 const_rtx x
= PATTERN (insn
);
840 if (GET_CODE (x
) != PARALLEL
)
843 x
= XVECEXP (x
, 0, 0);
845 if (GET_CODE (x
) != SET
)
847 if (GET_CODE (SET_DEST (x
)) != PC
)
849 if (GET_CODE (SET_SRC (x
)) == LABEL_REF
)
851 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
853 if (XEXP (SET_SRC (x
), 2) == pc_rtx
854 && (GET_CODE (XEXP (SET_SRC (x
), 1)) == LABEL_REF
855 || ANY_RETURN_P (XEXP (SET_SRC (x
), 1))))
857 if (XEXP (SET_SRC (x
), 1) == pc_rtx
858 && (GET_CODE (XEXP (SET_SRC (x
), 2)) == LABEL_REF
859 || ANY_RETURN_P (XEXP (SET_SRC (x
), 2))))
864 /* Return set of PC, otherwise NULL. */
867 pc_set (const rtx_insn
*insn
)
872 pat
= PATTERN (insn
);
874 /* The set is allowed to appear either as the insn pattern or
875 the first set in a PARALLEL. */
876 if (GET_CODE (pat
) == PARALLEL
)
877 pat
= XVECEXP (pat
, 0, 0);
878 if (GET_CODE (pat
) == SET
&& GET_CODE (SET_DEST (pat
)) == PC
)
884 /* Return true when insn is an unconditional direct jump,
885 possibly bundled inside a PARALLEL. */
888 any_uncondjump_p (const rtx_insn
*insn
)
890 const_rtx x
= pc_set (insn
);
893 if (GET_CODE (SET_SRC (x
)) != LABEL_REF
)
895 if (find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
900 /* Return true when insn is a conditional jump. This function works for
901 instructions containing PC sets in PARALLELs. The instruction may have
902 various other effects so before removing the jump you must verify
905 Note that unlike condjump_p it returns false for unconditional jumps. */
908 any_condjump_p (const rtx_insn
*insn
)
910 const_rtx x
= pc_set (insn
);
915 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
918 a
= GET_CODE (XEXP (SET_SRC (x
), 1));
919 b
= GET_CODE (XEXP (SET_SRC (x
), 2));
921 return ((b
== PC
&& (a
== LABEL_REF
|| a
== RETURN
|| a
== SIMPLE_RETURN
))
923 && (b
== LABEL_REF
|| b
== RETURN
|| b
== SIMPLE_RETURN
)));
926 /* Return the label of a conditional jump. */
929 condjump_label (const rtx_insn
*insn
)
931 rtx x
= pc_set (insn
);
936 if (GET_CODE (x
) == LABEL_REF
)
938 if (GET_CODE (x
) != IF_THEN_ELSE
)
940 if (XEXP (x
, 2) == pc_rtx
&& GET_CODE (XEXP (x
, 1)) == LABEL_REF
)
942 if (XEXP (x
, 1) == pc_rtx
&& GET_CODE (XEXP (x
, 2)) == LABEL_REF
)
947 /* Return TRUE if INSN is a return jump. */
950 returnjump_p (const rtx_insn
*insn
)
954 subrtx_iterator::array_type array
;
955 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), NONCONST
)
958 switch (GET_CODE (x
))
966 if (SET_IS_RETURN_P (x
))
978 /* Return true if INSN is a (possibly conditional) return insn. */
981 eh_returnjump_p (rtx_insn
*insn
)
985 subrtx_iterator::array_type array
;
986 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), NONCONST
)
987 if (GET_CODE (*iter
) == EH_RETURN
)
993 /* Return true if INSN is a jump that only transfers control and
997 onlyjump_p (const rtx_insn
*insn
)
1004 set
= single_set (insn
);
1007 if (GET_CODE (SET_DEST (set
)) != PC
)
1009 if (side_effects_p (SET_SRC (set
)))
1015 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1016 NULL or a return. */
1018 jump_to_label_p (const rtx_insn
*insn
)
1020 return (JUMP_P (insn
)
1021 && JUMP_LABEL (insn
) != NULL
&& !ANY_RETURN_P (JUMP_LABEL (insn
)));
1026 /* Return nonzero if X is an RTX that only sets the condition codes
1027 and has no side effects. */
1030 only_sets_cc0_p (const_rtx x
)
1038 return sets_cc0_p (x
) == 1 && ! side_effects_p (x
);
1041 /* Return 1 if X is an RTX that does nothing but set the condition codes
1042 and CLOBBER or USE registers.
1043 Return -1 if X does explicitly set the condition codes,
1044 but also does other things. */
1047 sets_cc0_p (const_rtx x
)
1055 if (GET_CODE (x
) == SET
&& SET_DEST (x
) == cc0_rtx
)
1057 if (GET_CODE (x
) == PARALLEL
)
1061 int other_things
= 0;
1062 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1064 if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
1065 && SET_DEST (XVECEXP (x
, 0, i
)) == cc0_rtx
)
1067 else if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
)
1070 return ! sets_cc0
? 0 : other_things
? -1 : 1;
1076 /* Find all CODE_LABELs referred to in X, and increment their use
1077 counts. If INSN is a JUMP_INSN and there is at least one
1078 CODE_LABEL referenced in INSN as a jump target, then store the last
1079 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1080 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1081 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1082 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1083 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1084 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1086 Note that two labels separated by a loop-beginning note
1087 must be kept distinct if we have not yet done loop-optimization,
1088 because the gap between them is where loop-optimize
1089 will want to move invariant code to. CROSS_JUMP tells us
1090 that loop-optimization is done with. */
1093 mark_jump_label (rtx x
, rtx_insn
*insn
, int in_mem
)
1095 rtx asmop
= extract_asm_operands (x
);
1097 mark_jump_label_asm (asmop
, insn
);
1099 mark_jump_label_1 (x
, insn
, in_mem
!= 0,
1100 (insn
!= NULL
&& x
== PATTERN (insn
) && JUMP_P (insn
)));
1103 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1104 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1105 jump-target; when the JUMP_LABEL field of INSN should be set or a
1106 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1110 mark_jump_label_1 (rtx x
, rtx_insn
*insn
, bool in_mem
, bool is_target
)
1112 RTX_CODE code
= GET_CODE (x
);
1129 gcc_assert (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == x
);
1130 JUMP_LABEL (insn
) = x
;
1140 rtx_sequence
*seq
= as_a
<rtx_sequence
*> (x
);
1141 for (i
= 0; i
< seq
->len (); i
++)
1142 mark_jump_label (PATTERN (seq
->insn (i
)),
1151 /* If this is a constant-pool reference, see if it is a label. */
1152 if (CONSTANT_POOL_ADDRESS_P (x
))
1153 mark_jump_label_1 (get_pool_constant (x
), insn
, in_mem
, is_target
);
1156 /* Handle operands in the condition of an if-then-else as for a
1161 mark_jump_label_1 (XEXP (x
, 0), insn
, in_mem
, false);
1162 mark_jump_label_1 (XEXP (x
, 1), insn
, in_mem
, true);
1163 mark_jump_label_1 (XEXP (x
, 2), insn
, in_mem
, true);
1168 rtx label
= LABEL_REF_LABEL (x
);
1170 /* Ignore remaining references to unreachable labels that
1171 have been deleted. */
1173 && NOTE_KIND (label
) == NOTE_INSN_DELETED_LABEL
)
1176 gcc_assert (LABEL_P (label
));
1178 /* Ignore references to labels of containing functions. */
1179 if (LABEL_REF_NONLOCAL_P (x
))
1182 LABEL_REF_LABEL (x
) = label
;
1183 if (! insn
|| ! insn
->deleted ())
1184 ++LABEL_NUSES (label
);
1189 /* Do not change a previous setting of JUMP_LABEL. If the
1190 JUMP_LABEL slot is occupied by a different label,
1191 create a note for this label. */
1192 && (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == label
))
1193 JUMP_LABEL (insn
) = label
;
1197 = is_target
? REG_LABEL_TARGET
: REG_LABEL_OPERAND
;
1199 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1200 for LABEL unless there already is one. All uses of
1201 a label, except for the primary target of a jump,
1202 must have such a note. */
1203 if (! find_reg_note (insn
, kind
, label
))
1204 add_reg_note (insn
, kind
, label
);
1210 /* Do walk the labels in a vector, but not the first operand of an
1211 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1214 if (! insn
->deleted ())
1216 int eltnum
= code
== ADDR_DIFF_VEC
? 1 : 0;
1218 for (i
= 0; i
< XVECLEN (x
, eltnum
); i
++)
1219 mark_jump_label_1 (XVECEXP (x
, eltnum
, i
), NULL
, in_mem
,
1228 fmt
= GET_RTX_FORMAT (code
);
1230 /* The primary target of a tablejump is the label of the ADDR_VEC,
1231 which is canonically mentioned *last* in the insn. To get it
1232 marked as JUMP_LABEL, we iterate over items in reverse order. */
1233 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1236 mark_jump_label_1 (XEXP (x
, i
), insn
, in_mem
, is_target
);
1237 else if (fmt
[i
] == 'E')
1241 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1242 mark_jump_label_1 (XVECEXP (x
, i
, j
), insn
, in_mem
,
1248 /* Worker function for mark_jump_label. Handle asm insns specially.
1249 In particular, output operands need not be considered so we can
1250 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1251 need to be considered targets. */
1254 mark_jump_label_asm (rtx asmop
, rtx_insn
*insn
)
1258 for (i
= ASM_OPERANDS_INPUT_LENGTH (asmop
) - 1; i
>= 0; --i
)
1259 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop
, i
), insn
, false, false);
1261 for (i
= ASM_OPERANDS_LABEL_LENGTH (asmop
) - 1; i
>= 0; --i
)
1262 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop
, i
), insn
, false, true);
1265 /* Delete insn INSN from the chain of insns and update label ref counts
1266 and delete insns now unreachable.
1268 Returns the first insn after INSN that was not deleted.
1270 Usage of this instruction is deprecated. Use delete_insn instead and
1271 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1274 delete_related_insns (rtx uncast_insn
)
1276 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
1277 int was_code_label
= (LABEL_P (insn
));
1279 rtx_insn
*next
= NEXT_INSN (insn
), *prev
= PREV_INSN (insn
);
1281 while (next
&& next
->deleted ())
1282 next
= NEXT_INSN (next
);
1284 /* This insn is already deleted => return first following nondeleted. */
1285 if (insn
->deleted ())
1290 /* If instruction is followed by a barrier,
1291 delete the barrier too. */
1293 if (next
!= 0 && BARRIER_P (next
))
1296 /* If this is a call, then we have to remove the var tracking note
1297 for the call arguments. */
1300 || (NONJUMP_INSN_P (insn
)
1301 && GET_CODE (PATTERN (insn
)) == SEQUENCE
1302 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))))
1306 for (p
= next
&& next
->deleted () ? NEXT_INSN (next
) : next
;
1309 if (NOTE_KIND (p
) == NOTE_INSN_CALL_ARG_LOCATION
)
1316 /* If deleting a jump, decrement the count of the label,
1317 and delete the label if it is now unused. */
1319 if (jump_to_label_p (insn
))
1321 rtx lab
= JUMP_LABEL (insn
);
1322 rtx_jump_table_data
*lab_next
;
1324 if (LABEL_NUSES (lab
) == 0)
1325 /* This can delete NEXT or PREV,
1326 either directly if NEXT is JUMP_LABEL (INSN),
1327 or indirectly through more levels of jumps. */
1328 delete_related_insns (lab
);
1329 else if (tablejump_p (insn
, NULL
, &lab_next
))
1331 /* If we're deleting the tablejump, delete the dispatch table.
1332 We may not be able to kill the label immediately preceding
1333 just yet, as it might be referenced in code leading up to
1335 delete_related_insns (lab_next
);
1339 /* Likewise if we're deleting a dispatch table. */
1341 if (rtx_jump_table_data
*table
= dyn_cast
<rtx_jump_table_data
*> (insn
))
1343 rtvec labels
= table
->get_labels ();
1345 int len
= GET_NUM_ELEM (labels
);
1347 for (i
= 0; i
< len
; i
++)
1348 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels
, i
), 0)) == 0)
1349 delete_related_insns (XEXP (RTVEC_ELT (labels
, i
), 0));
1350 while (next
&& next
->deleted ())
1351 next
= NEXT_INSN (next
);
1355 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1356 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1358 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1359 if ((REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
1360 || REG_NOTE_KIND (note
) == REG_LABEL_TARGET
)
1361 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1362 && LABEL_P (XEXP (note
, 0)))
1363 if (LABEL_NUSES (XEXP (note
, 0)) == 0)
1364 delete_related_insns (XEXP (note
, 0));
1366 while (prev
&& (prev
->deleted () || NOTE_P (prev
)))
1367 prev
= PREV_INSN (prev
);
1369 /* If INSN was a label and a dispatch table follows it,
1370 delete the dispatch table. The tablejump must have gone already.
1371 It isn't useful to fall through into a table. */
1374 && NEXT_INSN (insn
) != 0
1375 && JUMP_TABLE_DATA_P (NEXT_INSN (insn
)))
1376 next
= delete_related_insns (NEXT_INSN (insn
));
1378 /* If INSN was a label, delete insns following it if now unreachable. */
1380 if (was_code_label
&& prev
&& BARRIER_P (prev
))
1385 code
= GET_CODE (next
);
1387 next
= NEXT_INSN (next
);
1388 /* Keep going past other deleted labels to delete what follows. */
1389 else if (code
== CODE_LABEL
&& next
->deleted ())
1390 next
= NEXT_INSN (next
);
1391 /* Keep the (use (insn))s created by dbr_schedule, which needs
1392 them in order to track liveness relative to a previous
1394 else if (INSN_P (next
)
1395 && GET_CODE (PATTERN (next
)) == USE
1396 && INSN_P (XEXP (PATTERN (next
), 0)))
1397 next
= NEXT_INSN (next
);
1398 else if (code
== BARRIER
|| INSN_P (next
))
1399 /* Note: if this deletes a jump, it can cause more
1400 deletion of unreachable code, after a different label.
1401 As long as the value from this recursive call is correct,
1402 this invocation functions correctly. */
1403 next
= delete_related_insns (next
);
1409 /* I feel a little doubtful about this loop,
1410 but I see no clean and sure alternative way
1411 to find the first insn after INSN that is not now deleted.
1412 I hope this works. */
1413 while (next
&& next
->deleted ())
1414 next
= NEXT_INSN (next
);
1418 /* Delete a range of insns from FROM to TO, inclusive.
1419 This is for the sake of peephole optimization, so assume
1420 that whatever these insns do will still be done by a new
1421 peephole insn that will replace them. */
1424 delete_for_peephole (rtx_insn
*from
, rtx_insn
*to
)
1426 rtx_insn
*insn
= from
;
1430 rtx_insn
*next
= NEXT_INSN (insn
);
1431 rtx_insn
*prev
= PREV_INSN (insn
);
1435 insn
->set_deleted();
1437 /* Patch this insn out of the chain. */
1438 /* We don't do this all at once, because we
1439 must preserve all NOTEs. */
1441 SET_NEXT_INSN (prev
) = next
;
1444 SET_PREV_INSN (next
) = prev
;
1452 /* Note that if TO is an unconditional jump
1453 we *do not* delete the BARRIER that follows,
1454 since the peephole that replaces this sequence
1455 is also an unconditional jump in that case. */
1458 /* A helper function for redirect_exp_1; examines its input X and returns
1459 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1461 redirect_target (rtx x
)
1465 if (!ANY_RETURN_P (x
))
1466 return gen_rtx_LABEL_REF (Pmode
, x
);
1470 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1471 NLABEL as a return. Accrue modifications into the change group. */
1474 redirect_exp_1 (rtx
*loc
, rtx olabel
, rtx nlabel
, rtx insn
)
1477 RTX_CODE code
= GET_CODE (x
);
1481 if ((code
== LABEL_REF
&& LABEL_REF_LABEL (x
) == olabel
)
1484 x
= redirect_target (nlabel
);
1485 if (GET_CODE (x
) == LABEL_REF
&& loc
== &PATTERN (insn
))
1486 x
= gen_rtx_SET (VOIDmode
, pc_rtx
, x
);
1487 validate_change (insn
, loc
, x
, 1);
1491 if (code
== SET
&& SET_DEST (x
) == pc_rtx
1492 && ANY_RETURN_P (nlabel
)
1493 && GET_CODE (SET_SRC (x
)) == LABEL_REF
1494 && LABEL_REF_LABEL (SET_SRC (x
)) == olabel
)
1496 validate_change (insn
, loc
, nlabel
, 1);
1500 if (code
== IF_THEN_ELSE
)
1502 /* Skip the condition of an IF_THEN_ELSE. We only want to
1503 change jump destinations, not eventual label comparisons. */
1504 redirect_exp_1 (&XEXP (x
, 1), olabel
, nlabel
, insn
);
1505 redirect_exp_1 (&XEXP (x
, 2), olabel
, nlabel
, insn
);
1509 fmt
= GET_RTX_FORMAT (code
);
1510 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1513 redirect_exp_1 (&XEXP (x
, i
), olabel
, nlabel
, insn
);
1514 else if (fmt
[i
] == 'E')
1517 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1518 redirect_exp_1 (&XVECEXP (x
, i
, j
), olabel
, nlabel
, insn
);
1523 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1524 the modifications into the change group. Return false if we did
1525 not see how to do that. */
1528 redirect_jump_1 (rtx jump
, rtx nlabel
)
1530 int ochanges
= num_validated_changes ();
1533 gcc_assert (nlabel
!= NULL_RTX
);
1534 asmop
= extract_asm_operands (PATTERN (jump
));
1539 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop
) == 1);
1540 loc
= &ASM_OPERANDS_LABEL (asmop
, 0);
1542 else if (GET_CODE (PATTERN (jump
)) == PARALLEL
)
1543 loc
= &XVECEXP (PATTERN (jump
), 0, 0);
1545 loc
= &PATTERN (jump
);
1547 redirect_exp_1 (loc
, JUMP_LABEL (jump
), nlabel
, jump
);
1548 return num_validated_changes () > ochanges
;
1551 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1552 jump target label is unused as a result, it and the code following
1555 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1556 in that case we are to turn the jump into a (possibly conditional)
1559 The return value will be 1 if the change was made, 0 if it wasn't
1560 (this can only occur when trying to produce return insns). */
1563 redirect_jump (rtx jump
, rtx nlabel
, int delete_unused
)
1565 rtx olabel
= JUMP_LABEL (jump
);
1569 /* If there is no label, we are asked to redirect to the EXIT block.
1570 When before the epilogue is emitted, return/simple_return cannot be
1571 created so we return 0 immediately. After the epilogue is emitted,
1572 we always expect a label, either a non-null label, or a
1573 return/simple_return RTX. */
1575 if (!epilogue_completed
)
1580 if (nlabel
== olabel
)
1583 if (! redirect_jump_1 (jump
, nlabel
) || ! apply_change_group ())
1586 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 0);
1590 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1592 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1593 count has dropped to zero. */
1595 redirect_jump_2 (rtx jump
, rtx olabel
, rtx nlabel
, int delete_unused
,
1600 gcc_assert (JUMP_LABEL (jump
) == olabel
);
1602 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1603 moving FUNCTION_END note. Just sanity check that no user still worry
1605 gcc_assert (delete_unused
>= 0);
1606 JUMP_LABEL (jump
) = nlabel
;
1607 if (!ANY_RETURN_P (nlabel
))
1608 ++LABEL_NUSES (nlabel
);
1610 /* Update labels in any REG_EQUAL note. */
1611 if ((note
= find_reg_note (jump
, REG_EQUAL
, NULL_RTX
)) != NULL_RTX
)
1613 if (ANY_RETURN_P (nlabel
)
1614 || (invert
&& !invert_exp_1 (XEXP (note
, 0), jump
)))
1615 remove_note (jump
, note
);
1618 redirect_exp_1 (&XEXP (note
, 0), olabel
, nlabel
, jump
);
1619 confirm_change_group ();
1623 /* Handle the case where we had a conditional crossing jump to a return
1624 label and are now changing it into a direct conditional return.
1625 The jump is no longer crossing in that case. */
1626 if (ANY_RETURN_P (nlabel
))
1627 CROSSING_JUMP_P (jump
) = 0;
1629 if (!ANY_RETURN_P (olabel
)
1630 && --LABEL_NUSES (olabel
) == 0 && delete_unused
> 0
1631 /* Undefined labels will remain outside the insn stream. */
1632 && INSN_UID (olabel
))
1633 delete_related_insns (olabel
);
1635 invert_br_probabilities (jump
);
1638 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1639 modifications into the change group. Return nonzero for success. */
1641 invert_exp_1 (rtx x
, rtx insn
)
1643 RTX_CODE code
= GET_CODE (x
);
1645 if (code
== IF_THEN_ELSE
)
1647 rtx comp
= XEXP (x
, 0);
1649 enum rtx_code reversed_code
;
1651 /* We can do this in two ways: The preferable way, which can only
1652 be done if this is not an integer comparison, is to reverse
1653 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1654 of the IF_THEN_ELSE. If we can't do either, fail. */
1656 reversed_code
= reversed_comparison_code (comp
, insn
);
1658 if (reversed_code
!= UNKNOWN
)
1660 validate_change (insn
, &XEXP (x
, 0),
1661 gen_rtx_fmt_ee (reversed_code
,
1662 GET_MODE (comp
), XEXP (comp
, 0),
1669 validate_change (insn
, &XEXP (x
, 1), XEXP (x
, 2), 1);
1670 validate_change (insn
, &XEXP (x
, 2), tem
, 1);
1677 /* Invert the condition of the jump JUMP, and make it jump to label
1678 NLABEL instead of where it jumps now. Accrue changes into the
1679 change group. Return false if we didn't see how to perform the
1680 inversion and redirection. */
1683 invert_jump_1 (rtx_insn
*jump
, rtx nlabel
)
1685 rtx x
= pc_set (jump
);
1689 ochanges
= num_validated_changes ();
1692 ok
= invert_exp_1 (SET_SRC (x
), jump
);
1695 if (num_validated_changes () == ochanges
)
1698 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1699 in Pmode, so checking this is not merely an optimization. */
1700 return nlabel
== JUMP_LABEL (jump
) || redirect_jump_1 (jump
, nlabel
);
1703 /* Invert the condition of the jump JUMP, and make it jump to label
1704 NLABEL instead of where it jumps now. Return true if successful. */
1707 invert_jump (rtx_insn
*jump
, rtx nlabel
, int delete_unused
)
1709 rtx olabel
= JUMP_LABEL (jump
);
1711 if (invert_jump_1 (jump
, nlabel
) && apply_change_group ())
1713 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 1);
1721 /* Like rtx_equal_p except that it considers two REGs as equal
1722 if they renumber to the same value and considers two commutative
1723 operations to be the same if the order of the operands has been
1727 rtx_renumbered_equal_p (const_rtx x
, const_rtx y
)
1730 const enum rtx_code code
= GET_CODE (x
);
1736 if ((code
== REG
|| (code
== SUBREG
&& REG_P (SUBREG_REG (x
))))
1737 && (REG_P (y
) || (GET_CODE (y
) == SUBREG
1738 && REG_P (SUBREG_REG (y
)))))
1740 int reg_x
= -1, reg_y
= -1;
1741 int byte_x
= 0, byte_y
= 0;
1742 struct subreg_info info
;
1744 if (GET_MODE (x
) != GET_MODE (y
))
1747 /* If we haven't done any renumbering, don't
1748 make any assumptions. */
1749 if (reg_renumber
== 0)
1750 return rtx_equal_p (x
, y
);
1754 reg_x
= REGNO (SUBREG_REG (x
));
1755 byte_x
= SUBREG_BYTE (x
);
1757 if (reg_renumber
[reg_x
] >= 0)
1759 subreg_get_info (reg_renumber
[reg_x
],
1760 GET_MODE (SUBREG_REG (x
)), byte_x
,
1761 GET_MODE (x
), &info
);
1762 if (!info
.representable_p
)
1764 reg_x
= info
.offset
;
1771 if (reg_renumber
[reg_x
] >= 0)
1772 reg_x
= reg_renumber
[reg_x
];
1775 if (GET_CODE (y
) == SUBREG
)
1777 reg_y
= REGNO (SUBREG_REG (y
));
1778 byte_y
= SUBREG_BYTE (y
);
1780 if (reg_renumber
[reg_y
] >= 0)
1782 subreg_get_info (reg_renumber
[reg_y
],
1783 GET_MODE (SUBREG_REG (y
)), byte_y
,
1784 GET_MODE (y
), &info
);
1785 if (!info
.representable_p
)
1787 reg_y
= info
.offset
;
1794 if (reg_renumber
[reg_y
] >= 0)
1795 reg_y
= reg_renumber
[reg_y
];
1798 return reg_x
>= 0 && reg_x
== reg_y
&& byte_x
== byte_y
;
1801 /* Now we have disposed of all the cases
1802 in which different rtx codes can match. */
1803 if (code
!= GET_CODE (y
))
1816 /* We can't assume nonlocal labels have their following insns yet. */
1817 if (LABEL_REF_NONLOCAL_P (x
) || LABEL_REF_NONLOCAL_P (y
))
1818 return LABEL_REF_LABEL (x
) == LABEL_REF_LABEL (y
);
1820 /* Two label-refs are equivalent if they point at labels
1821 in the same position in the instruction stream. */
1822 return (next_real_insn (LABEL_REF_LABEL (x
))
1823 == next_real_insn (LABEL_REF_LABEL (y
)));
1826 return XSTR (x
, 0) == XSTR (y
, 0);
1829 /* If we didn't match EQ equality above, they aren't the same. */
1836 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1838 if (GET_MODE (x
) != GET_MODE (y
))
1841 /* MEMs referring to different address space are not equivalent. */
1842 if (code
== MEM
&& MEM_ADDR_SPACE (x
) != MEM_ADDR_SPACE (y
))
1845 /* For commutative operations, the RTX match if the operand match in any
1846 order. Also handle the simple binary and unary cases without a loop. */
1847 if (targetm
.commutative_p (x
, UNKNOWN
))
1848 return ((rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1849 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)))
1850 || (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 1))
1851 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 0))));
1852 else if (NON_COMMUTATIVE_P (x
))
1853 return (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1854 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)));
1855 else if (UNARY_P (x
))
1856 return rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0));
1858 /* Compare the elements. If any pair of corresponding elements
1859 fail to match, return 0 for the whole things. */
1861 fmt
= GET_RTX_FORMAT (code
);
1862 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1868 if (XWINT (x
, i
) != XWINT (y
, i
))
1873 if (XINT (x
, i
) != XINT (y
, i
))
1875 if (((code
== ASM_OPERANDS
&& i
== 6)
1876 || (code
== ASM_INPUT
&& i
== 1)))
1883 if (XTREE (x
, i
) != XTREE (y
, i
))
1888 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1893 if (! rtx_renumbered_equal_p (XEXP (x
, i
), XEXP (y
, i
)))
1898 if (XEXP (x
, i
) != XEXP (y
, i
))
1905 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1907 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1908 if (!rtx_renumbered_equal_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)))
1919 /* If X is a hard register or equivalent to one or a subregister of one,
1920 return the hard register number. If X is a pseudo register that was not
1921 assigned a hard register, return the pseudo register number. Otherwise,
1922 return -1. Any rtx is valid for X. */
1925 true_regnum (const_rtx x
)
1929 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
1930 && (lra_in_progress
|| reg_renumber
[REGNO (x
)] >= 0))
1931 return reg_renumber
[REGNO (x
)];
1934 if (GET_CODE (x
) == SUBREG
)
1936 int base
= true_regnum (SUBREG_REG (x
));
1938 && base
< FIRST_PSEUDO_REGISTER
)
1940 struct subreg_info info
;
1942 subreg_get_info (lra_in_progress
1943 ? (unsigned) base
: REGNO (SUBREG_REG (x
)),
1944 GET_MODE (SUBREG_REG (x
)),
1945 SUBREG_BYTE (x
), GET_MODE (x
), &info
);
1947 if (info
.representable_p
)
1948 return base
+ info
.offset
;
1954 /* Return regno of the register REG and handle subregs too. */
1956 reg_or_subregno (const_rtx reg
)
1958 if (GET_CODE (reg
) == SUBREG
)
1959 reg
= SUBREG_REG (reg
);
1960 gcc_assert (REG_P (reg
));