Daily bump.
[official-gcc.git] / gcc / final.c
blob19817e240dacfeee1778b0bce7f7f8498eece55f
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "memmodel.h"
56 #include "tm_p.h"
57 #include "insn-config.h"
58 #include "regs.h"
59 #include "emit-rtl.h"
60 #include "recog.h"
61 #include "cgraph.h"
62 #include "tree-pretty-print.h" /* for dump_function_header */
63 #include "varasm.h"
64 #include "insn-attr.h"
65 #include "conditions.h"
66 #include "flags.h"
67 #include "output.h"
68 #include "except.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "reload.h"
72 #include "intl.h"
73 #include "cfgrtl.h"
74 #include "debug.h"
75 #include "tree-pass.h"
76 #include "tree-ssa.h"
77 #include "cfgloop.h"
78 #include "params.h"
79 #include "stringpool.h"
80 #include "attribs.h"
81 #include "asan.h"
82 #include "rtl-iter.h"
83 #include "print-rtl.h"
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h" /* Needed for external data declarations. */
87 #endif
89 #include "dwarf2out.h"
91 #ifdef DBX_DEBUGGING_INFO
92 #include "dbxout.h"
93 #endif
95 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
96 So define a null default for it to save conditionalization later. */
97 #ifndef CC_STATUS_INIT
98 #define CC_STATUS_INIT
99 #endif
101 /* Is the given character a logical line separator for the assembler? */
102 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
103 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
104 #endif
106 #ifndef JUMP_TABLES_IN_TEXT_SECTION
107 #define JUMP_TABLES_IN_TEXT_SECTION 0
108 #endif
110 /* Bitflags used by final_scan_insn. */
111 #define SEEN_NOTE 1
112 #define SEEN_EMITTED 2
113 #define SEEN_NEXT_VIEW 4
115 /* Last insn processed by final_scan_insn. */
116 static rtx_insn *debug_insn;
117 rtx_insn *current_output_insn;
119 /* Line number of last NOTE. */
120 static int last_linenum;
122 /* Column number of last NOTE. */
123 static int last_columnnum;
125 /* Last discriminator written to assembly. */
126 static int last_discriminator;
128 /* Discriminator of current block. */
129 static int discriminator;
131 /* Highest line number in current block. */
132 static int high_block_linenum;
134 /* Likewise for function. */
135 static int high_function_linenum;
137 /* Filename of last NOTE. */
138 static const char *last_filename;
140 /* Override filename, line and column number. */
141 static const char *override_filename;
142 static int override_linenum;
143 static int override_columnnum;
145 /* Whether to force emission of a line note before the next insn. */
146 static bool force_source_line = false;
148 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
150 /* Nonzero while outputting an `asm' with operands.
151 This means that inconsistencies are the user's fault, so don't die.
152 The precise value is the insn being output, to pass to error_for_asm. */
153 const rtx_insn *this_is_asm_operands;
155 /* Number of operands of this insn, for an `asm' with operands. */
156 static unsigned int insn_noperands;
158 /* Compare optimization flag. */
160 static rtx last_ignored_compare = 0;
162 /* Assign a unique number to each insn that is output.
163 This can be used to generate unique local labels. */
165 static int insn_counter = 0;
167 /* This variable contains machine-dependent flags (defined in tm.h)
168 set and examined by output routines
169 that describe how to interpret the condition codes properly. */
171 CC_STATUS cc_status;
173 /* During output of an insn, this contains a copy of cc_status
174 from before the insn. */
176 CC_STATUS cc_prev_status;
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
180 static int block_depth;
182 /* Nonzero if have enabled APP processing of our assembler output. */
184 static int app_on;
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
187 Zero otherwise. */
189 rtx_sequence *final_sequence;
191 #ifdef ASSEMBLER_DIALECT
193 /* Number of the assembler dialect to use, starting at 0. */
194 static int dialect_number;
195 #endif
197 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
198 rtx current_insn_predicate;
200 /* True if printing into -fdump-final-insns= dump. */
201 bool final_insns_dump_p;
203 /* True if profile_function should be called, but hasn't been called yet. */
204 static bool need_profile_function;
206 static int asm_insn_count (rtx);
207 static void profile_function (FILE *);
208 static void profile_after_prologue (FILE *);
209 static bool notice_source_line (rtx_insn *, bool *);
210 static rtx walk_alter_subreg (rtx *, bool *);
211 static void output_asm_name (void);
212 static void output_alternate_entry_point (FILE *, rtx_insn *);
213 static tree get_mem_expr_from_op (rtx, int *);
214 static void output_asm_operand_names (rtx *, int *, int);
215 #ifdef LEAF_REGISTERS
216 static void leaf_renumber_regs (rtx_insn *);
217 #endif
218 #if HAVE_cc0
219 static int alter_cond (rtx);
220 #endif
221 static int align_fuzz (rtx, rtx, int, unsigned);
222 static void collect_fn_hard_reg_usage (void);
223 static tree get_call_fndecl (rtx_insn *);
225 /* Initialize data in final at the beginning of a compilation. */
227 void
228 init_final (const char *filename ATTRIBUTE_UNUSED)
230 app_on = 0;
231 final_sequence = 0;
233 #ifdef ASSEMBLER_DIALECT
234 dialect_number = ASSEMBLER_DIALECT;
235 #endif
238 /* Default target function prologue and epilogue assembler output.
240 If not overridden for epilogue code, then the function body itself
241 contains return instructions wherever needed. */
242 void
243 default_function_pro_epilogue (FILE *)
247 void
248 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
249 tree decl ATTRIBUTE_UNUSED,
250 bool new_is_cold ATTRIBUTE_UNUSED)
254 /* Default target hook that outputs nothing to a stream. */
255 void
256 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
260 /* Enable APP processing of subsequent output.
261 Used before the output from an `asm' statement. */
263 void
264 app_enable (void)
266 if (! app_on)
268 fputs (ASM_APP_ON, asm_out_file);
269 app_on = 1;
273 /* Disable APP processing of subsequent output.
274 Called from varasm.c before most kinds of output. */
276 void
277 app_disable (void)
279 if (app_on)
281 fputs (ASM_APP_OFF, asm_out_file);
282 app_on = 0;
286 /* Return the number of slots filled in the current
287 delayed branch sequence (we don't count the insn needing the
288 delay slot). Zero if not in a delayed branch sequence. */
291 dbr_sequence_length (void)
293 if (final_sequence != 0)
294 return XVECLEN (final_sequence, 0) - 1;
295 else
296 return 0;
299 /* The next two pages contain routines used to compute the length of an insn
300 and to shorten branches. */
302 /* Arrays for insn lengths, and addresses. The latter is referenced by
303 `insn_current_length'. */
305 static int *insn_lengths;
307 vec<int> insn_addresses_;
309 /* Max uid for which the above arrays are valid. */
310 static int insn_lengths_max_uid;
312 /* Address of insn being processed. Used by `insn_current_length'. */
313 int insn_current_address;
315 /* Address of insn being processed in previous iteration. */
316 int insn_last_address;
318 /* known invariant alignment of insn being processed. */
319 int insn_current_align;
321 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
322 gives the next following alignment insn that increases the known
323 alignment, or NULL_RTX if there is no such insn.
324 For any alignment obtained this way, we can again index uid_align with
325 its uid to obtain the next following align that in turn increases the
326 alignment, till we reach NULL_RTX; the sequence obtained this way
327 for each insn we'll call the alignment chain of this insn in the following
328 comments. */
330 struct label_alignment
332 short alignment;
333 short max_skip;
336 static rtx *uid_align;
337 static int *uid_shuid;
338 static struct label_alignment *label_align;
340 /* Indicate that branch shortening hasn't yet been done. */
342 void
343 init_insn_lengths (void)
345 if (uid_shuid)
347 free (uid_shuid);
348 uid_shuid = 0;
350 if (insn_lengths)
352 free (insn_lengths);
353 insn_lengths = 0;
354 insn_lengths_max_uid = 0;
356 if (HAVE_ATTR_length)
357 INSN_ADDRESSES_FREE ();
358 if (uid_align)
360 free (uid_align);
361 uid_align = 0;
365 /* Obtain the current length of an insn. If branch shortening has been done,
366 get its actual length. Otherwise, use FALLBACK_FN to calculate the
367 length. */
368 static int
369 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
371 rtx body;
372 int i;
373 int length = 0;
375 if (!HAVE_ATTR_length)
376 return 0;
378 if (insn_lengths_max_uid > INSN_UID (insn))
379 return insn_lengths[INSN_UID (insn)];
380 else
381 switch (GET_CODE (insn))
383 case NOTE:
384 case BARRIER:
385 case CODE_LABEL:
386 case DEBUG_INSN:
387 return 0;
389 case CALL_INSN:
390 case JUMP_INSN:
391 length = fallback_fn (insn);
392 break;
394 case INSN:
395 body = PATTERN (insn);
396 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
397 return 0;
399 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
400 length = asm_insn_count (body) * fallback_fn (insn);
401 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
402 for (i = 0; i < seq->len (); i++)
403 length += get_attr_length_1 (seq->insn (i), fallback_fn);
404 else
405 length = fallback_fn (insn);
406 break;
408 default:
409 break;
412 #ifdef ADJUST_INSN_LENGTH
413 ADJUST_INSN_LENGTH (insn, length);
414 #endif
415 return length;
418 /* Obtain the current length of an insn. If branch shortening has been done,
419 get its actual length. Otherwise, get its maximum length. */
421 get_attr_length (rtx_insn *insn)
423 return get_attr_length_1 (insn, insn_default_length);
426 /* Obtain the current length of an insn. If branch shortening has been done,
427 get its actual length. Otherwise, get its minimum length. */
429 get_attr_min_length (rtx_insn *insn)
431 return get_attr_length_1 (insn, insn_min_length);
434 /* Code to handle alignment inside shorten_branches. */
436 /* Here is an explanation how the algorithm in align_fuzz can give
437 proper results:
439 Call a sequence of instructions beginning with alignment point X
440 and continuing until the next alignment point `block X'. When `X'
441 is used in an expression, it means the alignment value of the
442 alignment point.
444 Call the distance between the start of the first insn of block X, and
445 the end of the last insn of block X `IX', for the `inner size of X'.
446 This is clearly the sum of the instruction lengths.
448 Likewise with the next alignment-delimited block following X, which we
449 shall call block Y.
451 Call the distance between the start of the first insn of block X, and
452 the start of the first insn of block Y `OX', for the `outer size of X'.
454 The estimated padding is then OX - IX.
456 OX can be safely estimated as
458 if (X >= Y)
459 OX = round_up(IX, Y)
460 else
461 OX = round_up(IX, X) + Y - X
463 Clearly est(IX) >= real(IX), because that only depends on the
464 instruction lengths, and those being overestimated is a given.
466 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
467 we needn't worry about that when thinking about OX.
469 When X >= Y, the alignment provided by Y adds no uncertainty factor
470 for branch ranges starting before X, so we can just round what we have.
471 But when X < Y, we don't know anything about the, so to speak,
472 `middle bits', so we have to assume the worst when aligning up from an
473 address mod X to one mod Y, which is Y - X. */
475 #ifndef LABEL_ALIGN
476 #define LABEL_ALIGN(LABEL) align_labels_log
477 #endif
479 #ifndef LOOP_ALIGN
480 #define LOOP_ALIGN(LABEL) align_loops_log
481 #endif
483 #ifndef LABEL_ALIGN_AFTER_BARRIER
484 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
485 #endif
487 #ifndef JUMP_ALIGN
488 #define JUMP_ALIGN(LABEL) align_jumps_log
489 #endif
492 default_label_align_after_barrier_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
494 return 0;
498 default_loop_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
500 return align_loops_max_skip;
504 default_label_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
506 return align_labels_max_skip;
510 default_jump_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
512 return align_jumps_max_skip;
515 #ifndef ADDR_VEC_ALIGN
516 static int
517 final_addr_vec_align (rtx_jump_table_data *addr_vec)
519 int align = GET_MODE_SIZE (addr_vec->get_data_mode ());
521 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
522 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
523 return exact_log2 (align);
527 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
528 #endif
530 #ifndef INSN_LENGTH_ALIGNMENT
531 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
532 #endif
534 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
536 static int min_labelno, max_labelno;
538 #define LABEL_TO_ALIGNMENT(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
541 #define LABEL_TO_MAX_SKIP(LABEL) \
542 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
544 /* For the benefit of port specific code do this also as a function. */
547 label_to_alignment (rtx label)
549 if (CODE_LABEL_NUMBER (label) <= max_labelno)
550 return LABEL_TO_ALIGNMENT (label);
551 return 0;
555 label_to_max_skip (rtx label)
557 if (CODE_LABEL_NUMBER (label) <= max_labelno)
558 return LABEL_TO_MAX_SKIP (label);
559 return 0;
562 /* The differences in addresses
563 between a branch and its target might grow or shrink depending on
564 the alignment the start insn of the range (the branch for a forward
565 branch or the label for a backward branch) starts out on; if these
566 differences are used naively, they can even oscillate infinitely.
567 We therefore want to compute a 'worst case' address difference that
568 is independent of the alignment the start insn of the range end
569 up on, and that is at least as large as the actual difference.
570 The function align_fuzz calculates the amount we have to add to the
571 naively computed difference, by traversing the part of the alignment
572 chain of the start insn of the range that is in front of the end insn
573 of the range, and considering for each alignment the maximum amount
574 that it might contribute to a size increase.
576 For casesi tables, we also want to know worst case minimum amounts of
577 address difference, in case a machine description wants to introduce
578 some common offset that is added to all offsets in a table.
579 For this purpose, align_fuzz with a growth argument of 0 computes the
580 appropriate adjustment. */
582 /* Compute the maximum delta by which the difference of the addresses of
583 START and END might grow / shrink due to a different address for start
584 which changes the size of alignment insns between START and END.
585 KNOWN_ALIGN_LOG is the alignment known for START.
586 GROWTH should be ~0 if the objective is to compute potential code size
587 increase, and 0 if the objective is to compute potential shrink.
588 The return value is undefined for any other value of GROWTH. */
590 static int
591 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
593 int uid = INSN_UID (start);
594 rtx align_label;
595 int known_align = 1 << known_align_log;
596 int end_shuid = INSN_SHUID (end);
597 int fuzz = 0;
599 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
601 int align_addr, new_align;
603 uid = INSN_UID (align_label);
604 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
605 if (uid_shuid[uid] > end_shuid)
606 break;
607 known_align_log = LABEL_TO_ALIGNMENT (align_label);
608 new_align = 1 << known_align_log;
609 if (new_align < known_align)
610 continue;
611 fuzz += (-align_addr ^ growth) & (new_align - known_align);
612 known_align = new_align;
614 return fuzz;
617 /* Compute a worst-case reference address of a branch so that it
618 can be safely used in the presence of aligned labels. Since the
619 size of the branch itself is unknown, the size of the branch is
620 not included in the range. I.e. for a forward branch, the reference
621 address is the end address of the branch as known from the previous
622 branch shortening pass, minus a value to account for possible size
623 increase due to alignment. For a backward branch, it is the start
624 address of the branch as known from the current pass, plus a value
625 to account for possible size increase due to alignment.
626 NB.: Therefore, the maximum offset allowed for backward branches needs
627 to exclude the branch size. */
630 insn_current_reference_address (rtx_insn *branch)
632 rtx dest;
633 int seq_uid;
635 if (! INSN_ADDRESSES_SET_P ())
636 return 0;
638 rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
639 seq_uid = INSN_UID (seq);
640 if (!JUMP_P (branch))
641 /* This can happen for example on the PA; the objective is to know the
642 offset to address something in front of the start of the function.
643 Thus, we can treat it like a backward branch.
644 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
645 any alignment we'd encounter, so we skip the call to align_fuzz. */
646 return insn_current_address;
647 dest = JUMP_LABEL (branch);
649 /* BRANCH has no proper alignment chain set, so use SEQ.
650 BRANCH also has no INSN_SHUID. */
651 if (INSN_SHUID (seq) < INSN_SHUID (dest))
653 /* Forward branch. */
654 return (insn_last_address + insn_lengths[seq_uid]
655 - align_fuzz (seq, dest, length_unit_log, ~0));
657 else
659 /* Backward branch. */
660 return (insn_current_address
661 + align_fuzz (dest, seq, length_unit_log, ~0));
665 /* Compute branch alignments based on CFG profile. */
667 unsigned int
668 compute_alignments (void)
670 int log, max_skip, max_log;
671 basic_block bb;
673 if (label_align)
675 free (label_align);
676 label_align = 0;
679 max_labelno = max_label_num ();
680 min_labelno = get_first_label_num ();
681 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
683 /* If not optimizing or optimizing for size, don't assign any alignments. */
684 if (! optimize || optimize_function_for_size_p (cfun))
685 return 0;
687 if (dump_file)
689 dump_reg_info (dump_file);
690 dump_flow_info (dump_file, TDF_DETAILS);
691 flow_loops_dump (dump_file, NULL, 1);
693 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
694 profile_count count_threshold = cfun->cfg->count_max.apply_scale
695 (1, PARAM_VALUE (PARAM_ALIGN_THRESHOLD));
697 if (dump_file)
699 fprintf (dump_file, "count_max: ");
700 cfun->cfg->count_max.dump (dump_file);
701 fprintf (dump_file, "\n");
703 FOR_EACH_BB_FN (bb, cfun)
705 rtx_insn *label = BB_HEAD (bb);
706 bool has_fallthru = 0;
707 edge e;
708 edge_iterator ei;
710 if (!LABEL_P (label)
711 || optimize_bb_for_size_p (bb))
713 if (dump_file)
714 fprintf (dump_file,
715 "BB %4i loop %2i loop_depth %2i skipped.\n",
716 bb->index,
717 bb->loop_father->num,
718 bb_loop_depth (bb));
719 continue;
721 max_log = LABEL_ALIGN (label);
722 max_skip = targetm.asm_out.label_align_max_skip (label);
723 profile_count fallthru_count = profile_count::zero ();
724 profile_count branch_count = profile_count::zero ();
726 FOR_EACH_EDGE (e, ei, bb->preds)
728 if (e->flags & EDGE_FALLTHRU)
729 has_fallthru = 1, fallthru_count += e->count ();
730 else
731 branch_count += e->count ();
733 if (dump_file)
735 fprintf (dump_file, "BB %4i loop %2i loop_depth"
736 " %2i fall ",
737 bb->index, bb->loop_father->num,
738 bb_loop_depth (bb));
739 fallthru_count.dump (dump_file);
740 fprintf (dump_file, " branch ");
741 branch_count.dump (dump_file);
742 if (!bb->loop_father->inner && bb->loop_father->num)
743 fprintf (dump_file, " inner_loop");
744 if (bb->loop_father->header == bb)
745 fprintf (dump_file, " loop_header");
746 fprintf (dump_file, "\n");
748 if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
749 continue;
751 /* There are two purposes to align block with no fallthru incoming edge:
752 1) to avoid fetch stalls when branch destination is near cache boundary
753 2) to improve cache efficiency in case the previous block is not executed
754 (so it does not need to be in the cache).
756 We to catch first case, we align frequently executed blocks.
757 To catch the second, we align blocks that are executed more frequently
758 than the predecessor and the predecessor is likely to not be executed
759 when function is called. */
761 if (!has_fallthru
762 && (branch_count > count_threshold
763 || (bb->count > bb->prev_bb->count.apply_scale (10, 1)
764 && (bb->prev_bb->count
765 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)
766 ->count.apply_scale (1, 2)))))
768 log = JUMP_ALIGN (label);
769 if (dump_file)
770 fprintf (dump_file, " jump alignment added.\n");
771 if (max_log < log)
773 max_log = log;
774 max_skip = targetm.asm_out.jump_align_max_skip (label);
777 /* In case block is frequent and reached mostly by non-fallthru edge,
778 align it. It is most likely a first block of loop. */
779 if (has_fallthru
780 && !(single_succ_p (bb)
781 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
782 && optimize_bb_for_speed_p (bb)
783 && branch_count + fallthru_count > count_threshold
784 && (branch_count
785 > fallthru_count.apply_scale
786 (PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS), 1)))
788 log = LOOP_ALIGN (label);
789 if (dump_file)
790 fprintf (dump_file, " internal loop alignment added.\n");
791 if (max_log < log)
793 max_log = log;
794 max_skip = targetm.asm_out.loop_align_max_skip (label);
797 LABEL_TO_ALIGNMENT (label) = max_log;
798 LABEL_TO_MAX_SKIP (label) = max_skip;
801 loop_optimizer_finalize ();
802 free_dominance_info (CDI_DOMINATORS);
803 return 0;
806 /* Grow the LABEL_ALIGN array after new labels are created. */
808 static void
809 grow_label_align (void)
811 int old = max_labelno;
812 int n_labels;
813 int n_old_labels;
815 max_labelno = max_label_num ();
817 n_labels = max_labelno - min_labelno + 1;
818 n_old_labels = old - min_labelno + 1;
820 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
822 /* Range of labels grows monotonically in the function. Failing here
823 means that the initialization of array got lost. */
824 gcc_assert (n_old_labels <= n_labels);
826 memset (label_align + n_old_labels, 0,
827 (n_labels - n_old_labels) * sizeof (struct label_alignment));
830 /* Update the already computed alignment information. LABEL_PAIRS is a vector
831 made up of pairs of labels for which the alignment information of the first
832 element will be copied from that of the second element. */
834 void
835 update_alignments (vec<rtx> &label_pairs)
837 unsigned int i = 0;
838 rtx iter, label = NULL_RTX;
840 if (max_labelno != max_label_num ())
841 grow_label_align ();
843 FOR_EACH_VEC_ELT (label_pairs, i, iter)
844 if (i & 1)
846 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
847 LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
849 else
850 label = iter;
853 namespace {
855 const pass_data pass_data_compute_alignments =
857 RTL_PASS, /* type */
858 "alignments", /* name */
859 OPTGROUP_NONE, /* optinfo_flags */
860 TV_NONE, /* tv_id */
861 0, /* properties_required */
862 0, /* properties_provided */
863 0, /* properties_destroyed */
864 0, /* todo_flags_start */
865 0, /* todo_flags_finish */
868 class pass_compute_alignments : public rtl_opt_pass
870 public:
871 pass_compute_alignments (gcc::context *ctxt)
872 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
875 /* opt_pass methods: */
876 virtual unsigned int execute (function *) { return compute_alignments (); }
878 }; // class pass_compute_alignments
880 } // anon namespace
882 rtl_opt_pass *
883 make_pass_compute_alignments (gcc::context *ctxt)
885 return new pass_compute_alignments (ctxt);
889 /* Make a pass over all insns and compute their actual lengths by shortening
890 any branches of variable length if possible. */
892 /* shorten_branches might be called multiple times: for example, the SH
893 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
894 In order to do this, it needs proper length information, which it obtains
895 by calling shorten_branches. This cannot be collapsed with
896 shorten_branches itself into a single pass unless we also want to integrate
897 reorg.c, since the branch splitting exposes new instructions with delay
898 slots. */
900 void
901 shorten_branches (rtx_insn *first)
903 rtx_insn *insn;
904 int max_uid;
905 int i;
906 int max_log;
907 int max_skip;
908 #define MAX_CODE_ALIGN 16
909 rtx_insn *seq;
910 int something_changed = 1;
911 char *varying_length;
912 rtx body;
913 int uid;
914 rtx align_tab[MAX_CODE_ALIGN + 1];
916 /* Compute maximum UID and allocate label_align / uid_shuid. */
917 max_uid = get_max_uid ();
919 /* Free uid_shuid before reallocating it. */
920 free (uid_shuid);
922 uid_shuid = XNEWVEC (int, max_uid);
924 if (max_labelno != max_label_num ())
925 grow_label_align ();
927 /* Initialize label_align and set up uid_shuid to be strictly
928 monotonically rising with insn order. */
929 /* We use max_log here to keep track of the maximum alignment we want to
930 impose on the next CODE_LABEL (or the current one if we are processing
931 the CODE_LABEL itself). */
933 max_log = 0;
934 max_skip = 0;
936 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
938 int log;
940 INSN_SHUID (insn) = i++;
941 if (INSN_P (insn))
942 continue;
944 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
946 /* Merge in alignments computed by compute_alignments. */
947 log = LABEL_TO_ALIGNMENT (label);
948 if (max_log < log)
950 max_log = log;
951 max_skip = LABEL_TO_MAX_SKIP (label);
954 rtx_jump_table_data *table = jump_table_for_label (label);
955 if (!table)
957 log = LABEL_ALIGN (label);
958 if (max_log < log)
960 max_log = log;
961 max_skip = targetm.asm_out.label_align_max_skip (label);
964 /* ADDR_VECs only take room if read-only data goes into the text
965 section. */
966 if ((JUMP_TABLES_IN_TEXT_SECTION
967 || readonly_data_section == text_section)
968 && table)
970 log = ADDR_VEC_ALIGN (table);
971 if (max_log < log)
973 max_log = log;
974 max_skip = targetm.asm_out.label_align_max_skip (label);
977 LABEL_TO_ALIGNMENT (label) = max_log;
978 LABEL_TO_MAX_SKIP (label) = max_skip;
979 max_log = 0;
980 max_skip = 0;
982 else if (BARRIER_P (insn))
984 rtx_insn *label;
986 for (label = insn; label && ! INSN_P (label);
987 label = NEXT_INSN (label))
988 if (LABEL_P (label))
990 log = LABEL_ALIGN_AFTER_BARRIER (insn);
991 if (max_log < log)
993 max_log = log;
994 max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
996 break;
1000 if (!HAVE_ATTR_length)
1001 return;
1003 /* Allocate the rest of the arrays. */
1004 insn_lengths = XNEWVEC (int, max_uid);
1005 insn_lengths_max_uid = max_uid;
1006 /* Syntax errors can lead to labels being outside of the main insn stream.
1007 Initialize insn_addresses, so that we get reproducible results. */
1008 INSN_ADDRESSES_ALLOC (max_uid);
1010 varying_length = XCNEWVEC (char, max_uid);
1012 /* Initialize uid_align. We scan instructions
1013 from end to start, and keep in align_tab[n] the last seen insn
1014 that does an alignment of at least n+1, i.e. the successor
1015 in the alignment chain for an insn that does / has a known
1016 alignment of n. */
1017 uid_align = XCNEWVEC (rtx, max_uid);
1019 for (i = MAX_CODE_ALIGN + 1; --i >= 0;)
1020 align_tab[i] = NULL_RTX;
1021 seq = get_last_insn ();
1022 for (; seq; seq = PREV_INSN (seq))
1024 int uid = INSN_UID (seq);
1025 int log;
1026 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1027 uid_align[uid] = align_tab[0];
1028 if (log)
1030 /* Found an alignment label. */
1031 uid_align[uid] = align_tab[log];
1032 for (i = log - 1; i >= 0; i--)
1033 align_tab[i] = seq;
1037 /* When optimizing, we start assuming minimum length, and keep increasing
1038 lengths as we find the need for this, till nothing changes.
1039 When not optimizing, we start assuming maximum lengths, and
1040 do a single pass to update the lengths. */
1041 bool increasing = optimize != 0;
1043 #ifdef CASE_VECTOR_SHORTEN_MODE
1044 if (optimize)
1046 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1047 label fields. */
1049 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1050 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1051 int rel;
1053 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1055 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1056 int len, i, min, max, insn_shuid;
1057 int min_align;
1058 addr_diff_vec_flags flags;
1060 if (! JUMP_TABLE_DATA_P (insn)
1061 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1062 continue;
1063 pat = PATTERN (insn);
1064 len = XVECLEN (pat, 1);
1065 gcc_assert (len > 0);
1066 min_align = MAX_CODE_ALIGN;
1067 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1069 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1070 int shuid = INSN_SHUID (lab);
1071 if (shuid < min)
1073 min = shuid;
1074 min_lab = lab;
1076 if (shuid > max)
1078 max = shuid;
1079 max_lab = lab;
1081 if (min_align > LABEL_TO_ALIGNMENT (lab))
1082 min_align = LABEL_TO_ALIGNMENT (lab);
1084 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1085 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1086 insn_shuid = INSN_SHUID (insn);
1087 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1088 memset (&flags, 0, sizeof (flags));
1089 flags.min_align = min_align;
1090 flags.base_after_vec = rel > insn_shuid;
1091 flags.min_after_vec = min > insn_shuid;
1092 flags.max_after_vec = max > insn_shuid;
1093 flags.min_after_base = min > rel;
1094 flags.max_after_base = max > rel;
1095 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1097 if (increasing)
1098 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1101 #endif /* CASE_VECTOR_SHORTEN_MODE */
1103 /* Compute initial lengths, addresses, and varying flags for each insn. */
1104 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1106 for (insn_current_address = 0, insn = first;
1107 insn != 0;
1108 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1110 uid = INSN_UID (insn);
1112 insn_lengths[uid] = 0;
1114 if (LABEL_P (insn))
1116 int log = LABEL_TO_ALIGNMENT (insn);
1117 if (log)
1119 int align = 1 << log;
1120 int new_address = (insn_current_address + align - 1) & -align;
1121 insn_lengths[uid] = new_address - insn_current_address;
1125 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1127 if (NOTE_P (insn) || BARRIER_P (insn)
1128 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1129 continue;
1130 if (insn->deleted ())
1131 continue;
1133 body = PATTERN (insn);
1134 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1136 /* This only takes room if read-only data goes into the text
1137 section. */
1138 if (JUMP_TABLES_IN_TEXT_SECTION
1139 || readonly_data_section == text_section)
1140 insn_lengths[uid] = (XVECLEN (body,
1141 GET_CODE (body) == ADDR_DIFF_VEC)
1142 * GET_MODE_SIZE (table->get_data_mode ()));
1143 /* Alignment is handled by ADDR_VEC_ALIGN. */
1145 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1146 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1147 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1149 int i;
1150 int const_delay_slots;
1151 if (DELAY_SLOTS)
1152 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1153 else
1154 const_delay_slots = 0;
1156 int (*inner_length_fun) (rtx_insn *)
1157 = const_delay_slots ? length_fun : insn_default_length;
1158 /* Inside a delay slot sequence, we do not do any branch shortening
1159 if the shortening could change the number of delay slots
1160 of the branch. */
1161 for (i = 0; i < body_seq->len (); i++)
1163 rtx_insn *inner_insn = body_seq->insn (i);
1164 int inner_uid = INSN_UID (inner_insn);
1165 int inner_length;
1167 if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1168 || asm_noperands (PATTERN (inner_insn)) >= 0)
1169 inner_length = (asm_insn_count (PATTERN (inner_insn))
1170 * insn_default_length (inner_insn));
1171 else
1172 inner_length = inner_length_fun (inner_insn);
1174 insn_lengths[inner_uid] = inner_length;
1175 if (const_delay_slots)
1177 if ((varying_length[inner_uid]
1178 = insn_variable_length_p (inner_insn)) != 0)
1179 varying_length[uid] = 1;
1180 INSN_ADDRESSES (inner_uid) = (insn_current_address
1181 + insn_lengths[uid]);
1183 else
1184 varying_length[inner_uid] = 0;
1185 insn_lengths[uid] += inner_length;
1188 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1190 insn_lengths[uid] = length_fun (insn);
1191 varying_length[uid] = insn_variable_length_p (insn);
1194 /* If needed, do any adjustment. */
1195 #ifdef ADJUST_INSN_LENGTH
1196 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1197 if (insn_lengths[uid] < 0)
1198 fatal_insn ("negative insn length", insn);
1199 #endif
1202 /* Now loop over all the insns finding varying length insns. For each,
1203 get the current insn length. If it has changed, reflect the change.
1204 When nothing changes for a full pass, we are done. */
1206 while (something_changed)
1208 something_changed = 0;
1209 insn_current_align = MAX_CODE_ALIGN - 1;
1210 for (insn_current_address = 0, insn = first;
1211 insn != 0;
1212 insn = NEXT_INSN (insn))
1214 int new_length;
1215 #ifdef ADJUST_INSN_LENGTH
1216 int tmp_length;
1217 #endif
1218 int length_align;
1220 uid = INSN_UID (insn);
1222 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
1224 int log = LABEL_TO_ALIGNMENT (label);
1226 #ifdef CASE_VECTOR_SHORTEN_MODE
1227 /* If the mode of a following jump table was changed, we
1228 may need to update the alignment of this label. */
1230 if (JUMP_TABLES_IN_TEXT_SECTION
1231 || readonly_data_section == text_section)
1233 rtx_jump_table_data *table = jump_table_for_label (label);
1234 if (table)
1236 int newlog = ADDR_VEC_ALIGN (table);
1237 if (newlog != log)
1239 log = newlog;
1240 LABEL_TO_ALIGNMENT (insn) = log;
1241 something_changed = 1;
1245 #endif
1247 if (log > insn_current_align)
1249 int align = 1 << log;
1250 int new_address= (insn_current_address + align - 1) & -align;
1251 insn_lengths[uid] = new_address - insn_current_address;
1252 insn_current_align = log;
1253 insn_current_address = new_address;
1255 else
1256 insn_lengths[uid] = 0;
1257 INSN_ADDRESSES (uid) = insn_current_address;
1258 continue;
1261 length_align = INSN_LENGTH_ALIGNMENT (insn);
1262 if (length_align < insn_current_align)
1263 insn_current_align = length_align;
1265 insn_last_address = INSN_ADDRESSES (uid);
1266 INSN_ADDRESSES (uid) = insn_current_address;
1268 #ifdef CASE_VECTOR_SHORTEN_MODE
1269 if (optimize
1270 && JUMP_TABLE_DATA_P (insn)
1271 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1273 rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1274 rtx body = PATTERN (insn);
1275 int old_length = insn_lengths[uid];
1276 rtx_insn *rel_lab =
1277 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1278 rtx min_lab = XEXP (XEXP (body, 2), 0);
1279 rtx max_lab = XEXP (XEXP (body, 3), 0);
1280 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1281 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1282 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1283 rtx_insn *prev;
1284 int rel_align = 0;
1285 addr_diff_vec_flags flags;
1286 scalar_int_mode vec_mode;
1288 /* Avoid automatic aggregate initialization. */
1289 flags = ADDR_DIFF_VEC_FLAGS (body);
1291 /* Try to find a known alignment for rel_lab. */
1292 for (prev = rel_lab;
1293 prev
1294 && ! insn_lengths[INSN_UID (prev)]
1295 && ! (varying_length[INSN_UID (prev)] & 1);
1296 prev = PREV_INSN (prev))
1297 if (varying_length[INSN_UID (prev)] & 2)
1299 rel_align = LABEL_TO_ALIGNMENT (prev);
1300 break;
1303 /* See the comment on addr_diff_vec_flags in rtl.h for the
1304 meaning of the flags values. base: REL_LAB vec: INSN */
1305 /* Anything after INSN has still addresses from the last
1306 pass; adjust these so that they reflect our current
1307 estimate for this pass. */
1308 if (flags.base_after_vec)
1309 rel_addr += insn_current_address - insn_last_address;
1310 if (flags.min_after_vec)
1311 min_addr += insn_current_address - insn_last_address;
1312 if (flags.max_after_vec)
1313 max_addr += insn_current_address - insn_last_address;
1314 /* We want to know the worst case, i.e. lowest possible value
1315 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1316 its offset is positive, and we have to be wary of code shrink;
1317 otherwise, it is negative, and we have to be vary of code
1318 size increase. */
1319 if (flags.min_after_base)
1321 /* If INSN is between REL_LAB and MIN_LAB, the size
1322 changes we are about to make can change the alignment
1323 within the observed offset, therefore we have to break
1324 it up into two parts that are independent. */
1325 if (! flags.base_after_vec && flags.min_after_vec)
1327 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1328 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1330 else
1331 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1333 else
1335 if (flags.base_after_vec && ! flags.min_after_vec)
1337 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1338 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1340 else
1341 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1343 /* Likewise, determine the highest lowest possible value
1344 for the offset of MAX_LAB. */
1345 if (flags.max_after_base)
1347 if (! flags.base_after_vec && flags.max_after_vec)
1349 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1350 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1352 else
1353 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1355 else
1357 if (flags.base_after_vec && ! flags.max_after_vec)
1359 max_addr += align_fuzz (max_lab, insn, 0, 0);
1360 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1362 else
1363 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1365 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1366 max_addr - rel_addr, body);
1367 if (!increasing
1368 || (GET_MODE_SIZE (vec_mode)
1369 >= GET_MODE_SIZE (table->get_data_mode ())))
1370 PUT_MODE (body, vec_mode);
1371 if (JUMP_TABLES_IN_TEXT_SECTION
1372 || readonly_data_section == text_section)
1374 insn_lengths[uid]
1375 = (XVECLEN (body, 1)
1376 * GET_MODE_SIZE (table->get_data_mode ()));
1377 insn_current_address += insn_lengths[uid];
1378 if (insn_lengths[uid] != old_length)
1379 something_changed = 1;
1382 continue;
1384 #endif /* CASE_VECTOR_SHORTEN_MODE */
1386 if (! (varying_length[uid]))
1388 if (NONJUMP_INSN_P (insn)
1389 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1391 int i;
1393 body = PATTERN (insn);
1394 for (i = 0; i < XVECLEN (body, 0); i++)
1396 rtx inner_insn = XVECEXP (body, 0, i);
1397 int inner_uid = INSN_UID (inner_insn);
1399 INSN_ADDRESSES (inner_uid) = insn_current_address;
1401 insn_current_address += insn_lengths[inner_uid];
1404 else
1405 insn_current_address += insn_lengths[uid];
1407 continue;
1410 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1412 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1413 int i;
1415 body = PATTERN (insn);
1416 new_length = 0;
1417 for (i = 0; i < seqn->len (); i++)
1419 rtx_insn *inner_insn = seqn->insn (i);
1420 int inner_uid = INSN_UID (inner_insn);
1421 int inner_length;
1423 INSN_ADDRESSES (inner_uid) = insn_current_address;
1425 /* insn_current_length returns 0 for insns with a
1426 non-varying length. */
1427 if (! varying_length[inner_uid])
1428 inner_length = insn_lengths[inner_uid];
1429 else
1430 inner_length = insn_current_length (inner_insn);
1432 if (inner_length != insn_lengths[inner_uid])
1434 if (!increasing || inner_length > insn_lengths[inner_uid])
1436 insn_lengths[inner_uid] = inner_length;
1437 something_changed = 1;
1439 else
1440 inner_length = insn_lengths[inner_uid];
1442 insn_current_address += inner_length;
1443 new_length += inner_length;
1446 else
1448 new_length = insn_current_length (insn);
1449 insn_current_address += new_length;
1452 #ifdef ADJUST_INSN_LENGTH
1453 /* If needed, do any adjustment. */
1454 tmp_length = new_length;
1455 ADJUST_INSN_LENGTH (insn, new_length);
1456 insn_current_address += (new_length - tmp_length);
1457 #endif
1459 if (new_length != insn_lengths[uid]
1460 && (!increasing || new_length > insn_lengths[uid]))
1462 insn_lengths[uid] = new_length;
1463 something_changed = 1;
1465 else
1466 insn_current_address += insn_lengths[uid] - new_length;
1468 /* For a non-optimizing compile, do only a single pass. */
1469 if (!increasing)
1470 break;
1472 crtl->max_insn_address = insn_current_address;
1473 free (varying_length);
1476 /* Given the body of an INSN known to be generated by an ASM statement, return
1477 the number of machine instructions likely to be generated for this insn.
1478 This is used to compute its length. */
1480 static int
1481 asm_insn_count (rtx body)
1483 const char *templ;
1485 if (GET_CODE (body) == ASM_INPUT)
1486 templ = XSTR (body, 0);
1487 else
1488 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1490 return asm_str_count (templ);
1493 /* Return the number of machine instructions likely to be generated for the
1494 inline-asm template. */
1496 asm_str_count (const char *templ)
1498 int count = 1;
1500 if (!*templ)
1501 return 0;
1503 for (; *templ; templ++)
1504 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1505 || *templ == '\n')
1506 count++;
1508 return count;
1511 /* Return true if DWARF2 debug info can be emitted for DECL. */
1513 static bool
1514 dwarf2_debug_info_emitted_p (tree decl)
1516 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1517 return false;
1519 if (DECL_IGNORED_P (decl))
1520 return false;
1522 return true;
1525 /* Return scope resulting from combination of S1 and S2. */
1526 static tree
1527 choose_inner_scope (tree s1, tree s2)
1529 if (!s1)
1530 return s2;
1531 if (!s2)
1532 return s1;
1533 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1534 return s1;
1535 return s2;
1538 /* Emit lexical block notes needed to change scope from S1 to S2. */
1540 static void
1541 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1543 rtx_insn *insn = orig_insn;
1544 tree com = NULL_TREE;
1545 tree ts1 = s1, ts2 = s2;
1546 tree s;
1548 while (ts1 != ts2)
1550 gcc_assert (ts1 && ts2);
1551 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1552 ts1 = BLOCK_SUPERCONTEXT (ts1);
1553 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1554 ts2 = BLOCK_SUPERCONTEXT (ts2);
1555 else
1557 ts1 = BLOCK_SUPERCONTEXT (ts1);
1558 ts2 = BLOCK_SUPERCONTEXT (ts2);
1561 com = ts1;
1563 /* Close scopes. */
1564 s = s1;
1565 while (s != com)
1567 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1568 NOTE_BLOCK (note) = s;
1569 s = BLOCK_SUPERCONTEXT (s);
1572 /* Open scopes. */
1573 s = s2;
1574 while (s != com)
1576 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1577 NOTE_BLOCK (insn) = s;
1578 s = BLOCK_SUPERCONTEXT (s);
1582 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1583 on the scope tree and the newly reordered instructions. */
1585 static void
1586 reemit_insn_block_notes (void)
1588 tree cur_block = DECL_INITIAL (cfun->decl);
1589 rtx_insn *insn;
1591 insn = get_insns ();
1592 for (; insn; insn = NEXT_INSN (insn))
1594 tree this_block;
1596 /* Prevent lexical blocks from straddling section boundaries. */
1597 if (NOTE_P (insn))
1598 switch (NOTE_KIND (insn))
1600 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1602 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1603 s = BLOCK_SUPERCONTEXT (s))
1605 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1606 NOTE_BLOCK (note) = s;
1607 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1608 NOTE_BLOCK (note) = s;
1611 break;
1613 case NOTE_INSN_BEGIN_STMT:
1614 case NOTE_INSN_INLINE_ENTRY:
1615 this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
1616 goto set_cur_block_to_this_block;
1618 default:
1619 continue;
1622 if (!active_insn_p (insn))
1623 continue;
1625 /* Avoid putting scope notes between jump table and its label. */
1626 if (JUMP_TABLE_DATA_P (insn))
1627 continue;
1629 this_block = insn_scope (insn);
1630 /* For sequences compute scope resulting from merging all scopes
1631 of instructions nested inside. */
1632 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1634 int i;
1636 this_block = NULL;
1637 for (i = 0; i < body->len (); i++)
1638 this_block = choose_inner_scope (this_block,
1639 insn_scope (body->insn (i)));
1641 set_cur_block_to_this_block:
1642 if (! this_block)
1644 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1645 continue;
1646 else
1647 this_block = DECL_INITIAL (cfun->decl);
1650 if (this_block != cur_block)
1652 change_scope (insn, cur_block, this_block);
1653 cur_block = this_block;
1657 /* change_scope emits before the insn, not after. */
1658 rtx_note *note = emit_note (NOTE_INSN_DELETED);
1659 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1660 delete_insn (note);
1662 reorder_blocks ();
1665 static const char *some_local_dynamic_name;
1667 /* Locate some local-dynamic symbol still in use by this function
1668 so that we can print its name in local-dynamic base patterns.
1669 Return null if there are no local-dynamic references. */
1671 const char *
1672 get_some_local_dynamic_name ()
1674 subrtx_iterator::array_type array;
1675 rtx_insn *insn;
1677 if (some_local_dynamic_name)
1678 return some_local_dynamic_name;
1680 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1681 if (NONDEBUG_INSN_P (insn))
1682 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1684 const_rtx x = *iter;
1685 if (GET_CODE (x) == SYMBOL_REF)
1687 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1688 return some_local_dynamic_name = XSTR (x, 0);
1689 if (CONSTANT_POOL_ADDRESS_P (x))
1690 iter.substitute (get_pool_constant (x));
1694 return 0;
1697 /* Arrange for us to emit a source location note before any further
1698 real insns or section changes, by setting the SEEN_NEXT_VIEW bit in
1699 *SEEN, as long as we are keeping track of location views. The bit
1700 indicates we have referenced the next view at the current PC, so we
1701 have to emit it. This should be called next to the var_location
1702 debug hook. */
1704 static inline void
1705 set_next_view_needed (int *seen)
1707 if (debug_variable_location_views)
1708 *seen |= SEEN_NEXT_VIEW;
1711 /* Clear the flag in *SEEN indicating we need to emit the next view.
1712 This should be called next to the source_line debug hook. */
1714 static inline void
1715 clear_next_view_needed (int *seen)
1717 *seen &= ~SEEN_NEXT_VIEW;
1720 /* Test whether we have a pending request to emit the next view in
1721 *SEEN, and emit it if needed, clearing the request bit. */
1723 static inline void
1724 maybe_output_next_view (int *seen)
1726 if ((*seen & SEEN_NEXT_VIEW) != 0)
1728 clear_next_view_needed (seen);
1729 (*debug_hooks->source_line) (last_linenum, last_columnnum,
1730 last_filename, last_discriminator,
1731 false);
1735 /* We want to emit param bindings (before the first begin_stmt) in the
1736 initial view, if we are emitting views. To that end, we may
1737 consume initial notes in the function, processing them in
1738 final_start_function, before signaling the beginning of the
1739 prologue, rather than in final.
1741 We don't test whether the DECLs are PARM_DECLs: the assumption is
1742 that there will be a NOTE_INSN_BEGIN_STMT marker before any
1743 non-parameter NOTE_INSN_VAR_LOCATION. It's ok if the marker is not
1744 there, we'll just have more variable locations bound in the initial
1745 view, which is consistent with their being bound without any code
1746 that would give them a value. */
1748 static inline bool
1749 in_initial_view_p (rtx_insn *insn)
1751 return (!DECL_IGNORED_P (current_function_decl)
1752 && debug_variable_location_views
1753 && insn && GET_CODE (insn) == NOTE
1754 && (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
1755 || NOTE_KIND (insn) == NOTE_INSN_DELETED));
1758 /* Output assembler code for the start of a function,
1759 and initialize some of the variables in this file
1760 for the new function. The label for the function and associated
1761 assembler pseudo-ops have already been output in `assemble_start_function'.
1763 FIRST is the first insn of the rtl for the function being compiled.
1764 FILE is the file to write assembler code to.
1765 SEEN should be initially set to zero, and it may be updated to
1766 indicate we have references to the next location view, that would
1767 require us to emit it at the current PC.
1768 OPTIMIZE_P is nonzero if we should eliminate redundant
1769 test and compare insns. */
1771 static void
1772 final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen,
1773 int optimize_p ATTRIBUTE_UNUSED)
1775 block_depth = 0;
1777 this_is_asm_operands = 0;
1779 need_profile_function = false;
1781 last_filename = LOCATION_FILE (prologue_location);
1782 last_linenum = LOCATION_LINE (prologue_location);
1783 last_columnnum = LOCATION_COLUMN (prologue_location);
1784 last_discriminator = discriminator = 0;
1786 high_block_linenum = high_function_linenum = last_linenum;
1788 if (flag_sanitize & SANITIZE_ADDRESS)
1789 asan_function_start ();
1791 rtx_insn *first = *firstp;
1792 if (in_initial_view_p (first))
1796 final_scan_insn (first, file, 0, 0, seen);
1797 first = NEXT_INSN (first);
1799 while (in_initial_view_p (first));
1800 *firstp = first;
1803 if (!DECL_IGNORED_P (current_function_decl))
1804 debug_hooks->begin_prologue (last_linenum, last_columnnum,
1805 last_filename);
1807 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1808 dwarf2out_begin_prologue (0, 0, NULL);
1810 #ifdef LEAF_REG_REMAP
1811 if (crtl->uses_only_leaf_regs)
1812 leaf_renumber_regs (first);
1813 #endif
1815 /* The Sun386i and perhaps other machines don't work right
1816 if the profiling code comes after the prologue. */
1817 if (targetm.profile_before_prologue () && crtl->profile)
1819 if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1820 && targetm.have_prologue ())
1822 rtx_insn *insn;
1823 for (insn = first; insn; insn = NEXT_INSN (insn))
1824 if (!NOTE_P (insn))
1826 insn = NULL;
1827 break;
1829 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1830 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1831 break;
1832 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1833 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1834 continue;
1835 else
1837 insn = NULL;
1838 break;
1841 if (insn)
1842 need_profile_function = true;
1843 else
1844 profile_function (file);
1846 else
1847 profile_function (file);
1850 /* If debugging, assign block numbers to all of the blocks in this
1851 function. */
1852 if (write_symbols)
1854 reemit_insn_block_notes ();
1855 number_blocks (current_function_decl);
1856 /* We never actually put out begin/end notes for the top-level
1857 block in the function. But, conceptually, that block is
1858 always needed. */
1859 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1862 HOST_WIDE_INT min_frame_size = constant_lower_bound (get_frame_size ());
1863 if (warn_frame_larger_than
1864 && min_frame_size > frame_larger_than_size)
1866 /* Issue a warning */
1867 warning (OPT_Wframe_larger_than_,
1868 "the frame size of %wd bytes is larger than %wd bytes",
1869 min_frame_size, frame_larger_than_size);
1872 /* First output the function prologue: code to set up the stack frame. */
1873 targetm.asm_out.function_prologue (file);
1875 /* If the machine represents the prologue as RTL, the profiling code must
1876 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1877 if (! targetm.have_prologue ())
1878 profile_after_prologue (file);
1881 /* This is an exported final_start_function_1, callable without SEEN. */
1883 void
1884 final_start_function (rtx_insn *first, FILE *file,
1885 int optimize_p ATTRIBUTE_UNUSED)
1887 int seen = 0;
1888 final_start_function_1 (&first, file, &seen, optimize_p);
1889 gcc_assert (seen == 0);
1892 static void
1893 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1895 if (!targetm.profile_before_prologue () && crtl->profile)
1896 profile_function (file);
1899 static void
1900 profile_function (FILE *file ATTRIBUTE_UNUSED)
1902 #ifndef NO_PROFILE_COUNTERS
1903 # define NO_PROFILE_COUNTERS 0
1904 #endif
1905 #ifdef ASM_OUTPUT_REG_PUSH
1906 rtx sval = NULL, chain = NULL;
1908 if (cfun->returns_struct)
1909 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1910 true);
1911 if (cfun->static_chain_decl)
1912 chain = targetm.calls.static_chain (current_function_decl, true);
1913 #endif /* ASM_OUTPUT_REG_PUSH */
1915 if (! NO_PROFILE_COUNTERS)
1917 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1918 switch_to_section (data_section);
1919 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1920 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1921 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1924 switch_to_section (current_function_section ());
1926 #ifdef ASM_OUTPUT_REG_PUSH
1927 if (sval && REG_P (sval))
1928 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1929 if (chain && REG_P (chain))
1930 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1931 #endif
1933 FUNCTION_PROFILER (file, current_function_funcdef_no);
1935 #ifdef ASM_OUTPUT_REG_PUSH
1936 if (chain && REG_P (chain))
1937 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1938 if (sval && REG_P (sval))
1939 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1940 #endif
1943 /* Output assembler code for the end of a function.
1944 For clarity, args are same as those of `final_start_function'
1945 even though not all of them are needed. */
1947 void
1948 final_end_function (void)
1950 app_disable ();
1952 if (!DECL_IGNORED_P (current_function_decl))
1953 debug_hooks->end_function (high_function_linenum);
1955 /* Finally, output the function epilogue:
1956 code to restore the stack frame and return to the caller. */
1957 targetm.asm_out.function_epilogue (asm_out_file);
1959 /* And debug output. */
1960 if (!DECL_IGNORED_P (current_function_decl))
1961 debug_hooks->end_epilogue (last_linenum, last_filename);
1963 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1964 && dwarf2out_do_frame ())
1965 dwarf2out_end_epilogue (last_linenum, last_filename);
1967 some_local_dynamic_name = 0;
1971 /* Dumper helper for basic block information. FILE is the assembly
1972 output file, and INSN is the instruction being emitted. */
1974 static void
1975 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1976 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1978 basic_block bb;
1980 if (!flag_debug_asm)
1981 return;
1983 if (INSN_UID (insn) < bb_map_size
1984 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1986 edge e;
1987 edge_iterator ei;
1989 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1990 if (bb->count.initialized_p ())
1992 fprintf (file, ", count:");
1993 bb->count.dump (file);
1995 fprintf (file, " seq:%d", (*bb_seqn)++);
1996 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1997 FOR_EACH_EDGE (e, ei, bb->preds)
1999 dump_edge_info (file, e, TDF_DETAILS, 0);
2001 fprintf (file, "\n");
2003 if (INSN_UID (insn) < bb_map_size
2004 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
2006 edge e;
2007 edge_iterator ei;
2009 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
2010 FOR_EACH_EDGE (e, ei, bb->succs)
2012 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
2014 fprintf (file, "\n");
2018 /* Output assembler code for some insns: all or part of a function.
2019 For description of args, see `final_start_function', above. */
2021 static void
2022 final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p)
2024 rtx_insn *insn, *next;
2026 /* Used for -dA dump. */
2027 basic_block *start_to_bb = NULL;
2028 basic_block *end_to_bb = NULL;
2029 int bb_map_size = 0;
2030 int bb_seqn = 0;
2032 last_ignored_compare = 0;
2034 if (HAVE_cc0)
2035 for (insn = first; insn; insn = NEXT_INSN (insn))
2037 /* If CC tracking across branches is enabled, record the insn which
2038 jumps to each branch only reached from one place. */
2039 if (optimize_p && JUMP_P (insn))
2041 rtx lab = JUMP_LABEL (insn);
2042 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
2044 LABEL_REFS (lab) = insn;
2049 init_recog ();
2051 CC_STATUS_INIT;
2053 if (flag_debug_asm)
2055 basic_block bb;
2057 bb_map_size = get_max_uid () + 1;
2058 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
2059 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2061 /* There is no cfg for a thunk. */
2062 if (!cfun->is_thunk)
2063 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2065 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2066 end_to_bb[INSN_UID (BB_END (bb))] = bb;
2070 /* Output the insns. */
2071 for (insn = first; insn;)
2073 if (HAVE_ATTR_length)
2075 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2077 /* This can be triggered by bugs elsewhere in the compiler if
2078 new insns are created after init_insn_lengths is called. */
2079 gcc_assert (NOTE_P (insn));
2080 insn_current_address = -1;
2082 else
2083 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2084 /* final can be seen as an iteration of shorten_branches that
2085 does nothing (since a fixed point has already been reached). */
2086 insn_last_address = insn_current_address;
2089 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2090 bb_map_size, &bb_seqn);
2091 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2094 maybe_output_next_view (&seen);
2096 if (flag_debug_asm)
2098 free (start_to_bb);
2099 free (end_to_bb);
2102 /* Remove CFI notes, to avoid compare-debug failures. */
2103 for (insn = first; insn; insn = next)
2105 next = NEXT_INSN (insn);
2106 if (NOTE_P (insn)
2107 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2108 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2109 delete_insn (insn);
2113 /* This is an exported final_1, callable without SEEN. */
2115 void
2116 final (rtx_insn *first, FILE *file, int optimize_p)
2118 /* Those that use the internal final_start_function_1/final_1 API
2119 skip initial debug bind notes in final_start_function_1, and pass
2120 the modified FIRST to final_1. But those that use the public
2121 final_start_function/final APIs, final_start_function can't move
2122 FIRST because it's not passed by reference, so if they were
2123 skipped there, skip them again here. */
2124 while (in_initial_view_p (first))
2125 first = NEXT_INSN (first);
2127 final_1 (first, file, 0, optimize_p);
2130 const char *
2131 get_insn_template (int code, rtx insn)
2133 switch (insn_data[code].output_format)
2135 case INSN_OUTPUT_FORMAT_SINGLE:
2136 return insn_data[code].output.single;
2137 case INSN_OUTPUT_FORMAT_MULTI:
2138 return insn_data[code].output.multi[which_alternative];
2139 case INSN_OUTPUT_FORMAT_FUNCTION:
2140 gcc_assert (insn);
2141 return (*insn_data[code].output.function) (recog_data.operand,
2142 as_a <rtx_insn *> (insn));
2144 default:
2145 gcc_unreachable ();
2149 /* Emit the appropriate declaration for an alternate-entry-point
2150 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2151 LABEL_KIND != LABEL_NORMAL.
2153 The case fall-through in this function is intentional. */
2154 static void
2155 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2157 const char *name = LABEL_NAME (insn);
2159 switch (LABEL_KIND (insn))
2161 case LABEL_WEAK_ENTRY:
2162 #ifdef ASM_WEAKEN_LABEL
2163 ASM_WEAKEN_LABEL (file, name);
2164 gcc_fallthrough ();
2165 #endif
2166 case LABEL_GLOBAL_ENTRY:
2167 targetm.asm_out.globalize_label (file, name);
2168 gcc_fallthrough ();
2169 case LABEL_STATIC_ENTRY:
2170 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2171 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2172 #endif
2173 ASM_OUTPUT_LABEL (file, name);
2174 break;
2176 case LABEL_NORMAL:
2177 default:
2178 gcc_unreachable ();
2182 /* Given a CALL_INSN, find and return the nested CALL. */
2183 static rtx
2184 call_from_call_insn (rtx_call_insn *insn)
2186 rtx x;
2187 gcc_assert (CALL_P (insn));
2188 x = PATTERN (insn);
2190 while (GET_CODE (x) != CALL)
2192 switch (GET_CODE (x))
2194 default:
2195 gcc_unreachable ();
2196 case COND_EXEC:
2197 x = COND_EXEC_CODE (x);
2198 break;
2199 case PARALLEL:
2200 x = XVECEXP (x, 0, 0);
2201 break;
2202 case SET:
2203 x = XEXP (x, 1);
2204 break;
2207 return x;
2210 /* Print a comment into the asm showing FILENAME, LINENUM, and the
2211 corresponding source line, if available. */
2213 static void
2214 asm_show_source (const char *filename, int linenum)
2216 if (!filename)
2217 return;
2219 int line_size;
2220 const char *line = location_get_source_line (filename, linenum, &line_size);
2221 if (!line)
2222 return;
2224 fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2225 /* "line" is not 0-terminated, so we must use line_size. */
2226 fwrite (line, 1, line_size, asm_out_file);
2227 fputc ('\n', asm_out_file);
2230 /* The final scan for one insn, INSN.
2231 Args are same as in `final', except that INSN
2232 is the insn being scanned.
2233 Value returned is the next insn to be scanned.
2235 NOPEEPHOLES is the flag to disallow peephole processing (currently
2236 used for within delayed branch sequence output).
2238 SEEN is used to track the end of the prologue, for emitting
2239 debug information. We force the emission of a line note after
2240 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2242 static rtx_insn *
2243 final_scan_insn_1 (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2244 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2246 #if HAVE_cc0
2247 rtx set;
2248 #endif
2249 rtx_insn *next;
2250 rtx_jump_table_data *table;
2252 insn_counter++;
2254 /* Ignore deleted insns. These can occur when we split insns (due to a
2255 template of "#") while not optimizing. */
2256 if (insn->deleted ())
2257 return NEXT_INSN (insn);
2259 switch (GET_CODE (insn))
2261 case NOTE:
2262 switch (NOTE_KIND (insn))
2264 case NOTE_INSN_DELETED:
2265 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2266 break;
2268 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2269 maybe_output_next_view (seen);
2271 output_function_exception_table (0);
2273 if (targetm.asm_out.unwind_emit)
2274 targetm.asm_out.unwind_emit (asm_out_file, insn);
2276 in_cold_section_p = !in_cold_section_p;
2278 if (in_cold_section_p)
2279 cold_function_name
2280 = clone_function_name (current_function_decl, "cold");
2282 if (dwarf2out_do_frame ())
2284 dwarf2out_switch_text_section ();
2285 if (!dwarf2_debug_info_emitted_p (current_function_decl)
2286 && !DECL_IGNORED_P (current_function_decl))
2287 debug_hooks->switch_text_section ();
2289 else if (!DECL_IGNORED_P (current_function_decl))
2290 debug_hooks->switch_text_section ();
2292 switch_to_section (current_function_section ());
2293 targetm.asm_out.function_switched_text_sections (asm_out_file,
2294 current_function_decl,
2295 in_cold_section_p);
2296 /* Emit a label for the split cold section. Form label name by
2297 suffixing "cold" to the original function's name. */
2298 if (in_cold_section_p)
2300 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2301 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2302 IDENTIFIER_POINTER
2303 (cold_function_name),
2304 current_function_decl);
2305 #else
2306 ASM_OUTPUT_LABEL (asm_out_file,
2307 IDENTIFIER_POINTER (cold_function_name));
2308 #endif
2310 break;
2312 case NOTE_INSN_BASIC_BLOCK:
2313 if (need_profile_function)
2315 profile_function (asm_out_file);
2316 need_profile_function = false;
2319 if (targetm.asm_out.unwind_emit)
2320 targetm.asm_out.unwind_emit (asm_out_file, insn);
2322 discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2324 break;
2326 case NOTE_INSN_EH_REGION_BEG:
2327 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2328 NOTE_EH_HANDLER (insn));
2329 break;
2331 case NOTE_INSN_EH_REGION_END:
2332 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2333 NOTE_EH_HANDLER (insn));
2334 break;
2336 case NOTE_INSN_PROLOGUE_END:
2337 targetm.asm_out.function_end_prologue (file);
2338 profile_after_prologue (file);
2340 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2342 *seen |= SEEN_EMITTED;
2343 force_source_line = true;
2345 else
2346 *seen |= SEEN_NOTE;
2348 break;
2350 case NOTE_INSN_EPILOGUE_BEG:
2351 if (!DECL_IGNORED_P (current_function_decl))
2352 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2353 targetm.asm_out.function_begin_epilogue (file);
2354 break;
2356 case NOTE_INSN_CFI:
2357 dwarf2out_emit_cfi (NOTE_CFI (insn));
2358 break;
2360 case NOTE_INSN_CFI_LABEL:
2361 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2362 NOTE_LABEL_NUMBER (insn));
2363 break;
2365 case NOTE_INSN_FUNCTION_BEG:
2366 if (need_profile_function)
2368 profile_function (asm_out_file);
2369 need_profile_function = false;
2372 app_disable ();
2373 if (!DECL_IGNORED_P (current_function_decl))
2374 debug_hooks->end_prologue (last_linenum, last_filename);
2376 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2378 *seen |= SEEN_EMITTED;
2379 force_source_line = true;
2381 else
2382 *seen |= SEEN_NOTE;
2384 break;
2386 case NOTE_INSN_BLOCK_BEG:
2387 if (debug_info_level == DINFO_LEVEL_NORMAL
2388 || debug_info_level == DINFO_LEVEL_VERBOSE
2389 || write_symbols == DWARF2_DEBUG
2390 || write_symbols == VMS_AND_DWARF2_DEBUG
2391 || write_symbols == VMS_DEBUG)
2393 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2395 app_disable ();
2396 ++block_depth;
2397 high_block_linenum = last_linenum;
2399 /* Output debugging info about the symbol-block beginning. */
2400 if (!DECL_IGNORED_P (current_function_decl))
2401 debug_hooks->begin_block (last_linenum, n);
2403 /* Mark this block as output. */
2404 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2405 BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2407 if (write_symbols == DBX_DEBUG)
2409 location_t *locus_ptr
2410 = block_nonartificial_location (NOTE_BLOCK (insn));
2412 if (locus_ptr != NULL)
2414 override_filename = LOCATION_FILE (*locus_ptr);
2415 override_linenum = LOCATION_LINE (*locus_ptr);
2416 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2419 break;
2421 case NOTE_INSN_BLOCK_END:
2422 maybe_output_next_view (seen);
2424 if (debug_info_level == DINFO_LEVEL_NORMAL
2425 || debug_info_level == DINFO_LEVEL_VERBOSE
2426 || write_symbols == DWARF2_DEBUG
2427 || write_symbols == VMS_AND_DWARF2_DEBUG
2428 || write_symbols == VMS_DEBUG)
2430 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2432 app_disable ();
2434 /* End of a symbol-block. */
2435 --block_depth;
2436 gcc_assert (block_depth >= 0);
2438 if (!DECL_IGNORED_P (current_function_decl))
2439 debug_hooks->end_block (high_block_linenum, n);
2440 gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2441 == in_cold_section_p);
2443 if (write_symbols == DBX_DEBUG)
2445 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2446 location_t *locus_ptr
2447 = block_nonartificial_location (outer_block);
2449 if (locus_ptr != NULL)
2451 override_filename = LOCATION_FILE (*locus_ptr);
2452 override_linenum = LOCATION_LINE (*locus_ptr);
2453 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2455 else
2457 override_filename = NULL;
2458 override_linenum = 0;
2459 override_columnnum = 0;
2462 break;
2464 case NOTE_INSN_DELETED_LABEL:
2465 /* Emit the label. We may have deleted the CODE_LABEL because
2466 the label could be proved to be unreachable, though still
2467 referenced (in the form of having its address taken. */
2468 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2469 break;
2471 case NOTE_INSN_DELETED_DEBUG_LABEL:
2472 /* Similarly, but need to use different namespace for it. */
2473 if (CODE_LABEL_NUMBER (insn) != -1)
2474 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2475 break;
2477 case NOTE_INSN_VAR_LOCATION:
2478 if (!DECL_IGNORED_P (current_function_decl))
2480 debug_hooks->var_location (insn);
2481 set_next_view_needed (seen);
2483 break;
2485 case NOTE_INSN_BEGIN_STMT:
2486 gcc_checking_assert (cfun->debug_nonbind_markers);
2487 if (!DECL_IGNORED_P (current_function_decl)
2488 && notice_source_line (insn, NULL))
2490 output_source_line:
2491 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2492 last_filename, last_discriminator,
2493 true);
2494 clear_next_view_needed (seen);
2496 break;
2498 case NOTE_INSN_INLINE_ENTRY:
2499 gcc_checking_assert (cfun->debug_nonbind_markers);
2500 if (!DECL_IGNORED_P (current_function_decl))
2502 if (!notice_source_line (insn, NULL))
2503 break;
2504 (*debug_hooks->inline_entry) (LOCATION_BLOCK
2505 (NOTE_MARKER_LOCATION (insn)));
2506 goto output_source_line;
2508 break;
2510 default:
2511 gcc_unreachable ();
2512 break;
2514 break;
2516 case BARRIER:
2517 break;
2519 case CODE_LABEL:
2520 /* The target port might emit labels in the output function for
2521 some insn, e.g. sh.c output_branchy_insn. */
2522 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2524 int align = LABEL_TO_ALIGNMENT (insn);
2525 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2526 int max_skip = LABEL_TO_MAX_SKIP (insn);
2527 #endif
2529 if (align && NEXT_INSN (insn))
2531 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2532 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2533 #else
2534 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2535 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2536 #else
2537 ASM_OUTPUT_ALIGN (file, align);
2538 #endif
2539 #endif
2542 CC_STATUS_INIT;
2544 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2545 debug_hooks->label (as_a <rtx_code_label *> (insn));
2547 app_disable ();
2549 /* If this label is followed by a jump-table, make sure we put
2550 the label in the read-only section. Also possibly write the
2551 label and jump table together. */
2552 table = jump_table_for_label (as_a <rtx_code_label *> (insn));
2553 if (table)
2555 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2556 /* In this case, the case vector is being moved by the
2557 target, so don't output the label at all. Leave that
2558 to the back end macros. */
2559 #else
2560 if (! JUMP_TABLES_IN_TEXT_SECTION)
2562 int log_align;
2564 switch_to_section (targetm.asm_out.function_rodata_section
2565 (current_function_decl));
2567 #ifdef ADDR_VEC_ALIGN
2568 log_align = ADDR_VEC_ALIGN (table);
2569 #else
2570 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2571 #endif
2572 ASM_OUTPUT_ALIGN (file, log_align);
2574 else
2575 switch_to_section (current_function_section ());
2577 #ifdef ASM_OUTPUT_CASE_LABEL
2578 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2579 #else
2580 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2581 #endif
2582 #endif
2583 break;
2585 if (LABEL_ALT_ENTRY_P (insn))
2586 output_alternate_entry_point (file, insn);
2587 else
2588 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2589 break;
2591 default:
2593 rtx body = PATTERN (insn);
2594 int insn_code_number;
2595 const char *templ;
2596 bool is_stmt, *is_stmt_p;
2598 if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
2600 is_stmt = false;
2601 is_stmt_p = NULL;
2603 else
2604 is_stmt_p = &is_stmt;
2606 /* Reset this early so it is correct for ASM statements. */
2607 current_insn_predicate = NULL_RTX;
2609 /* An INSN, JUMP_INSN or CALL_INSN.
2610 First check for special kinds that recog doesn't recognize. */
2612 if (GET_CODE (body) == USE /* These are just declarations. */
2613 || GET_CODE (body) == CLOBBER)
2614 break;
2616 #if HAVE_cc0
2618 /* If there is a REG_CC_SETTER note on this insn, it means that
2619 the setting of the condition code was done in the delay slot
2620 of the insn that branched here. So recover the cc status
2621 from the insn that set it. */
2623 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2624 if (note)
2626 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2627 NOTICE_UPDATE_CC (PATTERN (other), other);
2628 cc_prev_status = cc_status;
2631 #endif
2633 /* Detect insns that are really jump-tables
2634 and output them as such. */
2636 if (JUMP_TABLE_DATA_P (insn))
2638 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2639 int vlen, idx;
2640 #endif
2642 if (! JUMP_TABLES_IN_TEXT_SECTION)
2643 switch_to_section (targetm.asm_out.function_rodata_section
2644 (current_function_decl));
2645 else
2646 switch_to_section (current_function_section ());
2648 app_disable ();
2650 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2651 if (GET_CODE (body) == ADDR_VEC)
2653 #ifdef ASM_OUTPUT_ADDR_VEC
2654 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2655 #else
2656 gcc_unreachable ();
2657 #endif
2659 else
2661 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2662 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2663 #else
2664 gcc_unreachable ();
2665 #endif
2667 #else
2668 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2669 for (idx = 0; idx < vlen; idx++)
2671 if (GET_CODE (body) == ADDR_VEC)
2673 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2674 ASM_OUTPUT_ADDR_VEC_ELT
2675 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2676 #else
2677 gcc_unreachable ();
2678 #endif
2680 else
2682 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2683 ASM_OUTPUT_ADDR_DIFF_ELT
2684 (file,
2685 body,
2686 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2687 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2688 #else
2689 gcc_unreachable ();
2690 #endif
2693 #ifdef ASM_OUTPUT_CASE_END
2694 ASM_OUTPUT_CASE_END (file,
2695 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2696 insn);
2697 #endif
2698 #endif
2700 switch_to_section (current_function_section ());
2702 if (debug_variable_location_views
2703 && !DECL_IGNORED_P (current_function_decl))
2704 debug_hooks->var_location (insn);
2706 break;
2708 /* Output this line note if it is the first or the last line
2709 note in a row. */
2710 if (!DECL_IGNORED_P (current_function_decl)
2711 && notice_source_line (insn, is_stmt_p))
2713 if (flag_verbose_asm)
2714 asm_show_source (last_filename, last_linenum);
2715 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2716 last_filename, last_discriminator,
2717 is_stmt);
2718 clear_next_view_needed (seen);
2720 else
2721 maybe_output_next_view (seen);
2723 gcc_checking_assert (!DEBUG_INSN_P (insn));
2725 if (GET_CODE (body) == PARALLEL
2726 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2727 body = XVECEXP (body, 0, 0);
2729 if (GET_CODE (body) == ASM_INPUT)
2731 const char *string = XSTR (body, 0);
2733 /* There's no telling what that did to the condition codes. */
2734 CC_STATUS_INIT;
2736 if (string[0])
2738 expanded_location loc;
2740 app_enable ();
2741 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2742 if (*loc.file && loc.line)
2743 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2744 ASM_COMMENT_START, loc.line, loc.file);
2745 fprintf (asm_out_file, "\t%s\n", string);
2746 #if HAVE_AS_LINE_ZERO
2747 if (*loc.file && loc.line)
2748 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2749 #endif
2751 break;
2754 /* Detect `asm' construct with operands. */
2755 if (asm_noperands (body) >= 0)
2757 unsigned int noperands = asm_noperands (body);
2758 rtx *ops = XALLOCAVEC (rtx, noperands);
2759 const char *string;
2760 location_t loc;
2761 expanded_location expanded;
2763 /* There's no telling what that did to the condition codes. */
2764 CC_STATUS_INIT;
2766 /* Get out the operand values. */
2767 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2768 /* Inhibit dying on what would otherwise be compiler bugs. */
2769 insn_noperands = noperands;
2770 this_is_asm_operands = insn;
2771 expanded = expand_location (loc);
2773 #ifdef FINAL_PRESCAN_INSN
2774 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2775 #endif
2777 /* Output the insn using them. */
2778 if (string[0])
2780 app_enable ();
2781 if (expanded.file && expanded.line)
2782 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2783 ASM_COMMENT_START, expanded.line, expanded.file);
2784 output_asm_insn (string, ops);
2785 #if HAVE_AS_LINE_ZERO
2786 if (expanded.file && expanded.line)
2787 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2788 #endif
2791 if (targetm.asm_out.final_postscan_insn)
2792 targetm.asm_out.final_postscan_insn (file, insn, ops,
2793 insn_noperands);
2795 this_is_asm_operands = 0;
2796 break;
2799 app_disable ();
2801 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2803 /* A delayed-branch sequence */
2804 int i;
2806 final_sequence = seq;
2808 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2809 force the restoration of a comparison that was previously
2810 thought unnecessary. If that happens, cancel this sequence
2811 and cause that insn to be restored. */
2813 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2814 if (next != seq->insn (1))
2816 final_sequence = 0;
2817 return next;
2820 for (i = 1; i < seq->len (); i++)
2822 rtx_insn *insn = seq->insn (i);
2823 rtx_insn *next = NEXT_INSN (insn);
2824 /* We loop in case any instruction in a delay slot gets
2825 split. */
2827 insn = final_scan_insn (insn, file, 0, 1, seen);
2828 while (insn != next);
2830 #ifdef DBR_OUTPUT_SEQEND
2831 DBR_OUTPUT_SEQEND (file);
2832 #endif
2833 final_sequence = 0;
2835 /* If the insn requiring the delay slot was a CALL_INSN, the
2836 insns in the delay slot are actually executed before the
2837 called function. Hence we don't preserve any CC-setting
2838 actions in these insns and the CC must be marked as being
2839 clobbered by the function. */
2840 if (CALL_P (seq->insn (0)))
2842 CC_STATUS_INIT;
2844 break;
2847 /* We have a real machine instruction as rtl. */
2849 body = PATTERN (insn);
2851 #if HAVE_cc0
2852 set = single_set (insn);
2854 /* Check for redundant test and compare instructions
2855 (when the condition codes are already set up as desired).
2856 This is done only when optimizing; if not optimizing,
2857 it should be possible for the user to alter a variable
2858 with the debugger in between statements
2859 and the next statement should reexamine the variable
2860 to compute the condition codes. */
2862 if (optimize_p)
2864 if (set
2865 && GET_CODE (SET_DEST (set)) == CC0
2866 && insn != last_ignored_compare)
2868 rtx src1, src2;
2869 if (GET_CODE (SET_SRC (set)) == SUBREG)
2870 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2872 src1 = SET_SRC (set);
2873 src2 = NULL_RTX;
2874 if (GET_CODE (SET_SRC (set)) == COMPARE)
2876 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2877 XEXP (SET_SRC (set), 0)
2878 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2879 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2880 XEXP (SET_SRC (set), 1)
2881 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2882 if (XEXP (SET_SRC (set), 1)
2883 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2884 src2 = XEXP (SET_SRC (set), 0);
2886 if ((cc_status.value1 != 0
2887 && rtx_equal_p (src1, cc_status.value1))
2888 || (cc_status.value2 != 0
2889 && rtx_equal_p (src1, cc_status.value2))
2890 || (src2 != 0 && cc_status.value1 != 0
2891 && rtx_equal_p (src2, cc_status.value1))
2892 || (src2 != 0 && cc_status.value2 != 0
2893 && rtx_equal_p (src2, cc_status.value2)))
2895 /* Don't delete insn if it has an addressing side-effect. */
2896 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2897 /* or if anything in it is volatile. */
2898 && ! volatile_refs_p (PATTERN (insn)))
2900 /* We don't really delete the insn; just ignore it. */
2901 last_ignored_compare = insn;
2902 break;
2908 /* If this is a conditional branch, maybe modify it
2909 if the cc's are in a nonstandard state
2910 so that it accomplishes the same thing that it would
2911 do straightforwardly if the cc's were set up normally. */
2913 if (cc_status.flags != 0
2914 && JUMP_P (insn)
2915 && GET_CODE (body) == SET
2916 && SET_DEST (body) == pc_rtx
2917 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2918 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2919 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2921 /* This function may alter the contents of its argument
2922 and clear some of the cc_status.flags bits.
2923 It may also return 1 meaning condition now always true
2924 or -1 meaning condition now always false
2925 or 2 meaning condition nontrivial but altered. */
2926 int result = alter_cond (XEXP (SET_SRC (body), 0));
2927 /* If condition now has fixed value, replace the IF_THEN_ELSE
2928 with its then-operand or its else-operand. */
2929 if (result == 1)
2930 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2931 if (result == -1)
2932 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2934 /* The jump is now either unconditional or a no-op.
2935 If it has become a no-op, don't try to output it.
2936 (It would not be recognized.) */
2937 if (SET_SRC (body) == pc_rtx)
2939 delete_insn (insn);
2940 break;
2942 else if (ANY_RETURN_P (SET_SRC (body)))
2943 /* Replace (set (pc) (return)) with (return). */
2944 PATTERN (insn) = body = SET_SRC (body);
2946 /* Rerecognize the instruction if it has changed. */
2947 if (result != 0)
2948 INSN_CODE (insn) = -1;
2951 /* If this is a conditional trap, maybe modify it if the cc's
2952 are in a nonstandard state so that it accomplishes the same
2953 thing that it would do straightforwardly if the cc's were
2954 set up normally. */
2955 if (cc_status.flags != 0
2956 && NONJUMP_INSN_P (insn)
2957 && GET_CODE (body) == TRAP_IF
2958 && COMPARISON_P (TRAP_CONDITION (body))
2959 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2961 /* This function may alter the contents of its argument
2962 and clear some of the cc_status.flags bits.
2963 It may also return 1 meaning condition now always true
2964 or -1 meaning condition now always false
2965 or 2 meaning condition nontrivial but altered. */
2966 int result = alter_cond (TRAP_CONDITION (body));
2968 /* If TRAP_CONDITION has become always false, delete the
2969 instruction. */
2970 if (result == -1)
2972 delete_insn (insn);
2973 break;
2976 /* If TRAP_CONDITION has become always true, replace
2977 TRAP_CONDITION with const_true_rtx. */
2978 if (result == 1)
2979 TRAP_CONDITION (body) = const_true_rtx;
2981 /* Rerecognize the instruction if it has changed. */
2982 if (result != 0)
2983 INSN_CODE (insn) = -1;
2986 /* Make same adjustments to instructions that examine the
2987 condition codes without jumping and instructions that
2988 handle conditional moves (if this machine has either one). */
2990 if (cc_status.flags != 0
2991 && set != 0)
2993 rtx cond_rtx, then_rtx, else_rtx;
2995 if (!JUMP_P (insn)
2996 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2998 cond_rtx = XEXP (SET_SRC (set), 0);
2999 then_rtx = XEXP (SET_SRC (set), 1);
3000 else_rtx = XEXP (SET_SRC (set), 2);
3002 else
3004 cond_rtx = SET_SRC (set);
3005 then_rtx = const_true_rtx;
3006 else_rtx = const0_rtx;
3009 if (COMPARISON_P (cond_rtx)
3010 && XEXP (cond_rtx, 0) == cc0_rtx)
3012 int result;
3013 result = alter_cond (cond_rtx);
3014 if (result == 1)
3015 validate_change (insn, &SET_SRC (set), then_rtx, 0);
3016 else if (result == -1)
3017 validate_change (insn, &SET_SRC (set), else_rtx, 0);
3018 else if (result == 2)
3019 INSN_CODE (insn) = -1;
3020 if (SET_DEST (set) == SET_SRC (set))
3021 delete_insn (insn);
3025 #endif
3027 /* Do machine-specific peephole optimizations if desired. */
3029 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
3031 rtx_insn *next = peephole (insn);
3032 /* When peepholing, if there were notes within the peephole,
3033 emit them before the peephole. */
3034 if (next != 0 && next != NEXT_INSN (insn))
3036 rtx_insn *note, *prev = PREV_INSN (insn);
3038 for (note = NEXT_INSN (insn); note != next;
3039 note = NEXT_INSN (note))
3040 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
3042 /* Put the notes in the proper position for a later
3043 rescan. For example, the SH target can do this
3044 when generating a far jump in a delayed branch
3045 sequence. */
3046 note = NEXT_INSN (insn);
3047 SET_PREV_INSN (note) = prev;
3048 SET_NEXT_INSN (prev) = note;
3049 SET_NEXT_INSN (PREV_INSN (next)) = insn;
3050 SET_PREV_INSN (insn) = PREV_INSN (next);
3051 SET_NEXT_INSN (insn) = next;
3052 SET_PREV_INSN (next) = insn;
3055 /* PEEPHOLE might have changed this. */
3056 body = PATTERN (insn);
3059 /* Try to recognize the instruction.
3060 If successful, verify that the operands satisfy the
3061 constraints for the instruction. Crash if they don't,
3062 since `reload' should have changed them so that they do. */
3064 insn_code_number = recog_memoized (insn);
3065 cleanup_subreg_operands (insn);
3067 /* Dump the insn in the assembly for debugging (-dAP).
3068 If the final dump is requested as slim RTL, dump slim
3069 RTL to the assembly file also. */
3070 if (flag_dump_rtl_in_asm)
3072 print_rtx_head = ASM_COMMENT_START;
3073 if (! (dump_flags & TDF_SLIM))
3074 print_rtl_single (asm_out_file, insn);
3075 else
3076 dump_insn_slim (asm_out_file, insn);
3077 print_rtx_head = "";
3080 if (! constrain_operands_cached (insn, 1))
3081 fatal_insn_not_found (insn);
3083 /* Some target machines need to prescan each insn before
3084 it is output. */
3086 #ifdef FINAL_PRESCAN_INSN
3087 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3088 #endif
3090 if (targetm.have_conditional_execution ()
3091 && GET_CODE (PATTERN (insn)) == COND_EXEC)
3092 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
3094 #if HAVE_cc0
3095 cc_prev_status = cc_status;
3097 /* Update `cc_status' for this instruction.
3098 The instruction's output routine may change it further.
3099 If the output routine for a jump insn needs to depend
3100 on the cc status, it should look at cc_prev_status. */
3102 NOTICE_UPDATE_CC (body, insn);
3103 #endif
3105 current_output_insn = debug_insn = insn;
3107 /* Find the proper template for this insn. */
3108 templ = get_insn_template (insn_code_number, insn);
3110 /* If the C code returns 0, it means that it is a jump insn
3111 which follows a deleted test insn, and that test insn
3112 needs to be reinserted. */
3113 if (templ == 0)
3115 rtx_insn *prev;
3117 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
3119 /* We have already processed the notes between the setter and
3120 the user. Make sure we don't process them again, this is
3121 particularly important if one of the notes is a block
3122 scope note or an EH note. */
3123 for (prev = insn;
3124 prev != last_ignored_compare;
3125 prev = PREV_INSN (prev))
3127 if (NOTE_P (prev))
3128 delete_insn (prev); /* Use delete_note. */
3131 return prev;
3134 /* If the template is the string "#", it means that this insn must
3135 be split. */
3136 if (templ[0] == '#' && templ[1] == '\0')
3138 rtx_insn *new_rtx = try_split (body, insn, 0);
3140 /* If we didn't split the insn, go away. */
3141 if (new_rtx == insn && PATTERN (new_rtx) == body)
3142 fatal_insn ("could not split insn", insn);
3144 /* If we have a length attribute, this instruction should have
3145 been split in shorten_branches, to ensure that we would have
3146 valid length info for the splitees. */
3147 gcc_assert (!HAVE_ATTR_length);
3149 return new_rtx;
3152 /* ??? This will put the directives in the wrong place if
3153 get_insn_template outputs assembly directly. However calling it
3154 before get_insn_template breaks if the insns is split. */
3155 if (targetm.asm_out.unwind_emit_before_insn
3156 && targetm.asm_out.unwind_emit)
3157 targetm.asm_out.unwind_emit (asm_out_file, insn);
3159 rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
3160 if (call_insn != NULL)
3162 rtx x = call_from_call_insn (call_insn);
3163 x = XEXP (x, 0);
3164 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3166 tree t;
3167 x = XEXP (x, 0);
3168 t = SYMBOL_REF_DECL (x);
3169 if (t)
3170 assemble_external (t);
3174 /* Output assembler code from the template. */
3175 output_asm_insn (templ, recog_data.operand);
3177 /* Some target machines need to postscan each insn after
3178 it is output. */
3179 if (targetm.asm_out.final_postscan_insn)
3180 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3181 recog_data.n_operands);
3183 if (!targetm.asm_out.unwind_emit_before_insn
3184 && targetm.asm_out.unwind_emit)
3185 targetm.asm_out.unwind_emit (asm_out_file, insn);
3187 /* Let the debug info back-end know about this call. We do this only
3188 after the instruction has been emitted because labels that may be
3189 created to reference the call instruction must appear after it. */
3190 if ((debug_variable_location_views || call_insn != NULL)
3191 && !DECL_IGNORED_P (current_function_decl))
3192 debug_hooks->var_location (insn);
3194 current_output_insn = debug_insn = 0;
3197 return NEXT_INSN (insn);
3200 /* This is a wrapper around final_scan_insn_1 that allows ports to
3201 call it recursively without a known value for SEEN. The value is
3202 saved at the outermost call, and recovered for recursive calls.
3203 Recursive calls MUST pass NULL, or the same pointer if they can
3204 otherwise get to it. */
3206 rtx_insn *
3207 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p,
3208 int nopeepholes, int *seen)
3210 static int *enclosing_seen;
3211 static int recursion_counter;
3213 gcc_assert (seen || recursion_counter);
3214 gcc_assert (!recursion_counter || !seen || seen == enclosing_seen);
3216 if (!recursion_counter++)
3217 enclosing_seen = seen;
3218 else if (!seen)
3219 seen = enclosing_seen;
3221 rtx_insn *ret = final_scan_insn_1 (insn, file, optimize_p, nopeepholes, seen);
3223 if (!--recursion_counter)
3224 enclosing_seen = NULL;
3226 return ret;
3230 /* Return whether a source line note needs to be emitted before INSN.
3231 Sets IS_STMT to TRUE if the line should be marked as a possible
3232 breakpoint location. */
3234 static bool
3235 notice_source_line (rtx_insn *insn, bool *is_stmt)
3237 const char *filename;
3238 int linenum, columnnum;
3240 if (NOTE_MARKER_P (insn))
3242 location_t loc = NOTE_MARKER_LOCATION (insn);
3243 /* The inline entry markers (gimple, insn, note) carry the
3244 location of the call, because that's what we want to carry
3245 during compilation, but the location we want to output in
3246 debug information for the inline entry point is the location
3247 of the function itself. */
3248 if (NOTE_KIND (insn) == NOTE_INSN_INLINE_ENTRY)
3250 tree block = LOCATION_BLOCK (loc);
3251 tree fn = block_ultimate_origin (block);
3252 loc = DECL_SOURCE_LOCATION (fn);
3254 expanded_location xloc = expand_location (loc);
3255 if (xloc.line == 0)
3257 gcc_checking_assert (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION
3258 || LOCATION_LOCUS (loc) == BUILTINS_LOCATION);
3259 return false;
3261 filename = xloc.file;
3262 linenum = xloc.line;
3263 columnnum = xloc.column;
3264 force_source_line = true;
3266 else if (override_filename)
3268 filename = override_filename;
3269 linenum = override_linenum;
3270 columnnum = override_columnnum;
3272 else if (INSN_HAS_LOCATION (insn))
3274 expanded_location xloc = insn_location (insn);
3275 filename = xloc.file;
3276 linenum = xloc.line;
3277 columnnum = xloc.column;
3279 else
3281 filename = NULL;
3282 linenum = 0;
3283 columnnum = 0;
3286 if (filename == NULL)
3287 return false;
3289 if (force_source_line
3290 || filename != last_filename
3291 || last_linenum != linenum
3292 || (debug_column_info && last_columnnum != columnnum))
3294 force_source_line = false;
3295 last_filename = filename;
3296 last_linenum = linenum;
3297 last_columnnum = columnnum;
3298 last_discriminator = discriminator;
3299 if (is_stmt)
3300 *is_stmt = true;
3301 high_block_linenum = MAX (last_linenum, high_block_linenum);
3302 high_function_linenum = MAX (last_linenum, high_function_linenum);
3303 return true;
3306 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3308 /* If the discriminator changed, but the line number did not,
3309 output the line table entry with is_stmt false so the
3310 debugger does not treat this as a breakpoint location. */
3311 last_discriminator = discriminator;
3312 if (is_stmt)
3313 *is_stmt = false;
3314 return true;
3317 return false;
3320 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3321 directly to the desired hard register. */
3323 void
3324 cleanup_subreg_operands (rtx_insn *insn)
3326 int i;
3327 bool changed = false;
3328 extract_insn_cached (insn);
3329 for (i = 0; i < recog_data.n_operands; i++)
3331 /* The following test cannot use recog_data.operand when testing
3332 for a SUBREG: the underlying object might have been changed
3333 already if we are inside a match_operator expression that
3334 matches the else clause. Instead we test the underlying
3335 expression directly. */
3336 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3338 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3339 changed = true;
3341 else if (GET_CODE (recog_data.operand[i]) == PLUS
3342 || GET_CODE (recog_data.operand[i]) == MULT
3343 || MEM_P (recog_data.operand[i]))
3344 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3347 for (i = 0; i < recog_data.n_dups; i++)
3349 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3351 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3352 changed = true;
3354 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3355 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3356 || MEM_P (*recog_data.dup_loc[i]))
3357 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3359 if (changed)
3360 df_insn_rescan (insn);
3363 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3364 the thing it is a subreg of. Do it anyway if FINAL_P. */
3367 alter_subreg (rtx *xp, bool final_p)
3369 rtx x = *xp;
3370 rtx y = SUBREG_REG (x);
3372 /* simplify_subreg does not remove subreg from volatile references.
3373 We are required to. */
3374 if (MEM_P (y))
3376 poly_int64 offset = SUBREG_BYTE (x);
3378 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3379 contains 0 instead of the proper offset. See simplify_subreg. */
3380 if (paradoxical_subreg_p (x))
3381 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3383 if (final_p)
3384 *xp = adjust_address (y, GET_MODE (x), offset);
3385 else
3386 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3388 else if (REG_P (y) && HARD_REGISTER_P (y))
3390 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3391 SUBREG_BYTE (x));
3393 if (new_rtx != 0)
3394 *xp = new_rtx;
3395 else if (final_p && REG_P (y))
3397 /* Simplify_subreg can't handle some REG cases, but we have to. */
3398 unsigned int regno;
3399 poly_int64 offset;
3401 regno = subreg_regno (x);
3402 if (subreg_lowpart_p (x))
3403 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3404 else
3405 offset = SUBREG_BYTE (x);
3406 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3410 return *xp;
3413 /* Do alter_subreg on all the SUBREGs contained in X. */
3415 static rtx
3416 walk_alter_subreg (rtx *xp, bool *changed)
3418 rtx x = *xp;
3419 switch (GET_CODE (x))
3421 case PLUS:
3422 case MULT:
3423 case AND:
3424 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3425 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3426 break;
3428 case MEM:
3429 case ZERO_EXTEND:
3430 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3431 break;
3433 case SUBREG:
3434 *changed = true;
3435 return alter_subreg (xp, true);
3437 default:
3438 break;
3441 return *xp;
3444 #if HAVE_cc0
3446 /* Given BODY, the body of a jump instruction, alter the jump condition
3447 as required by the bits that are set in cc_status.flags.
3448 Not all of the bits there can be handled at this level in all cases.
3450 The value is normally 0.
3451 1 means that the condition has become always true.
3452 -1 means that the condition has become always false.
3453 2 means that COND has been altered. */
3455 static int
3456 alter_cond (rtx cond)
3458 int value = 0;
3460 if (cc_status.flags & CC_REVERSED)
3462 value = 2;
3463 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3466 if (cc_status.flags & CC_INVERTED)
3468 value = 2;
3469 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3472 if (cc_status.flags & CC_NOT_POSITIVE)
3473 switch (GET_CODE (cond))
3475 case LE:
3476 case LEU:
3477 case GEU:
3478 /* Jump becomes unconditional. */
3479 return 1;
3481 case GT:
3482 case GTU:
3483 case LTU:
3484 /* Jump becomes no-op. */
3485 return -1;
3487 case GE:
3488 PUT_CODE (cond, EQ);
3489 value = 2;
3490 break;
3492 case LT:
3493 PUT_CODE (cond, NE);
3494 value = 2;
3495 break;
3497 default:
3498 break;
3501 if (cc_status.flags & CC_NOT_NEGATIVE)
3502 switch (GET_CODE (cond))
3504 case GE:
3505 case GEU:
3506 /* Jump becomes unconditional. */
3507 return 1;
3509 case LT:
3510 case LTU:
3511 /* Jump becomes no-op. */
3512 return -1;
3514 case LE:
3515 case LEU:
3516 PUT_CODE (cond, EQ);
3517 value = 2;
3518 break;
3520 case GT:
3521 case GTU:
3522 PUT_CODE (cond, NE);
3523 value = 2;
3524 break;
3526 default:
3527 break;
3530 if (cc_status.flags & CC_NO_OVERFLOW)
3531 switch (GET_CODE (cond))
3533 case GEU:
3534 /* Jump becomes unconditional. */
3535 return 1;
3537 case LEU:
3538 PUT_CODE (cond, EQ);
3539 value = 2;
3540 break;
3542 case GTU:
3543 PUT_CODE (cond, NE);
3544 value = 2;
3545 break;
3547 case LTU:
3548 /* Jump becomes no-op. */
3549 return -1;
3551 default:
3552 break;
3555 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3556 switch (GET_CODE (cond))
3558 default:
3559 gcc_unreachable ();
3561 case NE:
3562 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3563 value = 2;
3564 break;
3566 case EQ:
3567 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3568 value = 2;
3569 break;
3572 if (cc_status.flags & CC_NOT_SIGNED)
3573 /* The flags are valid if signed condition operators are converted
3574 to unsigned. */
3575 switch (GET_CODE (cond))
3577 case LE:
3578 PUT_CODE (cond, LEU);
3579 value = 2;
3580 break;
3582 case LT:
3583 PUT_CODE (cond, LTU);
3584 value = 2;
3585 break;
3587 case GT:
3588 PUT_CODE (cond, GTU);
3589 value = 2;
3590 break;
3592 case GE:
3593 PUT_CODE (cond, GEU);
3594 value = 2;
3595 break;
3597 default:
3598 break;
3601 return value;
3603 #endif
3605 /* Report inconsistency between the assembler template and the operands.
3606 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3608 void
3609 output_operand_lossage (const char *cmsgid, ...)
3611 char *fmt_string;
3612 char *new_message;
3613 const char *pfx_str;
3614 va_list ap;
3616 va_start (ap, cmsgid);
3618 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3619 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3620 new_message = xvasprintf (fmt_string, ap);
3622 if (this_is_asm_operands)
3623 error_for_asm (this_is_asm_operands, "%s", new_message);
3624 else
3625 internal_error ("%s", new_message);
3627 free (fmt_string);
3628 free (new_message);
3629 va_end (ap);
3632 /* Output of assembler code from a template, and its subroutines. */
3634 /* Annotate the assembly with a comment describing the pattern and
3635 alternative used. */
3637 static void
3638 output_asm_name (void)
3640 if (debug_insn)
3642 fprintf (asm_out_file, "\t%s %d\t",
3643 ASM_COMMENT_START, INSN_UID (debug_insn));
3645 fprintf (asm_out_file, "[c=%d",
3646 insn_cost (debug_insn, optimize_insn_for_speed_p ()));
3647 if (HAVE_ATTR_length)
3648 fprintf (asm_out_file, " l=%d",
3649 get_attr_length (debug_insn));
3650 fprintf (asm_out_file, "] ");
3652 int num = INSN_CODE (debug_insn);
3653 fprintf (asm_out_file, "%s", insn_data[num].name);
3654 if (insn_data[num].n_alternatives > 1)
3655 fprintf (asm_out_file, "/%d", which_alternative);
3657 /* Clear this so only the first assembler insn
3658 of any rtl insn will get the special comment for -dp. */
3659 debug_insn = 0;
3663 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3664 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3665 corresponds to the address of the object and 0 if to the object. */
3667 static tree
3668 get_mem_expr_from_op (rtx op, int *paddressp)
3670 tree expr;
3671 int inner_addressp;
3673 *paddressp = 0;
3675 if (REG_P (op))
3676 return REG_EXPR (op);
3677 else if (!MEM_P (op))
3678 return 0;
3680 if (MEM_EXPR (op) != 0)
3681 return MEM_EXPR (op);
3683 /* Otherwise we have an address, so indicate it and look at the address. */
3684 *paddressp = 1;
3685 op = XEXP (op, 0);
3687 /* First check if we have a decl for the address, then look at the right side
3688 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3689 But don't allow the address to itself be indirect. */
3690 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3691 return expr;
3692 else if (GET_CODE (op) == PLUS
3693 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3694 return expr;
3696 while (UNARY_P (op)
3697 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3698 op = XEXP (op, 0);
3700 expr = get_mem_expr_from_op (op, &inner_addressp);
3701 return inner_addressp ? 0 : expr;
3704 /* Output operand names for assembler instructions. OPERANDS is the
3705 operand vector, OPORDER is the order to write the operands, and NOPS
3706 is the number of operands to write. */
3708 static void
3709 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3711 int wrote = 0;
3712 int i;
3714 for (i = 0; i < nops; i++)
3716 int addressp;
3717 rtx op = operands[oporder[i]];
3718 tree expr = get_mem_expr_from_op (op, &addressp);
3720 fprintf (asm_out_file, "%c%s",
3721 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3722 wrote = 1;
3723 if (expr)
3725 fprintf (asm_out_file, "%s",
3726 addressp ? "*" : "");
3727 print_mem_expr (asm_out_file, expr);
3728 wrote = 1;
3730 else if (REG_P (op) && ORIGINAL_REGNO (op)
3731 && ORIGINAL_REGNO (op) != REGNO (op))
3732 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3736 #ifdef ASSEMBLER_DIALECT
3737 /* Helper function to parse assembler dialects in the asm string.
3738 This is called from output_asm_insn and asm_fprintf. */
3739 static const char *
3740 do_assembler_dialects (const char *p, int *dialect)
3742 char c = *(p - 1);
3744 switch (c)
3746 case '{':
3748 int i;
3750 if (*dialect)
3751 output_operand_lossage ("nested assembly dialect alternatives");
3752 else
3753 *dialect = 1;
3755 /* If we want the first dialect, do nothing. Otherwise, skip
3756 DIALECT_NUMBER of strings ending with '|'. */
3757 for (i = 0; i < dialect_number; i++)
3759 while (*p && *p != '}')
3761 if (*p == '|')
3763 p++;
3764 break;
3767 /* Skip over any character after a percent sign. */
3768 if (*p == '%')
3769 p++;
3770 if (*p)
3771 p++;
3774 if (*p == '}')
3775 break;
3778 if (*p == '\0')
3779 output_operand_lossage ("unterminated assembly dialect alternative");
3781 break;
3783 case '|':
3784 if (*dialect)
3786 /* Skip to close brace. */
3789 if (*p == '\0')
3791 output_operand_lossage ("unterminated assembly dialect alternative");
3792 break;
3795 /* Skip over any character after a percent sign. */
3796 if (*p == '%' && p[1])
3798 p += 2;
3799 continue;
3802 if (*p++ == '}')
3803 break;
3805 while (1);
3807 *dialect = 0;
3809 else
3810 putc (c, asm_out_file);
3811 break;
3813 case '}':
3814 if (! *dialect)
3815 putc (c, asm_out_file);
3816 *dialect = 0;
3817 break;
3818 default:
3819 gcc_unreachable ();
3822 return p;
3824 #endif
3826 /* Output text from TEMPLATE to the assembler output file,
3827 obeying %-directions to substitute operands taken from
3828 the vector OPERANDS.
3830 %N (for N a digit) means print operand N in usual manner.
3831 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3832 and print the label name with no punctuation.
3833 %cN means require operand N to be a constant
3834 and print the constant expression with no punctuation.
3835 %aN means expect operand N to be a memory address
3836 (not a memory reference!) and print a reference
3837 to that address.
3838 %nN means expect operand N to be a constant
3839 and print a constant expression for minus the value
3840 of the operand, with no other punctuation. */
3842 void
3843 output_asm_insn (const char *templ, rtx *operands)
3845 const char *p;
3846 int c;
3847 #ifdef ASSEMBLER_DIALECT
3848 int dialect = 0;
3849 #endif
3850 int oporder[MAX_RECOG_OPERANDS];
3851 char opoutput[MAX_RECOG_OPERANDS];
3852 int ops = 0;
3854 /* An insn may return a null string template
3855 in a case where no assembler code is needed. */
3856 if (*templ == 0)
3857 return;
3859 memset (opoutput, 0, sizeof opoutput);
3860 p = templ;
3861 putc ('\t', asm_out_file);
3863 #ifdef ASM_OUTPUT_OPCODE
3864 ASM_OUTPUT_OPCODE (asm_out_file, p);
3865 #endif
3867 while ((c = *p++))
3868 switch (c)
3870 case '\n':
3871 if (flag_verbose_asm)
3872 output_asm_operand_names (operands, oporder, ops);
3873 if (flag_print_asm_name)
3874 output_asm_name ();
3876 ops = 0;
3877 memset (opoutput, 0, sizeof opoutput);
3879 putc (c, asm_out_file);
3880 #ifdef ASM_OUTPUT_OPCODE
3881 while ((c = *p) == '\t')
3883 putc (c, asm_out_file);
3884 p++;
3886 ASM_OUTPUT_OPCODE (asm_out_file, p);
3887 #endif
3888 break;
3890 #ifdef ASSEMBLER_DIALECT
3891 case '{':
3892 case '}':
3893 case '|':
3894 p = do_assembler_dialects (p, &dialect);
3895 break;
3896 #endif
3898 case '%':
3899 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3900 if ASSEMBLER_DIALECT defined and these characters have a special
3901 meaning as dialect delimiters.*/
3902 if (*p == '%'
3903 #ifdef ASSEMBLER_DIALECT
3904 || *p == '{' || *p == '}' || *p == '|'
3905 #endif
3908 putc (*p, asm_out_file);
3909 p++;
3911 /* %= outputs a number which is unique to each insn in the entire
3912 compilation. This is useful for making local labels that are
3913 referred to more than once in a given insn. */
3914 else if (*p == '=')
3916 p++;
3917 fprintf (asm_out_file, "%d", insn_counter);
3919 /* % followed by a letter and some digits
3920 outputs an operand in a special way depending on the letter.
3921 Letters `acln' are implemented directly.
3922 Other letters are passed to `output_operand' so that
3923 the TARGET_PRINT_OPERAND hook can define them. */
3924 else if (ISALPHA (*p))
3926 int letter = *p++;
3927 unsigned long opnum;
3928 char *endptr;
3930 opnum = strtoul (p, &endptr, 10);
3932 if (endptr == p)
3933 output_operand_lossage ("operand number missing "
3934 "after %%-letter");
3935 else if (this_is_asm_operands && opnum >= insn_noperands)
3936 output_operand_lossage ("operand number out of range");
3937 else if (letter == 'l')
3938 output_asm_label (operands[opnum]);
3939 else if (letter == 'a')
3940 output_address (VOIDmode, operands[opnum]);
3941 else if (letter == 'c')
3943 if (CONSTANT_ADDRESS_P (operands[opnum]))
3944 output_addr_const (asm_out_file, operands[opnum]);
3945 else
3946 output_operand (operands[opnum], 'c');
3948 else if (letter == 'n')
3950 if (CONST_INT_P (operands[opnum]))
3951 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3952 - INTVAL (operands[opnum]));
3953 else
3955 putc ('-', asm_out_file);
3956 output_addr_const (asm_out_file, operands[opnum]);
3959 else
3960 output_operand (operands[opnum], letter);
3962 if (!opoutput[opnum])
3963 oporder[ops++] = opnum;
3964 opoutput[opnum] = 1;
3966 p = endptr;
3967 c = *p;
3969 /* % followed by a digit outputs an operand the default way. */
3970 else if (ISDIGIT (*p))
3972 unsigned long opnum;
3973 char *endptr;
3975 opnum = strtoul (p, &endptr, 10);
3976 if (this_is_asm_operands && opnum >= insn_noperands)
3977 output_operand_lossage ("operand number out of range");
3978 else
3979 output_operand (operands[opnum], 0);
3981 if (!opoutput[opnum])
3982 oporder[ops++] = opnum;
3983 opoutput[opnum] = 1;
3985 p = endptr;
3986 c = *p;
3988 /* % followed by punctuation: output something for that
3989 punctuation character alone, with no operand. The
3990 TARGET_PRINT_OPERAND hook decides what is actually done. */
3991 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3992 output_operand (NULL_RTX, *p++);
3993 else
3994 output_operand_lossage ("invalid %%-code");
3995 break;
3997 default:
3998 putc (c, asm_out_file);
4001 /* Try to keep the asm a bit more readable. */
4002 if ((flag_verbose_asm || flag_print_asm_name) && strlen (templ) < 9)
4003 putc ('\t', asm_out_file);
4005 /* Write out the variable names for operands, if we know them. */
4006 if (flag_verbose_asm)
4007 output_asm_operand_names (operands, oporder, ops);
4008 if (flag_print_asm_name)
4009 output_asm_name ();
4011 putc ('\n', asm_out_file);
4014 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
4016 void
4017 output_asm_label (rtx x)
4019 char buf[256];
4021 if (GET_CODE (x) == LABEL_REF)
4022 x = label_ref_label (x);
4023 if (LABEL_P (x)
4024 || (NOTE_P (x)
4025 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
4026 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4027 else
4028 output_operand_lossage ("'%%l' operand isn't a label");
4030 assemble_name (asm_out_file, buf);
4033 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
4035 void
4036 mark_symbol_refs_as_used (rtx x)
4038 subrtx_iterator::array_type array;
4039 FOR_EACH_SUBRTX (iter, array, x, ALL)
4041 const_rtx x = *iter;
4042 if (GET_CODE (x) == SYMBOL_REF)
4043 if (tree t = SYMBOL_REF_DECL (x))
4044 assemble_external (t);
4048 /* Print operand X using machine-dependent assembler syntax.
4049 CODE is a non-digit that preceded the operand-number in the % spec,
4050 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
4051 between the % and the digits.
4052 When CODE is a non-letter, X is 0.
4054 The meanings of the letters are machine-dependent and controlled
4055 by TARGET_PRINT_OPERAND. */
4057 void
4058 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
4060 if (x && GET_CODE (x) == SUBREG)
4061 x = alter_subreg (&x, true);
4063 /* X must not be a pseudo reg. */
4064 if (!targetm.no_register_allocation)
4065 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
4067 targetm.asm_out.print_operand (asm_out_file, x, code);
4069 if (x == NULL_RTX)
4070 return;
4072 mark_symbol_refs_as_used (x);
4075 /* Print a memory reference operand for address X using
4076 machine-dependent assembler syntax. */
4078 void
4079 output_address (machine_mode mode, rtx x)
4081 bool changed = false;
4082 walk_alter_subreg (&x, &changed);
4083 targetm.asm_out.print_operand_address (asm_out_file, mode, x);
4086 /* Print an integer constant expression in assembler syntax.
4087 Addition and subtraction are the only arithmetic
4088 that may appear in these expressions. */
4090 void
4091 output_addr_const (FILE *file, rtx x)
4093 char buf[256];
4095 restart:
4096 switch (GET_CODE (x))
4098 case PC:
4099 putc ('.', file);
4100 break;
4102 case SYMBOL_REF:
4103 if (SYMBOL_REF_DECL (x))
4104 assemble_external (SYMBOL_REF_DECL (x));
4105 #ifdef ASM_OUTPUT_SYMBOL_REF
4106 ASM_OUTPUT_SYMBOL_REF (file, x);
4107 #else
4108 assemble_name (file, XSTR (x, 0));
4109 #endif
4110 break;
4112 case LABEL_REF:
4113 x = label_ref_label (x);
4114 /* Fall through. */
4115 case CODE_LABEL:
4116 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4117 #ifdef ASM_OUTPUT_LABEL_REF
4118 ASM_OUTPUT_LABEL_REF (file, buf);
4119 #else
4120 assemble_name (file, buf);
4121 #endif
4122 break;
4124 case CONST_INT:
4125 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
4126 break;
4128 case CONST:
4129 /* This used to output parentheses around the expression,
4130 but that does not work on the 386 (either ATT or BSD assembler). */
4131 output_addr_const (file, XEXP (x, 0));
4132 break;
4134 case CONST_WIDE_INT:
4135 /* We do not know the mode here so we have to use a round about
4136 way to build a wide-int to get it printed properly. */
4138 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
4139 CONST_WIDE_INT_NUNITS (x),
4140 CONST_WIDE_INT_NUNITS (x)
4141 * HOST_BITS_PER_WIDE_INT,
4142 false);
4143 print_decs (w, file);
4145 break;
4147 case CONST_DOUBLE:
4148 if (CONST_DOUBLE_AS_INT_P (x))
4150 /* We can use %d if the number is one word and positive. */
4151 if (CONST_DOUBLE_HIGH (x))
4152 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
4153 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
4154 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4155 else if (CONST_DOUBLE_LOW (x) < 0)
4156 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
4157 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4158 else
4159 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
4161 else
4162 /* We can't handle floating point constants;
4163 PRINT_OPERAND must handle them. */
4164 output_operand_lossage ("floating constant misused");
4165 break;
4167 case CONST_FIXED:
4168 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
4169 break;
4171 case PLUS:
4172 /* Some assemblers need integer constants to appear last (eg masm). */
4173 if (CONST_INT_P (XEXP (x, 0)))
4175 output_addr_const (file, XEXP (x, 1));
4176 if (INTVAL (XEXP (x, 0)) >= 0)
4177 fprintf (file, "+");
4178 output_addr_const (file, XEXP (x, 0));
4180 else
4182 output_addr_const (file, XEXP (x, 0));
4183 if (!CONST_INT_P (XEXP (x, 1))
4184 || INTVAL (XEXP (x, 1)) >= 0)
4185 fprintf (file, "+");
4186 output_addr_const (file, XEXP (x, 1));
4188 break;
4190 case MINUS:
4191 /* Avoid outputting things like x-x or x+5-x,
4192 since some assemblers can't handle that. */
4193 x = simplify_subtraction (x);
4194 if (GET_CODE (x) != MINUS)
4195 goto restart;
4197 output_addr_const (file, XEXP (x, 0));
4198 fprintf (file, "-");
4199 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
4200 || GET_CODE (XEXP (x, 1)) == PC
4201 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
4202 output_addr_const (file, XEXP (x, 1));
4203 else
4205 fputs (targetm.asm_out.open_paren, file);
4206 output_addr_const (file, XEXP (x, 1));
4207 fputs (targetm.asm_out.close_paren, file);
4209 break;
4211 case ZERO_EXTEND:
4212 case SIGN_EXTEND:
4213 case SUBREG:
4214 case TRUNCATE:
4215 output_addr_const (file, XEXP (x, 0));
4216 break;
4218 default:
4219 if (targetm.asm_out.output_addr_const_extra (file, x))
4220 break;
4222 output_operand_lossage ("invalid expression as operand");
4226 /* Output a quoted string. */
4228 void
4229 output_quoted_string (FILE *asm_file, const char *string)
4231 #ifdef OUTPUT_QUOTED_STRING
4232 OUTPUT_QUOTED_STRING (asm_file, string);
4233 #else
4234 char c;
4236 putc ('\"', asm_file);
4237 while ((c = *string++) != 0)
4239 if (ISPRINT (c))
4241 if (c == '\"' || c == '\\')
4242 putc ('\\', asm_file);
4243 putc (c, asm_file);
4245 else
4246 fprintf (asm_file, "\\%03o", (unsigned char) c);
4248 putc ('\"', asm_file);
4249 #endif
4252 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4254 void
4255 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4257 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4258 if (value == 0)
4259 putc ('0', f);
4260 else
4262 char *p = buf + sizeof (buf);
4264 *--p = "0123456789abcdef"[value % 16];
4265 while ((value /= 16) != 0);
4266 *--p = 'x';
4267 *--p = '0';
4268 fwrite (p, 1, buf + sizeof (buf) - p, f);
4272 /* Internal function that prints an unsigned long in decimal in reverse.
4273 The output string IS NOT null-terminated. */
4275 static int
4276 sprint_ul_rev (char *s, unsigned long value)
4278 int i = 0;
4281 s[i] = "0123456789"[value % 10];
4282 value /= 10;
4283 i++;
4284 /* alternate version, without modulo */
4285 /* oldval = value; */
4286 /* value /= 10; */
4287 /* s[i] = "0123456789" [oldval - 10*value]; */
4288 /* i++ */
4290 while (value != 0);
4291 return i;
4294 /* Write an unsigned long as decimal to a file, fast. */
4296 void
4297 fprint_ul (FILE *f, unsigned long value)
4299 /* python says: len(str(2**64)) == 20 */
4300 char s[20];
4301 int i;
4303 i = sprint_ul_rev (s, value);
4305 /* It's probably too small to bother with string reversal and fputs. */
4308 i--;
4309 putc (s[i], f);
4311 while (i != 0);
4314 /* Write an unsigned long as decimal to a string, fast.
4315 s must be wide enough to not overflow, at least 21 chars.
4316 Returns the length of the string (without terminating '\0'). */
4319 sprint_ul (char *s, unsigned long value)
4321 int len = sprint_ul_rev (s, value);
4322 s[len] = '\0';
4324 std::reverse (s, s + len);
4325 return len;
4328 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4329 %R prints the value of REGISTER_PREFIX.
4330 %L prints the value of LOCAL_LABEL_PREFIX.
4331 %U prints the value of USER_LABEL_PREFIX.
4332 %I prints the value of IMMEDIATE_PREFIX.
4333 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4334 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4336 We handle alternate assembler dialects here, just like output_asm_insn. */
4338 void
4339 asm_fprintf (FILE *file, const char *p, ...)
4341 char buf[10];
4342 char *q, c;
4343 #ifdef ASSEMBLER_DIALECT
4344 int dialect = 0;
4345 #endif
4346 va_list argptr;
4348 va_start (argptr, p);
4350 buf[0] = '%';
4352 while ((c = *p++))
4353 switch (c)
4355 #ifdef ASSEMBLER_DIALECT
4356 case '{':
4357 case '}':
4358 case '|':
4359 p = do_assembler_dialects (p, &dialect);
4360 break;
4361 #endif
4363 case '%':
4364 c = *p++;
4365 q = &buf[1];
4366 while (strchr ("-+ #0", c))
4368 *q++ = c;
4369 c = *p++;
4371 while (ISDIGIT (c) || c == '.')
4373 *q++ = c;
4374 c = *p++;
4376 switch (c)
4378 case '%':
4379 putc ('%', file);
4380 break;
4382 case 'd': case 'i': case 'u':
4383 case 'x': case 'X': case 'o':
4384 case 'c':
4385 *q++ = c;
4386 *q = 0;
4387 fprintf (file, buf, va_arg (argptr, int));
4388 break;
4390 case 'w':
4391 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4392 'o' cases, but we do not check for those cases. It
4393 means that the value is a HOST_WIDE_INT, which may be
4394 either `long' or `long long'. */
4395 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4396 q += strlen (HOST_WIDE_INT_PRINT);
4397 *q++ = *p++;
4398 *q = 0;
4399 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4400 break;
4402 case 'l':
4403 *q++ = c;
4404 #ifdef HAVE_LONG_LONG
4405 if (*p == 'l')
4407 *q++ = *p++;
4408 *q++ = *p++;
4409 *q = 0;
4410 fprintf (file, buf, va_arg (argptr, long long));
4412 else
4413 #endif
4415 *q++ = *p++;
4416 *q = 0;
4417 fprintf (file, buf, va_arg (argptr, long));
4420 break;
4422 case 's':
4423 *q++ = c;
4424 *q = 0;
4425 fprintf (file, buf, va_arg (argptr, char *));
4426 break;
4428 case 'O':
4429 #ifdef ASM_OUTPUT_OPCODE
4430 ASM_OUTPUT_OPCODE (asm_out_file, p);
4431 #endif
4432 break;
4434 case 'R':
4435 #ifdef REGISTER_PREFIX
4436 fprintf (file, "%s", REGISTER_PREFIX);
4437 #endif
4438 break;
4440 case 'I':
4441 #ifdef IMMEDIATE_PREFIX
4442 fprintf (file, "%s", IMMEDIATE_PREFIX);
4443 #endif
4444 break;
4446 case 'L':
4447 #ifdef LOCAL_LABEL_PREFIX
4448 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4449 #endif
4450 break;
4452 case 'U':
4453 fputs (user_label_prefix, file);
4454 break;
4456 #ifdef ASM_FPRINTF_EXTENSIONS
4457 /* Uppercase letters are reserved for general use by asm_fprintf
4458 and so are not available to target specific code. In order to
4459 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4460 they are defined here. As they get turned into real extensions
4461 to asm_fprintf they should be removed from this list. */
4462 case 'A': case 'B': case 'C': case 'D': case 'E':
4463 case 'F': case 'G': case 'H': case 'J': case 'K':
4464 case 'M': case 'N': case 'P': case 'Q': case 'S':
4465 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4466 break;
4468 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4469 #endif
4470 default:
4471 gcc_unreachable ();
4473 break;
4475 default:
4476 putc (c, file);
4478 va_end (argptr);
4481 /* Return nonzero if this function has no function calls. */
4484 leaf_function_p (void)
4486 rtx_insn *insn;
4488 /* Ensure we walk the entire function body. */
4489 gcc_assert (!in_sequence_p ());
4491 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4492 functions even if they call mcount. */
4493 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4494 return 0;
4496 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4498 if (CALL_P (insn)
4499 && ! SIBLING_CALL_P (insn))
4500 return 0;
4501 if (NONJUMP_INSN_P (insn)
4502 && GET_CODE (PATTERN (insn)) == SEQUENCE
4503 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4504 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4505 return 0;
4508 return 1;
4511 /* Return 1 if branch is a forward branch.
4512 Uses insn_shuid array, so it works only in the final pass. May be used by
4513 output templates to customary add branch prediction hints.
4516 final_forward_branch_p (rtx_insn *insn)
4518 int insn_id, label_id;
4520 gcc_assert (uid_shuid);
4521 insn_id = INSN_SHUID (insn);
4522 label_id = INSN_SHUID (JUMP_LABEL (insn));
4523 /* We've hit some insns that does not have id information available. */
4524 gcc_assert (insn_id && label_id);
4525 return insn_id < label_id;
4528 /* On some machines, a function with no call insns
4529 can run faster if it doesn't create its own register window.
4530 When output, the leaf function should use only the "output"
4531 registers. Ordinarily, the function would be compiled to use
4532 the "input" registers to find its arguments; it is a candidate
4533 for leaf treatment if it uses only the "input" registers.
4534 Leaf function treatment means renumbering so the function
4535 uses the "output" registers instead. */
4537 #ifdef LEAF_REGISTERS
4539 /* Return 1 if this function uses only the registers that can be
4540 safely renumbered. */
4543 only_leaf_regs_used (void)
4545 int i;
4546 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4548 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4549 if ((df_regs_ever_live_p (i) || global_regs[i])
4550 && ! permitted_reg_in_leaf_functions[i])
4551 return 0;
4553 if (crtl->uses_pic_offset_table
4554 && pic_offset_table_rtx != 0
4555 && REG_P (pic_offset_table_rtx)
4556 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4557 return 0;
4559 return 1;
4562 /* Scan all instructions and renumber all registers into those
4563 available in leaf functions. */
4565 static void
4566 leaf_renumber_regs (rtx_insn *first)
4568 rtx_insn *insn;
4570 /* Renumber only the actual patterns.
4571 The reg-notes can contain frame pointer refs,
4572 and renumbering them could crash, and should not be needed. */
4573 for (insn = first; insn; insn = NEXT_INSN (insn))
4574 if (INSN_P (insn))
4575 leaf_renumber_regs_insn (PATTERN (insn));
4578 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4579 available in leaf functions. */
4581 void
4582 leaf_renumber_regs_insn (rtx in_rtx)
4584 int i, j;
4585 const char *format_ptr;
4587 if (in_rtx == 0)
4588 return;
4590 /* Renumber all input-registers into output-registers.
4591 renumbered_regs would be 1 for an output-register;
4592 they */
4594 if (REG_P (in_rtx))
4596 int newreg;
4598 /* Don't renumber the same reg twice. */
4599 if (in_rtx->used)
4600 return;
4602 newreg = REGNO (in_rtx);
4603 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4604 to reach here as part of a REG_NOTE. */
4605 if (newreg >= FIRST_PSEUDO_REGISTER)
4607 in_rtx->used = 1;
4608 return;
4610 newreg = LEAF_REG_REMAP (newreg);
4611 gcc_assert (newreg >= 0);
4612 df_set_regs_ever_live (REGNO (in_rtx), false);
4613 df_set_regs_ever_live (newreg, true);
4614 SET_REGNO (in_rtx, newreg);
4615 in_rtx->used = 1;
4616 return;
4619 if (INSN_P (in_rtx))
4621 /* Inside a SEQUENCE, we find insns.
4622 Renumber just the patterns of these insns,
4623 just as we do for the top-level insns. */
4624 leaf_renumber_regs_insn (PATTERN (in_rtx));
4625 return;
4628 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4630 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4631 switch (*format_ptr++)
4633 case 'e':
4634 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4635 break;
4637 case 'E':
4638 if (XVEC (in_rtx, i) != NULL)
4639 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4640 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4641 break;
4643 case 'S':
4644 case 's':
4645 case '0':
4646 case 'i':
4647 case 'w':
4648 case 'p':
4649 case 'n':
4650 case 'u':
4651 break;
4653 default:
4654 gcc_unreachable ();
4657 #endif
4659 /* Turn the RTL into assembly. */
4660 static unsigned int
4661 rest_of_handle_final (void)
4663 const char *fnname = get_fnname_from_decl (current_function_decl);
4665 /* Turn debug markers into notes if the var-tracking pass has not
4666 been invoked. */
4667 if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS)
4668 delete_vta_debug_insns (false);
4670 assemble_start_function (current_function_decl, fnname);
4671 rtx_insn *first = get_insns ();
4672 int seen = 0;
4673 final_start_function_1 (&first, asm_out_file, &seen, optimize);
4674 final_1 (first, asm_out_file, seen, optimize);
4675 if (flag_ipa_ra
4676 && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl)))
4677 collect_fn_hard_reg_usage ();
4678 final_end_function ();
4680 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4681 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4682 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4683 output_function_exception_table (crtl->has_bb_partition ? 1 : 0);
4685 assemble_end_function (current_function_decl, fnname);
4687 /* Free up reg info memory. */
4688 free_reg_info ();
4690 if (! quiet_flag)
4691 fflush (asm_out_file);
4693 /* Write DBX symbols if requested. */
4695 /* Note that for those inline functions where we don't initially
4696 know for certain that we will be generating an out-of-line copy,
4697 the first invocation of this routine (rest_of_compilation) will
4698 skip over this code by doing a `goto exit_rest_of_compilation;'.
4699 Later on, wrapup_global_declarations will (indirectly) call
4700 rest_of_compilation again for those inline functions that need
4701 to have out-of-line copies generated. During that call, we
4702 *will* be routed past here. */
4704 timevar_push (TV_SYMOUT);
4705 if (!DECL_IGNORED_P (current_function_decl))
4706 debug_hooks->function_decl (current_function_decl);
4707 timevar_pop (TV_SYMOUT);
4709 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4710 DECL_INITIAL (current_function_decl) = error_mark_node;
4712 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4713 && targetm.have_ctors_dtors)
4714 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4715 decl_init_priority_lookup
4716 (current_function_decl));
4717 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4718 && targetm.have_ctors_dtors)
4719 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4720 decl_fini_priority_lookup
4721 (current_function_decl));
4722 return 0;
4725 namespace {
4727 const pass_data pass_data_final =
4729 RTL_PASS, /* type */
4730 "final", /* name */
4731 OPTGROUP_NONE, /* optinfo_flags */
4732 TV_FINAL, /* tv_id */
4733 0, /* properties_required */
4734 0, /* properties_provided */
4735 0, /* properties_destroyed */
4736 0, /* todo_flags_start */
4737 0, /* todo_flags_finish */
4740 class pass_final : public rtl_opt_pass
4742 public:
4743 pass_final (gcc::context *ctxt)
4744 : rtl_opt_pass (pass_data_final, ctxt)
4747 /* opt_pass methods: */
4748 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4750 }; // class pass_final
4752 } // anon namespace
4754 rtl_opt_pass *
4755 make_pass_final (gcc::context *ctxt)
4757 return new pass_final (ctxt);
4761 static unsigned int
4762 rest_of_handle_shorten_branches (void)
4764 /* Shorten branches. */
4765 shorten_branches (get_insns ());
4766 return 0;
4769 namespace {
4771 const pass_data pass_data_shorten_branches =
4773 RTL_PASS, /* type */
4774 "shorten", /* name */
4775 OPTGROUP_NONE, /* optinfo_flags */
4776 TV_SHORTEN_BRANCH, /* tv_id */
4777 0, /* properties_required */
4778 0, /* properties_provided */
4779 0, /* properties_destroyed */
4780 0, /* todo_flags_start */
4781 0, /* todo_flags_finish */
4784 class pass_shorten_branches : public rtl_opt_pass
4786 public:
4787 pass_shorten_branches (gcc::context *ctxt)
4788 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4791 /* opt_pass methods: */
4792 virtual unsigned int execute (function *)
4794 return rest_of_handle_shorten_branches ();
4797 }; // class pass_shorten_branches
4799 } // anon namespace
4801 rtl_opt_pass *
4802 make_pass_shorten_branches (gcc::context *ctxt)
4804 return new pass_shorten_branches (ctxt);
4808 static unsigned int
4809 rest_of_clean_state (void)
4811 rtx_insn *insn, *next;
4812 FILE *final_output = NULL;
4813 int save_unnumbered = flag_dump_unnumbered;
4814 int save_noaddr = flag_dump_noaddr;
4816 if (flag_dump_final_insns)
4818 final_output = fopen (flag_dump_final_insns, "a");
4819 if (!final_output)
4821 error ("could not open final insn dump file %qs: %m",
4822 flag_dump_final_insns);
4823 flag_dump_final_insns = NULL;
4825 else
4827 flag_dump_noaddr = flag_dump_unnumbered = 1;
4828 if (flag_compare_debug_opt || flag_compare_debug)
4829 dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG;
4830 dump_function_header (final_output, current_function_decl,
4831 dump_flags);
4832 final_insns_dump_p = true;
4834 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4835 if (LABEL_P (insn))
4836 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4837 else
4839 if (NOTE_P (insn))
4840 set_block_for_insn (insn, NULL);
4841 INSN_UID (insn) = 0;
4846 /* It is very important to decompose the RTL instruction chain here:
4847 debug information keeps pointing into CODE_LABEL insns inside the function
4848 body. If these remain pointing to the other insns, we end up preserving
4849 whole RTL chain and attached detailed debug info in memory. */
4850 for (insn = get_insns (); insn; insn = next)
4852 next = NEXT_INSN (insn);
4853 SET_NEXT_INSN (insn) = NULL;
4854 SET_PREV_INSN (insn) = NULL;
4856 rtx_insn *call_insn = insn;
4857 if (NONJUMP_INSN_P (call_insn)
4858 && GET_CODE (PATTERN (call_insn)) == SEQUENCE)
4860 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (call_insn));
4861 call_insn = seq->insn (0);
4863 if (CALL_P (call_insn))
4865 rtx note
4866 = find_reg_note (call_insn, REG_CALL_ARG_LOCATION, NULL_RTX);
4867 if (note)
4868 remove_note (call_insn, note);
4871 if (final_output
4872 && (!NOTE_P (insn)
4873 || (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4874 && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT
4875 && NOTE_KIND (insn) != NOTE_INSN_INLINE_ENTRY
4876 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4877 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4878 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4879 print_rtl_single (final_output, insn);
4882 if (final_output)
4884 flag_dump_noaddr = save_noaddr;
4885 flag_dump_unnumbered = save_unnumbered;
4886 final_insns_dump_p = false;
4888 if (fclose (final_output))
4890 error ("could not close final insn dump file %qs: %m",
4891 flag_dump_final_insns);
4892 flag_dump_final_insns = NULL;
4896 flag_rerun_cse_after_global_opts = 0;
4897 reload_completed = 0;
4898 epilogue_completed = 0;
4899 #ifdef STACK_REGS
4900 regstack_completed = 0;
4901 #endif
4903 /* Clear out the insn_length contents now that they are no
4904 longer valid. */
4905 init_insn_lengths ();
4907 /* Show no temporary slots allocated. */
4908 init_temp_slots ();
4910 free_bb_for_insn ();
4912 if (cfun->gimple_df)
4913 delete_tree_ssa (cfun);
4915 /* We can reduce stack alignment on call site only when we are sure that
4916 the function body just produced will be actually used in the final
4917 executable. */
4918 if (decl_binds_to_current_def_p (current_function_decl))
4920 unsigned int pref = crtl->preferred_stack_boundary;
4921 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4922 pref = crtl->stack_alignment_needed;
4923 cgraph_node::rtl_info (current_function_decl)
4924 ->preferred_incoming_stack_boundary = pref;
4927 /* Make sure volatile mem refs aren't considered valid operands for
4928 arithmetic insns. We must call this here if this is a nested inline
4929 function, since the above code leaves us in the init_recog state,
4930 and the function context push/pop code does not save/restore volatile_ok.
4932 ??? Maybe it isn't necessary for expand_start_function to call this
4933 anymore if we do it here? */
4935 init_recog_no_volatile ();
4937 /* We're done with this function. Free up memory if we can. */
4938 free_after_parsing (cfun);
4939 free_after_compilation (cfun);
4940 return 0;
4943 namespace {
4945 const pass_data pass_data_clean_state =
4947 RTL_PASS, /* type */
4948 "*clean_state", /* name */
4949 OPTGROUP_NONE, /* optinfo_flags */
4950 TV_FINAL, /* tv_id */
4951 0, /* properties_required */
4952 0, /* properties_provided */
4953 PROP_rtl, /* properties_destroyed */
4954 0, /* todo_flags_start */
4955 0, /* todo_flags_finish */
4958 class pass_clean_state : public rtl_opt_pass
4960 public:
4961 pass_clean_state (gcc::context *ctxt)
4962 : rtl_opt_pass (pass_data_clean_state, ctxt)
4965 /* opt_pass methods: */
4966 virtual unsigned int execute (function *)
4968 return rest_of_clean_state ();
4971 }; // class pass_clean_state
4973 } // anon namespace
4975 rtl_opt_pass *
4976 make_pass_clean_state (gcc::context *ctxt)
4978 return new pass_clean_state (ctxt);
4981 /* Return true if INSN is a call to the current function. */
4983 static bool
4984 self_recursive_call_p (rtx_insn *insn)
4986 tree fndecl = get_call_fndecl (insn);
4987 return (fndecl == current_function_decl
4988 && decl_binds_to_current_def_p (fndecl));
4991 /* Collect hard register usage for the current function. */
4993 static void
4994 collect_fn_hard_reg_usage (void)
4996 rtx_insn *insn;
4997 #ifdef STACK_REGS
4998 int i;
4999 #endif
5000 struct cgraph_rtl_info *node;
5001 HARD_REG_SET function_used_regs;
5003 /* ??? To be removed when all the ports have been fixed. */
5004 if (!targetm.call_fusage_contains_non_callee_clobbers)
5005 return;
5007 CLEAR_HARD_REG_SET (function_used_regs);
5009 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
5011 HARD_REG_SET insn_used_regs;
5013 if (!NONDEBUG_INSN_P (insn))
5014 continue;
5016 if (CALL_P (insn)
5017 && !self_recursive_call_p (insn))
5019 if (!get_call_reg_set_usage (insn, &insn_used_regs,
5020 call_used_reg_set))
5021 return;
5023 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
5026 find_all_hard_reg_sets (insn, &insn_used_regs, false);
5027 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
5030 /* Be conservative - mark fixed and global registers as used. */
5031 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
5033 #ifdef STACK_REGS
5034 /* Handle STACK_REGS conservatively, since the df-framework does not
5035 provide accurate information for them. */
5037 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
5038 SET_HARD_REG_BIT (function_used_regs, i);
5039 #endif
5041 /* The information we have gathered is only interesting if it exposes a
5042 register from the call_used_regs that is not used in this function. */
5043 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
5044 return;
5046 node = cgraph_node::rtl_info (current_function_decl);
5047 gcc_assert (node != NULL);
5049 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
5050 node->function_used_regs_valid = 1;
5053 /* Get the declaration of the function called by INSN. */
5055 static tree
5056 get_call_fndecl (rtx_insn *insn)
5058 rtx note, datum;
5060 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
5061 if (note == NULL_RTX)
5062 return NULL_TREE;
5064 datum = XEXP (note, 0);
5065 if (datum != NULL_RTX)
5066 return SYMBOL_REF_DECL (datum);
5068 return NULL_TREE;
5071 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
5072 call targets that can be overwritten. */
5074 static struct cgraph_rtl_info *
5075 get_call_cgraph_rtl_info (rtx_insn *insn)
5077 tree fndecl;
5079 if (insn == NULL_RTX)
5080 return NULL;
5082 fndecl = get_call_fndecl (insn);
5083 if (fndecl == NULL_TREE
5084 || !decl_binds_to_current_def_p (fndecl))
5085 return NULL;
5087 return cgraph_node::rtl_info (fndecl);
5090 /* Find hard registers used by function call instruction INSN, and return them
5091 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
5093 bool
5094 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
5095 HARD_REG_SET default_set)
5097 if (flag_ipa_ra)
5099 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
5100 if (node != NULL
5101 && node->function_used_regs_valid)
5103 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
5104 AND_HARD_REG_SET (*reg_set, default_set);
5105 return true;
5109 COPY_HARD_REG_SET (*reg_set, default_set);
5110 return false;