1 /* Predictive commoning.
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
31 Let us demonstrate what is done on an example:
33 for (i = 0; i < 100; i++)
35 a[i+2] = a[i] + a[i+1];
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
67 In our example, we get the following chains (the chain for c is invalid).
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
93 e[i] + f[i+1] + e[i+1] + f[i]
95 can be reassociated as
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
99 and we can combine the chains for e and f into one chain.
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 up to RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
140 In our case, F = 2 and the (main loop of the) result is
142 for (i = 0; i < ...; i += 2)
159 Apart from predictive commoning on Load-Load and Store-Load chains, we
160 also support Store-Store chains -- stores killed by other store can be
161 eliminated. Given below example:
163 for (i = 0; i < n; i++)
169 It can be replaced with:
173 for (i = 0; i < n; i++)
183 If the loop runs more than 1 iterations, it can be further simplified into:
185 for (i = 0; i < n; i++)
192 The interesting part is this can be viewed either as general store motion
193 or general dead store elimination in either intra/inter-iterations way.
195 TODO: For now, we don't support store-store chains in multi-exit loops. We
196 force to not unroll in case of store-store chain even if other chains might
199 Predictive commoning can be generalized for arbitrary computations (not
200 just memory loads), and also nontrivial transfer functions (e.g., replacing
201 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
205 #include "coretypes.h"
211 #include "tree-pass.h"
213 #include "gimple-pretty-print.h"
215 #include "fold-const.h"
218 #include "gimplify.h"
219 #include "gimple-iterator.h"
220 #include "gimplify-me.h"
221 #include "tree-ssa-loop-ivopts.h"
222 #include "tree-ssa-loop-manip.h"
223 #include "tree-ssa-loop-niter.h"
224 #include "tree-ssa-loop.h"
225 #include "tree-into-ssa.h"
226 #include "tree-dfa.h"
227 #include "tree-ssa.h"
228 #include "tree-data-ref.h"
229 #include "tree-scalar-evolution.h"
231 #include "tree-affine.h"
232 #include "builtins.h"
234 /* The maximum number of iterations between the considered memory
237 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
239 /* Data references (or phi nodes that carry data reference values across
242 typedef struct dref_d
244 /* The reference itself. */
245 struct data_reference
*ref
;
247 /* The statement in that the reference appears. */
250 /* In case that STMT is a phi node, this field is set to the SSA name
251 defined by it in replace_phis_by_defined_names (in order to avoid
252 pointing to phi node that got reallocated in the meantime). */
253 tree name_defined_by_phi
;
255 /* Distance of the reference from the root of the chain (in number of
256 iterations of the loop). */
259 /* Number of iterations offset from the first reference in the component. */
262 /* Number of the reference in a component, in dominance ordering. */
265 /* True if the memory reference is always accessed when the loop is
267 unsigned always_accessed
: 1;
271 /* Type of the chain of the references. */
275 /* The addresses of the references in the chain are constant. */
278 /* There are only loads in the chain. */
281 /* Root of the chain is store, the rest are loads. */
284 /* There are only stores in the chain. */
287 /* A combination of two chains. */
291 /* Chains of data references. */
295 /* Type of the chain. */
296 enum chain_type type
;
298 /* For combination chains, the operator and the two chains that are
299 combined, and the type of the result. */
302 struct chain
*ch1
, *ch2
;
304 /* The references in the chain. */
307 /* The maximum distance of the reference in the chain from the root. */
310 /* The variables used to copy the value throughout iterations. */
313 /* Initializers for the variables. */
316 /* Finalizers for the eliminated stores. */
319 /* gimple stmts intializing the initial variables of the chain. */
322 /* gimple stmts finalizing the eliminated stores of the chain. */
325 /* True if there is a use of a variable with the maximal distance
326 that comes after the root in the loop. */
327 unsigned has_max_use_after
: 1;
329 /* True if all the memory references in the chain are always accessed. */
330 unsigned all_always_accessed
: 1;
332 /* True if this chain was combined together with some other chain. */
333 unsigned combined
: 1;
335 /* True if this is store elimination chain and eliminated stores store
336 loop invariant value into memory. */
337 unsigned inv_store_elimination
: 1;
341 /* Describes the knowledge about the step of the memory references in
346 /* The step is zero. */
349 /* The step is nonzero. */
352 /* The step may or may not be nonzero. */
356 /* Components of the data dependence graph. */
360 /* The references in the component. */
363 /* What we know about the step of the references in the component. */
364 enum ref_step_type comp_step
;
366 /* True if all references in component are stores and we try to do
367 intra/inter loop iteration dead store elimination. */
368 bool eliminate_store_p
;
370 /* Next component in the list. */
371 struct component
*next
;
374 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
376 static bitmap looparound_phis
;
378 /* Cache used by tree_to_aff_combination_expand. */
380 static hash_map
<tree
, name_expansion
*> *name_expansions
;
382 /* Dumps data reference REF to FILE. */
384 extern void dump_dref (FILE *, dref
);
386 dump_dref (FILE *file
, dref ref
)
391 print_generic_expr (file
, DR_REF (ref
->ref
), TDF_SLIM
);
392 fprintf (file
, " (id %u%s)\n", ref
->pos
,
393 DR_IS_READ (ref
->ref
) ? "" : ", write");
395 fprintf (file
, " offset ");
396 print_decs (ref
->offset
, file
);
397 fprintf (file
, "\n");
399 fprintf (file
, " distance %u\n", ref
->distance
);
403 if (gimple_code (ref
->stmt
) == GIMPLE_PHI
)
404 fprintf (file
, " looparound ref\n");
406 fprintf (file
, " combination ref\n");
407 fprintf (file
, " in statement ");
408 print_gimple_stmt (file
, ref
->stmt
, 0, TDF_SLIM
);
409 fprintf (file
, "\n");
410 fprintf (file
, " distance %u\n", ref
->distance
);
415 /* Dumps CHAIN to FILE. */
417 extern void dump_chain (FILE *, chain_p
);
419 dump_chain (FILE *file
, chain_p chain
)
422 const char *chain_type
;
429 chain_type
= "Load motion";
433 chain_type
= "Loads-only";
437 chain_type
= "Store-loads";
441 chain_type
= "Store-stores";
445 chain_type
= "Combination";
452 fprintf (file
, "%s chain %p%s\n", chain_type
, (void *) chain
,
453 chain
->combined
? " (combined)" : "");
454 if (chain
->type
!= CT_INVARIANT
)
455 fprintf (file
, " max distance %u%s\n", chain
->length
,
456 chain
->has_max_use_after
? "" : ", may reuse first");
458 if (chain
->type
== CT_COMBINATION
)
460 fprintf (file
, " equal to %p %s %p in type ",
461 (void *) chain
->ch1
, op_symbol_code (chain
->op
),
462 (void *) chain
->ch2
);
463 print_generic_expr (file
, chain
->rslt_type
, TDF_SLIM
);
464 fprintf (file
, "\n");
467 if (chain
->vars
.exists ())
469 fprintf (file
, " vars");
470 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
473 print_generic_expr (file
, var
, TDF_SLIM
);
475 fprintf (file
, "\n");
478 if (chain
->inits
.exists ())
480 fprintf (file
, " inits");
481 FOR_EACH_VEC_ELT (chain
->inits
, i
, var
)
484 print_generic_expr (file
, var
, TDF_SLIM
);
486 fprintf (file
, "\n");
489 fprintf (file
, " references:\n");
490 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
493 fprintf (file
, "\n");
496 /* Dumps CHAINS to FILE. */
498 extern void dump_chains (FILE *, vec
<chain_p
> );
500 dump_chains (FILE *file
, vec
<chain_p
> chains
)
505 FOR_EACH_VEC_ELT (chains
, i
, chain
)
506 dump_chain (file
, chain
);
509 /* Dumps COMP to FILE. */
511 extern void dump_component (FILE *, struct component
*);
513 dump_component (FILE *file
, struct component
*comp
)
518 fprintf (file
, "Component%s:\n",
519 comp
->comp_step
== RS_INVARIANT
? " (invariant)" : "");
520 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
522 fprintf (file
, "\n");
525 /* Dumps COMPS to FILE. */
527 extern void dump_components (FILE *, struct component
*);
529 dump_components (FILE *file
, struct component
*comps
)
531 struct component
*comp
;
533 for (comp
= comps
; comp
; comp
= comp
->next
)
534 dump_component (file
, comp
);
537 /* Frees a chain CHAIN. */
540 release_chain (chain_p chain
)
548 FOR_EACH_VEC_ELT (chain
->refs
, i
, ref
)
551 chain
->refs
.release ();
552 chain
->vars
.release ();
553 chain
->inits
.release ();
555 gimple_seq_discard (chain
->init_seq
);
557 chain
->finis
.release ();
559 gimple_seq_discard (chain
->fini_seq
);
567 release_chains (vec
<chain_p
> chains
)
572 FOR_EACH_VEC_ELT (chains
, i
, chain
)
573 release_chain (chain
);
577 /* Frees a component COMP. */
580 release_component (struct component
*comp
)
582 comp
->refs
.release ();
586 /* Frees list of components COMPS. */
589 release_components (struct component
*comps
)
591 struct component
*act
, *next
;
593 for (act
= comps
; act
; act
= next
)
596 release_component (act
);
600 /* Finds a root of tree given by FATHERS containing A, and performs path
604 component_of (unsigned fathers
[], unsigned a
)
608 for (root
= a
; root
!= fathers
[root
]; root
= fathers
[root
])
611 for (; a
!= root
; a
= n
)
620 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
621 components, A and B are components to merge. */
624 merge_comps (unsigned fathers
[], unsigned sizes
[], unsigned a
, unsigned b
)
626 unsigned ca
= component_of (fathers
, a
);
627 unsigned cb
= component_of (fathers
, b
);
632 if (sizes
[ca
] < sizes
[cb
])
634 sizes
[cb
] += sizes
[ca
];
639 sizes
[ca
] += sizes
[cb
];
644 /* Returns true if A is a reference that is suitable for predictive commoning
645 in the innermost loop that contains it. REF_STEP is set according to the
646 step of the reference A. */
649 suitable_reference_p (struct data_reference
*a
, enum ref_step_type
*ref_step
)
651 tree ref
= DR_REF (a
), step
= DR_STEP (a
);
654 || TREE_THIS_VOLATILE (ref
)
655 || !is_gimple_reg_type (TREE_TYPE (ref
))
656 || tree_could_throw_p (ref
))
659 if (integer_zerop (step
))
660 *ref_step
= RS_INVARIANT
;
661 else if (integer_nonzerop (step
))
662 *ref_step
= RS_NONZERO
;
669 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
672 aff_combination_dr_offset (struct data_reference
*dr
, aff_tree
*offset
)
674 tree type
= TREE_TYPE (DR_OFFSET (dr
));
677 tree_to_aff_combination_expand (DR_OFFSET (dr
), type
, offset
,
679 aff_combination_const (&delta
, type
, wi::to_widest (DR_INIT (dr
)));
680 aff_combination_add (offset
, &delta
);
683 /* Determines number of iterations of the innermost enclosing loop before B
684 refers to exactly the same location as A and stores it to OFF. If A and
685 B do not have the same step, they never meet, or anything else fails,
686 returns false, otherwise returns true. Both A and B are assumed to
687 satisfy suitable_reference_p. */
690 determine_offset (struct data_reference
*a
, struct data_reference
*b
,
693 aff_tree diff
, baseb
, step
;
696 /* Check that both the references access the location in the same type. */
697 typea
= TREE_TYPE (DR_REF (a
));
698 typeb
= TREE_TYPE (DR_REF (b
));
699 if (!useless_type_conversion_p (typeb
, typea
))
702 /* Check whether the base address and the step of both references is the
704 if (!operand_equal_p (DR_STEP (a
), DR_STEP (b
), 0)
705 || !operand_equal_p (DR_BASE_ADDRESS (a
), DR_BASE_ADDRESS (b
), 0))
708 if (integer_zerop (DR_STEP (a
)))
710 /* If the references have loop invariant address, check that they access
711 exactly the same location. */
713 return (operand_equal_p (DR_OFFSET (a
), DR_OFFSET (b
), 0)
714 && operand_equal_p (DR_INIT (a
), DR_INIT (b
), 0));
717 /* Compare the offsets of the addresses, and check whether the difference
718 is a multiple of step. */
719 aff_combination_dr_offset (a
, &diff
);
720 aff_combination_dr_offset (b
, &baseb
);
721 aff_combination_scale (&baseb
, -1);
722 aff_combination_add (&diff
, &baseb
);
724 tree_to_aff_combination_expand (DR_STEP (a
), TREE_TYPE (DR_STEP (a
)),
725 &step
, &name_expansions
);
726 return aff_combination_constant_multiple_p (&diff
, &step
, off
);
729 /* Returns the last basic block in LOOP for that we are sure that
730 it is executed whenever the loop is entered. */
733 last_always_executed_block (struct loop
*loop
)
736 vec
<edge
> exits
= get_loop_exit_edges (loop
);
738 basic_block last
= loop
->latch
;
740 FOR_EACH_VEC_ELT (exits
, i
, ex
)
741 last
= nearest_common_dominator (CDI_DOMINATORS
, last
, ex
->src
);
747 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
749 static struct component
*
750 split_data_refs_to_components (struct loop
*loop
,
751 vec
<data_reference_p
> datarefs
,
754 unsigned i
, n
= datarefs
.length ();
755 unsigned ca
, ia
, ib
, bad
;
756 unsigned *comp_father
= XNEWVEC (unsigned, n
+ 1);
757 unsigned *comp_size
= XNEWVEC (unsigned, n
+ 1);
758 struct component
**comps
;
759 struct data_reference
*dr
, *dra
, *drb
;
760 struct data_dependence_relation
*ddr
;
761 struct component
*comp_list
= NULL
, *comp
;
763 /* Don't do store elimination if loop has multiple exit edges. */
764 bool eliminate_store_p
= single_exit (loop
) != NULL
;
765 basic_block last_always_executed
= last_always_executed_block (loop
);
767 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
771 /* A fake reference for call or asm_expr that may clobber memory;
775 /* predcom pass isn't prepared to handle calls with data references. */
776 if (is_gimple_call (DR_STMT (dr
)))
778 dr
->aux
= (void *) (size_t) i
;
783 /* A component reserved for the "bad" data references. */
787 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
789 enum ref_step_type dummy
;
791 if (!suitable_reference_p (dr
, &dummy
))
793 ia
= (unsigned) (size_t) dr
->aux
;
794 merge_comps (comp_father
, comp_size
, n
, ia
);
798 FOR_EACH_VEC_ELT (depends
, i
, ddr
)
800 widest_int dummy_off
;
802 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
808 /* Don't do store elimination if there is any unknown dependence for
809 any store data reference. */
810 if ((DR_IS_WRITE (dra
) || DR_IS_WRITE (drb
))
811 && (DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
812 || DDR_NUM_DIST_VECTS (ddr
) == 0))
813 eliminate_store_p
= false;
815 ia
= component_of (comp_father
, (unsigned) (size_t) dra
->aux
);
816 ib
= component_of (comp_father
, (unsigned) (size_t) drb
->aux
);
820 bad
= component_of (comp_father
, n
);
822 /* If both A and B are reads, we may ignore unsuitable dependences. */
823 if (DR_IS_READ (dra
) && DR_IS_READ (drb
))
825 if (ia
== bad
|| ib
== bad
826 || !determine_offset (dra
, drb
, &dummy_off
))
829 /* If A is read and B write or vice versa and there is unsuitable
830 dependence, instead of merging both components into a component
831 that will certainly not pass suitable_component_p, just put the
832 read into bad component, perhaps at least the write together with
833 all the other data refs in it's component will be optimizable. */
834 else if (DR_IS_READ (dra
) && ib
!= bad
)
838 else if (!determine_offset (dra
, drb
, &dummy_off
))
840 merge_comps (comp_father
, comp_size
, bad
, ia
);
844 else if (DR_IS_READ (drb
) && ia
!= bad
)
848 else if (!determine_offset (dra
, drb
, &dummy_off
))
850 merge_comps (comp_father
, comp_size
, bad
, ib
);
854 else if (DR_IS_WRITE (dra
) && DR_IS_WRITE (drb
)
855 && ia
!= bad
&& ib
!= bad
856 && !determine_offset (dra
, drb
, &dummy_off
))
858 merge_comps (comp_father
, comp_size
, bad
, ia
);
859 merge_comps (comp_father
, comp_size
, bad
, ib
);
863 merge_comps (comp_father
, comp_size
, ia
, ib
);
866 if (eliminate_store_p
)
868 tree niters
= number_of_latch_executions (loop
);
870 /* Don't do store elimination if niters info is unknown because stores
871 in the last iteration can't be eliminated and we need to recover it
873 eliminate_store_p
= (niters
!= NULL_TREE
&& niters
!= chrec_dont_know
);
876 comps
= XCNEWVEC (struct component
*, n
);
877 bad
= component_of (comp_father
, n
);
878 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
880 ia
= (unsigned) (size_t) dr
->aux
;
881 ca
= component_of (comp_father
, ia
);
888 comp
= XCNEW (struct component
);
889 comp
->refs
.create (comp_size
[ca
]);
890 comp
->eliminate_store_p
= eliminate_store_p
;
894 dataref
= XCNEW (struct dref_d
);
896 dataref
->stmt
= DR_STMT (dr
);
898 dataref
->distance
= 0;
900 dataref
->always_accessed
901 = dominated_by_p (CDI_DOMINATORS
, last_always_executed
,
902 gimple_bb (dataref
->stmt
));
903 dataref
->pos
= comp
->refs
.length ();
904 comp
->refs
.quick_push (dataref
);
906 comp
->eliminate_store_p
= false;
909 for (i
= 0; i
< n
; i
++)
914 comp
->next
= comp_list
;
926 /* Returns true if the component COMP satisfies the conditions
927 described in 2) at the beginning of this file. LOOP is the current
931 suitable_component_p (struct loop
*loop
, struct component
*comp
)
935 basic_block ba
, bp
= loop
->header
;
936 bool ok
, has_write
= false;
938 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
940 ba
= gimple_bb (a
->stmt
);
942 if (!just_once_each_iteration_p (loop
, ba
))
945 gcc_assert (dominated_by_p (CDI_DOMINATORS
, ba
, bp
));
948 if (DR_IS_WRITE (a
->ref
))
952 first
= comp
->refs
[0];
953 ok
= suitable_reference_p (first
->ref
, &comp
->comp_step
);
957 for (i
= 1; comp
->refs
.iterate (i
, &a
); i
++)
959 if (!determine_offset (first
->ref
, a
->ref
, &a
->offset
))
962 enum ref_step_type a_step
;
963 gcc_checking_assert (suitable_reference_p (a
->ref
, &a_step
)
964 && a_step
== comp
->comp_step
);
967 /* If there is a write inside the component, we must know whether the
968 step is nonzero or not -- we would not otherwise be able to recognize
969 whether the value accessed by reads comes from the OFFSET-th iteration
970 or the previous one. */
971 if (has_write
&& comp
->comp_step
== RS_ANY
)
977 /* Check the conditions on references inside each of components COMPS,
978 and remove the unsuitable components from the list. The new list
979 of components is returned. The conditions are described in 2) at
980 the beginning of this file. LOOP is the current loop. */
982 static struct component
*
983 filter_suitable_components (struct loop
*loop
, struct component
*comps
)
985 struct component
**comp
, *act
;
987 for (comp
= &comps
; *comp
; )
990 if (suitable_component_p (loop
, act
))
998 FOR_EACH_VEC_ELT (act
->refs
, i
, ref
)
1000 release_component (act
);
1007 /* Compares two drefs A and B by their offset and position. Callback for
1011 order_drefs (const void *a
, const void *b
)
1013 const dref
*const da
= (const dref
*) a
;
1014 const dref
*const db
= (const dref
*) b
;
1015 int offcmp
= wi::cmps ((*da
)->offset
, (*db
)->offset
);
1020 return (*da
)->pos
- (*db
)->pos
;
1023 /* Returns root of the CHAIN. */
1026 get_chain_root (chain_p chain
)
1028 return chain
->refs
[0];
1031 /* Given CHAIN, returns the last ref at DISTANCE, or NULL if it doesn't
1035 get_chain_last_ref_at (chain_p chain
, unsigned distance
)
1039 for (i
= chain
->refs
.length (); i
> 0; i
--)
1040 if (distance
== chain
->refs
[i
- 1]->distance
)
1043 return (i
> 0) ? chain
->refs
[i
- 1] : NULL
;
1046 /* Adds REF to the chain CHAIN. */
1049 add_ref_to_chain (chain_p chain
, dref ref
)
1051 dref root
= get_chain_root (chain
);
1053 gcc_assert (wi::les_p (root
->offset
, ref
->offset
));
1054 widest_int dist
= ref
->offset
- root
->offset
;
1055 if (wi::leu_p (MAX_DISTANCE
, dist
))
1060 gcc_assert (wi::fits_uhwi_p (dist
));
1062 chain
->refs
.safe_push (ref
);
1064 ref
->distance
= dist
.to_uhwi ();
1066 if (ref
->distance
>= chain
->length
)
1068 chain
->length
= ref
->distance
;
1069 chain
->has_max_use_after
= false;
1072 /* Don't set the flag for store-store chain since there is no use. */
1073 if (chain
->type
!= CT_STORE_STORE
1074 && ref
->distance
== chain
->length
1075 && ref
->pos
> root
->pos
)
1076 chain
->has_max_use_after
= true;
1078 chain
->all_always_accessed
&= ref
->always_accessed
;
1081 /* Returns the chain for invariant component COMP. */
1084 make_invariant_chain (struct component
*comp
)
1086 chain_p chain
= XCNEW (struct chain
);
1090 chain
->type
= CT_INVARIANT
;
1092 chain
->all_always_accessed
= true;
1094 FOR_EACH_VEC_ELT (comp
->refs
, i
, ref
)
1096 chain
->refs
.safe_push (ref
);
1097 chain
->all_always_accessed
&= ref
->always_accessed
;
1100 chain
->inits
= vNULL
;
1101 chain
->finis
= vNULL
;
1106 /* Make a new chain of type TYPE rooted at REF. */
1109 make_rooted_chain (dref ref
, enum chain_type type
)
1111 chain_p chain
= XCNEW (struct chain
);
1114 chain
->refs
.safe_push (ref
);
1115 chain
->all_always_accessed
= ref
->always_accessed
;
1118 chain
->inits
= vNULL
;
1119 chain
->finis
= vNULL
;
1124 /* Returns true if CHAIN is not trivial. */
1127 nontrivial_chain_p (chain_p chain
)
1129 return chain
!= NULL
&& chain
->refs
.length () > 1;
1132 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1136 name_for_ref (dref ref
)
1140 if (is_gimple_assign (ref
->stmt
))
1142 if (!ref
->ref
|| DR_IS_READ (ref
->ref
))
1143 name
= gimple_assign_lhs (ref
->stmt
);
1145 name
= gimple_assign_rhs1 (ref
->stmt
);
1148 name
= PHI_RESULT (ref
->stmt
);
1150 return (TREE_CODE (name
) == SSA_NAME
? name
: NULL_TREE
);
1153 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1154 iterations of the innermost enclosing loop). */
1157 valid_initializer_p (struct data_reference
*ref
,
1158 unsigned distance
, struct data_reference
*root
)
1160 aff_tree diff
, base
, step
;
1163 /* Both REF and ROOT must be accessing the same object. */
1164 if (!operand_equal_p (DR_BASE_ADDRESS (ref
), DR_BASE_ADDRESS (root
), 0))
1167 /* The initializer is defined outside of loop, hence its address must be
1168 invariant inside the loop. */
1169 gcc_assert (integer_zerop (DR_STEP (ref
)));
1171 /* If the address of the reference is invariant, initializer must access
1172 exactly the same location. */
1173 if (integer_zerop (DR_STEP (root
)))
1174 return (operand_equal_p (DR_OFFSET (ref
), DR_OFFSET (root
), 0)
1175 && operand_equal_p (DR_INIT (ref
), DR_INIT (root
), 0));
1177 /* Verify that this index of REF is equal to the root's index at
1178 -DISTANCE-th iteration. */
1179 aff_combination_dr_offset (root
, &diff
);
1180 aff_combination_dr_offset (ref
, &base
);
1181 aff_combination_scale (&base
, -1);
1182 aff_combination_add (&diff
, &base
);
1184 tree_to_aff_combination_expand (DR_STEP (root
), TREE_TYPE (DR_STEP (root
)),
1185 &step
, &name_expansions
);
1186 if (!aff_combination_constant_multiple_p (&diff
, &step
, &off
))
1189 if (off
!= distance
)
1195 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1196 initial value is correct (equal to initial value of REF shifted by one
1197 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1198 is the root of the current chain. */
1201 find_looparound_phi (struct loop
*loop
, dref ref
, dref root
)
1203 tree name
, init
, init_ref
;
1206 edge latch
= loop_latch_edge (loop
);
1207 struct data_reference init_dr
;
1210 if (is_gimple_assign (ref
->stmt
))
1212 if (DR_IS_READ (ref
->ref
))
1213 name
= gimple_assign_lhs (ref
->stmt
);
1215 name
= gimple_assign_rhs1 (ref
->stmt
);
1218 name
= PHI_RESULT (ref
->stmt
);
1222 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1225 if (PHI_ARG_DEF_FROM_EDGE (phi
, latch
) == name
)
1229 if (gsi_end_p (psi
))
1232 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1233 if (TREE_CODE (init
) != SSA_NAME
)
1235 init_stmt
= SSA_NAME_DEF_STMT (init
);
1236 if (gimple_code (init_stmt
) != GIMPLE_ASSIGN
)
1238 gcc_assert (gimple_assign_lhs (init_stmt
) == init
);
1240 init_ref
= gimple_assign_rhs1 (init_stmt
);
1241 if (!REFERENCE_CLASS_P (init_ref
)
1242 && !DECL_P (init_ref
))
1245 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1246 loop enclosing PHI). */
1247 memset (&init_dr
, 0, sizeof (struct data_reference
));
1248 DR_REF (&init_dr
) = init_ref
;
1249 DR_STMT (&init_dr
) = phi
;
1250 if (!dr_analyze_innermost (&DR_INNERMOST (&init_dr
), init_ref
, loop
))
1253 if (!valid_initializer_p (&init_dr
, ref
->distance
+ 1, root
->ref
))
1259 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1262 insert_looparound_copy (chain_p chain
, dref ref
, gphi
*phi
)
1264 dref nw
= XCNEW (struct dref_d
), aref
;
1268 nw
->distance
= ref
->distance
+ 1;
1269 nw
->always_accessed
= 1;
1271 FOR_EACH_VEC_ELT (chain
->refs
, i
, aref
)
1272 if (aref
->distance
>= nw
->distance
)
1274 chain
->refs
.safe_insert (i
, nw
);
1276 if (nw
->distance
> chain
->length
)
1278 chain
->length
= nw
->distance
;
1279 chain
->has_max_use_after
= false;
1283 /* For references in CHAIN that are copied around the LOOP (created previously
1284 by PRE, or by user), add the results of such copies to the chain. This
1285 enables us to remove the copies by unrolling, and may need less registers
1286 (also, it may allow us to combine chains together). */
1289 add_looparound_copies (struct loop
*loop
, chain_p chain
)
1292 dref ref
, root
= get_chain_root (chain
);
1295 if (chain
->type
== CT_STORE_STORE
)
1298 FOR_EACH_VEC_ELT (chain
->refs
, i
, ref
)
1300 phi
= find_looparound_phi (loop
, ref
, root
);
1304 bitmap_set_bit (looparound_phis
, SSA_NAME_VERSION (PHI_RESULT (phi
)));
1305 insert_looparound_copy (chain
, ref
, phi
);
1309 /* Find roots of the values and determine distances in the component COMP.
1310 The references are redistributed into CHAINS. LOOP is the current
1314 determine_roots_comp (struct loop
*loop
,
1315 struct component
*comp
,
1316 vec
<chain_p
> *chains
)
1320 chain_p chain
= NULL
;
1321 widest_int last_ofs
= 0;
1322 enum chain_type type
;
1324 /* Invariants are handled specially. */
1325 if (comp
->comp_step
== RS_INVARIANT
)
1327 chain
= make_invariant_chain (comp
);
1328 chains
->safe_push (chain
);
1332 /* Trivial component. */
1333 if (comp
->refs
.length () <= 1)
1336 comp
->refs
.qsort (order_drefs
);
1337 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
1340 || (!comp
->eliminate_store_p
&& DR_IS_WRITE (a
->ref
))
1341 || wi::leu_p (MAX_DISTANCE
, a
->offset
- last_ofs
))
1343 if (nontrivial_chain_p (chain
))
1345 add_looparound_copies (loop
, chain
);
1346 chains
->safe_push (chain
);
1349 release_chain (chain
);
1351 if (DR_IS_READ (a
->ref
))
1354 type
= comp
->eliminate_store_p
? CT_STORE_STORE
: CT_STORE_LOAD
;
1356 chain
= make_rooted_chain (a
, type
);
1357 last_ofs
= a
->offset
;
1361 add_ref_to_chain (chain
, a
);
1364 if (nontrivial_chain_p (chain
))
1366 add_looparound_copies (loop
, chain
);
1367 chains
->safe_push (chain
);
1370 release_chain (chain
);
1373 /* Find roots of the values and determine distances in components COMPS, and
1374 separates the references to CHAINS. LOOP is the current loop. */
1377 determine_roots (struct loop
*loop
,
1378 struct component
*comps
, vec
<chain_p
> *chains
)
1380 struct component
*comp
;
1382 for (comp
= comps
; comp
; comp
= comp
->next
)
1383 determine_roots_comp (loop
, comp
, chains
);
1386 /* Replace the reference in statement STMT with temporary variable
1387 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1388 the reference in the statement. IN_LHS is true if the reference
1389 is in the lhs of STMT, false if it is in rhs. */
1392 replace_ref_with (gimple
*stmt
, tree new_tree
, bool set
, bool in_lhs
)
1396 gimple_stmt_iterator bsi
, psi
;
1398 if (gimple_code (stmt
) == GIMPLE_PHI
)
1400 gcc_assert (!in_lhs
&& !set
);
1402 val
= PHI_RESULT (stmt
);
1403 bsi
= gsi_after_labels (gimple_bb (stmt
));
1404 psi
= gsi_for_stmt (stmt
);
1405 remove_phi_node (&psi
, false);
1407 /* Turn the phi node into GIMPLE_ASSIGN. */
1408 new_stmt
= gimple_build_assign (val
, new_tree
);
1409 gsi_insert_before (&bsi
, new_stmt
, GSI_NEW_STMT
);
1413 /* Since the reference is of gimple_reg type, it should only
1414 appear as lhs or rhs of modify statement. */
1415 gcc_assert (is_gimple_assign (stmt
));
1417 bsi
= gsi_for_stmt (stmt
);
1419 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1422 gcc_assert (!in_lhs
);
1423 gimple_assign_set_rhs_from_tree (&bsi
, new_tree
);
1424 stmt
= gsi_stmt (bsi
);
1431 /* We have statement
1435 If OLD is a memory reference, then VAL is gimple_val, and we transform
1441 Otherwise, we are replacing a combination chain,
1442 VAL is the expression that performs the combination, and OLD is an
1443 SSA name. In this case, we transform the assignment to
1450 val
= gimple_assign_lhs (stmt
);
1451 if (TREE_CODE (val
) != SSA_NAME
)
1453 val
= gimple_assign_rhs1 (stmt
);
1454 gcc_assert (gimple_assign_single_p (stmt
));
1455 if (TREE_CLOBBER_P (val
))
1456 val
= get_or_create_ssa_default_def (cfun
, SSA_NAME_VAR (new_tree
));
1458 gcc_assert (gimple_assign_copy_p (stmt
));
1470 val
= gimple_assign_lhs (stmt
);
1473 new_stmt
= gimple_build_assign (new_tree
, unshare_expr (val
));
1474 gsi_insert_after (&bsi
, new_stmt
, GSI_NEW_STMT
);
1477 /* Returns a memory reference to DR in the (NITERS + ITER)-th iteration
1478 of the loop it was analyzed in. Append init stmts to STMTS. */
1481 ref_at_iteration (data_reference_p dr
, int iter
,
1482 gimple_seq
*stmts
, tree niters
= NULL_TREE
)
1484 tree off
= DR_OFFSET (dr
);
1485 tree coff
= DR_INIT (dr
);
1486 tree ref
= DR_REF (dr
);
1487 enum tree_code ref_code
= ERROR_MARK
;
1488 tree ref_type
= NULL_TREE
;
1489 tree ref_op1
= NULL_TREE
;
1490 tree ref_op2
= NULL_TREE
;
1495 new_offset
= size_binop (MULT_EXPR
, DR_STEP (dr
), ssize_int (iter
));
1496 if (TREE_CODE (new_offset
) == INTEGER_CST
)
1497 coff
= size_binop (PLUS_EXPR
, coff
, new_offset
);
1499 off
= size_binop (PLUS_EXPR
, off
, new_offset
);
1502 if (niters
!= NULL_TREE
)
1504 niters
= fold_convert (ssizetype
, niters
);
1505 new_offset
= size_binop (MULT_EXPR
, DR_STEP (dr
), niters
);
1506 if (TREE_CODE (niters
) == INTEGER_CST
)
1507 coff
= size_binop (PLUS_EXPR
, coff
, new_offset
);
1509 off
= size_binop (PLUS_EXPR
, off
, new_offset
);
1512 /* While data-ref analysis punts on bit offsets it still handles
1513 bitfield accesses at byte boundaries. Cope with that. Note that
1514 if the bitfield object also starts at a byte-boundary we can simply
1515 replicate the COMPONENT_REF, but we have to subtract the component's
1516 byte-offset from the MEM_REF address first.
1517 Otherwise we simply build a BIT_FIELD_REF knowing that the bits
1518 start at offset zero. */
1519 if (TREE_CODE (ref
) == COMPONENT_REF
1520 && DECL_BIT_FIELD (TREE_OPERAND (ref
, 1)))
1522 unsigned HOST_WIDE_INT boff
;
1523 tree field
= TREE_OPERAND (ref
, 1);
1524 tree offset
= component_ref_field_offset (ref
);
1525 ref_type
= TREE_TYPE (ref
);
1526 boff
= tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
));
1527 /* This can occur in Ada. See the comment in get_bit_range. */
1528 if (boff
% BITS_PER_UNIT
!= 0
1529 || !tree_fits_uhwi_p (offset
))
1531 ref_code
= BIT_FIELD_REF
;
1532 ref_op1
= DECL_SIZE (field
);
1533 ref_op2
= bitsize_zero_node
;
1537 boff
>>= LOG2_BITS_PER_UNIT
;
1538 boff
+= tree_to_uhwi (offset
);
1539 coff
= size_binop (MINUS_EXPR
, coff
, ssize_int (boff
));
1540 ref_code
= COMPONENT_REF
;
1542 ref_op2
= TREE_OPERAND (ref
, 2);
1543 ref
= TREE_OPERAND (ref
, 0);
1546 tree addr
= fold_build_pointer_plus (DR_BASE_ADDRESS (dr
), off
);
1547 addr
= force_gimple_operand_1 (unshare_expr (addr
), stmts
,
1548 is_gimple_mem_ref_addr
, NULL_TREE
);
1549 tree alias_ptr
= fold_convert (reference_alias_ptr_type (ref
), coff
);
1550 tree type
= build_aligned_type (TREE_TYPE (ref
),
1551 get_object_alignment (ref
));
1552 ref
= build2 (MEM_REF
, type
, addr
, alias_ptr
);
1554 ref
= build3 (ref_code
, ref_type
, ref
, ref_op1
, ref_op2
);
1558 /* Get the initialization expression for the INDEX-th temporary variable
1562 get_init_expr (chain_p chain
, unsigned index
)
1564 if (chain
->type
== CT_COMBINATION
)
1566 tree e1
= get_init_expr (chain
->ch1
, index
);
1567 tree e2
= get_init_expr (chain
->ch2
, index
);
1569 return fold_build2 (chain
->op
, chain
->rslt_type
, e1
, e2
);
1572 return chain
->inits
[index
];
1575 /* Returns a new temporary variable used for the I-th variable carrying
1576 value of REF. The variable's uid is marked in TMP_VARS. */
1579 predcom_tmp_var (tree ref
, unsigned i
, bitmap tmp_vars
)
1581 tree type
= TREE_TYPE (ref
);
1582 /* We never access the components of the temporary variable in predictive
1584 tree var
= create_tmp_reg (type
, get_lsm_tmp_name (ref
, i
));
1585 bitmap_set_bit (tmp_vars
, DECL_UID (var
));
1589 /* Creates the variables for CHAIN, as well as phi nodes for them and
1590 initialization on entry to LOOP. Uids of the newly created
1591 temporary variables are marked in TMP_VARS. */
1594 initialize_root_vars (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1597 unsigned n
= chain
->length
;
1598 dref root
= get_chain_root (chain
);
1599 bool reuse_first
= !chain
->has_max_use_after
;
1600 tree ref
, init
, var
, next
;
1603 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1605 /* If N == 0, then all the references are within the single iteration. And
1606 since this is an nonempty chain, reuse_first cannot be true. */
1607 gcc_assert (n
> 0 || !reuse_first
);
1609 chain
->vars
.create (n
+ 1);
1611 if (chain
->type
== CT_COMBINATION
)
1612 ref
= gimple_assign_lhs (root
->stmt
);
1614 ref
= DR_REF (root
->ref
);
1616 for (i
= 0; i
< n
+ (reuse_first
? 0 : 1); i
++)
1618 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
1619 chain
->vars
.quick_push (var
);
1622 chain
->vars
.quick_push (chain
->vars
[0]);
1624 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
1625 chain
->vars
[i
] = make_ssa_name (var
);
1627 for (i
= 0; i
< n
; i
++)
1629 var
= chain
->vars
[i
];
1630 next
= chain
->vars
[i
+ 1];
1631 init
= get_init_expr (chain
, i
);
1633 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
1635 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1637 phi
= create_phi_node (var
, loop
->header
);
1638 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1639 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1643 /* For inter-iteration store elimination CHAIN in LOOP, returns true if
1644 all stores to be eliminated store loop invariant values into memory.
1645 In this case, we can use these invariant values directly after LOOP. */
1648 is_inv_store_elimination_chain (struct loop
*loop
, chain_p chain
)
1650 if (chain
->length
== 0 || chain
->type
!= CT_STORE_STORE
)
1653 gcc_assert (!chain
->has_max_use_after
);
1655 /* If loop iterates for unknown times or fewer times than chain->lenght,
1656 we still need to setup root variable and propagate it with PHI node. */
1657 tree niters
= number_of_latch_executions (loop
);
1658 if (TREE_CODE (niters
) != INTEGER_CST
|| wi::leu_p (niters
, chain
->length
))
1661 /* Check stores in chain for elimination if they only store loop invariant
1663 for (unsigned i
= 0; i
< chain
->length
; i
++)
1665 dref a
= get_chain_last_ref_at (chain
, i
);
1669 gimple
*def_stmt
, *stmt
= a
->stmt
;
1670 if (!gimple_assign_single_p (stmt
))
1673 tree val
= gimple_assign_rhs1 (stmt
);
1674 if (TREE_CLOBBER_P (val
))
1677 if (CONSTANT_CLASS_P (val
))
1680 if (TREE_CODE (val
) != SSA_NAME
)
1683 def_stmt
= SSA_NAME_DEF_STMT (val
);
1684 if (gimple_nop_p (def_stmt
))
1687 if (flow_bb_inside_loop_p (loop
, gimple_bb (def_stmt
)))
1693 /* Creates root variables for store elimination CHAIN in which stores for
1694 elimination only store loop invariant values. In this case, we neither
1695 need to load root variables before loop nor propagate it with PHI nodes. */
1698 initialize_root_vars_store_elim_1 (chain_p chain
)
1701 unsigned i
, n
= chain
->length
;
1703 chain
->vars
.create (n
);
1704 chain
->vars
.safe_grow_cleared (n
);
1706 /* Initialize root value for eliminated stores at each distance. */
1707 for (i
= 0; i
< n
; i
++)
1709 dref a
= get_chain_last_ref_at (chain
, i
);
1713 var
= gimple_assign_rhs1 (a
->stmt
);
1714 chain
->vars
[a
->distance
] = var
;
1717 /* We don't propagate values with PHI nodes, so manually propagate value
1718 to bubble positions. */
1719 var
= chain
->vars
[0];
1720 for (i
= 1; i
< n
; i
++)
1722 if (chain
->vars
[i
] != NULL_TREE
)
1724 var
= chain
->vars
[i
];
1727 chain
->vars
[i
] = var
;
1730 /* Revert the vector. */
1731 for (i
= 0; i
< n
/ 2; i
++)
1732 std::swap (chain
->vars
[i
], chain
->vars
[n
- i
- 1]);
1735 /* Creates root variables for store elimination CHAIN in which stores for
1736 elimination store loop variant values. In this case, we may need to
1737 load root variables before LOOP and propagate it with PHI nodes. Uids
1738 of the newly created root variables are marked in TMP_VARS. */
1741 initialize_root_vars_store_elim_2 (struct loop
*loop
,
1742 chain_p chain
, bitmap tmp_vars
)
1744 unsigned i
, n
= chain
->length
;
1745 tree ref
, init
, var
, next
, val
, phi_result
;
1749 chain
->vars
.create (n
);
1751 ref
= DR_REF (get_chain_root (chain
)->ref
);
1752 for (i
= 0; i
< n
; i
++)
1754 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
1755 chain
->vars
.quick_push (var
);
1758 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
1759 chain
->vars
[i
] = make_ssa_name (var
);
1761 /* Root values are either rhs operand of stores to be eliminated, or
1762 loaded from memory before loop. */
1763 auto_vec
<tree
> vtemps
;
1764 vtemps
.safe_grow_cleared (n
);
1765 for (i
= 0; i
< n
; i
++)
1767 init
= get_init_expr (chain
, i
);
1768 if (init
== NULL_TREE
)
1770 /* Root value is rhs operand of the store to be eliminated if
1771 it isn't loaded from memory before loop. */
1772 dref a
= get_chain_last_ref_at (chain
, i
);
1773 val
= gimple_assign_rhs1 (a
->stmt
);
1774 if (TREE_CLOBBER_P (val
))
1775 val
= get_or_create_ssa_default_def (cfun
, SSA_NAME_VAR (var
));
1777 vtemps
[n
- i
- 1] = val
;
1781 edge latch
= loop_latch_edge (loop
);
1782 edge entry
= loop_preheader_edge (loop
);
1784 /* Root value is loaded from memory before loop, we also need
1785 to add PHI nodes to propagate the value across iterations. */
1786 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
1788 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1790 next
= chain
->vars
[n
- i
];
1791 phi_result
= copy_ssa_name (next
);
1792 gphi
*phi
= create_phi_node (phi_result
, loop
->header
);
1793 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1794 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1795 vtemps
[n
- i
- 1] = phi_result
;
1799 /* Find the insertion position. */
1800 dref last
= get_chain_root (chain
);
1801 for (i
= 0; i
< chain
->refs
.length (); i
++)
1803 if (chain
->refs
[i
]->pos
> last
->pos
)
1804 last
= chain
->refs
[i
];
1807 gimple_stmt_iterator gsi
= gsi_for_stmt (last
->stmt
);
1809 /* Insert statements copying root value to root variable. */
1810 for (i
= 0; i
< n
; i
++)
1812 var
= chain
->vars
[i
];
1814 stmt
= gimple_build_assign (var
, val
);
1815 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
1819 /* Generates stores for CHAIN's eliminated stores in LOOP's last
1820 (CHAIN->length - 1) iterations. */
1823 finalize_eliminated_stores (struct loop
*loop
, chain_p chain
)
1825 unsigned i
, n
= chain
->length
;
1827 for (i
= 0; i
< n
; i
++)
1829 tree var
= chain
->vars
[i
];
1830 tree fini
= chain
->finis
[n
- i
- 1];
1831 gimple
*stmt
= gimple_build_assign (fini
, var
);
1833 gimple_seq_add_stmt_without_update (&chain
->fini_seq
, stmt
);
1836 if (chain
->fini_seq
)
1838 gsi_insert_seq_on_edge_immediate (single_exit (loop
), chain
->fini_seq
);
1839 chain
->fini_seq
= NULL
;
1843 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1844 initialization on entry to LOOP if necessary. The ssa name for the variable
1845 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1846 around the loop is created. Uid of the newly created temporary variable
1847 is marked in TMP_VARS. INITS is the list containing the (single)
1851 initialize_root_vars_lm (struct loop
*loop
, dref root
, bool written
,
1852 vec
<tree
> *vars
, vec
<tree
> inits
,
1856 tree ref
= DR_REF (root
->ref
), init
, var
, next
;
1859 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1861 /* Find the initializer for the variable, and check that it cannot
1865 vars
->create (written
? 2 : 1);
1866 var
= predcom_tmp_var (ref
, 0, tmp_vars
);
1867 vars
->quick_push (var
);
1869 vars
->quick_push ((*vars
)[0]);
1871 FOR_EACH_VEC_ELT (*vars
, i
, var
)
1872 (*vars
)[i
] = make_ssa_name (var
);
1876 init
= force_gimple_operand (init
, &stmts
, written
, NULL_TREE
);
1878 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1883 phi
= create_phi_node (var
, loop
->header
);
1884 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1885 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1889 gassign
*init_stmt
= gimple_build_assign (var
, init
);
1890 gsi_insert_on_edge_immediate (entry
, init_stmt
);
1895 /* Execute load motion for references in chain CHAIN. Uids of the newly
1896 created temporary variables are marked in TMP_VARS. */
1899 execute_load_motion (struct loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1901 auto_vec
<tree
> vars
;
1903 unsigned n_writes
= 0, ridx
, i
;
1906 gcc_assert (chain
->type
== CT_INVARIANT
);
1907 gcc_assert (!chain
->combined
);
1908 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
1909 if (DR_IS_WRITE (a
->ref
))
1912 /* If there are no reads in the loop, there is nothing to do. */
1913 if (n_writes
== chain
->refs
.length ())
1916 initialize_root_vars_lm (loop
, get_chain_root (chain
), n_writes
> 0,
1917 &vars
, chain
->inits
, tmp_vars
);
1920 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
1922 bool is_read
= DR_IS_READ (a
->ref
);
1924 if (DR_IS_WRITE (a
->ref
))
1930 var
= make_ssa_name (SSA_NAME_VAR (var
));
1937 replace_ref_with (a
->stmt
, vars
[ridx
],
1938 !is_read
, !is_read
);
1942 /* Returns the single statement in that NAME is used, excepting
1943 the looparound phi nodes contained in one of the chains. If there is no
1944 such statement, or more statements, NULL is returned. */
1947 single_nonlooparound_use (tree name
)
1950 imm_use_iterator it
;
1951 gimple
*stmt
, *ret
= NULL
;
1953 FOR_EACH_IMM_USE_FAST (use
, it
, name
)
1955 stmt
= USE_STMT (use
);
1957 if (gimple_code (stmt
) == GIMPLE_PHI
)
1959 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1960 could not be processed anyway, so just fail for them. */
1961 if (bitmap_bit_p (looparound_phis
,
1962 SSA_NAME_VERSION (PHI_RESULT (stmt
))))
1967 else if (is_gimple_debug (stmt
))
1969 else if (ret
!= NULL
)
1978 /* Remove statement STMT, as well as the chain of assignments in that it is
1982 remove_stmt (gimple
*stmt
)
1986 gimple_stmt_iterator psi
;
1988 if (gimple_code (stmt
) == GIMPLE_PHI
)
1990 name
= PHI_RESULT (stmt
);
1991 next
= single_nonlooparound_use (name
);
1992 reset_debug_uses (stmt
);
1993 psi
= gsi_for_stmt (stmt
);
1994 remove_phi_node (&psi
, true);
1997 || !gimple_assign_ssa_name_copy_p (next
)
1998 || gimple_assign_rhs1 (next
) != name
)
2006 gimple_stmt_iterator bsi
;
2008 bsi
= gsi_for_stmt (stmt
);
2010 name
= gimple_assign_lhs (stmt
);
2011 if (TREE_CODE (name
) == SSA_NAME
)
2013 next
= single_nonlooparound_use (name
);
2014 reset_debug_uses (stmt
);
2018 /* This is a store to be eliminated. */
2019 gcc_assert (gimple_vdef (stmt
) != NULL
);
2023 unlink_stmt_vdef (stmt
);
2024 gsi_remove (&bsi
, true);
2025 release_defs (stmt
);
2028 || !gimple_assign_ssa_name_copy_p (next
)
2029 || gimple_assign_rhs1 (next
) != name
)
2036 /* Perform the predictive commoning optimization for a chain CHAIN.
2037 Uids of the newly created temporary variables are marked in TMP_VARS.*/
2040 execute_pred_commoning_chain (struct loop
*loop
, chain_p chain
,
2048 if (chain
->combined
)
2050 /* For combined chains, just remove the statements that are used to
2051 compute the values of the expression (except for the root one).
2052 We delay this until after all chains are processed. */
2054 else if (chain
->type
== CT_STORE_STORE
)
2056 if (chain
->length
> 0)
2058 if (chain
->inv_store_elimination
)
2060 /* If dead stores in this chain only store loop invariant
2061 values, we can simply record the invariant value and use
2062 it directly after loop. */
2063 initialize_root_vars_store_elim_1 (chain
);
2067 /* If dead stores in this chain store loop variant values,
2068 we need to set up the variables by loading from memory
2069 before loop and propagating it with PHI nodes. */
2070 initialize_root_vars_store_elim_2 (loop
, chain
, tmp_vars
);
2073 /* For inter-iteration store elimination chain, stores at each
2074 distance in loop's last (chain->length - 1) iterations can't
2075 be eliminated, because there is no following killing store.
2076 We need to generate these stores after loop. */
2077 finalize_eliminated_stores (loop
, chain
);
2080 /* Eliminate the stores killed by following store. */
2081 n
= chain
->refs
.length ();
2082 for (i
= 0; i
< n
- 1; i
++)
2083 remove_stmt (chain
->refs
[i
]->stmt
);
2087 /* For non-combined chains, set up the variables that hold its value. */
2088 initialize_root_vars (loop
, chain
, tmp_vars
);
2089 a
= get_chain_root (chain
);
2090 in_lhs
= (chain
->type
== CT_STORE_LOAD
2091 || chain
->type
== CT_COMBINATION
);
2092 replace_ref_with (a
->stmt
, chain
->vars
[chain
->length
], true, in_lhs
);
2094 /* Replace the uses of the original references by these variables. */
2095 for (i
= 1; chain
->refs
.iterate (i
, &a
); i
++)
2097 var
= chain
->vars
[chain
->length
- a
->distance
];
2098 replace_ref_with (a
->stmt
, var
, false, false);
2103 /* Determines the unroll factor necessary to remove as many temporary variable
2104 copies as possible. CHAINS is the list of chains that will be
2108 determine_unroll_factor (vec
<chain_p
> chains
)
2111 unsigned factor
= 1, af
, nfactor
, i
;
2112 unsigned max
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
2114 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2116 if (chain
->type
== CT_INVARIANT
)
2118 /* For now we can't handle unrolling when eliminating stores. */
2119 else if (chain
->type
== CT_STORE_STORE
)
2122 if (chain
->combined
)
2124 /* For combined chains, we can't handle unrolling if we replace
2128 for (j
= 1; chain
->refs
.iterate (j
, &a
); j
++)
2129 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
2134 /* The best unroll factor for this chain is equal to the number of
2135 temporary variables that we create for it. */
2137 if (chain
->has_max_use_after
)
2140 nfactor
= factor
* af
/ gcd (factor
, af
);
2148 /* Perform the predictive commoning optimization for CHAINS.
2149 Uids of the newly created temporary variables are marked in TMP_VARS. */
2152 execute_pred_commoning (struct loop
*loop
, vec
<chain_p
> chains
,
2158 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2160 if (chain
->type
== CT_INVARIANT
)
2161 execute_load_motion (loop
, chain
, tmp_vars
);
2163 execute_pred_commoning_chain (loop
, chain
, tmp_vars
);
2166 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2168 if (chain
->type
== CT_INVARIANT
)
2170 else if (chain
->combined
)
2172 /* For combined chains, just remove the statements that are used to
2173 compute the values of the expression (except for the root one). */
2176 for (j
= 1; chain
->refs
.iterate (j
, &a
); j
++)
2177 remove_stmt (a
->stmt
);
2181 update_ssa (TODO_update_ssa_only_virtuals
);
2184 /* For each reference in CHAINS, if its defining statement is
2185 phi node, record the ssa name that is defined by it. */
2188 replace_phis_by_defined_names (vec
<chain_p
> chains
)
2194 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2195 FOR_EACH_VEC_ELT (chain
->refs
, j
, a
)
2197 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
2199 a
->name_defined_by_phi
= PHI_RESULT (a
->stmt
);
2205 /* For each reference in CHAINS, if name_defined_by_phi is not
2206 NULL, use it to set the stmt field. */
2209 replace_names_by_phis (vec
<chain_p
> chains
)
2215 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2216 FOR_EACH_VEC_ELT (chain
->refs
, j
, a
)
2217 if (a
->stmt
== NULL
)
2219 a
->stmt
= SSA_NAME_DEF_STMT (a
->name_defined_by_phi
);
2220 gcc_assert (gimple_code (a
->stmt
) == GIMPLE_PHI
);
2221 a
->name_defined_by_phi
= NULL_TREE
;
2225 /* Wrapper over execute_pred_commoning, to pass it as a callback
2226 to tree_transform_and_unroll_loop. */
2230 vec
<chain_p
> chains
;
2235 execute_pred_commoning_cbck (struct loop
*loop
, void *data
)
2237 struct epcc_data
*const dta
= (struct epcc_data
*) data
;
2239 /* Restore phi nodes that were replaced by ssa names before
2240 tree_transform_and_unroll_loop (see detailed description in
2241 tree_predictive_commoning_loop). */
2242 replace_names_by_phis (dta
->chains
);
2243 execute_pred_commoning (loop
, dta
->chains
, dta
->tmp_vars
);
2246 /* Base NAME and all the names in the chain of phi nodes that use it
2247 on variable VAR. The phi nodes are recognized by being in the copies of
2248 the header of the LOOP. */
2251 base_names_in_chain_on (struct loop
*loop
, tree name
, tree var
)
2254 imm_use_iterator iter
;
2256 replace_ssa_name_symbol (name
, var
);
2261 FOR_EACH_IMM_USE_STMT (stmt
, iter
, name
)
2263 if (gimple_code (stmt
) == GIMPLE_PHI
2264 && flow_bb_inside_loop_p (loop
, gimple_bb (stmt
)))
2267 BREAK_FROM_IMM_USE_STMT (iter
);
2273 name
= PHI_RESULT (phi
);
2274 replace_ssa_name_symbol (name
, var
);
2278 /* Given an unrolled LOOP after predictive commoning, remove the
2279 register copies arising from phi nodes by changing the base
2280 variables of SSA names. TMP_VARS is the set of the temporary variables
2281 for those we want to perform this. */
2284 eliminate_temp_copies (struct loop
*loop
, bitmap tmp_vars
)
2289 tree name
, use
, var
;
2292 e
= loop_latch_edge (loop
);
2293 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
2296 name
= PHI_RESULT (phi
);
2297 var
= SSA_NAME_VAR (name
);
2298 if (!var
|| !bitmap_bit_p (tmp_vars
, DECL_UID (var
)))
2300 use
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
2301 gcc_assert (TREE_CODE (use
) == SSA_NAME
);
2303 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
2304 stmt
= SSA_NAME_DEF_STMT (use
);
2305 while (gimple_code (stmt
) == GIMPLE_PHI
2306 /* In case we could not unroll the loop enough to eliminate
2307 all copies, we may reach the loop header before the defining
2308 statement (in that case, some register copies will be present
2309 in loop latch in the final code, corresponding to the newly
2310 created looparound phi nodes). */
2311 && gimple_bb (stmt
) != loop
->header
)
2313 gcc_assert (single_pred_p (gimple_bb (stmt
)));
2314 use
= PHI_ARG_DEF (stmt
, 0);
2315 stmt
= SSA_NAME_DEF_STMT (use
);
2318 base_names_in_chain_on (loop
, use
, var
);
2322 /* Returns true if CHAIN is suitable to be combined. */
2325 chain_can_be_combined_p (chain_p chain
)
2327 return (!chain
->combined
2328 && (chain
->type
== CT_LOAD
|| chain
->type
== CT_COMBINATION
));
2331 /* Returns the modify statement that uses NAME. Skips over assignment
2332 statements, NAME is replaced with the actual name used in the returned
2336 find_use_stmt (tree
*name
)
2341 /* Skip over assignments. */
2344 stmt
= single_nonlooparound_use (*name
);
2348 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
2351 lhs
= gimple_assign_lhs (stmt
);
2352 if (TREE_CODE (lhs
) != SSA_NAME
)
2355 if (gimple_assign_copy_p (stmt
))
2357 rhs
= gimple_assign_rhs1 (stmt
);
2363 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
2364 == GIMPLE_BINARY_RHS
)
2371 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2374 may_reassociate_p (tree type
, enum tree_code code
)
2376 if (FLOAT_TYPE_P (type
)
2377 && !flag_unsafe_math_optimizations
)
2380 return (commutative_tree_code (code
)
2381 && associative_tree_code (code
));
2384 /* If the operation used in STMT is associative and commutative, go through the
2385 tree of the same operations and returns its root. Distance to the root
2386 is stored in DISTANCE. */
2389 find_associative_operation_root (gimple
*stmt
, unsigned *distance
)
2393 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2394 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2397 if (!may_reassociate_p (type
, code
))
2402 lhs
= gimple_assign_lhs (stmt
);
2403 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
2405 next
= find_use_stmt (&lhs
);
2407 || gimple_assign_rhs_code (next
) != code
)
2419 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2420 is no such statement, returns NULL_TREE. In case the operation used on
2421 NAME1 and NAME2 is associative and commutative, returns the root of the
2422 tree formed by this operation instead of the statement that uses NAME1 or
2426 find_common_use_stmt (tree
*name1
, tree
*name2
)
2428 gimple
*stmt1
, *stmt2
;
2430 stmt1
= find_use_stmt (name1
);
2434 stmt2
= find_use_stmt (name2
);
2441 stmt1
= find_associative_operation_root (stmt1
, NULL
);
2444 stmt2
= find_associative_operation_root (stmt2
, NULL
);
2448 return (stmt1
== stmt2
? stmt1
: NULL
);
2451 /* Checks whether R1 and R2 are combined together using CODE, with the result
2452 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2453 if it is true. If CODE is ERROR_MARK, set these values instead. */
2456 combinable_refs_p (dref r1
, dref r2
,
2457 enum tree_code
*code
, bool *swap
, tree
*rslt_type
)
2459 enum tree_code acode
;
2465 name1
= name_for_ref (r1
);
2466 name2
= name_for_ref (r2
);
2467 gcc_assert (name1
!= NULL_TREE
&& name2
!= NULL_TREE
);
2469 stmt
= find_common_use_stmt (&name1
, &name2
);
2472 /* A simple post-dominance check - make sure the combination
2473 is executed under the same condition as the references. */
2474 || (gimple_bb (stmt
) != gimple_bb (r1
->stmt
)
2475 && gimple_bb (stmt
) != gimple_bb (r2
->stmt
)))
2478 acode
= gimple_assign_rhs_code (stmt
);
2479 aswap
= (!commutative_tree_code (acode
)
2480 && gimple_assign_rhs1 (stmt
) != name1
);
2481 atype
= TREE_TYPE (gimple_assign_lhs (stmt
));
2483 if (*code
== ERROR_MARK
)
2491 return (*code
== acode
2493 && *rslt_type
== atype
);
2496 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2497 an assignment of the remaining operand. */
2500 remove_name_from_operation (gimple
*stmt
, tree op
)
2503 gimple_stmt_iterator si
;
2505 gcc_assert (is_gimple_assign (stmt
));
2507 if (gimple_assign_rhs1 (stmt
) == op
)
2508 other_op
= gimple_assign_rhs2 (stmt
);
2510 other_op
= gimple_assign_rhs1 (stmt
);
2512 si
= gsi_for_stmt (stmt
);
2513 gimple_assign_set_rhs_from_tree (&si
, other_op
);
2515 /* We should not have reallocated STMT. */
2516 gcc_assert (gsi_stmt (si
) == stmt
);
2521 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2522 are combined in a single statement, and returns this statement. Note the
2523 statement is inserted before INSERT_BEFORE if it's not NULL. */
2526 reassociate_to_the_same_stmt (tree name1
, tree name2
, gimple
*insert_before
)
2528 gimple
*stmt1
, *stmt2
, *root1
, *root2
, *s1
, *s2
;
2529 gassign
*new_stmt
, *tmp_stmt
;
2530 tree new_name
, tmp_name
, var
, r1
, r2
;
2531 unsigned dist1
, dist2
;
2532 enum tree_code code
;
2533 tree type
= TREE_TYPE (name1
);
2534 gimple_stmt_iterator bsi
;
2536 stmt1
= find_use_stmt (&name1
);
2537 stmt2
= find_use_stmt (&name2
);
2538 root1
= find_associative_operation_root (stmt1
, &dist1
);
2539 root2
= find_associative_operation_root (stmt2
, &dist2
);
2540 code
= gimple_assign_rhs_code (stmt1
);
2542 gcc_assert (root1
&& root2
&& root1
== root2
2543 && code
== gimple_assign_rhs_code (stmt2
));
2545 /* Find the root of the nearest expression in that both NAME1 and NAME2
2552 while (dist1
> dist2
)
2554 s1
= find_use_stmt (&r1
);
2555 r1
= gimple_assign_lhs (s1
);
2558 while (dist2
> dist1
)
2560 s2
= find_use_stmt (&r2
);
2561 r2
= gimple_assign_lhs (s2
);
2567 s1
= find_use_stmt (&r1
);
2568 r1
= gimple_assign_lhs (s1
);
2569 s2
= find_use_stmt (&r2
);
2570 r2
= gimple_assign_lhs (s2
);
2573 /* Remove NAME1 and NAME2 from the statements in that they are used
2575 remove_name_from_operation (stmt1
, name1
);
2576 remove_name_from_operation (stmt2
, name2
);
2578 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2579 combine it with the rhs of S1. */
2580 var
= create_tmp_reg (type
, "predreastmp");
2581 new_name
= make_ssa_name (var
);
2582 new_stmt
= gimple_build_assign (new_name
, code
, name1
, name2
);
2583 if (insert_before
&& stmt_dominates_stmt_p (insert_before
, s1
))
2584 bsi
= gsi_for_stmt (insert_before
);
2586 bsi
= gsi_for_stmt (s1
);
2588 gsi_insert_before (&bsi
, new_stmt
, GSI_SAME_STMT
);
2590 var
= create_tmp_reg (type
, "predreastmp");
2591 tmp_name
= make_ssa_name (var
);
2593 /* Rhs of S1 may now be either a binary expression with operation
2594 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2595 so that name1 or name2 was removed from it). */
2596 tmp_stmt
= gimple_build_assign (tmp_name
, gimple_assign_rhs_code (s1
),
2597 gimple_assign_rhs1 (s1
),
2598 gimple_assign_rhs2 (s1
));
2600 bsi
= gsi_for_stmt (s1
);
2601 gimple_assign_set_rhs_with_ops (&bsi
, code
, new_name
, tmp_name
);
2602 s1
= gsi_stmt (bsi
);
2605 gsi_insert_before (&bsi
, tmp_stmt
, GSI_SAME_STMT
);
2610 /* Returns the statement that combines references R1 and R2. In case R1
2611 and R2 are not used in the same statement, but they are used with an
2612 associative and commutative operation in the same expression, reassociate
2613 the expression so that they are used in the same statement. The combined
2614 statement is inserted before INSERT_BEFORE if it's not NULL. */
2617 stmt_combining_refs (dref r1
, dref r2
, gimple
*insert_before
)
2619 gimple
*stmt1
, *stmt2
;
2620 tree name1
= name_for_ref (r1
);
2621 tree name2
= name_for_ref (r2
);
2623 stmt1
= find_use_stmt (&name1
);
2624 stmt2
= find_use_stmt (&name2
);
2628 return reassociate_to_the_same_stmt (name1
, name2
, insert_before
);
2631 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2632 description of the new chain is returned, otherwise we return NULL. */
2635 combine_chains (chain_p ch1
, chain_p ch2
)
2638 enum tree_code op
= ERROR_MARK
;
2643 tree rslt_type
= NULL_TREE
;
2647 if (ch1
->length
!= ch2
->length
)
2650 if (ch1
->refs
.length () != ch2
->refs
.length ())
2653 for (i
= 0; (ch1
->refs
.iterate (i
, &r1
)
2654 && ch2
->refs
.iterate (i
, &r2
)); i
++)
2656 if (r1
->distance
!= r2
->distance
)
2659 if (!combinable_refs_p (r1
, r2
, &op
, &swap
, &rslt_type
))
2663 ch1
->combined
= true;
2664 ch2
->combined
= true;
2667 std::swap (ch1
, ch2
);
2669 new_chain
= XCNEW (struct chain
);
2670 new_chain
->type
= CT_COMBINATION
;
2672 new_chain
->ch1
= ch1
;
2673 new_chain
->ch2
= ch2
;
2674 new_chain
->rslt_type
= rslt_type
;
2675 new_chain
->length
= ch1
->length
;
2677 gimple
*insert
= NULL
;
2678 num
= ch1
->refs
.length ();
2679 i
= (new_chain
->length
== 0) ? num
- 1 : 0;
2680 j
= (new_chain
->length
== 0) ? -1 : 1;
2681 /* For ZERO length chain, process refs in reverse order so that dominant
2682 position is ready when it comes to the root ref.
2683 For non-ZERO length chain, process refs in order. See PR79663. */
2684 for (; num
> 0; num
--, i
+= j
)
2688 nw
= XCNEW (struct dref_d
);
2689 nw
->distance
= r1
->distance
;
2691 /* For ZERO length chain, insert combined stmt of root ref at dominant
2693 nw
->stmt
= stmt_combining_refs (r1
, r2
, i
== 0 ? insert
: NULL
);
2694 /* For ZERO length chain, record dominant position where combined stmt
2695 of root ref should be inserted. In this case, though all root refs
2696 dominate following ones, it's possible that combined stmt doesn't.
2698 if (new_chain
->length
== 0
2699 && (insert
== NULL
|| stmt_dominates_stmt_p (nw
->stmt
, insert
)))
2702 new_chain
->refs
.safe_push (nw
);
2704 if (new_chain
->length
== 0)
2706 /* Restore the order for ZERO length chain's refs. */
2707 num
= new_chain
->refs
.length () >> 1;
2708 for (i
= 0, j
= new_chain
->refs
.length () - 1; i
< num
; i
++, j
--)
2709 std::swap (new_chain
->refs
[i
], new_chain
->refs
[j
]);
2711 /* For ZERO length chain, has_max_use_after must be true since root
2712 combined stmt must dominates others. */
2713 new_chain
->has_max_use_after
= true;
2717 new_chain
->has_max_use_after
= false;
2718 root_stmt
= get_chain_root (new_chain
)->stmt
;
2719 for (i
= 1; new_chain
->refs
.iterate (i
, &nw
); i
++)
2721 if (nw
->distance
== new_chain
->length
2722 && !stmt_dominates_stmt_p (nw
->stmt
, root_stmt
))
2724 new_chain
->has_max_use_after
= true;
2732 /* Try to combine the CHAINS. */
2735 try_combine_chains (vec
<chain_p
> *chains
)
2738 chain_p ch1
, ch2
, cch
;
2739 auto_vec
<chain_p
> worklist
;
2741 FOR_EACH_VEC_ELT (*chains
, i
, ch1
)
2742 if (chain_can_be_combined_p (ch1
))
2743 worklist
.safe_push (ch1
);
2745 while (!worklist
.is_empty ())
2747 ch1
= worklist
.pop ();
2748 if (!chain_can_be_combined_p (ch1
))
2751 FOR_EACH_VEC_ELT (*chains
, j
, ch2
)
2753 if (!chain_can_be_combined_p (ch2
))
2756 cch
= combine_chains (ch1
, ch2
);
2759 worklist
.safe_push (cch
);
2760 chains
->safe_push (cch
);
2767 /* Prepare initializers for store elimination CHAIN in LOOP. Returns false
2768 if this is impossible because one of these initializers may trap, true
2772 prepare_initializers_chain_store_elim (struct loop
*loop
, chain_p chain
)
2774 unsigned i
, n
= chain
->length
;
2776 /* For now we can't eliminate stores if some of them are conditional
2778 if (!chain
->all_always_accessed
)
2781 /* Nothing to intialize for intra-iteration store elimination. */
2782 if (n
== 0 && chain
->type
== CT_STORE_STORE
)
2785 /* For store elimination chain, there is nothing to initialize if stores
2786 to be eliminated only store loop invariant values into memory. */
2787 if (chain
->type
== CT_STORE_STORE
2788 && is_inv_store_elimination_chain (loop
, chain
))
2790 chain
->inv_store_elimination
= true;
2794 chain
->inits
.create (n
);
2795 chain
->inits
.safe_grow_cleared (n
);
2797 /* For store eliminatin chain like below:
2799 for (i = 0; i < len; i++)
2806 store to a[i + 1] is missed in loop body, it acts like bubbles. The
2807 content of a[i + 1] remain the same if the loop iterates fewer times
2808 than chain->length. We need to set up root variables for such stores
2809 by loading from memory before loop. Note we only need to load bubble
2810 elements because loop body is guaranteed to be executed at least once
2811 after loop's preheader edge. */
2812 auto_vec
<bool> bubbles
;
2813 bubbles
.safe_grow_cleared (n
+ 1);
2814 for (i
= 0; i
< chain
->refs
.length (); i
++)
2815 bubbles
[chain
->refs
[i
]->distance
] = true;
2817 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
2818 for (i
= 0; i
< n
; i
++)
2823 gimple_seq stmts
= NULL
;
2825 tree init
= ref_at_iteration (dr
, (int) 0 - i
, &stmts
);
2827 gimple_seq_add_seq_without_update (&chain
->init_seq
, stmts
);
2829 chain
->inits
[i
] = init
;
2835 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2836 impossible because one of these initializers may trap, true otherwise. */
2839 prepare_initializers_chain (struct loop
*loop
, chain_p chain
)
2841 unsigned i
, n
= (chain
->type
== CT_INVARIANT
) ? 1 : chain
->length
;
2842 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
2845 edge entry
= loop_preheader_edge (loop
);
2847 if (chain
->type
== CT_STORE_STORE
)
2848 return prepare_initializers_chain_store_elim (loop
, chain
);
2850 /* Find the initializers for the variables, and check that they cannot
2852 chain
->inits
.create (n
);
2853 for (i
= 0; i
< n
; i
++)
2854 chain
->inits
.quick_push (NULL_TREE
);
2856 /* If we have replaced some looparound phi nodes, use their initializers
2857 instead of creating our own. */
2858 FOR_EACH_VEC_ELT (chain
->refs
, i
, laref
)
2860 if (gimple_code (laref
->stmt
) != GIMPLE_PHI
)
2863 gcc_assert (laref
->distance
> 0);
2864 chain
->inits
[n
- laref
->distance
]
2865 = PHI_ARG_DEF_FROM_EDGE (laref
->stmt
, entry
);
2868 for (i
= 0; i
< n
; i
++)
2870 gimple_seq stmts
= NULL
;
2872 if (chain
->inits
[i
] != NULL_TREE
)
2875 init
= ref_at_iteration (dr
, (int) i
- n
, &stmts
);
2876 if (!chain
->all_always_accessed
&& tree_could_trap_p (init
))
2878 gimple_seq_discard (stmts
);
2883 gimple_seq_add_seq_without_update (&chain
->init_seq
, stmts
);
2885 chain
->inits
[i
] = init
;
2891 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2892 be used because the initializers might trap. */
2895 prepare_initializers (struct loop
*loop
, vec
<chain_p
> chains
)
2900 for (i
= 0; i
< chains
.length (); )
2903 if (prepare_initializers_chain (loop
, chain
))
2907 release_chain (chain
);
2908 chains
.unordered_remove (i
);
2913 /* Generates finalizer memory references for CHAIN in LOOP. Returns true
2914 if finalizer code for CHAIN can be generated, otherwise false. */
2917 prepare_finalizers_chain (struct loop
*loop
, chain_p chain
)
2919 unsigned i
, n
= chain
->length
;
2920 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
2921 tree fini
, niters
= number_of_latch_executions (loop
);
2923 /* For now we can't eliminate stores if some of them are conditional
2925 if (!chain
->all_always_accessed
)
2928 chain
->finis
.create (n
);
2929 for (i
= 0; i
< n
; i
++)
2930 chain
->finis
.quick_push (NULL_TREE
);
2932 /* We never use looparound phi node for store elimination chains. */
2934 /* Find the finalizers for the variables, and check that they cannot
2936 for (i
= 0; i
< n
; i
++)
2938 gimple_seq stmts
= NULL
;
2939 gcc_assert (chain
->finis
[i
] == NULL_TREE
);
2941 if (TREE_CODE (niters
) != INTEGER_CST
&& TREE_CODE (niters
) != SSA_NAME
)
2943 niters
= unshare_expr (niters
);
2944 niters
= force_gimple_operand (niters
, &stmts
, true, NULL
);
2947 gimple_seq_add_seq_without_update (&chain
->fini_seq
, stmts
);
2951 fini
= ref_at_iteration (dr
, (int) 0 - i
, &stmts
, niters
);
2953 gimple_seq_add_seq_without_update (&chain
->fini_seq
, stmts
);
2955 chain
->finis
[i
] = fini
;
2961 /* Generates finalizer memory reference for CHAINS in LOOP. Returns true
2962 if finalizer code generation for CHAINS breaks loop closed ssa form. */
2965 prepare_finalizers (struct loop
*loop
, vec
<chain_p
> chains
)
2969 bool loop_closed_ssa
= false;
2971 for (i
= 0; i
< chains
.length ();)
2975 /* Finalizer is only necessary for inter-iteration store elimination
2977 if (chain
->length
== 0 || chain
->type
!= CT_STORE_STORE
)
2983 if (prepare_finalizers_chain (loop
, chain
))
2986 /* Be conservative, assume loop closed ssa form is corrupted
2987 by store-store chain. Though it's not always the case if
2988 eliminated stores only store loop invariant values into
2990 loop_closed_ssa
= true;
2994 release_chain (chain
);
2995 chains
.unordered_remove (i
);
2998 return loop_closed_ssa
;
3001 /* Insert all initializing gimple stmts into loop's entry edge. */
3004 insert_init_seqs (struct loop
*loop
, vec
<chain_p
> chains
)
3007 edge entry
= loop_preheader_edge (loop
);
3009 for (i
= 0; i
< chains
.length (); ++i
)
3010 if (chains
[i
]->init_seq
)
3012 gsi_insert_seq_on_edge_immediate (entry
, chains
[i
]->init_seq
);
3013 chains
[i
]->init_seq
= NULL
;
3017 /* Performs predictive commoning for LOOP. Sets bit 1<<0 of return value
3018 if LOOP was unrolled; Sets bit 1<<1 of return value if loop closed ssa
3019 form was corrupted. */
3022 tree_predictive_commoning_loop (struct loop
*loop
)
3024 vec
<data_reference_p
> datarefs
;
3025 vec
<ddr_p
> dependences
;
3026 struct component
*components
;
3027 vec
<chain_p
> chains
= vNULL
;
3028 unsigned unroll_factor
;
3029 struct tree_niter_desc desc
;
3030 bool unroll
= false, loop_closed_ssa
= false;
3033 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3034 fprintf (dump_file
, "Processing loop %d\n", loop
->num
);
3036 /* Nothing for predicitive commoning if loop only iterates 1 time. */
3037 if (get_max_loop_iterations_int (loop
) == 0)
3039 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3040 fprintf (dump_file
, "Loop iterates only 1 time, nothing to do.\n");
3045 /* Find the data references and split them into components according to their
3046 dependence relations. */
3047 auto_vec
<loop_p
, 3> loop_nest
;
3048 dependences
.create (10);
3049 datarefs
.create (10);
3050 if (! compute_data_dependences_for_loop (loop
, true, &loop_nest
, &datarefs
,
3053 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3054 fprintf (dump_file
, "Cannot analyze data dependencies\n");
3055 free_data_refs (datarefs
);
3056 free_dependence_relations (dependences
);
3060 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3061 dump_data_dependence_relations (dump_file
, dependences
);
3063 components
= split_data_refs_to_components (loop
, datarefs
, dependences
);
3064 loop_nest
.release ();
3065 free_dependence_relations (dependences
);
3068 free_data_refs (datarefs
);
3069 free_affine_expand_cache (&name_expansions
);
3073 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3075 fprintf (dump_file
, "Initial state:\n\n");
3076 dump_components (dump_file
, components
);
3079 /* Find the suitable components and split them into chains. */
3080 components
= filter_suitable_components (loop
, components
);
3082 auto_bitmap tmp_vars
;
3083 looparound_phis
= BITMAP_ALLOC (NULL
);
3084 determine_roots (loop
, components
, &chains
);
3085 release_components (components
);
3087 if (!chains
.exists ())
3089 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3091 "Predictive commoning failed: no suitable chains\n");
3094 prepare_initializers (loop
, chains
);
3095 loop_closed_ssa
= prepare_finalizers (loop
, chains
);
3097 /* Try to combine the chains that are always worked with together. */
3098 try_combine_chains (&chains
);
3100 insert_init_seqs (loop
, chains
);
3102 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3104 fprintf (dump_file
, "Before commoning:\n\n");
3105 dump_chains (dump_file
, chains
);
3108 /* Determine the unroll factor, and if the loop should be unrolled, ensure
3109 that its number of iterations is divisible by the factor. */
3110 unroll_factor
= determine_unroll_factor (chains
);
3112 unroll
= (unroll_factor
> 1
3113 && can_unroll_loop_p (loop
, unroll_factor
, &desc
));
3114 exit
= single_dom_exit (loop
);
3116 /* Execute the predictive commoning transformations, and possibly unroll the
3120 struct epcc_data dta
;
3122 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3123 fprintf (dump_file
, "Unrolling %u times.\n", unroll_factor
);
3125 dta
.chains
= chains
;
3126 dta
.tmp_vars
= tmp_vars
;
3128 update_ssa (TODO_update_ssa_only_virtuals
);
3130 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
3131 execute_pred_commoning_cbck is called may cause phi nodes to be
3132 reallocated, which is a problem since CHAINS may point to these
3133 statements. To fix this, we store the ssa names defined by the
3134 phi nodes here instead of the phi nodes themselves, and restore
3135 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
3136 replace_phis_by_defined_names (chains
);
3138 tree_transform_and_unroll_loop (loop
, unroll_factor
, exit
, &desc
,
3139 execute_pred_commoning_cbck
, &dta
);
3140 eliminate_temp_copies (loop
, tmp_vars
);
3144 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3146 "Executing predictive commoning without unrolling.\n");
3147 execute_pred_commoning (loop
, chains
, tmp_vars
);
3151 release_chains (chains
);
3152 free_data_refs (datarefs
);
3153 BITMAP_FREE (looparound_phis
);
3155 free_affine_expand_cache (&name_expansions
);
3157 return (unroll
? 1 : 0) | (loop_closed_ssa
? 2 : 0);
3160 /* Runs predictive commoning. */
3163 tree_predictive_commoning (void)
3166 unsigned ret
= 0, changed
= 0;
3168 initialize_original_copy_tables ();
3169 FOR_EACH_LOOP (loop
, LI_ONLY_INNERMOST
)
3170 if (optimize_loop_for_speed_p (loop
))
3172 changed
|= tree_predictive_commoning_loop (loop
);
3174 free_original_copy_tables ();
3181 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
3183 ret
= TODO_cleanup_cfg
;
3189 /* Predictive commoning Pass. */
3192 run_tree_predictive_commoning (struct function
*fun
)
3194 if (number_of_loops (fun
) <= 1)
3197 return tree_predictive_commoning ();
3202 const pass_data pass_data_predcom
=
3204 GIMPLE_PASS
, /* type */
3206 OPTGROUP_LOOP
, /* optinfo_flags */
3207 TV_PREDCOM
, /* tv_id */
3208 PROP_cfg
, /* properties_required */
3209 0, /* properties_provided */
3210 0, /* properties_destroyed */
3211 0, /* todo_flags_start */
3212 TODO_update_ssa_only_virtuals
, /* todo_flags_finish */
3215 class pass_predcom
: public gimple_opt_pass
3218 pass_predcom (gcc::context
*ctxt
)
3219 : gimple_opt_pass (pass_data_predcom
, ctxt
)
3222 /* opt_pass methods: */
3223 virtual bool gate (function
*) { return flag_predictive_commoning
!= 0; }
3224 virtual unsigned int execute (function
*fun
)
3226 return run_tree_predictive_commoning (fun
);
3229 }; // class pass_predcom
3234 make_pass_predcom (gcc::context
*ctxt
)
3236 return new pass_predcom (ctxt
);