* i386.c (has_dispatch): Disable for Ryzen.
[official-gcc.git] / gcc / haifa-sched.c
blobe7014cbb8b378c998148189b4d871e93c3e81918
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "backend.h"
129 #include "target.h"
130 #include "rtl.h"
131 #include "cfghooks.h"
132 #include "df.h"
133 #include "memmodel.h"
134 #include "tm_p.h"
135 #include "insn-config.h"
136 #include "regs.h"
137 #include "ira.h"
138 #include "recog.h"
139 #include "insn-attr.h"
140 #include "cfgrtl.h"
141 #include "cfgbuild.h"
142 #include "sched-int.h"
143 #include "common/common-target.h"
144 #include "params.h"
145 #include "dbgcnt.h"
146 #include "cfgloop.h"
147 #include "dumpfile.h"
148 #include "print-rtl.h"
150 #ifdef INSN_SCHEDULING
152 /* True if we do register pressure relief through live-range
153 shrinkage. */
154 static bool live_range_shrinkage_p;
156 /* Switch on live range shrinkage. */
157 void
158 initialize_live_range_shrinkage (void)
160 live_range_shrinkage_p = true;
163 /* Switch off live range shrinkage. */
164 void
165 finish_live_range_shrinkage (void)
167 live_range_shrinkage_p = false;
170 /* issue_rate is the number of insns that can be scheduled in the same
171 machine cycle. It can be defined in the config/mach/mach.h file,
172 otherwise we set it to 1. */
174 int issue_rate;
176 /* This can be set to true by a backend if the scheduler should not
177 enable a DCE pass. */
178 bool sched_no_dce;
180 /* The current initiation interval used when modulo scheduling. */
181 static int modulo_ii;
183 /* The maximum number of stages we are prepared to handle. */
184 static int modulo_max_stages;
186 /* The number of insns that exist in each iteration of the loop. We use this
187 to detect when we've scheduled all insns from the first iteration. */
188 static int modulo_n_insns;
190 /* The current count of insns in the first iteration of the loop that have
191 already been scheduled. */
192 static int modulo_insns_scheduled;
194 /* The maximum uid of insns from the first iteration of the loop. */
195 static int modulo_iter0_max_uid;
197 /* The number of times we should attempt to backtrack when modulo scheduling.
198 Decreased each time we have to backtrack. */
199 static int modulo_backtracks_left;
201 /* The stage in which the last insn from the original loop was
202 scheduled. */
203 static int modulo_last_stage;
205 /* sched-verbose controls the amount of debugging output the
206 scheduler prints. It is controlled by -fsched-verbose=N:
207 N=0: no debugging output.
208 N=1: default value.
209 N=2: bb's probabilities, detailed ready list info, unit/insn info.
210 N=3: rtl at abort point, control-flow, regions info.
211 N=5: dependences info. */
212 int sched_verbose = 0;
214 /* Debugging file. All printouts are sent to dump. */
215 FILE *sched_dump = 0;
217 /* This is a placeholder for the scheduler parameters common
218 to all schedulers. */
219 struct common_sched_info_def *common_sched_info;
221 #define INSN_TICK(INSN) (HID (INSN)->tick)
222 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
223 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
224 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
225 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
226 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
227 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
228 /* Cached cost of the instruction. Use insn_sched_cost to get cost of the
229 insn. -1 here means that the field is not initialized. */
230 #define INSN_COST(INSN) (HID (INSN)->cost)
232 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
233 then it should be recalculated from scratch. */
234 #define INVALID_TICK (-(max_insn_queue_index + 1))
235 /* The minimal value of the INSN_TICK of an instruction. */
236 #define MIN_TICK (-max_insn_queue_index)
238 /* Original order of insns in the ready list.
239 Used to keep order of normal insns while separating DEBUG_INSNs. */
240 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
242 /* The deciding reason for INSN's place in the ready list. */
243 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
245 /* List of important notes we must keep around. This is a pointer to the
246 last element in the list. */
247 rtx_insn *note_list;
249 static struct spec_info_def spec_info_var;
250 /* Description of the speculative part of the scheduling.
251 If NULL - no speculation. */
252 spec_info_t spec_info = NULL;
254 /* True, if recovery block was added during scheduling of current block.
255 Used to determine, if we need to fix INSN_TICKs. */
256 static bool haifa_recovery_bb_recently_added_p;
258 /* True, if recovery block was added during this scheduling pass.
259 Used to determine if we should have empty memory pools of dependencies
260 after finishing current region. */
261 bool haifa_recovery_bb_ever_added_p;
263 /* Counters of different types of speculative instructions. */
264 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
266 /* Array used in {unlink, restore}_bb_notes. */
267 static rtx_insn **bb_header = 0;
269 /* Basic block after which recovery blocks will be created. */
270 static basic_block before_recovery;
272 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
273 created it. */
274 basic_block after_recovery;
276 /* FALSE if we add bb to another region, so we don't need to initialize it. */
277 bool adding_bb_to_current_region_p = true;
279 /* Queues, etc. */
281 /* An instruction is ready to be scheduled when all insns preceding it
282 have already been scheduled. It is important to ensure that all
283 insns which use its result will not be executed until its result
284 has been computed. An insn is maintained in one of four structures:
286 (P) the "Pending" set of insns which cannot be scheduled until
287 their dependencies have been satisfied.
288 (Q) the "Queued" set of insns that can be scheduled when sufficient
289 time has passed.
290 (R) the "Ready" list of unscheduled, uncommitted insns.
291 (S) the "Scheduled" list of insns.
293 Initially, all insns are either "Pending" or "Ready" depending on
294 whether their dependencies are satisfied.
296 Insns move from the "Ready" list to the "Scheduled" list as they
297 are committed to the schedule. As this occurs, the insns in the
298 "Pending" list have their dependencies satisfied and move to either
299 the "Ready" list or the "Queued" set depending on whether
300 sufficient time has passed to make them ready. As time passes,
301 insns move from the "Queued" set to the "Ready" list.
303 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
304 unscheduled insns, i.e., those that are ready, queued, and pending.
305 The "Queued" set (Q) is implemented by the variable `insn_queue'.
306 The "Ready" list (R) is implemented by the variables `ready' and
307 `n_ready'.
308 The "Scheduled" list (S) is the new insn chain built by this pass.
310 The transition (R->S) is implemented in the scheduling loop in
311 `schedule_block' when the best insn to schedule is chosen.
312 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
313 insns move from the ready list to the scheduled list.
314 The transition (Q->R) is implemented in 'queue_to_insn' as time
315 passes or stalls are introduced. */
317 /* Implement a circular buffer to delay instructions until sufficient
318 time has passed. For the new pipeline description interface,
319 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
320 than maximal time of instruction execution computed by genattr.c on
321 the base maximal time of functional unit reservations and getting a
322 result. This is the longest time an insn may be queued. */
324 static rtx_insn_list **insn_queue;
325 static int q_ptr = 0;
326 static int q_size = 0;
327 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
328 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
330 #define QUEUE_SCHEDULED (-3)
331 #define QUEUE_NOWHERE (-2)
332 #define QUEUE_READY (-1)
333 /* QUEUE_SCHEDULED - INSN is scheduled.
334 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
335 queue or ready list.
336 QUEUE_READY - INSN is in ready list.
337 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
339 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
341 /* The following variable value refers for all current and future
342 reservations of the processor units. */
343 state_t curr_state;
345 /* The following variable value is size of memory representing all
346 current and future reservations of the processor units. */
347 size_t dfa_state_size;
349 /* The following array is used to find the best insn from ready when
350 the automaton pipeline interface is used. */
351 signed char *ready_try = NULL;
353 /* The ready list. */
354 struct ready_list ready = {NULL, 0, 0, 0, 0};
356 /* The pointer to the ready list (to be removed). */
357 static struct ready_list *readyp = &ready;
359 /* Scheduling clock. */
360 static int clock_var;
362 /* Clock at which the previous instruction was issued. */
363 static int last_clock_var;
365 /* Set to true if, when queuing a shadow insn, we discover that it would be
366 scheduled too late. */
367 static bool must_backtrack;
369 /* The following variable value is number of essential insns issued on
370 the current cycle. An insn is essential one if it changes the
371 processors state. */
372 int cycle_issued_insns;
374 /* This records the actual schedule. It is built up during the main phase
375 of schedule_block, and afterwards used to reorder the insns in the RTL. */
376 static vec<rtx_insn *> scheduled_insns;
378 static int may_trap_exp (const_rtx, int);
380 /* Nonzero iff the address is comprised from at most 1 register. */
381 #define CONST_BASED_ADDRESS_P(x) \
382 (REG_P (x) \
383 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
384 || (GET_CODE (x) == LO_SUM)) \
385 && (CONSTANT_P (XEXP (x, 0)) \
386 || CONSTANT_P (XEXP (x, 1)))))
388 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
389 as found by analyzing insn's expression. */
392 static int haifa_luid_for_non_insn (rtx x);
394 /* Haifa version of sched_info hooks common to all headers. */
395 const struct common_sched_info_def haifa_common_sched_info =
397 NULL, /* fix_recovery_cfg */
398 NULL, /* add_block */
399 NULL, /* estimate_number_of_insns */
400 haifa_luid_for_non_insn, /* luid_for_non_insn */
401 SCHED_PASS_UNKNOWN /* sched_pass_id */
404 /* Mapping from instruction UID to its Logical UID. */
405 vec<int> sched_luids;
407 /* Next LUID to assign to an instruction. */
408 int sched_max_luid = 1;
410 /* Haifa Instruction Data. */
411 vec<haifa_insn_data_def> h_i_d;
413 void (* sched_init_only_bb) (basic_block, basic_block);
415 /* Split block function. Different schedulers might use different functions
416 to handle their internal data consistent. */
417 basic_block (* sched_split_block) (basic_block, rtx);
419 /* Create empty basic block after the specified block. */
420 basic_block (* sched_create_empty_bb) (basic_block);
422 /* Return the number of cycles until INSN is expected to be ready.
423 Return zero if it already is. */
424 static int
425 insn_delay (rtx_insn *insn)
427 return MAX (INSN_TICK (insn) - clock_var, 0);
430 static int
431 may_trap_exp (const_rtx x, int is_store)
433 enum rtx_code code;
435 if (x == 0)
436 return TRAP_FREE;
437 code = GET_CODE (x);
438 if (is_store)
440 if (code == MEM && may_trap_p (x))
441 return TRAP_RISKY;
442 else
443 return TRAP_FREE;
445 if (code == MEM)
447 /* The insn uses memory: a volatile load. */
448 if (MEM_VOLATILE_P (x))
449 return IRISKY;
450 /* An exception-free load. */
451 if (!may_trap_p (x))
452 return IFREE;
453 /* A load with 1 base register, to be further checked. */
454 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
455 return PFREE_CANDIDATE;
456 /* No info on the load, to be further checked. */
457 return PRISKY_CANDIDATE;
459 else
461 const char *fmt;
462 int i, insn_class = TRAP_FREE;
464 /* Neither store nor load, check if it may cause a trap. */
465 if (may_trap_p (x))
466 return TRAP_RISKY;
467 /* Recursive step: walk the insn... */
468 fmt = GET_RTX_FORMAT (code);
469 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
471 if (fmt[i] == 'e')
473 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
474 insn_class = WORST_CLASS (insn_class, tmp_class);
476 else if (fmt[i] == 'E')
478 int j;
479 for (j = 0; j < XVECLEN (x, i); j++)
481 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
482 insn_class = WORST_CLASS (insn_class, tmp_class);
483 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
484 break;
487 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
488 break;
490 return insn_class;
494 /* Classifies rtx X of an insn for the purpose of verifying that X can be
495 executed speculatively (and consequently the insn can be moved
496 speculatively), by examining X, returning:
497 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
498 TRAP_FREE: non-load insn.
499 IFREE: load from a globally safe location.
500 IRISKY: volatile load.
501 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
502 being either PFREE or PRISKY. */
504 static int
505 haifa_classify_rtx (const_rtx x)
507 int tmp_class = TRAP_FREE;
508 int insn_class = TRAP_FREE;
509 enum rtx_code code;
511 if (GET_CODE (x) == PARALLEL)
513 int i, len = XVECLEN (x, 0);
515 for (i = len - 1; i >= 0; i--)
517 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
518 insn_class = WORST_CLASS (insn_class, tmp_class);
519 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
520 break;
523 else
525 code = GET_CODE (x);
526 switch (code)
528 case CLOBBER:
529 /* Test if it is a 'store'. */
530 tmp_class = may_trap_exp (XEXP (x, 0), 1);
531 break;
532 case SET:
533 /* Test if it is a store. */
534 tmp_class = may_trap_exp (SET_DEST (x), 1);
535 if (tmp_class == TRAP_RISKY)
536 break;
537 /* Test if it is a load. */
538 tmp_class =
539 WORST_CLASS (tmp_class,
540 may_trap_exp (SET_SRC (x), 0));
541 break;
542 case COND_EXEC:
543 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
544 if (tmp_class == TRAP_RISKY)
545 break;
546 tmp_class = WORST_CLASS (tmp_class,
547 may_trap_exp (COND_EXEC_TEST (x), 0));
548 break;
549 case TRAP_IF:
550 tmp_class = TRAP_RISKY;
551 break;
552 default:;
554 insn_class = tmp_class;
557 return insn_class;
561 haifa_classify_insn (const_rtx insn)
563 return haifa_classify_rtx (PATTERN (insn));
566 /* After the scheduler initialization function has been called, this function
567 can be called to enable modulo scheduling. II is the initiation interval
568 we should use, it affects the delays for delay_pairs that were recorded as
569 separated by a given number of stages.
571 MAX_STAGES provides us with a limit
572 after which we give up scheduling; the caller must have unrolled at least
573 as many copies of the loop body and recorded delay_pairs for them.
575 INSNS is the number of real (non-debug) insns in one iteration of
576 the loop. MAX_UID can be used to test whether an insn belongs to
577 the first iteration of the loop; all of them have a uid lower than
578 MAX_UID. */
579 void
580 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
582 modulo_ii = ii;
583 modulo_max_stages = max_stages;
584 modulo_n_insns = insns;
585 modulo_iter0_max_uid = max_uid;
586 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
589 /* A structure to record a pair of insns where the first one is a real
590 insn that has delay slots, and the second is its delayed shadow.
591 I1 is scheduled normally and will emit an assembly instruction,
592 while I2 describes the side effect that takes place at the
593 transition between cycles CYCLES and (CYCLES + 1) after I1. */
594 struct delay_pair
596 struct delay_pair *next_same_i1;
597 rtx_insn *i1, *i2;
598 int cycles;
599 /* When doing modulo scheduling, we a delay_pair can also be used to
600 show that I1 and I2 are the same insn in a different stage. If that
601 is the case, STAGES will be nonzero. */
602 int stages;
605 /* Helpers for delay hashing. */
607 struct delay_i1_hasher : nofree_ptr_hash <delay_pair>
609 typedef void *compare_type;
610 static inline hashval_t hash (const delay_pair *);
611 static inline bool equal (const delay_pair *, const void *);
614 /* Returns a hash value for X, based on hashing just I1. */
616 inline hashval_t
617 delay_i1_hasher::hash (const delay_pair *x)
619 return htab_hash_pointer (x->i1);
622 /* Return true if I1 of pair X is the same as that of pair Y. */
624 inline bool
625 delay_i1_hasher::equal (const delay_pair *x, const void *y)
627 return x->i1 == y;
630 struct delay_i2_hasher : free_ptr_hash <delay_pair>
632 typedef void *compare_type;
633 static inline hashval_t hash (const delay_pair *);
634 static inline bool equal (const delay_pair *, const void *);
637 /* Returns a hash value for X, based on hashing just I2. */
639 inline hashval_t
640 delay_i2_hasher::hash (const delay_pair *x)
642 return htab_hash_pointer (x->i2);
645 /* Return true if I2 of pair X is the same as that of pair Y. */
647 inline bool
648 delay_i2_hasher::equal (const delay_pair *x, const void *y)
650 return x->i2 == y;
653 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
654 indexed by I2. */
655 static hash_table<delay_i1_hasher> *delay_htab;
656 static hash_table<delay_i2_hasher> *delay_htab_i2;
658 /* Called through htab_traverse. Walk the hashtable using I2 as
659 index, and delete all elements involving an UID higher than
660 that pointed to by *DATA. */
662 haifa_htab_i2_traverse (delay_pair **slot, int *data)
664 int maxuid = *data;
665 struct delay_pair *p = *slot;
666 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
668 delay_htab_i2->clear_slot (slot);
670 return 1;
673 /* Called through htab_traverse. Walk the hashtable using I2 as
674 index, and delete all elements involving an UID higher than
675 that pointed to by *DATA. */
677 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
679 int maxuid = *data;
680 struct delay_pair *p, *first, **pprev;
682 if (INSN_UID ((*pslot)->i1) >= maxuid)
684 delay_htab->clear_slot (pslot);
685 return 1;
687 pprev = &first;
688 for (p = *pslot; p; p = p->next_same_i1)
690 if (INSN_UID (p->i2) < maxuid)
692 *pprev = p;
693 pprev = &p->next_same_i1;
696 *pprev = NULL;
697 if (first == NULL)
698 delay_htab->clear_slot (pslot);
699 else
700 *pslot = first;
701 return 1;
704 /* Discard all delay pairs which involve an insn with an UID higher
705 than MAX_UID. */
706 void
707 discard_delay_pairs_above (int max_uid)
709 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
710 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
713 /* This function can be called by a port just before it starts the final
714 scheduling pass. It records the fact that an instruction with delay
715 slots has been split into two insns, I1 and I2. The first one will be
716 scheduled normally and initiates the operation. The second one is a
717 shadow which must follow a specific number of cycles after I1; its only
718 purpose is to show the side effect that occurs at that cycle in the RTL.
719 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
720 while I2 retains the original insn type.
722 There are two ways in which the number of cycles can be specified,
723 involving the CYCLES and STAGES arguments to this function. If STAGES
724 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
725 which is multiplied by MODULO_II to give the number of cycles. This is
726 only useful if the caller also calls set_modulo_params to enable modulo
727 scheduling. */
729 void
730 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
732 struct delay_pair *p = XNEW (struct delay_pair);
733 struct delay_pair **slot;
735 p->i1 = i1;
736 p->i2 = i2;
737 p->cycles = cycles;
738 p->stages = stages;
740 if (!delay_htab)
742 delay_htab = new hash_table<delay_i1_hasher> (10);
743 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
745 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
746 p->next_same_i1 = *slot;
747 *slot = p;
748 slot = delay_htab_i2->find_slot (p, INSERT);
749 *slot = p;
752 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
753 and return the other insn if so. Return NULL otherwise. */
754 rtx_insn *
755 real_insn_for_shadow (rtx_insn *insn)
757 struct delay_pair *pair;
759 if (!delay_htab)
760 return NULL;
762 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
763 if (!pair || pair->stages > 0)
764 return NULL;
765 return pair->i1;
768 /* For a pair P of insns, return the fixed distance in cycles from the first
769 insn after which the second must be scheduled. */
770 static int
771 pair_delay (struct delay_pair *p)
773 if (p->stages == 0)
774 return p->cycles;
775 else
776 return p->stages * modulo_ii;
779 /* Given an insn INSN, add a dependence on its delayed shadow if it
780 has one. Also try to find situations where shadows depend on each other
781 and add dependencies to the real insns to limit the amount of backtracking
782 needed. */
783 void
784 add_delay_dependencies (rtx_insn *insn)
786 struct delay_pair *pair;
787 sd_iterator_def sd_it;
788 dep_t dep;
790 if (!delay_htab)
791 return;
793 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
794 if (!pair)
795 return;
796 add_dependence (insn, pair->i1, REG_DEP_ANTI);
797 if (pair->stages)
798 return;
800 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
802 rtx_insn *pro = DEP_PRO (dep);
803 struct delay_pair *other_pair
804 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
805 if (!other_pair || other_pair->stages)
806 continue;
807 if (pair_delay (other_pair) >= pair_delay (pair))
809 if (sched_verbose >= 4)
811 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
812 INSN_UID (other_pair->i1),
813 INSN_UID (pair->i1));
814 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
815 INSN_UID (pair->i1),
816 INSN_UID (pair->i2),
817 pair_delay (pair));
818 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
819 INSN_UID (other_pair->i1),
820 INSN_UID (other_pair->i2),
821 pair_delay (other_pair));
823 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
828 /* Forward declarations. */
830 static int priority (rtx_insn *);
831 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
832 static int rank_for_schedule (const void *, const void *);
833 static void swap_sort (rtx_insn **, int);
834 static void queue_insn (rtx_insn *, int, const char *);
835 static int schedule_insn (rtx_insn *);
836 static void adjust_priority (rtx_insn *);
837 static void advance_one_cycle (void);
838 static void extend_h_i_d (void);
841 /* Notes handling mechanism:
842 =========================
843 Generally, NOTES are saved before scheduling and restored after scheduling.
844 The scheduler distinguishes between two types of notes:
846 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
847 Before scheduling a region, a pointer to the note is added to the insn
848 that follows or precedes it. (This happens as part of the data dependence
849 computation). After scheduling an insn, the pointer contained in it is
850 used for regenerating the corresponding note (in reemit_notes).
852 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
853 these notes are put in a list (in rm_other_notes() and
854 unlink_other_notes ()). After scheduling the block, these notes are
855 inserted at the beginning of the block (in schedule_block()). */
857 static void ready_add (struct ready_list *, rtx_insn *, bool);
858 static rtx_insn *ready_remove_first (struct ready_list *);
859 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
861 static void queue_to_ready (struct ready_list *);
862 static int early_queue_to_ready (state_t, struct ready_list *);
864 /* The following functions are used to implement multi-pass scheduling
865 on the first cycle. */
866 static rtx_insn *ready_remove (struct ready_list *, int);
867 static void ready_remove_insn (rtx_insn *);
869 static void fix_inter_tick (rtx_insn *, rtx_insn *);
870 static int fix_tick_ready (rtx_insn *);
871 static void change_queue_index (rtx_insn *, int);
873 /* The following functions are used to implement scheduling of data/control
874 speculative instructions. */
876 static void extend_h_i_d (void);
877 static void init_h_i_d (rtx_insn *);
878 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
879 static void generate_recovery_code (rtx_insn *);
880 static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
881 static void begin_speculative_block (rtx_insn *);
882 static void add_to_speculative_block (rtx_insn *);
883 static void init_before_recovery (basic_block *);
884 static void create_check_block_twin (rtx_insn *, bool);
885 static void fix_recovery_deps (basic_block);
886 static bool haifa_change_pattern (rtx_insn *, rtx);
887 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
888 static void restore_bb_notes (basic_block);
889 static void fix_jump_move (rtx_insn *);
890 static void move_block_after_check (rtx_insn *);
891 static void move_succs (vec<edge, va_gc> **, basic_block);
892 static void sched_remove_insn (rtx_insn *);
893 static void clear_priorities (rtx_insn *, rtx_vec_t *);
894 static void calc_priorities (rtx_vec_t);
895 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
897 #endif /* INSN_SCHEDULING */
899 /* Point to state used for the current scheduling pass. */
900 struct haifa_sched_info *current_sched_info;
902 #ifndef INSN_SCHEDULING
903 void
904 schedule_insns (void)
907 #else
909 /* Do register pressure sensitive insn scheduling if the flag is set
910 up. */
911 enum sched_pressure_algorithm sched_pressure;
913 /* Map regno -> its pressure class. The map defined only when
914 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
915 enum reg_class *sched_regno_pressure_class;
917 /* The current register pressure. Only elements corresponding pressure
918 classes are defined. */
919 static int curr_reg_pressure[N_REG_CLASSES];
921 /* Saved value of the previous array. */
922 static int saved_reg_pressure[N_REG_CLASSES];
924 /* Register living at given scheduling point. */
925 static bitmap curr_reg_live;
927 /* Saved value of the previous array. */
928 static bitmap saved_reg_live;
930 /* Registers mentioned in the current region. */
931 static bitmap region_ref_regs;
933 /* Temporary bitmap used for SCHED_PRESSURE_MODEL. */
934 static bitmap tmp_bitmap;
936 /* Effective number of available registers of a given class (see comment
937 in sched_pressure_start_bb). */
938 static int sched_class_regs_num[N_REG_CLASSES];
939 /* Number of call_saved_regs and fixed_regs. Helpers for calculating of
940 sched_class_regs_num. */
941 static int call_saved_regs_num[N_REG_CLASSES];
942 static int fixed_regs_num[N_REG_CLASSES];
944 /* Initiate register pressure relative info for scheduling the current
945 region. Currently it is only clearing register mentioned in the
946 current region. */
947 void
948 sched_init_region_reg_pressure_info (void)
950 bitmap_clear (region_ref_regs);
953 /* PRESSURE[CL] describes the pressure on register class CL. Update it
954 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
955 LIVE tracks the set of live registers; if it is null, assume that
956 every birth or death is genuine. */
957 static inline void
958 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
960 enum reg_class pressure_class;
962 pressure_class = sched_regno_pressure_class[regno];
963 if (regno >= FIRST_PSEUDO_REGISTER)
965 if (pressure_class != NO_REGS)
967 if (birth_p)
969 if (!live || bitmap_set_bit (live, regno))
970 pressure[pressure_class]
971 += (ira_reg_class_max_nregs
972 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
974 else
976 if (!live || bitmap_clear_bit (live, regno))
977 pressure[pressure_class]
978 -= (ira_reg_class_max_nregs
979 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
983 else if (pressure_class != NO_REGS
984 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
986 if (birth_p)
988 if (!live || bitmap_set_bit (live, regno))
989 pressure[pressure_class]++;
991 else
993 if (!live || bitmap_clear_bit (live, regno))
994 pressure[pressure_class]--;
999 /* Initiate current register pressure related info from living
1000 registers given by LIVE. */
1001 static void
1002 initiate_reg_pressure_info (bitmap live)
1004 int i;
1005 unsigned int j;
1006 bitmap_iterator bi;
1008 for (i = 0; i < ira_pressure_classes_num; i++)
1009 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1010 bitmap_clear (curr_reg_live);
1011 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1012 if (sched_pressure == SCHED_PRESSURE_MODEL
1013 || current_nr_blocks == 1
1014 || bitmap_bit_p (region_ref_regs, j))
1015 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1018 /* Mark registers in X as mentioned in the current region. */
1019 static void
1020 setup_ref_regs (rtx x)
1022 int i, j;
1023 const RTX_CODE code = GET_CODE (x);
1024 const char *fmt;
1026 if (REG_P (x))
1028 bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
1029 return;
1031 fmt = GET_RTX_FORMAT (code);
1032 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1033 if (fmt[i] == 'e')
1034 setup_ref_regs (XEXP (x, i));
1035 else if (fmt[i] == 'E')
1037 for (j = 0; j < XVECLEN (x, i); j++)
1038 setup_ref_regs (XVECEXP (x, i, j));
1042 /* Initiate current register pressure related info at the start of
1043 basic block BB. */
1044 static void
1045 initiate_bb_reg_pressure_info (basic_block bb)
1047 unsigned int i ATTRIBUTE_UNUSED;
1048 rtx_insn *insn;
1050 if (current_nr_blocks > 1)
1051 FOR_BB_INSNS (bb, insn)
1052 if (NONDEBUG_INSN_P (insn))
1053 setup_ref_regs (PATTERN (insn));
1054 initiate_reg_pressure_info (df_get_live_in (bb));
1055 if (bb_has_eh_pred (bb))
1056 for (i = 0; ; ++i)
1058 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1060 if (regno == INVALID_REGNUM)
1061 break;
1062 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1063 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1064 regno, true);
1068 /* Save current register pressure related info. */
1069 static void
1070 save_reg_pressure (void)
1072 int i;
1074 for (i = 0; i < ira_pressure_classes_num; i++)
1075 saved_reg_pressure[ira_pressure_classes[i]]
1076 = curr_reg_pressure[ira_pressure_classes[i]];
1077 bitmap_copy (saved_reg_live, curr_reg_live);
1080 /* Restore saved register pressure related info. */
1081 static void
1082 restore_reg_pressure (void)
1084 int i;
1086 for (i = 0; i < ira_pressure_classes_num; i++)
1087 curr_reg_pressure[ira_pressure_classes[i]]
1088 = saved_reg_pressure[ira_pressure_classes[i]];
1089 bitmap_copy (curr_reg_live, saved_reg_live);
1092 /* Return TRUE if the register is dying after its USE. */
1093 static bool
1094 dying_use_p (struct reg_use_data *use)
1096 struct reg_use_data *next;
1098 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1099 if (NONDEBUG_INSN_P (next->insn)
1100 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1101 return false;
1102 return true;
1105 /* Print info about the current register pressure and its excess for
1106 each pressure class. */
1107 static void
1108 print_curr_reg_pressure (void)
1110 int i;
1111 enum reg_class cl;
1113 fprintf (sched_dump, ";;\t");
1114 for (i = 0; i < ira_pressure_classes_num; i++)
1116 cl = ira_pressure_classes[i];
1117 gcc_assert (curr_reg_pressure[cl] >= 0);
1118 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1119 curr_reg_pressure[cl],
1120 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1122 fprintf (sched_dump, "\n");
1125 /* Determine if INSN has a condition that is clobbered if a register
1126 in SET_REGS is modified. */
1127 static bool
1128 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1130 rtx pat = PATTERN (insn);
1131 gcc_assert (GET_CODE (pat) == COND_EXEC);
1132 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1134 sd_iterator_def sd_it;
1135 dep_t dep;
1136 haifa_change_pattern (insn, ORIG_PAT (insn));
1137 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1138 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1139 TODO_SPEC (insn) = HARD_DEP;
1140 if (sched_verbose >= 2)
1141 fprintf (sched_dump,
1142 ";;\t\tdequeue insn %s because of clobbered condition\n",
1143 (*current_sched_info->print_insn) (insn, 0));
1144 return true;
1147 return false;
1150 /* This function should be called after modifying the pattern of INSN,
1151 to update scheduler data structures as needed. */
1152 static void
1153 update_insn_after_change (rtx_insn *insn)
1155 sd_iterator_def sd_it;
1156 dep_t dep;
1158 dfa_clear_single_insn_cache (insn);
1160 sd_it = sd_iterator_start (insn,
1161 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1162 while (sd_iterator_cond (&sd_it, &dep))
1164 DEP_COST (dep) = UNKNOWN_DEP_COST;
1165 sd_iterator_next (&sd_it);
1168 /* Invalidate INSN_COST, so it'll be recalculated. */
1169 INSN_COST (insn) = -1;
1170 /* Invalidate INSN_TICK, so it'll be recalculated. */
1171 INSN_TICK (insn) = INVALID_TICK;
1173 /* Invalidate autoprefetch data entry. */
1174 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1175 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1176 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1177 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1181 /* Two VECs, one to hold dependencies for which pattern replacements
1182 need to be applied or restored at the start of the next cycle, and
1183 another to hold an integer that is either one, to apply the
1184 corresponding replacement, or zero to restore it. */
1185 static vec<dep_t> next_cycle_replace_deps;
1186 static vec<int> next_cycle_apply;
1188 static void apply_replacement (dep_t, bool);
1189 static void restore_pattern (dep_t, bool);
1191 /* Look at the remaining dependencies for insn NEXT, and compute and return
1192 the TODO_SPEC value we should use for it. This is called after one of
1193 NEXT's dependencies has been resolved.
1194 We also perform pattern replacements for predication, and for broken
1195 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1196 false. */
1198 static ds_t
1199 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1201 ds_t new_ds;
1202 sd_iterator_def sd_it;
1203 dep_t dep, modify_dep = NULL;
1204 int n_spec = 0;
1205 int n_control = 0;
1206 int n_replace = 0;
1207 bool first_p = true;
1209 if (sd_lists_empty_p (next, SD_LIST_BACK))
1210 /* NEXT has all its dependencies resolved. */
1211 return 0;
1213 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1214 return HARD_DEP;
1216 /* If NEXT is intended to sit adjacent to this instruction, we don't
1217 want to try to break any dependencies. Treat it as a HARD_DEP. */
1218 if (SCHED_GROUP_P (next))
1219 return HARD_DEP;
1221 /* Now we've got NEXT with speculative deps only.
1222 1. Look at the deps to see what we have to do.
1223 2. Check if we can do 'todo'. */
1224 new_ds = 0;
1226 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1228 rtx_insn *pro = DEP_PRO (dep);
1229 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1231 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1232 continue;
1234 if (ds)
1236 n_spec++;
1237 if (first_p)
1239 first_p = false;
1241 new_ds = ds;
1243 else
1244 new_ds = ds_merge (new_ds, ds);
1246 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1248 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1250 n_control++;
1251 modify_dep = dep;
1253 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1255 else if (DEP_REPLACE (dep) != NULL)
1257 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1259 n_replace++;
1260 modify_dep = dep;
1262 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1266 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1268 if (!dbg_cnt (sched_breakdep))
1269 return HARD_DEP;
1270 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1272 struct dep_replacement *desc = DEP_REPLACE (dep);
1273 if (desc != NULL)
1275 if (desc->insn == next && !for_backtrack)
1277 gcc_assert (n_replace == 1);
1278 apply_replacement (dep, true);
1280 DEP_STATUS (dep) |= DEP_CANCELLED;
1283 return 0;
1286 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1288 rtx_insn *pro, *other;
1289 rtx new_pat;
1290 rtx cond = NULL_RTX;
1291 bool success;
1292 rtx_insn *prev = NULL;
1293 int i;
1294 unsigned regno;
1296 if ((current_sched_info->flags & DO_PREDICATION) == 0
1297 || (ORIG_PAT (next) != NULL_RTX
1298 && PREDICATED_PAT (next) == NULL_RTX))
1299 return HARD_DEP;
1301 pro = DEP_PRO (modify_dep);
1302 other = real_insn_for_shadow (pro);
1303 if (other != NULL_RTX)
1304 pro = other;
1306 cond = sched_get_reverse_condition_uncached (pro);
1307 regno = REGNO (XEXP (cond, 0));
1309 /* Find the last scheduled insn that modifies the condition register.
1310 We can stop looking once we find the insn we depend on through the
1311 REG_DEP_CONTROL; if the condition register isn't modified after it,
1312 we know that it still has the right value. */
1313 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1314 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1316 HARD_REG_SET t;
1318 find_all_hard_reg_sets (prev, &t, true);
1319 if (TEST_HARD_REG_BIT (t, regno))
1320 return HARD_DEP;
1321 if (prev == pro)
1322 break;
1324 if (ORIG_PAT (next) == NULL_RTX)
1326 ORIG_PAT (next) = PATTERN (next);
1328 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1329 success = haifa_change_pattern (next, new_pat);
1330 if (!success)
1331 return HARD_DEP;
1332 PREDICATED_PAT (next) = new_pat;
1334 else if (PATTERN (next) != PREDICATED_PAT (next))
1336 bool success = haifa_change_pattern (next,
1337 PREDICATED_PAT (next));
1338 gcc_assert (success);
1340 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1341 return DEP_CONTROL;
1344 if (PREDICATED_PAT (next) != NULL_RTX)
1346 int tick = INSN_TICK (next);
1347 bool success = haifa_change_pattern (next,
1348 ORIG_PAT (next));
1349 INSN_TICK (next) = tick;
1350 gcc_assert (success);
1353 /* We can't handle the case where there are both speculative and control
1354 dependencies, so we return HARD_DEP in such a case. Also fail if
1355 we have speculative dependencies with not enough points, or more than
1356 one control dependency. */
1357 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1358 || (n_spec > 0
1359 /* Too few points? */
1360 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1361 || n_control > 0
1362 || n_replace > 0)
1363 return HARD_DEP;
1365 return new_ds;
1368 /* Pointer to the last instruction scheduled. */
1369 static rtx_insn *last_scheduled_insn;
1371 /* Pointer to the last nondebug instruction scheduled within the
1372 block, or the prev_head of the scheduling block. Used by
1373 rank_for_schedule, so that insns independent of the last scheduled
1374 insn will be preferred over dependent instructions. */
1375 static rtx_insn *last_nondebug_scheduled_insn;
1377 /* Pointer that iterates through the list of unscheduled insns if we
1378 have a dbg_cnt enabled. It always points at an insn prior to the
1379 first unscheduled one. */
1380 static rtx_insn *nonscheduled_insns_begin;
1382 /* Compute cost of executing INSN.
1383 This is the number of cycles between instruction issue and
1384 instruction results. */
1386 insn_sched_cost (rtx_insn *insn)
1388 int cost;
1390 if (sched_fusion)
1391 return 0;
1393 if (sel_sched_p ())
1395 if (recog_memoized (insn) < 0)
1396 return 0;
1398 cost = insn_default_latency (insn);
1399 if (cost < 0)
1400 cost = 0;
1402 return cost;
1405 cost = INSN_COST (insn);
1407 if (cost < 0)
1409 /* A USE insn, or something else we don't need to
1410 understand. We can't pass these directly to
1411 result_ready_cost or insn_default_latency because it will
1412 trigger a fatal error for unrecognizable insns. */
1413 if (recog_memoized (insn) < 0)
1415 INSN_COST (insn) = 0;
1416 return 0;
1418 else
1420 cost = insn_default_latency (insn);
1421 if (cost < 0)
1422 cost = 0;
1424 INSN_COST (insn) = cost;
1428 return cost;
1431 /* Compute cost of dependence LINK.
1432 This is the number of cycles between instruction issue and
1433 instruction results.
1434 ??? We also use this function to call recog_memoized on all insns. */
1436 dep_cost_1 (dep_t link, dw_t dw)
1438 rtx_insn *insn = DEP_PRO (link);
1439 rtx_insn *used = DEP_CON (link);
1440 int cost;
1442 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1443 return DEP_COST (link);
1445 if (delay_htab)
1447 struct delay_pair *delay_entry;
1448 delay_entry
1449 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1450 if (delay_entry)
1452 if (delay_entry->i1 == insn)
1454 DEP_COST (link) = pair_delay (delay_entry);
1455 return DEP_COST (link);
1460 /* A USE insn should never require the value used to be computed.
1461 This allows the computation of a function's result and parameter
1462 values to overlap the return and call. We don't care about the
1463 dependence cost when only decreasing register pressure. */
1464 if (recog_memoized (used) < 0)
1466 cost = 0;
1467 recog_memoized (insn);
1469 else
1471 enum reg_note dep_type = DEP_TYPE (link);
1473 cost = insn_sched_cost (insn);
1475 if (INSN_CODE (insn) >= 0)
1477 if (dep_type == REG_DEP_ANTI)
1478 cost = 0;
1479 else if (dep_type == REG_DEP_OUTPUT)
1481 cost = (insn_default_latency (insn)
1482 - insn_default_latency (used));
1483 if (cost <= 0)
1484 cost = 1;
1486 else if (bypass_p (insn))
1487 cost = insn_latency (insn, used);
1491 if (targetm.sched.adjust_cost)
1492 cost = targetm.sched.adjust_cost (used, (int) dep_type, insn, cost,
1493 dw);
1495 if (cost < 0)
1496 cost = 0;
1499 DEP_COST (link) = cost;
1500 return cost;
1503 /* Compute cost of dependence LINK.
1504 This is the number of cycles between instruction issue and
1505 instruction results. */
1507 dep_cost (dep_t link)
1509 return dep_cost_1 (link, 0);
1512 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1513 INSN_PRIORITY explicitly. */
1514 void
1515 increase_insn_priority (rtx_insn *insn, int amount)
1517 if (!sel_sched_p ())
1519 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1520 if (INSN_PRIORITY_KNOWN (insn))
1521 INSN_PRIORITY (insn) += amount;
1523 else
1525 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1526 Use EXPR_PRIORITY instead. */
1527 sel_add_to_insn_priority (insn, amount);
1531 /* Return 'true' if DEP should be included in priority calculations. */
1532 static bool
1533 contributes_to_priority_p (dep_t dep)
1535 if (DEBUG_INSN_P (DEP_CON (dep))
1536 || DEBUG_INSN_P (DEP_PRO (dep)))
1537 return false;
1539 /* Critical path is meaningful in block boundaries only. */
1540 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1541 DEP_PRO (dep)))
1542 return false;
1544 if (DEP_REPLACE (dep) != NULL)
1545 return false;
1547 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1548 then speculative instructions will less likely be
1549 scheduled. That is because the priority of
1550 their producers will increase, and, thus, the
1551 producers will more likely be scheduled, thus,
1552 resolving the dependence. */
1553 if (sched_deps_info->generate_spec_deps
1554 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1555 && (DEP_STATUS (dep) & SPECULATIVE))
1556 return false;
1558 return true;
1561 /* Compute the number of nondebug deps in list LIST for INSN. */
1563 static int
1564 dep_list_size (rtx_insn *insn, sd_list_types_def list)
1566 sd_iterator_def sd_it;
1567 dep_t dep;
1568 int dbgcount = 0, nodbgcount = 0;
1570 if (!MAY_HAVE_DEBUG_INSNS)
1571 return sd_lists_size (insn, list);
1573 FOR_EACH_DEP (insn, list, sd_it, dep)
1575 if (DEBUG_INSN_P (DEP_CON (dep)))
1576 dbgcount++;
1577 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1578 nodbgcount++;
1581 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1583 return nodbgcount;
1586 bool sched_fusion;
1588 /* Compute the priority number for INSN. */
1589 static int
1590 priority (rtx_insn *insn)
1592 if (! INSN_P (insn))
1593 return 0;
1595 /* We should not be interested in priority of an already scheduled insn. */
1596 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1598 if (!INSN_PRIORITY_KNOWN (insn))
1600 int this_priority = -1;
1602 if (sched_fusion)
1604 int this_fusion_priority;
1606 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1607 &this_fusion_priority, &this_priority);
1608 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1610 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1611 /* ??? We should set INSN_PRIORITY to insn_sched_cost when and insn
1612 has some forward deps but all of them are ignored by
1613 contributes_to_priority hook. At the moment we set priority of
1614 such insn to 0. */
1615 this_priority = insn_sched_cost (insn);
1616 else
1618 rtx_insn *prev_first, *twin;
1619 basic_block rec;
1621 /* For recovery check instructions we calculate priority slightly
1622 different than that of normal instructions. Instead of walking
1623 through INSN_FORW_DEPS (check) list, we walk through
1624 INSN_FORW_DEPS list of each instruction in the corresponding
1625 recovery block. */
1627 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1628 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1629 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1631 prev_first = PREV_INSN (insn);
1632 twin = insn;
1634 else
1636 prev_first = NEXT_INSN (BB_HEAD (rec));
1637 twin = PREV_INSN (BB_END (rec));
1642 sd_iterator_def sd_it;
1643 dep_t dep;
1645 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1647 rtx_insn *next;
1648 int next_priority;
1650 next = DEP_CON (dep);
1652 if (BLOCK_FOR_INSN (next) != rec)
1654 int cost;
1656 if (!contributes_to_priority_p (dep))
1657 continue;
1659 if (twin == insn)
1660 cost = dep_cost (dep);
1661 else
1663 struct _dep _dep1, *dep1 = &_dep1;
1665 init_dep (dep1, insn, next, REG_DEP_ANTI);
1667 cost = dep_cost (dep1);
1670 next_priority = cost + priority (next);
1672 if (next_priority > this_priority)
1673 this_priority = next_priority;
1677 twin = PREV_INSN (twin);
1679 while (twin != prev_first);
1682 if (this_priority < 0)
1684 gcc_assert (this_priority == -1);
1686 this_priority = insn_sched_cost (insn);
1689 INSN_PRIORITY (insn) = this_priority;
1690 INSN_PRIORITY_STATUS (insn) = 1;
1693 return INSN_PRIORITY (insn);
1696 /* Macros and functions for keeping the priority queue sorted, and
1697 dealing with queuing and dequeuing of instructions. */
1699 /* For each pressure class CL, set DEATH[CL] to the number of registers
1700 in that class that die in INSN. */
1702 static void
1703 calculate_reg_deaths (rtx_insn *insn, int *death)
1705 int i;
1706 struct reg_use_data *use;
1708 for (i = 0; i < ira_pressure_classes_num; i++)
1709 death[ira_pressure_classes[i]] = 0;
1710 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1711 if (dying_use_p (use))
1712 mark_regno_birth_or_death (0, death, use->regno, true);
1715 /* Setup info about the current register pressure impact of scheduling
1716 INSN at the current scheduling point. */
1717 static void
1718 setup_insn_reg_pressure_info (rtx_insn *insn)
1720 int i, change, before, after, hard_regno;
1721 int excess_cost_change;
1722 machine_mode mode;
1723 enum reg_class cl;
1724 struct reg_pressure_data *pressure_info;
1725 int *max_reg_pressure;
1726 static int death[N_REG_CLASSES];
1728 gcc_checking_assert (!DEBUG_INSN_P (insn));
1730 excess_cost_change = 0;
1731 calculate_reg_deaths (insn, death);
1732 pressure_info = INSN_REG_PRESSURE (insn);
1733 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1734 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1735 for (i = 0; i < ira_pressure_classes_num; i++)
1737 cl = ira_pressure_classes[i];
1738 gcc_assert (curr_reg_pressure[cl] >= 0);
1739 change = (int) pressure_info[i].set_increase - death[cl];
1740 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1741 after = MAX (0, max_reg_pressure[i] + change
1742 - sched_class_regs_num[cl]);
1743 hard_regno = ira_class_hard_regs[cl][0];
1744 gcc_assert (hard_regno >= 0);
1745 mode = reg_raw_mode[hard_regno];
1746 excess_cost_change += ((after - before)
1747 * (ira_memory_move_cost[mode][cl][0]
1748 + ira_memory_move_cost[mode][cl][1]));
1750 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1753 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1754 It tries to make the scheduler take register pressure into account
1755 without introducing too many unnecessary stalls. It hooks into the
1756 main scheduling algorithm at several points:
1758 - Before scheduling starts, model_start_schedule constructs a
1759 "model schedule" for the current block. This model schedule is
1760 chosen solely to keep register pressure down. It does not take the
1761 target's pipeline or the original instruction order into account,
1762 except as a tie-breaker. It also doesn't work to a particular
1763 pressure limit.
1765 This model schedule gives us an idea of what pressure can be
1766 achieved for the block and gives us an example of a schedule that
1767 keeps to that pressure. It also makes the final schedule less
1768 dependent on the original instruction order. This is important
1769 because the original order can either be "wide" (many values live
1770 at once, such as in user-scheduled code) or "narrow" (few values
1771 live at once, such as after loop unrolling, where several
1772 iterations are executed sequentially).
1774 We do not apply this model schedule to the rtx stream. We simply
1775 record it in model_schedule. We also compute the maximum pressure,
1776 MP, that was seen during this schedule.
1778 - Instructions are added to the ready queue even if they require
1779 a stall. The length of the stall is instead computed as:
1781 MAX (INSN_TICK (INSN) - clock_var, 0)
1783 (= insn_delay). This allows rank_for_schedule to choose between
1784 introducing a deliberate stall or increasing pressure.
1786 - Before sorting the ready queue, model_set_excess_costs assigns
1787 a pressure-based cost to each ready instruction in the queue.
1788 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1789 (ECC for short) and is effectively measured in cycles.
1791 - rank_for_schedule ranks instructions based on:
1793 ECC (insn) + insn_delay (insn)
1795 then as:
1797 insn_delay (insn)
1799 So, for example, an instruction X1 with an ECC of 1 that can issue
1800 now will win over an instruction X0 with an ECC of zero that would
1801 introduce a stall of one cycle. However, an instruction X2 with an
1802 ECC of 2 that can issue now will lose to both X0 and X1.
1804 - When an instruction is scheduled, model_recompute updates the model
1805 schedule with the new pressures (some of which might now exceed the
1806 original maximum pressure MP). model_update_limit_points then searches
1807 for the new point of maximum pressure, if not already known. */
1809 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1810 from surrounding debug information. */
1811 #define MODEL_BAR \
1812 ";;\t\t+------------------------------------------------------\n"
1814 /* Information about the pressure on a particular register class at a
1815 particular point of the model schedule. */
1816 struct model_pressure_data {
1817 /* The pressure at this point of the model schedule, or -1 if the
1818 point is associated with an instruction that has already been
1819 scheduled. */
1820 int ref_pressure;
1822 /* The maximum pressure during or after this point of the model schedule. */
1823 int max_pressure;
1826 /* Per-instruction information that is used while building the model
1827 schedule. Here, "schedule" refers to the model schedule rather
1828 than the main schedule. */
1829 struct model_insn_info {
1830 /* The instruction itself. */
1831 rtx_insn *insn;
1833 /* If this instruction is in model_worklist, these fields link to the
1834 previous (higher-priority) and next (lower-priority) instructions
1835 in the list. */
1836 struct model_insn_info *prev;
1837 struct model_insn_info *next;
1839 /* While constructing the schedule, QUEUE_INDEX describes whether an
1840 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1841 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1842 old_queue records the value that QUEUE_INDEX had before scheduling
1843 started, so that we can restore it once the schedule is complete. */
1844 int old_queue;
1846 /* The relative importance of an unscheduled instruction. Higher
1847 values indicate greater importance. */
1848 unsigned int model_priority;
1850 /* The length of the longest path of satisfied true dependencies
1851 that leads to this instruction. */
1852 unsigned int depth;
1854 /* The length of the longest path of dependencies of any kind
1855 that leads from this instruction. */
1856 unsigned int alap;
1858 /* The number of predecessor nodes that must still be scheduled. */
1859 int unscheduled_preds;
1862 /* Information about the pressure limit for a particular register class.
1863 This structure is used when applying a model schedule to the main
1864 schedule. */
1865 struct model_pressure_limit {
1866 /* The maximum register pressure seen in the original model schedule. */
1867 int orig_pressure;
1869 /* The maximum register pressure seen in the current model schedule
1870 (which excludes instructions that have already been scheduled). */
1871 int pressure;
1873 /* The point of the current model schedule at which PRESSURE is first
1874 reached. It is set to -1 if the value needs to be recomputed. */
1875 int point;
1878 /* Describes a particular way of measuring register pressure. */
1879 struct model_pressure_group {
1880 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1881 struct model_pressure_limit limits[N_REG_CLASSES];
1883 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1884 on register class ira_pressure_classes[PCI] at point POINT of the
1885 current model schedule. A POINT of model_num_insns describes the
1886 pressure at the end of the schedule. */
1887 struct model_pressure_data *model;
1890 /* Index POINT gives the instruction at point POINT of the model schedule.
1891 This array doesn't change during main scheduling. */
1892 static vec<rtx_insn *> model_schedule;
1894 /* The list of instructions in the model worklist, sorted in order of
1895 decreasing priority. */
1896 static struct model_insn_info *model_worklist;
1898 /* Index I describes the instruction with INSN_LUID I. */
1899 static struct model_insn_info *model_insns;
1901 /* The number of instructions in the model schedule. */
1902 static int model_num_insns;
1904 /* The index of the first instruction in model_schedule that hasn't yet been
1905 added to the main schedule, or model_num_insns if all of them have. */
1906 static int model_curr_point;
1908 /* Describes the pressure before each instruction in the model schedule. */
1909 static struct model_pressure_group model_before_pressure;
1911 /* The first unused model_priority value (as used in model_insn_info). */
1912 static unsigned int model_next_priority;
1915 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1916 at point POINT of the model schedule. */
1917 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1918 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1920 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1921 after point POINT of the model schedule. */
1922 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1923 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1925 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1926 of the model schedule. */
1927 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1928 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1930 /* Information about INSN that is used when creating the model schedule. */
1931 #define MODEL_INSN_INFO(INSN) \
1932 (&model_insns[INSN_LUID (INSN)])
1934 /* The instruction at point POINT of the model schedule. */
1935 #define MODEL_INSN(POINT) \
1936 (model_schedule[POINT])
1939 /* Return INSN's index in the model schedule, or model_num_insns if it
1940 doesn't belong to that schedule. */
1942 static int
1943 model_index (rtx_insn *insn)
1945 if (INSN_MODEL_INDEX (insn) == 0)
1946 return model_num_insns;
1947 return INSN_MODEL_INDEX (insn) - 1;
1950 /* Make sure that GROUP->limits is up-to-date for the current point
1951 of the model schedule. */
1953 static void
1954 model_update_limit_points_in_group (struct model_pressure_group *group)
1956 int pci, max_pressure, point;
1958 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1960 /* We may have passed the final point at which the pressure in
1961 group->limits[pci].pressure was reached. Update the limit if so. */
1962 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1963 group->limits[pci].pressure = max_pressure;
1965 /* Find the point at which MAX_PRESSURE is first reached. We need
1966 to search in three cases:
1968 - We've already moved past the previous pressure point.
1969 In this case we search forward from model_curr_point.
1971 - We scheduled the previous point of maximum pressure ahead of
1972 its position in the model schedule, but doing so didn't bring
1973 the pressure point earlier. In this case we search forward
1974 from that previous pressure point.
1976 - Scheduling an instruction early caused the maximum pressure
1977 to decrease. In this case we will have set the pressure
1978 point to -1, and we search forward from model_curr_point. */
1979 point = MAX (group->limits[pci].point, model_curr_point);
1980 while (point < model_num_insns
1981 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1982 point++;
1983 group->limits[pci].point = point;
1985 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1986 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1990 /* Make sure that all register-pressure limits are up-to-date for the
1991 current position in the model schedule. */
1993 static void
1994 model_update_limit_points (void)
1996 model_update_limit_points_in_group (&model_before_pressure);
1999 /* Return the model_index of the last unscheduled use in chain USE
2000 outside of USE's instruction. Return -1 if there are no other uses,
2001 or model_num_insns if the register is live at the end of the block. */
2003 static int
2004 model_last_use_except (struct reg_use_data *use)
2006 struct reg_use_data *next;
2007 int last, index;
2009 last = -1;
2010 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2011 if (NONDEBUG_INSN_P (next->insn)
2012 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2014 index = model_index (next->insn);
2015 if (index == model_num_insns)
2016 return model_num_insns;
2017 if (last < index)
2018 last = index;
2020 return last;
2023 /* An instruction with model_index POINT has just been scheduled, and it
2024 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2025 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2026 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2028 static void
2029 model_start_update_pressure (struct model_pressure_group *group,
2030 int point, int pci, int delta)
2032 int next_max_pressure;
2034 if (point == model_num_insns)
2036 /* The instruction wasn't part of the model schedule; it was moved
2037 from a different block. Update the pressure for the end of
2038 the model schedule. */
2039 MODEL_REF_PRESSURE (group, point, pci) += delta;
2040 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2042 else
2044 /* Record that this instruction has been scheduled. Nothing now
2045 changes between POINT and POINT + 1, so get the maximum pressure
2046 from the latter. If the maximum pressure decreases, the new
2047 pressure point may be before POINT. */
2048 MODEL_REF_PRESSURE (group, point, pci) = -1;
2049 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2050 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2052 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2053 if (group->limits[pci].point == point)
2054 group->limits[pci].point = -1;
2059 /* Record that scheduling a later instruction has changed the pressure
2060 at point POINT of the model schedule by DELTA (which might be 0).
2061 Update GROUP accordingly. Return nonzero if these changes might
2062 trigger changes to previous points as well. */
2064 static int
2065 model_update_pressure (struct model_pressure_group *group,
2066 int point, int pci, int delta)
2068 int ref_pressure, max_pressure, next_max_pressure;
2070 /* If POINT hasn't yet been scheduled, update its pressure. */
2071 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2072 if (ref_pressure >= 0 && delta != 0)
2074 ref_pressure += delta;
2075 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2077 /* Check whether the maximum pressure in the overall schedule
2078 has increased. (This means that the MODEL_MAX_PRESSURE of
2079 every point <= POINT will need to increase too; see below.) */
2080 if (group->limits[pci].pressure < ref_pressure)
2081 group->limits[pci].pressure = ref_pressure;
2083 /* If we are at maximum pressure, and the maximum pressure
2084 point was previously unknown or later than POINT,
2085 bring it forward. */
2086 if (group->limits[pci].pressure == ref_pressure
2087 && !IN_RANGE (group->limits[pci].point, 0, point))
2088 group->limits[pci].point = point;
2090 /* If POINT used to be the point of maximum pressure, but isn't
2091 any longer, we need to recalculate it using a forward walk. */
2092 if (group->limits[pci].pressure > ref_pressure
2093 && group->limits[pci].point == point)
2094 group->limits[pci].point = -1;
2097 /* Update the maximum pressure at POINT. Changes here might also
2098 affect the maximum pressure at POINT - 1. */
2099 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2100 max_pressure = MAX (ref_pressure, next_max_pressure);
2101 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2103 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2104 return 1;
2106 return 0;
2109 /* INSN has just been scheduled. Update the model schedule accordingly. */
2111 static void
2112 model_recompute (rtx_insn *insn)
2114 struct {
2115 int last_use;
2116 int regno;
2117 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2118 struct reg_use_data *use;
2119 struct reg_pressure_data *reg_pressure;
2120 int delta[N_REG_CLASSES];
2121 int pci, point, mix, new_last, cl, ref_pressure, queue;
2122 unsigned int i, num_uses, num_pending_births;
2123 bool print_p;
2125 /* The destinations of INSN were previously live from POINT onwards, but are
2126 now live from model_curr_point onwards. Set up DELTA accordingly. */
2127 point = model_index (insn);
2128 reg_pressure = INSN_REG_PRESSURE (insn);
2129 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2131 cl = ira_pressure_classes[pci];
2132 delta[cl] = reg_pressure[pci].set_increase;
2135 /* Record which registers previously died at POINT, but which now die
2136 before POINT. Adjust DELTA so that it represents the effect of
2137 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2138 registers that will be born in the range [model_curr_point, POINT). */
2139 num_uses = 0;
2140 num_pending_births = 0;
2141 bitmap_clear (tmp_bitmap);
2142 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2144 new_last = model_last_use_except (use);
2145 if (new_last < point && bitmap_set_bit (tmp_bitmap, use->regno))
2147 gcc_assert (num_uses < ARRAY_SIZE (uses));
2148 uses[num_uses].last_use = new_last;
2149 uses[num_uses].regno = use->regno;
2150 /* This register is no longer live after POINT - 1. */
2151 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2152 num_uses++;
2153 if (new_last >= 0)
2154 num_pending_births++;
2158 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2159 Also set each group pressure limit for POINT. */
2160 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2162 cl = ira_pressure_classes[pci];
2163 model_start_update_pressure (&model_before_pressure,
2164 point, pci, delta[cl]);
2167 /* Walk the model schedule backwards, starting immediately before POINT. */
2168 print_p = false;
2169 if (point != model_curr_point)
2172 point--;
2173 insn = MODEL_INSN (point);
2174 queue = QUEUE_INDEX (insn);
2176 if (queue != QUEUE_SCHEDULED)
2178 /* DELTA describes the effect of the move on the register pressure
2179 after POINT. Make it describe the effect on the pressure
2180 before POINT. */
2181 i = 0;
2182 while (i < num_uses)
2184 if (uses[i].last_use == point)
2186 /* This register is now live again. */
2187 mark_regno_birth_or_death (NULL, delta,
2188 uses[i].regno, true);
2190 /* Remove this use from the array. */
2191 uses[i] = uses[num_uses - 1];
2192 num_uses--;
2193 num_pending_births--;
2195 else
2196 i++;
2199 if (sched_verbose >= 5)
2201 if (!print_p)
2203 fprintf (sched_dump, MODEL_BAR);
2204 fprintf (sched_dump, ";;\t\t| New pressure for model"
2205 " schedule\n");
2206 fprintf (sched_dump, MODEL_BAR);
2207 print_p = true;
2210 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2211 point, INSN_UID (insn),
2212 str_pattern_slim (PATTERN (insn)));
2213 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2215 cl = ira_pressure_classes[pci];
2216 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2217 point, pci);
2218 fprintf (sched_dump, " %s:[%d->%d]",
2219 reg_class_names[ira_pressure_classes[pci]],
2220 ref_pressure, ref_pressure + delta[cl]);
2222 fprintf (sched_dump, "\n");
2226 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2227 might have changed as well. */
2228 mix = num_pending_births;
2229 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2231 cl = ira_pressure_classes[pci];
2232 mix |= delta[cl];
2233 mix |= model_update_pressure (&model_before_pressure,
2234 point, pci, delta[cl]);
2237 while (mix && point > model_curr_point);
2239 if (print_p)
2240 fprintf (sched_dump, MODEL_BAR);
2243 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2244 check whether the insn's pattern needs restoring. */
2245 static bool
2246 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2248 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2249 return false;
2251 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2253 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2254 gcc_assert (next == DEP_CON (dep));
2256 else
2258 struct dep_replacement *desc = DEP_REPLACE (dep);
2259 if (desc->insn != next)
2261 gcc_assert (*desc->loc == desc->orig);
2262 return false;
2265 return true;
2268 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2269 pressure on CL from P to P'. We use this to calculate a "base ECC",
2270 baseECC (CL, X), for each pressure class CL and each instruction X.
2271 Supposing X changes the pressure on CL from P to P', and that the
2272 maximum pressure on CL in the current model schedule is MP', then:
2274 * if X occurs before or at the next point of maximum pressure in
2275 the model schedule and P' > MP', then:
2277 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2279 The idea is that the pressure after scheduling a fixed set of
2280 instructions -- in this case, the set up to and including the
2281 next maximum pressure point -- is going to be the same regardless
2282 of the order; we simply want to keep the intermediate pressure
2283 under control. Thus X has a cost of zero unless scheduling it
2284 now would exceed MP'.
2286 If all increases in the set are by the same amount, no zero-cost
2287 instruction will ever cause the pressure to exceed MP'. However,
2288 if X is instead moved past an instruction X' with pressure in the
2289 range (MP' - (P' - P), MP'), the pressure at X' will increase
2290 beyond MP'. Since baseECC is very much a heuristic anyway,
2291 it doesn't seem worth the overhead of tracking cases like these.
2293 The cost of exceeding MP' is always based on the original maximum
2294 pressure MP. This is so that going 2 registers over the original
2295 limit has the same cost regardless of whether it comes from two
2296 separate +1 deltas or from a single +2 delta.
2298 * if X occurs after the next point of maximum pressure in the model
2299 schedule and P' > P, then:
2301 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2303 That is, if we move X forward across a point of maximum pressure,
2304 and if X increases the pressure by P' - P, then we conservatively
2305 assume that scheduling X next would increase the maximum pressure
2306 by P' - P. Again, the cost of doing this is based on the original
2307 maximum pressure MP, for the same reason as above.
2309 * if P' < P, P > MP, and X occurs at or after the next point of
2310 maximum pressure, then:
2312 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2314 That is, if we have already exceeded the original maximum pressure MP,
2315 and if X might reduce the maximum pressure again -- or at least push
2316 it further back, and thus allow more scheduling freedom -- it is given
2317 a negative cost to reflect the improvement.
2319 * otherwise,
2321 baseECC (CL, X) = 0
2323 In this case, X is not expected to affect the maximum pressure MP',
2324 so it has zero cost.
2326 We then create a combined value baseECC (X) that is the sum of
2327 baseECC (CL, X) for each pressure class CL.
2329 baseECC (X) could itself be used as the ECC value described above.
2330 However, this is often too conservative, in the sense that it
2331 tends to make high-priority instructions that increase pressure
2332 wait too long in cases where introducing a spill would be better.
2333 For this reason the final ECC is a priority-adjusted form of
2334 baseECC (X). Specifically, we calculate:
2336 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2337 baseP = MAX { P (X) | baseECC (X) <= 0 }
2339 Then:
2341 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2343 Thus an instruction's effect on pressure is ignored if it has a high
2344 enough priority relative to the ones that don't increase pressure.
2345 Negative values of baseECC (X) do not increase the priority of X
2346 itself, but they do make it harder for other instructions to
2347 increase the pressure further.
2349 This pressure cost is deliberately timid. The intention has been
2350 to choose a heuristic that rarely interferes with the normal list
2351 scheduler in cases where that scheduler would produce good code.
2352 We simply want to curb some of its worst excesses. */
2354 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2356 Here we use the very simplistic cost model that every register above
2357 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2358 measures instead, such as one based on MEMORY_MOVE_COST. However:
2360 (1) In order for an instruction to be scheduled, the higher cost
2361 would need to be justified in a single saving of that many stalls.
2362 This is overly pessimistic, because the benefit of spilling is
2363 often to avoid a sequence of several short stalls rather than
2364 a single long one.
2366 (2) The cost is still arbitrary. Because we are not allocating
2367 registers during scheduling, we have no way of knowing for
2368 sure how many memory accesses will be required by each spill,
2369 where the spills will be placed within the block, or even
2370 which block(s) will contain the spills.
2372 So a higher cost than 1 is often too conservative in practice,
2373 forcing blocks to contain unnecessary stalls instead of spill code.
2374 The simple cost below seems to be the best compromise. It reduces
2375 the interference with the normal list scheduler, which helps make
2376 it more suitable for a default-on option. */
2378 static int
2379 model_spill_cost (int cl, int from, int to)
2381 from = MAX (from, sched_class_regs_num[cl]);
2382 return MAX (to, from) - from;
2385 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2386 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2387 P' = P + DELTA. */
2389 static int
2390 model_excess_group_cost (struct model_pressure_group *group,
2391 int point, int pci, int delta)
2393 int pressure, cl;
2395 cl = ira_pressure_classes[pci];
2396 if (delta < 0 && point >= group->limits[pci].point)
2398 pressure = MAX (group->limits[pci].orig_pressure,
2399 curr_reg_pressure[cl] + delta);
2400 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2403 if (delta > 0)
2405 if (point > group->limits[pci].point)
2406 pressure = group->limits[pci].pressure + delta;
2407 else
2408 pressure = curr_reg_pressure[cl] + delta;
2410 if (pressure > group->limits[pci].pressure)
2411 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2412 pressure);
2415 return 0;
2418 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2419 if PRINT_P. */
2421 static int
2422 model_excess_cost (rtx_insn *insn, bool print_p)
2424 int point, pci, cl, cost, this_cost, delta;
2425 struct reg_pressure_data *insn_reg_pressure;
2426 int insn_death[N_REG_CLASSES];
2428 calculate_reg_deaths (insn, insn_death);
2429 point = model_index (insn);
2430 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2431 cost = 0;
2433 if (print_p)
2434 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2435 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2437 /* Sum up the individual costs for each register class. */
2438 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2440 cl = ira_pressure_classes[pci];
2441 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2442 this_cost = model_excess_group_cost (&model_before_pressure,
2443 point, pci, delta);
2444 cost += this_cost;
2445 if (print_p)
2446 fprintf (sched_dump, " %s:[%d base cost %d]",
2447 reg_class_names[cl], delta, this_cost);
2450 if (print_p)
2451 fprintf (sched_dump, "\n");
2453 return cost;
2456 /* Dump the next points of maximum pressure for GROUP. */
2458 static void
2459 model_dump_pressure_points (struct model_pressure_group *group)
2461 int pci, cl;
2463 fprintf (sched_dump, ";;\t\t| pressure points");
2464 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2466 cl = ira_pressure_classes[pci];
2467 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2468 curr_reg_pressure[cl], group->limits[pci].pressure);
2469 if (group->limits[pci].point < model_num_insns)
2470 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2471 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2472 else
2473 fprintf (sched_dump, "end]");
2475 fprintf (sched_dump, "\n");
2478 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2480 static void
2481 model_set_excess_costs (rtx_insn **insns, int count)
2483 int i, cost, priority_base, priority;
2484 bool print_p;
2486 /* Record the baseECC value for each instruction in the model schedule,
2487 except that negative costs are converted to zero ones now rather than
2488 later. Do not assign a cost to debug instructions, since they must
2489 not change code-generation decisions. Experiments suggest we also
2490 get better results by not assigning a cost to instructions from
2491 a different block.
2493 Set PRIORITY_BASE to baseP in the block comment above. This is the
2494 maximum priority of the "cheap" instructions, which should always
2495 include the next model instruction. */
2496 priority_base = 0;
2497 print_p = false;
2498 for (i = 0; i < count; i++)
2499 if (INSN_MODEL_INDEX (insns[i]))
2501 if (sched_verbose >= 6 && !print_p)
2503 fprintf (sched_dump, MODEL_BAR);
2504 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2505 model_dump_pressure_points (&model_before_pressure);
2506 fprintf (sched_dump, MODEL_BAR);
2507 print_p = true;
2509 cost = model_excess_cost (insns[i], print_p);
2510 if (cost <= 0)
2512 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2513 priority_base = MAX (priority_base, priority);
2514 cost = 0;
2516 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2518 if (print_p)
2519 fprintf (sched_dump, MODEL_BAR);
2521 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2522 instruction. */
2523 for (i = 0; i < count; i++)
2525 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2526 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2527 if (cost > 0 && priority > priority_base)
2529 cost += priority_base - priority;
2530 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2536 /* Enum of rank_for_schedule heuristic decisions. */
2537 enum rfs_decision {
2538 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2539 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2540 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2541 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2542 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_N };
2544 /* Corresponding strings for print outs. */
2545 static const char *rfs_str[RFS_N] = {
2546 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2547 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2548 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2549 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2550 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION" };
2552 /* Statistical breakdown of rank_for_schedule decisions. */
2553 struct rank_for_schedule_stats_t { unsigned stats[RFS_N]; };
2554 static rank_for_schedule_stats_t rank_for_schedule_stats;
2556 /* Return the result of comparing insns TMP and TMP2 and update
2557 Rank_For_Schedule statistics. */
2558 static int
2559 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2561 ++rank_for_schedule_stats.stats[decision];
2562 if (result < 0)
2563 INSN_LAST_RFS_WIN (tmp) = decision;
2564 else if (result > 0)
2565 INSN_LAST_RFS_WIN (tmp2) = decision;
2566 else
2567 gcc_unreachable ();
2568 return result;
2571 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2572 keeping normal insns in original order. */
2574 static int
2575 rank_for_schedule_debug (const void *x, const void *y)
2577 rtx_insn *tmp = *(rtx_insn * const *) y;
2578 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2580 /* Schedule debug insns as early as possible. */
2581 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2582 return -1;
2583 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2584 return 1;
2585 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2586 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2587 else
2588 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2591 /* Returns a positive value if x is preferred; returns a negative value if
2592 y is preferred. Should never return 0, since that will make the sort
2593 unstable. */
2595 static int
2596 rank_for_schedule (const void *x, const void *y)
2598 rtx_insn *tmp = *(rtx_insn * const *) y;
2599 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2600 int tmp_class, tmp2_class;
2601 int val, priority_val, info_val, diff;
2603 if (live_range_shrinkage_p)
2605 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2606 code. */
2607 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2608 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2609 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2610 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2611 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2612 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2613 /* Sort by INSN_LUID (original insn order), so that we make the
2614 sort stable. This minimizes instruction movement, thus
2615 minimizing sched's effect on debugging and cross-jumping. */
2616 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2617 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2620 /* The insn in a schedule group should be issued the first. */
2621 if (flag_sched_group_heuristic &&
2622 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2623 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2624 tmp, tmp2);
2626 /* Make sure that priority of TMP and TMP2 are initialized. */
2627 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2629 if (sched_fusion)
2631 /* The instruction that has the same fusion priority as the last
2632 instruction is the instruction we picked next. If that is not
2633 the case, we sort ready list firstly by fusion priority, then
2634 by priority, and at last by INSN_LUID. */
2635 int a = INSN_FUSION_PRIORITY (tmp);
2636 int b = INSN_FUSION_PRIORITY (tmp2);
2637 int last = -1;
2639 if (last_nondebug_scheduled_insn
2640 && !NOTE_P (last_nondebug_scheduled_insn)
2641 && BLOCK_FOR_INSN (tmp)
2642 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2643 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2645 if (a != last && b != last)
2647 if (a == b)
2649 a = INSN_PRIORITY (tmp);
2650 b = INSN_PRIORITY (tmp2);
2652 if (a != b)
2653 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2654 else
2655 return rfs_result (RFS_FUSION,
2656 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2658 else if (a == b)
2660 gcc_assert (last_nondebug_scheduled_insn
2661 && !NOTE_P (last_nondebug_scheduled_insn));
2662 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2664 a = abs (INSN_PRIORITY (tmp) - last);
2665 b = abs (INSN_PRIORITY (tmp2) - last);
2666 if (a != b)
2667 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2668 else
2669 return rfs_result (RFS_FUSION,
2670 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2672 else if (a == last)
2673 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2674 else
2675 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2678 if (sched_pressure != SCHED_PRESSURE_NONE)
2680 /* Prefer insn whose scheduling results in the smallest register
2681 pressure excess. */
2682 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2683 + insn_delay (tmp)
2684 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2685 - insn_delay (tmp2))))
2686 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2689 if (sched_pressure != SCHED_PRESSURE_NONE
2690 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2691 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2693 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2694 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2697 /* If we are doing backtracking in this schedule, prefer insns that
2698 have forward dependencies with negative cost against an insn that
2699 was already scheduled. */
2700 if (current_sched_info->flags & DO_BACKTRACKING)
2702 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2703 if (priority_val)
2704 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2707 /* Prefer insn with higher priority. */
2708 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2710 if (flag_sched_critical_path_heuristic && priority_val)
2711 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2713 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2715 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2716 if (autopref != 0)
2717 return autopref;
2720 /* Prefer speculative insn with greater dependencies weakness. */
2721 if (flag_sched_spec_insn_heuristic && spec_info)
2723 ds_t ds1, ds2;
2724 dw_t dw1, dw2;
2725 int dw;
2727 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2728 if (ds1)
2729 dw1 = ds_weak (ds1);
2730 else
2731 dw1 = NO_DEP_WEAK;
2733 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2734 if (ds2)
2735 dw2 = ds_weak (ds2);
2736 else
2737 dw2 = NO_DEP_WEAK;
2739 dw = dw2 - dw1;
2740 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2741 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2744 info_val = (*current_sched_info->rank) (tmp, tmp2);
2745 if (flag_sched_rank_heuristic && info_val)
2746 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2748 /* Compare insns based on their relation to the last scheduled
2749 non-debug insn. */
2750 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2752 dep_t dep1;
2753 dep_t dep2;
2754 rtx_insn *last = last_nondebug_scheduled_insn;
2756 /* Classify the instructions into three classes:
2757 1) Data dependent on last schedule insn.
2758 2) Anti/Output dependent on last scheduled insn.
2759 3) Independent of last scheduled insn, or has latency of one.
2760 Choose the insn from the highest numbered class if different. */
2761 dep1 = sd_find_dep_between (last, tmp, true);
2763 if (dep1 == NULL || dep_cost (dep1) == 1)
2764 tmp_class = 3;
2765 else if (/* Data dependence. */
2766 DEP_TYPE (dep1) == REG_DEP_TRUE)
2767 tmp_class = 1;
2768 else
2769 tmp_class = 2;
2771 dep2 = sd_find_dep_between (last, tmp2, true);
2773 if (dep2 == NULL || dep_cost (dep2) == 1)
2774 tmp2_class = 3;
2775 else if (/* Data dependence. */
2776 DEP_TYPE (dep2) == REG_DEP_TRUE)
2777 tmp2_class = 1;
2778 else
2779 tmp2_class = 2;
2781 if ((val = tmp2_class - tmp_class))
2782 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2785 /* Prefer instructions that occur earlier in the model schedule. */
2786 if (sched_pressure == SCHED_PRESSURE_MODEL
2787 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2789 diff = model_index (tmp) - model_index (tmp2);
2790 gcc_assert (diff != 0);
2791 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2794 /* Prefer the insn which has more later insns that depend on it.
2795 This gives the scheduler more freedom when scheduling later
2796 instructions at the expense of added register pressure. */
2798 val = (dep_list_size (tmp2, SD_LIST_FORW)
2799 - dep_list_size (tmp, SD_LIST_FORW));
2801 if (flag_sched_dep_count_heuristic && val != 0)
2802 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2804 /* If insns are equally good, sort by INSN_LUID (original insn order),
2805 so that we make the sort stable. This minimizes instruction movement,
2806 thus minimizing sched's effect on debugging and cross-jumping. */
2807 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2810 /* Resort the array A in which only element at index N may be out of order. */
2812 HAIFA_INLINE static void
2813 swap_sort (rtx_insn **a, int n)
2815 rtx_insn *insn = a[n - 1];
2816 int i = n - 2;
2818 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2820 a[i + 1] = a[i];
2821 i -= 1;
2823 a[i + 1] = insn;
2826 /* Add INSN to the insn queue so that it can be executed at least
2827 N_CYCLES after the currently executing insn. Preserve insns
2828 chain for debugging purposes. REASON will be printed in debugging
2829 output. */
2831 HAIFA_INLINE static void
2832 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2834 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2835 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2836 int new_tick;
2838 gcc_assert (n_cycles <= max_insn_queue_index);
2839 gcc_assert (!DEBUG_INSN_P (insn));
2841 insn_queue[next_q] = link;
2842 q_size += 1;
2844 if (sched_verbose >= 2)
2846 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2847 (*current_sched_info->print_insn) (insn, 0));
2849 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2852 QUEUE_INDEX (insn) = next_q;
2854 if (current_sched_info->flags & DO_BACKTRACKING)
2856 new_tick = clock_var + n_cycles;
2857 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2858 INSN_TICK (insn) = new_tick;
2860 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2861 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2863 must_backtrack = true;
2864 if (sched_verbose >= 2)
2865 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2870 /* Remove INSN from queue. */
2871 static void
2872 queue_remove (rtx_insn *insn)
2874 gcc_assert (QUEUE_INDEX (insn) >= 0);
2875 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2876 q_size--;
2877 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2880 /* Return a pointer to the bottom of the ready list, i.e. the insn
2881 with the lowest priority. */
2883 rtx_insn **
2884 ready_lastpos (struct ready_list *ready)
2886 gcc_assert (ready->n_ready >= 1);
2887 return ready->vec + ready->first - ready->n_ready + 1;
2890 /* Add an element INSN to the ready list so that it ends up with the
2891 lowest/highest priority depending on FIRST_P. */
2893 HAIFA_INLINE static void
2894 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2896 if (!first_p)
2898 if (ready->first == ready->n_ready)
2900 memmove (ready->vec + ready->veclen - ready->n_ready,
2901 ready_lastpos (ready),
2902 ready->n_ready * sizeof (rtx));
2903 ready->first = ready->veclen - 1;
2905 ready->vec[ready->first - ready->n_ready] = insn;
2907 else
2909 if (ready->first == ready->veclen - 1)
2911 if (ready->n_ready)
2912 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2913 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2914 ready_lastpos (ready),
2915 ready->n_ready * sizeof (rtx));
2916 ready->first = ready->veclen - 2;
2918 ready->vec[++(ready->first)] = insn;
2921 ready->n_ready++;
2922 if (DEBUG_INSN_P (insn))
2923 ready->n_debug++;
2925 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2926 QUEUE_INDEX (insn) = QUEUE_READY;
2928 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2929 && INSN_EXACT_TICK (insn) < clock_var)
2931 must_backtrack = true;
2935 /* Remove the element with the highest priority from the ready list and
2936 return it. */
2938 HAIFA_INLINE static rtx_insn *
2939 ready_remove_first (struct ready_list *ready)
2941 rtx_insn *t;
2943 gcc_assert (ready->n_ready);
2944 t = ready->vec[ready->first--];
2945 ready->n_ready--;
2946 if (DEBUG_INSN_P (t))
2947 ready->n_debug--;
2948 /* If the queue becomes empty, reset it. */
2949 if (ready->n_ready == 0)
2950 ready->first = ready->veclen - 1;
2952 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2953 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2955 return t;
2958 /* The following code implements multi-pass scheduling for the first
2959 cycle. In other words, we will try to choose ready insn which
2960 permits to start maximum number of insns on the same cycle. */
2962 /* Return a pointer to the element INDEX from the ready. INDEX for
2963 insn with the highest priority is 0, and the lowest priority has
2964 N_READY - 1. */
2966 rtx_insn *
2967 ready_element (struct ready_list *ready, int index)
2969 gcc_assert (ready->n_ready && index < ready->n_ready);
2971 return ready->vec[ready->first - index];
2974 /* Remove the element INDEX from the ready list and return it. INDEX
2975 for insn with the highest priority is 0, and the lowest priority
2976 has N_READY - 1. */
2978 HAIFA_INLINE static rtx_insn *
2979 ready_remove (struct ready_list *ready, int index)
2981 rtx_insn *t;
2982 int i;
2984 if (index == 0)
2985 return ready_remove_first (ready);
2986 gcc_assert (ready->n_ready && index < ready->n_ready);
2987 t = ready->vec[ready->first - index];
2988 ready->n_ready--;
2989 if (DEBUG_INSN_P (t))
2990 ready->n_debug--;
2991 for (i = index; i < ready->n_ready; i++)
2992 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
2993 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2994 return t;
2997 /* Remove INSN from the ready list. */
2998 static void
2999 ready_remove_insn (rtx_insn *insn)
3001 int i;
3003 for (i = 0; i < readyp->n_ready; i++)
3004 if (ready_element (readyp, i) == insn)
3006 ready_remove (readyp, i);
3007 return;
3009 gcc_unreachable ();
3012 /* Calculate difference of two statistics set WAS and NOW.
3013 Result returned in WAS. */
3014 static void
3015 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3016 const rank_for_schedule_stats_t *now)
3018 for (int i = 0; i < RFS_N; ++i)
3019 was->stats[i] = now->stats[i] - was->stats[i];
3022 /* Print rank_for_schedule statistics. */
3023 static void
3024 print_rank_for_schedule_stats (const char *prefix,
3025 const rank_for_schedule_stats_t *stats,
3026 struct ready_list *ready)
3028 for (int i = 0; i < RFS_N; ++i)
3029 if (stats->stats[i])
3031 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3033 if (ready != NULL)
3034 /* Print out insns that won due to RFS_<I>. */
3036 rtx_insn **p = ready_lastpos (ready);
3038 fprintf (sched_dump, ":");
3039 /* Start with 1 since least-priority insn didn't have any wins. */
3040 for (int j = 1; j < ready->n_ready; ++j)
3041 if (INSN_LAST_RFS_WIN (p[j]) == i)
3042 fprintf (sched_dump, " %s",
3043 (*current_sched_info->print_insn) (p[j], 0));
3045 fprintf (sched_dump, "\n");
3049 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3050 of array. */
3051 static void
3052 ready_sort_debug (struct ready_list *ready)
3054 int i;
3055 rtx_insn **first = ready_lastpos (ready);
3057 for (i = 0; i < ready->n_ready; ++i)
3058 if (!DEBUG_INSN_P (first[i]))
3059 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3061 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3064 /* Sort non-debug insns in the ready list READY by ascending priority.
3065 Assumes that all debug insns are separated from the real insns. */
3066 static void
3067 ready_sort_real (struct ready_list *ready)
3069 int i;
3070 rtx_insn **first = ready_lastpos (ready);
3071 int n_ready_real = ready->n_ready - ready->n_debug;
3073 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3074 for (i = 0; i < n_ready_real; ++i)
3075 setup_insn_reg_pressure_info (first[i]);
3076 else if (sched_pressure == SCHED_PRESSURE_MODEL
3077 && model_curr_point < model_num_insns)
3078 model_set_excess_costs (first, n_ready_real);
3080 rank_for_schedule_stats_t stats1;
3081 if (sched_verbose >= 4)
3082 stats1 = rank_for_schedule_stats;
3084 if (n_ready_real == 2)
3085 swap_sort (first, n_ready_real);
3086 else if (n_ready_real > 2)
3087 /* HACK: Disable qsort checking for now (PR82396). */
3088 (qsort) (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3090 if (sched_verbose >= 4)
3092 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3093 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3097 /* Sort the ready list READY by ascending priority. */
3098 static void
3099 ready_sort (struct ready_list *ready)
3101 if (ready->n_debug > 0)
3102 ready_sort_debug (ready);
3103 else
3104 ready_sort_real (ready);
3107 /* PREV is an insn that is ready to execute. Adjust its priority if that
3108 will help shorten or lengthen register lifetimes as appropriate. Also
3109 provide a hook for the target to tweak itself. */
3111 HAIFA_INLINE static void
3112 adjust_priority (rtx_insn *prev)
3114 /* ??? There used to be code here to try and estimate how an insn
3115 affected register lifetimes, but it did it by looking at REG_DEAD
3116 notes, which we removed in schedule_region. Nor did it try to
3117 take into account register pressure or anything useful like that.
3119 Revisit when we have a machine model to work with and not before. */
3121 if (targetm.sched.adjust_priority)
3122 INSN_PRIORITY (prev) =
3123 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3126 /* Advance DFA state STATE on one cycle. */
3127 void
3128 advance_state (state_t state)
3130 if (targetm.sched.dfa_pre_advance_cycle)
3131 targetm.sched.dfa_pre_advance_cycle ();
3133 if (targetm.sched.dfa_pre_cycle_insn)
3134 state_transition (state,
3135 targetm.sched.dfa_pre_cycle_insn ());
3137 state_transition (state, NULL);
3139 if (targetm.sched.dfa_post_cycle_insn)
3140 state_transition (state,
3141 targetm.sched.dfa_post_cycle_insn ());
3143 if (targetm.sched.dfa_post_advance_cycle)
3144 targetm.sched.dfa_post_advance_cycle ();
3147 /* Advance time on one cycle. */
3148 HAIFA_INLINE static void
3149 advance_one_cycle (void)
3151 advance_state (curr_state);
3152 if (sched_verbose >= 4)
3153 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3156 /* Update register pressure after scheduling INSN. */
3157 static void
3158 update_register_pressure (rtx_insn *insn)
3160 struct reg_use_data *use;
3161 struct reg_set_data *set;
3163 gcc_checking_assert (!DEBUG_INSN_P (insn));
3165 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3166 if (dying_use_p (use))
3167 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3168 use->regno, false);
3169 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3170 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3171 set->regno, true);
3174 /* Set up or update (if UPDATE_P) max register pressure (see its
3175 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3176 after insn AFTER. */
3177 static void
3178 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3180 int i, p;
3181 bool eq_p;
3182 rtx_insn *insn;
3183 static int max_reg_pressure[N_REG_CLASSES];
3185 save_reg_pressure ();
3186 for (i = 0; i < ira_pressure_classes_num; i++)
3187 max_reg_pressure[ira_pressure_classes[i]]
3188 = curr_reg_pressure[ira_pressure_classes[i]];
3189 for (insn = NEXT_INSN (after);
3190 insn != NULL_RTX && ! BARRIER_P (insn)
3191 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3192 insn = NEXT_INSN (insn))
3193 if (NONDEBUG_INSN_P (insn))
3195 eq_p = true;
3196 for (i = 0; i < ira_pressure_classes_num; i++)
3198 p = max_reg_pressure[ira_pressure_classes[i]];
3199 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3201 eq_p = false;
3202 INSN_MAX_REG_PRESSURE (insn)[i]
3203 = max_reg_pressure[ira_pressure_classes[i]];
3206 if (update_p && eq_p)
3207 break;
3208 update_register_pressure (insn);
3209 for (i = 0; i < ira_pressure_classes_num; i++)
3210 if (max_reg_pressure[ira_pressure_classes[i]]
3211 < curr_reg_pressure[ira_pressure_classes[i]])
3212 max_reg_pressure[ira_pressure_classes[i]]
3213 = curr_reg_pressure[ira_pressure_classes[i]];
3215 restore_reg_pressure ();
3218 /* Update the current register pressure after scheduling INSN. Update
3219 also max register pressure for unscheduled insns of the current
3220 BB. */
3221 static void
3222 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3224 int i;
3225 int before[N_REG_CLASSES];
3227 for (i = 0; i < ira_pressure_classes_num; i++)
3228 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3229 update_register_pressure (insn);
3230 for (i = 0; i < ira_pressure_classes_num; i++)
3231 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3232 break;
3233 if (i < ira_pressure_classes_num)
3234 setup_insn_max_reg_pressure (insn, true);
3237 /* Set up register pressure at the beginning of basic block BB whose
3238 insns starting after insn AFTER. Set up also max register pressure
3239 for all insns of the basic block. */
3240 void
3241 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3243 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3244 initiate_bb_reg_pressure_info (bb);
3245 setup_insn_max_reg_pressure (after, false);
3248 /* If doing predication while scheduling, verify whether INSN, which
3249 has just been scheduled, clobbers the conditions of any
3250 instructions that must be predicated in order to break their
3251 dependencies. If so, remove them from the queues so that they will
3252 only be scheduled once their control dependency is resolved. */
3254 static void
3255 check_clobbered_conditions (rtx_insn *insn)
3257 HARD_REG_SET t;
3258 int i;
3260 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3261 return;
3263 find_all_hard_reg_sets (insn, &t, true);
3265 restart:
3266 for (i = 0; i < ready.n_ready; i++)
3268 rtx_insn *x = ready_element (&ready, i);
3269 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3271 ready_remove_insn (x);
3272 goto restart;
3275 for (i = 0; i <= max_insn_queue_index; i++)
3277 rtx_insn_list *link;
3278 int q = NEXT_Q_AFTER (q_ptr, i);
3280 restart_queue:
3281 for (link = insn_queue[q]; link; link = link->next ())
3283 rtx_insn *x = link->insn ();
3284 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3286 queue_remove (x);
3287 goto restart_queue;
3293 /* Return (in order):
3295 - positive if INSN adversely affects the pressure on one
3296 register class
3298 - negative if INSN reduces the pressure on one register class
3300 - 0 if INSN doesn't affect the pressure on any register class. */
3302 static int
3303 model_classify_pressure (struct model_insn_info *insn)
3305 struct reg_pressure_data *reg_pressure;
3306 int death[N_REG_CLASSES];
3307 int pci, cl, sum;
3309 calculate_reg_deaths (insn->insn, death);
3310 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3311 sum = 0;
3312 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3314 cl = ira_pressure_classes[pci];
3315 if (death[cl] < reg_pressure[pci].set_increase)
3316 return 1;
3317 sum += reg_pressure[pci].set_increase - death[cl];
3319 return sum;
3322 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3324 static int
3325 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3327 unsigned int height1, height2;
3328 unsigned int priority1, priority2;
3330 /* Prefer instructions with a higher model priority. */
3331 if (insn1->model_priority != insn2->model_priority)
3332 return insn1->model_priority > insn2->model_priority;
3334 /* Combine the length of the longest path of satisfied true dependencies
3335 that leads to each instruction (depth) with the length of the longest
3336 path of any dependencies that leads from the instruction (alap).
3337 Prefer instructions with the greatest combined length. If the combined
3338 lengths are equal, prefer instructions with the greatest depth.
3340 The idea is that, if we have a set S of "equal" instructions that each
3341 have ALAP value X, and we pick one such instruction I, any true-dependent
3342 successors of I that have ALAP value X - 1 should be preferred over S.
3343 This encourages the schedule to be "narrow" rather than "wide".
3344 However, if I is a low-priority instruction that we decided to
3345 schedule because of its model_classify_pressure, and if there
3346 is a set of higher-priority instructions T, the aforementioned
3347 successors of I should not have the edge over T. */
3348 height1 = insn1->depth + insn1->alap;
3349 height2 = insn2->depth + insn2->alap;
3350 if (height1 != height2)
3351 return height1 > height2;
3352 if (insn1->depth != insn2->depth)
3353 return insn1->depth > insn2->depth;
3355 /* We have no real preference between INSN1 an INSN2 as far as attempts
3356 to reduce pressure go. Prefer instructions with higher priorities. */
3357 priority1 = INSN_PRIORITY (insn1->insn);
3358 priority2 = INSN_PRIORITY (insn2->insn);
3359 if (priority1 != priority2)
3360 return priority1 > priority2;
3362 /* Use the original rtl sequence as a tie-breaker. */
3363 return insn1 < insn2;
3366 /* Add INSN to the model worklist immediately after PREV. Add it to the
3367 beginning of the list if PREV is null. */
3369 static void
3370 model_add_to_worklist_at (struct model_insn_info *insn,
3371 struct model_insn_info *prev)
3373 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3374 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3376 insn->prev = prev;
3377 if (prev)
3379 insn->next = prev->next;
3380 prev->next = insn;
3382 else
3384 insn->next = model_worklist;
3385 model_worklist = insn;
3387 if (insn->next)
3388 insn->next->prev = insn;
3391 /* Remove INSN from the model worklist. */
3393 static void
3394 model_remove_from_worklist (struct model_insn_info *insn)
3396 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3397 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3399 if (insn->prev)
3400 insn->prev->next = insn->next;
3401 else
3402 model_worklist = insn->next;
3403 if (insn->next)
3404 insn->next->prev = insn->prev;
3407 /* Add INSN to the model worklist. Start looking for a suitable position
3408 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3409 insns either side. A null PREV indicates the beginning of the list and
3410 a null NEXT indicates the end. */
3412 static void
3413 model_add_to_worklist (struct model_insn_info *insn,
3414 struct model_insn_info *prev,
3415 struct model_insn_info *next)
3417 int count;
3419 count = MAX_SCHED_READY_INSNS;
3420 if (count > 0 && prev && model_order_p (insn, prev))
3423 count--;
3424 prev = prev->prev;
3426 while (count > 0 && prev && model_order_p (insn, prev));
3427 else
3428 while (count > 0 && next && model_order_p (next, insn))
3430 count--;
3431 prev = next;
3432 next = next->next;
3434 model_add_to_worklist_at (insn, prev);
3437 /* INSN may now have a higher priority (in the model_order_p sense)
3438 than before. Move it up the worklist if necessary. */
3440 static void
3441 model_promote_insn (struct model_insn_info *insn)
3443 struct model_insn_info *prev;
3444 int count;
3446 prev = insn->prev;
3447 count = MAX_SCHED_READY_INSNS;
3448 while (count > 0 && prev && model_order_p (insn, prev))
3450 count--;
3451 prev = prev->prev;
3453 if (prev != insn->prev)
3455 model_remove_from_worklist (insn);
3456 model_add_to_worklist_at (insn, prev);
3460 /* Add INSN to the end of the model schedule. */
3462 static void
3463 model_add_to_schedule (rtx_insn *insn)
3465 unsigned int point;
3467 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3468 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3470 point = model_schedule.length ();
3471 model_schedule.quick_push (insn);
3472 INSN_MODEL_INDEX (insn) = point + 1;
3475 /* Analyze the instructions that are to be scheduled, setting up
3476 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3477 instructions to model_worklist. */
3479 static void
3480 model_analyze_insns (void)
3482 rtx_insn *start, *end, *iter;
3483 sd_iterator_def sd_it;
3484 dep_t dep;
3485 struct model_insn_info *insn, *con;
3487 model_num_insns = 0;
3488 start = PREV_INSN (current_sched_info->next_tail);
3489 end = current_sched_info->prev_head;
3490 for (iter = start; iter != end; iter = PREV_INSN (iter))
3491 if (NONDEBUG_INSN_P (iter))
3493 insn = MODEL_INSN_INFO (iter);
3494 insn->insn = iter;
3495 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3497 con = MODEL_INSN_INFO (DEP_CON (dep));
3498 if (con->insn && insn->alap < con->alap + 1)
3499 insn->alap = con->alap + 1;
3502 insn->old_queue = QUEUE_INDEX (iter);
3503 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3505 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3506 if (insn->unscheduled_preds == 0)
3507 model_add_to_worklist (insn, NULL, model_worklist);
3509 model_num_insns++;
3513 /* The global state describes the register pressure at the start of the
3514 model schedule. Initialize GROUP accordingly. */
3516 static void
3517 model_init_pressure_group (struct model_pressure_group *group)
3519 int pci, cl;
3521 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3523 cl = ira_pressure_classes[pci];
3524 group->limits[pci].pressure = curr_reg_pressure[cl];
3525 group->limits[pci].point = 0;
3527 /* Use index model_num_insns to record the state after the last
3528 instruction in the model schedule. */
3529 group->model = XNEWVEC (struct model_pressure_data,
3530 (model_num_insns + 1) * ira_pressure_classes_num);
3533 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3534 Update the maximum pressure for the whole schedule. */
3536 static void
3537 model_record_pressure (struct model_pressure_group *group,
3538 int point, int pci, int pressure)
3540 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3541 if (group->limits[pci].pressure < pressure)
3543 group->limits[pci].pressure = pressure;
3544 group->limits[pci].point = point;
3548 /* INSN has just been added to the end of the model schedule. Record its
3549 register-pressure information. */
3551 static void
3552 model_record_pressures (struct model_insn_info *insn)
3554 struct reg_pressure_data *reg_pressure;
3555 int point, pci, cl, delta;
3556 int death[N_REG_CLASSES];
3558 point = model_index (insn->insn);
3559 if (sched_verbose >= 2)
3561 if (point == 0)
3563 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3564 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3566 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3567 point, INSN_UID (insn->insn), insn->model_priority,
3568 insn->depth + insn->alap, insn->depth,
3569 INSN_PRIORITY (insn->insn),
3570 str_pattern_slim (PATTERN (insn->insn)));
3572 calculate_reg_deaths (insn->insn, death);
3573 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3574 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3576 cl = ira_pressure_classes[pci];
3577 delta = reg_pressure[pci].set_increase - death[cl];
3578 if (sched_verbose >= 2)
3579 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3580 curr_reg_pressure[cl], delta);
3581 model_record_pressure (&model_before_pressure, point, pci,
3582 curr_reg_pressure[cl]);
3584 if (sched_verbose >= 2)
3585 fprintf (sched_dump, "\n");
3588 /* All instructions have been added to the model schedule. Record the
3589 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3591 static void
3592 model_record_final_pressures (struct model_pressure_group *group)
3594 int point, pci, max_pressure, ref_pressure, cl;
3596 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3598 /* Record the final pressure for this class. */
3599 cl = ira_pressure_classes[pci];
3600 point = model_num_insns;
3601 ref_pressure = curr_reg_pressure[cl];
3602 model_record_pressure (group, point, pci, ref_pressure);
3604 /* Record the original maximum pressure. */
3605 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3607 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3608 max_pressure = ref_pressure;
3609 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3610 while (point > 0)
3612 point--;
3613 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3614 max_pressure = MAX (max_pressure, ref_pressure);
3615 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3620 /* Update all successors of INSN, given that INSN has just been scheduled. */
3622 static void
3623 model_add_successors_to_worklist (struct model_insn_info *insn)
3625 sd_iterator_def sd_it;
3626 struct model_insn_info *con;
3627 dep_t dep;
3629 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3631 con = MODEL_INSN_INFO (DEP_CON (dep));
3632 /* Ignore debug instructions, and instructions from other blocks. */
3633 if (con->insn)
3635 con->unscheduled_preds--;
3637 /* Update the depth field of each true-dependent successor.
3638 Increasing the depth gives them a higher priority than
3639 before. */
3640 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3642 con->depth = insn->depth + 1;
3643 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3644 model_promote_insn (con);
3647 /* If this is a true dependency, or if there are no remaining
3648 dependencies for CON (meaning that CON only had non-true
3649 dependencies), make sure that CON is on the worklist.
3650 We don't bother otherwise because it would tend to fill the
3651 worklist with a lot of low-priority instructions that are not
3652 yet ready to issue. */
3653 if ((con->depth > 0 || con->unscheduled_preds == 0)
3654 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3655 model_add_to_worklist (con, insn, insn->next);
3660 /* Give INSN a higher priority than any current instruction, then give
3661 unscheduled predecessors of INSN a higher priority still. If any of
3662 those predecessors are not on the model worklist, do the same for its
3663 predecessors, and so on. */
3665 static void
3666 model_promote_predecessors (struct model_insn_info *insn)
3668 struct model_insn_info *pro, *first;
3669 sd_iterator_def sd_it;
3670 dep_t dep;
3672 if (sched_verbose >= 7)
3673 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3674 INSN_UID (insn->insn), model_next_priority);
3675 insn->model_priority = model_next_priority++;
3676 model_remove_from_worklist (insn);
3677 model_add_to_worklist_at (insn, NULL);
3679 first = NULL;
3680 for (;;)
3682 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3684 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3685 /* The first test is to ignore debug instructions, and instructions
3686 from other blocks. */
3687 if (pro->insn
3688 && pro->model_priority != model_next_priority
3689 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3691 pro->model_priority = model_next_priority;
3692 if (sched_verbose >= 7)
3693 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3694 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3696 /* PRO is already in the worklist, but it now has
3697 a higher priority than before. Move it at the
3698 appropriate place. */
3699 model_remove_from_worklist (pro);
3700 model_add_to_worklist (pro, NULL, model_worklist);
3702 else
3704 /* PRO isn't in the worklist. Recursively process
3705 its predecessors until we find one that is. */
3706 pro->next = first;
3707 first = pro;
3711 if (!first)
3712 break;
3713 insn = first;
3714 first = insn->next;
3716 if (sched_verbose >= 7)
3717 fprintf (sched_dump, " = %d\n", model_next_priority);
3718 model_next_priority++;
3721 /* Pick one instruction from model_worklist and process it. */
3723 static void
3724 model_choose_insn (void)
3726 struct model_insn_info *insn, *fallback;
3727 int count;
3729 if (sched_verbose >= 7)
3731 fprintf (sched_dump, ";;\t+--- worklist:\n");
3732 insn = model_worklist;
3733 count = MAX_SCHED_READY_INSNS;
3734 while (count > 0 && insn)
3736 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3737 INSN_UID (insn->insn), insn->model_priority,
3738 insn->depth + insn->alap, insn->depth,
3739 INSN_PRIORITY (insn->insn));
3740 count--;
3741 insn = insn->next;
3745 /* Look for a ready instruction whose model_classify_priority is zero
3746 or negative, picking the highest-priority one. Adding such an
3747 instruction to the schedule now should do no harm, and may actually
3748 do some good.
3750 Failing that, see whether there is an instruction with the highest
3751 extant model_priority that is not yet ready, but which would reduce
3752 pressure if it became ready. This is designed to catch cases like:
3754 (set (mem (reg R1)) (reg R2))
3756 where the instruction is the last remaining use of R1 and where the
3757 value of R2 is not yet available (or vice versa). The death of R1
3758 means that this instruction already reduces pressure. It is of
3759 course possible that the computation of R2 involves other registers
3760 that are hard to kill, but such cases are rare enough for this
3761 heuristic to be a win in general.
3763 Failing that, just pick the highest-priority instruction in the
3764 worklist. */
3765 count = MAX_SCHED_READY_INSNS;
3766 insn = model_worklist;
3767 fallback = 0;
3768 for (;;)
3770 if (count == 0 || !insn)
3772 insn = fallback ? fallback : model_worklist;
3773 break;
3775 if (insn->unscheduled_preds)
3777 if (model_worklist->model_priority == insn->model_priority
3778 && !fallback
3779 && model_classify_pressure (insn) < 0)
3780 fallback = insn;
3782 else
3784 if (model_classify_pressure (insn) <= 0)
3785 break;
3787 count--;
3788 insn = insn->next;
3791 if (sched_verbose >= 7 && insn != model_worklist)
3793 if (insn->unscheduled_preds)
3794 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3795 INSN_UID (insn->insn));
3796 else
3797 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3798 INSN_UID (insn->insn));
3800 if (insn->unscheduled_preds)
3801 /* INSN isn't yet ready to issue. Give all its predecessors the
3802 highest priority. */
3803 model_promote_predecessors (insn);
3804 else
3806 /* INSN is ready. Add it to the end of model_schedule and
3807 process its successors. */
3808 model_add_successors_to_worklist (insn);
3809 model_remove_from_worklist (insn);
3810 model_add_to_schedule (insn->insn);
3811 model_record_pressures (insn);
3812 update_register_pressure (insn->insn);
3816 /* Restore all QUEUE_INDEXs to the values that they had before
3817 model_start_schedule was called. */
3819 static void
3820 model_reset_queue_indices (void)
3822 unsigned int i;
3823 rtx_insn *insn;
3825 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3826 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3829 /* We have calculated the model schedule and spill costs. Print a summary
3830 to sched_dump. */
3832 static void
3833 model_dump_pressure_summary (void)
3835 int pci, cl;
3837 fprintf (sched_dump, ";; Pressure summary:");
3838 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3840 cl = ira_pressure_classes[pci];
3841 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3842 model_before_pressure.limits[pci].pressure);
3844 fprintf (sched_dump, "\n\n");
3847 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3848 scheduling region. */
3850 static void
3851 model_start_schedule (basic_block bb)
3853 model_next_priority = 1;
3854 model_schedule.create (sched_max_luid);
3855 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3857 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3858 initiate_reg_pressure_info (df_get_live_in (bb));
3860 model_analyze_insns ();
3861 model_init_pressure_group (&model_before_pressure);
3862 while (model_worklist)
3863 model_choose_insn ();
3864 gcc_assert (model_num_insns == (int) model_schedule.length ());
3865 if (sched_verbose >= 2)
3866 fprintf (sched_dump, "\n");
3868 model_record_final_pressures (&model_before_pressure);
3869 model_reset_queue_indices ();
3871 XDELETEVEC (model_insns);
3873 model_curr_point = 0;
3874 initiate_reg_pressure_info (df_get_live_in (bb));
3875 if (sched_verbose >= 1)
3876 model_dump_pressure_summary ();
3879 /* Free the information associated with GROUP. */
3881 static void
3882 model_finalize_pressure_group (struct model_pressure_group *group)
3884 XDELETEVEC (group->model);
3887 /* Free the information created by model_start_schedule. */
3889 static void
3890 model_end_schedule (void)
3892 model_finalize_pressure_group (&model_before_pressure);
3893 model_schedule.release ();
3896 /* Prepare reg pressure scheduling for basic block BB. */
3897 static void
3898 sched_pressure_start_bb (basic_block bb)
3900 /* Set the number of available registers for each class taking into account
3901 relative probability of current basic block versus function prologue and
3902 epilogue.
3903 * If the basic block executes much more often than the prologue/epilogue
3904 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3905 nil, so the effective number of available registers is
3906 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl] - 0).
3907 * If the basic block executes as often as the prologue/epilogue,
3908 then spill in the block is as costly as in the prologue, so the effective
3909 number of available registers is
3910 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3911 - call_saved_regs_num[cl]).
3912 Note that all-else-equal, we prefer to spill in the prologue, since that
3913 allows "extra" registers for other basic blocks of the function.
3914 * If the basic block is on the cold path of the function and executes
3915 rarely, then we should always prefer to spill in the block, rather than
3916 in the prologue/epilogue. The effective number of available register is
3917 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3918 - call_saved_regs_num[cl]). */
3920 int i;
3921 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
3922 int bb_freq = bb->frequency;
3924 if (bb_freq == 0)
3926 if (entry_freq == 0)
3927 entry_freq = bb_freq = 1;
3929 if (bb_freq < entry_freq)
3930 bb_freq = entry_freq;
3932 for (i = 0; i < ira_pressure_classes_num; ++i)
3934 enum reg_class cl = ira_pressure_classes[i];
3935 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl]
3936 - fixed_regs_num[cl];
3937 sched_class_regs_num[cl]
3938 -= (call_saved_regs_num[cl] * entry_freq) / bb_freq;
3942 if (sched_pressure == SCHED_PRESSURE_MODEL)
3943 model_start_schedule (bb);
3946 /* A structure that holds local state for the loop in schedule_block. */
3947 struct sched_block_state
3949 /* True if no real insns have been scheduled in the current cycle. */
3950 bool first_cycle_insn_p;
3951 /* True if a shadow insn has been scheduled in the current cycle, which
3952 means that no more normal insns can be issued. */
3953 bool shadows_only_p;
3954 /* True if we're winding down a modulo schedule, which means that we only
3955 issue insns with INSN_EXACT_TICK set. */
3956 bool modulo_epilogue;
3957 /* Initialized with the machine's issue rate every cycle, and updated
3958 by calls to the variable_issue hook. */
3959 int can_issue_more;
3962 /* INSN is the "currently executing insn". Launch each insn which was
3963 waiting on INSN. READY is the ready list which contains the insns
3964 that are ready to fire. CLOCK is the current cycle. The function
3965 returns necessary cycle advance after issuing the insn (it is not
3966 zero for insns in a schedule group). */
3968 static int
3969 schedule_insn (rtx_insn *insn)
3971 sd_iterator_def sd_it;
3972 dep_t dep;
3973 int i;
3974 int advance = 0;
3976 if (sched_verbose >= 1)
3978 struct reg_pressure_data *pressure_info;
3979 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
3980 clock_var, (*current_sched_info->print_insn) (insn, 1),
3981 str_pattern_slim (PATTERN (insn)));
3983 if (recog_memoized (insn) < 0)
3984 fprintf (sched_dump, "nothing");
3985 else
3986 print_reservation (sched_dump, insn);
3987 pressure_info = INSN_REG_PRESSURE (insn);
3988 if (pressure_info != NULL)
3990 fputc (':', sched_dump);
3991 for (i = 0; i < ira_pressure_classes_num; i++)
3992 fprintf (sched_dump, "%s%s%+d(%d)",
3993 scheduled_insns.length () > 1
3994 && INSN_LUID (insn)
3995 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
3996 reg_class_names[ira_pressure_classes[i]],
3997 pressure_info[i].set_increase, pressure_info[i].change);
3999 if (sched_pressure == SCHED_PRESSURE_MODEL
4000 && model_curr_point < model_num_insns
4001 && model_index (insn) == model_curr_point)
4002 fprintf (sched_dump, ":model %d", model_curr_point);
4003 fputc ('\n', sched_dump);
4006 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4007 update_reg_and_insn_max_reg_pressure (insn);
4009 /* Scheduling instruction should have all its dependencies resolved and
4010 should have been removed from the ready list. */
4011 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4013 /* Reset debug insns invalidated by moving this insn. */
4014 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
4015 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4016 sd_iterator_cond (&sd_it, &dep);)
4018 rtx_insn *dbg = DEP_PRO (dep);
4019 struct reg_use_data *use, *next;
4021 if (DEP_STATUS (dep) & DEP_CANCELLED)
4023 sd_iterator_next (&sd_it);
4024 continue;
4027 gcc_assert (DEBUG_INSN_P (dbg));
4029 if (sched_verbose >= 6)
4030 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4031 INSN_UID (dbg));
4033 /* ??? Rather than resetting the debug insn, we might be able
4034 to emit a debug temp before the just-scheduled insn, but
4035 this would involve checking that the expression at the
4036 point of the debug insn is equivalent to the expression
4037 before the just-scheduled insn. They might not be: the
4038 expression in the debug insn may depend on other insns not
4039 yet scheduled that set MEMs, REGs or even other debug
4040 insns. It's not clear that attempting to preserve debug
4041 information in these cases is worth the effort, given how
4042 uncommon these resets are and the likelihood that the debug
4043 temps introduced won't survive the schedule change. */
4044 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4045 df_insn_rescan (dbg);
4047 /* Unknown location doesn't use any registers. */
4048 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4050 struct reg_use_data *prev = use;
4052 /* Remove use from the cyclic next_regno_use chain first. */
4053 while (prev->next_regno_use != use)
4054 prev = prev->next_regno_use;
4055 prev->next_regno_use = use->next_regno_use;
4056 next = use->next_insn_use;
4057 free (use);
4059 INSN_REG_USE_LIST (dbg) = NULL;
4061 /* We delete rather than resolve these deps, otherwise we
4062 crash in sched_free_deps(), because forward deps are
4063 expected to be released before backward deps. */
4064 sd_delete_dep (sd_it);
4067 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4068 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4070 if (sched_pressure == SCHED_PRESSURE_MODEL
4071 && model_curr_point < model_num_insns
4072 && NONDEBUG_INSN_P (insn))
4074 if (model_index (insn) == model_curr_point)
4076 model_curr_point++;
4077 while (model_curr_point < model_num_insns
4078 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4079 == QUEUE_SCHEDULED));
4080 else
4081 model_recompute (insn);
4082 model_update_limit_points ();
4083 update_register_pressure (insn);
4084 if (sched_verbose >= 2)
4085 print_curr_reg_pressure ();
4088 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4089 if (INSN_TICK (insn) > clock_var)
4090 /* INSN has been prematurely moved from the queue to the ready list.
4091 This is possible only if following flags are set. */
4092 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4094 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4095 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4096 INSN_TICK (insn) = clock_var;
4098 check_clobbered_conditions (insn);
4100 /* Update dependent instructions. First, see if by scheduling this insn
4101 now we broke a dependence in a way that requires us to change another
4102 insn. */
4103 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4104 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4106 struct dep_replacement *desc = DEP_REPLACE (dep);
4107 rtx_insn *pro = DEP_PRO (dep);
4108 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4109 && desc != NULL && desc->insn == pro)
4110 apply_replacement (dep, false);
4113 /* Go through and resolve forward dependencies. */
4114 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4115 sd_iterator_cond (&sd_it, &dep);)
4117 rtx_insn *next = DEP_CON (dep);
4118 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4120 /* Resolve the dependence between INSN and NEXT.
4121 sd_resolve_dep () moves current dep to another list thus
4122 advancing the iterator. */
4123 sd_resolve_dep (sd_it);
4125 if (cancelled)
4127 if (must_restore_pattern_p (next, dep))
4128 restore_pattern (dep, false);
4129 continue;
4132 /* Don't bother trying to mark next as ready if insn is a debug
4133 insn. If insn is the last hard dependency, it will have
4134 already been discounted. */
4135 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4136 continue;
4138 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4140 int effective_cost;
4142 effective_cost = try_ready (next);
4144 if (effective_cost >= 0
4145 && SCHED_GROUP_P (next)
4146 && advance < effective_cost)
4147 advance = effective_cost;
4149 else
4150 /* Check always has only one forward dependence (to the first insn in
4151 the recovery block), therefore, this will be executed only once. */
4153 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4154 fix_recovery_deps (RECOVERY_BLOCK (insn));
4158 /* Annotate the instruction with issue information -- TImode
4159 indicates that the instruction is expected not to be able
4160 to issue on the same cycle as the previous insn. A machine
4161 may use this information to decide how the instruction should
4162 be aligned. */
4163 if (issue_rate > 1
4164 && GET_CODE (PATTERN (insn)) != USE
4165 && GET_CODE (PATTERN (insn)) != CLOBBER
4166 && !DEBUG_INSN_P (insn))
4168 if (reload_completed)
4169 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4170 last_clock_var = clock_var;
4173 if (nonscheduled_insns_begin != NULL_RTX)
4174 /* Indicate to debug counters that INSN is scheduled. */
4175 nonscheduled_insns_begin = insn;
4177 return advance;
4180 /* Functions for handling of notes. */
4182 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4183 void
4184 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4186 rtx_insn *from_start;
4188 /* It's easy when have nothing to concat. */
4189 if (from_end == NULL)
4190 return;
4192 /* It's also easy when destination is empty. */
4193 if (*to_endp == NULL)
4195 *to_endp = from_end;
4196 return;
4199 from_start = from_end;
4200 while (PREV_INSN (from_start) != NULL)
4201 from_start = PREV_INSN (from_start);
4203 SET_PREV_INSN (from_start) = *to_endp;
4204 SET_NEXT_INSN (*to_endp) = from_start;
4205 *to_endp = from_end;
4208 /* Delete notes between HEAD and TAIL and put them in the chain
4209 of notes ended by NOTE_LIST. */
4210 void
4211 remove_notes (rtx_insn *head, rtx_insn *tail)
4213 rtx_insn *next_tail, *insn, *next;
4215 note_list = 0;
4216 if (head == tail && !INSN_P (head))
4217 return;
4219 next_tail = NEXT_INSN (tail);
4220 for (insn = head; insn != next_tail; insn = next)
4222 next = NEXT_INSN (insn);
4223 if (!NOTE_P (insn))
4224 continue;
4226 switch (NOTE_KIND (insn))
4228 case NOTE_INSN_BASIC_BLOCK:
4229 continue;
4231 case NOTE_INSN_EPILOGUE_BEG:
4232 if (insn != tail)
4234 remove_insn (insn);
4235 add_reg_note (next, REG_SAVE_NOTE,
4236 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4237 break;
4239 /* FALLTHRU */
4241 default:
4242 remove_insn (insn);
4244 /* Add the note to list that ends at NOTE_LIST. */
4245 SET_PREV_INSN (insn) = note_list;
4246 SET_NEXT_INSN (insn) = NULL_RTX;
4247 if (note_list)
4248 SET_NEXT_INSN (note_list) = insn;
4249 note_list = insn;
4250 break;
4253 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4257 /* A structure to record enough data to allow us to backtrack the scheduler to
4258 a previous state. */
4259 struct haifa_saved_data
4261 /* Next entry on the list. */
4262 struct haifa_saved_data *next;
4264 /* Backtracking is associated with scheduling insns that have delay slots.
4265 DELAY_PAIR points to the structure that contains the insns involved, and
4266 the number of cycles between them. */
4267 struct delay_pair *delay_pair;
4269 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4270 void *fe_saved_data;
4271 /* Data used by the backend. */
4272 void *be_saved_data;
4274 /* Copies of global state. */
4275 int clock_var, last_clock_var;
4276 struct ready_list ready;
4277 state_t curr_state;
4279 rtx_insn *last_scheduled_insn;
4280 rtx_insn *last_nondebug_scheduled_insn;
4281 rtx_insn *nonscheduled_insns_begin;
4282 int cycle_issued_insns;
4284 /* Copies of state used in the inner loop of schedule_block. */
4285 struct sched_block_state sched_block;
4287 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4288 to 0 when restoring. */
4289 int q_size;
4290 rtx_insn_list **insn_queue;
4292 /* Describe pattern replacements that occurred since this backtrack point
4293 was queued. */
4294 vec<dep_t> replacement_deps;
4295 vec<int> replace_apply;
4297 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4298 point. */
4299 vec<dep_t> next_cycle_deps;
4300 vec<int> next_cycle_apply;
4303 /* A record, in reverse order, of all scheduled insns which have delay slots
4304 and may require backtracking. */
4305 static struct haifa_saved_data *backtrack_queue;
4307 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4308 to SET_P. */
4309 static void
4310 mark_backtrack_feeds (rtx_insn *insn, int set_p)
4312 sd_iterator_def sd_it;
4313 dep_t dep;
4314 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4316 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4320 /* Save the current scheduler state so that we can backtrack to it
4321 later if necessary. PAIR gives the insns that make it necessary to
4322 save this point. SCHED_BLOCK is the local state of schedule_block
4323 that need to be saved. */
4324 static void
4325 save_backtrack_point (struct delay_pair *pair,
4326 struct sched_block_state sched_block)
4328 int i;
4329 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4331 save->curr_state = xmalloc (dfa_state_size);
4332 memcpy (save->curr_state, curr_state, dfa_state_size);
4334 save->ready.first = ready.first;
4335 save->ready.n_ready = ready.n_ready;
4336 save->ready.n_debug = ready.n_debug;
4337 save->ready.veclen = ready.veclen;
4338 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4339 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4341 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4342 save->q_size = q_size;
4343 for (i = 0; i <= max_insn_queue_index; i++)
4345 int q = NEXT_Q_AFTER (q_ptr, i);
4346 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4349 save->clock_var = clock_var;
4350 save->last_clock_var = last_clock_var;
4351 save->cycle_issued_insns = cycle_issued_insns;
4352 save->last_scheduled_insn = last_scheduled_insn;
4353 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4354 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4356 save->sched_block = sched_block;
4358 save->replacement_deps.create (0);
4359 save->replace_apply.create (0);
4360 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4361 save->next_cycle_apply = next_cycle_apply.copy ();
4363 if (current_sched_info->save_state)
4364 save->fe_saved_data = (*current_sched_info->save_state) ();
4366 if (targetm.sched.alloc_sched_context)
4368 save->be_saved_data = targetm.sched.alloc_sched_context ();
4369 targetm.sched.init_sched_context (save->be_saved_data, false);
4371 else
4372 save->be_saved_data = NULL;
4374 save->delay_pair = pair;
4376 save->next = backtrack_queue;
4377 backtrack_queue = save;
4379 while (pair)
4381 mark_backtrack_feeds (pair->i2, 1);
4382 INSN_TICK (pair->i2) = INVALID_TICK;
4383 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4384 SHADOW_P (pair->i2) = pair->stages == 0;
4385 pair = pair->next_same_i1;
4389 /* Walk the ready list and all queues. If any insns have unresolved backwards
4390 dependencies, these must be cancelled deps, broken by predication. Set or
4391 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4393 static void
4394 toggle_cancelled_flags (bool set)
4396 int i;
4397 sd_iterator_def sd_it;
4398 dep_t dep;
4400 if (ready.n_ready > 0)
4402 rtx_insn **first = ready_lastpos (&ready);
4403 for (i = 0; i < ready.n_ready; i++)
4404 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4405 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4407 if (set)
4408 DEP_STATUS (dep) |= DEP_CANCELLED;
4409 else
4410 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4413 for (i = 0; i <= max_insn_queue_index; i++)
4415 int q = NEXT_Q_AFTER (q_ptr, i);
4416 rtx_insn_list *link;
4417 for (link = insn_queue[q]; link; link = link->next ())
4419 rtx_insn *insn = link->insn ();
4420 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4421 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4423 if (set)
4424 DEP_STATUS (dep) |= DEP_CANCELLED;
4425 else
4426 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4432 /* Undo the replacements that have occurred after backtrack point SAVE
4433 was placed. */
4434 static void
4435 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4437 while (!save->replacement_deps.is_empty ())
4439 dep_t dep = save->replacement_deps.pop ();
4440 int apply_p = save->replace_apply.pop ();
4442 if (apply_p)
4443 restore_pattern (dep, true);
4444 else
4445 apply_replacement (dep, true);
4447 save->replacement_deps.release ();
4448 save->replace_apply.release ();
4451 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4452 Restore their dependencies to an unresolved state, and mark them as
4453 queued nowhere. */
4455 static void
4456 unschedule_insns_until (rtx_insn *insn)
4458 auto_vec<rtx_insn *> recompute_vec;
4460 /* Make two passes over the insns to be unscheduled. First, we clear out
4461 dependencies and other trivial bookkeeping. */
4462 for (;;)
4464 rtx_insn *last;
4465 sd_iterator_def sd_it;
4466 dep_t dep;
4468 last = scheduled_insns.pop ();
4470 /* This will be changed by restore_backtrack_point if the insn is in
4471 any queue. */
4472 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4473 if (last != insn)
4474 INSN_TICK (last) = INVALID_TICK;
4476 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4477 modulo_insns_scheduled--;
4479 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4480 sd_iterator_cond (&sd_it, &dep);)
4482 rtx_insn *con = DEP_CON (dep);
4483 sd_unresolve_dep (sd_it);
4484 if (!MUST_RECOMPUTE_SPEC_P (con))
4486 MUST_RECOMPUTE_SPEC_P (con) = 1;
4487 recompute_vec.safe_push (con);
4491 if (last == insn)
4492 break;
4495 /* A second pass, to update ready and speculation status for insns
4496 depending on the unscheduled ones. The first pass must have
4497 popped the scheduled_insns vector up to the point where we
4498 restart scheduling, as recompute_todo_spec requires it to be
4499 up-to-date. */
4500 while (!recompute_vec.is_empty ())
4502 rtx_insn *con;
4504 con = recompute_vec.pop ();
4505 MUST_RECOMPUTE_SPEC_P (con) = 0;
4506 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4508 TODO_SPEC (con) = HARD_DEP;
4509 INSN_TICK (con) = INVALID_TICK;
4510 if (PREDICATED_PAT (con) != NULL_RTX)
4511 haifa_change_pattern (con, ORIG_PAT (con));
4513 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4514 TODO_SPEC (con) = recompute_todo_spec (con, true);
4518 /* Restore scheduler state from the topmost entry on the backtracking queue.
4519 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4520 overwrite with the saved data.
4521 The caller must already have called unschedule_insns_until. */
4523 static void
4524 restore_last_backtrack_point (struct sched_block_state *psched_block)
4526 int i;
4527 struct haifa_saved_data *save = backtrack_queue;
4529 backtrack_queue = save->next;
4531 if (current_sched_info->restore_state)
4532 (*current_sched_info->restore_state) (save->fe_saved_data);
4534 if (targetm.sched.alloc_sched_context)
4536 targetm.sched.set_sched_context (save->be_saved_data);
4537 targetm.sched.free_sched_context (save->be_saved_data);
4540 /* Do this first since it clobbers INSN_TICK of the involved
4541 instructions. */
4542 undo_replacements_for_backtrack (save);
4544 /* Clear the QUEUE_INDEX of everything in the ready list or one
4545 of the queues. */
4546 if (ready.n_ready > 0)
4548 rtx_insn **first = ready_lastpos (&ready);
4549 for (i = 0; i < ready.n_ready; i++)
4551 rtx_insn *insn = first[i];
4552 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4553 INSN_TICK (insn) = INVALID_TICK;
4556 for (i = 0; i <= max_insn_queue_index; i++)
4558 int q = NEXT_Q_AFTER (q_ptr, i);
4560 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4562 rtx_insn *x = link->insn ();
4563 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4564 INSN_TICK (x) = INVALID_TICK;
4566 free_INSN_LIST_list (&insn_queue[q]);
4569 free (ready.vec);
4570 ready = save->ready;
4572 if (ready.n_ready > 0)
4574 rtx_insn **first = ready_lastpos (&ready);
4575 for (i = 0; i < ready.n_ready; i++)
4577 rtx_insn *insn = first[i];
4578 QUEUE_INDEX (insn) = QUEUE_READY;
4579 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4580 INSN_TICK (insn) = save->clock_var;
4584 q_ptr = 0;
4585 q_size = save->q_size;
4586 for (i = 0; i <= max_insn_queue_index; i++)
4588 int q = NEXT_Q_AFTER (q_ptr, i);
4590 insn_queue[q] = save->insn_queue[q];
4592 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4594 rtx_insn *x = link->insn ();
4595 QUEUE_INDEX (x) = i;
4596 TODO_SPEC (x) = recompute_todo_spec (x, true);
4597 INSN_TICK (x) = save->clock_var + i;
4600 free (save->insn_queue);
4602 toggle_cancelled_flags (true);
4604 clock_var = save->clock_var;
4605 last_clock_var = save->last_clock_var;
4606 cycle_issued_insns = save->cycle_issued_insns;
4607 last_scheduled_insn = save->last_scheduled_insn;
4608 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4609 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4611 *psched_block = save->sched_block;
4613 memcpy (curr_state, save->curr_state, dfa_state_size);
4614 free (save->curr_state);
4616 mark_backtrack_feeds (save->delay_pair->i2, 0);
4618 gcc_assert (next_cycle_replace_deps.is_empty ());
4619 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4620 next_cycle_apply = save->next_cycle_apply.copy ();
4622 free (save);
4624 for (save = backtrack_queue; save; save = save->next)
4626 mark_backtrack_feeds (save->delay_pair->i2, 1);
4630 /* Discard all data associated with the topmost entry in the backtrack
4631 queue. If RESET_TICK is false, we just want to free the data. If true,
4632 we are doing this because we discovered a reason to backtrack. In the
4633 latter case, also reset the INSN_TICK for the shadow insn. */
4634 static void
4635 free_topmost_backtrack_point (bool reset_tick)
4637 struct haifa_saved_data *save = backtrack_queue;
4638 int i;
4640 backtrack_queue = save->next;
4642 if (reset_tick)
4644 struct delay_pair *pair = save->delay_pair;
4645 while (pair)
4647 INSN_TICK (pair->i2) = INVALID_TICK;
4648 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4649 pair = pair->next_same_i1;
4651 undo_replacements_for_backtrack (save);
4653 else
4655 save->replacement_deps.release ();
4656 save->replace_apply.release ();
4659 if (targetm.sched.free_sched_context)
4660 targetm.sched.free_sched_context (save->be_saved_data);
4661 if (current_sched_info->restore_state)
4662 free (save->fe_saved_data);
4663 for (i = 0; i <= max_insn_queue_index; i++)
4664 free_INSN_LIST_list (&save->insn_queue[i]);
4665 free (save->insn_queue);
4666 free (save->curr_state);
4667 free (save->ready.vec);
4668 free (save);
4671 /* Free the entire backtrack queue. */
4672 static void
4673 free_backtrack_queue (void)
4675 while (backtrack_queue)
4676 free_topmost_backtrack_point (false);
4679 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4680 may have to postpone the replacement until the start of the next cycle,
4681 at which point we will be called again with IMMEDIATELY true. This is
4682 only done for machines which have instruction packets with explicit
4683 parallelism however. */
4684 static void
4685 apply_replacement (dep_t dep, bool immediately)
4687 struct dep_replacement *desc = DEP_REPLACE (dep);
4688 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4690 next_cycle_replace_deps.safe_push (dep);
4691 next_cycle_apply.safe_push (1);
4693 else
4695 bool success;
4697 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4698 return;
4700 if (sched_verbose >= 5)
4701 fprintf (sched_dump, "applying replacement for insn %d\n",
4702 INSN_UID (desc->insn));
4704 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4705 gcc_assert (success);
4707 update_insn_after_change (desc->insn);
4708 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4709 fix_tick_ready (desc->insn);
4711 if (backtrack_queue != NULL)
4713 backtrack_queue->replacement_deps.safe_push (dep);
4714 backtrack_queue->replace_apply.safe_push (1);
4719 /* We have determined that a pattern involved in DEP must be restored.
4720 If IMMEDIATELY is false, we may have to postpone the replacement
4721 until the start of the next cycle, at which point we will be called
4722 again with IMMEDIATELY true. */
4723 static void
4724 restore_pattern (dep_t dep, bool immediately)
4726 rtx_insn *next = DEP_CON (dep);
4727 int tick = INSN_TICK (next);
4729 /* If we already scheduled the insn, the modified version is
4730 correct. */
4731 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4732 return;
4734 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4736 next_cycle_replace_deps.safe_push (dep);
4737 next_cycle_apply.safe_push (0);
4738 return;
4742 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4744 if (sched_verbose >= 5)
4745 fprintf (sched_dump, "restoring pattern for insn %d\n",
4746 INSN_UID (next));
4747 haifa_change_pattern (next, ORIG_PAT (next));
4749 else
4751 struct dep_replacement *desc = DEP_REPLACE (dep);
4752 bool success;
4754 if (sched_verbose >= 5)
4755 fprintf (sched_dump, "restoring pattern for insn %d\n",
4756 INSN_UID (desc->insn));
4757 tick = INSN_TICK (desc->insn);
4759 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4760 gcc_assert (success);
4761 update_insn_after_change (desc->insn);
4762 if (backtrack_queue != NULL)
4764 backtrack_queue->replacement_deps.safe_push (dep);
4765 backtrack_queue->replace_apply.safe_push (0);
4768 INSN_TICK (next) = tick;
4769 if (TODO_SPEC (next) == DEP_POSTPONED)
4770 return;
4772 if (sd_lists_empty_p (next, SD_LIST_BACK))
4773 TODO_SPEC (next) = 0;
4774 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4775 TODO_SPEC (next) = HARD_DEP;
4778 /* Perform pattern replacements that were queued up until the next
4779 cycle. */
4780 static void
4781 perform_replacements_new_cycle (void)
4783 int i;
4784 dep_t dep;
4785 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4787 int apply_p = next_cycle_apply[i];
4788 if (apply_p)
4789 apply_replacement (dep, true);
4790 else
4791 restore_pattern (dep, true);
4793 next_cycle_replace_deps.truncate (0);
4794 next_cycle_apply.truncate (0);
4797 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4798 instructions we've previously encountered, a set bit prevents
4799 recursion. BUDGET is a limit on how far ahead we look, it is
4800 reduced on recursive calls. Return true if we produced a good
4801 estimate, or false if we exceeded the budget. */
4802 static bool
4803 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4805 sd_iterator_def sd_it;
4806 dep_t dep;
4807 int earliest = INSN_TICK (insn);
4809 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4811 rtx_insn *pro = DEP_PRO (dep);
4812 int t;
4814 if (DEP_STATUS (dep) & DEP_CANCELLED)
4815 continue;
4817 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4818 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4819 else
4821 int cost = dep_cost (dep);
4822 if (cost >= budget)
4823 return false;
4824 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4826 if (!estimate_insn_tick (processed, pro, budget - cost))
4827 return false;
4829 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4830 t = INSN_TICK_ESTIMATE (pro) + cost;
4831 if (earliest == INVALID_TICK || t > earliest)
4832 earliest = t;
4835 bitmap_set_bit (processed, INSN_LUID (insn));
4836 INSN_TICK_ESTIMATE (insn) = earliest;
4837 return true;
4840 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4841 infinite resources) the cycle in which the delayed shadow can be issued.
4842 Return the number of cycles that must pass before the real insn can be
4843 issued in order to meet this constraint. */
4844 static int
4845 estimate_shadow_tick (struct delay_pair *p)
4847 auto_bitmap processed;
4848 int t;
4849 bool cutoff;
4851 cutoff = !estimate_insn_tick (processed, p->i2,
4852 max_insn_queue_index + pair_delay (p));
4853 if (cutoff)
4854 return max_insn_queue_index;
4855 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4856 if (t > 0)
4857 return t;
4858 return 0;
4861 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4862 recursively resolve all its forward dependencies. */
4863 static void
4864 resolve_dependencies (rtx_insn *insn)
4866 sd_iterator_def sd_it;
4867 dep_t dep;
4869 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4870 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4871 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4872 return;
4874 if (sched_verbose >= 4)
4875 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4877 if (QUEUE_INDEX (insn) >= 0)
4878 queue_remove (insn);
4880 scheduled_insns.safe_push (insn);
4882 /* Update dependent instructions. */
4883 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4884 sd_iterator_cond (&sd_it, &dep);)
4886 rtx_insn *next = DEP_CON (dep);
4888 if (sched_verbose >= 4)
4889 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4890 INSN_UID (next));
4892 /* Resolve the dependence between INSN and NEXT.
4893 sd_resolve_dep () moves current dep to another list thus
4894 advancing the iterator. */
4895 sd_resolve_dep (sd_it);
4897 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4899 resolve_dependencies (next);
4901 else
4902 /* Check always has only one forward dependence (to the first insn in
4903 the recovery block), therefore, this will be executed only once. */
4905 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4911 /* Return the head and tail pointers of ebb starting at BEG and ending
4912 at END. */
4913 void
4914 get_ebb_head_tail (basic_block beg, basic_block end,
4915 rtx_insn **headp, rtx_insn **tailp)
4917 rtx_insn *beg_head = BB_HEAD (beg);
4918 rtx_insn * beg_tail = BB_END (beg);
4919 rtx_insn * end_head = BB_HEAD (end);
4920 rtx_insn * end_tail = BB_END (end);
4922 /* Don't include any notes or labels at the beginning of the BEG
4923 basic block, or notes at the end of the END basic blocks. */
4925 if (LABEL_P (beg_head))
4926 beg_head = NEXT_INSN (beg_head);
4928 while (beg_head != beg_tail)
4929 if (NOTE_P (beg_head))
4930 beg_head = NEXT_INSN (beg_head);
4931 else if (DEBUG_INSN_P (beg_head))
4933 rtx_insn * note, *next;
4935 for (note = NEXT_INSN (beg_head);
4936 note != beg_tail;
4937 note = next)
4939 next = NEXT_INSN (note);
4940 if (NOTE_P (note))
4942 if (sched_verbose >= 9)
4943 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4945 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4947 if (BLOCK_FOR_INSN (note) != beg)
4948 df_insn_change_bb (note, beg);
4950 else if (!DEBUG_INSN_P (note))
4951 break;
4954 break;
4956 else
4957 break;
4959 *headp = beg_head;
4961 if (beg == end)
4962 end_head = beg_head;
4963 else if (LABEL_P (end_head))
4964 end_head = NEXT_INSN (end_head);
4966 while (end_head != end_tail)
4967 if (NOTE_P (end_tail))
4968 end_tail = PREV_INSN (end_tail);
4969 else if (DEBUG_INSN_P (end_tail))
4971 rtx_insn * note, *prev;
4973 for (note = PREV_INSN (end_tail);
4974 note != end_head;
4975 note = prev)
4977 prev = PREV_INSN (note);
4978 if (NOTE_P (note))
4980 if (sched_verbose >= 9)
4981 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4983 reorder_insns_nobb (note, note, end_tail);
4985 if (end_tail == BB_END (end))
4986 BB_END (end) = note;
4988 if (BLOCK_FOR_INSN (note) != end)
4989 df_insn_change_bb (note, end);
4991 else if (!DEBUG_INSN_P (note))
4992 break;
4995 break;
4997 else
4998 break;
5000 *tailp = end_tail;
5003 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5006 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5008 while (head != NEXT_INSN (tail))
5010 if (!NOTE_P (head) && !LABEL_P (head))
5011 return 0;
5012 head = NEXT_INSN (head);
5014 return 1;
5017 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5018 previously found among the insns. Insert them just before HEAD. */
5019 rtx_insn *
5020 restore_other_notes (rtx_insn *head, basic_block head_bb)
5022 if (note_list != 0)
5024 rtx_insn *note_head = note_list;
5026 if (head)
5027 head_bb = BLOCK_FOR_INSN (head);
5028 else
5029 head = NEXT_INSN (bb_note (head_bb));
5031 while (PREV_INSN (note_head))
5033 set_block_for_insn (note_head, head_bb);
5034 note_head = PREV_INSN (note_head);
5036 /* In the above cycle we've missed this note. */
5037 set_block_for_insn (note_head, head_bb);
5039 SET_PREV_INSN (note_head) = PREV_INSN (head);
5040 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5041 SET_PREV_INSN (head) = note_list;
5042 SET_NEXT_INSN (note_list) = head;
5044 if (BLOCK_FOR_INSN (head) != head_bb)
5045 BB_END (head_bb) = note_list;
5047 head = note_head;
5050 return head;
5053 /* When we know we are going to discard the schedule due to a failed attempt
5054 at modulo scheduling, undo all replacements. */
5055 static void
5056 undo_all_replacements (void)
5058 rtx_insn *insn;
5059 int i;
5061 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5063 sd_iterator_def sd_it;
5064 dep_t dep;
5066 /* See if we must undo a replacement. */
5067 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5068 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5070 struct dep_replacement *desc = DEP_REPLACE (dep);
5071 if (desc != NULL)
5072 validate_change (desc->insn, desc->loc, desc->orig, 0);
5077 /* Return first non-scheduled insn in the current scheduling block.
5078 This is mostly used for debug-counter purposes. */
5079 static rtx_insn *
5080 first_nonscheduled_insn (void)
5082 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5083 ? nonscheduled_insns_begin
5084 : current_sched_info->prev_head);
5088 insn = next_nonnote_nondebug_insn (insn);
5090 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5092 return insn;
5095 /* Move insns that became ready to fire from queue to ready list. */
5097 static void
5098 queue_to_ready (struct ready_list *ready)
5100 rtx_insn *insn;
5101 rtx_insn_list *link;
5102 rtx_insn *skip_insn;
5104 q_ptr = NEXT_Q (q_ptr);
5106 if (dbg_cnt (sched_insn) == false)
5107 /* If debug counter is activated do not requeue the first
5108 nonscheduled insn. */
5109 skip_insn = first_nonscheduled_insn ();
5110 else
5111 skip_insn = NULL;
5113 /* Add all pending insns that can be scheduled without stalls to the
5114 ready list. */
5115 for (link = insn_queue[q_ptr]; link; link = link->next ())
5117 insn = link->insn ();
5118 q_size -= 1;
5120 if (sched_verbose >= 2)
5121 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5122 (*current_sched_info->print_insn) (insn, 0));
5124 /* If the ready list is full, delay the insn for 1 cycle.
5125 See the comment in schedule_block for the rationale. */
5126 if (!reload_completed
5127 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5128 || (sched_pressure == SCHED_PRESSURE_MODEL
5129 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5130 instructions too. */
5131 && model_index (insn) > (model_curr_point
5132 + MAX_SCHED_READY_INSNS)))
5133 && !(sched_pressure == SCHED_PRESSURE_MODEL
5134 && model_curr_point < model_num_insns
5135 /* Always allow the next model instruction to issue. */
5136 && model_index (insn) == model_curr_point)
5137 && !SCHED_GROUP_P (insn)
5138 && insn != skip_insn)
5140 if (sched_verbose >= 2)
5141 fprintf (sched_dump, "keeping in queue, ready full\n");
5142 queue_insn (insn, 1, "ready full");
5144 else
5146 ready_add (ready, insn, false);
5147 if (sched_verbose >= 2)
5148 fprintf (sched_dump, "moving to ready without stalls\n");
5151 free_INSN_LIST_list (&insn_queue[q_ptr]);
5153 /* If there are no ready insns, stall until one is ready and add all
5154 of the pending insns at that point to the ready list. */
5155 if (ready->n_ready == 0)
5157 int stalls;
5159 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5161 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5163 for (; link; link = link->next ())
5165 insn = link->insn ();
5166 q_size -= 1;
5168 if (sched_verbose >= 2)
5169 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5170 (*current_sched_info->print_insn) (insn, 0));
5172 ready_add (ready, insn, false);
5173 if (sched_verbose >= 2)
5174 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5176 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5178 advance_one_cycle ();
5180 break;
5183 advance_one_cycle ();
5186 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5187 clock_var += stalls;
5188 if (sched_verbose >= 2)
5189 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5190 stalls, clock_var);
5194 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5195 prematurely move INSN from the queue to the ready list. Currently,
5196 if a target defines the hook 'is_costly_dependence', this function
5197 uses the hook to check whether there exist any dependences which are
5198 considered costly by the target, between INSN and other insns that
5199 have already been scheduled. Dependences are checked up to Y cycles
5200 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5201 controlling this value.
5202 (Other considerations could be taken into account instead (or in
5203 addition) depending on user flags and target hooks. */
5205 static bool
5206 ok_for_early_queue_removal (rtx_insn *insn)
5208 if (targetm.sched.is_costly_dependence)
5210 int n_cycles;
5211 int i = scheduled_insns.length ();
5212 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5214 while (i-- > 0)
5216 int cost;
5218 rtx_insn *prev_insn = scheduled_insns[i];
5220 if (!NOTE_P (prev_insn))
5222 dep_t dep;
5224 dep = sd_find_dep_between (prev_insn, insn, true);
5226 if (dep != NULL)
5228 cost = dep_cost (dep);
5230 if (targetm.sched.is_costly_dependence (dep, cost,
5231 flag_sched_stalled_insns_dep - n_cycles))
5232 return false;
5236 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5237 break;
5240 if (i == 0)
5241 break;
5245 return true;
5249 /* Remove insns from the queue, before they become "ready" with respect
5250 to FU latency considerations. */
5252 static int
5253 early_queue_to_ready (state_t state, struct ready_list *ready)
5255 rtx_insn *insn;
5256 rtx_insn_list *link;
5257 rtx_insn_list *next_link;
5258 rtx_insn_list *prev_link;
5259 bool move_to_ready;
5260 int cost;
5261 state_t temp_state = alloca (dfa_state_size);
5262 int stalls;
5263 int insns_removed = 0;
5266 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5267 function:
5269 X == 0: There is no limit on how many queued insns can be removed
5270 prematurely. (flag_sched_stalled_insns = -1).
5272 X >= 1: Only X queued insns can be removed prematurely in each
5273 invocation. (flag_sched_stalled_insns = X).
5275 Otherwise: Early queue removal is disabled.
5276 (flag_sched_stalled_insns = 0)
5279 if (! flag_sched_stalled_insns)
5280 return 0;
5282 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5284 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5286 if (sched_verbose > 6)
5287 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5289 prev_link = 0;
5290 while (link)
5292 next_link = link->next ();
5293 insn = link->insn ();
5294 if (insn && sched_verbose > 6)
5295 print_rtl_single (sched_dump, insn);
5297 memcpy (temp_state, state, dfa_state_size);
5298 if (recog_memoized (insn) < 0)
5299 /* non-negative to indicate that it's not ready
5300 to avoid infinite Q->R->Q->R... */
5301 cost = 0;
5302 else
5303 cost = state_transition (temp_state, insn);
5305 if (sched_verbose >= 6)
5306 fprintf (sched_dump, "transition cost = %d\n", cost);
5308 move_to_ready = false;
5309 if (cost < 0)
5311 move_to_ready = ok_for_early_queue_removal (insn);
5312 if (move_to_ready == true)
5314 /* move from Q to R */
5315 q_size -= 1;
5316 ready_add (ready, insn, false);
5318 if (prev_link)
5319 XEXP (prev_link, 1) = next_link;
5320 else
5321 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5323 free_INSN_LIST_node (link);
5325 if (sched_verbose >= 2)
5326 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5327 (*current_sched_info->print_insn) (insn, 0));
5329 insns_removed++;
5330 if (insns_removed == flag_sched_stalled_insns)
5331 /* Remove no more than flag_sched_stalled_insns insns
5332 from Q at a time. */
5333 return insns_removed;
5337 if (move_to_ready == false)
5338 prev_link = link;
5340 link = next_link;
5341 } /* while link */
5342 } /* if link */
5344 } /* for stalls.. */
5346 return insns_removed;
5350 /* Print the ready list for debugging purposes.
5351 If READY_TRY is non-zero then only print insns that max_issue
5352 will consider. */
5353 static void
5354 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5356 rtx_insn **p;
5357 int i;
5359 if (ready->n_ready == 0)
5361 fprintf (sched_dump, "\n");
5362 return;
5365 p = ready_lastpos (ready);
5366 for (i = 0; i < ready->n_ready; i++)
5368 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5369 continue;
5371 fprintf (sched_dump, " %s:%d",
5372 (*current_sched_info->print_insn) (p[i], 0),
5373 INSN_LUID (p[i]));
5374 if (sched_pressure != SCHED_PRESSURE_NONE)
5375 fprintf (sched_dump, "(cost=%d",
5376 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5377 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5378 if (INSN_TICK (p[i]) > clock_var)
5379 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5380 if (sched_pressure == SCHED_PRESSURE_MODEL)
5381 fprintf (sched_dump, ":idx=%d",
5382 model_index (p[i]));
5383 if (sched_pressure != SCHED_PRESSURE_NONE)
5384 fprintf (sched_dump, ")");
5386 fprintf (sched_dump, "\n");
5389 /* Print the ready list. Callable from debugger. */
5390 static void
5391 debug_ready_list (struct ready_list *ready)
5393 debug_ready_list_1 (ready, NULL);
5396 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5397 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5398 replaces the epilogue note in the correct basic block. */
5399 void
5400 reemit_notes (rtx_insn *insn)
5402 rtx note;
5403 rtx_insn *last = insn;
5405 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5407 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5409 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5411 last = emit_note_before (note_type, last);
5412 remove_note (insn, note);
5417 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5418 static void
5419 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5421 if (PREV_INSN (insn) != last)
5423 basic_block bb;
5424 rtx_insn *note;
5425 int jump_p = 0;
5427 bb = BLOCK_FOR_INSN (insn);
5429 /* BB_HEAD is either LABEL or NOTE. */
5430 gcc_assert (BB_HEAD (bb) != insn);
5432 if (BB_END (bb) == insn)
5433 /* If this is last instruction in BB, move end marker one
5434 instruction up. */
5436 /* Jumps are always placed at the end of basic block. */
5437 jump_p = control_flow_insn_p (insn);
5439 gcc_assert (!jump_p
5440 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5441 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5442 || (common_sched_info->sched_pass_id
5443 == SCHED_EBB_PASS));
5445 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5447 BB_END (bb) = PREV_INSN (insn);
5450 gcc_assert (BB_END (bb) != last);
5452 if (jump_p)
5453 /* We move the block note along with jump. */
5455 gcc_assert (nt);
5457 note = NEXT_INSN (insn);
5458 while (NOTE_NOT_BB_P (note) && note != nt)
5459 note = NEXT_INSN (note);
5461 if (note != nt
5462 && (LABEL_P (note)
5463 || BARRIER_P (note)))
5464 note = NEXT_INSN (note);
5466 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5468 else
5469 note = insn;
5471 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5472 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5474 SET_NEXT_INSN (note) = NEXT_INSN (last);
5475 SET_PREV_INSN (NEXT_INSN (last)) = note;
5477 SET_NEXT_INSN (last) = insn;
5478 SET_PREV_INSN (insn) = last;
5480 bb = BLOCK_FOR_INSN (last);
5482 if (jump_p)
5484 fix_jump_move (insn);
5486 if (BLOCK_FOR_INSN (insn) != bb)
5487 move_block_after_check (insn);
5489 gcc_assert (BB_END (bb) == last);
5492 df_insn_change_bb (insn, bb);
5494 /* Update BB_END, if needed. */
5495 if (BB_END (bb) == last)
5496 BB_END (bb) = insn;
5499 SCHED_GROUP_P (insn) = 0;
5502 /* Return true if scheduling INSN will finish current clock cycle. */
5503 static bool
5504 insn_finishes_cycle_p (rtx_insn *insn)
5506 if (SCHED_GROUP_P (insn))
5507 /* After issuing INSN, rest of the sched_group will be forced to issue
5508 in order. Don't make any plans for the rest of cycle. */
5509 return true;
5511 /* Finishing the block will, apparently, finish the cycle. */
5512 if (current_sched_info->insn_finishes_block_p
5513 && current_sched_info->insn_finishes_block_p (insn))
5514 return true;
5516 return false;
5519 /* Helper for autopref_multipass_init. Given a SET in PAT and whether
5520 we're expecting a memory WRITE or not, check that the insn is relevant to
5521 the autoprefetcher modelling code. Return true iff that is the case.
5522 If it is relevant, record the base register of the memory op in BASE and
5523 the offset in OFFSET. */
5525 static bool
5526 analyze_set_insn_for_autopref (rtx pat, bool write, rtx *base, int *offset)
5528 if (GET_CODE (pat) != SET)
5529 return false;
5531 rtx mem = write ? SET_DEST (pat) : SET_SRC (pat);
5532 if (!MEM_P (mem))
5533 return false;
5535 struct address_info info;
5536 decompose_mem_address (&info, mem);
5538 /* TODO: Currently only (base+const) addressing is supported. */
5539 if (info.base == NULL || !REG_P (*info.base)
5540 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5541 return false;
5543 *base = *info.base;
5544 *offset = info.disp ? INTVAL (*info.disp) : 0;
5545 return true;
5548 /* Functions to model cache auto-prefetcher.
5550 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5551 memory prefetches if it sees instructions with consequitive memory accesses
5552 in the instruction stream. Details of such hardware units are not published,
5553 so we can only guess what exactly is going on there.
5554 In the scheduler, we model abstract auto-prefetcher. If there are memory
5555 insns in the ready list (or the queue) that have same memory base, but
5556 different offsets, then we delay the insns with larger offsets until insns
5557 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5558 is "1", then we look at the ready list; if it is N>1, then we also look
5559 through N-1 queue entries.
5560 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5561 among its heuristics.
5562 Param value of "-1" disables modelling of the auto-prefetcher. */
5564 /* Initialize autoprefetcher model data for INSN. */
5565 static void
5566 autopref_multipass_init (const rtx_insn *insn, int write)
5568 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5570 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5571 data->base = NULL_RTX;
5572 data->min_offset = 0;
5573 data->max_offset = 0;
5574 data->multi_mem_insn_p = false;
5575 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5576 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5578 rtx pat = PATTERN (insn);
5580 /* We have a multi-set insn like a load-multiple or store-multiple.
5581 We care about these as long as all the memory ops inside the PARALLEL
5582 have the same base register. We care about the minimum and maximum
5583 offsets from that base but don't check for the order of those offsets
5584 within the PARALLEL insn itself. */
5585 if (GET_CODE (pat) == PARALLEL)
5587 int n_elems = XVECLEN (pat, 0);
5589 int i = 0;
5590 rtx prev_base = NULL_RTX;
5591 int min_offset = 0;
5592 int max_offset = 0;
5594 for (i = 0; i < n_elems; i++)
5596 rtx set = XVECEXP (pat, 0, i);
5597 if (GET_CODE (set) != SET)
5598 return;
5600 rtx base = NULL_RTX;
5601 int offset = 0;
5602 if (!analyze_set_insn_for_autopref (set, write, &base, &offset))
5603 return;
5605 if (i == 0)
5607 prev_base = base;
5608 min_offset = offset;
5609 max_offset = offset;
5611 /* Ensure that all memory operations in the PARALLEL use the same
5612 base register. */
5613 else if (REGNO (base) != REGNO (prev_base))
5614 return;
5615 else
5617 min_offset = MIN (min_offset, offset);
5618 max_offset = MAX (max_offset, offset);
5622 /* If we reached here then we have a valid PARALLEL of multiple memory
5623 ops with prev_base as the base and min_offset and max_offset
5624 containing the offsets range. */
5625 gcc_assert (prev_base);
5626 data->base = prev_base;
5627 data->min_offset = min_offset;
5628 data->max_offset = max_offset;
5629 data->multi_mem_insn_p = true;
5630 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5632 return;
5635 /* Otherwise this is a single set memory operation. */
5636 rtx set = single_set (insn);
5637 if (set == NULL_RTX)
5638 return;
5640 if (!analyze_set_insn_for_autopref (set, write, &data->base,
5641 &data->min_offset))
5642 return;
5644 /* This insn is relevant for the auto-prefetcher.
5645 The base and offset fields will have been filled in the
5646 analyze_set_insn_for_autopref call above. */
5647 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5651 /* Helper for autopref_rank_for_schedule. Given the data of two
5652 insns relevant to the auto-prefetcher modelling code DATA1 and DATA2
5653 return their comparison result. Return 0 if there is no sensible
5654 ranking order for the two insns. */
5656 static int
5657 autopref_rank_data (autopref_multipass_data_t data1,
5658 autopref_multipass_data_t data2)
5660 /* Simple case when both insns are simple single memory ops. */
5661 if (!data1->multi_mem_insn_p && !data2->multi_mem_insn_p)
5662 return data1->min_offset - data2->min_offset;
5664 /* Two load/store multiple insns. Return 0 if the offset ranges
5665 overlap and the difference between the minimum offsets otherwise. */
5666 else if (data1->multi_mem_insn_p && data2->multi_mem_insn_p)
5668 int min1 = data1->min_offset;
5669 int max1 = data1->max_offset;
5670 int min2 = data2->min_offset;
5671 int max2 = data2->max_offset;
5673 if (max1 < min2 || min1 > max2)
5674 return min1 - min2;
5675 else
5676 return 0;
5679 /* The other two cases is a pair of a load/store multiple and
5680 a simple memory op. Return 0 if the single op's offset is within the
5681 range of the multi-op insn and the difference between the single offset
5682 and the minimum offset of the multi-set insn otherwise. */
5683 else if (data1->multi_mem_insn_p && !data2->multi_mem_insn_p)
5685 int max1 = data1->max_offset;
5686 int min1 = data1->min_offset;
5688 if (data2->min_offset >= min1
5689 && data2->min_offset <= max1)
5690 return 0;
5691 else
5692 return min1 - data2->min_offset;
5694 else
5696 int max2 = data2->max_offset;
5697 int min2 = data2->min_offset;
5699 if (data1->min_offset >= min2
5700 && data1->min_offset <= max2)
5701 return 0;
5702 else
5703 return data1->min_offset - min2;
5707 /* Helper function for rank_for_schedule sorting. */
5708 static int
5709 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5711 int r = 0;
5712 for (int write = 0; write < 2 && !r; ++write)
5714 autopref_multipass_data_t data1
5715 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5716 autopref_multipass_data_t data2
5717 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5719 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5720 autopref_multipass_init (insn1, write);
5722 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5723 autopref_multipass_init (insn2, write);
5725 int irrel1 = data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5726 int irrel2 = data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5728 if (!irrel1 && !irrel2)
5729 r = autopref_rank_data (data1, data2);
5730 else
5731 r = irrel2 - irrel1;
5734 return r;
5737 /* True if header of debug dump was printed. */
5738 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5740 /* Helper for autopref_multipass_dfa_lookahead_guard.
5741 Return "1" if INSN1 should be delayed in favor of INSN2. */
5742 static int
5743 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5744 const rtx_insn *insn2, int write)
5746 autopref_multipass_data_t data1
5747 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5748 autopref_multipass_data_t data2
5749 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5751 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5752 autopref_multipass_init (insn2, write);
5753 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5754 return 0;
5756 if (rtx_equal_p (data1->base, data2->base)
5757 && autopref_rank_data (data1, data2) > 0)
5759 if (sched_verbose >= 2)
5761 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5763 fprintf (sched_dump,
5764 ";;\t\tnot trying in max_issue due to autoprefetch "
5765 "model: ");
5766 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5769 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5772 return 1;
5775 return 0;
5778 /* General note:
5780 We could have also hooked autoprefetcher model into
5781 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5782 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5783 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5784 unblocked). We don't bother about this yet because target of interest
5785 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5787 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5788 Return "1" if INSN1 should not be considered in max_issue due to
5789 auto-prefetcher considerations. */
5791 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5793 int r = 0;
5795 /* Exit early if the param forbids this or if we're not entering here through
5796 normal haifa scheduling. This can happen if selective scheduling is
5797 explicitly enabled. */
5798 if (!insn_queue || PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
5799 return 0;
5801 if (sched_verbose >= 2 && ready_index == 0)
5802 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5804 for (int write = 0; write < 2; ++write)
5806 autopref_multipass_data_t data1
5807 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5809 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5810 autopref_multipass_init (insn1, write);
5811 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5812 continue;
5814 if (ready_index == 0
5815 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5816 /* We allow only a single delay on priviledged instructions.
5817 Doing otherwise would cause infinite loop. */
5819 if (sched_verbose >= 2)
5821 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5823 fprintf (sched_dump,
5824 ";;\t\tnot trying in max_issue due to autoprefetch "
5825 "model: ");
5826 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5829 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5831 continue;
5834 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5836 rtx_insn *insn2 = get_ready_element (i2);
5837 if (insn1 == insn2)
5838 continue;
5839 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5840 if (r)
5842 if (ready_index == 0)
5844 r = -1;
5845 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5847 goto finish;
5851 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5852 continue;
5854 /* Everything from the current queue slot should have been moved to
5855 the ready list. */
5856 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5858 int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5859 if (n_stalls > max_insn_queue_index)
5860 n_stalls = max_insn_queue_index;
5862 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5864 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5865 link != NULL_RTX;
5866 link = link->next ())
5868 rtx_insn *insn2 = link->insn ();
5869 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5870 write);
5871 if (r)
5873 /* Queue INSN1 until INSN2 can issue. */
5874 r = -stalls;
5875 if (ready_index == 0)
5876 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5877 goto finish;
5883 finish:
5884 if (sched_verbose >= 2
5885 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5886 && (ready_index == ready.n_ready - 1 || r < 0))
5887 /* This does not /always/ trigger. We don't output EOL if the last
5888 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5889 called. We can live with this. */
5890 fprintf (sched_dump, "\n");
5892 return r;
5895 /* Define type for target data used in multipass scheduling. */
5896 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5897 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5898 #endif
5899 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5901 /* The following structure describe an entry of the stack of choices. */
5902 struct choice_entry
5904 /* Ordinal number of the issued insn in the ready queue. */
5905 int index;
5906 /* The number of the rest insns whose issues we should try. */
5907 int rest;
5908 /* The number of issued essential insns. */
5909 int n;
5910 /* State after issuing the insn. */
5911 state_t state;
5912 /* Target-specific data. */
5913 first_cycle_multipass_data_t target_data;
5916 /* The following array is used to implement a stack of choices used in
5917 function max_issue. */
5918 static struct choice_entry *choice_stack;
5920 /* This holds the value of the target dfa_lookahead hook. */
5921 int dfa_lookahead;
5923 /* The following variable value is maximal number of tries of issuing
5924 insns for the first cycle multipass insn scheduling. We define
5925 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5926 need this constraint if all real insns (with non-negative codes)
5927 had reservations because in this case the algorithm complexity is
5928 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5929 might be incomplete and such insn might occur. For such
5930 descriptions, the complexity of algorithm (without the constraint)
5931 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5932 static int max_lookahead_tries;
5934 /* The following function returns maximal (or close to maximal) number
5935 of insns which can be issued on the same cycle and one of which
5936 insns is insns with the best rank (the first insn in READY). To
5937 make this function tries different samples of ready insns. READY
5938 is current queue `ready'. Global array READY_TRY reflects what
5939 insns are already issued in this try. The function stops immediately,
5940 if it reached the such a solution, that all instruction can be issued.
5941 INDEX will contain index of the best insn in READY. The following
5942 function is used only for first cycle multipass scheduling.
5944 PRIVILEGED_N >= 0
5946 This function expects recognized insns only. All USEs,
5947 CLOBBERs, etc must be filtered elsewhere. */
5949 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5950 bool first_cycle_insn_p, int *index)
5952 int n, i, all, n_ready, best, delay, tries_num;
5953 int more_issue;
5954 struct choice_entry *top;
5955 rtx_insn *insn;
5957 if (sched_fusion)
5958 return 0;
5960 n_ready = ready->n_ready;
5961 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5962 && privileged_n <= n_ready);
5964 /* Init MAX_LOOKAHEAD_TRIES. */
5965 if (max_lookahead_tries == 0)
5967 max_lookahead_tries = 100;
5968 for (i = 0; i < issue_rate; i++)
5969 max_lookahead_tries *= dfa_lookahead;
5972 /* Init max_points. */
5973 more_issue = issue_rate - cycle_issued_insns;
5974 gcc_assert (more_issue >= 0);
5976 /* The number of the issued insns in the best solution. */
5977 best = 0;
5979 top = choice_stack;
5981 /* Set initial state of the search. */
5982 memcpy (top->state, state, dfa_state_size);
5983 top->rest = dfa_lookahead;
5984 top->n = 0;
5985 if (targetm.sched.first_cycle_multipass_begin)
5986 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5987 ready_try, n_ready,
5988 first_cycle_insn_p);
5990 /* Count the number of the insns to search among. */
5991 for (all = i = 0; i < n_ready; i++)
5992 if (!ready_try [i])
5993 all++;
5995 if (sched_verbose >= 2)
5997 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5998 debug_ready_list_1 (ready, ready_try);
6001 /* I is the index of the insn to try next. */
6002 i = 0;
6003 tries_num = 0;
6004 for (;;)
6006 if (/* If we've reached a dead end or searched enough of what we have
6007 been asked... */
6008 top->rest == 0
6009 /* or have nothing else to try... */
6010 || i >= n_ready
6011 /* or should not issue more. */
6012 || top->n >= more_issue)
6014 /* ??? (... || i == n_ready). */
6015 gcc_assert (i <= n_ready);
6017 /* We should not issue more than issue_rate instructions. */
6018 gcc_assert (top->n <= more_issue);
6020 if (top == choice_stack)
6021 break;
6023 if (best < top - choice_stack)
6025 if (privileged_n)
6027 n = privileged_n;
6028 /* Try to find issued privileged insn. */
6029 while (n && !ready_try[--n])
6033 if (/* If all insns are equally good... */
6034 privileged_n == 0
6035 /* Or a privileged insn will be issued. */
6036 || ready_try[n])
6037 /* Then we have a solution. */
6039 best = top - choice_stack;
6040 /* This is the index of the insn issued first in this
6041 solution. */
6042 *index = choice_stack [1].index;
6043 if (top->n == more_issue || best == all)
6044 break;
6048 /* Set ready-list index to point to the last insn
6049 ('i++' below will advance it to the next insn). */
6050 i = top->index;
6052 /* Backtrack. */
6053 ready_try [i] = 0;
6055 if (targetm.sched.first_cycle_multipass_backtrack)
6056 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
6057 ready_try, n_ready);
6059 top--;
6060 memcpy (state, top->state, dfa_state_size);
6062 else if (!ready_try [i])
6064 tries_num++;
6065 if (tries_num > max_lookahead_tries)
6066 break;
6067 insn = ready_element (ready, i);
6068 delay = state_transition (state, insn);
6069 if (delay < 0)
6071 if (state_dead_lock_p (state)
6072 || insn_finishes_cycle_p (insn))
6073 /* We won't issue any more instructions in the next
6074 choice_state. */
6075 top->rest = 0;
6076 else
6077 top->rest--;
6079 n = top->n;
6080 if (memcmp (top->state, state, dfa_state_size) != 0)
6081 n++;
6083 /* Advance to the next choice_entry. */
6084 top++;
6085 /* Initialize it. */
6086 top->rest = dfa_lookahead;
6087 top->index = i;
6088 top->n = n;
6089 memcpy (top->state, state, dfa_state_size);
6090 ready_try [i] = 1;
6092 if (targetm.sched.first_cycle_multipass_issue)
6093 targetm.sched.first_cycle_multipass_issue (&top->target_data,
6094 ready_try, n_ready,
6095 insn,
6096 &((top - 1)
6097 ->target_data));
6099 i = -1;
6103 /* Increase ready-list index. */
6104 i++;
6107 if (targetm.sched.first_cycle_multipass_end)
6108 targetm.sched.first_cycle_multipass_end (best != 0
6109 ? &choice_stack[1].target_data
6110 : NULL);
6112 /* Restore the original state of the DFA. */
6113 memcpy (state, choice_stack->state, dfa_state_size);
6115 return best;
6118 /* The following function chooses insn from READY and modifies
6119 READY. The following function is used only for first
6120 cycle multipass scheduling.
6121 Return:
6122 -1 if cycle should be advanced,
6123 0 if INSN_PTR is set to point to the desirable insn,
6124 1 if choose_ready () should be restarted without advancing the cycle. */
6125 static int
6126 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6127 rtx_insn **insn_ptr)
6129 if (dbg_cnt (sched_insn) == false)
6131 if (nonscheduled_insns_begin == NULL_RTX)
6132 nonscheduled_insns_begin = current_sched_info->prev_head;
6134 rtx_insn *insn = first_nonscheduled_insn ();
6136 if (QUEUE_INDEX (insn) == QUEUE_READY)
6137 /* INSN is in the ready_list. */
6139 ready_remove_insn (insn);
6140 *insn_ptr = insn;
6141 return 0;
6144 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6145 gcc_assert (QUEUE_INDEX (insn) >= 0);
6146 return -1;
6149 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6150 || DEBUG_INSN_P (ready_element (ready, 0)))
6152 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6153 *insn_ptr = ready_remove_first_dispatch (ready);
6154 else
6155 *insn_ptr = ready_remove_first (ready);
6157 return 0;
6159 else
6161 /* Try to choose the best insn. */
6162 int index = 0, i;
6163 rtx_insn *insn;
6165 insn = ready_element (ready, 0);
6166 if (INSN_CODE (insn) < 0)
6168 *insn_ptr = ready_remove_first (ready);
6169 return 0;
6172 /* Filter the search space. */
6173 for (i = 0; i < ready->n_ready; i++)
6175 ready_try[i] = 0;
6177 insn = ready_element (ready, i);
6179 /* If this insn is recognizable we should have already
6180 recognized it earlier.
6181 ??? Not very clear where this is supposed to be done.
6182 See dep_cost_1. */
6183 gcc_checking_assert (INSN_CODE (insn) >= 0
6184 || recog_memoized (insn) < 0);
6185 if (INSN_CODE (insn) < 0)
6187 /* Non-recognized insns at position 0 are handled above. */
6188 gcc_assert (i > 0);
6189 ready_try[i] = 1;
6190 continue;
6193 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6195 ready_try[i]
6196 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6197 (insn, i));
6199 if (ready_try[i] < 0)
6200 /* Queue instruction for several cycles.
6201 We need to restart choose_ready as we have changed
6202 the ready list. */
6204 change_queue_index (insn, -ready_try[i]);
6205 return 1;
6208 /* Make sure that we didn't end up with 0'th insn filtered out.
6209 Don't be tempted to make life easier for backends and just
6210 requeue 0'th insn if (ready_try[0] == 0) and restart
6211 choose_ready. Backends should be very considerate about
6212 requeueing instructions -- especially the highest priority
6213 one at position 0. */
6214 gcc_assert (ready_try[i] == 0 || i > 0);
6215 if (ready_try[i])
6216 continue;
6219 gcc_assert (ready_try[i] == 0);
6220 /* INSN made it through the scrutiny of filters! */
6223 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6225 *insn_ptr = ready_remove_first (ready);
6226 if (sched_verbose >= 4)
6227 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6228 (*current_sched_info->print_insn) (*insn_ptr, 0));
6229 return 0;
6231 else
6233 if (sched_verbose >= 4)
6234 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6235 (*current_sched_info->print_insn)
6236 (ready_element (ready, index), 0));
6238 *insn_ptr = ready_remove (ready, index);
6239 return 0;
6244 /* This function is called when we have successfully scheduled a
6245 block. It uses the schedule stored in the scheduled_insns vector
6246 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6247 append the scheduled insns; TAIL is the insn after the scheduled
6248 block. TARGET_BB is the argument passed to schedule_block. */
6250 static void
6251 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6253 unsigned int i;
6254 rtx_insn *insn;
6256 last_scheduled_insn = prev_head;
6257 for (i = 0;
6258 scheduled_insns.iterate (i, &insn);
6259 i++)
6261 if (control_flow_insn_p (last_scheduled_insn)
6262 || current_sched_info->advance_target_bb (*target_bb, insn))
6264 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6266 if (sched_verbose)
6268 rtx_insn *x;
6270 x = next_real_insn (last_scheduled_insn);
6271 gcc_assert (x);
6272 dump_new_block_header (1, *target_bb, x, tail);
6275 last_scheduled_insn = bb_note (*target_bb);
6278 if (current_sched_info->begin_move_insn)
6279 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6280 move_insn (insn, last_scheduled_insn,
6281 current_sched_info->next_tail);
6282 if (!DEBUG_INSN_P (insn))
6283 reemit_notes (insn);
6284 last_scheduled_insn = insn;
6287 scheduled_insns.truncate (0);
6290 /* Examine all insns on the ready list and queue those which can't be
6291 issued in this cycle. TEMP_STATE is temporary scheduler state we
6292 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6293 have been issued for the current cycle, which means it is valid to
6294 issue an asm statement.
6296 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6297 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6298 we only leave insns which have an INSN_EXACT_TICK. */
6300 static void
6301 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6302 bool shadows_only_p, bool modulo_epilogue_p)
6304 int i, pass;
6305 bool sched_group_found = false;
6306 int min_cost_group = 1;
6308 if (sched_fusion)
6309 return;
6311 for (i = 0; i < ready.n_ready; i++)
6313 rtx_insn *insn = ready_element (&ready, i);
6314 if (SCHED_GROUP_P (insn))
6316 sched_group_found = true;
6317 break;
6321 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6322 such an insn first and note its cost, then schedule all other insns
6323 for one cycle later. */
6324 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6326 int n = ready.n_ready;
6327 for (i = 0; i < n; i++)
6329 rtx_insn *insn = ready_element (&ready, i);
6330 int cost = 0;
6331 const char *reason = "resource conflict";
6333 if (DEBUG_INSN_P (insn))
6334 continue;
6336 if (sched_group_found && !SCHED_GROUP_P (insn))
6338 if (pass == 0)
6339 continue;
6340 cost = min_cost_group;
6341 reason = "not in sched group";
6343 else if (modulo_epilogue_p
6344 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6346 cost = max_insn_queue_index;
6347 reason = "not an epilogue insn";
6349 else if (shadows_only_p && !SHADOW_P (insn))
6351 cost = 1;
6352 reason = "not a shadow";
6354 else if (recog_memoized (insn) < 0)
6356 if (!first_cycle_insn_p
6357 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6358 || asm_noperands (PATTERN (insn)) >= 0))
6359 cost = 1;
6360 reason = "asm";
6362 else if (sched_pressure != SCHED_PRESSURE_NONE)
6364 if (sched_pressure == SCHED_PRESSURE_MODEL
6365 && INSN_TICK (insn) <= clock_var)
6367 memcpy (temp_state, curr_state, dfa_state_size);
6368 if (state_transition (temp_state, insn) >= 0)
6369 INSN_TICK (insn) = clock_var + 1;
6371 cost = 0;
6373 else
6375 int delay_cost = 0;
6377 if (delay_htab)
6379 struct delay_pair *delay_entry;
6380 delay_entry
6381 = delay_htab->find_with_hash (insn,
6382 htab_hash_pointer (insn));
6383 while (delay_entry && delay_cost == 0)
6385 delay_cost = estimate_shadow_tick (delay_entry);
6386 if (delay_cost > max_insn_queue_index)
6387 delay_cost = max_insn_queue_index;
6388 delay_entry = delay_entry->next_same_i1;
6392 memcpy (temp_state, curr_state, dfa_state_size);
6393 cost = state_transition (temp_state, insn);
6394 if (cost < 0)
6395 cost = 0;
6396 else if (cost == 0)
6397 cost = 1;
6398 if (cost < delay_cost)
6400 cost = delay_cost;
6401 reason = "shadow tick";
6404 if (cost >= 1)
6406 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6407 min_cost_group = cost;
6408 ready_remove (&ready, i);
6409 /* Normally we'd want to queue INSN for COST cycles. However,
6410 if SCHED_GROUP_P is set, then we must ensure that nothing
6411 else comes between INSN and its predecessor. If there is
6412 some other insn ready to fire on the next cycle, then that
6413 invariant would be broken.
6415 So when SCHED_GROUP_P is set, just queue this insn for a
6416 single cycle. */
6417 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6418 if (i + 1 < n)
6419 break;
6422 if (i == n)
6423 pass++;
6427 /* Called when we detect that the schedule is impossible. We examine the
6428 backtrack queue to find the earliest insn that caused this condition. */
6430 static struct haifa_saved_data *
6431 verify_shadows (void)
6433 struct haifa_saved_data *save, *earliest_fail = NULL;
6434 for (save = backtrack_queue; save; save = save->next)
6436 int t;
6437 struct delay_pair *pair = save->delay_pair;
6438 rtx_insn *i1 = pair->i1;
6440 for (; pair; pair = pair->next_same_i1)
6442 rtx_insn *i2 = pair->i2;
6444 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6445 continue;
6447 t = INSN_TICK (i1) + pair_delay (pair);
6448 if (t < clock_var)
6450 if (sched_verbose >= 2)
6451 fprintf (sched_dump,
6452 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6453 ", not ready\n",
6454 INSN_UID (pair->i1), INSN_UID (pair->i2),
6455 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6456 earliest_fail = save;
6457 break;
6459 if (QUEUE_INDEX (i2) >= 0)
6461 int queued_for = INSN_TICK (i2);
6463 if (t < queued_for)
6465 if (sched_verbose >= 2)
6466 fprintf (sched_dump,
6467 ";;\t\tfailed delay requirements for %d/%d"
6468 " (%d->%d), queued too late\n",
6469 INSN_UID (pair->i1), INSN_UID (pair->i2),
6470 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6471 earliest_fail = save;
6472 break;
6478 return earliest_fail;
6481 /* Print instructions together with useful scheduling information between
6482 HEAD and TAIL (inclusive). */
6483 static void
6484 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6486 fprintf (sched_dump, ";;\t| insn | prio |\n");
6488 rtx_insn *next_tail = NEXT_INSN (tail);
6489 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6491 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6492 const char *pattern = (NOTE_P (insn)
6493 ? "note"
6494 : str_pattern_slim (PATTERN (insn)));
6496 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6497 INSN_UID (insn), priority, pattern);
6499 if (sched_verbose >= 4)
6501 if (NOTE_P (insn) || LABEL_P (insn) || recog_memoized (insn) < 0)
6502 fprintf (sched_dump, "nothing");
6503 else
6504 print_reservation (sched_dump, insn);
6506 fprintf (sched_dump, "\n");
6510 /* Use forward list scheduling to rearrange insns of block pointed to by
6511 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6512 region. */
6514 bool
6515 schedule_block (basic_block *target_bb, state_t init_state)
6517 int i;
6518 bool success = modulo_ii == 0;
6519 struct sched_block_state ls;
6520 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6521 int sort_p, advance, start_clock_var;
6523 /* Head/tail info for this block. */
6524 rtx_insn *prev_head = current_sched_info->prev_head;
6525 rtx_insn *next_tail = current_sched_info->next_tail;
6526 rtx_insn *head = NEXT_INSN (prev_head);
6527 rtx_insn *tail = PREV_INSN (next_tail);
6529 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6530 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6531 find_modifiable_mems (head, tail);
6533 /* We used to have code to avoid getting parameters moved from hard
6534 argument registers into pseudos.
6536 However, it was removed when it proved to be of marginal benefit
6537 and caused problems because schedule_block and compute_forward_dependences
6538 had different notions of what the "head" insn was. */
6540 gcc_assert (head != tail || INSN_P (head));
6542 haifa_recovery_bb_recently_added_p = false;
6544 backtrack_queue = NULL;
6546 /* Debug info. */
6547 if (sched_verbose)
6549 dump_new_block_header (0, *target_bb, head, tail);
6551 if (sched_verbose >= 2)
6553 dump_insn_stream (head, tail);
6554 memset (&rank_for_schedule_stats, 0,
6555 sizeof (rank_for_schedule_stats));
6559 if (init_state == NULL)
6560 state_reset (curr_state);
6561 else
6562 memcpy (curr_state, init_state, dfa_state_size);
6564 /* Clear the ready list. */
6565 ready.first = ready.veclen - 1;
6566 ready.n_ready = 0;
6567 ready.n_debug = 0;
6569 /* It is used for first cycle multipass scheduling. */
6570 temp_state = alloca (dfa_state_size);
6572 if (targetm.sched.init)
6573 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6575 /* We start inserting insns after PREV_HEAD. */
6576 last_scheduled_insn = prev_head;
6577 last_nondebug_scheduled_insn = NULL;
6578 nonscheduled_insns_begin = NULL;
6580 gcc_assert ((NOTE_P (last_scheduled_insn)
6581 || DEBUG_INSN_P (last_scheduled_insn))
6582 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6584 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6585 queue. */
6586 q_ptr = 0;
6587 q_size = 0;
6589 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6590 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6592 /* Start just before the beginning of time. */
6593 clock_var = -1;
6595 /* We need queue and ready lists and clock_var be initialized
6596 in try_ready () (which is called through init_ready_list ()). */
6597 (*current_sched_info->init_ready_list) ();
6599 if (sched_pressure)
6600 sched_pressure_start_bb (*target_bb);
6602 /* The algorithm is O(n^2) in the number of ready insns at any given
6603 time in the worst case. Before reload we are more likely to have
6604 big lists so truncate them to a reasonable size. */
6605 if (!reload_completed
6606 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6608 ready_sort_debug (&ready);
6609 ready_sort_real (&ready);
6611 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6612 If there are debug insns, we know they're first. */
6613 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6614 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6615 break;
6617 if (sched_verbose >= 2)
6619 fprintf (sched_dump,
6620 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6621 debug_ready_list (&ready);
6622 fprintf (sched_dump,
6623 ";;\t\t before reload => truncated to %d insns\n", i);
6626 /* Delay all insns past it for 1 cycle. If debug counter is
6627 activated make an exception for the insn right after
6628 nonscheduled_insns_begin. */
6630 rtx_insn *skip_insn;
6632 if (dbg_cnt (sched_insn) == false)
6633 skip_insn = first_nonscheduled_insn ();
6634 else
6635 skip_insn = NULL;
6637 while (i < ready.n_ready)
6639 rtx_insn *insn;
6641 insn = ready_remove (&ready, i);
6643 if (insn != skip_insn)
6644 queue_insn (insn, 1, "list truncated");
6646 if (skip_insn)
6647 ready_add (&ready, skip_insn, true);
6651 /* Now we can restore basic block notes and maintain precise cfg. */
6652 restore_bb_notes (*target_bb);
6654 last_clock_var = -1;
6656 advance = 0;
6658 gcc_assert (scheduled_insns.length () == 0);
6659 sort_p = TRUE;
6660 must_backtrack = false;
6661 modulo_insns_scheduled = 0;
6663 ls.modulo_epilogue = false;
6664 ls.first_cycle_insn_p = true;
6666 /* Loop until all the insns in BB are scheduled. */
6667 while ((*current_sched_info->schedule_more_p) ())
6669 perform_replacements_new_cycle ();
6672 start_clock_var = clock_var;
6674 clock_var++;
6676 advance_one_cycle ();
6678 /* Add to the ready list all pending insns that can be issued now.
6679 If there are no ready insns, increment clock until one
6680 is ready and add all pending insns at that point to the ready
6681 list. */
6682 queue_to_ready (&ready);
6684 gcc_assert (ready.n_ready);
6686 if (sched_verbose >= 2)
6688 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6689 debug_ready_list (&ready);
6691 advance -= clock_var - start_clock_var;
6693 while (advance > 0);
6695 if (ls.modulo_epilogue)
6697 int stage = clock_var / modulo_ii;
6698 if (stage > modulo_last_stage * 2 + 2)
6700 if (sched_verbose >= 2)
6701 fprintf (sched_dump,
6702 ";;\t\tmodulo scheduled succeeded at II %d\n",
6703 modulo_ii);
6704 success = true;
6705 goto end_schedule;
6708 else if (modulo_ii > 0)
6710 int stage = clock_var / modulo_ii;
6711 if (stage > modulo_max_stages)
6713 if (sched_verbose >= 2)
6714 fprintf (sched_dump,
6715 ";;\t\tfailing schedule due to excessive stages\n");
6716 goto end_schedule;
6718 if (modulo_n_insns == modulo_insns_scheduled
6719 && stage > modulo_last_stage)
6721 if (sched_verbose >= 2)
6722 fprintf (sched_dump,
6723 ";;\t\tfound kernel after %d stages, II %d\n",
6724 stage, modulo_ii);
6725 ls.modulo_epilogue = true;
6729 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6730 if (ready.n_ready == 0)
6731 continue;
6732 if (must_backtrack)
6733 goto do_backtrack;
6735 ls.shadows_only_p = false;
6736 cycle_issued_insns = 0;
6737 ls.can_issue_more = issue_rate;
6738 for (;;)
6740 rtx_insn *insn;
6741 int cost;
6742 bool asm_p;
6744 if (sort_p && ready.n_ready > 0)
6746 /* Sort the ready list based on priority. This must be
6747 done every iteration through the loop, as schedule_insn
6748 may have readied additional insns that will not be
6749 sorted correctly. */
6750 ready_sort (&ready);
6752 if (sched_verbose >= 2)
6754 fprintf (sched_dump,
6755 ";;\t\tReady list after ready_sort: ");
6756 debug_ready_list (&ready);
6760 /* We don't want md sched reorder to even see debug isns, so put
6761 them out right away. */
6762 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6763 && (*current_sched_info->schedule_more_p) ())
6765 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6767 rtx_insn *insn = ready_remove_first (&ready);
6768 gcc_assert (DEBUG_INSN_P (insn));
6769 (*current_sched_info->begin_schedule_ready) (insn);
6770 scheduled_insns.safe_push (insn);
6771 last_scheduled_insn = insn;
6772 advance = schedule_insn (insn);
6773 gcc_assert (advance == 0);
6774 if (ready.n_ready > 0)
6775 ready_sort (&ready);
6779 if (ls.first_cycle_insn_p && !ready.n_ready)
6780 break;
6782 resume_after_backtrack:
6783 /* Allow the target to reorder the list, typically for
6784 better instruction bundling. */
6785 if (sort_p
6786 && (ready.n_ready == 0
6787 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6789 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6790 ls.can_issue_more
6791 = targetm.sched.reorder (sched_dump, sched_verbose,
6792 ready_lastpos (&ready),
6793 &ready.n_ready, clock_var);
6794 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6795 ls.can_issue_more
6796 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6797 ready.n_ready
6798 ? ready_lastpos (&ready) : NULL,
6799 &ready.n_ready, clock_var);
6802 restart_choose_ready:
6803 if (sched_verbose >= 2)
6805 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6806 clock_var);
6807 debug_ready_list (&ready);
6808 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6809 print_curr_reg_pressure ();
6812 if (ready.n_ready == 0
6813 && ls.can_issue_more
6814 && reload_completed)
6816 /* Allow scheduling insns directly from the queue in case
6817 there's nothing better to do (ready list is empty) but
6818 there are still vacant dispatch slots in the current cycle. */
6819 if (sched_verbose >= 6)
6820 fprintf (sched_dump,";;\t\tSecond chance\n");
6821 memcpy (temp_state, curr_state, dfa_state_size);
6822 if (early_queue_to_ready (temp_state, &ready))
6823 ready_sort (&ready);
6826 if (ready.n_ready == 0
6827 || !ls.can_issue_more
6828 || state_dead_lock_p (curr_state)
6829 || !(*current_sched_info->schedule_more_p) ())
6830 break;
6832 /* Select and remove the insn from the ready list. */
6833 if (sort_p)
6835 int res;
6837 insn = NULL;
6838 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6840 if (res < 0)
6841 /* Finish cycle. */
6842 break;
6843 if (res > 0)
6844 goto restart_choose_ready;
6846 gcc_assert (insn != NULL_RTX);
6848 else
6849 insn = ready_remove_first (&ready);
6851 if (sched_pressure != SCHED_PRESSURE_NONE
6852 && INSN_TICK (insn) > clock_var)
6854 ready_add (&ready, insn, true);
6855 advance = 1;
6856 break;
6859 if (targetm.sched.dfa_new_cycle
6860 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6861 insn, last_clock_var,
6862 clock_var, &sort_p))
6863 /* SORT_P is used by the target to override sorting
6864 of the ready list. This is needed when the target
6865 has modified its internal structures expecting that
6866 the insn will be issued next. As we need the insn
6867 to have the highest priority (so it will be returned by
6868 the ready_remove_first call above), we invoke
6869 ready_add (&ready, insn, true).
6870 But, still, there is one issue: INSN can be later
6871 discarded by scheduler's front end through
6872 current_sched_info->can_schedule_ready_p, hence, won't
6873 be issued next. */
6875 ready_add (&ready, insn, true);
6876 break;
6879 sort_p = TRUE;
6881 if (current_sched_info->can_schedule_ready_p
6882 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6883 /* We normally get here only if we don't want to move
6884 insn from the split block. */
6886 TODO_SPEC (insn) = DEP_POSTPONED;
6887 goto restart_choose_ready;
6890 if (delay_htab)
6892 /* If this insn is the first part of a delay-slot pair, record a
6893 backtrack point. */
6894 struct delay_pair *delay_entry;
6895 delay_entry
6896 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6897 if (delay_entry)
6899 save_backtrack_point (delay_entry, ls);
6900 if (sched_verbose >= 2)
6901 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6905 /* DECISION is made. */
6907 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6909 modulo_insns_scheduled++;
6910 modulo_last_stage = clock_var / modulo_ii;
6912 if (TODO_SPEC (insn) & SPECULATIVE)
6913 generate_recovery_code (insn);
6915 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6916 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6918 /* Update counters, etc in the scheduler's front end. */
6919 (*current_sched_info->begin_schedule_ready) (insn);
6920 scheduled_insns.safe_push (insn);
6921 gcc_assert (NONDEBUG_INSN_P (insn));
6922 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6924 if (recog_memoized (insn) >= 0)
6926 memcpy (temp_state, curr_state, dfa_state_size);
6927 cost = state_transition (curr_state, insn);
6928 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6929 gcc_assert (cost < 0);
6930 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6931 cycle_issued_insns++;
6932 asm_p = false;
6934 else
6935 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6936 || asm_noperands (PATTERN (insn)) >= 0);
6938 if (targetm.sched.variable_issue)
6939 ls.can_issue_more =
6940 targetm.sched.variable_issue (sched_dump, sched_verbose,
6941 insn, ls.can_issue_more);
6942 /* A naked CLOBBER or USE generates no instruction, so do
6943 not count them against the issue rate. */
6944 else if (GET_CODE (PATTERN (insn)) != USE
6945 && GET_CODE (PATTERN (insn)) != CLOBBER)
6946 ls.can_issue_more--;
6947 advance = schedule_insn (insn);
6949 if (SHADOW_P (insn))
6950 ls.shadows_only_p = true;
6952 /* After issuing an asm insn we should start a new cycle. */
6953 if (advance == 0 && asm_p)
6954 advance = 1;
6956 if (must_backtrack)
6957 break;
6959 if (advance != 0)
6960 break;
6962 ls.first_cycle_insn_p = false;
6963 if (ready.n_ready > 0)
6964 prune_ready_list (temp_state, false, ls.shadows_only_p,
6965 ls.modulo_epilogue);
6968 do_backtrack:
6969 if (!must_backtrack)
6970 for (i = 0; i < ready.n_ready; i++)
6972 rtx_insn *insn = ready_element (&ready, i);
6973 if (INSN_EXACT_TICK (insn) == clock_var)
6975 must_backtrack = true;
6976 clock_var++;
6977 break;
6980 if (must_backtrack && modulo_ii > 0)
6982 if (modulo_backtracks_left == 0)
6983 goto end_schedule;
6984 modulo_backtracks_left--;
6986 while (must_backtrack)
6988 struct haifa_saved_data *failed;
6989 rtx_insn *failed_insn;
6991 must_backtrack = false;
6992 failed = verify_shadows ();
6993 gcc_assert (failed);
6995 failed_insn = failed->delay_pair->i1;
6996 /* Clear these queues. */
6997 perform_replacements_new_cycle ();
6998 toggle_cancelled_flags (false);
6999 unschedule_insns_until (failed_insn);
7000 while (failed != backtrack_queue)
7001 free_topmost_backtrack_point (true);
7002 restore_last_backtrack_point (&ls);
7003 if (sched_verbose >= 2)
7004 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
7005 /* Delay by at least a cycle. This could cause additional
7006 backtracking. */
7007 queue_insn (failed_insn, 1, "backtracked");
7008 advance = 0;
7009 if (must_backtrack)
7010 continue;
7011 if (ready.n_ready > 0)
7012 goto resume_after_backtrack;
7013 else
7015 if (clock_var == 0 && ls.first_cycle_insn_p)
7016 goto end_schedule;
7017 advance = 1;
7018 break;
7021 ls.first_cycle_insn_p = true;
7023 if (ls.modulo_epilogue)
7024 success = true;
7025 end_schedule:
7026 if (!ls.first_cycle_insn_p || advance)
7027 advance_one_cycle ();
7028 perform_replacements_new_cycle ();
7029 if (modulo_ii > 0)
7031 /* Once again, debug insn suckiness: they can be on the ready list
7032 even if they have unresolved dependencies. To make our view
7033 of the world consistent, remove such "ready" insns. */
7034 restart_debug_insn_loop:
7035 for (i = ready.n_ready - 1; i >= 0; i--)
7037 rtx_insn *x;
7039 x = ready_element (&ready, i);
7040 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
7041 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
7043 ready_remove (&ready, i);
7044 goto restart_debug_insn_loop;
7047 for (i = ready.n_ready - 1; i >= 0; i--)
7049 rtx_insn *x;
7051 x = ready_element (&ready, i);
7052 resolve_dependencies (x);
7054 for (i = 0; i <= max_insn_queue_index; i++)
7056 rtx_insn_list *link;
7057 while ((link = insn_queue[i]) != NULL)
7059 rtx_insn *x = link->insn ();
7060 insn_queue[i] = link->next ();
7061 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7062 free_INSN_LIST_node (link);
7063 resolve_dependencies (x);
7068 if (!success)
7069 undo_all_replacements ();
7071 /* Debug info. */
7072 if (sched_verbose)
7074 fprintf (sched_dump, ";;\tReady list (final): ");
7075 debug_ready_list (&ready);
7078 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
7079 /* Sanity check -- queue must be empty now. Meaningless if region has
7080 multiple bbs. */
7081 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
7082 else if (modulo_ii == 0)
7084 /* We must maintain QUEUE_INDEX between blocks in region. */
7085 for (i = ready.n_ready - 1; i >= 0; i--)
7087 rtx_insn *x;
7089 x = ready_element (&ready, i);
7090 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7091 TODO_SPEC (x) = HARD_DEP;
7094 if (q_size)
7095 for (i = 0; i <= max_insn_queue_index; i++)
7097 rtx_insn_list *link;
7098 for (link = insn_queue[i]; link; link = link->next ())
7100 rtx_insn *x;
7102 x = link->insn ();
7103 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7104 TODO_SPEC (x) = HARD_DEP;
7106 free_INSN_LIST_list (&insn_queue[i]);
7110 if (sched_pressure == SCHED_PRESSURE_MODEL)
7111 model_end_schedule ();
7113 if (success)
7115 commit_schedule (prev_head, tail, target_bb);
7116 if (sched_verbose)
7117 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7119 else
7120 last_scheduled_insn = tail;
7122 scheduled_insns.truncate (0);
7124 if (!current_sched_info->queue_must_finish_empty
7125 || haifa_recovery_bb_recently_added_p)
7127 /* INSN_TICK (minimum clock tick at which the insn becomes
7128 ready) may be not correct for the insn in the subsequent
7129 blocks of the region. We should use a correct value of
7130 `clock_var' or modify INSN_TICK. It is better to keep
7131 clock_var value equal to 0 at the start of a basic block.
7132 Therefore we modify INSN_TICK here. */
7133 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7136 if (targetm.sched.finish)
7138 targetm.sched.finish (sched_dump, sched_verbose);
7139 /* Target might have added some instructions to the scheduled block
7140 in its md_finish () hook. These new insns don't have any data
7141 initialized and to identify them we extend h_i_d so that they'll
7142 get zero luids. */
7143 sched_extend_luids ();
7146 /* Update head/tail boundaries. */
7147 head = NEXT_INSN (prev_head);
7148 tail = last_scheduled_insn;
7150 if (sched_verbose)
7152 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7153 INSN_UID (head), INSN_UID (tail));
7155 if (sched_verbose >= 2)
7157 dump_insn_stream (head, tail);
7158 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7159 NULL);
7162 fprintf (sched_dump, "\n");
7165 head = restore_other_notes (head, NULL);
7167 current_sched_info->head = head;
7168 current_sched_info->tail = tail;
7170 free_backtrack_queue ();
7172 return success;
7175 /* Set_priorities: compute priority of each insn in the block. */
7178 set_priorities (rtx_insn *head, rtx_insn *tail)
7180 rtx_insn *insn;
7181 int n_insn;
7182 int sched_max_insns_priority =
7183 current_sched_info->sched_max_insns_priority;
7184 rtx_insn *prev_head;
7186 if (head == tail && ! INSN_P (head))
7187 gcc_unreachable ();
7189 n_insn = 0;
7191 prev_head = PREV_INSN (head);
7192 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7194 if (!INSN_P (insn))
7195 continue;
7197 n_insn++;
7198 (void) priority (insn);
7200 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7202 sched_max_insns_priority = MAX (sched_max_insns_priority,
7203 INSN_PRIORITY (insn));
7206 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7208 return n_insn;
7211 /* Set sched_dump and sched_verbose for the desired debugging output. */
7212 void
7213 setup_sched_dump (void)
7215 sched_verbose = sched_verbose_param;
7216 sched_dump = dump_file;
7217 if (!dump_file)
7218 sched_verbose = 0;
7221 /* Allocate data for register pressure sensitive scheduling. */
7222 static void
7223 alloc_global_sched_pressure_data (void)
7225 if (sched_pressure != SCHED_PRESSURE_NONE)
7227 int i, max_regno = max_reg_num ();
7229 if (sched_dump != NULL)
7230 /* We need info about pseudos for rtl dumps about pseudo
7231 classes and costs. */
7232 regstat_init_n_sets_and_refs ();
7233 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7234 sched_regno_pressure_class
7235 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7236 for (i = 0; i < max_regno; i++)
7237 sched_regno_pressure_class[i]
7238 = (i < FIRST_PSEUDO_REGISTER
7239 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7240 : ira_pressure_class_translate[reg_allocno_class (i)]);
7241 curr_reg_live = BITMAP_ALLOC (NULL);
7242 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7244 saved_reg_live = BITMAP_ALLOC (NULL);
7245 region_ref_regs = BITMAP_ALLOC (NULL);
7247 if (sched_pressure == SCHED_PRESSURE_MODEL)
7248 tmp_bitmap = BITMAP_ALLOC (NULL);
7250 /* Calculate number of CALL_SAVED_REGS and FIXED_REGS in register classes
7251 that we calculate register pressure for. */
7252 for (int c = 0; c < ira_pressure_classes_num; ++c)
7254 enum reg_class cl = ira_pressure_classes[c];
7256 call_saved_regs_num[cl] = 0;
7257 fixed_regs_num[cl] = 0;
7259 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7260 if (!call_used_regs[ira_class_hard_regs[cl][i]])
7261 ++call_saved_regs_num[cl];
7262 else if (fixed_regs[ira_class_hard_regs[cl][i]])
7263 ++fixed_regs_num[cl];
7268 /* Free data for register pressure sensitive scheduling. Also called
7269 from schedule_region when stopping sched-pressure early. */
7270 void
7271 free_global_sched_pressure_data (void)
7273 if (sched_pressure != SCHED_PRESSURE_NONE)
7275 if (regstat_n_sets_and_refs != NULL)
7276 regstat_free_n_sets_and_refs ();
7277 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7279 BITMAP_FREE (region_ref_regs);
7280 BITMAP_FREE (saved_reg_live);
7282 if (sched_pressure == SCHED_PRESSURE_MODEL)
7283 BITMAP_FREE (tmp_bitmap);
7284 BITMAP_FREE (curr_reg_live);
7285 free (sched_regno_pressure_class);
7289 /* Initialize some global state for the scheduler. This function works
7290 with the common data shared between all the schedulers. It is called
7291 from the scheduler specific initialization routine. */
7293 void
7294 sched_init (void)
7296 /* Disable speculative loads in their presence if cc0 defined. */
7297 if (HAVE_cc0)
7298 flag_schedule_speculative_load = 0;
7300 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7301 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7303 if (live_range_shrinkage_p)
7304 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7305 else if (flag_sched_pressure
7306 && !reload_completed
7307 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7308 sched_pressure = ((enum sched_pressure_algorithm)
7309 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
7310 else
7311 sched_pressure = SCHED_PRESSURE_NONE;
7313 if (sched_pressure != SCHED_PRESSURE_NONE)
7314 ira_setup_eliminable_regset ();
7316 /* Initialize SPEC_INFO. */
7317 if (targetm.sched.set_sched_flags)
7319 spec_info = &spec_info_var;
7320 targetm.sched.set_sched_flags (spec_info);
7322 if (spec_info->mask != 0)
7324 spec_info->data_weakness_cutoff =
7325 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7326 spec_info->control_weakness_cutoff =
7327 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7328 * REG_BR_PROB_BASE) / 100;
7330 else
7331 /* So we won't read anything accidentally. */
7332 spec_info = NULL;
7335 else
7336 /* So we won't read anything accidentally. */
7337 spec_info = 0;
7339 /* Initialize issue_rate. */
7340 if (targetm.sched.issue_rate)
7341 issue_rate = targetm.sched.issue_rate ();
7342 else
7343 issue_rate = 1;
7345 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7346 /* Don't use max_issue with reg_pressure scheduling. Multipass
7347 scheduling and reg_pressure scheduling undo each other's decisions. */
7348 && sched_pressure == SCHED_PRESSURE_NONE)
7349 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7350 else
7351 dfa_lookahead = 0;
7353 /* Set to "0" so that we recalculate. */
7354 max_lookahead_tries = 0;
7356 if (targetm.sched.init_dfa_pre_cycle_insn)
7357 targetm.sched.init_dfa_pre_cycle_insn ();
7359 if (targetm.sched.init_dfa_post_cycle_insn)
7360 targetm.sched.init_dfa_post_cycle_insn ();
7362 dfa_start ();
7363 dfa_state_size = state_size ();
7365 init_alias_analysis ();
7367 if (!sched_no_dce)
7368 df_set_flags (DF_LR_RUN_DCE);
7369 df_note_add_problem ();
7371 /* More problems needed for interloop dep calculation in SMS. */
7372 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7374 df_rd_add_problem ();
7375 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7378 df_analyze ();
7380 /* Do not run DCE after reload, as this can kill nops inserted
7381 by bundling. */
7382 if (reload_completed)
7383 df_clear_flags (DF_LR_RUN_DCE);
7385 regstat_compute_calls_crossed ();
7387 if (targetm.sched.init_global)
7388 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7390 alloc_global_sched_pressure_data ();
7392 curr_state = xmalloc (dfa_state_size);
7395 static void haifa_init_only_bb (basic_block, basic_block);
7397 /* Initialize data structures specific to the Haifa scheduler. */
7398 void
7399 haifa_sched_init (void)
7401 setup_sched_dump ();
7402 sched_init ();
7404 scheduled_insns.create (0);
7406 if (spec_info != NULL)
7408 sched_deps_info->use_deps_list = 1;
7409 sched_deps_info->generate_spec_deps = 1;
7412 /* Initialize luids, dependency caches, target and h_i_d for the
7413 whole function. */
7415 sched_init_bbs ();
7417 auto_vec<basic_block> bbs (n_basic_blocks_for_fn (cfun));
7418 basic_block bb;
7419 FOR_EACH_BB_FN (bb, cfun)
7420 bbs.quick_push (bb);
7421 sched_init_luids (bbs);
7422 sched_deps_init (true);
7423 sched_extend_target ();
7424 haifa_init_h_i_d (bbs);
7427 sched_init_only_bb = haifa_init_only_bb;
7428 sched_split_block = sched_split_block_1;
7429 sched_create_empty_bb = sched_create_empty_bb_1;
7430 haifa_recovery_bb_ever_added_p = false;
7432 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7433 before_recovery = 0;
7434 after_recovery = 0;
7436 modulo_ii = 0;
7439 /* Finish work with the data specific to the Haifa scheduler. */
7440 void
7441 haifa_sched_finish (void)
7443 sched_create_empty_bb = NULL;
7444 sched_split_block = NULL;
7445 sched_init_only_bb = NULL;
7447 if (spec_info && spec_info->dump)
7449 char c = reload_completed ? 'a' : 'b';
7451 fprintf (spec_info->dump,
7452 ";; %s:\n", current_function_name ());
7454 fprintf (spec_info->dump,
7455 ";; Procedure %cr-begin-data-spec motions == %d\n",
7456 c, nr_begin_data);
7457 fprintf (spec_info->dump,
7458 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7459 c, nr_be_in_data);
7460 fprintf (spec_info->dump,
7461 ";; Procedure %cr-begin-control-spec motions == %d\n",
7462 c, nr_begin_control);
7463 fprintf (spec_info->dump,
7464 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7465 c, nr_be_in_control);
7468 scheduled_insns.release ();
7470 /* Finalize h_i_d, dependency caches, and luids for the whole
7471 function. Target will be finalized in md_global_finish (). */
7472 sched_deps_finish ();
7473 sched_finish_luids ();
7474 current_sched_info = NULL;
7475 insn_queue = NULL;
7476 sched_finish ();
7479 /* Free global data used during insn scheduling. This function works with
7480 the common data shared between the schedulers. */
7482 void
7483 sched_finish (void)
7485 haifa_finish_h_i_d ();
7486 free_global_sched_pressure_data ();
7487 free (curr_state);
7489 if (targetm.sched.finish_global)
7490 targetm.sched.finish_global (sched_dump, sched_verbose);
7492 end_alias_analysis ();
7494 regstat_free_calls_crossed ();
7496 dfa_finish ();
7499 /* Free all delay_pair structures that were recorded. */
7500 void
7501 free_delay_pairs (void)
7503 if (delay_htab)
7505 delay_htab->empty ();
7506 delay_htab_i2->empty ();
7510 /* Fix INSN_TICKs of the instructions in the current block as well as
7511 INSN_TICKs of their dependents.
7512 HEAD and TAIL are the begin and the end of the current scheduled block. */
7513 static void
7514 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7516 /* Set of instructions with corrected INSN_TICK. */
7517 auto_bitmap processed;
7518 /* ??? It is doubtful if we should assume that cycle advance happens on
7519 basic block boundaries. Basically insns that are unconditionally ready
7520 on the start of the block are more preferable then those which have
7521 a one cycle dependency over insn from the previous block. */
7522 int next_clock = clock_var + 1;
7524 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7525 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7526 across different blocks. */
7527 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7529 if (INSN_P (head))
7531 int tick;
7532 sd_iterator_def sd_it;
7533 dep_t dep;
7535 tick = INSN_TICK (head);
7536 gcc_assert (tick >= MIN_TICK);
7538 /* Fix INSN_TICK of instruction from just scheduled block. */
7539 if (bitmap_set_bit (processed, INSN_LUID (head)))
7541 tick -= next_clock;
7543 if (tick < MIN_TICK)
7544 tick = MIN_TICK;
7546 INSN_TICK (head) = tick;
7549 if (DEBUG_INSN_P (head))
7550 continue;
7552 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7554 rtx_insn *next;
7556 next = DEP_CON (dep);
7557 tick = INSN_TICK (next);
7559 if (tick != INVALID_TICK
7560 /* If NEXT has its INSN_TICK calculated, fix it.
7561 If not - it will be properly calculated from
7562 scratch later in fix_tick_ready. */
7563 && bitmap_set_bit (processed, INSN_LUID (next)))
7565 tick -= next_clock;
7567 if (tick < MIN_TICK)
7568 tick = MIN_TICK;
7570 if (tick > INTER_TICK (next))
7571 INTER_TICK (next) = tick;
7572 else
7573 tick = INTER_TICK (next);
7575 INSN_TICK (next) = tick;
7582 /* Check if NEXT is ready to be added to the ready or queue list.
7583 If "yes", add it to the proper list.
7584 Returns:
7585 -1 - is not ready yet,
7586 0 - added to the ready list,
7587 0 < N - queued for N cycles. */
7589 try_ready (rtx_insn *next)
7591 ds_t old_ts, new_ts;
7593 old_ts = TODO_SPEC (next);
7595 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7596 && (old_ts == HARD_DEP
7597 || old_ts == DEP_POSTPONED
7598 || (old_ts & SPECULATIVE)
7599 || old_ts == DEP_CONTROL));
7601 new_ts = recompute_todo_spec (next, false);
7603 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7604 gcc_assert (new_ts == old_ts
7605 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7606 else if (current_sched_info->new_ready)
7607 new_ts = current_sched_info->new_ready (next, new_ts);
7609 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7610 have its original pattern or changed (speculative) one. This is due
7611 to changing ebb in region scheduling.
7612 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7613 has speculative pattern.
7615 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7616 control-speculative NEXT could have been discarded by sched-rgn.c
7617 (the same case as when discarded by can_schedule_ready_p ()). */
7619 if ((new_ts & SPECULATIVE)
7620 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7621 need to change anything. */
7622 && new_ts != old_ts)
7624 int res;
7625 rtx new_pat;
7627 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7629 res = haifa_speculate_insn (next, new_ts, &new_pat);
7631 switch (res)
7633 case -1:
7634 /* It would be nice to change DEP_STATUS of all dependences,
7635 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7636 so we won't reanalyze anything. */
7637 new_ts = HARD_DEP;
7638 break;
7640 case 0:
7641 /* We follow the rule, that every speculative insn
7642 has non-null ORIG_PAT. */
7643 if (!ORIG_PAT (next))
7644 ORIG_PAT (next) = PATTERN (next);
7645 break;
7647 case 1:
7648 if (!ORIG_PAT (next))
7649 /* If we gonna to overwrite the original pattern of insn,
7650 save it. */
7651 ORIG_PAT (next) = PATTERN (next);
7653 res = haifa_change_pattern (next, new_pat);
7654 gcc_assert (res);
7655 break;
7657 default:
7658 gcc_unreachable ();
7662 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7663 either correct (new_ts & SPECULATIVE),
7664 or we simply don't care (new_ts & HARD_DEP). */
7666 gcc_assert (!ORIG_PAT (next)
7667 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7669 TODO_SPEC (next) = new_ts;
7671 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7673 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7674 control-speculative NEXT could have been discarded by sched-rgn.c
7675 (the same case as when discarded by can_schedule_ready_p ()). */
7676 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7678 change_queue_index (next, QUEUE_NOWHERE);
7680 return -1;
7682 else if (!(new_ts & BEGIN_SPEC)
7683 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7684 && !IS_SPECULATION_CHECK_P (next))
7685 /* We should change pattern of every previously speculative
7686 instruction - and we determine if NEXT was speculative by using
7687 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7688 pat too, so skip them. */
7690 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7691 gcc_assert (success);
7692 ORIG_PAT (next) = 0;
7695 if (sched_verbose >= 2)
7697 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7698 (*current_sched_info->print_insn) (next, 0));
7700 if (spec_info && spec_info->dump)
7702 if (new_ts & BEGIN_DATA)
7703 fprintf (spec_info->dump, "; data-spec;");
7704 if (new_ts & BEGIN_CONTROL)
7705 fprintf (spec_info->dump, "; control-spec;");
7706 if (new_ts & BE_IN_CONTROL)
7707 fprintf (spec_info->dump, "; in-control-spec;");
7709 if (TODO_SPEC (next) & DEP_CONTROL)
7710 fprintf (sched_dump, " predicated");
7711 fprintf (sched_dump, "\n");
7714 adjust_priority (next);
7716 return fix_tick_ready (next);
7719 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7720 static int
7721 fix_tick_ready (rtx_insn *next)
7723 int tick, delay;
7725 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7727 int full_p;
7728 sd_iterator_def sd_it;
7729 dep_t dep;
7731 tick = INSN_TICK (next);
7732 /* if tick is not equal to INVALID_TICK, then update
7733 INSN_TICK of NEXT with the most recent resolved dependence
7734 cost. Otherwise, recalculate from scratch. */
7735 full_p = (tick == INVALID_TICK);
7737 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7739 rtx_insn *pro = DEP_PRO (dep);
7740 int tick1;
7742 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7744 tick1 = INSN_TICK (pro) + dep_cost (dep);
7745 if (tick1 > tick)
7746 tick = tick1;
7748 if (!full_p)
7749 break;
7752 else
7753 tick = -1;
7755 INSN_TICK (next) = tick;
7757 delay = tick - clock_var;
7758 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7759 delay = QUEUE_READY;
7761 change_queue_index (next, delay);
7763 return delay;
7766 /* Move NEXT to the proper queue list with (DELAY >= 1),
7767 or add it to the ready list (DELAY == QUEUE_READY),
7768 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7769 static void
7770 change_queue_index (rtx_insn *next, int delay)
7772 int i = QUEUE_INDEX (next);
7774 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7775 && delay != 0);
7776 gcc_assert (i != QUEUE_SCHEDULED);
7778 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7779 || (delay < 0 && delay == i))
7780 /* We have nothing to do. */
7781 return;
7783 /* Remove NEXT from wherever it is now. */
7784 if (i == QUEUE_READY)
7785 ready_remove_insn (next);
7786 else if (i >= 0)
7787 queue_remove (next);
7789 /* Add it to the proper place. */
7790 if (delay == QUEUE_READY)
7791 ready_add (readyp, next, false);
7792 else if (delay >= 1)
7793 queue_insn (next, delay, "change queue index");
7795 if (sched_verbose >= 2)
7797 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7798 (*current_sched_info->print_insn) (next, 0));
7800 if (delay == QUEUE_READY)
7801 fprintf (sched_dump, " into ready\n");
7802 else if (delay >= 1)
7803 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7804 else
7805 fprintf (sched_dump, " removed from ready or queue lists\n");
7809 static int sched_ready_n_insns = -1;
7811 /* Initialize per region data structures. */
7812 void
7813 sched_extend_ready_list (int new_sched_ready_n_insns)
7815 int i;
7817 if (sched_ready_n_insns == -1)
7818 /* At the first call we need to initialize one more choice_stack
7819 entry. */
7821 i = 0;
7822 sched_ready_n_insns = 0;
7823 scheduled_insns.reserve (new_sched_ready_n_insns);
7825 else
7826 i = sched_ready_n_insns + 1;
7828 ready.veclen = new_sched_ready_n_insns + issue_rate;
7829 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7831 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7833 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7834 sched_ready_n_insns,
7835 sizeof (*ready_try));
7837 /* We allocate +1 element to save initial state in the choice_stack[0]
7838 entry. */
7839 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7840 new_sched_ready_n_insns + 1);
7842 for (; i <= new_sched_ready_n_insns; i++)
7844 choice_stack[i].state = xmalloc (dfa_state_size);
7846 if (targetm.sched.first_cycle_multipass_init)
7847 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7848 .target_data));
7851 sched_ready_n_insns = new_sched_ready_n_insns;
7854 /* Free per region data structures. */
7855 void
7856 sched_finish_ready_list (void)
7858 int i;
7860 free (ready.vec);
7861 ready.vec = NULL;
7862 ready.veclen = 0;
7864 free (ready_try);
7865 ready_try = NULL;
7867 for (i = 0; i <= sched_ready_n_insns; i++)
7869 if (targetm.sched.first_cycle_multipass_fini)
7870 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7871 .target_data));
7873 free (choice_stack [i].state);
7875 free (choice_stack);
7876 choice_stack = NULL;
7878 sched_ready_n_insns = -1;
7881 static int
7882 haifa_luid_for_non_insn (rtx x)
7884 gcc_assert (NOTE_P (x) || LABEL_P (x));
7886 return 0;
7889 /* Generates recovery code for INSN. */
7890 static void
7891 generate_recovery_code (rtx_insn *insn)
7893 if (TODO_SPEC (insn) & BEGIN_SPEC)
7894 begin_speculative_block (insn);
7896 /* Here we have insn with no dependencies to
7897 instructions other then CHECK_SPEC ones. */
7899 if (TODO_SPEC (insn) & BE_IN_SPEC)
7900 add_to_speculative_block (insn);
7903 /* Helper function.
7904 Tries to add speculative dependencies of type FS between instructions
7905 in deps_list L and TWIN. */
7906 static void
7907 process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
7909 sd_iterator_def sd_it;
7910 dep_t dep;
7912 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7914 ds_t ds;
7915 rtx_insn *consumer;
7917 consumer = DEP_CON (dep);
7919 ds = DEP_STATUS (dep);
7921 if (/* If we want to create speculative dep. */
7923 /* And we can do that because this is a true dep. */
7924 && (ds & DEP_TYPES) == DEP_TRUE)
7926 gcc_assert (!(ds & BE_IN_SPEC));
7928 if (/* If this dep can be overcome with 'begin speculation'. */
7929 ds & BEGIN_SPEC)
7930 /* Then we have a choice: keep the dep 'begin speculative'
7931 or transform it into 'be in speculative'. */
7933 if (/* In try_ready we assert that if insn once became ready
7934 it can be removed from the ready (or queue) list only
7935 due to backend decision. Hence we can't let the
7936 probability of the speculative dep to decrease. */
7937 ds_weak (ds) <= ds_weak (fs))
7939 ds_t new_ds;
7941 new_ds = (ds & ~BEGIN_SPEC) | fs;
7943 if (/* consumer can 'be in speculative'. */
7944 sched_insn_is_legitimate_for_speculation_p (consumer,
7945 new_ds))
7946 /* Transform it to be in speculative. */
7947 ds = new_ds;
7950 else
7951 /* Mark the dep as 'be in speculative'. */
7952 ds |= fs;
7956 dep_def _new_dep, *new_dep = &_new_dep;
7958 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7959 sd_add_dep (new_dep, false);
7964 /* Generates recovery code for BEGIN speculative INSN. */
7965 static void
7966 begin_speculative_block (rtx_insn *insn)
7968 if (TODO_SPEC (insn) & BEGIN_DATA)
7969 nr_begin_data++;
7970 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7971 nr_begin_control++;
7973 create_check_block_twin (insn, false);
7975 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7978 static void haifa_init_insn (rtx_insn *);
7980 /* Generates recovery code for BE_IN speculative INSN. */
7981 static void
7982 add_to_speculative_block (rtx_insn *insn)
7984 ds_t ts;
7985 sd_iterator_def sd_it;
7986 dep_t dep;
7987 auto_vec<rtx_insn *, 10> twins;
7989 ts = TODO_SPEC (insn);
7990 gcc_assert (!(ts & ~BE_IN_SPEC));
7992 if (ts & BE_IN_DATA)
7993 nr_be_in_data++;
7994 if (ts & BE_IN_CONTROL)
7995 nr_be_in_control++;
7997 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7998 gcc_assert (!TODO_SPEC (insn));
8000 DONE_SPEC (insn) |= ts;
8002 /* First we convert all simple checks to branchy. */
8003 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8004 sd_iterator_cond (&sd_it, &dep);)
8006 rtx_insn *check = DEP_PRO (dep);
8008 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
8010 create_check_block_twin (check, true);
8012 /* Restart search. */
8013 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8015 else
8016 /* Continue search. */
8017 sd_iterator_next (&sd_it);
8020 auto_vec<rtx_insn *> priorities_roots;
8021 clear_priorities (insn, &priorities_roots);
8023 while (1)
8025 rtx_insn *check, *twin;
8026 basic_block rec;
8028 /* Get the first backward dependency of INSN. */
8029 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8030 if (!sd_iterator_cond (&sd_it, &dep))
8031 /* INSN has no backward dependencies left. */
8032 break;
8034 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
8035 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
8036 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8038 check = DEP_PRO (dep);
8040 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
8041 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
8043 rec = BLOCK_FOR_INSN (check);
8045 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
8046 haifa_init_insn (twin);
8048 sd_copy_back_deps (twin, insn, true);
8050 if (sched_verbose && spec_info->dump)
8051 /* INSN_BB (insn) isn't determined for twin insns yet.
8052 So we can't use current_sched_info->print_insn. */
8053 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8054 INSN_UID (twin), rec->index);
8056 twins.safe_push (twin);
8058 /* Add dependences between TWIN and all appropriate
8059 instructions from REC. */
8060 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
8062 rtx_insn *pro = DEP_PRO (dep);
8064 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
8066 /* INSN might have dependencies from the instructions from
8067 several recovery blocks. At this iteration we process those
8068 producers that reside in REC. */
8069 if (BLOCK_FOR_INSN (pro) == rec)
8071 dep_def _new_dep, *new_dep = &_new_dep;
8073 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
8074 sd_add_dep (new_dep, false);
8078 process_insn_forw_deps_be_in_spec (insn, twin, ts);
8080 /* Remove all dependencies between INSN and insns in REC. */
8081 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8082 sd_iterator_cond (&sd_it, &dep);)
8084 rtx_insn *pro = DEP_PRO (dep);
8086 if (BLOCK_FOR_INSN (pro) == rec)
8087 sd_delete_dep (sd_it);
8088 else
8089 sd_iterator_next (&sd_it);
8093 /* We couldn't have added the dependencies between INSN and TWINS earlier
8094 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
8095 unsigned int i;
8096 rtx_insn *twin;
8097 FOR_EACH_VEC_ELT_REVERSE (twins, i, twin)
8099 dep_def _new_dep, *new_dep = &_new_dep;
8101 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8102 sd_add_dep (new_dep, false);
8105 calc_priorities (priorities_roots);
8108 /* Extends and fills with zeros (only the new part) array pointed to by P. */
8109 void *
8110 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8112 gcc_assert (new_nmemb >= old_nmemb);
8113 p = XRESIZEVAR (void, p, new_nmemb * size);
8114 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8115 return p;
8118 /* Helper function.
8119 Find fallthru edge from PRED. */
8120 edge
8121 find_fallthru_edge_from (basic_block pred)
8123 edge e;
8124 basic_block succ;
8126 succ = pred->next_bb;
8127 gcc_assert (succ->prev_bb == pred);
8129 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8131 e = find_fallthru_edge (pred->succs);
8133 if (e)
8135 gcc_assert (e->dest == succ);
8136 return e;
8139 else
8141 e = find_fallthru_edge (succ->preds);
8143 if (e)
8145 gcc_assert (e->src == pred);
8146 return e;
8150 return NULL;
8153 /* Extend per basic block data structures. */
8154 static void
8155 sched_extend_bb (void)
8157 /* The following is done to keep current_sched_info->next_tail non null. */
8158 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8159 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8160 if (NEXT_INSN (end) == 0
8161 || (!NOTE_P (insn)
8162 && !LABEL_P (insn)
8163 /* Don't emit a NOTE if it would end up before a BARRIER. */
8164 && !BARRIER_P (NEXT_INSN (end))))
8166 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8167 /* Make note appear outside BB. */
8168 set_block_for_insn (note, NULL);
8169 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8173 /* Init per basic block data structures. */
8174 void
8175 sched_init_bbs (void)
8177 sched_extend_bb ();
8180 /* Initialize BEFORE_RECOVERY variable. */
8181 static void
8182 init_before_recovery (basic_block *before_recovery_ptr)
8184 basic_block last;
8185 edge e;
8187 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8188 e = find_fallthru_edge_from (last);
8190 if (e)
8192 /* We create two basic blocks:
8193 1. Single instruction block is inserted right after E->SRC
8194 and has jump to
8195 2. Empty block right before EXIT_BLOCK.
8196 Between these two blocks recovery blocks will be emitted. */
8198 basic_block single, empty;
8200 /* If the fallthrough edge to exit we've found is from the block we've
8201 created before, don't do anything more. */
8202 if (last == after_recovery)
8203 return;
8205 adding_bb_to_current_region_p = false;
8207 single = sched_create_empty_bb (last);
8208 empty = sched_create_empty_bb (single);
8210 /* Add new blocks to the root loop. */
8211 if (current_loops != NULL)
8213 add_bb_to_loop (single, (*current_loops->larray)[0]);
8214 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8217 single->count = last->count;
8218 empty->count = last->count;
8219 single->frequency = last->frequency;
8220 empty->frequency = last->frequency;
8221 BB_COPY_PARTITION (single, last);
8222 BB_COPY_PARTITION (empty, last);
8224 redirect_edge_succ (e, single);
8225 make_single_succ_edge (single, empty, 0);
8226 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8227 EDGE_FALLTHRU);
8229 rtx_code_label *label = block_label (empty);
8230 rtx_jump_insn *x = emit_jump_insn_after (targetm.gen_jump (label),
8231 BB_END (single));
8232 JUMP_LABEL (x) = label;
8233 LABEL_NUSES (label)++;
8234 haifa_init_insn (x);
8236 emit_barrier_after (x);
8238 sched_init_only_bb (empty, NULL);
8239 sched_init_only_bb (single, NULL);
8240 sched_extend_bb ();
8242 adding_bb_to_current_region_p = true;
8243 before_recovery = single;
8244 after_recovery = empty;
8246 if (before_recovery_ptr)
8247 *before_recovery_ptr = before_recovery;
8249 if (sched_verbose >= 2 && spec_info->dump)
8250 fprintf (spec_info->dump,
8251 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8252 last->index, single->index, empty->index);
8254 else
8255 before_recovery = last;
8258 /* Returns new recovery block. */
8259 basic_block
8260 sched_create_recovery_block (basic_block *before_recovery_ptr)
8262 rtx_insn *barrier;
8263 basic_block rec;
8265 haifa_recovery_bb_recently_added_p = true;
8266 haifa_recovery_bb_ever_added_p = true;
8268 init_before_recovery (before_recovery_ptr);
8270 barrier = get_last_bb_insn (before_recovery);
8271 gcc_assert (BARRIER_P (barrier));
8273 rtx_insn *label = emit_label_after (gen_label_rtx (), barrier);
8275 rec = create_basic_block (label, label, before_recovery);
8277 /* A recovery block always ends with an unconditional jump. */
8278 emit_barrier_after (BB_END (rec));
8280 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8281 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8283 if (sched_verbose && spec_info->dump)
8284 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8285 rec->index);
8287 return rec;
8290 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8291 and emit necessary jumps. */
8292 void
8293 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8294 basic_block second_bb)
8296 int edge_flags;
8298 /* This is fixing of incoming edge. */
8299 /* ??? Which other flags should be specified? */
8300 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8301 /* Partition type is the same, if it is "unpartitioned". */
8302 edge_flags = EDGE_CROSSING;
8303 else
8304 edge_flags = 0;
8306 edge e2 = single_succ_edge (first_bb);
8307 edge e = make_edge (first_bb, rec, edge_flags);
8309 /* TODO: The actual probability can be determined and is computed as
8310 'todo_spec' variable in create_check_block_twin and
8311 in sel-sched.c `check_ds' in create_speculation_check. */
8312 e->probability = profile_probability::very_unlikely ();
8313 e->count = first_bb->count.apply_probability (e->probability);
8314 rec->count = e->count;
8315 rec->frequency = EDGE_FREQUENCY (e);
8316 e2->probability = e->probability.invert ();
8317 e2->count = first_bb->count - e2->count;
8319 rtx_code_label *label = block_label (second_bb);
8320 rtx_jump_insn *jump = emit_jump_insn_after (targetm.gen_jump (label),
8321 BB_END (rec));
8322 JUMP_LABEL (jump) = label;
8323 LABEL_NUSES (label)++;
8325 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8326 /* Partition type is the same, if it is "unpartitioned". */
8328 /* Rewritten from cfgrtl.c. */
8329 if (crtl->has_bb_partition && targetm_common.have_named_sections)
8331 /* We don't need the same note for the check because
8332 any_condjump_p (check) == true. */
8333 CROSSING_JUMP_P (jump) = 1;
8335 edge_flags = EDGE_CROSSING;
8337 else
8338 edge_flags = 0;
8340 make_single_succ_edge (rec, second_bb, edge_flags);
8341 if (dom_info_available_p (CDI_DOMINATORS))
8342 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8345 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8346 INSN is a simple check, that should be converted to branchy one. */
8347 static void
8348 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8350 basic_block rec;
8351 rtx_insn *label, *check, *twin;
8352 rtx check_pat;
8353 ds_t fs;
8354 sd_iterator_def sd_it;
8355 dep_t dep;
8356 dep_def _new_dep, *new_dep = &_new_dep;
8357 ds_t todo_spec;
8359 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8361 if (!mutate_p)
8362 todo_spec = TODO_SPEC (insn);
8363 else
8365 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8366 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8368 todo_spec = CHECK_SPEC (insn);
8371 todo_spec &= SPECULATIVE;
8373 /* Create recovery block. */
8374 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8376 rec = sched_create_recovery_block (NULL);
8377 label = BB_HEAD (rec);
8379 else
8381 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8382 label = NULL;
8385 /* Emit CHECK. */
8386 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8388 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8390 /* To have mem_reg alive at the beginning of second_bb,
8391 we emit check BEFORE insn, so insn after splitting
8392 insn will be at the beginning of second_bb, which will
8393 provide us with the correct life information. */
8394 check = emit_jump_insn_before (check_pat, insn);
8395 JUMP_LABEL (check) = label;
8396 LABEL_NUSES (label)++;
8398 else
8399 check = emit_insn_before (check_pat, insn);
8401 /* Extend data structures. */
8402 haifa_init_insn (check);
8404 /* CHECK is being added to current region. Extend ready list. */
8405 gcc_assert (sched_ready_n_insns != -1);
8406 sched_extend_ready_list (sched_ready_n_insns + 1);
8408 if (current_sched_info->add_remove_insn)
8409 current_sched_info->add_remove_insn (insn, 0);
8411 RECOVERY_BLOCK (check) = rec;
8413 if (sched_verbose && spec_info->dump)
8414 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8415 (*current_sched_info->print_insn) (check, 0));
8417 gcc_assert (ORIG_PAT (insn));
8419 /* Initialize TWIN (twin is a duplicate of original instruction
8420 in the recovery block). */
8421 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8423 sd_iterator_def sd_it;
8424 dep_t dep;
8426 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8427 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8429 struct _dep _dep2, *dep2 = &_dep2;
8431 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8433 sd_add_dep (dep2, true);
8436 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8437 haifa_init_insn (twin);
8439 if (sched_verbose && spec_info->dump)
8440 /* INSN_BB (insn) isn't determined for twin insns yet.
8441 So we can't use current_sched_info->print_insn. */
8442 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8443 INSN_UID (twin), rec->index);
8445 else
8447 ORIG_PAT (check) = ORIG_PAT (insn);
8448 HAS_INTERNAL_DEP (check) = 1;
8449 twin = check;
8450 /* ??? We probably should change all OUTPUT dependencies to
8451 (TRUE | OUTPUT). */
8454 /* Copy all resolved back dependencies of INSN to TWIN. This will
8455 provide correct value for INSN_TICK (TWIN). */
8456 sd_copy_back_deps (twin, insn, true);
8458 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8459 /* In case of branchy check, fix CFG. */
8461 basic_block first_bb, second_bb;
8462 rtx_insn *jump;
8464 first_bb = BLOCK_FOR_INSN (check);
8465 second_bb = sched_split_block (first_bb, check);
8467 sched_create_recovery_edges (first_bb, rec, second_bb);
8469 sched_init_only_bb (second_bb, first_bb);
8470 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8472 jump = BB_END (rec);
8473 haifa_init_insn (jump);
8476 /* Move backward dependences from INSN to CHECK and
8477 move forward dependences from INSN to TWIN. */
8479 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8480 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8482 rtx_insn *pro = DEP_PRO (dep);
8483 ds_t ds;
8485 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8486 check --TRUE--> producer ??? or ANTI ???
8487 twin --TRUE--> producer
8488 twin --ANTI--> check
8490 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8491 check --ANTI--> producer
8492 twin --ANTI--> producer
8493 twin --ANTI--> check
8495 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8496 check ~~TRUE~~> producer
8497 twin ~~TRUE~~> producer
8498 twin --ANTI--> check */
8500 ds = DEP_STATUS (dep);
8502 if (ds & BEGIN_SPEC)
8504 gcc_assert (!mutate_p);
8505 ds &= ~BEGIN_SPEC;
8508 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8509 sd_add_dep (new_dep, false);
8511 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8513 DEP_CON (new_dep) = twin;
8514 sd_add_dep (new_dep, false);
8518 /* Second, remove backward dependencies of INSN. */
8519 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8520 sd_iterator_cond (&sd_it, &dep);)
8522 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8523 || mutate_p)
8524 /* We can delete this dep because we overcome it with
8525 BEGIN_SPECULATION. */
8526 sd_delete_dep (sd_it);
8527 else
8528 sd_iterator_next (&sd_it);
8531 /* Future Speculations. Determine what BE_IN speculations will be like. */
8532 fs = 0;
8534 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8535 here. */
8537 gcc_assert (!DONE_SPEC (insn));
8539 if (!mutate_p)
8541 ds_t ts = TODO_SPEC (insn);
8543 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8544 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8546 /* Luckiness of future speculations solely depends upon initial
8547 BEGIN speculation. */
8548 if (ts & BEGIN_DATA)
8549 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8550 if (ts & BEGIN_CONTROL)
8551 fs = set_dep_weak (fs, BE_IN_CONTROL,
8552 get_dep_weak (ts, BEGIN_CONTROL));
8554 else
8555 CHECK_SPEC (check) = CHECK_SPEC (insn);
8557 /* Future speculations: call the helper. */
8558 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8560 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8562 /* Which types of dependencies should we use here is,
8563 generally, machine-dependent question... But, for now,
8564 it is not. */
8566 if (!mutate_p)
8568 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8569 sd_add_dep (new_dep, false);
8571 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8572 sd_add_dep (new_dep, false);
8574 else
8576 if (spec_info->dump)
8577 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8578 (*current_sched_info->print_insn) (insn, 0));
8580 /* Remove all dependencies of the INSN. */
8582 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8583 | SD_LIST_BACK
8584 | SD_LIST_RES_BACK));
8585 while (sd_iterator_cond (&sd_it, &dep))
8586 sd_delete_dep (sd_it);
8589 /* If former check (INSN) already was moved to the ready (or queue)
8590 list, add new check (CHECK) there too. */
8591 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8592 try_ready (check);
8594 /* Remove old check from instruction stream and free its
8595 data. */
8596 sched_remove_insn (insn);
8599 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8600 sd_add_dep (new_dep, false);
8602 else
8604 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8605 sd_add_dep (new_dep, false);
8608 if (!mutate_p)
8609 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8610 because it'll be done later in add_to_speculative_block. */
8612 auto_vec<rtx_insn *> priorities_roots;
8614 clear_priorities (twin, &priorities_roots);
8615 calc_priorities (priorities_roots);
8619 /* Removes dependency between instructions in the recovery block REC
8620 and usual region instructions. It keeps inner dependences so it
8621 won't be necessary to recompute them. */
8622 static void
8623 fix_recovery_deps (basic_block rec)
8625 rtx_insn *note, *insn, *jump;
8626 auto_vec<rtx_insn *, 10> ready_list;
8627 auto_bitmap in_ready;
8629 /* NOTE - a basic block note. */
8630 note = NEXT_INSN (BB_HEAD (rec));
8631 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8632 insn = BB_END (rec);
8633 gcc_assert (JUMP_P (insn));
8634 insn = PREV_INSN (insn);
8638 sd_iterator_def sd_it;
8639 dep_t dep;
8641 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8642 sd_iterator_cond (&sd_it, &dep);)
8644 rtx_insn *consumer = DEP_CON (dep);
8646 if (BLOCK_FOR_INSN (consumer) != rec)
8648 sd_delete_dep (sd_it);
8650 if (bitmap_set_bit (in_ready, INSN_LUID (consumer)))
8651 ready_list.safe_push (consumer);
8653 else
8655 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8657 sd_iterator_next (&sd_it);
8661 insn = PREV_INSN (insn);
8663 while (insn != note);
8665 /* Try to add instructions to the ready or queue list. */
8666 unsigned int i;
8667 rtx_insn *temp;
8668 FOR_EACH_VEC_ELT_REVERSE (ready_list, i, temp)
8669 try_ready (temp);
8671 /* Fixing jump's dependences. */
8672 insn = BB_HEAD (rec);
8673 jump = BB_END (rec);
8675 gcc_assert (LABEL_P (insn));
8676 insn = NEXT_INSN (insn);
8678 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8679 add_jump_dependencies (insn, jump);
8682 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8683 instruction data. */
8684 static bool
8685 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8687 int t;
8689 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8690 if (!t)
8691 return false;
8693 update_insn_after_change (insn);
8694 return true;
8697 /* -1 - can't speculate,
8698 0 - for speculation with REQUEST mode it is OK to use
8699 current instruction pattern,
8700 1 - need to change pattern for *NEW_PAT to be speculative. */
8702 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8704 gcc_assert (current_sched_info->flags & DO_SPECULATION
8705 && (request & SPECULATIVE)
8706 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8708 if ((request & spec_info->mask) != request)
8709 return -1;
8711 if (request & BE_IN_SPEC
8712 && !(request & BEGIN_SPEC))
8713 return 0;
8715 return targetm.sched.speculate_insn (insn, request, new_pat);
8718 static int
8719 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8721 gcc_assert (sched_deps_info->generate_spec_deps
8722 && !IS_SPECULATION_CHECK_P (insn));
8724 if (HAS_INTERNAL_DEP (insn)
8725 || SCHED_GROUP_P (insn))
8726 return -1;
8728 return sched_speculate_insn (insn, request, new_pat);
8731 /* Print some information about block BB, which starts with HEAD and
8732 ends with TAIL, before scheduling it.
8733 I is zero, if scheduler is about to start with the fresh ebb. */
8734 static void
8735 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8737 if (!i)
8738 fprintf (sched_dump,
8739 ";; ======================================================\n");
8740 else
8741 fprintf (sched_dump,
8742 ";; =====================ADVANCING TO=====================\n");
8743 fprintf (sched_dump,
8744 ";; -- basic block %d from %d to %d -- %s reload\n",
8745 bb->index, INSN_UID (head), INSN_UID (tail),
8746 (reload_completed ? "after" : "before"));
8747 fprintf (sched_dump,
8748 ";; ======================================================\n");
8749 fprintf (sched_dump, "\n");
8752 /* Unlink basic block notes and labels and saves them, so they
8753 can be easily restored. We unlink basic block notes in EBB to
8754 provide back-compatibility with the previous code, as target backends
8755 assume, that there'll be only instructions between
8756 current_sched_info->{head and tail}. We restore these notes as soon
8757 as we can.
8758 FIRST (LAST) is the first (last) basic block in the ebb.
8759 NB: In usual case (FIRST == LAST) nothing is really done. */
8760 void
8761 unlink_bb_notes (basic_block first, basic_block last)
8763 /* We DON'T unlink basic block notes of the first block in the ebb. */
8764 if (first == last)
8765 return;
8767 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8769 /* Make a sentinel. */
8770 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8771 bb_header[last->next_bb->index] = 0;
8773 first = first->next_bb;
8776 rtx_insn *prev, *label, *note, *next;
8778 label = BB_HEAD (last);
8779 if (LABEL_P (label))
8780 note = NEXT_INSN (label);
8781 else
8782 note = label;
8783 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8785 prev = PREV_INSN (label);
8786 next = NEXT_INSN (note);
8787 gcc_assert (prev && next);
8789 SET_NEXT_INSN (prev) = next;
8790 SET_PREV_INSN (next) = prev;
8792 bb_header[last->index] = label;
8794 if (last == first)
8795 break;
8797 last = last->prev_bb;
8799 while (1);
8802 /* Restore basic block notes.
8803 FIRST is the first basic block in the ebb. */
8804 static void
8805 restore_bb_notes (basic_block first)
8807 if (!bb_header)
8808 return;
8810 /* We DON'T unlink basic block notes of the first block in the ebb. */
8811 first = first->next_bb;
8812 /* Remember: FIRST is actually a second basic block in the ebb. */
8814 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8815 && bb_header[first->index])
8817 rtx_insn *prev, *label, *note, *next;
8819 label = bb_header[first->index];
8820 prev = PREV_INSN (label);
8821 next = NEXT_INSN (prev);
8823 if (LABEL_P (label))
8824 note = NEXT_INSN (label);
8825 else
8826 note = label;
8827 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8829 bb_header[first->index] = 0;
8831 SET_NEXT_INSN (prev) = label;
8832 SET_NEXT_INSN (note) = next;
8833 SET_PREV_INSN (next) = note;
8835 first = first->next_bb;
8838 free (bb_header);
8839 bb_header = 0;
8842 /* Helper function.
8843 Fix CFG after both in- and inter-block movement of
8844 control_flow_insn_p JUMP. */
8845 static void
8846 fix_jump_move (rtx_insn *jump)
8848 basic_block bb, jump_bb, jump_bb_next;
8850 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8851 jump_bb = BLOCK_FOR_INSN (jump);
8852 jump_bb_next = jump_bb->next_bb;
8854 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8855 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8857 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8858 /* if jump_bb_next is not empty. */
8859 BB_END (jump_bb) = BB_END (jump_bb_next);
8861 if (BB_END (bb) != PREV_INSN (jump))
8862 /* Then there are instruction after jump that should be placed
8863 to jump_bb_next. */
8864 BB_END (jump_bb_next) = BB_END (bb);
8865 else
8866 /* Otherwise jump_bb_next is empty. */
8867 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8869 /* To make assertion in move_insn happy. */
8870 BB_END (bb) = PREV_INSN (jump);
8872 update_bb_for_insn (jump_bb_next);
8875 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8876 static void
8877 move_block_after_check (rtx_insn *jump)
8879 basic_block bb, jump_bb, jump_bb_next;
8880 vec<edge, va_gc> *t;
8882 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8883 jump_bb = BLOCK_FOR_INSN (jump);
8884 jump_bb_next = jump_bb->next_bb;
8886 update_bb_for_insn (jump_bb);
8888 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8889 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8891 unlink_block (jump_bb_next);
8892 link_block (jump_bb_next, bb);
8894 t = bb->succs;
8895 bb->succs = 0;
8896 move_succs (&(jump_bb->succs), bb);
8897 move_succs (&(jump_bb_next->succs), jump_bb);
8898 move_succs (&t, jump_bb_next);
8900 df_mark_solutions_dirty ();
8902 common_sched_info->fix_recovery_cfg
8903 (bb->index, jump_bb->index, jump_bb_next->index);
8906 /* Helper function for move_block_after_check.
8907 This functions attaches edge vector pointed to by SUCCSP to
8908 block TO. */
8909 static void
8910 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8912 edge e;
8913 edge_iterator ei;
8915 gcc_assert (to->succs == 0);
8917 to->succs = *succsp;
8919 FOR_EACH_EDGE (e, ei, to->succs)
8920 e->src = to;
8922 *succsp = 0;
8925 /* Remove INSN from the instruction stream.
8926 INSN should have any dependencies. */
8927 static void
8928 sched_remove_insn (rtx_insn *insn)
8930 sd_finish_insn (insn);
8932 change_queue_index (insn, QUEUE_NOWHERE);
8933 current_sched_info->add_remove_insn (insn, 1);
8934 delete_insn (insn);
8937 /* Clear priorities of all instructions, that are forward dependent on INSN.
8938 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8939 be invoked to initialize all cleared priorities. */
8940 static void
8941 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8943 sd_iterator_def sd_it;
8944 dep_t dep;
8945 bool insn_is_root_p = true;
8947 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8949 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8951 rtx_insn *pro = DEP_PRO (dep);
8953 if (INSN_PRIORITY_STATUS (pro) >= 0
8954 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8956 /* If DEP doesn't contribute to priority then INSN itself should
8957 be added to priority roots. */
8958 if (contributes_to_priority_p (dep))
8959 insn_is_root_p = false;
8961 INSN_PRIORITY_STATUS (pro) = -1;
8962 clear_priorities (pro, roots_ptr);
8966 if (insn_is_root_p)
8967 roots_ptr->safe_push (insn);
8970 /* Recompute priorities of instructions, whose priorities might have been
8971 changed. ROOTS is a vector of instructions whose priority computation will
8972 trigger initialization of all cleared priorities. */
8973 static void
8974 calc_priorities (rtx_vec_t roots)
8976 int i;
8977 rtx_insn *insn;
8979 FOR_EACH_VEC_ELT (roots, i, insn)
8980 priority (insn);
8984 /* Add dependences between JUMP and other instructions in the recovery
8985 block. INSN is the first insn the recovery block. */
8986 static void
8987 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8991 insn = NEXT_INSN (insn);
8992 if (insn == jump)
8993 break;
8995 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8997 dep_def _new_dep, *new_dep = &_new_dep;
8999 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
9000 sd_add_dep (new_dep, false);
9003 while (1);
9005 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
9008 /* Extend data structures for logical insn UID. */
9009 void
9010 sched_extend_luids (void)
9012 int new_luids_max_uid = get_max_uid () + 1;
9014 sched_luids.safe_grow_cleared (new_luids_max_uid);
9017 /* Initialize LUID for INSN. */
9018 void
9019 sched_init_insn_luid (rtx_insn *insn)
9021 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
9022 int luid;
9024 if (i >= 0)
9026 luid = sched_max_luid;
9027 sched_max_luid += i;
9029 else
9030 luid = -1;
9032 SET_INSN_LUID (insn, luid);
9035 /* Initialize luids for BBS.
9036 The hook common_sched_info->luid_for_non_insn () is used to determine
9037 if notes, labels, etc. need luids. */
9038 void
9039 sched_init_luids (bb_vec_t bbs)
9041 int i;
9042 basic_block bb;
9044 sched_extend_luids ();
9045 FOR_EACH_VEC_ELT (bbs, i, bb)
9047 rtx_insn *insn;
9049 FOR_BB_INSNS (bb, insn)
9050 sched_init_insn_luid (insn);
9054 /* Free LUIDs. */
9055 void
9056 sched_finish_luids (void)
9058 sched_luids.release ();
9059 sched_max_luid = 1;
9062 /* Return logical uid of INSN. Helpful while debugging. */
9064 insn_luid (rtx_insn *insn)
9066 return INSN_LUID (insn);
9069 /* Extend per insn data in the target. */
9070 void
9071 sched_extend_target (void)
9073 if (targetm.sched.h_i_d_extended)
9074 targetm.sched.h_i_d_extended ();
9077 /* Extend global scheduler structures (those, that live across calls to
9078 schedule_block) to include information about just emitted INSN. */
9079 static void
9080 extend_h_i_d (void)
9082 int reserve = (get_max_uid () + 1 - h_i_d.length ());
9083 if (reserve > 0
9084 && ! h_i_d.space (reserve))
9086 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
9087 sched_extend_target ();
9091 /* Initialize h_i_d entry of the INSN with default values.
9092 Values, that are not explicitly initialized here, hold zero. */
9093 static void
9094 init_h_i_d (rtx_insn *insn)
9096 if (INSN_LUID (insn) > 0)
9098 INSN_COST (insn) = -1;
9099 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
9100 INSN_TICK (insn) = INVALID_TICK;
9101 INSN_EXACT_TICK (insn) = INVALID_TICK;
9102 INTER_TICK (insn) = INVALID_TICK;
9103 TODO_SPEC (insn) = HARD_DEP;
9104 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9105 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9106 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9107 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9111 /* Initialize haifa_insn_data for BBS. */
9112 void
9113 haifa_init_h_i_d (bb_vec_t bbs)
9115 int i;
9116 basic_block bb;
9118 extend_h_i_d ();
9119 FOR_EACH_VEC_ELT (bbs, i, bb)
9121 rtx_insn *insn;
9123 FOR_BB_INSNS (bb, insn)
9124 init_h_i_d (insn);
9128 /* Finalize haifa_insn_data. */
9129 void
9130 haifa_finish_h_i_d (void)
9132 int i;
9133 haifa_insn_data_t data;
9134 reg_use_data *use, *next_use;
9135 reg_set_data *set, *next_set;
9137 FOR_EACH_VEC_ELT (h_i_d, i, data)
9139 free (data->max_reg_pressure);
9140 free (data->reg_pressure);
9141 for (use = data->reg_use_list; use != NULL; use = next_use)
9143 next_use = use->next_insn_use;
9144 free (use);
9146 for (set = data->reg_set_list; set != NULL; set = next_set)
9148 next_set = set->next_insn_set;
9149 free (set);
9153 h_i_d.release ();
9156 /* Init data for the new insn INSN. */
9157 static void
9158 haifa_init_insn (rtx_insn *insn)
9160 gcc_assert (insn != NULL);
9162 sched_extend_luids ();
9163 sched_init_insn_luid (insn);
9164 sched_extend_target ();
9165 sched_deps_init (false);
9166 extend_h_i_d ();
9167 init_h_i_d (insn);
9169 if (adding_bb_to_current_region_p)
9171 sd_init_insn (insn);
9173 /* Extend dependency caches by one element. */
9174 extend_dependency_caches (1, false);
9176 if (sched_pressure != SCHED_PRESSURE_NONE)
9177 init_insn_reg_pressure_info (insn);
9180 /* Init data for the new basic block BB which comes after AFTER. */
9181 static void
9182 haifa_init_only_bb (basic_block bb, basic_block after)
9184 gcc_assert (bb != NULL);
9186 sched_init_bbs ();
9188 if (common_sched_info->add_block)
9189 /* This changes only data structures of the front-end. */
9190 common_sched_info->add_block (bb, after);
9193 /* A generic version of sched_split_block (). */
9194 basic_block
9195 sched_split_block_1 (basic_block first_bb, rtx after)
9197 edge e;
9199 e = split_block (first_bb, after);
9200 gcc_assert (e->src == first_bb);
9202 /* sched_split_block emits note if *check == BB_END. Probably it
9203 is better to rip that note off. */
9205 return e->dest;
9208 /* A generic version of sched_create_empty_bb (). */
9209 basic_block
9210 sched_create_empty_bb_1 (basic_block after)
9212 return create_empty_bb (after);
9215 /* Insert PAT as an INSN into the schedule and update the necessary data
9216 structures to account for it. */
9217 rtx_insn *
9218 sched_emit_insn (rtx pat)
9220 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9221 haifa_init_insn (insn);
9223 if (current_sched_info->add_remove_insn)
9224 current_sched_info->add_remove_insn (insn, 0);
9226 (*current_sched_info->begin_schedule_ready) (insn);
9227 scheduled_insns.safe_push (insn);
9229 last_scheduled_insn = insn;
9230 return insn;
9233 /* This function returns a candidate satisfying dispatch constraints from
9234 the ready list. */
9236 static rtx_insn *
9237 ready_remove_first_dispatch (struct ready_list *ready)
9239 int i;
9240 rtx_insn *insn = ready_element (ready, 0);
9242 if (ready->n_ready == 1
9243 || !INSN_P (insn)
9244 || INSN_CODE (insn) < 0
9245 || !active_insn_p (insn)
9246 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9247 return ready_remove_first (ready);
9249 for (i = 1; i < ready->n_ready; i++)
9251 insn = ready_element (ready, i);
9253 if (!INSN_P (insn)
9254 || INSN_CODE (insn) < 0
9255 || !active_insn_p (insn))
9256 continue;
9258 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9260 /* Return ith element of ready. */
9261 insn = ready_remove (ready, i);
9262 return insn;
9266 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9267 return ready_remove_first (ready);
9269 for (i = 1; i < ready->n_ready; i++)
9271 insn = ready_element (ready, i);
9273 if (!INSN_P (insn)
9274 || INSN_CODE (insn) < 0
9275 || !active_insn_p (insn))
9276 continue;
9278 /* Return i-th element of ready. */
9279 if (targetm.sched.dispatch (insn, IS_CMP))
9280 return ready_remove (ready, i);
9283 return ready_remove_first (ready);
9286 /* Get number of ready insn in the ready list. */
9289 number_in_ready (void)
9291 return ready.n_ready;
9294 /* Get number of ready's in the ready list. */
9296 rtx_insn *
9297 get_ready_element (int i)
9299 return ready_element (&ready, i);
9302 #endif /* INSN_SCHEDULING */