* i386.c (has_dispatch): Disable for Ryzen.
[official-gcc.git] / gcc / basic-block.h
blobc0c47784c02448b177acca538404d0493825b32e
1 /* Define control flow data structures for the CFG.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef GCC_BASIC_BLOCK_H
21 #define GCC_BASIC_BLOCK_H
23 #include <profile-count.h>
25 /* Control flow edge information. */
26 struct GTY((user)) edge_def {
27 /* The two blocks at the ends of the edge. */
28 basic_block src;
29 basic_block dest;
31 /* Instructions queued on the edge. */
32 union edge_def_insns {
33 gimple_seq g;
34 rtx_insn *r;
35 } insns;
37 /* Auxiliary info specific to a pass. */
38 PTR aux;
40 /* Location of any goto implicit in the edge. */
41 location_t goto_locus;
43 /* The index number corresponding to this edge in the edge vector
44 dest->preds. */
45 unsigned int dest_idx;
47 int flags; /* see cfg-flags.def */
48 profile_probability probability;
49 profile_count count; /* Expected number of executions calculated
50 in profile.c */
53 /* Masks for edge.flags. */
54 #define DEF_EDGE_FLAG(NAME,IDX) EDGE_##NAME = 1 << IDX ,
55 enum cfg_edge_flags {
56 #include "cfg-flags.def"
57 LAST_CFG_EDGE_FLAG /* this is only used for EDGE_ALL_FLAGS */
59 #undef DEF_EDGE_FLAG
61 /* Bit mask for all edge flags. */
62 #define EDGE_ALL_FLAGS ((LAST_CFG_EDGE_FLAG - 1) * 2 - 1)
64 /* The following four flags all indicate something special about an edge.
65 Test the edge flags on EDGE_COMPLEX to detect all forms of "strange"
66 control flow transfers. */
67 #define EDGE_COMPLEX \
68 (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE)
70 struct GTY(()) rtl_bb_info {
71 /* The first insn of the block is embedded into bb->il.x. */
72 /* The last insn of the block. */
73 rtx_insn *end_;
75 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
76 and after the block. */
77 rtx_insn *header_;
78 rtx_insn *footer_;
81 struct GTY(()) gimple_bb_info {
82 /* Sequence of statements in this block. */
83 gimple_seq seq;
85 /* PHI nodes for this block. */
86 gimple_seq phi_nodes;
89 /* A basic block is a sequence of instructions with only one entry and
90 only one exit. If any one of the instructions are executed, they
91 will all be executed, and in sequence from first to last.
93 There may be COND_EXEC instructions in the basic block. The
94 COND_EXEC *instructions* will be executed -- but if the condition
95 is false the conditionally executed *expressions* will of course
96 not be executed. We don't consider the conditionally executed
97 expression (which might have side-effects) to be in a separate
98 basic block because the program counter will always be at the same
99 location after the COND_EXEC instruction, regardless of whether the
100 condition is true or not.
102 Basic blocks need not start with a label nor end with a jump insn.
103 For example, a previous basic block may just "conditionally fall"
104 into the succeeding basic block, and the last basic block need not
105 end with a jump insn. Block 0 is a descendant of the entry block.
107 A basic block beginning with two labels cannot have notes between
108 the labels.
110 Data for jump tables are stored in jump_insns that occur in no
111 basic block even though these insns can follow or precede insns in
112 basic blocks. */
114 /* Basic block information indexed by block number. */
115 struct GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb"))) basic_block_def {
116 /* The edges into and out of the block. */
117 vec<edge, va_gc> *preds;
118 vec<edge, va_gc> *succs;
120 /* Auxiliary info specific to a pass. */
121 PTR GTY ((skip (""))) aux;
123 /* Innermost loop containing the block. */
124 struct loop *loop_father;
126 /* The dominance and postdominance information node. */
127 struct et_node * GTY ((skip (""))) dom[2];
129 /* Previous and next blocks in the chain. */
130 basic_block prev_bb;
131 basic_block next_bb;
133 union basic_block_il_dependent {
134 struct gimple_bb_info GTY ((tag ("0"))) gimple;
135 struct {
136 rtx_insn *head_;
137 struct rtl_bb_info * rtl;
138 } GTY ((tag ("1"))) x;
139 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
141 /* Various flags. See cfg-flags.def. */
142 int flags;
144 /* The index of this block. */
145 int index;
147 /* Expected number of executions: calculated in profile.c. */
148 profile_count count;
150 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
151 int frequency;
153 /* The discriminator for this block. The discriminator distinguishes
154 among several basic blocks that share a common locus, allowing for
155 more accurate sample-based profiling. */
156 int discriminator;
159 /* This ensures that struct gimple_bb_info is smaller than
160 struct rtl_bb_info, so that inlining the former into basic_block_def
161 is the better choice. */
162 typedef int __assert_gimple_bb_smaller_rtl_bb
163 [(int) sizeof (struct rtl_bb_info)
164 - (int) sizeof (struct gimple_bb_info)];
167 #define BB_FREQ_MAX 10000
169 /* Masks for basic_block.flags. */
170 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) BB_##NAME = 1 << IDX ,
171 enum cfg_bb_flags
173 #include "cfg-flags.def"
174 LAST_CFG_BB_FLAG /* this is only used for BB_ALL_FLAGS */
176 #undef DEF_BASIC_BLOCK_FLAG
178 /* Bit mask for all basic block flags. */
179 #define BB_ALL_FLAGS ((LAST_CFG_BB_FLAG - 1) * 2 - 1)
181 /* Bit mask for all basic block flags that must be preserved. These are
182 the bit masks that are *not* cleared by clear_bb_flags. */
183 #define BB_FLAGS_TO_PRESERVE \
184 (BB_DISABLE_SCHEDULE | BB_RTL | BB_NON_LOCAL_GOTO_TARGET \
185 | BB_HOT_PARTITION | BB_COLD_PARTITION)
187 /* Dummy bitmask for convenience in the hot/cold partitioning code. */
188 #define BB_UNPARTITIONED 0
190 /* Partitions, to be used when partitioning hot and cold basic blocks into
191 separate sections. */
192 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
193 #define BB_SET_PARTITION(bb, part) do { \
194 basic_block bb_ = (bb); \
195 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
196 | (part)); \
197 } while (0)
199 #define BB_COPY_PARTITION(dstbb, srcbb) \
200 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
202 /* Defines for accessing the fields of the CFG structure for function FN. */
203 #define ENTRY_BLOCK_PTR_FOR_FN(FN) ((FN)->cfg->x_entry_block_ptr)
204 #define EXIT_BLOCK_PTR_FOR_FN(FN) ((FN)->cfg->x_exit_block_ptr)
205 #define basic_block_info_for_fn(FN) ((FN)->cfg->x_basic_block_info)
206 #define n_basic_blocks_for_fn(FN) ((FN)->cfg->x_n_basic_blocks)
207 #define n_edges_for_fn(FN) ((FN)->cfg->x_n_edges)
208 #define last_basic_block_for_fn(FN) ((FN)->cfg->x_last_basic_block)
209 #define label_to_block_map_for_fn(FN) ((FN)->cfg->x_label_to_block_map)
210 #define profile_status_for_fn(FN) ((FN)->cfg->x_profile_status)
212 #define BASIC_BLOCK_FOR_FN(FN,N) \
213 ((*basic_block_info_for_fn (FN))[(N)])
214 #define SET_BASIC_BLOCK_FOR_FN(FN,N,BB) \
215 ((*basic_block_info_for_fn (FN))[(N)] = (BB))
217 /* For iterating over basic blocks. */
218 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
219 for (BB = FROM; BB != TO; BB = BB->DIR)
221 #define FOR_EACH_BB_FN(BB, FN) \
222 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
224 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
225 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
227 /* For iterating over insns in basic block. */
228 #define FOR_BB_INSNS(BB, INSN) \
229 for ((INSN) = BB_HEAD (BB); \
230 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
231 (INSN) = NEXT_INSN (INSN))
233 /* For iterating over insns in basic block when we might remove the
234 current insn. */
235 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
236 for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
237 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
238 (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
240 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
241 for ((INSN) = BB_END (BB); \
242 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
243 (INSN) = PREV_INSN (INSN))
245 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
246 for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
247 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
248 (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
250 /* Cycles through _all_ basic blocks, even the fake ones (entry and
251 exit block). */
253 #define FOR_ALL_BB_FN(BB, FN) \
254 for (BB = ENTRY_BLOCK_PTR_FOR_FN (FN); BB; BB = BB->next_bb)
257 /* Stuff for recording basic block info. */
259 /* For now, these will be functions (so that they can include checked casts
260 to rtx_insn. Once the underlying fields are converted from rtx
261 to rtx_insn, these can be converted back to macros. */
263 #define BB_HEAD(B) (B)->il.x.head_
264 #define BB_END(B) (B)->il.x.rtl->end_
265 #define BB_HEADER(B) (B)->il.x.rtl->header_
266 #define BB_FOOTER(B) (B)->il.x.rtl->footer_
268 /* Special block numbers [markers] for entry and exit.
269 Neither of them is supposed to hold actual statements. */
270 #define ENTRY_BLOCK (0)
271 #define EXIT_BLOCK (1)
273 /* The two blocks that are always in the cfg. */
274 #define NUM_FIXED_BLOCKS (2)
276 /* This is the value which indicates no edge is present. */
277 #define EDGE_INDEX_NO_EDGE -1
279 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
280 if there is no edge between the 2 basic blocks. */
281 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
283 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
284 block which is either the pred or succ end of the indexed edge. */
285 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
286 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
288 /* INDEX_EDGE returns a pointer to the edge. */
289 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
291 /* Number of edges in the compressed edge list. */
292 #define NUM_EDGES(el) ((el)->num_edges)
294 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
295 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
296 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
298 /* BB is assumed to contain conditional jump. Return the branch edge. */
299 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
300 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
302 /* Return expected execution frequency of the edge E. */
303 #define EDGE_FREQUENCY(e) e->probability.apply (e->src->frequency)
305 /* Compute a scale factor (or probability) suitable for scaling of
306 gcov_type values via apply_probability() and apply_scale(). */
307 #define GCOV_COMPUTE_SCALE(num,den) \
308 ((den) ? RDIV ((num) * REG_BR_PROB_BASE, (den)) : REG_BR_PROB_BASE)
310 /* Return nonzero if edge is critical. */
311 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
312 && EDGE_COUNT ((e)->dest->preds) >= 2)
314 #define EDGE_COUNT(ev) vec_safe_length (ev)
315 #define EDGE_I(ev,i) (*ev)[(i)]
316 #define EDGE_PRED(bb,i) (*(bb)->preds)[(i)]
317 #define EDGE_SUCC(bb,i) (*(bb)->succs)[(i)]
319 /* Returns true if BB has precisely one successor. */
321 static inline bool
322 single_succ_p (const_basic_block bb)
324 return EDGE_COUNT (bb->succs) == 1;
327 /* Returns true if BB has precisely one predecessor. */
329 static inline bool
330 single_pred_p (const_basic_block bb)
332 return EDGE_COUNT (bb->preds) == 1;
335 /* Returns the single successor edge of basic block BB. Aborts if
336 BB does not have exactly one successor. */
338 static inline edge
339 single_succ_edge (const_basic_block bb)
341 gcc_checking_assert (single_succ_p (bb));
342 return EDGE_SUCC (bb, 0);
345 /* Returns the single predecessor edge of basic block BB. Aborts
346 if BB does not have exactly one predecessor. */
348 static inline edge
349 single_pred_edge (const_basic_block bb)
351 gcc_checking_assert (single_pred_p (bb));
352 return EDGE_PRED (bb, 0);
355 /* Returns the single successor block of basic block BB. Aborts
356 if BB does not have exactly one successor. */
358 static inline basic_block
359 single_succ (const_basic_block bb)
361 return single_succ_edge (bb)->dest;
364 /* Returns the single predecessor block of basic block BB. Aborts
365 if BB does not have exactly one predecessor.*/
367 static inline basic_block
368 single_pred (const_basic_block bb)
370 return single_pred_edge (bb)->src;
373 /* Iterator object for edges. */
375 struct edge_iterator {
376 unsigned index;
377 vec<edge, va_gc> **container;
380 static inline vec<edge, va_gc> *
381 ei_container (edge_iterator i)
383 gcc_checking_assert (i.container);
384 return *i.container;
387 #define ei_start(iter) ei_start_1 (&(iter))
388 #define ei_last(iter) ei_last_1 (&(iter))
390 /* Return an iterator pointing to the start of an edge vector. */
391 static inline edge_iterator
392 ei_start_1 (vec<edge, va_gc> **ev)
394 edge_iterator i;
396 i.index = 0;
397 i.container = ev;
399 return i;
402 /* Return an iterator pointing to the last element of an edge
403 vector. */
404 static inline edge_iterator
405 ei_last_1 (vec<edge, va_gc> **ev)
407 edge_iterator i;
409 i.index = EDGE_COUNT (*ev) - 1;
410 i.container = ev;
412 return i;
415 /* Is the iterator `i' at the end of the sequence? */
416 static inline bool
417 ei_end_p (edge_iterator i)
419 return (i.index == EDGE_COUNT (ei_container (i)));
422 /* Is the iterator `i' at one position before the end of the
423 sequence? */
424 static inline bool
425 ei_one_before_end_p (edge_iterator i)
427 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
430 /* Advance the iterator to the next element. */
431 static inline void
432 ei_next (edge_iterator *i)
434 gcc_checking_assert (i->index < EDGE_COUNT (ei_container (*i)));
435 i->index++;
438 /* Move the iterator to the previous element. */
439 static inline void
440 ei_prev (edge_iterator *i)
442 gcc_checking_assert (i->index > 0);
443 i->index--;
446 /* Return the edge pointed to by the iterator `i'. */
447 static inline edge
448 ei_edge (edge_iterator i)
450 return EDGE_I (ei_container (i), i.index);
453 /* Return an edge pointed to by the iterator. Do it safely so that
454 NULL is returned when the iterator is pointing at the end of the
455 sequence. */
456 static inline edge
457 ei_safe_edge (edge_iterator i)
459 return !ei_end_p (i) ? ei_edge (i) : NULL;
462 /* Return 1 if we should continue to iterate. Return 0 otherwise.
463 *Edge P is set to the next edge if we are to continue to iterate
464 and NULL otherwise. */
466 static inline bool
467 ei_cond (edge_iterator ei, edge *p)
469 if (!ei_end_p (ei))
471 *p = ei_edge (ei);
472 return 1;
474 else
476 *p = NULL;
477 return 0;
481 /* This macro serves as a convenient way to iterate each edge in a
482 vector of predecessor or successor edges. It must not be used when
483 an element might be removed during the traversal, otherwise
484 elements will be missed. Instead, use a for-loop like that shown
485 in the following pseudo-code:
487 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
489 IF (e != taken_edge)
490 remove_edge (e);
491 ELSE
492 ei_next (&ei);
496 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
497 for ((ITER) = ei_start ((EDGE_VEC)); \
498 ei_cond ((ITER), &(EDGE)); \
499 ei_next (&(ITER)))
501 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
502 except for edge forwarding */
503 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
504 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
505 to care REG_DEAD notes. */
506 #define CLEANUP_THREADING 8 /* Do jump threading. */
507 #define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
508 insns. */
509 #define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
510 #define CLEANUP_CFG_CHANGED 64 /* The caller changed the CFG. */
512 /* Return true if BB is in a transaction. */
514 static inline bool
515 bb_in_transaction (basic_block bb)
517 return bb->flags & BB_IN_TRANSACTION;
520 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
521 static inline bool
522 bb_has_eh_pred (basic_block bb)
524 edge e;
525 edge_iterator ei;
527 FOR_EACH_EDGE (e, ei, bb->preds)
529 if (e->flags & EDGE_EH)
530 return true;
532 return false;
535 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
536 static inline bool
537 bb_has_abnormal_pred (basic_block bb)
539 edge e;
540 edge_iterator ei;
542 FOR_EACH_EDGE (e, ei, bb->preds)
544 if (e->flags & EDGE_ABNORMAL)
545 return true;
547 return false;
550 /* Return the fallthru edge in EDGES if it exists, NULL otherwise. */
551 static inline edge
552 find_fallthru_edge (vec<edge, va_gc> *edges)
554 edge e;
555 edge_iterator ei;
557 FOR_EACH_EDGE (e, ei, edges)
558 if (e->flags & EDGE_FALLTHRU)
559 break;
561 return e;
564 /* Check tha probability is sane. */
566 static inline void
567 check_probability (int prob)
569 gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
572 /* Given PROB1 and PROB2, return PROB1*PROB2/REG_BR_PROB_BASE.
573 Used to combine BB probabilities. */
575 static inline int
576 combine_probabilities (int prob1, int prob2)
578 check_probability (prob1);
579 check_probability (prob2);
580 return RDIV (prob1 * prob2, REG_BR_PROB_BASE);
583 /* Apply scale factor SCALE on frequency or count FREQ. Use this
584 interface when potentially scaling up, so that SCALE is not
585 constrained to be < REG_BR_PROB_BASE. */
587 static inline gcov_type
588 apply_scale (gcov_type freq, gcov_type scale)
590 return RDIV (freq * scale, REG_BR_PROB_BASE);
593 /* Apply probability PROB on frequency or count FREQ. */
595 static inline gcov_type
596 apply_probability (gcov_type freq, int prob)
598 check_probability (prob);
599 return apply_scale (freq, prob);
602 /* Return inverse probability for PROB. */
604 static inline int
605 inverse_probability (int prob1)
607 check_probability (prob1);
608 return REG_BR_PROB_BASE - prob1;
611 /* Return true if BB has at least one abnormal outgoing edge. */
613 static inline bool
614 has_abnormal_or_eh_outgoing_edge_p (basic_block bb)
616 edge e;
617 edge_iterator ei;
619 FOR_EACH_EDGE (e, ei, bb->succs)
620 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
621 return true;
623 return false;
626 /* Return true when one of the predecessor edges of BB is marked with
627 EDGE_ABNORMAL_CALL or EDGE_EH. */
629 static inline bool
630 has_abnormal_call_or_eh_pred_edge_p (basic_block bb)
632 edge e;
633 edge_iterator ei;
635 FOR_EACH_EDGE (e, ei, bb->preds)
636 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
637 return true;
639 return false;
642 #endif /* GCC_BASIC_BLOCK_H */