* i386.c (has_dispatch): Disable for Ryzen.
[official-gcc.git] / gcc / ada / sem_ch3.adb
blobf6705d672327d13db0d1713167222a50c4ef319c
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Res; use Sem_Res;
68 with Sem_Smem; use Sem_Smem;
69 with Sem_Type; use Sem_Type;
70 with Sem_Util; use Sem_Util;
71 with Sem_Warn; use Sem_Warn;
72 with Stand; use Stand;
73 with Sinfo; use Sinfo;
74 with Sinput; use Sinput;
75 with Snames; use Snames;
76 with Targparm; use Targparm;
77 with Tbuild; use Tbuild;
78 with Ttypes; use Ttypes;
79 with Uintp; use Uintp;
80 with Urealp; use Urealp;
82 package body Sem_Ch3 is
84 -----------------------
85 -- Local Subprograms --
86 -----------------------
88 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
89 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
90 -- abstract interface types implemented by a record type or a derived
91 -- record type.
93 procedure Build_Derived_Type
94 (N : Node_Id;
95 Parent_Type : Entity_Id;
96 Derived_Type : Entity_Id;
97 Is_Completion : Boolean;
98 Derive_Subps : Boolean := True);
99 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
100 -- the N_Full_Type_Declaration node containing the derived type definition.
101 -- Parent_Type is the entity for the parent type in the derived type
102 -- definition and Derived_Type the actual derived type. Is_Completion must
103 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
104 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
105 -- completion of a private type declaration. If Is_Completion is set to
106 -- True, N is the completion of a private type declaration and Derived_Type
107 -- is different from the defining identifier inside N (i.e. Derived_Type /=
108 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
109 -- subprograms should be derived. The only case where this parameter is
110 -- False is when Build_Derived_Type is recursively called to process an
111 -- implicit derived full type for a type derived from a private type (in
112 -- that case the subprograms must only be derived for the private view of
113 -- the type).
115 -- ??? These flags need a bit of re-examination and re-documentation:
116 -- ??? are they both necessary (both seem related to the recursion)?
118 procedure Build_Derived_Access_Type
119 (N : Node_Id;
120 Parent_Type : Entity_Id;
121 Derived_Type : Entity_Id);
122 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
123 -- create an implicit base if the parent type is constrained or if the
124 -- subtype indication has a constraint.
126 procedure Build_Derived_Array_Type
127 (N : Node_Id;
128 Parent_Type : Entity_Id;
129 Derived_Type : Entity_Id);
130 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
131 -- create an implicit base if the parent type is constrained or if the
132 -- subtype indication has a constraint.
134 procedure Build_Derived_Concurrent_Type
135 (N : Node_Id;
136 Parent_Type : Entity_Id;
137 Derived_Type : Entity_Id);
138 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
139 -- protected type, inherit entries and protected subprograms, check
140 -- legality of discriminant constraints if any.
142 procedure Build_Derived_Enumeration_Type
143 (N : Node_Id;
144 Parent_Type : Entity_Id;
145 Derived_Type : Entity_Id);
146 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
147 -- type, we must create a new list of literals. Types derived from
148 -- Character and [Wide_]Wide_Character are special-cased.
150 procedure Build_Derived_Numeric_Type
151 (N : Node_Id;
152 Parent_Type : Entity_Id;
153 Derived_Type : Entity_Id);
154 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
155 -- an anonymous base type, and propagate constraint to subtype if needed.
157 procedure Build_Derived_Private_Type
158 (N : Node_Id;
159 Parent_Type : Entity_Id;
160 Derived_Type : Entity_Id;
161 Is_Completion : Boolean;
162 Derive_Subps : Boolean := True);
163 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
164 -- because the parent may or may not have a completion, and the derivation
165 -- may itself be a completion.
167 procedure Build_Derived_Record_Type
168 (N : Node_Id;
169 Parent_Type : Entity_Id;
170 Derived_Type : Entity_Id;
171 Derive_Subps : Boolean := True);
172 -- Subsidiary procedure used for tagged and untagged record types
173 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
174 -- All parameters are as in Build_Derived_Type except that N, in
175 -- addition to being an N_Full_Type_Declaration node, can also be an
176 -- N_Private_Extension_Declaration node. See the definition of this routine
177 -- for much more info. Derive_Subps indicates whether subprograms should be
178 -- derived from the parent type. The only case where Derive_Subps is False
179 -- is for an implicit derived full type for a type derived from a private
180 -- type (see Build_Derived_Type).
182 procedure Build_Discriminal (Discrim : Entity_Id);
183 -- Create the discriminal corresponding to discriminant Discrim, that is
184 -- the parameter corresponding to Discrim to be used in initialization
185 -- procedures for the type where Discrim is a discriminant. Discriminals
186 -- are not used during semantic analysis, and are not fully defined
187 -- entities until expansion. Thus they are not given a scope until
188 -- initialization procedures are built.
190 function Build_Discriminant_Constraints
191 (T : Entity_Id;
192 Def : Node_Id;
193 Derived_Def : Boolean := False) return Elist_Id;
194 -- Validate discriminant constraints and return the list of the constraints
195 -- in order of discriminant declarations, where T is the discriminated
196 -- unconstrained type. Def is the N_Subtype_Indication node where the
197 -- discriminants constraints for T are specified. Derived_Def is True
198 -- when building the discriminant constraints in a derived type definition
199 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
200 -- type and Def is the constraint "(xxx)" on T and this routine sets the
201 -- Corresponding_Discriminant field of the discriminants in the derived
202 -- type D to point to the corresponding discriminants in the parent type T.
204 procedure Build_Discriminated_Subtype
205 (T : Entity_Id;
206 Def_Id : Entity_Id;
207 Elist : Elist_Id;
208 Related_Nod : Node_Id;
209 For_Access : Boolean := False);
210 -- Subsidiary procedure to Constrain_Discriminated_Type and to
211 -- Process_Incomplete_Dependents. Given
213 -- T (a possibly discriminated base type)
214 -- Def_Id (a very partially built subtype for T),
216 -- the call completes Def_Id to be the appropriate E_*_Subtype.
218 -- The Elist is the list of discriminant constraints if any (it is set
219 -- to No_Elist if T is not a discriminated type, and to an empty list if
220 -- T has discriminants but there are no discriminant constraints). The
221 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
222 -- The For_Access says whether or not this subtype is really constraining
223 -- an access type. That is its sole purpose is the designated type of an
224 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
225 -- is built to avoid freezing T when the access subtype is frozen.
227 function Build_Scalar_Bound
228 (Bound : Node_Id;
229 Par_T : Entity_Id;
230 Der_T : Entity_Id) return Node_Id;
231 -- The bounds of a derived scalar type are conversions of the bounds of
232 -- the parent type. Optimize the representation if the bounds are literals.
233 -- Needs a more complete spec--what are the parameters exactly, and what
234 -- exactly is the returned value, and how is Bound affected???
236 procedure Build_Underlying_Full_View
237 (N : Node_Id;
238 Typ : Entity_Id;
239 Par : Entity_Id);
240 -- If the completion of a private type is itself derived from a private
241 -- type, or if the full view of a private subtype is itself private, the
242 -- back-end has no way to compute the actual size of this type. We build
243 -- an internal subtype declaration of the proper parent type to convey
244 -- this information. This extra mechanism is needed because a full
245 -- view cannot itself have a full view (it would get clobbered during
246 -- view exchanges).
248 procedure Check_Access_Discriminant_Requires_Limited
249 (D : Node_Id;
250 Loc : Node_Id);
251 -- Check the restriction that the type to which an access discriminant
252 -- belongs must be a concurrent type or a descendant of a type with
253 -- the reserved word 'limited' in its declaration.
255 procedure Check_Anonymous_Access_Components
256 (Typ_Decl : Node_Id;
257 Typ : Entity_Id;
258 Prev : Entity_Id;
259 Comp_List : Node_Id);
260 -- Ada 2005 AI-382: an access component in a record definition can refer to
261 -- the enclosing record, in which case it denotes the type itself, and not
262 -- the current instance of the type. We create an anonymous access type for
263 -- the component, and flag it as an access to a component, so accessibility
264 -- checks are properly performed on it. The declaration of the access type
265 -- is placed ahead of that of the record to prevent order-of-elaboration
266 -- circularity issues in Gigi. We create an incomplete type for the record
267 -- declaration, which is the designated type of the anonymous access.
269 procedure Check_Delta_Expression (E : Node_Id);
270 -- Check that the expression represented by E is suitable for use as a
271 -- delta expression, i.e. it is of real type and is static.
273 procedure Check_Digits_Expression (E : Node_Id);
274 -- Check that the expression represented by E is suitable for use as a
275 -- digits expression, i.e. it is of integer type, positive and static.
277 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
278 -- Validate the initialization of an object declaration. T is the required
279 -- type, and Exp is the initialization expression.
281 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
282 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
284 procedure Check_Or_Process_Discriminants
285 (N : Node_Id;
286 T : Entity_Id;
287 Prev : Entity_Id := Empty);
288 -- If N is the full declaration of the completion T of an incomplete or
289 -- private type, check its discriminants (which are already known to be
290 -- conformant with those of the partial view, see Find_Type_Name),
291 -- otherwise process them. Prev is the entity of the partial declaration,
292 -- if any.
294 procedure Check_Real_Bound (Bound : Node_Id);
295 -- Check given bound for being of real type and static. If not, post an
296 -- appropriate message, and rewrite the bound with the real literal zero.
298 procedure Constant_Redeclaration
299 (Id : Entity_Id;
300 N : Node_Id;
301 T : out Entity_Id);
302 -- Various checks on legality of full declaration of deferred constant.
303 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
304 -- node. The caller has not yet set any attributes of this entity.
306 function Contain_Interface
307 (Iface : Entity_Id;
308 Ifaces : Elist_Id) return Boolean;
309 -- Ada 2005: Determine whether Iface is present in the list Ifaces
311 procedure Convert_Scalar_Bounds
312 (N : Node_Id;
313 Parent_Type : Entity_Id;
314 Derived_Type : Entity_Id;
315 Loc : Source_Ptr);
316 -- For derived scalar types, convert the bounds in the type definition to
317 -- the derived type, and complete their analysis. Given a constraint of the
318 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
319 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
320 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
321 -- subtype are conversions of those bounds to the derived_type, so that
322 -- their typing is consistent.
324 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
325 -- Copies attributes from array base type T2 to array base type T1. Copies
326 -- only attributes that apply to base types, but not subtypes.
328 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
329 -- Copies attributes from array subtype T2 to array subtype T1. Copies
330 -- attributes that apply to both subtypes and base types.
332 procedure Create_Constrained_Components
333 (Subt : Entity_Id;
334 Decl_Node : Node_Id;
335 Typ : Entity_Id;
336 Constraints : Elist_Id);
337 -- Build the list of entities for a constrained discriminated record
338 -- subtype. If a component depends on a discriminant, replace its subtype
339 -- using the discriminant values in the discriminant constraint. Subt
340 -- is the defining identifier for the subtype whose list of constrained
341 -- entities we will create. Decl_Node is the type declaration node where
342 -- we will attach all the itypes created. Typ is the base discriminated
343 -- type for the subtype Subt. Constraints is the list of discriminant
344 -- constraints for Typ.
346 function Constrain_Component_Type
347 (Comp : Entity_Id;
348 Constrained_Typ : Entity_Id;
349 Related_Node : Node_Id;
350 Typ : Entity_Id;
351 Constraints : Elist_Id) return Entity_Id;
352 -- Given a discriminated base type Typ, a list of discriminant constraints,
353 -- Constraints, for Typ and a component Comp of Typ, create and return the
354 -- type corresponding to Etype (Comp) where all discriminant references
355 -- are replaced with the corresponding constraint. If Etype (Comp) contains
356 -- no discriminant references then it is returned as-is. Constrained_Typ
357 -- is the final constrained subtype to which the constrained component
358 -- belongs. Related_Node is the node where we attach all created itypes.
360 procedure Constrain_Access
361 (Def_Id : in out Entity_Id;
362 S : Node_Id;
363 Related_Nod : Node_Id);
364 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
365 -- an anonymous type created for a subtype indication. In that case it is
366 -- created in the procedure and attached to Related_Nod.
368 procedure Constrain_Array
369 (Def_Id : in out Entity_Id;
370 SI : Node_Id;
371 Related_Nod : Node_Id;
372 Related_Id : Entity_Id;
373 Suffix : Character);
374 -- Apply a list of index constraints to an unconstrained array type. The
375 -- first parameter is the entity for the resulting subtype. A value of
376 -- Empty for Def_Id indicates that an implicit type must be created, but
377 -- creation is delayed (and must be done by this procedure) because other
378 -- subsidiary implicit types must be created first (which is why Def_Id
379 -- is an in/out parameter). The second parameter is a subtype indication
380 -- node for the constrained array to be created (e.g. something of the
381 -- form string (1 .. 10)). Related_Nod gives the place where this type
382 -- has to be inserted in the tree. The Related_Id and Suffix parameters
383 -- are used to build the associated Implicit type name.
385 procedure Constrain_Concurrent
386 (Def_Id : in out Entity_Id;
387 SI : Node_Id;
388 Related_Nod : Node_Id;
389 Related_Id : Entity_Id;
390 Suffix : Character);
391 -- Apply list of discriminant constraints to an unconstrained concurrent
392 -- type.
394 -- SI is the N_Subtype_Indication node containing the constraint and
395 -- the unconstrained type to constrain.
397 -- Def_Id is the entity for the resulting constrained subtype. A value
398 -- of Empty for Def_Id indicates that an implicit type must be created,
399 -- but creation is delayed (and must be done by this procedure) because
400 -- other subsidiary implicit types must be created first (which is why
401 -- Def_Id is an in/out parameter).
403 -- Related_Nod gives the place where this type has to be inserted
404 -- in the tree.
406 -- The last two arguments are used to create its external name if needed.
408 function Constrain_Corresponding_Record
409 (Prot_Subt : Entity_Id;
410 Corr_Rec : Entity_Id;
411 Related_Nod : Node_Id) return Entity_Id;
412 -- When constraining a protected type or task type with discriminants,
413 -- constrain the corresponding record with the same discriminant values.
415 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
416 -- Constrain a decimal fixed point type with a digits constraint and/or a
417 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
419 procedure Constrain_Discriminated_Type
420 (Def_Id : Entity_Id;
421 S : Node_Id;
422 Related_Nod : Node_Id;
423 For_Access : Boolean := False);
424 -- Process discriminant constraints of composite type. Verify that values
425 -- have been provided for all discriminants, that the original type is
426 -- unconstrained, and that the types of the supplied expressions match
427 -- the discriminant types. The first three parameters are like in routine
428 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
429 -- of For_Access.
431 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
432 -- Constrain an enumeration type with a range constraint. This is identical
433 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
435 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
436 -- Constrain a floating point type with either a digits constraint
437 -- and/or a range constraint, building a E_Floating_Point_Subtype.
439 procedure Constrain_Index
440 (Index : Node_Id;
441 S : Node_Id;
442 Related_Nod : Node_Id;
443 Related_Id : Entity_Id;
444 Suffix : Character;
445 Suffix_Index : Nat);
446 -- Process an index constraint S in a constrained array declaration. The
447 -- constraint can be a subtype name, or a range with or without an explicit
448 -- subtype mark. The index is the corresponding index of the unconstrained
449 -- array. The Related_Id and Suffix parameters are used to build the
450 -- associated Implicit type name.
452 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
453 -- Build subtype of a signed or modular integer type
455 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
456 -- Constrain an ordinary fixed point type with a range constraint, and
457 -- build an E_Ordinary_Fixed_Point_Subtype entity.
459 procedure Copy_And_Swap (Priv, Full : Entity_Id);
460 -- Copy the Priv entity into the entity of its full declaration then swap
461 -- the two entities in such a manner that the former private type is now
462 -- seen as a full type.
464 procedure Decimal_Fixed_Point_Type_Declaration
465 (T : Entity_Id;
466 Def : Node_Id);
467 -- Create a new decimal fixed point type, and apply the constraint to
468 -- obtain a subtype of this new type.
470 procedure Complete_Private_Subtype
471 (Priv : Entity_Id;
472 Full : Entity_Id;
473 Full_Base : Entity_Id;
474 Related_Nod : Node_Id);
475 -- Complete the implicit full view of a private subtype by setting the
476 -- appropriate semantic fields. If the full view of the parent is a record
477 -- type, build constrained components of subtype.
479 procedure Derive_Progenitor_Subprograms
480 (Parent_Type : Entity_Id;
481 Tagged_Type : Entity_Id);
482 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
483 -- operations of progenitors of Tagged_Type, and replace the subsidiary
484 -- subtypes with Tagged_Type, to build the specs of the inherited interface
485 -- primitives. The derived primitives are aliased to those of the
486 -- interface. This routine takes care also of transferring to the full view
487 -- subprograms associated with the partial view of Tagged_Type that cover
488 -- interface primitives.
490 procedure Derived_Standard_Character
491 (N : Node_Id;
492 Parent_Type : Entity_Id;
493 Derived_Type : Entity_Id);
494 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
495 -- derivations from types Standard.Character and Standard.Wide_Character.
497 procedure Derived_Type_Declaration
498 (T : Entity_Id;
499 N : Node_Id;
500 Is_Completion : Boolean);
501 -- Process a derived type declaration. Build_Derived_Type is invoked
502 -- to process the actual derived type definition. Parameters N and
503 -- Is_Completion have the same meaning as in Build_Derived_Type.
504 -- T is the N_Defining_Identifier for the entity defined in the
505 -- N_Full_Type_Declaration node N, that is T is the derived type.
507 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
508 -- Insert each literal in symbol table, as an overloadable identifier. Each
509 -- enumeration type is mapped into a sequence of integers, and each literal
510 -- is defined as a constant with integer value. If any of the literals are
511 -- character literals, the type is a character type, which means that
512 -- strings are legal aggregates for arrays of components of the type.
514 function Expand_To_Stored_Constraint
515 (Typ : Entity_Id;
516 Constraint : Elist_Id) return Elist_Id;
517 -- Given a constraint (i.e. a list of expressions) on the discriminants of
518 -- Typ, expand it into a constraint on the stored discriminants and return
519 -- the new list of expressions constraining the stored discriminants.
521 function Find_Type_Of_Object
522 (Obj_Def : Node_Id;
523 Related_Nod : Node_Id) return Entity_Id;
524 -- Get type entity for object referenced by Obj_Def, attaching the implicit
525 -- types generated to Related_Nod.
527 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
528 -- Create a new float and apply the constraint to obtain subtype of it
530 function Has_Range_Constraint (N : Node_Id) return Boolean;
531 -- Given an N_Subtype_Indication node N, return True if a range constraint
532 -- is present, either directly, or as part of a digits or delta constraint.
533 -- In addition, a digits constraint in the decimal case returns True, since
534 -- it establishes a default range if no explicit range is present.
536 function Inherit_Components
537 (N : Node_Id;
538 Parent_Base : Entity_Id;
539 Derived_Base : Entity_Id;
540 Is_Tagged : Boolean;
541 Inherit_Discr : Boolean;
542 Discs : Elist_Id) return Elist_Id;
543 -- Called from Build_Derived_Record_Type to inherit the components of
544 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
545 -- For more information on derived types and component inheritance please
546 -- consult the comment above the body of Build_Derived_Record_Type.
548 -- N is the original derived type declaration
550 -- Is_Tagged is set if we are dealing with tagged types
552 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
553 -- Parent_Base, otherwise no discriminants are inherited.
555 -- Discs gives the list of constraints that apply to Parent_Base in the
556 -- derived type declaration. If Discs is set to No_Elist, then we have
557 -- the following situation:
559 -- type Parent (D1..Dn : ..) is [tagged] record ...;
560 -- type Derived is new Parent [with ...];
562 -- which gets treated as
564 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
566 -- For untagged types the returned value is an association list. The list
567 -- starts from the association (Parent_Base => Derived_Base), and then it
568 -- contains a sequence of the associations of the form
570 -- (Old_Component => New_Component),
572 -- where Old_Component is the Entity_Id of a component in Parent_Base and
573 -- New_Component is the Entity_Id of the corresponding component in
574 -- Derived_Base. For untagged records, this association list is needed when
575 -- copying the record declaration for the derived base. In the tagged case
576 -- the value returned is irrelevant.
578 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
579 -- Propagate static and dynamic predicate flags from a parent to the
580 -- subtype in a subtype declaration with and without constraints.
582 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
583 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
584 -- Determine whether subprogram Subp is a procedure subject to pragma
585 -- Extensions_Visible with value False and has at least one controlling
586 -- parameter of mode OUT.
588 function Is_Valid_Constraint_Kind
589 (T_Kind : Type_Kind;
590 Constraint_Kind : Node_Kind) return Boolean;
591 -- Returns True if it is legal to apply the given kind of constraint to the
592 -- given kind of type (index constraint to an array type, for example).
594 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
595 -- Create new modular type. Verify that modulus is in bounds
597 procedure New_Concatenation_Op (Typ : Entity_Id);
598 -- Create an abbreviated declaration for an operator in order to
599 -- materialize concatenation on array types.
601 procedure Ordinary_Fixed_Point_Type_Declaration
602 (T : Entity_Id;
603 Def : Node_Id);
604 -- Create a new ordinary fixed point type, and apply the constraint to
605 -- obtain subtype of it.
607 procedure Prepare_Private_Subtype_Completion
608 (Id : Entity_Id;
609 Related_Nod : Node_Id);
610 -- Id is a subtype of some private type. Creates the full declaration
611 -- associated with Id whenever possible, i.e. when the full declaration
612 -- of the base type is already known. Records each subtype into
613 -- Private_Dependents of the base type.
615 procedure Process_Incomplete_Dependents
616 (N : Node_Id;
617 Full_T : Entity_Id;
618 Inc_T : Entity_Id);
619 -- Process all entities that depend on an incomplete type. There include
620 -- subtypes, subprogram types that mention the incomplete type in their
621 -- profiles, and subprogram with access parameters that designate the
622 -- incomplete type.
624 -- Inc_T is the defining identifier of an incomplete type declaration, its
625 -- Ekind is E_Incomplete_Type.
627 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
629 -- Full_T is N's defining identifier.
631 -- Subtypes of incomplete types with discriminants are completed when the
632 -- parent type is. This is simpler than private subtypes, because they can
633 -- only appear in the same scope, and there is no need to exchange views.
634 -- Similarly, access_to_subprogram types may have a parameter or a return
635 -- type that is an incomplete type, and that must be replaced with the
636 -- full type.
638 -- If the full type is tagged, subprogram with access parameters that
639 -- designated the incomplete may be primitive operations of the full type,
640 -- and have to be processed accordingly.
642 procedure Process_Real_Range_Specification (Def : Node_Id);
643 -- Given the type definition for a real type, this procedure processes and
644 -- checks the real range specification of this type definition if one is
645 -- present. If errors are found, error messages are posted, and the
646 -- Real_Range_Specification of Def is reset to Empty.
648 procedure Record_Type_Declaration
649 (T : Entity_Id;
650 N : Node_Id;
651 Prev : Entity_Id);
652 -- Process a record type declaration (for both untagged and tagged
653 -- records). Parameters T and N are exactly like in procedure
654 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
655 -- for this routine. If this is the completion of an incomplete type
656 -- declaration, Prev is the entity of the incomplete declaration, used for
657 -- cross-referencing. Otherwise Prev = T.
659 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
660 -- This routine is used to process the actual record type definition (both
661 -- for untagged and tagged records). Def is a record type definition node.
662 -- This procedure analyzes the components in this record type definition.
663 -- Prev_T is the entity for the enclosing record type. It is provided so
664 -- that its Has_Task flag can be set if any of the component have Has_Task
665 -- set. If the declaration is the completion of an incomplete type
666 -- declaration, Prev_T is the original incomplete type, whose full view is
667 -- the record type.
669 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
670 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
671 -- build a copy of the declaration tree of the parent, and we create
672 -- independently the list of components for the derived type. Semantic
673 -- information uses the component entities, but record representation
674 -- clauses are validated on the declaration tree. This procedure replaces
675 -- discriminants and components in the declaration with those that have
676 -- been created by Inherit_Components.
678 procedure Set_Fixed_Range
679 (E : Entity_Id;
680 Loc : Source_Ptr;
681 Lo : Ureal;
682 Hi : Ureal);
683 -- Build a range node with the given bounds and set it as the Scalar_Range
684 -- of the given fixed-point type entity. Loc is the source location used
685 -- for the constructed range. See body for further details.
687 procedure Set_Scalar_Range_For_Subtype
688 (Def_Id : Entity_Id;
689 R : Node_Id;
690 Subt : Entity_Id);
691 -- This routine is used to set the scalar range field for a subtype given
692 -- Def_Id, the entity for the subtype, and R, the range expression for the
693 -- scalar range. Subt provides the parent subtype to be used to analyze,
694 -- resolve, and check the given range.
696 procedure Set_Default_SSO (T : Entity_Id);
697 -- T is the entity for an array or record being declared. This procedure
698 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
699 -- to the setting of Opt.Default_SSO.
701 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
702 -- Create a new signed integer entity, and apply the constraint to obtain
703 -- the required first named subtype of this type.
705 procedure Set_Stored_Constraint_From_Discriminant_Constraint
706 (E : Entity_Id);
707 -- E is some record type. This routine computes E's Stored_Constraint
708 -- from its Discriminant_Constraint.
710 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
711 -- Check that an entity in a list of progenitors is an interface,
712 -- emit error otherwise.
714 -----------------------
715 -- Access_Definition --
716 -----------------------
718 function Access_Definition
719 (Related_Nod : Node_Id;
720 N : Node_Id) return Entity_Id
722 Anon_Type : Entity_Id;
723 Anon_Scope : Entity_Id;
724 Desig_Type : Entity_Id;
725 Enclosing_Prot_Type : Entity_Id := Empty;
727 begin
728 Check_SPARK_05_Restriction ("access type is not allowed", N);
730 if Is_Entry (Current_Scope)
731 and then Is_Task_Type (Etype (Scope (Current_Scope)))
732 then
733 Error_Msg_N ("task entries cannot have access parameters", N);
734 return Empty;
735 end if;
737 -- Ada 2005: For an object declaration the corresponding anonymous
738 -- type is declared in the current scope.
740 -- If the access definition is the return type of another access to
741 -- function, scope is the current one, because it is the one of the
742 -- current type declaration, except for the pathological case below.
744 if Nkind_In (Related_Nod, N_Object_Declaration,
745 N_Access_Function_Definition)
746 then
747 Anon_Scope := Current_Scope;
749 -- A pathological case: function returning access functions that
750 -- return access functions, etc. Each anonymous access type created
751 -- is in the enclosing scope of the outermost function.
753 declare
754 Par : Node_Id;
756 begin
757 Par := Related_Nod;
758 while Nkind_In (Par, N_Access_Function_Definition,
759 N_Access_Definition)
760 loop
761 Par := Parent (Par);
762 end loop;
764 if Nkind (Par) = N_Function_Specification then
765 Anon_Scope := Scope (Defining_Entity (Par));
766 end if;
767 end;
769 -- For the anonymous function result case, retrieve the scope of the
770 -- function specification's associated entity rather than using the
771 -- current scope. The current scope will be the function itself if the
772 -- formal part is currently being analyzed, but will be the parent scope
773 -- in the case of a parameterless function, and we always want to use
774 -- the function's parent scope. Finally, if the function is a child
775 -- unit, we must traverse the tree to retrieve the proper entity.
777 elsif Nkind (Related_Nod) = N_Function_Specification
778 and then Nkind (Parent (N)) /= N_Parameter_Specification
779 then
780 -- If the current scope is a protected type, the anonymous access
781 -- is associated with one of the protected operations, and must
782 -- be available in the scope that encloses the protected declaration.
783 -- Otherwise the type is in the scope enclosing the subprogram.
785 -- If the function has formals, The return type of a subprogram
786 -- declaration is analyzed in the scope of the subprogram (see
787 -- Process_Formals) and thus the protected type, if present, is
788 -- the scope of the current function scope.
790 if Ekind (Current_Scope) = E_Protected_Type then
791 Enclosing_Prot_Type := Current_Scope;
793 elsif Ekind (Current_Scope) = E_Function
794 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
795 then
796 Enclosing_Prot_Type := Scope (Current_Scope);
797 end if;
799 if Present (Enclosing_Prot_Type) then
800 Anon_Scope := Scope (Enclosing_Prot_Type);
802 else
803 Anon_Scope := Scope (Defining_Entity (Related_Nod));
804 end if;
806 -- For an access type definition, if the current scope is a child
807 -- unit it is the scope of the type.
809 elsif Is_Compilation_Unit (Current_Scope) then
810 Anon_Scope := Current_Scope;
812 -- For access formals, access components, and access discriminants, the
813 -- scope is that of the enclosing declaration,
815 else
816 Anon_Scope := Scope (Current_Scope);
817 end if;
819 Anon_Type :=
820 Create_Itype
821 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
823 if All_Present (N)
824 and then Ada_Version >= Ada_2005
825 then
826 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
827 end if;
829 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
830 -- the corresponding semantic routine
832 if Present (Access_To_Subprogram_Definition (N)) then
834 -- Compiler runtime units are compiled in Ada 2005 mode when building
835 -- the runtime library but must also be compilable in Ada 95 mode
836 -- (when bootstrapping the compiler).
838 Check_Compiler_Unit ("anonymous access to subprogram", N);
840 Access_Subprogram_Declaration
841 (T_Name => Anon_Type,
842 T_Def => Access_To_Subprogram_Definition (N));
844 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
845 Set_Ekind
846 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
847 else
848 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
849 end if;
851 Set_Can_Use_Internal_Rep
852 (Anon_Type, not Always_Compatible_Rep_On_Target);
854 -- If the anonymous access is associated with a protected operation,
855 -- create a reference to it after the enclosing protected definition
856 -- because the itype will be used in the subsequent bodies.
858 -- If the anonymous access itself is protected, a full type
859 -- declaratiton will be created for it, so that the equivalent
860 -- record type can be constructed. For further details, see
861 -- Replace_Anonymous_Access_To_Protected-Subprogram.
863 if Ekind (Current_Scope) = E_Protected_Type
864 and then not Protected_Present (Access_To_Subprogram_Definition (N))
865 then
866 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
867 end if;
869 return Anon_Type;
870 end if;
872 Find_Type (Subtype_Mark (N));
873 Desig_Type := Entity (Subtype_Mark (N));
875 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
876 Set_Etype (Anon_Type, Anon_Type);
878 -- Make sure the anonymous access type has size and alignment fields
879 -- set, as required by gigi. This is necessary in the case of the
880 -- Task_Body_Procedure.
882 if not Has_Private_Component (Desig_Type) then
883 Layout_Type (Anon_Type);
884 end if;
886 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
887 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
888 -- the null value is allowed. In Ada 95 the null value is never allowed.
890 if Ada_Version >= Ada_2005 then
891 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
892 else
893 Set_Can_Never_Be_Null (Anon_Type, True);
894 end if;
896 -- The anonymous access type is as public as the discriminated type or
897 -- subprogram that defines it. It is imported (for back-end purposes)
898 -- if the designated type is.
900 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
902 -- Ada 2005 (AI-231): Propagate the access-constant attribute
904 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
906 -- The context is either a subprogram declaration, object declaration,
907 -- or an access discriminant, in a private or a full type declaration.
908 -- In the case of a subprogram, if the designated type is incomplete,
909 -- the operation will be a primitive operation of the full type, to be
910 -- updated subsequently. If the type is imported through a limited_with
911 -- clause, the subprogram is not a primitive operation of the type
912 -- (which is declared elsewhere in some other scope).
914 if Ekind (Desig_Type) = E_Incomplete_Type
915 and then not From_Limited_With (Desig_Type)
916 and then Is_Overloadable (Current_Scope)
917 then
918 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
919 Set_Has_Delayed_Freeze (Current_Scope);
920 end if;
922 -- Ada 2005: If the designated type is an interface that may contain
923 -- tasks, create a Master entity for the declaration. This must be done
924 -- before expansion of the full declaration, because the declaration may
925 -- include an expression that is an allocator, whose expansion needs the
926 -- proper Master for the created tasks.
928 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
929 then
930 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
931 then
932 Build_Class_Wide_Master (Anon_Type);
934 -- Similarly, if the type is an anonymous access that designates
935 -- tasks, create a master entity for it in the current context.
937 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
938 then
939 Build_Master_Entity (Defining_Identifier (Related_Nod));
940 Build_Master_Renaming (Anon_Type);
941 end if;
942 end if;
944 -- For a private component of a protected type, it is imperative that
945 -- the back-end elaborate the type immediately after the protected
946 -- declaration, because this type will be used in the declarations
947 -- created for the component within each protected body, so we must
948 -- create an itype reference for it now.
950 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
951 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
953 -- Similarly, if the access definition is the return result of a
954 -- function, create an itype reference for it because it will be used
955 -- within the function body. For a regular function that is not a
956 -- compilation unit, insert reference after the declaration. For a
957 -- protected operation, insert it after the enclosing protected type
958 -- declaration. In either case, do not create a reference for a type
959 -- obtained through a limited_with clause, because this would introduce
960 -- semantic dependencies.
962 -- Similarly, do not create a reference if the designated type is a
963 -- generic formal, because no use of it will reach the backend.
965 elsif Nkind (Related_Nod) = N_Function_Specification
966 and then not From_Limited_With (Desig_Type)
967 and then not Is_Generic_Type (Desig_Type)
968 then
969 if Present (Enclosing_Prot_Type) then
970 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
972 elsif Is_List_Member (Parent (Related_Nod))
973 and then Nkind (Parent (N)) /= N_Parameter_Specification
974 then
975 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
976 end if;
978 -- Finally, create an itype reference for an object declaration of an
979 -- anonymous access type. This is strictly necessary only for deferred
980 -- constants, but in any case will avoid out-of-scope problems in the
981 -- back-end.
983 elsif Nkind (Related_Nod) = N_Object_Declaration then
984 Build_Itype_Reference (Anon_Type, Related_Nod);
985 end if;
987 return Anon_Type;
988 end Access_Definition;
990 -----------------------------------
991 -- Access_Subprogram_Declaration --
992 -----------------------------------
994 procedure Access_Subprogram_Declaration
995 (T_Name : Entity_Id;
996 T_Def : Node_Id)
998 procedure Check_For_Premature_Usage (Def : Node_Id);
999 -- Check that type T_Name is not used, directly or recursively, as a
1000 -- parameter or a return type in Def. Def is either a subtype, an
1001 -- access_definition, or an access_to_subprogram_definition.
1003 -------------------------------
1004 -- Check_For_Premature_Usage --
1005 -------------------------------
1007 procedure Check_For_Premature_Usage (Def : Node_Id) is
1008 Param : Node_Id;
1010 begin
1011 -- Check for a subtype mark
1013 if Nkind (Def) in N_Has_Etype then
1014 if Etype (Def) = T_Name then
1015 Error_Msg_N
1016 ("type& cannot be used before end of its declaration", Def);
1017 end if;
1019 -- If this is not a subtype, then this is an access_definition
1021 elsif Nkind (Def) = N_Access_Definition then
1022 if Present (Access_To_Subprogram_Definition (Def)) then
1023 Check_For_Premature_Usage
1024 (Access_To_Subprogram_Definition (Def));
1025 else
1026 Check_For_Premature_Usage (Subtype_Mark (Def));
1027 end if;
1029 -- The only cases left are N_Access_Function_Definition and
1030 -- N_Access_Procedure_Definition.
1032 else
1033 if Present (Parameter_Specifications (Def)) then
1034 Param := First (Parameter_Specifications (Def));
1035 while Present (Param) loop
1036 Check_For_Premature_Usage (Parameter_Type (Param));
1037 Param := Next (Param);
1038 end loop;
1039 end if;
1041 if Nkind (Def) = N_Access_Function_Definition then
1042 Check_For_Premature_Usage (Result_Definition (Def));
1043 end if;
1044 end if;
1045 end Check_For_Premature_Usage;
1047 -- Local variables
1049 Formals : constant List_Id := Parameter_Specifications (T_Def);
1050 Formal : Entity_Id;
1051 D_Ityp : Node_Id;
1052 Desig_Type : constant Entity_Id :=
1053 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1055 -- Start of processing for Access_Subprogram_Declaration
1057 begin
1058 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1060 -- Associate the Itype node with the inner full-type declaration or
1061 -- subprogram spec or entry body. This is required to handle nested
1062 -- anonymous declarations. For example:
1064 -- procedure P
1065 -- (X : access procedure
1066 -- (Y : access procedure
1067 -- (Z : access T)))
1069 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1070 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1071 N_Private_Type_Declaration,
1072 N_Private_Extension_Declaration,
1073 N_Procedure_Specification,
1074 N_Function_Specification,
1075 N_Entry_Body)
1077 or else
1078 Nkind_In (D_Ityp, N_Object_Declaration,
1079 N_Object_Renaming_Declaration,
1080 N_Formal_Object_Declaration,
1081 N_Formal_Type_Declaration,
1082 N_Task_Type_Declaration,
1083 N_Protected_Type_Declaration))
1084 loop
1085 D_Ityp := Parent (D_Ityp);
1086 pragma Assert (D_Ityp /= Empty);
1087 end loop;
1089 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1091 if Nkind_In (D_Ityp, N_Procedure_Specification,
1092 N_Function_Specification)
1093 then
1094 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1096 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1097 N_Object_Declaration,
1098 N_Object_Renaming_Declaration,
1099 N_Formal_Type_Declaration)
1100 then
1101 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1102 end if;
1104 if Nkind (T_Def) = N_Access_Function_Definition then
1105 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1106 declare
1107 Acc : constant Node_Id := Result_Definition (T_Def);
1109 begin
1110 if Present (Access_To_Subprogram_Definition (Acc))
1111 and then
1112 Protected_Present (Access_To_Subprogram_Definition (Acc))
1113 then
1114 Set_Etype
1115 (Desig_Type,
1116 Replace_Anonymous_Access_To_Protected_Subprogram
1117 (T_Def));
1119 else
1120 Set_Etype
1121 (Desig_Type,
1122 Access_Definition (T_Def, Result_Definition (T_Def)));
1123 end if;
1124 end;
1126 else
1127 Analyze (Result_Definition (T_Def));
1129 declare
1130 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1132 begin
1133 -- If a null exclusion is imposed on the result type, then
1134 -- create a null-excluding itype (an access subtype) and use
1135 -- it as the function's Etype.
1137 if Is_Access_Type (Typ)
1138 and then Null_Exclusion_In_Return_Present (T_Def)
1139 then
1140 Set_Etype (Desig_Type,
1141 Create_Null_Excluding_Itype
1142 (T => Typ,
1143 Related_Nod => T_Def,
1144 Scope_Id => Current_Scope));
1146 else
1147 if From_Limited_With (Typ) then
1149 -- AI05-151: Incomplete types are allowed in all basic
1150 -- declarations, including access to subprograms.
1152 if Ada_Version >= Ada_2012 then
1153 null;
1155 else
1156 Error_Msg_NE
1157 ("illegal use of incomplete type&",
1158 Result_Definition (T_Def), Typ);
1159 end if;
1161 elsif Ekind (Current_Scope) = E_Package
1162 and then In_Private_Part (Current_Scope)
1163 then
1164 if Ekind (Typ) = E_Incomplete_Type then
1165 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1167 elsif Is_Class_Wide_Type (Typ)
1168 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1169 then
1170 Append_Elmt
1171 (Desig_Type, Private_Dependents (Etype (Typ)));
1172 end if;
1173 end if;
1175 Set_Etype (Desig_Type, Typ);
1176 end if;
1177 end;
1178 end if;
1180 if not (Is_Type (Etype (Desig_Type))) then
1181 Error_Msg_N
1182 ("expect type in function specification",
1183 Result_Definition (T_Def));
1184 end if;
1186 else
1187 Set_Etype (Desig_Type, Standard_Void_Type);
1188 end if;
1190 if Present (Formals) then
1191 Push_Scope (Desig_Type);
1193 -- Some special tests here. These special tests can be removed
1194 -- if and when Itypes always have proper parent pointers to their
1195 -- declarations???
1197 -- Special test 1) Link defining_identifier of formals. Required by
1198 -- First_Formal to provide its functionality.
1200 declare
1201 F : Node_Id;
1203 begin
1204 F := First (Formals);
1206 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1207 -- when it is part of an unconstrained type and subtype expansion
1208 -- is disabled. To avoid back-end problems with shared profiles,
1209 -- use previous subprogram type as the designated type, and then
1210 -- remove scope added above.
1212 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1213 then
1214 Set_Etype (T_Name, T_Name);
1215 Init_Size_Align (T_Name);
1216 Set_Directly_Designated_Type (T_Name,
1217 Scope (Defining_Identifier (F)));
1218 End_Scope;
1219 return;
1220 end if;
1222 while Present (F) loop
1223 if No (Parent (Defining_Identifier (F))) then
1224 Set_Parent (Defining_Identifier (F), F);
1225 end if;
1227 Next (F);
1228 end loop;
1229 end;
1231 Process_Formals (Formals, Parent (T_Def));
1233 -- Special test 2) End_Scope requires that the parent pointer be set
1234 -- to something reasonable, but Itypes don't have parent pointers. So
1235 -- we set it and then unset it ???
1237 Set_Parent (Desig_Type, T_Name);
1238 End_Scope;
1239 Set_Parent (Desig_Type, Empty);
1240 end if;
1242 -- Check for premature usage of the type being defined
1244 Check_For_Premature_Usage (T_Def);
1246 -- The return type and/or any parameter type may be incomplete. Mark the
1247 -- subprogram_type as depending on the incomplete type, so that it can
1248 -- be updated when the full type declaration is seen. This only applies
1249 -- to incomplete types declared in some enclosing scope, not to limited
1250 -- views from other packages.
1252 -- Prior to Ada 2012, access to functions can only have in_parameters.
1254 if Present (Formals) then
1255 Formal := First_Formal (Desig_Type);
1256 while Present (Formal) loop
1257 if Ekind (Formal) /= E_In_Parameter
1258 and then Nkind (T_Def) = N_Access_Function_Definition
1259 and then Ada_Version < Ada_2012
1260 then
1261 Error_Msg_N ("functions can only have IN parameters", Formal);
1262 end if;
1264 if Ekind (Etype (Formal)) = E_Incomplete_Type
1265 and then In_Open_Scopes (Scope (Etype (Formal)))
1266 then
1267 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1268 Set_Has_Delayed_Freeze (Desig_Type);
1269 end if;
1271 Next_Formal (Formal);
1272 end loop;
1273 end if;
1275 -- Check whether an indirect call without actuals may be possible. This
1276 -- is used when resolving calls whose result is then indexed.
1278 May_Need_Actuals (Desig_Type);
1280 -- If the return type is incomplete, this is legal as long as the type
1281 -- is declared in the current scope and will be completed in it (rather
1282 -- than being part of limited view).
1284 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1285 and then not Has_Delayed_Freeze (Desig_Type)
1286 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1287 then
1288 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1289 Set_Has_Delayed_Freeze (Desig_Type);
1290 end if;
1292 Check_Delayed_Subprogram (Desig_Type);
1294 if Protected_Present (T_Def) then
1295 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1296 Set_Convention (Desig_Type, Convention_Protected);
1297 else
1298 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1299 end if;
1301 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1303 Set_Etype (T_Name, T_Name);
1304 Init_Size_Align (T_Name);
1305 Set_Directly_Designated_Type (T_Name, Desig_Type);
1307 Generate_Reference_To_Formals (T_Name);
1309 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1311 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1313 Check_Restriction (No_Access_Subprograms, T_Def);
1314 end Access_Subprogram_Declaration;
1316 ----------------------------
1317 -- Access_Type_Declaration --
1318 ----------------------------
1320 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1321 P : constant Node_Id := Parent (Def);
1322 S : constant Node_Id := Subtype_Indication (Def);
1324 Full_Desig : Entity_Id;
1326 begin
1327 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1329 -- Check for permissible use of incomplete type
1331 if Nkind (S) /= N_Subtype_Indication then
1332 Analyze (S);
1334 if Present (Entity (S))
1335 and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type
1336 then
1337 Set_Directly_Designated_Type (T, Entity (S));
1339 -- If the designated type is a limited view, we cannot tell if
1340 -- the full view contains tasks, and there is no way to handle
1341 -- that full view in a client. We create a master entity for the
1342 -- scope, which will be used when a client determines that one
1343 -- is needed.
1345 if From_Limited_With (Entity (S))
1346 and then not Is_Class_Wide_Type (Entity (S))
1347 then
1348 Set_Ekind (T, E_Access_Type);
1349 Build_Master_Entity (T);
1350 Build_Master_Renaming (T);
1351 end if;
1353 else
1354 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1355 end if;
1357 -- If the access definition is of the form: ACCESS NOT NULL ..
1358 -- the subtype indication must be of an access type. Create
1359 -- a null-excluding subtype of it.
1361 if Null_Excluding_Subtype (Def) then
1362 if not Is_Access_Type (Entity (S)) then
1363 Error_Msg_N ("null exclusion must apply to access type", Def);
1365 else
1366 declare
1367 Loc : constant Source_Ptr := Sloc (S);
1368 Decl : Node_Id;
1369 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1371 begin
1372 Decl :=
1373 Make_Subtype_Declaration (Loc,
1374 Defining_Identifier => Nam,
1375 Subtype_Indication =>
1376 New_Occurrence_Of (Entity (S), Loc));
1377 Set_Null_Exclusion_Present (Decl);
1378 Insert_Before (Parent (Def), Decl);
1379 Analyze (Decl);
1380 Set_Entity (S, Nam);
1381 end;
1382 end if;
1383 end if;
1385 else
1386 Set_Directly_Designated_Type (T,
1387 Process_Subtype (S, P, T, 'P'));
1388 end if;
1390 if All_Present (Def) or Constant_Present (Def) then
1391 Set_Ekind (T, E_General_Access_Type);
1392 else
1393 Set_Ekind (T, E_Access_Type);
1394 end if;
1396 Full_Desig := Designated_Type (T);
1398 if Base_Type (Full_Desig) = T then
1399 Error_Msg_N ("access type cannot designate itself", S);
1401 -- In Ada 2005, the type may have a limited view through some unit in
1402 -- its own context, allowing the following circularity that cannot be
1403 -- detected earlier.
1405 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1406 then
1407 Error_Msg_N
1408 ("access type cannot designate its own class-wide type", S);
1410 -- Clean up indication of tagged status to prevent cascaded errors
1412 Set_Is_Tagged_Type (T, False);
1413 end if;
1415 Set_Etype (T, T);
1417 -- If the type has appeared already in a with_type clause, it is frozen
1418 -- and the pointer size is already set. Else, initialize.
1420 if not From_Limited_With (T) then
1421 Init_Size_Align (T);
1422 end if;
1424 -- Note that Has_Task is always false, since the access type itself
1425 -- is not a task type. See Einfo for more description on this point.
1426 -- Exactly the same consideration applies to Has_Controlled_Component
1427 -- and to Has_Protected.
1429 Set_Has_Task (T, False);
1430 Set_Has_Protected (T, False);
1431 Set_Has_Timing_Event (T, False);
1432 Set_Has_Controlled_Component (T, False);
1434 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1435 -- problems where an incomplete view of this entity has been previously
1436 -- established by a limited with and an overlaid version of this field
1437 -- (Stored_Constraint) was initialized for the incomplete view.
1439 -- This reset is performed in most cases except where the access type
1440 -- has been created for the purposes of allocating or deallocating a
1441 -- build-in-place object. Such access types have explicitly set pools
1442 -- and finalization masters.
1444 if No (Associated_Storage_Pool (T)) then
1445 Set_Finalization_Master (T, Empty);
1446 end if;
1448 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1449 -- attributes
1451 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1452 Set_Is_Access_Constant (T, Constant_Present (Def));
1453 end Access_Type_Declaration;
1455 ----------------------------------
1456 -- Add_Interface_Tag_Components --
1457 ----------------------------------
1459 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1460 Loc : constant Source_Ptr := Sloc (N);
1461 L : List_Id;
1462 Last_Tag : Node_Id;
1464 procedure Add_Tag (Iface : Entity_Id);
1465 -- Add tag for one of the progenitor interfaces
1467 -------------
1468 -- Add_Tag --
1469 -------------
1471 procedure Add_Tag (Iface : Entity_Id) is
1472 Decl : Node_Id;
1473 Def : Node_Id;
1474 Tag : Entity_Id;
1475 Offset : Entity_Id;
1477 begin
1478 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1480 -- This is a reasonable place to propagate predicates
1482 if Has_Predicates (Iface) then
1483 Set_Has_Predicates (Typ);
1484 end if;
1486 Def :=
1487 Make_Component_Definition (Loc,
1488 Aliased_Present => True,
1489 Subtype_Indication =>
1490 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1492 Tag := Make_Temporary (Loc, 'V');
1494 Decl :=
1495 Make_Component_Declaration (Loc,
1496 Defining_Identifier => Tag,
1497 Component_Definition => Def);
1499 Analyze_Component_Declaration (Decl);
1501 Set_Analyzed (Decl);
1502 Set_Ekind (Tag, E_Component);
1503 Set_Is_Tag (Tag);
1504 Set_Is_Aliased (Tag);
1505 Set_Related_Type (Tag, Iface);
1506 Init_Component_Location (Tag);
1508 pragma Assert (Is_Frozen (Iface));
1510 Set_DT_Entry_Count (Tag,
1511 DT_Entry_Count (First_Entity (Iface)));
1513 if No (Last_Tag) then
1514 Prepend (Decl, L);
1515 else
1516 Insert_After (Last_Tag, Decl);
1517 end if;
1519 Last_Tag := Decl;
1521 -- If the ancestor has discriminants we need to give special support
1522 -- to store the offset_to_top value of the secondary dispatch tables.
1523 -- For this purpose we add a supplementary component just after the
1524 -- field that contains the tag associated with each secondary DT.
1526 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1527 Def :=
1528 Make_Component_Definition (Loc,
1529 Subtype_Indication =>
1530 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1532 Offset := Make_Temporary (Loc, 'V');
1534 Decl :=
1535 Make_Component_Declaration (Loc,
1536 Defining_Identifier => Offset,
1537 Component_Definition => Def);
1539 Analyze_Component_Declaration (Decl);
1541 Set_Analyzed (Decl);
1542 Set_Ekind (Offset, E_Component);
1543 Set_Is_Aliased (Offset);
1544 Set_Related_Type (Offset, Iface);
1545 Init_Component_Location (Offset);
1546 Insert_After (Last_Tag, Decl);
1547 Last_Tag := Decl;
1548 end if;
1549 end Add_Tag;
1551 -- Local variables
1553 Elmt : Elmt_Id;
1554 Ext : Node_Id;
1555 Comp : Node_Id;
1557 -- Start of processing for Add_Interface_Tag_Components
1559 begin
1560 if not RTE_Available (RE_Interface_Tag) then
1561 Error_Msg
1562 ("(Ada 2005) interface types not supported by this run-time!",
1563 Sloc (N));
1564 return;
1565 end if;
1567 if Ekind (Typ) /= E_Record_Type
1568 or else (Is_Concurrent_Record_Type (Typ)
1569 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1570 or else (not Is_Concurrent_Record_Type (Typ)
1571 and then No (Interfaces (Typ))
1572 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1573 then
1574 return;
1575 end if;
1577 -- Find the current last tag
1579 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1580 Ext := Record_Extension_Part (Type_Definition (N));
1581 else
1582 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1583 Ext := Type_Definition (N);
1584 end if;
1586 Last_Tag := Empty;
1588 if not (Present (Component_List (Ext))) then
1589 Set_Null_Present (Ext, False);
1590 L := New_List;
1591 Set_Component_List (Ext,
1592 Make_Component_List (Loc,
1593 Component_Items => L,
1594 Null_Present => False));
1595 else
1596 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1597 L := Component_Items
1598 (Component_List
1599 (Record_Extension_Part
1600 (Type_Definition (N))));
1601 else
1602 L := Component_Items
1603 (Component_List
1604 (Type_Definition (N)));
1605 end if;
1607 -- Find the last tag component
1609 Comp := First (L);
1610 while Present (Comp) loop
1611 if Nkind (Comp) = N_Component_Declaration
1612 and then Is_Tag (Defining_Identifier (Comp))
1613 then
1614 Last_Tag := Comp;
1615 end if;
1617 Next (Comp);
1618 end loop;
1619 end if;
1621 -- At this point L references the list of components and Last_Tag
1622 -- references the current last tag (if any). Now we add the tag
1623 -- corresponding with all the interfaces that are not implemented
1624 -- by the parent.
1626 if Present (Interfaces (Typ)) then
1627 Elmt := First_Elmt (Interfaces (Typ));
1628 while Present (Elmt) loop
1629 Add_Tag (Node (Elmt));
1630 Next_Elmt (Elmt);
1631 end loop;
1632 end if;
1633 end Add_Interface_Tag_Components;
1635 -------------------------------------
1636 -- Add_Internal_Interface_Entities --
1637 -------------------------------------
1639 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1640 Elmt : Elmt_Id;
1641 Iface : Entity_Id;
1642 Iface_Elmt : Elmt_Id;
1643 Iface_Prim : Entity_Id;
1644 Ifaces_List : Elist_Id;
1645 New_Subp : Entity_Id := Empty;
1646 Prim : Entity_Id;
1647 Restore_Scope : Boolean := False;
1649 begin
1650 pragma Assert (Ada_Version >= Ada_2005
1651 and then Is_Record_Type (Tagged_Type)
1652 and then Is_Tagged_Type (Tagged_Type)
1653 and then Has_Interfaces (Tagged_Type)
1654 and then not Is_Interface (Tagged_Type));
1656 -- Ensure that the internal entities are added to the scope of the type
1658 if Scope (Tagged_Type) /= Current_Scope then
1659 Push_Scope (Scope (Tagged_Type));
1660 Restore_Scope := True;
1661 end if;
1663 Collect_Interfaces (Tagged_Type, Ifaces_List);
1665 Iface_Elmt := First_Elmt (Ifaces_List);
1666 while Present (Iface_Elmt) loop
1667 Iface := Node (Iface_Elmt);
1669 -- Originally we excluded here from this processing interfaces that
1670 -- are parents of Tagged_Type because their primitives are located
1671 -- in the primary dispatch table (and hence no auxiliary internal
1672 -- entities are required to handle secondary dispatch tables in such
1673 -- case). However, these auxiliary entities are also required to
1674 -- handle derivations of interfaces in formals of generics (see
1675 -- Derive_Subprograms).
1677 Elmt := First_Elmt (Primitive_Operations (Iface));
1678 while Present (Elmt) loop
1679 Iface_Prim := Node (Elmt);
1681 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1682 Prim :=
1683 Find_Primitive_Covering_Interface
1684 (Tagged_Type => Tagged_Type,
1685 Iface_Prim => Iface_Prim);
1687 if No (Prim) and then Serious_Errors_Detected > 0 then
1688 goto Continue;
1689 end if;
1691 pragma Assert (Present (Prim));
1693 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1694 -- differs from the name of the interface primitive then it is
1695 -- a private primitive inherited from a parent type. In such
1696 -- case, given that Tagged_Type covers the interface, the
1697 -- inherited private primitive becomes visible. For such
1698 -- purpose we add a new entity that renames the inherited
1699 -- private primitive.
1701 if Chars (Prim) /= Chars (Iface_Prim) then
1702 pragma Assert (Has_Suffix (Prim, 'P'));
1703 Derive_Subprogram
1704 (New_Subp => New_Subp,
1705 Parent_Subp => Iface_Prim,
1706 Derived_Type => Tagged_Type,
1707 Parent_Type => Iface);
1708 Set_Alias (New_Subp, Prim);
1709 Set_Is_Abstract_Subprogram
1710 (New_Subp, Is_Abstract_Subprogram (Prim));
1711 end if;
1713 Derive_Subprogram
1714 (New_Subp => New_Subp,
1715 Parent_Subp => Iface_Prim,
1716 Derived_Type => Tagged_Type,
1717 Parent_Type => Iface);
1719 declare
1720 Anc : Entity_Id;
1721 begin
1722 if Is_Inherited_Operation (Prim)
1723 and then Present (Alias (Prim))
1724 then
1725 Anc := Alias (Prim);
1726 else
1727 Anc := Overridden_Operation (Prim);
1728 end if;
1730 -- Apply legality checks in RM 6.1.1 (10-13) concerning
1731 -- nonconforming preconditions in both an ancestor and
1732 -- a progenitor operation.
1734 if Present (Anc)
1735 and then Has_Non_Trivial_Precondition (Anc)
1736 and then Has_Non_Trivial_Precondition (Iface_Prim)
1737 then
1738 if Is_Abstract_Subprogram (Prim)
1739 or else
1740 (Ekind (Prim) = E_Procedure
1741 and then Nkind (Parent (Prim)) =
1742 N_Procedure_Specification
1743 and then Null_Present (Parent (Prim)))
1744 then
1745 null;
1747 -- The inherited operation must be overridden
1749 elsif not Comes_From_Source (Prim) then
1750 Error_Msg_NE
1751 ("&inherits non-conforming preconditions and must "
1752 & "be overridden (RM 6.1.1 (10-16)",
1753 Parent (Tagged_Type), Prim);
1754 end if;
1755 end if;
1756 end;
1758 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1759 -- associated with interface types. These entities are
1760 -- only registered in the list of primitives of its
1761 -- corresponding tagged type because they are only used
1762 -- to fill the contents of the secondary dispatch tables.
1763 -- Therefore they are removed from the homonym chains.
1765 Set_Is_Hidden (New_Subp);
1766 Set_Is_Internal (New_Subp);
1767 Set_Alias (New_Subp, Prim);
1768 Set_Is_Abstract_Subprogram
1769 (New_Subp, Is_Abstract_Subprogram (Prim));
1770 Set_Interface_Alias (New_Subp, Iface_Prim);
1772 -- If the returned type is an interface then propagate it to
1773 -- the returned type. Needed by the thunk to generate the code
1774 -- which displaces "this" to reference the corresponding
1775 -- secondary dispatch table in the returned object.
1777 if Is_Interface (Etype (Iface_Prim)) then
1778 Set_Etype (New_Subp, Etype (Iface_Prim));
1779 end if;
1781 -- Internal entities associated with interface types are only
1782 -- registered in the list of primitives of the tagged type.
1783 -- They are only used to fill the contents of the secondary
1784 -- dispatch tables. Therefore they are not needed in the
1785 -- homonym chains.
1787 Remove_Homonym (New_Subp);
1789 -- Hidden entities associated with interfaces must have set
1790 -- the Has_Delay_Freeze attribute to ensure that, in case
1791 -- of locally defined tagged types (or compiling with static
1792 -- dispatch tables generation disabled) the corresponding
1793 -- entry of the secondary dispatch table is filled when such
1794 -- an entity is frozen. This is an expansion activity that must
1795 -- be suppressed for ASIS because it leads to gigi elaboration
1796 -- issues in annotate mode.
1798 if not ASIS_Mode then
1799 Set_Has_Delayed_Freeze (New_Subp);
1800 end if;
1801 end if;
1803 <<Continue>>
1804 Next_Elmt (Elmt);
1805 end loop;
1807 Next_Elmt (Iface_Elmt);
1808 end loop;
1810 if Restore_Scope then
1811 Pop_Scope;
1812 end if;
1813 end Add_Internal_Interface_Entities;
1815 -----------------------------------
1816 -- Analyze_Component_Declaration --
1817 -----------------------------------
1819 procedure Analyze_Component_Declaration (N : Node_Id) is
1820 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1821 Id : constant Entity_Id := Defining_Identifier (N);
1822 E : constant Node_Id := Expression (N);
1823 Typ : constant Node_Id :=
1824 Subtype_Indication (Component_Definition (N));
1825 T : Entity_Id;
1826 P : Entity_Id;
1828 function Contains_POC (Constr : Node_Id) return Boolean;
1829 -- Determines whether a constraint uses the discriminant of a record
1830 -- type thus becoming a per-object constraint (POC).
1832 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1833 -- Typ is the type of the current component, check whether this type is
1834 -- a limited type. Used to validate declaration against that of
1835 -- enclosing record.
1837 ------------------
1838 -- Contains_POC --
1839 ------------------
1841 function Contains_POC (Constr : Node_Id) return Boolean is
1842 begin
1843 -- Prevent cascaded errors
1845 if Error_Posted (Constr) then
1846 return False;
1847 end if;
1849 case Nkind (Constr) is
1850 when N_Attribute_Reference =>
1851 return Attribute_Name (Constr) = Name_Access
1852 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1854 when N_Discriminant_Association =>
1855 return Denotes_Discriminant (Expression (Constr));
1857 when N_Identifier =>
1858 return Denotes_Discriminant (Constr);
1860 when N_Index_Or_Discriminant_Constraint =>
1861 declare
1862 IDC : Node_Id;
1864 begin
1865 IDC := First (Constraints (Constr));
1866 while Present (IDC) loop
1868 -- One per-object constraint is sufficient
1870 if Contains_POC (IDC) then
1871 return True;
1872 end if;
1874 Next (IDC);
1875 end loop;
1877 return False;
1878 end;
1880 when N_Range =>
1881 return Denotes_Discriminant (Low_Bound (Constr))
1882 or else
1883 Denotes_Discriminant (High_Bound (Constr));
1885 when N_Range_Constraint =>
1886 return Denotes_Discriminant (Range_Expression (Constr));
1888 when others =>
1889 return False;
1890 end case;
1891 end Contains_POC;
1893 ----------------------
1894 -- Is_Known_Limited --
1895 ----------------------
1897 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1898 P : constant Entity_Id := Etype (Typ);
1899 R : constant Entity_Id := Root_Type (Typ);
1901 begin
1902 if Is_Limited_Record (Typ) then
1903 return True;
1905 -- If the root type is limited (and not a limited interface)
1906 -- so is the current type
1908 elsif Is_Limited_Record (R)
1909 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1910 then
1911 return True;
1913 -- Else the type may have a limited interface progenitor, but a
1914 -- limited record parent.
1916 elsif R /= P and then Is_Limited_Record (P) then
1917 return True;
1919 else
1920 return False;
1921 end if;
1922 end Is_Known_Limited;
1924 -- Start of processing for Analyze_Component_Declaration
1926 begin
1927 Generate_Definition (Id);
1928 Enter_Name (Id);
1930 if Present (Typ) then
1931 T := Find_Type_Of_Object
1932 (Subtype_Indication (Component_Definition (N)), N);
1934 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1935 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1936 end if;
1938 -- Ada 2005 (AI-230): Access Definition case
1940 else
1941 pragma Assert (Present
1942 (Access_Definition (Component_Definition (N))));
1944 T := Access_Definition
1945 (Related_Nod => N,
1946 N => Access_Definition (Component_Definition (N)));
1947 Set_Is_Local_Anonymous_Access (T);
1949 -- Ada 2005 (AI-254)
1951 if Present (Access_To_Subprogram_Definition
1952 (Access_Definition (Component_Definition (N))))
1953 and then Protected_Present (Access_To_Subprogram_Definition
1954 (Access_Definition
1955 (Component_Definition (N))))
1956 then
1957 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1958 end if;
1959 end if;
1961 -- If the subtype is a constrained subtype of the enclosing record,
1962 -- (which must have a partial view) the back-end does not properly
1963 -- handle the recursion. Rewrite the component declaration with an
1964 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1965 -- the tree directly because side effects have already been removed from
1966 -- discriminant constraints.
1968 if Ekind (T) = E_Access_Subtype
1969 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1970 and then Comes_From_Source (T)
1971 and then Nkind (Parent (T)) = N_Subtype_Declaration
1972 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1973 then
1974 Rewrite
1975 (Subtype_Indication (Component_Definition (N)),
1976 New_Copy_Tree (Subtype_Indication (Parent (T))));
1977 T := Find_Type_Of_Object
1978 (Subtype_Indication (Component_Definition (N)), N);
1979 end if;
1981 -- If the component declaration includes a default expression, then we
1982 -- check that the component is not of a limited type (RM 3.7(5)),
1983 -- and do the special preanalysis of the expression (see section on
1984 -- "Handling of Default and Per-Object Expressions" in the spec of
1985 -- package Sem).
1987 if Present (E) then
1988 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1989 Preanalyze_Default_Expression (E, T);
1990 Check_Initialization (T, E);
1992 if Ada_Version >= Ada_2005
1993 and then Ekind (T) = E_Anonymous_Access_Type
1994 and then Etype (E) /= Any_Type
1995 then
1996 -- Check RM 3.9.2(9): "if the expected type for an expression is
1997 -- an anonymous access-to-specific tagged type, then the object
1998 -- designated by the expression shall not be dynamically tagged
1999 -- unless it is a controlling operand in a call on a dispatching
2000 -- operation"
2002 if Is_Tagged_Type (Directly_Designated_Type (T))
2003 and then
2004 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
2005 and then
2006 Ekind (Directly_Designated_Type (Etype (E))) =
2007 E_Class_Wide_Type
2008 then
2009 Error_Msg_N
2010 ("access to specific tagged type required (RM 3.9.2(9))", E);
2011 end if;
2013 -- (Ada 2005: AI-230): Accessibility check for anonymous
2014 -- components
2016 if Type_Access_Level (Etype (E)) >
2017 Deepest_Type_Access_Level (T)
2018 then
2019 Error_Msg_N
2020 ("expression has deeper access level than component " &
2021 "(RM 3.10.2 (12.2))", E);
2022 end if;
2024 -- The initialization expression is a reference to an access
2025 -- discriminant. The type of the discriminant is always deeper
2026 -- than any access type.
2028 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2029 and then Is_Entity_Name (E)
2030 and then Ekind (Entity (E)) = E_In_Parameter
2031 and then Present (Discriminal_Link (Entity (E)))
2032 then
2033 Error_Msg_N
2034 ("discriminant has deeper accessibility level than target",
2036 end if;
2037 end if;
2038 end if;
2040 -- The parent type may be a private view with unknown discriminants,
2041 -- and thus unconstrained. Regular components must be constrained.
2043 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2044 if Is_Class_Wide_Type (T) then
2045 Error_Msg_N
2046 ("class-wide subtype with unknown discriminants" &
2047 " in component declaration",
2048 Subtype_Indication (Component_Definition (N)));
2049 else
2050 Error_Msg_N
2051 ("unconstrained subtype in component declaration",
2052 Subtype_Indication (Component_Definition (N)));
2053 end if;
2055 -- Components cannot be abstract, except for the special case of
2056 -- the _Parent field (case of extending an abstract tagged type)
2058 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2059 Error_Msg_N ("type of a component cannot be abstract", N);
2060 end if;
2062 Set_Etype (Id, T);
2063 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2065 -- The component declaration may have a per-object constraint, set
2066 -- the appropriate flag in the defining identifier of the subtype.
2068 if Present (Subtype_Indication (Component_Definition (N))) then
2069 declare
2070 Sindic : constant Node_Id :=
2071 Subtype_Indication (Component_Definition (N));
2072 begin
2073 if Nkind (Sindic) = N_Subtype_Indication
2074 and then Present (Constraint (Sindic))
2075 and then Contains_POC (Constraint (Sindic))
2076 then
2077 Set_Has_Per_Object_Constraint (Id);
2078 end if;
2079 end;
2080 end if;
2082 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2083 -- out some static checks.
2085 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2086 Null_Exclusion_Static_Checks (N);
2087 end if;
2089 -- If this component is private (or depends on a private type), flag the
2090 -- record type to indicate that some operations are not available.
2092 P := Private_Component (T);
2094 if Present (P) then
2096 -- Check for circular definitions
2098 if P = Any_Type then
2099 Set_Etype (Id, Any_Type);
2101 -- There is a gap in the visibility of operations only if the
2102 -- component type is not defined in the scope of the record type.
2104 elsif Scope (P) = Scope (Current_Scope) then
2105 null;
2107 elsif Is_Limited_Type (P) then
2108 Set_Is_Limited_Composite (Current_Scope);
2110 else
2111 Set_Is_Private_Composite (Current_Scope);
2112 end if;
2113 end if;
2115 if P /= Any_Type
2116 and then Is_Limited_Type (T)
2117 and then Chars (Id) /= Name_uParent
2118 and then Is_Tagged_Type (Current_Scope)
2119 then
2120 if Is_Derived_Type (Current_Scope)
2121 and then not Is_Known_Limited (Current_Scope)
2122 then
2123 Error_Msg_N
2124 ("extension of nonlimited type cannot have limited components",
2127 if Is_Interface (Root_Type (Current_Scope)) then
2128 Error_Msg_N
2129 ("\limitedness is not inherited from limited interface", N);
2130 Error_Msg_N ("\add LIMITED to type indication", N);
2131 end if;
2133 Explain_Limited_Type (T, N);
2134 Set_Etype (Id, Any_Type);
2135 Set_Is_Limited_Composite (Current_Scope, False);
2137 elsif not Is_Derived_Type (Current_Scope)
2138 and then not Is_Limited_Record (Current_Scope)
2139 and then not Is_Concurrent_Type (Current_Scope)
2140 then
2141 Error_Msg_N
2142 ("nonlimited tagged type cannot have limited components", N);
2143 Explain_Limited_Type (T, N);
2144 Set_Etype (Id, Any_Type);
2145 Set_Is_Limited_Composite (Current_Scope, False);
2146 end if;
2147 end if;
2149 -- If the component is an unconstrained task or protected type with
2150 -- discriminants, the component and the enclosing record are limited
2151 -- and the component is constrained by its default values. Compute
2152 -- its actual subtype, else it may be allocated the maximum size by
2153 -- the backend, and possibly overflow.
2155 if Is_Concurrent_Type (T)
2156 and then not Is_Constrained (T)
2157 and then Has_Discriminants (T)
2158 and then not Has_Discriminants (Current_Scope)
2159 then
2160 declare
2161 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2163 begin
2164 Set_Etype (Id, Act_T);
2166 -- Rewrite component definition to use the constrained subtype
2168 Rewrite (Component_Definition (N),
2169 Make_Component_Definition (Loc,
2170 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2171 end;
2172 end if;
2174 Set_Original_Record_Component (Id, Id);
2176 if Has_Aspects (N) then
2177 Analyze_Aspect_Specifications (N, Id);
2178 end if;
2180 Analyze_Dimension (N);
2181 end Analyze_Component_Declaration;
2183 --------------------------
2184 -- Analyze_Declarations --
2185 --------------------------
2187 procedure Analyze_Declarations (L : List_Id) is
2188 Decl : Node_Id;
2190 procedure Adjust_Decl;
2191 -- Adjust Decl not to include implicit label declarations, since these
2192 -- have strange Sloc values that result in elaboration check problems.
2193 -- (They have the sloc of the label as found in the source, and that
2194 -- is ahead of the current declarative part).
2196 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id);
2197 -- Create the subprogram bodies which verify the run-time semantics of
2198 -- the pragmas listed below for each elibigle type found in declarative
2199 -- list Decls. The pragmas are:
2201 -- Default_Initial_Condition
2202 -- Invariant
2203 -- Type_Invariant
2205 -- Context denotes the owner of the declarative list.
2207 procedure Check_Entry_Contracts;
2208 -- Perform a pre-analysis of the pre- and postconditions of an entry
2209 -- declaration. This must be done before full resolution and creation
2210 -- of the parameter block, etc. to catch illegal uses within the
2211 -- contract expression. Full analysis of the expression is done when
2212 -- the contract is processed.
2214 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2215 -- Determine whether Body_Decl denotes the body of a late controlled
2216 -- primitive (either Initialize, Adjust or Finalize). If this is the
2217 -- case, add a proper spec if the body lacks one. The spec is inserted
2218 -- before Body_Decl and immediately analyzed.
2220 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id);
2221 -- Spec_Id is the entity of a package that may define abstract states,
2222 -- and in the case of a child unit, whose ancestors may define abstract
2223 -- states. If the states have partial visible refinement, remove the
2224 -- partial visibility of each constituent at the end of the package
2225 -- spec and body declarations.
2227 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2228 -- Spec_Id is the entity of a package that may define abstract states.
2229 -- If the states have visible refinement, remove the visibility of each
2230 -- constituent at the end of the package body declaration.
2232 procedure Resolve_Aspects;
2233 -- Utility to resolve the expressions of aspects at the end of a list of
2234 -- declarations.
2236 function Uses_Unseen_Lib_Unit_Priv (Pkg : Entity_Id) return Boolean;
2237 -- Check if an inner package has entities within it that rely on library
2238 -- level private types where the full view has not been seen.
2240 -----------------
2241 -- Adjust_Decl --
2242 -----------------
2244 procedure Adjust_Decl is
2245 begin
2246 while Present (Prev (Decl))
2247 and then Nkind (Decl) = N_Implicit_Label_Declaration
2248 loop
2249 Prev (Decl);
2250 end loop;
2251 end Adjust_Decl;
2253 ----------------------------
2254 -- Build_Assertion_Bodies --
2255 ----------------------------
2257 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is
2258 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id);
2259 -- Create the subprogram bodies which verify the run-time semantics
2260 -- of the pragmas listed below for type Typ. The pragmas are:
2262 -- Default_Initial_Condition
2263 -- Invariant
2264 -- Type_Invariant
2266 -------------------------------------
2267 -- Build_Assertion_Bodies_For_Type --
2268 -------------------------------------
2270 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is
2271 begin
2272 -- Preanalyze and resolve the Default_Initial_Condition assertion
2273 -- expression at the end of the declarations to catch any errors.
2275 if Has_DIC (Typ) then
2276 Build_DIC_Procedure_Body (Typ);
2277 end if;
2279 if Nkind (Context) = N_Package_Specification then
2281 -- Preanalyze and resolve the class-wide invariants of an
2282 -- interface at the end of whichever declarative part has the
2283 -- interface type. Note that an interface may be declared in
2284 -- any non-package declarative part, but reaching the end of
2285 -- such a declarative part will always freeze the type and
2286 -- generate the invariant procedure (see Freeze_Type).
2288 if Is_Interface (Typ) then
2290 -- Interfaces are treated as the partial view of a private
2291 -- type, in order to achieve uniformity with the general
2292 -- case. As a result, an interface receives only a "partial"
2293 -- invariant procedure, which is never called.
2295 if Has_Own_Invariants (Typ) then
2296 Build_Invariant_Procedure_Body
2297 (Typ => Typ,
2298 Partial_Invariant => True);
2299 end if;
2301 -- Preanalyze and resolve the invariants of a private type
2302 -- at the end of the visible declarations to catch potential
2303 -- errors. Inherited class-wide invariants are not included
2304 -- because they have already been resolved.
2306 elsif Decls = Visible_Declarations (Context)
2307 and then Ekind_In (Typ, E_Limited_Private_Type,
2308 E_Private_Type,
2309 E_Record_Type_With_Private)
2310 and then Has_Own_Invariants (Typ)
2311 then
2312 Build_Invariant_Procedure_Body
2313 (Typ => Typ,
2314 Partial_Invariant => True);
2316 -- Preanalyze and resolve the invariants of a private type's
2317 -- full view at the end of the private declarations to catch
2318 -- potential errors.
2320 elsif Decls = Private_Declarations (Context)
2321 and then not Is_Private_Type (Typ)
2322 and then Has_Private_Declaration (Typ)
2323 and then Has_Invariants (Typ)
2324 then
2325 Build_Invariant_Procedure_Body (Typ);
2326 end if;
2327 end if;
2328 end Build_Assertion_Bodies_For_Type;
2330 -- Local variables
2332 Decl : Node_Id;
2333 Decl_Id : Entity_Id;
2335 -- Start of processing for Build_Assertion_Bodies
2337 begin
2338 Decl := First (Decls);
2339 while Present (Decl) loop
2340 if Is_Declaration (Decl) then
2341 Decl_Id := Defining_Entity (Decl);
2343 if Is_Type (Decl_Id) then
2344 Build_Assertion_Bodies_For_Type (Decl_Id);
2345 end if;
2346 end if;
2348 Next (Decl);
2349 end loop;
2350 end Build_Assertion_Bodies;
2352 ---------------------------
2353 -- Check_Entry_Contracts --
2354 ---------------------------
2356 procedure Check_Entry_Contracts is
2357 ASN : Node_Id;
2358 Ent : Entity_Id;
2359 Exp : Node_Id;
2361 begin
2362 Ent := First_Entity (Current_Scope);
2363 while Present (Ent) loop
2365 -- This only concerns entries with pre/postconditions
2367 if Ekind (Ent) = E_Entry
2368 and then Present (Contract (Ent))
2369 and then Present (Pre_Post_Conditions (Contract (Ent)))
2370 then
2371 ASN := Pre_Post_Conditions (Contract (Ent));
2372 Push_Scope (Ent);
2373 Install_Formals (Ent);
2375 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2376 -- is performed on a copy of the pragma expression, to prevent
2377 -- modifying the original expression.
2379 while Present (ASN) loop
2380 if Nkind (ASN) = N_Pragma then
2381 Exp :=
2382 New_Copy_Tree
2383 (Expression
2384 (First (Pragma_Argument_Associations (ASN))));
2385 Set_Parent (Exp, ASN);
2387 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
2388 end if;
2390 ASN := Next_Pragma (ASN);
2391 end loop;
2393 End_Scope;
2394 end if;
2396 Next_Entity (Ent);
2397 end loop;
2398 end Check_Entry_Contracts;
2400 --------------------------------------
2401 -- Handle_Late_Controlled_Primitive --
2402 --------------------------------------
2404 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2405 Body_Spec : constant Node_Id := Specification (Body_Decl);
2406 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2407 Loc : constant Source_Ptr := Sloc (Body_Id);
2408 Params : constant List_Id :=
2409 Parameter_Specifications (Body_Spec);
2410 Spec : Node_Id;
2411 Spec_Id : Entity_Id;
2412 Typ : Node_Id;
2414 begin
2415 -- Consider only procedure bodies whose name matches one of the three
2416 -- controlled primitives.
2418 if Nkind (Body_Spec) /= N_Procedure_Specification
2419 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2420 Name_Finalize,
2421 Name_Initialize)
2422 then
2423 return;
2425 -- A controlled primitive must have exactly one formal which is not
2426 -- an anonymous access type.
2428 elsif List_Length (Params) /= 1 then
2429 return;
2430 end if;
2432 Typ := Parameter_Type (First (Params));
2434 if Nkind (Typ) = N_Access_Definition then
2435 return;
2436 end if;
2438 Find_Type (Typ);
2440 -- The type of the formal must be derived from [Limited_]Controlled
2442 if not Is_Controlled (Entity (Typ)) then
2443 return;
2444 end if;
2446 -- Check whether a specification exists for this body. We do not
2447 -- analyze the spec of the body in full, because it will be analyzed
2448 -- again when the body is properly analyzed, and we cannot create
2449 -- duplicate entries in the formals chain. We look for an explicit
2450 -- specification because the body may be an overriding operation and
2451 -- an inherited spec may be present.
2453 Spec_Id := Current_Entity (Body_Id);
2455 while Present (Spec_Id) loop
2456 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2457 and then Scope (Spec_Id) = Current_Scope
2458 and then Present (First_Formal (Spec_Id))
2459 and then No (Next_Formal (First_Formal (Spec_Id)))
2460 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2461 and then Comes_From_Source (Spec_Id)
2462 then
2463 return;
2464 end if;
2466 Spec_Id := Homonym (Spec_Id);
2467 end loop;
2469 -- At this point the body is known to be a late controlled primitive.
2470 -- Generate a matching spec and insert it before the body. Note the
2471 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2472 -- tree in this case.
2474 Spec := Copy_Separate_Tree (Body_Spec);
2476 -- Ensure that the subprogram declaration does not inherit the null
2477 -- indicator from the body as we now have a proper spec/body pair.
2479 Set_Null_Present (Spec, False);
2481 -- Ensure that the freeze node is inserted after the declaration of
2482 -- the primitive since its expansion will freeze the primitive.
2484 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2486 Insert_Before_And_Analyze (Body_Decl, Decl);
2487 end Handle_Late_Controlled_Primitive;
2489 ----------------------------------------
2490 -- Remove_Partial_Visible_Refinements --
2491 ----------------------------------------
2493 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is
2494 State_Elmt : Elmt_Id;
2495 begin
2496 if Present (Abstract_States (Spec_Id)) then
2497 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2498 while Present (State_Elmt) loop
2499 Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False);
2500 Next_Elmt (State_Elmt);
2501 end loop;
2502 end if;
2504 -- For a child unit, also hide the partial state refinement from
2505 -- ancestor packages.
2507 if Is_Child_Unit (Spec_Id) then
2508 Remove_Partial_Visible_Refinements (Scope (Spec_Id));
2509 end if;
2510 end Remove_Partial_Visible_Refinements;
2512 --------------------------------
2513 -- Remove_Visible_Refinements --
2514 --------------------------------
2516 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2517 State_Elmt : Elmt_Id;
2518 begin
2519 if Present (Abstract_States (Spec_Id)) then
2520 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2521 while Present (State_Elmt) loop
2522 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2523 Next_Elmt (State_Elmt);
2524 end loop;
2525 end if;
2526 end Remove_Visible_Refinements;
2528 ---------------------
2529 -- Resolve_Aspects --
2530 ---------------------
2532 procedure Resolve_Aspects is
2533 E : Entity_Id;
2535 begin
2536 E := First_Entity (Current_Scope);
2537 while Present (E) loop
2538 Resolve_Aspect_Expressions (E);
2539 Next_Entity (E);
2540 end loop;
2541 end Resolve_Aspects;
2543 -------------------------------
2544 -- Uses_Unseen_Lib_Unit_Priv --
2545 -------------------------------
2547 function Uses_Unseen_Lib_Unit_Priv (Pkg : Entity_Id) return Boolean is
2548 Curr : Entity_Id;
2550 begin
2551 -- Avoid looking through scopes that do not meet the precondition of
2552 -- Pkg not being within a library unit spec.
2554 if not Is_Compilation_Unit (Pkg)
2555 and then not Is_Generic_Instance (Pkg)
2556 and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg))
2557 then
2558 -- Loop through all entities in the current scope to identify
2559 -- an entity that depends on a private type.
2561 Curr := First_Entity (Pkg);
2562 loop
2563 if Nkind (Curr) in N_Entity
2564 and then Depends_On_Private (Curr)
2565 then
2566 return True;
2567 end if;
2569 exit when Last_Entity (Current_Scope) = Curr;
2570 Curr := Next_Entity (Curr);
2571 end loop;
2572 end if;
2574 return False;
2575 end Uses_Unseen_Lib_Unit_Priv;
2577 -- Local variables
2579 Context : Node_Id := Empty;
2580 Freeze_From : Entity_Id := Empty;
2581 Next_Decl : Node_Id;
2583 Body_Seen : Boolean := False;
2584 -- Flag set when the first body [stub] is encountered
2586 -- Start of processing for Analyze_Declarations
2588 begin
2589 if Restriction_Check_Required (SPARK_05) then
2590 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2591 end if;
2593 Decl := First (L);
2594 while Present (Decl) loop
2596 -- Package spec cannot contain a package declaration in SPARK
2598 if Nkind (Decl) = N_Package_Declaration
2599 and then Nkind (Parent (L)) = N_Package_Specification
2600 then
2601 Check_SPARK_05_Restriction
2602 ("package specification cannot contain a package declaration",
2603 Decl);
2604 end if;
2606 -- Complete analysis of declaration
2608 Analyze (Decl);
2609 Next_Decl := Next (Decl);
2611 if No (Freeze_From) then
2612 Freeze_From := First_Entity (Current_Scope);
2613 end if;
2615 -- At the end of a declarative part, freeze remaining entities
2616 -- declared in it. The end of the visible declarations of package
2617 -- specification is not the end of a declarative part if private
2618 -- declarations are present. The end of a package declaration is a
2619 -- freezing point only if it a library package. A task definition or
2620 -- protected type definition is not a freeze point either. Finally,
2621 -- we do not freeze entities in generic scopes, because there is no
2622 -- code generated for them and freeze nodes will be generated for
2623 -- the instance.
2625 -- The end of a package instantiation is not a freeze point, but
2626 -- for now we make it one, because the generic body is inserted
2627 -- (currently) immediately after. Generic instantiations will not
2628 -- be a freeze point once delayed freezing of bodies is implemented.
2629 -- (This is needed in any case for early instantiations ???).
2631 if No (Next_Decl) then
2632 if Nkind (Parent (L)) = N_Component_List then
2633 null;
2635 elsif Nkind_In (Parent (L), N_Protected_Definition,
2636 N_Task_Definition)
2637 then
2638 Check_Entry_Contracts;
2640 elsif Nkind (Parent (L)) /= N_Package_Specification then
2641 if Nkind (Parent (L)) = N_Package_Body then
2642 Freeze_From := First_Entity (Current_Scope);
2643 end if;
2645 -- There may have been several freezing points previously,
2646 -- for example object declarations or subprogram bodies, but
2647 -- at the end of a declarative part we check freezing from
2648 -- the beginning, even though entities may already be frozen,
2649 -- in order to perform visibility checks on delayed aspects.
2651 Adjust_Decl;
2653 -- If the current scope is a generic subprogram body. Skip the
2654 -- generic formal parameters that are not frozen here.
2656 if Is_Subprogram (Current_Scope)
2657 and then Nkind (Unit_Declaration_Node (Current_Scope)) =
2658 N_Generic_Subprogram_Declaration
2659 and then Present (First_Entity (Current_Scope))
2660 then
2661 while Is_Generic_Formal (Freeze_From) loop
2662 Freeze_From := Next_Entity (Freeze_From);
2663 end loop;
2665 Freeze_All (Freeze_From, Decl);
2666 Freeze_From := Last_Entity (Current_Scope);
2668 else
2669 -- For declarations in a subprogram body there is no issue
2670 -- with name resolution in aspect specifications, but in
2671 -- ASIS mode we need to preanalyze aspect specifications
2672 -- that may otherwise only be analyzed during expansion
2673 -- (e.g. during generation of a related subprogram).
2675 if ASIS_Mode then
2676 Resolve_Aspects;
2677 end if;
2679 Freeze_All (First_Entity (Current_Scope), Decl);
2680 Freeze_From := Last_Entity (Current_Scope);
2681 end if;
2683 -- Current scope is a package specification
2685 elsif Scope (Current_Scope) /= Standard_Standard
2686 and then not Is_Child_Unit (Current_Scope)
2687 and then No (Generic_Parent (Parent (L)))
2688 then
2689 -- ARM rule 13.1.1(11/3): usage names in aspect definitions are
2690 -- resolved at the end of the immediately enclosing declaration
2691 -- list (AI05-0183-1).
2693 Resolve_Aspects;
2695 elsif L /= Visible_Declarations (Parent (L))
2696 or else No (Private_Declarations (Parent (L)))
2697 or else Is_Empty_List (Private_Declarations (Parent (L)))
2698 then
2699 Adjust_Decl;
2701 -- End of a package declaration
2703 -- In compilation mode the expansion of freeze node takes care
2704 -- of resolving expressions of all aspects in the list. In ASIS
2705 -- mode this must be done explicitly.
2707 if ASIS_Mode
2708 and then Scope (Current_Scope) = Standard_Standard
2709 then
2710 Resolve_Aspects;
2711 end if;
2713 -- This is a freeze point because it is the end of a
2714 -- compilation unit.
2716 Freeze_All (First_Entity (Current_Scope), Decl);
2717 Freeze_From := Last_Entity (Current_Scope);
2719 -- At the end of the visible declarations the expressions in
2720 -- aspects of all entities declared so far must be resolved.
2721 -- The entities themselves might be frozen later, and the
2722 -- generated pragmas and attribute definition clauses analyzed
2723 -- in full at that point, but name resolution must take place
2724 -- now.
2725 -- In addition to being the proper semantics, this is mandatory
2726 -- within generic units, because global name capture requires
2727 -- those expressions to be analyzed, given that the generated
2728 -- pragmas do not appear in the original generic tree.
2730 elsif Serious_Errors_Detected = 0 then
2731 Resolve_Aspects;
2732 end if;
2734 -- If next node is a body then freeze all types before the body.
2735 -- An exception occurs for some expander-generated bodies. If these
2736 -- are generated at places where in general language rules would not
2737 -- allow a freeze point, then we assume that the expander has
2738 -- explicitly checked that all required types are properly frozen,
2739 -- and we do not cause general freezing here. This special circuit
2740 -- is used when the encountered body is marked as having already
2741 -- been analyzed.
2743 -- In all other cases (bodies that come from source, and expander
2744 -- generated bodies that have not been analyzed yet), freeze all
2745 -- types now. Note that in the latter case, the expander must take
2746 -- care to attach the bodies at a proper place in the tree so as to
2747 -- not cause unwanted freezing at that point.
2749 -- It is also necessary to check for a case where both an expression
2750 -- function is used and the current scope depends on an unseen
2751 -- private type from a library unit, otherwise premature freezing of
2752 -- the private type will occur.
2754 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl)
2755 and then ((Nkind (Next_Decl) /= N_Subprogram_Body
2756 or else not Was_Expression_Function (Next_Decl))
2757 or else not Uses_Unseen_Lib_Unit_Priv (Current_Scope))
2758 then
2759 -- When a controlled type is frozen, the expander generates stream
2760 -- and controlled-type support routines. If the freeze is caused
2761 -- by the stand-alone body of Initialize, Adjust, or Finalize, the
2762 -- expander will end up using the wrong version of these routines,
2763 -- as the body has not been processed yet. To remedy this, detect
2764 -- a late controlled primitive and create a proper spec for it.
2765 -- This ensures that the primitive will override its inherited
2766 -- counterpart before the freeze takes place.
2768 -- If the declaration we just processed is a body, do not attempt
2769 -- to examine Next_Decl as the late primitive idiom can only apply
2770 -- to the first encountered body.
2772 -- The spec of the late primitive is not generated in ASIS mode to
2773 -- ensure a consistent list of primitives that indicates the true
2774 -- semantic structure of the program (which is not relevant when
2775 -- generating executable code).
2777 -- ??? A cleaner approach may be possible and/or this solution
2778 -- could be extended to general-purpose late primitives, TBD.
2780 if not ASIS_Mode
2781 and then not Body_Seen
2782 and then not Is_Body (Decl)
2783 then
2784 Body_Seen := True;
2786 if Nkind (Next_Decl) = N_Subprogram_Body then
2787 Handle_Late_Controlled_Primitive (Next_Decl);
2788 end if;
2789 end if;
2791 Adjust_Decl;
2793 -- The generated body of an expression function does not freeze,
2794 -- unless it is a completion, in which case only the expression
2795 -- itself freezes. This is handled when the body itself is
2796 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2798 Freeze_All (Freeze_From, Decl);
2799 Freeze_From := Last_Entity (Current_Scope);
2800 end if;
2802 Decl := Next_Decl;
2803 end loop;
2805 -- Post-freezing actions
2807 if Present (L) then
2808 Context := Parent (L);
2810 -- Analyze the contracts of packages and their bodies
2812 if Nkind (Context) = N_Package_Specification then
2814 -- When a package has private declarations, its contract must be
2815 -- analyzed at the end of the said declarations. This way both the
2816 -- analysis and freeze actions are properly synchronized in case
2817 -- of private type use within the contract.
2819 if L = Private_Declarations (Context) then
2820 Analyze_Package_Contract (Defining_Entity (Context));
2822 -- Otherwise the contract is analyzed at the end of the visible
2823 -- declarations.
2825 elsif L = Visible_Declarations (Context)
2826 and then No (Private_Declarations (Context))
2827 then
2828 Analyze_Package_Contract (Defining_Entity (Context));
2829 end if;
2831 elsif Nkind (Context) = N_Package_Body then
2832 Analyze_Package_Body_Contract (Defining_Entity (Context));
2833 end if;
2835 -- Analyze the contracts of various constructs now due to the delayed
2836 -- visibility needs of their aspects and pragmas.
2838 Analyze_Contracts (L);
2840 if Nkind (Context) = N_Package_Body then
2842 -- Ensure that all abstract states and objects declared in the
2843 -- state space of a package body are utilized as constituents.
2845 Check_Unused_Body_States (Defining_Entity (Context));
2847 -- State refinements are visible up to the end of the package body
2848 -- declarations. Hide the state refinements from visibility to
2849 -- restore the original state conditions.
2851 Remove_Visible_Refinements (Corresponding_Spec (Context));
2852 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2854 elsif Nkind (Context) = N_Package_Declaration then
2856 -- Partial state refinements are visible up to the end of the
2857 -- package spec declarations. Hide the partial state refinements
2858 -- from visibility to restore the original state conditions.
2860 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2861 end if;
2863 -- Verify that all abstract states found in any package declared in
2864 -- the input declarative list have proper refinements. The check is
2865 -- performed only when the context denotes a block, entry, package,
2866 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2868 Check_State_Refinements (Context);
2870 -- Create the subprogram bodies which verify the run-time semantics
2871 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all
2872 -- types within the current declarative list. This ensures that all
2873 -- assertion expressions are preanalyzed and resolved at the end of
2874 -- the declarative part. Note that the resolution happens even when
2875 -- freezing does not take place.
2877 Build_Assertion_Bodies (L, Context);
2878 end if;
2879 end Analyze_Declarations;
2881 -----------------------------------
2882 -- Analyze_Full_Type_Declaration --
2883 -----------------------------------
2885 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2886 Def : constant Node_Id := Type_Definition (N);
2887 Def_Id : constant Entity_Id := Defining_Identifier (N);
2888 T : Entity_Id;
2889 Prev : Entity_Id;
2891 Is_Remote : constant Boolean :=
2892 (Is_Remote_Types (Current_Scope)
2893 or else Is_Remote_Call_Interface (Current_Scope))
2894 and then not (In_Private_Part (Current_Scope)
2895 or else In_Package_Body (Current_Scope));
2897 procedure Check_Nonoverridable_Aspects;
2898 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2899 -- be overridden, and can only be confirmed on derivation.
2901 procedure Check_Ops_From_Incomplete_Type;
2902 -- If there is a tagged incomplete partial view of the type, traverse
2903 -- the primitives of the incomplete view and change the type of any
2904 -- controlling formals and result to indicate the full view. The
2905 -- primitives will be added to the full type's primitive operations
2906 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2907 -- is called from Process_Incomplete_Dependents).
2909 ----------------------------------
2910 -- Check_Nonoverridable_Aspects --
2911 ----------------------------------
2913 procedure Check_Nonoverridable_Aspects is
2914 function Get_Aspect_Spec
2915 (Specs : List_Id;
2916 Aspect_Name : Name_Id) return Node_Id;
2917 -- Check whether a list of aspect specifications includes an entry
2918 -- for a specific aspect. The list is either that of a partial or
2919 -- a full view.
2921 ---------------------
2922 -- Get_Aspect_Spec --
2923 ---------------------
2925 function Get_Aspect_Spec
2926 (Specs : List_Id;
2927 Aspect_Name : Name_Id) return Node_Id
2929 Spec : Node_Id;
2931 begin
2932 Spec := First (Specs);
2933 while Present (Spec) loop
2934 if Chars (Identifier (Spec)) = Aspect_Name then
2935 return Spec;
2936 end if;
2937 Next (Spec);
2938 end loop;
2940 return Empty;
2941 end Get_Aspect_Spec;
2943 -- Local variables
2945 Prev_Aspects : constant List_Id :=
2946 Aspect_Specifications (Parent (Def_Id));
2947 Par_Type : Entity_Id;
2948 Prev_Aspect : Node_Id;
2950 -- Start of processing for Check_Nonoverridable_Aspects
2952 begin
2953 -- Get parent type of derived type. Note that Prev is the entity in
2954 -- the partial declaration, but its contents are now those of full
2955 -- view, while Def_Id reflects the partial view.
2957 if Is_Private_Type (Def_Id) then
2958 Par_Type := Etype (Full_View (Def_Id));
2959 else
2960 Par_Type := Etype (Def_Id);
2961 end if;
2963 -- If there is an inherited Implicit_Dereference, verify that it is
2964 -- made explicit in the partial view.
2966 if Has_Discriminants (Base_Type (Par_Type))
2967 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2968 and then Present (Discriminant_Specifications (Parent (Prev)))
2969 and then Present (Get_Reference_Discriminant (Par_Type))
2970 then
2971 Prev_Aspect :=
2972 Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference);
2974 if No (Prev_Aspect)
2975 and then Present
2976 (Discriminant_Specifications
2977 (Original_Node (Parent (Prev))))
2978 then
2979 Error_Msg_N
2980 ("type does not inherit implicit dereference", Prev);
2982 else
2983 -- If one of the views has the aspect specified, verify that it
2984 -- is consistent with that of the parent.
2986 declare
2987 Par_Discr : constant Entity_Id :=
2988 Get_Reference_Discriminant (Par_Type);
2989 Cur_Discr : constant Entity_Id :=
2990 Get_Reference_Discriminant (Prev);
2992 begin
2993 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
2994 Error_Msg_N ("aspect incosistent with that of parent", N);
2995 end if;
2997 -- Check that specification in partial view matches the
2998 -- inherited aspect. Compare names directly because aspect
2999 -- expression may not be analyzed.
3001 if Present (Prev_Aspect)
3002 and then Nkind (Expression (Prev_Aspect)) = N_Identifier
3003 and then Chars (Expression (Prev_Aspect)) /=
3004 Chars (Cur_Discr)
3005 then
3006 Error_Msg_N
3007 ("aspect incosistent with that of parent", N);
3008 end if;
3009 end;
3010 end if;
3011 end if;
3013 -- TBD : other nonoverridable aspects.
3014 end Check_Nonoverridable_Aspects;
3016 ------------------------------------
3017 -- Check_Ops_From_Incomplete_Type --
3018 ------------------------------------
3020 procedure Check_Ops_From_Incomplete_Type is
3021 Elmt : Elmt_Id;
3022 Formal : Entity_Id;
3023 Op : Entity_Id;
3025 begin
3026 if Prev /= T
3027 and then Ekind (Prev) = E_Incomplete_Type
3028 and then Is_Tagged_Type (Prev)
3029 and then Is_Tagged_Type (T)
3030 then
3031 Elmt := First_Elmt (Primitive_Operations (Prev));
3032 while Present (Elmt) loop
3033 Op := Node (Elmt);
3035 Formal := First_Formal (Op);
3036 while Present (Formal) loop
3037 if Etype (Formal) = Prev then
3038 Set_Etype (Formal, T);
3039 end if;
3041 Next_Formal (Formal);
3042 end loop;
3044 if Etype (Op) = Prev then
3045 Set_Etype (Op, T);
3046 end if;
3048 Next_Elmt (Elmt);
3049 end loop;
3050 end if;
3051 end Check_Ops_From_Incomplete_Type;
3053 -- Start of processing for Analyze_Full_Type_Declaration
3055 begin
3056 Prev := Find_Type_Name (N);
3058 -- The full view, if present, now points to the current type. If there
3059 -- is an incomplete partial view, set a link to it, to simplify the
3060 -- retrieval of primitive operations of the type.
3062 -- Ada 2005 (AI-50217): If the type was previously decorated when
3063 -- imported through a LIMITED WITH clause, it appears as incomplete
3064 -- but has no full view.
3066 if Ekind (Prev) = E_Incomplete_Type
3067 and then Present (Full_View (Prev))
3068 then
3069 T := Full_View (Prev);
3070 Set_Incomplete_View (N, Parent (Prev));
3071 else
3072 T := Prev;
3073 end if;
3075 Set_Is_Pure (T, Is_Pure (Current_Scope));
3077 -- We set the flag Is_First_Subtype here. It is needed to set the
3078 -- corresponding flag for the Implicit class-wide-type created
3079 -- during tagged types processing.
3081 Set_Is_First_Subtype (T, True);
3083 -- Only composite types other than array types are allowed to have
3084 -- discriminants.
3086 case Nkind (Def) is
3088 -- For derived types, the rule will be checked once we've figured
3089 -- out the parent type.
3091 when N_Derived_Type_Definition =>
3092 null;
3094 -- For record types, discriminants are allowed, unless we are in
3095 -- SPARK.
3097 when N_Record_Definition =>
3098 if Present (Discriminant_Specifications (N)) then
3099 Check_SPARK_05_Restriction
3100 ("discriminant type is not allowed",
3101 Defining_Identifier
3102 (First (Discriminant_Specifications (N))));
3103 end if;
3105 when others =>
3106 if Present (Discriminant_Specifications (N)) then
3107 Error_Msg_N
3108 ("elementary or array type cannot have discriminants",
3109 Defining_Identifier
3110 (First (Discriminant_Specifications (N))));
3111 end if;
3112 end case;
3114 -- Elaborate the type definition according to kind, and generate
3115 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3116 -- already done (this happens during the reanalysis that follows a call
3117 -- to the high level optimizer).
3119 if not Analyzed (T) then
3120 Set_Analyzed (T);
3122 case Nkind (Def) is
3123 when N_Access_To_Subprogram_Definition =>
3124 Access_Subprogram_Declaration (T, Def);
3126 -- If this is a remote access to subprogram, we must create the
3127 -- equivalent fat pointer type, and related subprograms.
3129 if Is_Remote then
3130 Process_Remote_AST_Declaration (N);
3131 end if;
3133 -- Validate categorization rule against access type declaration
3134 -- usually a violation in Pure unit, Shared_Passive unit.
3136 Validate_Access_Type_Declaration (T, N);
3138 when N_Access_To_Object_Definition =>
3139 Access_Type_Declaration (T, Def);
3141 -- Validate categorization rule against access type declaration
3142 -- usually a violation in Pure unit, Shared_Passive unit.
3144 Validate_Access_Type_Declaration (T, N);
3146 -- If we are in a Remote_Call_Interface package and define a
3147 -- RACW, then calling stubs and specific stream attributes
3148 -- must be added.
3150 if Is_Remote
3151 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3152 then
3153 Add_RACW_Features (Def_Id);
3154 end if;
3156 when N_Array_Type_Definition =>
3157 Array_Type_Declaration (T, Def);
3159 when N_Derived_Type_Definition =>
3160 Derived_Type_Declaration (T, N, T /= Def_Id);
3162 -- Inherit predicates from parent, and protect against illegal
3163 -- derivations.
3165 if Is_Type (T) and then Has_Predicates (T) then
3166 Set_Has_Predicates (Def_Id);
3167 end if;
3169 when N_Enumeration_Type_Definition =>
3170 Enumeration_Type_Declaration (T, Def);
3172 when N_Floating_Point_Definition =>
3173 Floating_Point_Type_Declaration (T, Def);
3175 when N_Decimal_Fixed_Point_Definition =>
3176 Decimal_Fixed_Point_Type_Declaration (T, Def);
3178 when N_Ordinary_Fixed_Point_Definition =>
3179 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3181 when N_Signed_Integer_Type_Definition =>
3182 Signed_Integer_Type_Declaration (T, Def);
3184 when N_Modular_Type_Definition =>
3185 Modular_Type_Declaration (T, Def);
3187 when N_Record_Definition =>
3188 Record_Type_Declaration (T, N, Prev);
3190 -- If declaration has a parse error, nothing to elaborate.
3192 when N_Error =>
3193 null;
3195 when others =>
3196 raise Program_Error;
3197 end case;
3198 end if;
3200 if Etype (T) = Any_Type then
3201 return;
3202 end if;
3204 -- Controlled type is not allowed in SPARK
3206 if Is_Visibly_Controlled (T) then
3207 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
3208 end if;
3210 -- Some common processing for all types
3212 Set_Depends_On_Private (T, Has_Private_Component (T));
3213 Check_Ops_From_Incomplete_Type;
3215 -- Both the declared entity, and its anonymous base type if one was
3216 -- created, need freeze nodes allocated.
3218 declare
3219 B : constant Entity_Id := Base_Type (T);
3221 begin
3222 -- In the case where the base type differs from the first subtype, we
3223 -- pre-allocate a freeze node, and set the proper link to the first
3224 -- subtype. Freeze_Entity will use this preallocated freeze node when
3225 -- it freezes the entity.
3227 -- This does not apply if the base type is a generic type, whose
3228 -- declaration is independent of the current derived definition.
3230 if B /= T and then not Is_Generic_Type (B) then
3231 Ensure_Freeze_Node (B);
3232 Set_First_Subtype_Link (Freeze_Node (B), T);
3233 end if;
3235 -- A type that is imported through a limited_with clause cannot
3236 -- generate any code, and thus need not be frozen. However, an access
3237 -- type with an imported designated type needs a finalization list,
3238 -- which may be referenced in some other package that has non-limited
3239 -- visibility on the designated type. Thus we must create the
3240 -- finalization list at the point the access type is frozen, to
3241 -- prevent unsatisfied references at link time.
3243 if not From_Limited_With (T) or else Is_Access_Type (T) then
3244 Set_Has_Delayed_Freeze (T);
3245 end if;
3246 end;
3248 -- Case where T is the full declaration of some private type which has
3249 -- been swapped in Defining_Identifier (N).
3251 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3252 Process_Full_View (N, T, Def_Id);
3254 -- Record the reference. The form of this is a little strange, since
3255 -- the full declaration has been swapped in. So the first parameter
3256 -- here represents the entity to which a reference is made which is
3257 -- the "real" entity, i.e. the one swapped in, and the second
3258 -- parameter provides the reference location.
3260 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3261 -- since we don't want a complaint about the full type being an
3262 -- unwanted reference to the private type
3264 declare
3265 B : constant Boolean := Has_Pragma_Unreferenced (T);
3266 begin
3267 Set_Has_Pragma_Unreferenced (T, False);
3268 Generate_Reference (T, T, 'c');
3269 Set_Has_Pragma_Unreferenced (T, B);
3270 end;
3272 Set_Completion_Referenced (Def_Id);
3274 -- For completion of incomplete type, process incomplete dependents
3275 -- and always mark the full type as referenced (it is the incomplete
3276 -- type that we get for any real reference).
3278 elsif Ekind (Prev) = E_Incomplete_Type then
3279 Process_Incomplete_Dependents (N, T, Prev);
3280 Generate_Reference (Prev, Def_Id, 'c');
3281 Set_Completion_Referenced (Def_Id);
3283 -- If not private type or incomplete type completion, this is a real
3284 -- definition of a new entity, so record it.
3286 else
3287 Generate_Definition (Def_Id);
3288 end if;
3290 -- Propagate any pending access types whose finalization masters need to
3291 -- be fully initialized from the partial to the full view. Guard against
3292 -- an illegal full view that remains unanalyzed.
3294 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
3295 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
3296 end if;
3298 if Chars (Scope (Def_Id)) = Name_System
3299 and then Chars (Def_Id) = Name_Address
3300 and then In_Predefined_Unit (N)
3301 then
3302 Set_Is_Descendant_Of_Address (Def_Id);
3303 Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
3304 Set_Is_Descendant_Of_Address (Prev);
3305 end if;
3307 Set_Optimize_Alignment_Flags (Def_Id);
3308 Check_Eliminated (Def_Id);
3310 -- If the declaration is a completion and aspects are present, apply
3311 -- them to the entity for the type which is currently the partial
3312 -- view, but which is the one that will be frozen.
3314 if Has_Aspects (N) then
3316 -- In most cases the partial view is a private type, and both views
3317 -- appear in different declarative parts. In the unusual case where
3318 -- the partial view is incomplete, perform the analysis on the
3319 -- full view, to prevent freezing anomalies with the corresponding
3320 -- class-wide type, which otherwise might be frozen before the
3321 -- dispatch table is built.
3323 if Prev /= Def_Id
3324 and then Ekind (Prev) /= E_Incomplete_Type
3325 then
3326 Analyze_Aspect_Specifications (N, Prev);
3328 -- Normal case
3330 else
3331 Analyze_Aspect_Specifications (N, Def_Id);
3332 end if;
3333 end if;
3335 if Is_Derived_Type (Prev)
3336 and then Def_Id /= Prev
3337 then
3338 Check_Nonoverridable_Aspects;
3339 end if;
3340 end Analyze_Full_Type_Declaration;
3342 ----------------------------------
3343 -- Analyze_Incomplete_Type_Decl --
3344 ----------------------------------
3346 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
3347 F : constant Boolean := Is_Pure (Current_Scope);
3348 T : Entity_Id;
3350 begin
3351 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
3353 Generate_Definition (Defining_Identifier (N));
3355 -- Process an incomplete declaration. The identifier must not have been
3356 -- declared already in the scope. However, an incomplete declaration may
3357 -- appear in the private part of a package, for a private type that has
3358 -- already been declared.
3360 -- In this case, the discriminants (if any) must match
3362 T := Find_Type_Name (N);
3364 Set_Ekind (T, E_Incomplete_Type);
3365 Init_Size_Align (T);
3366 Set_Is_First_Subtype (T, True);
3367 Set_Etype (T, T);
3369 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3370 -- incomplete types.
3372 if Tagged_Present (N) then
3373 Set_Is_Tagged_Type (T, True);
3374 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3375 Make_Class_Wide_Type (T);
3376 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3377 end if;
3379 Set_Stored_Constraint (T, No_Elist);
3381 if Present (Discriminant_Specifications (N)) then
3382 Push_Scope (T);
3383 Process_Discriminants (N);
3384 End_Scope;
3385 end if;
3387 -- If the type has discriminants, nontrivial subtypes may be declared
3388 -- before the full view of the type. The full views of those subtypes
3389 -- will be built after the full view of the type.
3391 Set_Private_Dependents (T, New_Elmt_List);
3392 Set_Is_Pure (T, F);
3393 end Analyze_Incomplete_Type_Decl;
3395 -----------------------------------
3396 -- Analyze_Interface_Declaration --
3397 -----------------------------------
3399 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3400 CW : constant Entity_Id := Class_Wide_Type (T);
3402 begin
3403 Set_Is_Tagged_Type (T);
3404 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3406 Set_Is_Limited_Record (T, Limited_Present (Def)
3407 or else Task_Present (Def)
3408 or else Protected_Present (Def)
3409 or else Synchronized_Present (Def));
3411 -- Type is abstract if full declaration carries keyword, or if previous
3412 -- partial view did.
3414 Set_Is_Abstract_Type (T);
3415 Set_Is_Interface (T);
3417 -- Type is a limited interface if it includes the keyword limited, task,
3418 -- protected, or synchronized.
3420 Set_Is_Limited_Interface
3421 (T, Limited_Present (Def)
3422 or else Protected_Present (Def)
3423 or else Synchronized_Present (Def)
3424 or else Task_Present (Def));
3426 Set_Interfaces (T, New_Elmt_List);
3427 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3429 -- Complete the decoration of the class-wide entity if it was already
3430 -- built (i.e. during the creation of the limited view)
3432 if Present (CW) then
3433 Set_Is_Interface (CW);
3434 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3435 end if;
3437 -- Check runtime support for synchronized interfaces
3439 if (Is_Task_Interface (T)
3440 or else Is_Protected_Interface (T)
3441 or else Is_Synchronized_Interface (T))
3442 and then not RTE_Available (RE_Select_Specific_Data)
3443 then
3444 Error_Msg_CRT ("synchronized interfaces", T);
3445 end if;
3446 end Analyze_Interface_Declaration;
3448 -----------------------------
3449 -- Analyze_Itype_Reference --
3450 -----------------------------
3452 -- Nothing to do. This node is placed in the tree only for the benefit of
3453 -- back end processing, and has no effect on the semantic processing.
3455 procedure Analyze_Itype_Reference (N : Node_Id) is
3456 begin
3457 pragma Assert (Is_Itype (Itype (N)));
3458 null;
3459 end Analyze_Itype_Reference;
3461 --------------------------------
3462 -- Analyze_Number_Declaration --
3463 --------------------------------
3465 procedure Analyze_Number_Declaration (N : Node_Id) is
3466 E : constant Node_Id := Expression (N);
3467 Id : constant Entity_Id := Defining_Identifier (N);
3468 Index : Interp_Index;
3469 It : Interp;
3470 T : Entity_Id;
3472 begin
3473 Generate_Definition (Id);
3474 Enter_Name (Id);
3476 -- This is an optimization of a common case of an integer literal
3478 if Nkind (E) = N_Integer_Literal then
3479 Set_Is_Static_Expression (E, True);
3480 Set_Etype (E, Universal_Integer);
3482 Set_Etype (Id, Universal_Integer);
3483 Set_Ekind (Id, E_Named_Integer);
3484 Set_Is_Frozen (Id, True);
3485 return;
3486 end if;
3488 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3490 -- Process expression, replacing error by integer zero, to avoid
3491 -- cascaded errors or aborts further along in the processing
3493 -- Replace Error by integer zero, which seems least likely to cause
3494 -- cascaded errors.
3496 if E = Error then
3497 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3498 Set_Error_Posted (E);
3499 end if;
3501 Analyze (E);
3503 -- Verify that the expression is static and numeric. If
3504 -- the expression is overloaded, we apply the preference
3505 -- rule that favors root numeric types.
3507 if not Is_Overloaded (E) then
3508 T := Etype (E);
3509 if Has_Dynamic_Predicate_Aspect (T) then
3510 Error_Msg_N
3511 ("subtype has dynamic predicate, "
3512 & "not allowed in number declaration", N);
3513 end if;
3515 else
3516 T := Any_Type;
3518 Get_First_Interp (E, Index, It);
3519 while Present (It.Typ) loop
3520 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3521 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3522 then
3523 if T = Any_Type then
3524 T := It.Typ;
3526 elsif It.Typ = Universal_Real
3527 or else
3528 It.Typ = Universal_Integer
3529 then
3530 -- Choose universal interpretation over any other
3532 T := It.Typ;
3533 exit;
3534 end if;
3535 end if;
3537 Get_Next_Interp (Index, It);
3538 end loop;
3539 end if;
3541 if Is_Integer_Type (T) then
3542 Resolve (E, T);
3543 Set_Etype (Id, Universal_Integer);
3544 Set_Ekind (Id, E_Named_Integer);
3546 elsif Is_Real_Type (T) then
3548 -- Because the real value is converted to universal_real, this is a
3549 -- legal context for a universal fixed expression.
3551 if T = Universal_Fixed then
3552 declare
3553 Loc : constant Source_Ptr := Sloc (N);
3554 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3555 Subtype_Mark =>
3556 New_Occurrence_Of (Universal_Real, Loc),
3557 Expression => Relocate_Node (E));
3559 begin
3560 Rewrite (E, Conv);
3561 Analyze (E);
3562 end;
3564 elsif T = Any_Fixed then
3565 Error_Msg_N ("illegal context for mixed mode operation", E);
3567 -- Expression is of the form : universal_fixed * integer. Try to
3568 -- resolve as universal_real.
3570 T := Universal_Real;
3571 Set_Etype (E, T);
3572 end if;
3574 Resolve (E, T);
3575 Set_Etype (Id, Universal_Real);
3576 Set_Ekind (Id, E_Named_Real);
3578 else
3579 Wrong_Type (E, Any_Numeric);
3580 Resolve (E, T);
3582 Set_Etype (Id, T);
3583 Set_Ekind (Id, E_Constant);
3584 Set_Never_Set_In_Source (Id, True);
3585 Set_Is_True_Constant (Id, True);
3586 return;
3587 end if;
3589 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3590 Set_Etype (E, Etype (Id));
3591 end if;
3593 if not Is_OK_Static_Expression (E) then
3594 Flag_Non_Static_Expr
3595 ("non-static expression used in number declaration!", E);
3596 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3597 Set_Etype (E, Any_Type);
3598 end if;
3600 Analyze_Dimension (N);
3601 end Analyze_Number_Declaration;
3603 --------------------------------
3604 -- Analyze_Object_Declaration --
3605 --------------------------------
3607 -- WARNING: This routine manages Ghost regions. Return statements must be
3608 -- replaced by gotos which jump to the end of the routine and restore the
3609 -- Ghost mode.
3611 procedure Analyze_Object_Declaration (N : Node_Id) is
3612 Loc : constant Source_Ptr := Sloc (N);
3613 Id : constant Entity_Id := Defining_Identifier (N);
3614 Act_T : Entity_Id;
3615 T : Entity_Id;
3617 E : Node_Id := Expression (N);
3618 -- E is set to Expression (N) throughout this routine. When Expression
3619 -- (N) is modified, E is changed accordingly.
3621 Prev_Entity : Entity_Id := Empty;
3623 procedure Check_Dynamic_Object (Typ : Entity_Id);
3624 -- A library-level object with non-static discriminant constraints may
3625 -- require dynamic allocation. The declaration is illegal if the
3626 -- profile includes the restriction No_Implicit_Heap_Allocations.
3628 procedure Check_For_Null_Excluding_Components
3629 (Obj_Typ : Entity_Id;
3630 Obj_Decl : Node_Id);
3631 -- Verify that each null-excluding component of object declaration
3632 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3633 -- a compile-time warning if this is not the case.
3635 function Count_Tasks (T : Entity_Id) return Uint;
3636 -- This function is called when a non-generic library level object of a
3637 -- task type is declared. Its function is to count the static number of
3638 -- tasks declared within the type (it is only called if Has_Task is set
3639 -- for T). As a side effect, if an array of tasks with non-static bounds
3640 -- or a variant record type is encountered, Check_Restriction is called
3641 -- indicating the count is unknown.
3643 function Delayed_Aspect_Present return Boolean;
3644 -- If the declaration has an expression that is an aggregate, and it
3645 -- has aspects that require delayed analysis, the resolution of the
3646 -- aggregate must be deferred to the freeze point of the objet. This
3647 -- special processing was created for address clauses, but it must
3648 -- also apply to Alignment. This must be done before the aspect
3649 -- specifications are analyzed because we must handle the aggregate
3650 -- before the analysis of the object declaration is complete.
3652 -- Any other relevant delayed aspects on object declarations ???
3654 --------------------------
3655 -- Check_Dynamic_Object --
3656 --------------------------
3658 procedure Check_Dynamic_Object (Typ : Entity_Id) is
3659 Comp : Entity_Id;
3660 Obj_Type : Entity_Id;
3662 begin
3663 Obj_Type := Typ;
3665 if Is_Private_Type (Obj_Type)
3666 and then Present (Full_View (Obj_Type))
3667 then
3668 Obj_Type := Full_View (Obj_Type);
3669 end if;
3671 if Known_Static_Esize (Obj_Type) then
3672 return;
3673 end if;
3675 if Restriction_Active (No_Implicit_Heap_Allocations)
3676 and then Expander_Active
3677 and then Has_Discriminants (Obj_Type)
3678 then
3679 Comp := First_Component (Obj_Type);
3680 while Present (Comp) loop
3681 if Known_Static_Esize (Etype (Comp))
3682 or else Size_Known_At_Compile_Time (Etype (Comp))
3683 then
3684 null;
3686 elsif not Discriminated_Size (Comp)
3687 and then Comes_From_Source (Comp)
3688 then
3689 Error_Msg_NE
3690 ("component& of non-static size will violate restriction "
3691 & "No_Implicit_Heap_Allocation?", N, Comp);
3693 elsif Is_Record_Type (Etype (Comp)) then
3694 Check_Dynamic_Object (Etype (Comp));
3695 end if;
3697 Next_Component (Comp);
3698 end loop;
3699 end if;
3700 end Check_Dynamic_Object;
3702 -----------------------------------------
3703 -- Check_For_Null_Excluding_Components --
3704 -----------------------------------------
3706 procedure Check_For_Null_Excluding_Components
3707 (Obj_Typ : Entity_Id;
3708 Obj_Decl : Node_Id)
3710 procedure Check_Component
3711 (Comp_Typ : Entity_Id;
3712 Comp_Decl : Node_Id := Empty;
3713 Array_Comp : Boolean := False);
3714 -- Apply a compile-time null-exclusion check on a component denoted
3715 -- by its declaration Comp_Decl and type Comp_Typ, and all of its
3716 -- subcomponents (if any).
3718 ---------------------
3719 -- Check_Component --
3720 ---------------------
3722 procedure Check_Component
3723 (Comp_Typ : Entity_Id;
3724 Comp_Decl : Node_Id := Empty;
3725 Array_Comp : Boolean := False)
3727 Comp : Entity_Id;
3728 T : Entity_Id;
3730 begin
3731 -- Do not consider internally-generated components or those that
3732 -- are already initialized.
3734 if Present (Comp_Decl)
3735 and then (not Comes_From_Source (Comp_Decl)
3736 or else Present (Expression (Comp_Decl)))
3737 then
3738 return;
3739 end if;
3741 if Is_Incomplete_Or_Private_Type (Comp_Typ)
3742 and then Present (Full_View (Comp_Typ))
3743 then
3744 T := Full_View (Comp_Typ);
3745 else
3746 T := Comp_Typ;
3747 end if;
3749 -- Verify a component of a null-excluding access type
3751 if Is_Access_Type (T)
3752 and then Can_Never_Be_Null (T)
3753 then
3754 if Comp_Decl = Obj_Decl then
3755 Null_Exclusion_Static_Checks
3756 (N => Obj_Decl,
3757 Comp => Empty,
3758 Array_Comp => Array_Comp);
3760 else
3761 Null_Exclusion_Static_Checks
3762 (N => Obj_Decl,
3763 Comp => Comp_Decl,
3764 Array_Comp => Array_Comp);
3765 end if;
3767 -- Check array components
3769 elsif Is_Array_Type (T) then
3771 -- There is no suitable component when the object is of an
3772 -- array type. However, a namable component may appear at some
3773 -- point during the recursive inspection, but not at the top
3774 -- level. At the top level just indicate array component case.
3776 if Comp_Decl = Obj_Decl then
3777 Check_Component (Component_Type (T), Array_Comp => True);
3778 else
3779 Check_Component (Component_Type (T), Comp_Decl);
3780 end if;
3782 -- Verify all components of type T
3784 -- Note: No checks are performed on types with discriminants due
3785 -- to complexities involving variants. ???
3787 elsif (Is_Concurrent_Type (T)
3788 or else Is_Incomplete_Or_Private_Type (T)
3789 or else Is_Record_Type (T))
3790 and then not Has_Discriminants (T)
3791 then
3792 Comp := First_Component (T);
3793 while Present (Comp) loop
3794 Check_Component (Etype (Comp), Parent (Comp));
3796 Comp := Next_Component (Comp);
3797 end loop;
3798 end if;
3799 end Check_Component;
3801 -- Start processing for Check_For_Null_Excluding_Components
3803 begin
3804 Check_Component (Obj_Typ, Obj_Decl);
3805 end Check_For_Null_Excluding_Components;
3807 -----------------
3808 -- Count_Tasks --
3809 -----------------
3811 function Count_Tasks (T : Entity_Id) return Uint is
3812 C : Entity_Id;
3813 X : Node_Id;
3814 V : Uint;
3816 begin
3817 if Is_Task_Type (T) then
3818 return Uint_1;
3820 elsif Is_Record_Type (T) then
3821 if Has_Discriminants (T) then
3822 Check_Restriction (Max_Tasks, N);
3823 return Uint_0;
3825 else
3826 V := Uint_0;
3827 C := First_Component (T);
3828 while Present (C) loop
3829 V := V + Count_Tasks (Etype (C));
3830 Next_Component (C);
3831 end loop;
3833 return V;
3834 end if;
3836 elsif Is_Array_Type (T) then
3837 X := First_Index (T);
3838 V := Count_Tasks (Component_Type (T));
3839 while Present (X) loop
3840 C := Etype (X);
3842 if not Is_OK_Static_Subtype (C) then
3843 Check_Restriction (Max_Tasks, N);
3844 return Uint_0;
3845 else
3846 V := V * (UI_Max (Uint_0,
3847 Expr_Value (Type_High_Bound (C)) -
3848 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3849 end if;
3851 Next_Index (X);
3852 end loop;
3854 return V;
3856 else
3857 return Uint_0;
3858 end if;
3859 end Count_Tasks;
3861 ----------------------------
3862 -- Delayed_Aspect_Present --
3863 ----------------------------
3865 function Delayed_Aspect_Present return Boolean is
3866 A : Node_Id;
3867 A_Id : Aspect_Id;
3869 begin
3870 if Present (Aspect_Specifications (N)) then
3871 A := First (Aspect_Specifications (N));
3872 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3873 while Present (A) loop
3874 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3875 return True;
3876 end if;
3878 Next (A);
3879 end loop;
3880 end if;
3882 return False;
3883 end Delayed_Aspect_Present;
3885 -- Local variables
3887 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3888 -- Save the Ghost mode to restore on exit
3890 Related_Id : Entity_Id;
3892 -- Start of processing for Analyze_Object_Declaration
3894 begin
3895 -- There are three kinds of implicit types generated by an
3896 -- object declaration:
3898 -- 1. Those generated by the original Object Definition
3900 -- 2. Those generated by the Expression
3902 -- 3. Those used to constrain the Object Definition with the
3903 -- expression constraints when the definition is unconstrained.
3905 -- They must be generated in this order to avoid order of elaboration
3906 -- issues. Thus the first step (after entering the name) is to analyze
3907 -- the object definition.
3909 if Constant_Present (N) then
3910 Prev_Entity := Current_Entity_In_Scope (Id);
3912 if Present (Prev_Entity)
3913 and then
3914 -- If the homograph is an implicit subprogram, it is overridden
3915 -- by the current declaration.
3917 ((Is_Overloadable (Prev_Entity)
3918 and then Is_Inherited_Operation (Prev_Entity))
3920 -- The current object is a discriminal generated for an entry
3921 -- family index. Even though the index is a constant, in this
3922 -- particular context there is no true constant redeclaration.
3923 -- Enter_Name will handle the visibility.
3925 or else
3926 (Is_Discriminal (Id)
3927 and then Ekind (Discriminal_Link (Id)) =
3928 E_Entry_Index_Parameter)
3930 -- The current object is the renaming for a generic declared
3931 -- within the instance.
3933 or else
3934 (Ekind (Prev_Entity) = E_Package
3935 and then Nkind (Parent (Prev_Entity)) =
3936 N_Package_Renaming_Declaration
3937 and then not Comes_From_Source (Prev_Entity)
3938 and then
3939 Is_Generic_Instance (Renamed_Entity (Prev_Entity)))
3941 -- The entity may be a homonym of a private component of the
3942 -- enclosing protected object, for which we create a local
3943 -- renaming declaration. The declaration is legal, even if
3944 -- useless when it just captures that component.
3946 or else
3947 (Ekind (Scope (Current_Scope)) = E_Protected_Type
3948 and then Nkind (Parent (Prev_Entity)) =
3949 N_Object_Renaming_Declaration))
3950 then
3951 Prev_Entity := Empty;
3952 end if;
3953 end if;
3955 if Present (Prev_Entity) then
3957 -- The object declaration is Ghost when it completes a deferred Ghost
3958 -- constant.
3960 Mark_And_Set_Ghost_Completion (N, Prev_Entity);
3962 Constant_Redeclaration (Id, N, T);
3964 Generate_Reference (Prev_Entity, Id, 'c');
3965 Set_Completion_Referenced (Id);
3967 if Error_Posted (N) then
3969 -- Type mismatch or illegal redeclaration; do not analyze
3970 -- expression to avoid cascaded errors.
3972 T := Find_Type_Of_Object (Object_Definition (N), N);
3973 Set_Etype (Id, T);
3974 Set_Ekind (Id, E_Variable);
3975 goto Leave;
3976 end if;
3978 -- In the normal case, enter identifier at the start to catch premature
3979 -- usage in the initialization expression.
3981 else
3982 Generate_Definition (Id);
3983 Enter_Name (Id);
3985 Mark_Coextensions (N, Object_Definition (N));
3987 T := Find_Type_Of_Object (Object_Definition (N), N);
3989 if Nkind (Object_Definition (N)) = N_Access_Definition
3990 and then Present
3991 (Access_To_Subprogram_Definition (Object_Definition (N)))
3992 and then Protected_Present
3993 (Access_To_Subprogram_Definition (Object_Definition (N)))
3994 then
3995 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3996 end if;
3998 if Error_Posted (Id) then
3999 Set_Etype (Id, T);
4000 Set_Ekind (Id, E_Variable);
4001 goto Leave;
4002 end if;
4003 end if;
4005 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
4006 -- out some static checks.
4008 if Ada_Version >= Ada_2005 then
4010 -- In case of aggregates we must also take care of the correct
4011 -- initialization of nested aggregates bug this is done at the
4012 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
4014 if Can_Never_Be_Null (T) then
4015 if Present (Expression (N))
4016 and then Nkind (Expression (N)) = N_Aggregate
4017 then
4018 null;
4020 else
4021 declare
4022 Save_Typ : constant Entity_Id := Etype (Id);
4023 begin
4024 Set_Etype (Id, T); -- Temp. decoration for static checks
4025 Null_Exclusion_Static_Checks (N);
4026 Set_Etype (Id, Save_Typ);
4027 end;
4028 end if;
4030 -- We might be dealing with an object of a composite type containing
4031 -- null-excluding components without an aggregate, so we must verify
4032 -- that such components have default initialization.
4034 else
4035 Check_For_Null_Excluding_Components (T, N);
4036 end if;
4037 end if;
4039 -- Object is marked pure if it is in a pure scope
4041 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4043 -- If deferred constant, make sure context is appropriate. We detect
4044 -- a deferred constant as a constant declaration with no expression.
4045 -- A deferred constant can appear in a package body if its completion
4046 -- is by means of an interface pragma.
4048 if Constant_Present (N) and then No (E) then
4050 -- A deferred constant may appear in the declarative part of the
4051 -- following constructs:
4053 -- blocks
4054 -- entry bodies
4055 -- extended return statements
4056 -- package specs
4057 -- package bodies
4058 -- subprogram bodies
4059 -- task bodies
4061 -- When declared inside a package spec, a deferred constant must be
4062 -- completed by a full constant declaration or pragma Import. In all
4063 -- other cases, the only proper completion is pragma Import. Extended
4064 -- return statements are flagged as invalid contexts because they do
4065 -- not have a declarative part and so cannot accommodate the pragma.
4067 if Ekind (Current_Scope) = E_Return_Statement then
4068 Error_Msg_N
4069 ("invalid context for deferred constant declaration (RM 7.4)",
4071 Error_Msg_N
4072 ("\declaration requires an initialization expression",
4074 Set_Constant_Present (N, False);
4076 -- In Ada 83, deferred constant must be of private type
4078 elsif not Is_Private_Type (T) then
4079 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4080 Error_Msg_N
4081 ("(Ada 83) deferred constant must be private type", N);
4082 end if;
4083 end if;
4085 -- If not a deferred constant, then the object declaration freezes
4086 -- its type, unless the object is of an anonymous type and has delayed
4087 -- aspects. In that case the type is frozen when the object itself is.
4089 else
4090 Check_Fully_Declared (T, N);
4092 if Has_Delayed_Aspects (Id)
4093 and then Is_Array_Type (T)
4094 and then Is_Itype (T)
4095 then
4096 Set_Has_Delayed_Freeze (T);
4097 else
4098 Freeze_Before (N, T);
4099 end if;
4100 end if;
4102 -- If the object was created by a constrained array definition, then
4103 -- set the link in both the anonymous base type and anonymous subtype
4104 -- that are built to represent the array type to point to the object.
4106 if Nkind (Object_Definition (Declaration_Node (Id))) =
4107 N_Constrained_Array_Definition
4108 then
4109 Set_Related_Array_Object (T, Id);
4110 Set_Related_Array_Object (Base_Type (T), Id);
4111 end if;
4113 -- Special checks for protected objects not at library level
4115 if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then
4116 Check_Restriction (No_Local_Protected_Objects, Id);
4118 -- Protected objects with interrupt handlers must be at library level
4120 -- Ada 2005: This test is not needed (and the corresponding clause
4121 -- in the RM is removed) because accessibility checks are sufficient
4122 -- to make handlers not at the library level illegal.
4124 -- AI05-0303: The AI is in fact a binding interpretation, and thus
4125 -- applies to the '95 version of the language as well.
4127 if Is_Protected_Type (T)
4128 and then Has_Interrupt_Handler (T)
4129 and then Ada_Version < Ada_95
4130 then
4131 Error_Msg_N
4132 ("interrupt object can only be declared at library level", Id);
4133 end if;
4134 end if;
4136 -- Check for violation of No_Local_Timing_Events
4138 if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then
4139 Check_Restriction (No_Local_Timing_Events, Id);
4140 end if;
4142 -- The actual subtype of the object is the nominal subtype, unless
4143 -- the nominal one is unconstrained and obtained from the expression.
4145 Act_T := T;
4147 -- These checks should be performed before the initialization expression
4148 -- is considered, so that the Object_Definition node is still the same
4149 -- as in source code.
4151 -- In SPARK, the nominal subtype is always given by a subtype mark
4152 -- and must not be unconstrained. (The only exception to this is the
4153 -- acceptance of declarations of constants of type String.)
4155 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
4156 then
4157 Check_SPARK_05_Restriction
4158 ("subtype mark required", Object_Definition (N));
4160 elsif Is_Array_Type (T)
4161 and then not Is_Constrained (T)
4162 and then T /= Standard_String
4163 then
4164 Check_SPARK_05_Restriction
4165 ("subtype mark of constrained type expected",
4166 Object_Definition (N));
4167 end if;
4169 if Is_Library_Level_Entity (Id) then
4170 Check_Dynamic_Object (T);
4171 end if;
4173 -- There are no aliased objects in SPARK
4175 if Aliased_Present (N) then
4176 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
4177 end if;
4179 -- Process initialization expression if present and not in error
4181 if Present (E) and then E /= Error then
4183 -- Generate an error in case of CPP class-wide object initialization.
4184 -- Required because otherwise the expansion of the class-wide
4185 -- assignment would try to use 'size to initialize the object
4186 -- (primitive that is not available in CPP tagged types).
4188 if Is_Class_Wide_Type (Act_T)
4189 and then
4190 (Is_CPP_Class (Root_Type (Etype (Act_T)))
4191 or else
4192 (Present (Full_View (Root_Type (Etype (Act_T))))
4193 and then
4194 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
4195 then
4196 Error_Msg_N
4197 ("predefined assignment not available for 'C'P'P tagged types",
4199 end if;
4201 Mark_Coextensions (N, E);
4202 Analyze (E);
4204 -- In case of errors detected in the analysis of the expression,
4205 -- decorate it with the expected type to avoid cascaded errors
4207 if No (Etype (E)) then
4208 Set_Etype (E, T);
4209 end if;
4211 -- If an initialization expression is present, then we set the
4212 -- Is_True_Constant flag. It will be reset if this is a variable
4213 -- and it is indeed modified.
4215 Set_Is_True_Constant (Id, True);
4217 -- If we are analyzing a constant declaration, set its completion
4218 -- flag after analyzing and resolving the expression.
4220 if Constant_Present (N) then
4221 Set_Has_Completion (Id);
4222 end if;
4224 -- Set type and resolve (type may be overridden later on). Note:
4225 -- Ekind (Id) must still be E_Void at this point so that incorrect
4226 -- early usage within E is properly diagnosed.
4228 Set_Etype (Id, T);
4230 -- If the expression is an aggregate we must look ahead to detect
4231 -- the possible presence of an address clause, and defer resolution
4232 -- and expansion of the aggregate to the freeze point of the entity.
4234 -- This is not always legal because the aggregate may contain other
4235 -- references that need freezing, e.g. references to other entities
4236 -- with address clauses. In any case, when compiling with -gnatI the
4237 -- presence of the address clause must be ignored.
4239 if Comes_From_Source (N)
4240 and then Expander_Active
4241 and then Nkind (E) = N_Aggregate
4242 and then
4243 ((Present (Following_Address_Clause (N))
4244 and then not Ignore_Rep_Clauses)
4245 or else Delayed_Aspect_Present)
4246 then
4247 Set_Etype (E, T);
4249 else
4250 Resolve (E, T);
4251 end if;
4253 -- No further action needed if E is a call to an inlined function
4254 -- which returns an unconstrained type and it has been expanded into
4255 -- a procedure call. In that case N has been replaced by an object
4256 -- declaration without initializing expression and it has been
4257 -- analyzed (see Expand_Inlined_Call).
4259 if Back_End_Inlining
4260 and then Expander_Active
4261 and then Nkind (E) = N_Function_Call
4262 and then Nkind (Name (E)) in N_Has_Entity
4263 and then Is_Inlined (Entity (Name (E)))
4264 and then not Is_Constrained (Etype (E))
4265 and then Analyzed (N)
4266 and then No (Expression (N))
4267 then
4268 goto Leave;
4269 end if;
4271 -- If E is null and has been replaced by an N_Raise_Constraint_Error
4272 -- node (which was marked already-analyzed), we need to set the type
4273 -- to something other than Any_Access in order to keep gigi happy.
4275 if Etype (E) = Any_Access then
4276 Set_Etype (E, T);
4277 end if;
4279 -- If the object is an access to variable, the initialization
4280 -- expression cannot be an access to constant.
4282 if Is_Access_Type (T)
4283 and then not Is_Access_Constant (T)
4284 and then Is_Access_Type (Etype (E))
4285 and then Is_Access_Constant (Etype (E))
4286 then
4287 Error_Msg_N
4288 ("access to variable cannot be initialized with an "
4289 & "access-to-constant expression", E);
4290 end if;
4292 if not Assignment_OK (N) then
4293 Check_Initialization (T, E);
4294 end if;
4296 Check_Unset_Reference (E);
4298 -- If this is a variable, then set current value. If this is a
4299 -- declared constant of a scalar type with a static expression,
4300 -- indicate that it is always valid.
4302 if not Constant_Present (N) then
4303 if Compile_Time_Known_Value (E) then
4304 Set_Current_Value (Id, E);
4305 end if;
4307 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
4308 Set_Is_Known_Valid (Id);
4309 end if;
4311 -- Deal with setting of null flags
4313 if Is_Access_Type (T) then
4314 if Known_Non_Null (E) then
4315 Set_Is_Known_Non_Null (Id, True);
4316 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
4317 Set_Is_Known_Null (Id, True);
4318 end if;
4319 end if;
4321 -- Check incorrect use of dynamically tagged expressions
4323 if Is_Tagged_Type (T) then
4324 Check_Dynamically_Tagged_Expression
4325 (Expr => E,
4326 Typ => T,
4327 Related_Nod => N);
4328 end if;
4330 Apply_Scalar_Range_Check (E, T);
4331 Apply_Static_Length_Check (E, T);
4333 if Nkind (Original_Node (N)) = N_Object_Declaration
4334 and then Comes_From_Source (Original_Node (N))
4336 -- Only call test if needed
4338 and then Restriction_Check_Required (SPARK_05)
4339 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
4340 then
4341 Check_SPARK_05_Restriction
4342 ("initialization expression is not appropriate", E);
4343 end if;
4345 -- A formal parameter of a specific tagged type whose related
4346 -- subprogram is subject to pragma Extensions_Visible with value
4347 -- "False" cannot be implicitly converted to a class-wide type by
4348 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
4349 -- not consider internally generated expressions.
4351 if Is_Class_Wide_Type (T)
4352 and then Comes_From_Source (E)
4353 and then Is_EVF_Expression (E)
4354 then
4355 Error_Msg_N
4356 ("formal parameter cannot be implicitly converted to "
4357 & "class-wide type when Extensions_Visible is False", E);
4358 end if;
4359 end if;
4361 -- If the No_Streams restriction is set, check that the type of the
4362 -- object is not, and does not contain, any subtype derived from
4363 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
4364 -- Has_Stream just for efficiency reasons. There is no point in
4365 -- spending time on a Has_Stream check if the restriction is not set.
4367 if Restriction_Check_Required (No_Streams) then
4368 if Has_Stream (T) then
4369 Check_Restriction (No_Streams, N);
4370 end if;
4371 end if;
4373 -- Deal with predicate check before we start to do major rewriting. It
4374 -- is OK to initialize and then check the initialized value, since the
4375 -- object goes out of scope if we get a predicate failure. Note that we
4376 -- do this in the analyzer and not the expander because the analyzer
4377 -- does some substantial rewriting in some cases.
4379 -- We need a predicate check if the type has predicates that are not
4380 -- ignored, and if either there is an initializing expression, or for
4381 -- default initialization when we have at least one case of an explicit
4382 -- default initial value and then this is not an internal declaration
4383 -- whose initialization comes later (as for an aggregate expansion).
4385 if not Suppress_Assignment_Checks (N)
4386 and then Present (Predicate_Function (T))
4387 and then not Predicates_Ignored (T)
4388 and then not No_Initialization (N)
4389 and then
4390 (Present (E)
4391 or else
4392 Is_Partially_Initialized_Type (T, Include_Implicit => False))
4393 then
4394 -- If the type has a static predicate and the expression is known at
4395 -- compile time, see if the expression satisfies the predicate.
4397 if Present (E) then
4398 Check_Expression_Against_Static_Predicate (E, T);
4399 end if;
4401 -- If the type is a null record and there is no explicit initial
4402 -- expression, no predicate check applies.
4404 if No (E) and then Is_Null_Record_Type (T) then
4405 null;
4407 -- Do not generate a predicate check if the initialization expression
4408 -- is a type conversion because the conversion has been subjected to
4409 -- the same check. This is a small optimization which avoid redundant
4410 -- checks.
4412 elsif Present (E) and then Nkind (E) = N_Type_Conversion then
4413 null;
4415 else
4416 Insert_After (N,
4417 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
4418 end if;
4419 end if;
4421 -- Case of unconstrained type
4423 if not Is_Definite_Subtype (T) then
4425 -- In SPARK, a declaration of unconstrained type is allowed
4426 -- only for constants of type string.
4428 if Is_String_Type (T) and then not Constant_Present (N) then
4429 Check_SPARK_05_Restriction
4430 ("declaration of object of unconstrained type not allowed", N);
4431 end if;
4433 -- Nothing to do in deferred constant case
4435 if Constant_Present (N) and then No (E) then
4436 null;
4438 -- Case of no initialization present
4440 elsif No (E) then
4441 if No_Initialization (N) then
4442 null;
4444 elsif Is_Class_Wide_Type (T) then
4445 Error_Msg_N
4446 ("initialization required in class-wide declaration ", N);
4448 else
4449 Error_Msg_N
4450 ("unconstrained subtype not allowed (need initialization)",
4451 Object_Definition (N));
4453 if Is_Record_Type (T) and then Has_Discriminants (T) then
4454 Error_Msg_N
4455 ("\provide initial value or explicit discriminant values",
4456 Object_Definition (N));
4458 Error_Msg_NE
4459 ("\or give default discriminant values for type&",
4460 Object_Definition (N), T);
4462 elsif Is_Array_Type (T) then
4463 Error_Msg_N
4464 ("\provide initial value or explicit array bounds",
4465 Object_Definition (N));
4466 end if;
4467 end if;
4469 -- Case of initialization present but in error. Set initial
4470 -- expression as absent (but do not make above complaints)
4472 elsif E = Error then
4473 Set_Expression (N, Empty);
4474 E := Empty;
4476 -- Case of initialization present
4478 else
4479 -- Check restrictions in Ada 83
4481 if not Constant_Present (N) then
4483 -- Unconstrained variables not allowed in Ada 83 mode
4485 if Ada_Version = Ada_83
4486 and then Comes_From_Source (Object_Definition (N))
4487 then
4488 Error_Msg_N
4489 ("(Ada 83) unconstrained variable not allowed",
4490 Object_Definition (N));
4491 end if;
4492 end if;
4494 -- Now we constrain the variable from the initializing expression
4496 -- If the expression is an aggregate, it has been expanded into
4497 -- individual assignments. Retrieve the actual type from the
4498 -- expanded construct.
4500 if Is_Array_Type (T)
4501 and then No_Initialization (N)
4502 and then Nkind (Original_Node (E)) = N_Aggregate
4503 then
4504 Act_T := Etype (E);
4506 -- In case of class-wide interface object declarations we delay
4507 -- the generation of the equivalent record type declarations until
4508 -- its expansion because there are cases in they are not required.
4510 elsif Is_Interface (T) then
4511 null;
4513 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4514 -- we should prevent the generation of another Itype with the
4515 -- same name as the one already generated, or we end up with
4516 -- two identical types in GNATprove.
4518 elsif GNATprove_Mode then
4519 null;
4521 -- If the type is an unchecked union, no subtype can be built from
4522 -- the expression. Rewrite declaration as a renaming, which the
4523 -- back-end can handle properly. This is a rather unusual case,
4524 -- because most unchecked_union declarations have default values
4525 -- for discriminants and are thus not indefinite.
4527 elsif Is_Unchecked_Union (T) then
4528 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4529 Set_Ekind (Id, E_Constant);
4530 else
4531 Set_Ekind (Id, E_Variable);
4532 end if;
4534 Rewrite (N,
4535 Make_Object_Renaming_Declaration (Loc,
4536 Defining_Identifier => Id,
4537 Subtype_Mark => New_Occurrence_Of (T, Loc),
4538 Name => E));
4540 Set_Renamed_Object (Id, E);
4541 Freeze_Before (N, T);
4542 Set_Is_Frozen (Id);
4543 goto Leave;
4545 else
4546 -- Ensure that the generated subtype has a unique external name
4547 -- when the related object is public. This guarantees that the
4548 -- subtype and its bounds will not be affected by switches or
4549 -- pragmas that may offset the internal counter due to extra
4550 -- generated code.
4552 if Is_Public (Id) then
4553 Related_Id := Id;
4554 else
4555 Related_Id := Empty;
4556 end if;
4558 Expand_Subtype_From_Expr
4559 (N => N,
4560 Unc_Type => T,
4561 Subtype_Indic => Object_Definition (N),
4562 Exp => E,
4563 Related_Id => Related_Id);
4565 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4566 end if;
4568 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4570 if Aliased_Present (N) then
4571 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4572 end if;
4574 Freeze_Before (N, Act_T);
4575 Freeze_Before (N, T);
4576 end if;
4578 elsif Is_Array_Type (T)
4579 and then No_Initialization (N)
4580 and then (Nkind (Original_Node (E)) = N_Aggregate
4581 or else (Nkind (Original_Node (E)) = N_Qualified_Expression
4582 and then Nkind (Original_Node (Expression
4583 (Original_Node (E)))) = N_Aggregate))
4584 then
4585 if not Is_Entity_Name (Object_Definition (N)) then
4586 Act_T := Etype (E);
4587 Check_Compile_Time_Size (Act_T);
4589 if Aliased_Present (N) then
4590 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4591 end if;
4592 end if;
4594 -- When the given object definition and the aggregate are specified
4595 -- independently, and their lengths might differ do a length check.
4596 -- This cannot happen if the aggregate is of the form (others =>...)
4598 if not Is_Constrained (T) then
4599 null;
4601 elsif Nkind (E) = N_Raise_Constraint_Error then
4603 -- Aggregate is statically illegal. Place back in declaration
4605 Set_Expression (N, E);
4606 Set_No_Initialization (N, False);
4608 elsif T = Etype (E) then
4609 null;
4611 elsif Nkind (E) = N_Aggregate
4612 and then Present (Component_Associations (E))
4613 and then Present (Choice_List (First (Component_Associations (E))))
4614 and then
4615 Nkind (First (Choice_List (First (Component_Associations (E))))) =
4616 N_Others_Choice
4617 then
4618 null;
4620 else
4621 Apply_Length_Check (E, T);
4622 end if;
4624 -- If the type is limited unconstrained with defaulted discriminants and
4625 -- there is no expression, then the object is constrained by the
4626 -- defaults, so it is worthwhile building the corresponding subtype.
4628 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4629 and then not Is_Constrained (T)
4630 and then Has_Discriminants (T)
4631 then
4632 if No (E) then
4633 Act_T := Build_Default_Subtype (T, N);
4634 else
4635 -- Ada 2005: A limited object may be initialized by means of an
4636 -- aggregate. If the type has default discriminants it has an
4637 -- unconstrained nominal type, Its actual subtype will be obtained
4638 -- from the aggregate, and not from the default discriminants.
4640 Act_T := Etype (E);
4641 end if;
4643 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4645 elsif Nkind (E) = N_Function_Call
4646 and then Constant_Present (N)
4647 and then Has_Unconstrained_Elements (Etype (E))
4648 then
4649 -- The back-end has problems with constants of a discriminated type
4650 -- with defaults, if the initial value is a function call. We
4651 -- generate an intermediate temporary that will receive a reference
4652 -- to the result of the call. The initialization expression then
4653 -- becomes a dereference of that temporary.
4655 Remove_Side_Effects (E);
4657 -- If this is a constant declaration of an unconstrained type and
4658 -- the initialization is an aggregate, we can use the subtype of the
4659 -- aggregate for the declared entity because it is immutable.
4661 elsif not Is_Constrained (T)
4662 and then Has_Discriminants (T)
4663 and then Constant_Present (N)
4664 and then not Has_Unchecked_Union (T)
4665 and then Nkind (E) = N_Aggregate
4666 then
4667 Act_T := Etype (E);
4668 end if;
4670 -- Check No_Wide_Characters restriction
4672 Check_Wide_Character_Restriction (T, Object_Definition (N));
4674 -- Indicate this is not set in source. Certainly true for constants, and
4675 -- true for variables so far (will be reset for a variable if and when
4676 -- we encounter a modification in the source).
4678 Set_Never_Set_In_Source (Id);
4680 -- Now establish the proper kind and type of the object
4682 if Constant_Present (N) then
4683 Set_Ekind (Id, E_Constant);
4684 Set_Is_True_Constant (Id);
4686 else
4687 Set_Ekind (Id, E_Variable);
4689 -- A variable is set as shared passive if it appears in a shared
4690 -- passive package, and is at the outer level. This is not done for
4691 -- entities generated during expansion, because those are always
4692 -- manipulated locally.
4694 if Is_Shared_Passive (Current_Scope)
4695 and then Is_Library_Level_Entity (Id)
4696 and then Comes_From_Source (Id)
4697 then
4698 Set_Is_Shared_Passive (Id);
4699 Check_Shared_Var (Id, T, N);
4700 end if;
4702 -- Set Has_Initial_Value if initializing expression present. Note
4703 -- that if there is no initializing expression, we leave the state
4704 -- of this flag unchanged (usually it will be False, but notably in
4705 -- the case of exception choice variables, it will already be true).
4707 if Present (E) then
4708 Set_Has_Initial_Value (Id);
4709 end if;
4710 end if;
4712 -- Initialize alignment and size and capture alignment setting
4714 Init_Alignment (Id);
4715 Init_Esize (Id);
4716 Set_Optimize_Alignment_Flags (Id);
4718 -- Deal with aliased case
4720 if Aliased_Present (N) then
4721 Set_Is_Aliased (Id);
4723 -- If the object is aliased and the type is unconstrained with
4724 -- defaulted discriminants and there is no expression, then the
4725 -- object is constrained by the defaults, so it is worthwhile
4726 -- building the corresponding subtype.
4728 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4729 -- unconstrained, then only establish an actual subtype if the
4730 -- nominal subtype is indefinite. In definite cases the object is
4731 -- unconstrained in Ada 2005.
4733 if No (E)
4734 and then Is_Record_Type (T)
4735 and then not Is_Constrained (T)
4736 and then Has_Discriminants (T)
4737 and then (Ada_Version < Ada_2005
4738 or else not Is_Definite_Subtype (T))
4739 then
4740 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4741 end if;
4742 end if;
4744 -- Now we can set the type of the object
4746 Set_Etype (Id, Act_T);
4748 -- Non-constant object is marked to be treated as volatile if type is
4749 -- volatile and we clear the Current_Value setting that may have been
4750 -- set above. Doing so for constants isn't required and might interfere
4751 -- with possible uses of the object as a static expression in contexts
4752 -- incompatible with volatility (e.g. as a case-statement alternative).
4754 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4755 Set_Treat_As_Volatile (Id);
4756 Set_Current_Value (Id, Empty);
4757 end if;
4759 -- Deal with controlled types
4761 if Has_Controlled_Component (Etype (Id))
4762 or else Is_Controlled (Etype (Id))
4763 then
4764 if not Is_Library_Level_Entity (Id) then
4765 Check_Restriction (No_Nested_Finalization, N);
4766 else
4767 Validate_Controlled_Object (Id);
4768 end if;
4769 end if;
4771 if Has_Task (Etype (Id)) then
4772 Check_Restriction (No_Tasking, N);
4774 -- Deal with counting max tasks
4776 -- Nothing to do if inside a generic
4778 if Inside_A_Generic then
4779 null;
4781 -- If library level entity, then count tasks
4783 elsif Is_Library_Level_Entity (Id) then
4784 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4786 -- If not library level entity, then indicate we don't know max
4787 -- tasks and also check task hierarchy restriction and blocking
4788 -- operation (since starting a task is definitely blocking).
4790 else
4791 Check_Restriction (Max_Tasks, N);
4792 Check_Restriction (No_Task_Hierarchy, N);
4793 Check_Potentially_Blocking_Operation (N);
4794 end if;
4796 -- A rather specialized test. If we see two tasks being declared
4797 -- of the same type in the same object declaration, and the task
4798 -- has an entry with an address clause, we know that program error
4799 -- will be raised at run time since we can't have two tasks with
4800 -- entries at the same address.
4802 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4803 declare
4804 E : Entity_Id;
4806 begin
4807 E := First_Entity (Etype (Id));
4808 while Present (E) loop
4809 if Ekind (E) = E_Entry
4810 and then Present (Get_Attribute_Definition_Clause
4811 (E, Attribute_Address))
4812 then
4813 Error_Msg_Warn := SPARK_Mode /= On;
4814 Error_Msg_N
4815 ("more than one task with same entry address<<", N);
4816 Error_Msg_N ("\Program_Error [<<", N);
4817 Insert_Action (N,
4818 Make_Raise_Program_Error (Loc,
4819 Reason => PE_Duplicated_Entry_Address));
4820 exit;
4821 end if;
4823 Next_Entity (E);
4824 end loop;
4825 end;
4826 end if;
4827 end if;
4829 -- Some simple constant-propagation: if the expression is a constant
4830 -- string initialized with a literal, share the literal. This avoids
4831 -- a run-time copy.
4833 if Present (E)
4834 and then Is_Entity_Name (E)
4835 and then Ekind (Entity (E)) = E_Constant
4836 and then Base_Type (Etype (E)) = Standard_String
4837 then
4838 declare
4839 Val : constant Node_Id := Constant_Value (Entity (E));
4840 begin
4841 if Present (Val) and then Nkind (Val) = N_String_Literal then
4842 Rewrite (E, New_Copy (Val));
4843 end if;
4844 end;
4845 end if;
4847 -- Another optimization: if the nominal subtype is unconstrained and
4848 -- the expression is a function call that returns an unconstrained
4849 -- type, rewrite the declaration as a renaming of the result of the
4850 -- call. The exceptions below are cases where the copy is expected,
4851 -- either by the back end (Aliased case) or by the semantics, as for
4852 -- initializing controlled types or copying tags for class-wide types.
4854 if Present (E)
4855 and then Nkind (E) = N_Explicit_Dereference
4856 and then Nkind (Original_Node (E)) = N_Function_Call
4857 and then not Is_Library_Level_Entity (Id)
4858 and then not Is_Constrained (Underlying_Type (T))
4859 and then not Is_Aliased (Id)
4860 and then not Is_Class_Wide_Type (T)
4861 and then not Is_Controlled (T)
4862 and then not Has_Controlled_Component (Base_Type (T))
4863 and then Expander_Active
4864 then
4865 Rewrite (N,
4866 Make_Object_Renaming_Declaration (Loc,
4867 Defining_Identifier => Id,
4868 Access_Definition => Empty,
4869 Subtype_Mark => New_Occurrence_Of
4870 (Base_Type (Etype (Id)), Loc),
4871 Name => E));
4873 Set_Renamed_Object (Id, E);
4875 -- Force generation of debugging information for the constant and for
4876 -- the renamed function call.
4878 Set_Debug_Info_Needed (Id);
4879 Set_Debug_Info_Needed (Entity (Prefix (E)));
4880 end if;
4882 if Present (Prev_Entity)
4883 and then Is_Frozen (Prev_Entity)
4884 and then not Error_Posted (Id)
4885 then
4886 Error_Msg_N ("full constant declaration appears too late", N);
4887 end if;
4889 Check_Eliminated (Id);
4891 -- Deal with setting In_Private_Part flag if in private part
4893 if Ekind (Scope (Id)) = E_Package
4894 and then In_Private_Part (Scope (Id))
4895 then
4896 Set_In_Private_Part (Id);
4897 end if;
4899 <<Leave>>
4900 -- Initialize the refined state of a variable here because this is a
4901 -- common destination for legal and illegal object declarations.
4903 if Ekind (Id) = E_Variable then
4904 Set_Encapsulating_State (Id, Empty);
4905 end if;
4907 if Has_Aspects (N) then
4908 Analyze_Aspect_Specifications (N, Id);
4909 end if;
4911 Analyze_Dimension (N);
4913 -- Verify whether the object declaration introduces an illegal hidden
4914 -- state within a package subject to a null abstract state.
4916 if Ekind (Id) = E_Variable then
4917 Check_No_Hidden_State (Id);
4918 end if;
4920 Restore_Ghost_Mode (Saved_GM);
4921 end Analyze_Object_Declaration;
4923 ---------------------------
4924 -- Analyze_Others_Choice --
4925 ---------------------------
4927 -- Nothing to do for the others choice node itself, the semantic analysis
4928 -- of the others choice will occur as part of the processing of the parent
4930 procedure Analyze_Others_Choice (N : Node_Id) is
4931 pragma Warnings (Off, N);
4932 begin
4933 null;
4934 end Analyze_Others_Choice;
4936 -------------------------------------------
4937 -- Analyze_Private_Extension_Declaration --
4938 -------------------------------------------
4940 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4941 Indic : constant Node_Id := Subtype_Indication (N);
4942 T : constant Entity_Id := Defining_Identifier (N);
4943 Iface : Entity_Id;
4944 Iface_Elmt : Elmt_Id;
4945 Parent_Base : Entity_Id;
4946 Parent_Type : Entity_Id;
4948 begin
4949 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4951 if Is_Non_Empty_List (Interface_List (N)) then
4952 declare
4953 Intf : Node_Id;
4954 T : Entity_Id;
4956 begin
4957 Intf := First (Interface_List (N));
4958 while Present (Intf) loop
4959 T := Find_Type_Of_Subtype_Indic (Intf);
4961 Diagnose_Interface (Intf, T);
4962 Next (Intf);
4963 end loop;
4964 end;
4965 end if;
4967 Generate_Definition (T);
4969 -- For other than Ada 2012, just enter the name in the current scope
4971 if Ada_Version < Ada_2012 then
4972 Enter_Name (T);
4974 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4975 -- case of private type that completes an incomplete type.
4977 else
4978 declare
4979 Prev : Entity_Id;
4981 begin
4982 Prev := Find_Type_Name (N);
4984 pragma Assert (Prev = T
4985 or else (Ekind (Prev) = E_Incomplete_Type
4986 and then Present (Full_View (Prev))
4987 and then Full_View (Prev) = T));
4988 end;
4989 end if;
4991 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4992 Parent_Base := Base_Type (Parent_Type);
4994 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4995 Set_Ekind (T, Ekind (Parent_Type));
4996 Set_Etype (T, Any_Type);
4997 goto Leave;
4999 elsif not Is_Tagged_Type (Parent_Type) then
5000 Error_Msg_N
5001 ("parent of type extension must be a tagged type ", Indic);
5002 goto Leave;
5004 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
5005 Error_Msg_N ("premature derivation of incomplete type", Indic);
5006 goto Leave;
5008 elsif Is_Concurrent_Type (Parent_Type) then
5009 Error_Msg_N
5010 ("parent type of a private extension cannot be a synchronized "
5011 & "tagged type (RM 3.9.1 (3/1))", N);
5013 Set_Etype (T, Any_Type);
5014 Set_Ekind (T, E_Limited_Private_Type);
5015 Set_Private_Dependents (T, New_Elmt_List);
5016 Set_Error_Posted (T);
5017 goto Leave;
5018 end if;
5020 -- Perhaps the parent type should be changed to the class-wide type's
5021 -- specific type in this case to prevent cascading errors ???
5023 if Is_Class_Wide_Type (Parent_Type) then
5024 Error_Msg_N
5025 ("parent of type extension must not be a class-wide type", Indic);
5026 goto Leave;
5027 end if;
5029 if (not Is_Package_Or_Generic_Package (Current_Scope)
5030 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
5031 or else In_Private_Part (Current_Scope)
5032 then
5033 Error_Msg_N ("invalid context for private extension", N);
5034 end if;
5036 -- Set common attributes
5038 Set_Is_Pure (T, Is_Pure (Current_Scope));
5039 Set_Scope (T, Current_Scope);
5040 Set_Ekind (T, E_Record_Type_With_Private);
5041 Init_Size_Align (T);
5042 Set_Default_SSO (T);
5043 Set_No_Reordering (T, No_Component_Reordering);
5045 Set_Etype (T, Parent_Base);
5046 Propagate_Concurrent_Flags (T, Parent_Base);
5048 Set_Convention (T, Convention (Parent_Type));
5049 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
5050 Set_Is_First_Subtype (T);
5051 Make_Class_Wide_Type (T);
5053 if Unknown_Discriminants_Present (N) then
5054 Set_Discriminant_Constraint (T, No_Elist);
5055 end if;
5057 Build_Derived_Record_Type (N, Parent_Type, T);
5059 -- A private extension inherits the Default_Initial_Condition pragma
5060 -- coming from any parent type within the derivation chain.
5062 if Has_DIC (Parent_Type) then
5063 Set_Has_Inherited_DIC (T);
5064 end if;
5066 -- A private extension inherits any class-wide invariants coming from a
5067 -- parent type or an interface. Note that the invariant procedure of the
5068 -- parent type should not be inherited because the private extension may
5069 -- define invariants of its own.
5071 if Has_Inherited_Invariants (Parent_Type)
5072 or else Has_Inheritable_Invariants (Parent_Type)
5073 then
5074 Set_Has_Inherited_Invariants (T);
5076 elsif Present (Interfaces (T)) then
5077 Iface_Elmt := First_Elmt (Interfaces (T));
5078 while Present (Iface_Elmt) loop
5079 Iface := Node (Iface_Elmt);
5081 if Has_Inheritable_Invariants (Iface) then
5082 Set_Has_Inherited_Invariants (T);
5083 exit;
5084 end if;
5086 Next_Elmt (Iface_Elmt);
5087 end loop;
5088 end if;
5090 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
5091 -- synchronized formal derived type.
5093 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
5094 Set_Is_Limited_Record (T);
5096 -- Formal derived type case
5098 if Is_Generic_Type (T) then
5100 -- The parent must be a tagged limited type or a synchronized
5101 -- interface.
5103 if (not Is_Tagged_Type (Parent_Type)
5104 or else not Is_Limited_Type (Parent_Type))
5105 and then
5106 (not Is_Interface (Parent_Type)
5107 or else not Is_Synchronized_Interface (Parent_Type))
5108 then
5109 Error_Msg_NE
5110 ("parent type of & must be tagged limited or synchronized",
5111 N, T);
5112 end if;
5114 -- The progenitors (if any) must be limited or synchronized
5115 -- interfaces.
5117 if Present (Interfaces (T)) then
5118 Iface_Elmt := First_Elmt (Interfaces (T));
5119 while Present (Iface_Elmt) loop
5120 Iface := Node (Iface_Elmt);
5122 if not Is_Limited_Interface (Iface)
5123 and then not Is_Synchronized_Interface (Iface)
5124 then
5125 Error_Msg_NE
5126 ("progenitor & must be limited or synchronized",
5127 N, Iface);
5128 end if;
5130 Next_Elmt (Iface_Elmt);
5131 end loop;
5132 end if;
5134 -- Regular derived extension, the parent must be a limited or
5135 -- synchronized interface.
5137 else
5138 if not Is_Interface (Parent_Type)
5139 or else (not Is_Limited_Interface (Parent_Type)
5140 and then not Is_Synchronized_Interface (Parent_Type))
5141 then
5142 Error_Msg_NE
5143 ("parent type of & must be limited interface", N, T);
5144 end if;
5145 end if;
5147 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5148 -- extension with a synchronized parent must be explicitly declared
5149 -- synchronized, because the full view will be a synchronized type.
5150 -- This must be checked before the check for limited types below,
5151 -- to ensure that types declared limited are not allowed to extend
5152 -- synchronized interfaces.
5154 elsif Is_Interface (Parent_Type)
5155 and then Is_Synchronized_Interface (Parent_Type)
5156 and then not Synchronized_Present (N)
5157 then
5158 Error_Msg_NE
5159 ("private extension of& must be explicitly synchronized",
5160 N, Parent_Type);
5162 elsif Limited_Present (N) then
5163 Set_Is_Limited_Record (T);
5165 if not Is_Limited_Type (Parent_Type)
5166 and then
5167 (not Is_Interface (Parent_Type)
5168 or else not Is_Limited_Interface (Parent_Type))
5169 then
5170 Error_Msg_NE ("parent type& of limited extension must be limited",
5171 N, Parent_Type);
5172 end if;
5173 end if;
5175 -- Remember that its parent type has a private extension. Used to warn
5176 -- on public primitives of the parent type defined after its private
5177 -- extensions (see Check_Dispatching_Operation).
5179 Set_Has_Private_Extension (Parent_Type);
5181 <<Leave>>
5182 if Has_Aspects (N) then
5183 Analyze_Aspect_Specifications (N, T);
5184 end if;
5185 end Analyze_Private_Extension_Declaration;
5187 ---------------------------------
5188 -- Analyze_Subtype_Declaration --
5189 ---------------------------------
5191 procedure Analyze_Subtype_Declaration
5192 (N : Node_Id;
5193 Skip : Boolean := False)
5195 Id : constant Entity_Id := Defining_Identifier (N);
5196 R_Checks : Check_Result;
5197 T : Entity_Id;
5199 begin
5200 Generate_Definition (Id);
5201 Set_Is_Pure (Id, Is_Pure (Current_Scope));
5202 Init_Size_Align (Id);
5204 -- The following guard condition on Enter_Name is to handle cases where
5205 -- the defining identifier has already been entered into the scope but
5206 -- the declaration as a whole needs to be analyzed.
5208 -- This case in particular happens for derived enumeration types. The
5209 -- derived enumeration type is processed as an inserted enumeration type
5210 -- declaration followed by a rewritten subtype declaration. The defining
5211 -- identifier, however, is entered into the name scope very early in the
5212 -- processing of the original type declaration and therefore needs to be
5213 -- avoided here, when the created subtype declaration is analyzed. (See
5214 -- Build_Derived_Types)
5216 -- This also happens when the full view of a private type is derived
5217 -- type with constraints. In this case the entity has been introduced
5218 -- in the private declaration.
5220 -- Finally this happens in some complex cases when validity checks are
5221 -- enabled, where the same subtype declaration may be analyzed twice.
5222 -- This can happen if the subtype is created by the pre-analysis of
5223 -- an attribute tht gives the range of a loop statement, and the loop
5224 -- itself appears within an if_statement that will be rewritten during
5225 -- expansion.
5227 if Skip
5228 or else (Present (Etype (Id))
5229 and then (Is_Private_Type (Etype (Id))
5230 or else Is_Task_Type (Etype (Id))
5231 or else Is_Rewrite_Substitution (N)))
5232 then
5233 null;
5235 elsif Current_Entity (Id) = Id then
5236 null;
5238 else
5239 Enter_Name (Id);
5240 end if;
5242 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
5244 -- Class-wide equivalent types of records with unknown discriminants
5245 -- involve the generation of an itype which serves as the private view
5246 -- of a constrained record subtype. In such cases the base type of the
5247 -- current subtype we are processing is the private itype. Use the full
5248 -- of the private itype when decorating various attributes.
5250 if Is_Itype (T)
5251 and then Is_Private_Type (T)
5252 and then Present (Full_View (T))
5253 then
5254 T := Full_View (T);
5255 end if;
5257 -- Inherit common attributes
5259 Set_Is_Volatile (Id, Is_Volatile (T));
5260 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
5261 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
5262 Set_Convention (Id, Convention (T));
5264 -- If ancestor has predicates then so does the subtype, and in addition
5265 -- we must delay the freeze to properly arrange predicate inheritance.
5267 -- The Ancestor_Type test is really unpleasant, there seem to be cases
5268 -- in which T = ID, so the above tests and assignments do nothing???
5270 if Has_Predicates (T)
5271 or else (Present (Ancestor_Subtype (T))
5272 and then Has_Predicates (Ancestor_Subtype (T)))
5273 then
5274 Set_Has_Predicates (Id);
5275 Set_Has_Delayed_Freeze (Id);
5277 -- Generated subtypes inherit the predicate function from the parent
5278 -- (no aspects to examine on the generated declaration).
5280 if not Comes_From_Source (N) then
5281 Set_Ekind (Id, Ekind (T));
5283 if Present (Predicate_Function (T)) then
5284 Set_Predicate_Function (Id, Predicate_Function (T));
5286 elsif Present (Ancestor_Subtype (T))
5287 and then Has_Predicates (Ancestor_Subtype (T))
5288 and then Present (Predicate_Function (Ancestor_Subtype (T)))
5289 then
5290 Set_Predicate_Function (Id,
5291 Predicate_Function (Ancestor_Subtype (T)));
5292 end if;
5293 end if;
5294 end if;
5296 -- Subtype of Boolean cannot have a constraint in SPARK
5298 if Is_Boolean_Type (T)
5299 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
5300 then
5301 Check_SPARK_05_Restriction
5302 ("subtype of Boolean cannot have constraint", N);
5303 end if;
5305 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5306 declare
5307 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5308 One_Cstr : Node_Id;
5309 Low : Node_Id;
5310 High : Node_Id;
5312 begin
5313 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
5314 One_Cstr := First (Constraints (Cstr));
5315 while Present (One_Cstr) loop
5317 -- Index or discriminant constraint in SPARK must be a
5318 -- subtype mark.
5320 if not
5321 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
5322 then
5323 Check_SPARK_05_Restriction
5324 ("subtype mark required", One_Cstr);
5326 -- String subtype must have a lower bound of 1 in SPARK.
5327 -- Note that we do not need to test for the non-static case
5328 -- here, since that was already taken care of in
5329 -- Process_Range_Expr_In_Decl.
5331 elsif Base_Type (T) = Standard_String then
5332 Get_Index_Bounds (One_Cstr, Low, High);
5334 if Is_OK_Static_Expression (Low)
5335 and then Expr_Value (Low) /= 1
5336 then
5337 Check_SPARK_05_Restriction
5338 ("String subtype must have lower bound of 1", N);
5339 end if;
5340 end if;
5342 Next (One_Cstr);
5343 end loop;
5344 end if;
5345 end;
5346 end if;
5348 -- In the case where there is no constraint given in the subtype
5349 -- indication, Process_Subtype just returns the Subtype_Mark, so its
5350 -- semantic attributes must be established here.
5352 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
5353 Set_Etype (Id, Base_Type (T));
5355 -- Subtype of unconstrained array without constraint is not allowed
5356 -- in SPARK.
5358 if Is_Array_Type (T) and then not Is_Constrained (T) then
5359 Check_SPARK_05_Restriction
5360 ("subtype of unconstrained array must have constraint", N);
5361 end if;
5363 case Ekind (T) is
5364 when Array_Kind =>
5365 Set_Ekind (Id, E_Array_Subtype);
5366 Copy_Array_Subtype_Attributes (Id, T);
5368 when Decimal_Fixed_Point_Kind =>
5369 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
5370 Set_Digits_Value (Id, Digits_Value (T));
5371 Set_Delta_Value (Id, Delta_Value (T));
5372 Set_Scale_Value (Id, Scale_Value (T));
5373 Set_Small_Value (Id, Small_Value (T));
5374 Set_Scalar_Range (Id, Scalar_Range (T));
5375 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
5376 Set_Is_Constrained (Id, Is_Constrained (T));
5377 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5378 Set_RM_Size (Id, RM_Size (T));
5380 when Enumeration_Kind =>
5381 Set_Ekind (Id, E_Enumeration_Subtype);
5382 Set_First_Literal (Id, First_Literal (Base_Type (T)));
5383 Set_Scalar_Range (Id, Scalar_Range (T));
5384 Set_Is_Character_Type (Id, Is_Character_Type (T));
5385 Set_Is_Constrained (Id, Is_Constrained (T));
5386 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5387 Set_RM_Size (Id, RM_Size (T));
5388 Inherit_Predicate_Flags (Id, T);
5390 when Ordinary_Fixed_Point_Kind =>
5391 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
5392 Set_Scalar_Range (Id, Scalar_Range (T));
5393 Set_Small_Value (Id, Small_Value (T));
5394 Set_Delta_Value (Id, Delta_Value (T));
5395 Set_Is_Constrained (Id, Is_Constrained (T));
5396 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5397 Set_RM_Size (Id, RM_Size (T));
5399 when Float_Kind =>
5400 Set_Ekind (Id, E_Floating_Point_Subtype);
5401 Set_Scalar_Range (Id, Scalar_Range (T));
5402 Set_Digits_Value (Id, Digits_Value (T));
5403 Set_Is_Constrained (Id, Is_Constrained (T));
5405 -- If the floating point type has dimensions, these will be
5406 -- inherited subsequently when Analyze_Dimensions is called.
5408 when Signed_Integer_Kind =>
5409 Set_Ekind (Id, E_Signed_Integer_Subtype);
5410 Set_Scalar_Range (Id, Scalar_Range (T));
5411 Set_Is_Constrained (Id, Is_Constrained (T));
5412 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5413 Set_RM_Size (Id, RM_Size (T));
5414 Inherit_Predicate_Flags (Id, T);
5416 when Modular_Integer_Kind =>
5417 Set_Ekind (Id, E_Modular_Integer_Subtype);
5418 Set_Scalar_Range (Id, Scalar_Range (T));
5419 Set_Is_Constrained (Id, Is_Constrained (T));
5420 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5421 Set_RM_Size (Id, RM_Size (T));
5422 Inherit_Predicate_Flags (Id, T);
5424 when Class_Wide_Kind =>
5425 Set_Ekind (Id, E_Class_Wide_Subtype);
5426 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5427 Set_Cloned_Subtype (Id, T);
5428 Set_Is_Tagged_Type (Id, True);
5429 Set_Has_Unknown_Discriminants
5430 (Id, True);
5431 Set_No_Tagged_Streams_Pragma
5432 (Id, No_Tagged_Streams_Pragma (T));
5434 if Ekind (T) = E_Class_Wide_Subtype then
5435 Set_Equivalent_Type (Id, Equivalent_Type (T));
5436 end if;
5438 when E_Record_Subtype
5439 | E_Record_Type
5441 Set_Ekind (Id, E_Record_Subtype);
5443 if Ekind (T) = E_Record_Subtype
5444 and then Present (Cloned_Subtype (T))
5445 then
5446 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
5447 else
5448 Set_Cloned_Subtype (Id, T);
5449 end if;
5451 Set_First_Entity (Id, First_Entity (T));
5452 Set_Last_Entity (Id, Last_Entity (T));
5453 Set_Has_Discriminants (Id, Has_Discriminants (T));
5454 Set_Is_Constrained (Id, Is_Constrained (T));
5455 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5456 Set_Has_Implicit_Dereference
5457 (Id, Has_Implicit_Dereference (T));
5458 Set_Has_Unknown_Discriminants
5459 (Id, Has_Unknown_Discriminants (T));
5461 if Has_Discriminants (T) then
5462 Set_Discriminant_Constraint
5463 (Id, Discriminant_Constraint (T));
5464 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5466 elsif Has_Unknown_Discriminants (Id) then
5467 Set_Discriminant_Constraint (Id, No_Elist);
5468 end if;
5470 if Is_Tagged_Type (T) then
5471 Set_Is_Tagged_Type (Id, True);
5472 Set_No_Tagged_Streams_Pragma
5473 (Id, No_Tagged_Streams_Pragma (T));
5474 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5475 Set_Direct_Primitive_Operations
5476 (Id, Direct_Primitive_Operations (T));
5477 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5479 if Is_Interface (T) then
5480 Set_Is_Interface (Id);
5481 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5482 end if;
5483 end if;
5485 when Private_Kind =>
5486 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5487 Set_Has_Discriminants (Id, Has_Discriminants (T));
5488 Set_Is_Constrained (Id, Is_Constrained (T));
5489 Set_First_Entity (Id, First_Entity (T));
5490 Set_Last_Entity (Id, Last_Entity (T));
5491 Set_Private_Dependents (Id, New_Elmt_List);
5492 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5493 Set_Has_Implicit_Dereference
5494 (Id, Has_Implicit_Dereference (T));
5495 Set_Has_Unknown_Discriminants
5496 (Id, Has_Unknown_Discriminants (T));
5497 Set_Known_To_Have_Preelab_Init
5498 (Id, Known_To_Have_Preelab_Init (T));
5500 if Is_Tagged_Type (T) then
5501 Set_Is_Tagged_Type (Id);
5502 Set_No_Tagged_Streams_Pragma (Id,
5503 No_Tagged_Streams_Pragma (T));
5504 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5505 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5506 Set_Direct_Primitive_Operations (Id,
5507 Direct_Primitive_Operations (T));
5508 end if;
5510 -- In general the attributes of the subtype of a private type
5511 -- are the attributes of the partial view of parent. However,
5512 -- the full view may be a discriminated type, and the subtype
5513 -- must share the discriminant constraint to generate correct
5514 -- calls to initialization procedures.
5516 if Has_Discriminants (T) then
5517 Set_Discriminant_Constraint
5518 (Id, Discriminant_Constraint (T));
5519 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5521 elsif Present (Full_View (T))
5522 and then Has_Discriminants (Full_View (T))
5523 then
5524 Set_Discriminant_Constraint
5525 (Id, Discriminant_Constraint (Full_View (T)));
5526 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5528 -- This would seem semantically correct, but apparently
5529 -- generates spurious errors about missing components ???
5531 -- Set_Has_Discriminants (Id);
5532 end if;
5534 Prepare_Private_Subtype_Completion (Id, N);
5536 -- If this is the subtype of a constrained private type with
5537 -- discriminants that has got a full view and we also have
5538 -- built a completion just above, show that the completion
5539 -- is a clone of the full view to the back-end.
5541 if Has_Discriminants (T)
5542 and then not Has_Unknown_Discriminants (T)
5543 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5544 and then Present (Full_View (T))
5545 and then Present (Full_View (Id))
5546 then
5547 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5548 end if;
5550 when Access_Kind =>
5551 Set_Ekind (Id, E_Access_Subtype);
5552 Set_Is_Constrained (Id, Is_Constrained (T));
5553 Set_Is_Access_Constant
5554 (Id, Is_Access_Constant (T));
5555 Set_Directly_Designated_Type
5556 (Id, Designated_Type (T));
5557 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5559 -- A Pure library_item must not contain the declaration of a
5560 -- named access type, except within a subprogram, generic
5561 -- subprogram, task unit, or protected unit, or if it has
5562 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5564 if Comes_From_Source (Id)
5565 and then In_Pure_Unit
5566 and then not In_Subprogram_Task_Protected_Unit
5567 and then not No_Pool_Assigned (Id)
5568 then
5569 Error_Msg_N
5570 ("named access types not allowed in pure unit", N);
5571 end if;
5573 when Concurrent_Kind =>
5574 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5575 Set_Corresponding_Record_Type (Id,
5576 Corresponding_Record_Type (T));
5577 Set_First_Entity (Id, First_Entity (T));
5578 Set_First_Private_Entity (Id, First_Private_Entity (T));
5579 Set_Has_Discriminants (Id, Has_Discriminants (T));
5580 Set_Is_Constrained (Id, Is_Constrained (T));
5581 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5582 Set_Last_Entity (Id, Last_Entity (T));
5584 if Is_Tagged_Type (T) then
5585 Set_No_Tagged_Streams_Pragma
5586 (Id, No_Tagged_Streams_Pragma (T));
5587 end if;
5589 if Has_Discriminants (T) then
5590 Set_Discriminant_Constraint
5591 (Id, Discriminant_Constraint (T));
5592 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5593 end if;
5595 when Incomplete_Kind =>
5596 if Ada_Version >= Ada_2005 then
5598 -- In Ada 2005 an incomplete type can be explicitly tagged:
5599 -- propagate indication. Note that we also have to include
5600 -- subtypes for Ada 2012 extended use of incomplete types.
5602 Set_Ekind (Id, E_Incomplete_Subtype);
5603 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5604 Set_Private_Dependents (Id, New_Elmt_List);
5606 if Is_Tagged_Type (Id) then
5607 Set_No_Tagged_Streams_Pragma
5608 (Id, No_Tagged_Streams_Pragma (T));
5609 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5610 end if;
5612 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5613 -- incomplete type visible through a limited with clause.
5615 if From_Limited_With (T)
5616 and then Present (Non_Limited_View (T))
5617 then
5618 Set_From_Limited_With (Id);
5619 Set_Non_Limited_View (Id, Non_Limited_View (T));
5621 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5622 -- to the private dependents of the original incomplete
5623 -- type for future transformation.
5625 else
5626 Append_Elmt (Id, Private_Dependents (T));
5627 end if;
5629 -- If the subtype name denotes an incomplete type an error
5630 -- was already reported by Process_Subtype.
5632 else
5633 Set_Etype (Id, Any_Type);
5634 end if;
5636 when others =>
5637 raise Program_Error;
5638 end case;
5639 end if;
5641 if Etype (Id) = Any_Type then
5642 goto Leave;
5643 end if;
5645 -- Some common processing on all types
5647 Set_Size_Info (Id, T);
5648 Set_First_Rep_Item (Id, First_Rep_Item (T));
5650 -- If the parent type is a generic actual, so is the subtype. This may
5651 -- happen in a nested instance. Why Comes_From_Source test???
5653 if not Comes_From_Source (N) then
5654 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5655 end if;
5657 -- If this is a subtype declaration for an actual in an instance,
5658 -- inherit static and dynamic predicates if any.
5660 -- If declaration has no aspect specifications, inherit predicate
5661 -- info as well. Unclear how to handle the case of both specified
5662 -- and inherited predicates ??? Other inherited aspects, such as
5663 -- invariants, should be OK, but the combination with later pragmas
5664 -- may also require special merging.
5666 if Has_Predicates (T)
5667 and then Present (Predicate_Function (T))
5668 and then
5669 ((In_Instance and then not Comes_From_Source (N))
5670 or else No (Aspect_Specifications (N)))
5671 then
5672 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5674 if Has_Static_Predicate (T) then
5675 Set_Has_Static_Predicate (Id);
5676 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5677 end if;
5678 end if;
5680 -- Remaining processing depends on characteristics of base type
5682 T := Etype (Id);
5684 Set_Is_Immediately_Visible (Id, True);
5685 Set_Depends_On_Private (Id, Has_Private_Component (T));
5686 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5688 if Is_Interface (T) then
5689 Set_Is_Interface (Id);
5690 end if;
5692 if Present (Generic_Parent_Type (N))
5693 and then
5694 (Nkind (Parent (Generic_Parent_Type (N))) /=
5695 N_Formal_Type_Declaration
5696 or else Nkind (Formal_Type_Definition
5697 (Parent (Generic_Parent_Type (N)))) /=
5698 N_Formal_Private_Type_Definition)
5699 then
5700 if Is_Tagged_Type (Id) then
5702 -- If this is a generic actual subtype for a synchronized type,
5703 -- the primitive operations are those of the corresponding record
5704 -- for which there is a separate subtype declaration.
5706 if Is_Concurrent_Type (Id) then
5707 null;
5708 elsif Is_Class_Wide_Type (Id) then
5709 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5710 else
5711 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5712 end if;
5714 elsif Scope (Etype (Id)) /= Standard_Standard then
5715 Derive_Subprograms (Generic_Parent_Type (N), Id);
5716 end if;
5717 end if;
5719 if Is_Private_Type (T) and then Present (Full_View (T)) then
5720 Conditional_Delay (Id, Full_View (T));
5722 -- The subtypes of components or subcomponents of protected types
5723 -- do not need freeze nodes, which would otherwise appear in the
5724 -- wrong scope (before the freeze node for the protected type). The
5725 -- proper subtypes are those of the subcomponents of the corresponding
5726 -- record.
5728 elsif Ekind (Scope (Id)) /= E_Protected_Type
5729 and then Present (Scope (Scope (Id))) -- error defense
5730 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5731 then
5732 Conditional_Delay (Id, T);
5733 end if;
5735 -- If we have a subtype of an incomplete type whose full type is a
5736 -- derived numeric type, we need to have a freeze node for the subtype.
5737 -- Otherwise gigi will complain while computing the (static) bounds of
5738 -- the subtype.
5740 if Is_Itype (T)
5741 and then Is_Elementary_Type (Id)
5742 and then Etype (Id) /= Id
5743 then
5744 declare
5745 Partial : constant Entity_Id :=
5746 Incomplete_Or_Partial_View (First_Subtype (Id));
5747 begin
5748 if Present (Partial)
5749 and then Ekind (Partial) = E_Incomplete_Type
5750 then
5751 Set_Has_Delayed_Freeze (Id);
5752 end if;
5753 end;
5754 end if;
5756 -- Check that Constraint_Error is raised for a scalar subtype indication
5757 -- when the lower or upper bound of a non-null range lies outside the
5758 -- range of the type mark.
5760 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5761 if Is_Scalar_Type (Etype (Id))
5762 and then Scalar_Range (Id) /=
5763 Scalar_Range
5764 (Etype (Subtype_Mark (Subtype_Indication (N))))
5765 then
5766 Apply_Range_Check
5767 (Scalar_Range (Id),
5768 Etype (Subtype_Mark (Subtype_Indication (N))));
5770 -- In the array case, check compatibility for each index
5772 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5773 then
5774 -- This really should be a subprogram that finds the indications
5775 -- to check???
5777 declare
5778 Subt_Index : Node_Id := First_Index (Id);
5779 Target_Index : Node_Id :=
5780 First_Index (Etype
5781 (Subtype_Mark (Subtype_Indication (N))));
5782 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5784 begin
5785 while Present (Subt_Index) loop
5786 if ((Nkind (Subt_Index) = N_Identifier
5787 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5788 or else Nkind (Subt_Index) = N_Subtype_Indication)
5789 and then
5790 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5791 then
5792 declare
5793 Target_Typ : constant Entity_Id :=
5794 Etype (Target_Index);
5795 begin
5796 R_Checks :=
5797 Get_Range_Checks
5798 (Scalar_Range (Etype (Subt_Index)),
5799 Target_Typ,
5800 Etype (Subt_Index),
5801 Defining_Identifier (N));
5803 -- Reset Has_Dynamic_Range_Check on the subtype to
5804 -- prevent elision of the index check due to a dynamic
5805 -- check generated for a preceding index (needed since
5806 -- Insert_Range_Checks tries to avoid generating
5807 -- redundant checks on a given declaration).
5809 Set_Has_Dynamic_Range_Check (N, False);
5811 Insert_Range_Checks
5812 (R_Checks,
5814 Target_Typ,
5815 Sloc (Defining_Identifier (N)));
5817 -- Record whether this index involved a dynamic check
5819 Has_Dyn_Chk :=
5820 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5821 end;
5822 end if;
5824 Next_Index (Subt_Index);
5825 Next_Index (Target_Index);
5826 end loop;
5828 -- Finally, mark whether the subtype involves dynamic checks
5830 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5831 end;
5832 end if;
5833 end if;
5835 Set_Optimize_Alignment_Flags (Id);
5836 Check_Eliminated (Id);
5838 <<Leave>>
5839 if Has_Aspects (N) then
5840 Analyze_Aspect_Specifications (N, Id);
5841 end if;
5843 Analyze_Dimension (N);
5845 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5846 -- indications on composite types where the constraints are dynamic.
5847 -- Note that object declarations and aggregates generate implicit
5848 -- subtype declarations, which this covers. One special case is that the
5849 -- implicitly generated "=" for discriminated types includes an
5850 -- offending subtype declaration, which is harmless, so we ignore it
5851 -- here.
5853 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5854 declare
5855 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5856 begin
5857 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5858 and then not (Is_Internal (Id)
5859 and then Is_TSS (Scope (Id),
5860 TSS_Composite_Equality))
5861 and then not Within_Init_Proc
5862 and then not All_Composite_Constraints_Static (Cstr)
5863 then
5864 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5865 end if;
5866 end;
5867 end if;
5868 end Analyze_Subtype_Declaration;
5870 --------------------------------
5871 -- Analyze_Subtype_Indication --
5872 --------------------------------
5874 procedure Analyze_Subtype_Indication (N : Node_Id) is
5875 T : constant Entity_Id := Subtype_Mark (N);
5876 R : constant Node_Id := Range_Expression (Constraint (N));
5878 begin
5879 Analyze (T);
5881 if R /= Error then
5882 Analyze (R);
5883 Set_Etype (N, Etype (R));
5884 Resolve (R, Entity (T));
5885 else
5886 Set_Error_Posted (R);
5887 Set_Error_Posted (T);
5888 end if;
5889 end Analyze_Subtype_Indication;
5891 --------------------------
5892 -- Analyze_Variant_Part --
5893 --------------------------
5895 procedure Analyze_Variant_Part (N : Node_Id) is
5896 Discr_Name : Node_Id;
5897 Discr_Type : Entity_Id;
5899 procedure Process_Variant (A : Node_Id);
5900 -- Analyze declarations for a single variant
5902 package Analyze_Variant_Choices is
5903 new Generic_Analyze_Choices (Process_Variant);
5904 use Analyze_Variant_Choices;
5906 ---------------------
5907 -- Process_Variant --
5908 ---------------------
5910 procedure Process_Variant (A : Node_Id) is
5911 CL : constant Node_Id := Component_List (A);
5912 begin
5913 if not Null_Present (CL) then
5914 Analyze_Declarations (Component_Items (CL));
5916 if Present (Variant_Part (CL)) then
5917 Analyze (Variant_Part (CL));
5918 end if;
5919 end if;
5920 end Process_Variant;
5922 -- Start of processing for Analyze_Variant_Part
5924 begin
5925 Discr_Name := Name (N);
5926 Analyze (Discr_Name);
5928 -- If Discr_Name bad, get out (prevent cascaded errors)
5930 if Etype (Discr_Name) = Any_Type then
5931 return;
5932 end if;
5934 -- Check invalid discriminant in variant part
5936 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5937 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5938 end if;
5940 Discr_Type := Etype (Entity (Discr_Name));
5942 if not Is_Discrete_Type (Discr_Type) then
5943 Error_Msg_N
5944 ("discriminant in a variant part must be of a discrete type",
5945 Name (N));
5946 return;
5947 end if;
5949 -- Now analyze the choices, which also analyzes the declarations that
5950 -- are associated with each choice.
5952 Analyze_Choices (Variants (N), Discr_Type);
5954 -- Note: we used to instantiate and call Check_Choices here to check
5955 -- that the choices covered the discriminant, but it's too early to do
5956 -- that because of statically predicated subtypes, whose analysis may
5957 -- be deferred to their freeze point which may be as late as the freeze
5958 -- point of the containing record. So this call is now to be found in
5959 -- Freeze_Record_Declaration.
5961 end Analyze_Variant_Part;
5963 ----------------------------
5964 -- Array_Type_Declaration --
5965 ----------------------------
5967 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5968 Component_Def : constant Node_Id := Component_Definition (Def);
5969 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5970 P : constant Node_Id := Parent (Def);
5971 Element_Type : Entity_Id;
5972 Implicit_Base : Entity_Id;
5973 Index : Node_Id;
5974 Nb_Index : Nat;
5975 Priv : Entity_Id;
5976 Related_Id : Entity_Id := Empty;
5978 begin
5979 if Nkind (Def) = N_Constrained_Array_Definition then
5980 Index := First (Discrete_Subtype_Definitions (Def));
5981 else
5982 Index := First (Subtype_Marks (Def));
5983 end if;
5985 -- Find proper names for the implicit types which may be public. In case
5986 -- of anonymous arrays we use the name of the first object of that type
5987 -- as prefix.
5989 if No (T) then
5990 Related_Id := Defining_Identifier (P);
5991 else
5992 Related_Id := T;
5993 end if;
5995 Nb_Index := 1;
5996 while Present (Index) loop
5997 Analyze (Index);
5999 -- Test for odd case of trying to index a type by the type itself
6001 if Is_Entity_Name (Index) and then Entity (Index) = T then
6002 Error_Msg_N ("type& cannot be indexed by itself", Index);
6003 Set_Entity (Index, Standard_Boolean);
6004 Set_Etype (Index, Standard_Boolean);
6005 end if;
6007 -- Check SPARK restriction requiring a subtype mark
6009 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
6010 Check_SPARK_05_Restriction ("subtype mark required", Index);
6011 end if;
6013 -- Add a subtype declaration for each index of private array type
6014 -- declaration whose etype is also private. For example:
6016 -- package Pkg is
6017 -- type Index is private;
6018 -- private
6019 -- type Table is array (Index) of ...
6020 -- end;
6022 -- This is currently required by the expander for the internally
6023 -- generated equality subprogram of records with variant parts in
6024 -- which the etype of some component is such private type.
6026 if Ekind (Current_Scope) = E_Package
6027 and then In_Private_Part (Current_Scope)
6028 and then Has_Private_Declaration (Etype (Index))
6029 then
6030 declare
6031 Loc : constant Source_Ptr := Sloc (Def);
6032 Decl : Entity_Id;
6033 New_E : Entity_Id;
6035 begin
6036 New_E := Make_Temporary (Loc, 'T');
6037 Set_Is_Internal (New_E);
6039 Decl :=
6040 Make_Subtype_Declaration (Loc,
6041 Defining_Identifier => New_E,
6042 Subtype_Indication =>
6043 New_Occurrence_Of (Etype (Index), Loc));
6045 Insert_Before (Parent (Def), Decl);
6046 Analyze (Decl);
6047 Set_Etype (Index, New_E);
6049 -- If the index is a range or a subtype indication it carries
6050 -- no entity. Example:
6052 -- package Pkg is
6053 -- type T is private;
6054 -- private
6055 -- type T is new Natural;
6056 -- Table : array (T(1) .. T(10)) of Boolean;
6057 -- end Pkg;
6059 -- Otherwise the type of the reference is its entity.
6061 if Is_Entity_Name (Index) then
6062 Set_Entity (Index, New_E);
6063 end if;
6064 end;
6065 end if;
6067 Make_Index (Index, P, Related_Id, Nb_Index);
6069 -- Check error of subtype with predicate for index type
6071 Bad_Predicated_Subtype_Use
6072 ("subtype& has predicate, not allowed as index subtype",
6073 Index, Etype (Index));
6075 -- Move to next index
6077 Next_Index (Index);
6078 Nb_Index := Nb_Index + 1;
6079 end loop;
6081 -- Process subtype indication if one is present
6083 if Present (Component_Typ) then
6084 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
6086 Set_Etype (Component_Typ, Element_Type);
6088 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
6089 Check_SPARK_05_Restriction
6090 ("subtype mark required", Component_Typ);
6091 end if;
6093 -- Ada 2005 (AI-230): Access Definition case
6095 else pragma Assert (Present (Access_Definition (Component_Def)));
6097 -- Indicate that the anonymous access type is created by the
6098 -- array type declaration.
6100 Element_Type := Access_Definition
6101 (Related_Nod => P,
6102 N => Access_Definition (Component_Def));
6103 Set_Is_Local_Anonymous_Access (Element_Type);
6105 -- Propagate the parent. This field is needed if we have to generate
6106 -- the master_id associated with an anonymous access to task type
6107 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
6109 Set_Parent (Element_Type, Parent (T));
6111 -- Ada 2005 (AI-230): In case of components that are anonymous access
6112 -- types the level of accessibility depends on the enclosing type
6113 -- declaration
6115 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
6117 -- Ada 2005 (AI-254)
6119 declare
6120 CD : constant Node_Id :=
6121 Access_To_Subprogram_Definition
6122 (Access_Definition (Component_Def));
6123 begin
6124 if Present (CD) and then Protected_Present (CD) then
6125 Element_Type :=
6126 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
6127 end if;
6128 end;
6129 end if;
6131 -- Constrained array case
6133 if No (T) then
6134 T := Create_Itype (E_Void, P, Related_Id, 'T');
6135 end if;
6137 if Nkind (Def) = N_Constrained_Array_Definition then
6139 -- Establish Implicit_Base as unconstrained base type
6141 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
6143 Set_Etype (Implicit_Base, Implicit_Base);
6144 Set_Scope (Implicit_Base, Current_Scope);
6145 Set_Has_Delayed_Freeze (Implicit_Base);
6146 Set_Default_SSO (Implicit_Base);
6148 -- The constrained array type is a subtype of the unconstrained one
6150 Set_Ekind (T, E_Array_Subtype);
6151 Init_Size_Align (T);
6152 Set_Etype (T, Implicit_Base);
6153 Set_Scope (T, Current_Scope);
6154 Set_Is_Constrained (T);
6155 Set_First_Index (T,
6156 First (Discrete_Subtype_Definitions (Def)));
6157 Set_Has_Delayed_Freeze (T);
6159 -- Complete setup of implicit base type
6161 Set_Component_Size (Implicit_Base, Uint_0);
6162 Set_Component_Type (Implicit_Base, Element_Type);
6163 Set_Finalize_Storage_Only
6164 (Implicit_Base,
6165 Finalize_Storage_Only (Element_Type));
6166 Set_First_Index (Implicit_Base, First_Index (T));
6167 Set_Has_Controlled_Component
6168 (Implicit_Base,
6169 Has_Controlled_Component (Element_Type)
6170 or else Is_Controlled (Element_Type));
6171 Set_Packed_Array_Impl_Type
6172 (Implicit_Base, Empty);
6174 Propagate_Concurrent_Flags (Implicit_Base, Element_Type);
6176 -- Unconstrained array case
6178 else
6179 Set_Ekind (T, E_Array_Type);
6180 Init_Size_Align (T);
6181 Set_Etype (T, T);
6182 Set_Scope (T, Current_Scope);
6183 Set_Component_Size (T, Uint_0);
6184 Set_Is_Constrained (T, False);
6185 Set_First_Index (T, First (Subtype_Marks (Def)));
6186 Set_Has_Delayed_Freeze (T, True);
6187 Propagate_Concurrent_Flags (T, Element_Type);
6188 Set_Has_Controlled_Component (T, Has_Controlled_Component
6189 (Element_Type)
6190 or else
6191 Is_Controlled (Element_Type));
6192 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
6193 (Element_Type));
6194 Set_Default_SSO (T);
6195 end if;
6197 -- Common attributes for both cases
6199 Set_Component_Type (Base_Type (T), Element_Type);
6200 Set_Packed_Array_Impl_Type (T, Empty);
6202 if Aliased_Present (Component_Definition (Def)) then
6203 Check_SPARK_05_Restriction
6204 ("aliased is not allowed", Component_Definition (Def));
6205 Set_Has_Aliased_Components (Etype (T));
6206 end if;
6208 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6209 -- array type to ensure that objects of this type are initialized.
6211 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
6212 Set_Can_Never_Be_Null (T);
6214 if Null_Exclusion_Present (Component_Definition (Def))
6216 -- No need to check itypes because in their case this check was
6217 -- done at their point of creation
6219 and then not Is_Itype (Element_Type)
6220 then
6221 Error_Msg_N
6222 ("`NOT NULL` not allowed (null already excluded)",
6223 Subtype_Indication (Component_Definition (Def)));
6224 end if;
6225 end if;
6227 Priv := Private_Component (Element_Type);
6229 if Present (Priv) then
6231 -- Check for circular definitions
6233 if Priv = Any_Type then
6234 Set_Component_Type (Etype (T), Any_Type);
6236 -- There is a gap in the visibility of operations on the composite
6237 -- type only if the component type is defined in a different scope.
6239 elsif Scope (Priv) = Current_Scope then
6240 null;
6242 elsif Is_Limited_Type (Priv) then
6243 Set_Is_Limited_Composite (Etype (T));
6244 Set_Is_Limited_Composite (T);
6245 else
6246 Set_Is_Private_Composite (Etype (T));
6247 Set_Is_Private_Composite (T);
6248 end if;
6249 end if;
6251 -- A syntax error in the declaration itself may lead to an empty index
6252 -- list, in which case do a minimal patch.
6254 if No (First_Index (T)) then
6255 Error_Msg_N ("missing index definition in array type declaration", T);
6257 declare
6258 Indexes : constant List_Id :=
6259 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
6260 begin
6261 Set_Discrete_Subtype_Definitions (Def, Indexes);
6262 Set_First_Index (T, First (Indexes));
6263 return;
6264 end;
6265 end if;
6267 -- Create a concatenation operator for the new type. Internal array
6268 -- types created for packed entities do not need such, they are
6269 -- compatible with the user-defined type.
6271 if Number_Dimensions (T) = 1
6272 and then not Is_Packed_Array_Impl_Type (T)
6273 then
6274 New_Concatenation_Op (T);
6275 end if;
6277 -- In the case of an unconstrained array the parser has already verified
6278 -- that all the indexes are unconstrained but we still need to make sure
6279 -- that the element type is constrained.
6281 if not Is_Definite_Subtype (Element_Type) then
6282 Error_Msg_N
6283 ("unconstrained element type in array declaration",
6284 Subtype_Indication (Component_Def));
6286 elsif Is_Abstract_Type (Element_Type) then
6287 Error_Msg_N
6288 ("the type of a component cannot be abstract",
6289 Subtype_Indication (Component_Def));
6290 end if;
6292 -- There may be an invariant declared for the component type, but
6293 -- the construction of the component invariant checking procedure
6294 -- takes place during expansion.
6295 end Array_Type_Declaration;
6297 ------------------------------------------------------
6298 -- Replace_Anonymous_Access_To_Protected_Subprogram --
6299 ------------------------------------------------------
6301 function Replace_Anonymous_Access_To_Protected_Subprogram
6302 (N : Node_Id) return Entity_Id
6304 Loc : constant Source_Ptr := Sloc (N);
6306 Curr_Scope : constant Scope_Stack_Entry :=
6307 Scope_Stack.Table (Scope_Stack.Last);
6309 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
6311 Acc : Node_Id;
6312 -- Access definition in declaration
6314 Comp : Node_Id;
6315 -- Object definition or formal definition with an access definition
6317 Decl : Node_Id;
6318 -- Declaration of anonymous access to subprogram type
6320 Spec : Node_Id;
6321 -- Original specification in access to subprogram
6323 P : Node_Id;
6325 begin
6326 Set_Is_Internal (Anon);
6328 case Nkind (N) is
6329 when N_Constrained_Array_Definition
6330 | N_Component_Declaration
6331 | N_Unconstrained_Array_Definition
6333 Comp := Component_Definition (N);
6334 Acc := Access_Definition (Comp);
6336 when N_Discriminant_Specification =>
6337 Comp := Discriminant_Type (N);
6338 Acc := Comp;
6340 when N_Parameter_Specification =>
6341 Comp := Parameter_Type (N);
6342 Acc := Comp;
6344 when N_Access_Function_Definition =>
6345 Comp := Result_Definition (N);
6346 Acc := Comp;
6348 when N_Object_Declaration =>
6349 Comp := Object_Definition (N);
6350 Acc := Comp;
6352 when N_Function_Specification =>
6353 Comp := Result_Definition (N);
6354 Acc := Comp;
6356 when others =>
6357 raise Program_Error;
6358 end case;
6360 Spec := Access_To_Subprogram_Definition (Acc);
6362 Decl :=
6363 Make_Full_Type_Declaration (Loc,
6364 Defining_Identifier => Anon,
6365 Type_Definition => Copy_Separate_Tree (Spec));
6367 Mark_Rewrite_Insertion (Decl);
6369 -- In ASIS mode, analyze the profile on the original node, because
6370 -- the separate copy does not provide enough links to recover the
6371 -- original tree. Analysis is limited to type annotations, within
6372 -- a temporary scope that serves as an anonymous subprogram to collect
6373 -- otherwise useless temporaries and itypes.
6375 if ASIS_Mode then
6376 declare
6377 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
6379 begin
6380 if Nkind (Spec) = N_Access_Function_Definition then
6381 Set_Ekind (Typ, E_Function);
6382 else
6383 Set_Ekind (Typ, E_Procedure);
6384 end if;
6386 Set_Parent (Typ, N);
6387 Set_Scope (Typ, Current_Scope);
6388 Push_Scope (Typ);
6390 -- Nothing to do if procedure is parameterless
6392 if Present (Parameter_Specifications (Spec)) then
6393 Process_Formals (Parameter_Specifications (Spec), Spec);
6394 end if;
6396 if Nkind (Spec) = N_Access_Function_Definition then
6397 declare
6398 Def : constant Node_Id := Result_Definition (Spec);
6400 begin
6401 -- The result might itself be an anonymous access type, so
6402 -- have to recurse.
6404 if Nkind (Def) = N_Access_Definition then
6405 if Present (Access_To_Subprogram_Definition (Def)) then
6406 Set_Etype
6407 (Def,
6408 Replace_Anonymous_Access_To_Protected_Subprogram
6409 (Spec));
6410 else
6411 Find_Type (Subtype_Mark (Def));
6412 end if;
6414 else
6415 Find_Type (Def);
6416 end if;
6417 end;
6418 end if;
6420 End_Scope;
6421 end;
6422 end if;
6424 -- Insert the new declaration in the nearest enclosing scope. If the
6425 -- parent is a body and N is its return type, the declaration belongs
6426 -- in the enclosing scope. Likewise if N is the type of a parameter.
6428 P := Parent (N);
6430 if Nkind (N) = N_Function_Specification
6431 and then Nkind (P) = N_Subprogram_Body
6432 then
6433 P := Parent (P);
6434 elsif Nkind (N) = N_Parameter_Specification
6435 and then Nkind (P) in N_Subprogram_Specification
6436 and then Nkind (Parent (P)) = N_Subprogram_Body
6437 then
6438 P := Parent (Parent (P));
6439 end if;
6441 while Present (P) and then not Has_Declarations (P) loop
6442 P := Parent (P);
6443 end loop;
6445 pragma Assert (Present (P));
6447 if Nkind (P) = N_Package_Specification then
6448 Prepend (Decl, Visible_Declarations (P));
6449 else
6450 Prepend (Decl, Declarations (P));
6451 end if;
6453 -- Replace the anonymous type with an occurrence of the new declaration.
6454 -- In all cases the rewritten node does not have the null-exclusion
6455 -- attribute because (if present) it was already inherited by the
6456 -- anonymous entity (Anon). Thus, in case of components we do not
6457 -- inherit this attribute.
6459 if Nkind (N) = N_Parameter_Specification then
6460 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6461 Set_Etype (Defining_Identifier (N), Anon);
6462 Set_Null_Exclusion_Present (N, False);
6464 elsif Nkind (N) = N_Object_Declaration then
6465 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6466 Set_Etype (Defining_Identifier (N), Anon);
6468 elsif Nkind (N) = N_Access_Function_Definition then
6469 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6471 elsif Nkind (N) = N_Function_Specification then
6472 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6473 Set_Etype (Defining_Unit_Name (N), Anon);
6475 else
6476 Rewrite (Comp,
6477 Make_Component_Definition (Loc,
6478 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
6479 end if;
6481 Mark_Rewrite_Insertion (Comp);
6483 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
6484 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
6485 and then not Is_Type (Current_Scope))
6486 then
6488 -- Declaration can be analyzed in the current scope.
6490 Analyze (Decl);
6492 else
6493 -- Temporarily remove the current scope (record or subprogram) from
6494 -- the stack to add the new declarations to the enclosing scope.
6495 -- The anonymous entity is an Itype with the proper attributes.
6497 Scope_Stack.Decrement_Last;
6498 Analyze (Decl);
6499 Set_Is_Itype (Anon);
6500 Set_Associated_Node_For_Itype (Anon, N);
6501 Scope_Stack.Append (Curr_Scope);
6502 end if;
6504 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
6505 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
6506 return Anon;
6507 end Replace_Anonymous_Access_To_Protected_Subprogram;
6509 -------------------------------
6510 -- Build_Derived_Access_Type --
6511 -------------------------------
6513 procedure Build_Derived_Access_Type
6514 (N : Node_Id;
6515 Parent_Type : Entity_Id;
6516 Derived_Type : Entity_Id)
6518 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
6520 Desig_Type : Entity_Id;
6521 Discr : Entity_Id;
6522 Discr_Con_Elist : Elist_Id;
6523 Discr_Con_El : Elmt_Id;
6524 Subt : Entity_Id;
6526 begin
6527 -- Set the designated type so it is available in case this is an access
6528 -- to a self-referential type, e.g. a standard list type with a next
6529 -- pointer. Will be reset after subtype is built.
6531 Set_Directly_Designated_Type
6532 (Derived_Type, Designated_Type (Parent_Type));
6534 Subt := Process_Subtype (S, N);
6536 if Nkind (S) /= N_Subtype_Indication
6537 and then Subt /= Base_Type (Subt)
6538 then
6539 Set_Ekind (Derived_Type, E_Access_Subtype);
6540 end if;
6542 if Ekind (Derived_Type) = E_Access_Subtype then
6543 declare
6544 Pbase : constant Entity_Id := Base_Type (Parent_Type);
6545 Ibase : constant Entity_Id :=
6546 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
6547 Svg_Chars : constant Name_Id := Chars (Ibase);
6548 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
6550 begin
6551 Copy_Node (Pbase, Ibase);
6553 -- Restore Itype status after Copy_Node
6555 Set_Is_Itype (Ibase);
6556 Set_Associated_Node_For_Itype (Ibase, N);
6558 Set_Chars (Ibase, Svg_Chars);
6559 Set_Next_Entity (Ibase, Svg_Next_E);
6560 Set_Sloc (Ibase, Sloc (Derived_Type));
6561 Set_Scope (Ibase, Scope (Derived_Type));
6562 Set_Freeze_Node (Ibase, Empty);
6563 Set_Is_Frozen (Ibase, False);
6564 Set_Comes_From_Source (Ibase, False);
6565 Set_Is_First_Subtype (Ibase, False);
6567 Set_Etype (Ibase, Pbase);
6568 Set_Etype (Derived_Type, Ibase);
6569 end;
6570 end if;
6572 Set_Directly_Designated_Type
6573 (Derived_Type, Designated_Type (Subt));
6575 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
6576 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
6577 Set_Size_Info (Derived_Type, Parent_Type);
6578 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6579 Set_Depends_On_Private (Derived_Type,
6580 Has_Private_Component (Derived_Type));
6581 Conditional_Delay (Derived_Type, Subt);
6583 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6584 -- that it is not redundant.
6586 if Null_Exclusion_Present (Type_Definition (N)) then
6587 Set_Can_Never_Be_Null (Derived_Type);
6589 elsif Can_Never_Be_Null (Parent_Type) then
6590 Set_Can_Never_Be_Null (Derived_Type);
6591 end if;
6593 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6594 -- the root type for this information.
6596 -- Apply range checks to discriminants for derived record case
6597 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6599 Desig_Type := Designated_Type (Derived_Type);
6601 if Is_Composite_Type (Desig_Type)
6602 and then (not Is_Array_Type (Desig_Type))
6603 and then Has_Discriminants (Desig_Type)
6604 and then Base_Type (Desig_Type) /= Desig_Type
6605 then
6606 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6607 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6609 Discr := First_Discriminant (Base_Type (Desig_Type));
6610 while Present (Discr_Con_El) loop
6611 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6612 Next_Elmt (Discr_Con_El);
6613 Next_Discriminant (Discr);
6614 end loop;
6615 end if;
6616 end Build_Derived_Access_Type;
6618 ------------------------------
6619 -- Build_Derived_Array_Type --
6620 ------------------------------
6622 procedure Build_Derived_Array_Type
6623 (N : Node_Id;
6624 Parent_Type : Entity_Id;
6625 Derived_Type : Entity_Id)
6627 Loc : constant Source_Ptr := Sloc (N);
6628 Tdef : constant Node_Id := Type_Definition (N);
6629 Indic : constant Node_Id := Subtype_Indication (Tdef);
6630 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6631 Implicit_Base : Entity_Id;
6632 New_Indic : Node_Id;
6634 procedure Make_Implicit_Base;
6635 -- If the parent subtype is constrained, the derived type is a subtype
6636 -- of an implicit base type derived from the parent base.
6638 ------------------------
6639 -- Make_Implicit_Base --
6640 ------------------------
6642 procedure Make_Implicit_Base is
6643 begin
6644 Implicit_Base :=
6645 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6647 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6648 Set_Etype (Implicit_Base, Parent_Base);
6650 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6651 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6653 Set_Has_Delayed_Freeze (Implicit_Base, True);
6654 end Make_Implicit_Base;
6656 -- Start of processing for Build_Derived_Array_Type
6658 begin
6659 if not Is_Constrained (Parent_Type) then
6660 if Nkind (Indic) /= N_Subtype_Indication then
6661 Set_Ekind (Derived_Type, E_Array_Type);
6663 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6664 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6666 Set_Has_Delayed_Freeze (Derived_Type, True);
6668 else
6669 Make_Implicit_Base;
6670 Set_Etype (Derived_Type, Implicit_Base);
6672 New_Indic :=
6673 Make_Subtype_Declaration (Loc,
6674 Defining_Identifier => Derived_Type,
6675 Subtype_Indication =>
6676 Make_Subtype_Indication (Loc,
6677 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6678 Constraint => Constraint (Indic)));
6680 Rewrite (N, New_Indic);
6681 Analyze (N);
6682 end if;
6684 else
6685 if Nkind (Indic) /= N_Subtype_Indication then
6686 Make_Implicit_Base;
6688 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6689 Set_Etype (Derived_Type, Implicit_Base);
6690 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6692 else
6693 Error_Msg_N ("illegal constraint on constrained type", Indic);
6694 end if;
6695 end if;
6697 -- If parent type is not a derived type itself, and is declared in
6698 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6699 -- the new type's concatenation operator since Derive_Subprograms
6700 -- will not inherit the parent's operator. If the parent type is
6701 -- unconstrained, the operator is of the unconstrained base type.
6703 if Number_Dimensions (Parent_Type) = 1
6704 and then not Is_Limited_Type (Parent_Type)
6705 and then not Is_Derived_Type (Parent_Type)
6706 and then not Is_Package_Or_Generic_Package
6707 (Scope (Base_Type (Parent_Type)))
6708 then
6709 if not Is_Constrained (Parent_Type)
6710 and then Is_Constrained (Derived_Type)
6711 then
6712 New_Concatenation_Op (Implicit_Base);
6713 else
6714 New_Concatenation_Op (Derived_Type);
6715 end if;
6716 end if;
6717 end Build_Derived_Array_Type;
6719 -----------------------------------
6720 -- Build_Derived_Concurrent_Type --
6721 -----------------------------------
6723 procedure Build_Derived_Concurrent_Type
6724 (N : Node_Id;
6725 Parent_Type : Entity_Id;
6726 Derived_Type : Entity_Id)
6728 Loc : constant Source_Ptr := Sloc (N);
6730 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6731 Corr_Decl : Node_Id;
6732 Corr_Decl_Needed : Boolean;
6733 -- If the derived type has fewer discriminants than its parent, the
6734 -- corresponding record is also a derived type, in order to account for
6735 -- the bound discriminants. We create a full type declaration for it in
6736 -- this case.
6738 Constraint_Present : constant Boolean :=
6739 Nkind (Subtype_Indication (Type_Definition (N))) =
6740 N_Subtype_Indication;
6742 D_Constraint : Node_Id;
6743 New_Constraint : Elist_Id;
6744 Old_Disc : Entity_Id;
6745 New_Disc : Entity_Id;
6746 New_N : Node_Id;
6748 begin
6749 Set_Stored_Constraint (Derived_Type, No_Elist);
6750 Corr_Decl_Needed := False;
6751 Old_Disc := Empty;
6753 if Present (Discriminant_Specifications (N))
6754 and then Constraint_Present
6755 then
6756 Old_Disc := First_Discriminant (Parent_Type);
6757 New_Disc := First (Discriminant_Specifications (N));
6758 while Present (New_Disc) and then Present (Old_Disc) loop
6759 Next_Discriminant (Old_Disc);
6760 Next (New_Disc);
6761 end loop;
6762 end if;
6764 if Present (Old_Disc) and then Expander_Active then
6766 -- The new type has fewer discriminants, so we need to create a new
6767 -- corresponding record, which is derived from the corresponding
6768 -- record of the parent, and has a stored constraint that captures
6769 -- the values of the discriminant constraints. The corresponding
6770 -- record is needed only if expander is active and code generation is
6771 -- enabled.
6773 -- The type declaration for the derived corresponding record has the
6774 -- same discriminant part and constraints as the current declaration.
6775 -- Copy the unanalyzed tree to build declaration.
6777 Corr_Decl_Needed := True;
6778 New_N := Copy_Separate_Tree (N);
6780 Corr_Decl :=
6781 Make_Full_Type_Declaration (Loc,
6782 Defining_Identifier => Corr_Record,
6783 Discriminant_Specifications =>
6784 Discriminant_Specifications (New_N),
6785 Type_Definition =>
6786 Make_Derived_Type_Definition (Loc,
6787 Subtype_Indication =>
6788 Make_Subtype_Indication (Loc,
6789 Subtype_Mark =>
6790 New_Occurrence_Of
6791 (Corresponding_Record_Type (Parent_Type), Loc),
6792 Constraint =>
6793 Constraint
6794 (Subtype_Indication (Type_Definition (New_N))))));
6795 end if;
6797 -- Copy Storage_Size and Relative_Deadline variables if task case
6799 if Is_Task_Type (Parent_Type) then
6800 Set_Storage_Size_Variable (Derived_Type,
6801 Storage_Size_Variable (Parent_Type));
6802 Set_Relative_Deadline_Variable (Derived_Type,
6803 Relative_Deadline_Variable (Parent_Type));
6804 end if;
6806 if Present (Discriminant_Specifications (N)) then
6807 Push_Scope (Derived_Type);
6808 Check_Or_Process_Discriminants (N, Derived_Type);
6810 if Constraint_Present then
6811 New_Constraint :=
6812 Expand_To_Stored_Constraint
6813 (Parent_Type,
6814 Build_Discriminant_Constraints
6815 (Parent_Type,
6816 Subtype_Indication (Type_Definition (N)), True));
6817 end if;
6819 End_Scope;
6821 elsif Constraint_Present then
6823 -- Build constrained subtype, copying the constraint, and derive
6824 -- from it to create a derived constrained type.
6826 declare
6827 Loc : constant Source_Ptr := Sloc (N);
6828 Anon : constant Entity_Id :=
6829 Make_Defining_Identifier (Loc,
6830 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6831 Decl : Node_Id;
6833 begin
6834 Decl :=
6835 Make_Subtype_Declaration (Loc,
6836 Defining_Identifier => Anon,
6837 Subtype_Indication =>
6838 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6839 Insert_Before (N, Decl);
6840 Analyze (Decl);
6842 Rewrite (Subtype_Indication (Type_Definition (N)),
6843 New_Occurrence_Of (Anon, Loc));
6844 Set_Analyzed (Derived_Type, False);
6845 Analyze (N);
6846 return;
6847 end;
6848 end if;
6850 -- By default, operations and private data are inherited from parent.
6851 -- However, in the presence of bound discriminants, a new corresponding
6852 -- record will be created, see below.
6854 Set_Has_Discriminants
6855 (Derived_Type, Has_Discriminants (Parent_Type));
6856 Set_Corresponding_Record_Type
6857 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6859 -- Is_Constrained is set according the parent subtype, but is set to
6860 -- False if the derived type is declared with new discriminants.
6862 Set_Is_Constrained
6863 (Derived_Type,
6864 (Is_Constrained (Parent_Type) or else Constraint_Present)
6865 and then not Present (Discriminant_Specifications (N)));
6867 if Constraint_Present then
6868 if not Has_Discriminants (Parent_Type) then
6869 Error_Msg_N ("untagged parent must have discriminants", N);
6871 elsif Present (Discriminant_Specifications (N)) then
6873 -- Verify that new discriminants are used to constrain old ones
6875 D_Constraint :=
6876 First
6877 (Constraints
6878 (Constraint (Subtype_Indication (Type_Definition (N)))));
6880 Old_Disc := First_Discriminant (Parent_Type);
6882 while Present (D_Constraint) loop
6883 if Nkind (D_Constraint) /= N_Discriminant_Association then
6885 -- Positional constraint. If it is a reference to a new
6886 -- discriminant, it constrains the corresponding old one.
6888 if Nkind (D_Constraint) = N_Identifier then
6889 New_Disc := First_Discriminant (Derived_Type);
6890 while Present (New_Disc) loop
6891 exit when Chars (New_Disc) = Chars (D_Constraint);
6892 Next_Discriminant (New_Disc);
6893 end loop;
6895 if Present (New_Disc) then
6896 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6897 end if;
6898 end if;
6900 Next_Discriminant (Old_Disc);
6902 -- if this is a named constraint, search by name for the old
6903 -- discriminants constrained by the new one.
6905 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6907 -- Find new discriminant with that name
6909 New_Disc := First_Discriminant (Derived_Type);
6910 while Present (New_Disc) loop
6911 exit when
6912 Chars (New_Disc) = Chars (Expression (D_Constraint));
6913 Next_Discriminant (New_Disc);
6914 end loop;
6916 if Present (New_Disc) then
6918 -- Verify that new discriminant renames some discriminant
6919 -- of the parent type, and associate the new discriminant
6920 -- with one or more old ones that it renames.
6922 declare
6923 Selector : Node_Id;
6925 begin
6926 Selector := First (Selector_Names (D_Constraint));
6927 while Present (Selector) loop
6928 Old_Disc := First_Discriminant (Parent_Type);
6929 while Present (Old_Disc) loop
6930 exit when Chars (Old_Disc) = Chars (Selector);
6931 Next_Discriminant (Old_Disc);
6932 end loop;
6934 if Present (Old_Disc) then
6935 Set_Corresponding_Discriminant
6936 (New_Disc, Old_Disc);
6937 end if;
6939 Next (Selector);
6940 end loop;
6941 end;
6942 end if;
6943 end if;
6945 Next (D_Constraint);
6946 end loop;
6948 New_Disc := First_Discriminant (Derived_Type);
6949 while Present (New_Disc) loop
6950 if No (Corresponding_Discriminant (New_Disc)) then
6951 Error_Msg_NE
6952 ("new discriminant& must constrain old one", N, New_Disc);
6954 elsif not
6955 Subtypes_Statically_Compatible
6956 (Etype (New_Disc),
6957 Etype (Corresponding_Discriminant (New_Disc)))
6958 then
6959 Error_Msg_NE
6960 ("& not statically compatible with parent discriminant",
6961 N, New_Disc);
6962 end if;
6964 Next_Discriminant (New_Disc);
6965 end loop;
6966 end if;
6968 elsif Present (Discriminant_Specifications (N)) then
6969 Error_Msg_N
6970 ("missing discriminant constraint in untagged derivation", N);
6971 end if;
6973 -- The entity chain of the derived type includes the new discriminants
6974 -- but shares operations with the parent.
6976 if Present (Discriminant_Specifications (N)) then
6977 Old_Disc := First_Discriminant (Parent_Type);
6978 while Present (Old_Disc) loop
6979 if No (Next_Entity (Old_Disc))
6980 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6981 then
6982 Set_Next_Entity
6983 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6984 exit;
6985 end if;
6987 Next_Discriminant (Old_Disc);
6988 end loop;
6990 else
6991 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6992 if Has_Discriminants (Parent_Type) then
6993 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6994 Set_Discriminant_Constraint (
6995 Derived_Type, Discriminant_Constraint (Parent_Type));
6996 end if;
6997 end if;
6999 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
7001 Set_Has_Completion (Derived_Type);
7003 if Corr_Decl_Needed then
7004 Set_Stored_Constraint (Derived_Type, New_Constraint);
7005 Insert_After (N, Corr_Decl);
7006 Analyze (Corr_Decl);
7007 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
7008 end if;
7009 end Build_Derived_Concurrent_Type;
7011 ------------------------------------
7012 -- Build_Derived_Enumeration_Type --
7013 ------------------------------------
7015 procedure Build_Derived_Enumeration_Type
7016 (N : Node_Id;
7017 Parent_Type : Entity_Id;
7018 Derived_Type : Entity_Id)
7020 Loc : constant Source_Ptr := Sloc (N);
7021 Def : constant Node_Id := Type_Definition (N);
7022 Indic : constant Node_Id := Subtype_Indication (Def);
7023 Implicit_Base : Entity_Id;
7024 Literal : Entity_Id;
7025 New_Lit : Entity_Id;
7026 Literals_List : List_Id;
7027 Type_Decl : Node_Id;
7028 Hi, Lo : Node_Id;
7029 Rang_Expr : Node_Id;
7031 begin
7032 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
7033 -- not have explicit literals lists we need to process types derived
7034 -- from them specially. This is handled by Derived_Standard_Character.
7035 -- If the parent type is a generic type, there are no literals either,
7036 -- and we construct the same skeletal representation as for the generic
7037 -- parent type.
7039 if Is_Standard_Character_Type (Parent_Type) then
7040 Derived_Standard_Character (N, Parent_Type, Derived_Type);
7042 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
7043 declare
7044 Lo : Node_Id;
7045 Hi : Node_Id;
7047 begin
7048 if Nkind (Indic) /= N_Subtype_Indication then
7049 Lo :=
7050 Make_Attribute_Reference (Loc,
7051 Attribute_Name => Name_First,
7052 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7053 Set_Etype (Lo, Derived_Type);
7055 Hi :=
7056 Make_Attribute_Reference (Loc,
7057 Attribute_Name => Name_Last,
7058 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7059 Set_Etype (Hi, Derived_Type);
7061 Set_Scalar_Range (Derived_Type,
7062 Make_Range (Loc,
7063 Low_Bound => Lo,
7064 High_Bound => Hi));
7065 else
7067 -- Analyze subtype indication and verify compatibility
7068 -- with parent type.
7070 if Base_Type (Process_Subtype (Indic, N)) /=
7071 Base_Type (Parent_Type)
7072 then
7073 Error_Msg_N
7074 ("illegal constraint for formal discrete type", N);
7075 end if;
7076 end if;
7077 end;
7079 else
7080 -- If a constraint is present, analyze the bounds to catch
7081 -- premature usage of the derived literals.
7083 if Nkind (Indic) = N_Subtype_Indication
7084 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
7085 then
7086 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
7087 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
7088 end if;
7090 -- Introduce an implicit base type for the derived type even if there
7091 -- is no constraint attached to it, since this seems closer to the
7092 -- Ada semantics. Build a full type declaration tree for the derived
7093 -- type using the implicit base type as the defining identifier. The
7094 -- build a subtype declaration tree which applies the constraint (if
7095 -- any) have it replace the derived type declaration.
7097 Literal := First_Literal (Parent_Type);
7098 Literals_List := New_List;
7099 while Present (Literal)
7100 and then Ekind (Literal) = E_Enumeration_Literal
7101 loop
7102 -- Literals of the derived type have the same representation as
7103 -- those of the parent type, but this representation can be
7104 -- overridden by an explicit representation clause. Indicate
7105 -- that there is no explicit representation given yet. These
7106 -- derived literals are implicit operations of the new type,
7107 -- and can be overridden by explicit ones.
7109 if Nkind (Literal) = N_Defining_Character_Literal then
7110 New_Lit :=
7111 Make_Defining_Character_Literal (Loc, Chars (Literal));
7112 else
7113 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
7114 end if;
7116 Set_Ekind (New_Lit, E_Enumeration_Literal);
7117 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
7118 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
7119 Set_Enumeration_Rep_Expr (New_Lit, Empty);
7120 Set_Alias (New_Lit, Literal);
7121 Set_Is_Known_Valid (New_Lit, True);
7123 Append (New_Lit, Literals_List);
7124 Next_Literal (Literal);
7125 end loop;
7127 Implicit_Base :=
7128 Make_Defining_Identifier (Sloc (Derived_Type),
7129 Chars => New_External_Name (Chars (Derived_Type), 'B'));
7131 -- Indicate the proper nature of the derived type. This must be done
7132 -- before analysis of the literals, to recognize cases when a literal
7133 -- may be hidden by a previous explicit function definition (cf.
7134 -- c83031a).
7136 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
7137 Set_Etype (Derived_Type, Implicit_Base);
7139 Type_Decl :=
7140 Make_Full_Type_Declaration (Loc,
7141 Defining_Identifier => Implicit_Base,
7142 Discriminant_Specifications => No_List,
7143 Type_Definition =>
7144 Make_Enumeration_Type_Definition (Loc, Literals_List));
7146 Mark_Rewrite_Insertion (Type_Decl);
7147 Insert_Before (N, Type_Decl);
7148 Analyze (Type_Decl);
7150 -- The anonymous base now has a full declaration, but this base
7151 -- is not a first subtype.
7153 Set_Is_First_Subtype (Implicit_Base, False);
7155 -- After the implicit base is analyzed its Etype needs to be changed
7156 -- to reflect the fact that it is derived from the parent type which
7157 -- was ignored during analysis. We also set the size at this point.
7159 Set_Etype (Implicit_Base, Parent_Type);
7161 Set_Size_Info (Implicit_Base, Parent_Type);
7162 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
7163 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
7165 -- Copy other flags from parent type
7167 Set_Has_Non_Standard_Rep
7168 (Implicit_Base, Has_Non_Standard_Rep
7169 (Parent_Type));
7170 Set_Has_Pragma_Ordered
7171 (Implicit_Base, Has_Pragma_Ordered
7172 (Parent_Type));
7173 Set_Has_Delayed_Freeze (Implicit_Base);
7175 -- Process the subtype indication including a validation check on the
7176 -- constraint, if any. If a constraint is given, its bounds must be
7177 -- implicitly converted to the new type.
7179 if Nkind (Indic) = N_Subtype_Indication then
7180 declare
7181 R : constant Node_Id :=
7182 Range_Expression (Constraint (Indic));
7184 begin
7185 if Nkind (R) = N_Range then
7186 Hi := Build_Scalar_Bound
7187 (High_Bound (R), Parent_Type, Implicit_Base);
7188 Lo := Build_Scalar_Bound
7189 (Low_Bound (R), Parent_Type, Implicit_Base);
7191 else
7192 -- Constraint is a Range attribute. Replace with explicit
7193 -- mention of the bounds of the prefix, which must be a
7194 -- subtype.
7196 Analyze (Prefix (R));
7197 Hi :=
7198 Convert_To (Implicit_Base,
7199 Make_Attribute_Reference (Loc,
7200 Attribute_Name => Name_Last,
7201 Prefix =>
7202 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7204 Lo :=
7205 Convert_To (Implicit_Base,
7206 Make_Attribute_Reference (Loc,
7207 Attribute_Name => Name_First,
7208 Prefix =>
7209 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7210 end if;
7211 end;
7213 else
7214 Hi :=
7215 Build_Scalar_Bound
7216 (Type_High_Bound (Parent_Type),
7217 Parent_Type, Implicit_Base);
7218 Lo :=
7219 Build_Scalar_Bound
7220 (Type_Low_Bound (Parent_Type),
7221 Parent_Type, Implicit_Base);
7222 end if;
7224 Rang_Expr :=
7225 Make_Range (Loc,
7226 Low_Bound => Lo,
7227 High_Bound => Hi);
7229 -- If we constructed a default range for the case where no range
7230 -- was given, then the expressions in the range must not freeze
7231 -- since they do not correspond to expressions in the source.
7232 -- However, if the type inherits predicates the expressions will
7233 -- be elaborated earlier and must freeze.
7235 if Nkind (Indic) /= N_Subtype_Indication
7236 and then not Has_Predicates (Derived_Type)
7237 then
7238 Set_Must_Not_Freeze (Lo);
7239 Set_Must_Not_Freeze (Hi);
7240 Set_Must_Not_Freeze (Rang_Expr);
7241 end if;
7243 Rewrite (N,
7244 Make_Subtype_Declaration (Loc,
7245 Defining_Identifier => Derived_Type,
7246 Subtype_Indication =>
7247 Make_Subtype_Indication (Loc,
7248 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
7249 Constraint =>
7250 Make_Range_Constraint (Loc,
7251 Range_Expression => Rang_Expr))));
7253 Analyze (N);
7255 -- Propagate the aspects from the original type declaration to the
7256 -- declaration of the implicit base.
7258 Move_Aspects (From => Original_Node (N), To => Type_Decl);
7260 -- Apply a range check. Since this range expression doesn't have an
7261 -- Etype, we have to specifically pass the Source_Typ parameter. Is
7262 -- this right???
7264 if Nkind (Indic) = N_Subtype_Indication then
7265 Apply_Range_Check
7266 (Range_Expression (Constraint (Indic)), Parent_Type,
7267 Source_Typ => Entity (Subtype_Mark (Indic)));
7268 end if;
7269 end if;
7270 end Build_Derived_Enumeration_Type;
7272 --------------------------------
7273 -- Build_Derived_Numeric_Type --
7274 --------------------------------
7276 procedure Build_Derived_Numeric_Type
7277 (N : Node_Id;
7278 Parent_Type : Entity_Id;
7279 Derived_Type : Entity_Id)
7281 Loc : constant Source_Ptr := Sloc (N);
7282 Tdef : constant Node_Id := Type_Definition (N);
7283 Indic : constant Node_Id := Subtype_Indication (Tdef);
7284 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7285 No_Constraint : constant Boolean := Nkind (Indic) /=
7286 N_Subtype_Indication;
7287 Implicit_Base : Entity_Id;
7289 Lo : Node_Id;
7290 Hi : Node_Id;
7292 begin
7293 -- Process the subtype indication including a validation check on
7294 -- the constraint if any.
7296 Discard_Node (Process_Subtype (Indic, N));
7298 -- Introduce an implicit base type for the derived type even if there
7299 -- is no constraint attached to it, since this seems closer to the Ada
7300 -- semantics.
7302 Implicit_Base :=
7303 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
7305 Set_Etype (Implicit_Base, Parent_Base);
7306 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
7307 Set_Size_Info (Implicit_Base, Parent_Base);
7308 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
7309 Set_Parent (Implicit_Base, Parent (Derived_Type));
7310 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
7312 -- Set RM Size for discrete type or decimal fixed-point type
7313 -- Ordinary fixed-point is excluded, why???
7315 if Is_Discrete_Type (Parent_Base)
7316 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
7317 then
7318 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
7319 end if;
7321 Set_Has_Delayed_Freeze (Implicit_Base);
7323 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
7324 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
7326 Set_Scalar_Range (Implicit_Base,
7327 Make_Range (Loc,
7328 Low_Bound => Lo,
7329 High_Bound => Hi));
7331 if Has_Infinities (Parent_Base) then
7332 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
7333 end if;
7335 -- The Derived_Type, which is the entity of the declaration, is a
7336 -- subtype of the implicit base. Its Ekind is a subtype, even in the
7337 -- absence of an explicit constraint.
7339 Set_Etype (Derived_Type, Implicit_Base);
7341 -- If we did not have a constraint, then the Ekind is set from the
7342 -- parent type (otherwise Process_Subtype has set the bounds)
7344 if No_Constraint then
7345 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
7346 end if;
7348 -- If we did not have a range constraint, then set the range from the
7349 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
7351 if No_Constraint or else not Has_Range_Constraint (Indic) then
7352 Set_Scalar_Range (Derived_Type,
7353 Make_Range (Loc,
7354 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
7355 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
7356 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7358 if Has_Infinities (Parent_Type) then
7359 Set_Includes_Infinities (Scalar_Range (Derived_Type));
7360 end if;
7362 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
7363 end if;
7365 Set_Is_Descendant_Of_Address (Derived_Type,
7366 Is_Descendant_Of_Address (Parent_Type));
7367 Set_Is_Descendant_Of_Address (Implicit_Base,
7368 Is_Descendant_Of_Address (Parent_Type));
7370 -- Set remaining type-specific fields, depending on numeric type
7372 if Is_Modular_Integer_Type (Parent_Type) then
7373 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
7375 Set_Non_Binary_Modulus
7376 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
7378 Set_Is_Known_Valid
7379 (Implicit_Base, Is_Known_Valid (Parent_Base));
7381 elsif Is_Floating_Point_Type (Parent_Type) then
7383 -- Digits of base type is always copied from the digits value of
7384 -- the parent base type, but the digits of the derived type will
7385 -- already have been set if there was a constraint present.
7387 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7388 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
7390 if No_Constraint then
7391 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
7392 end if;
7394 elsif Is_Fixed_Point_Type (Parent_Type) then
7396 -- Small of base type and derived type are always copied from the
7397 -- parent base type, since smalls never change. The delta of the
7398 -- base type is also copied from the parent base type. However the
7399 -- delta of the derived type will have been set already if a
7400 -- constraint was present.
7402 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
7403 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
7404 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
7406 if No_Constraint then
7407 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
7408 end if;
7410 -- The scale and machine radix in the decimal case are always
7411 -- copied from the parent base type.
7413 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
7414 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
7415 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
7417 Set_Machine_Radix_10
7418 (Derived_Type, Machine_Radix_10 (Parent_Base));
7419 Set_Machine_Radix_10
7420 (Implicit_Base, Machine_Radix_10 (Parent_Base));
7422 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7424 if No_Constraint then
7425 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
7427 else
7428 -- the analysis of the subtype_indication sets the
7429 -- digits value of the derived type.
7431 null;
7432 end if;
7433 end if;
7434 end if;
7436 if Is_Integer_Type (Parent_Type) then
7437 Set_Has_Shift_Operator
7438 (Implicit_Base, Has_Shift_Operator (Parent_Type));
7439 end if;
7441 -- The type of the bounds is that of the parent type, and they
7442 -- must be converted to the derived type.
7444 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
7446 -- The implicit_base should be frozen when the derived type is frozen,
7447 -- but note that it is used in the conversions of the bounds. For fixed
7448 -- types we delay the determination of the bounds until the proper
7449 -- freezing point. For other numeric types this is rejected by GCC, for
7450 -- reasons that are currently unclear (???), so we choose to freeze the
7451 -- implicit base now. In the case of integers and floating point types
7452 -- this is harmless because subsequent representation clauses cannot
7453 -- affect anything, but it is still baffling that we cannot use the
7454 -- same mechanism for all derived numeric types.
7456 -- There is a further complication: actually some representation
7457 -- clauses can affect the implicit base type. For example, attribute
7458 -- definition clauses for stream-oriented attributes need to set the
7459 -- corresponding TSS entries on the base type, and this normally
7460 -- cannot be done after the base type is frozen, so the circuitry in
7461 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
7462 -- and not use Set_TSS in this case.
7464 -- There are also consequences for the case of delayed representation
7465 -- aspects for some cases. For example, a Size aspect is delayed and
7466 -- should not be evaluated to the freeze point. This early freezing
7467 -- means that the size attribute evaluation happens too early???
7469 if Is_Fixed_Point_Type (Parent_Type) then
7470 Conditional_Delay (Implicit_Base, Parent_Type);
7471 else
7472 Freeze_Before (N, Implicit_Base);
7473 end if;
7474 end Build_Derived_Numeric_Type;
7476 --------------------------------
7477 -- Build_Derived_Private_Type --
7478 --------------------------------
7480 procedure Build_Derived_Private_Type
7481 (N : Node_Id;
7482 Parent_Type : Entity_Id;
7483 Derived_Type : Entity_Id;
7484 Is_Completion : Boolean;
7485 Derive_Subps : Boolean := True)
7487 Loc : constant Source_Ptr := Sloc (N);
7488 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
7489 Par_Scope : constant Entity_Id := Scope (Par_Base);
7490 Full_N : constant Node_Id := New_Copy_Tree (N);
7491 Full_Der : Entity_Id := New_Copy (Derived_Type);
7492 Full_P : Entity_Id;
7494 procedure Build_Full_Derivation;
7495 -- Build full derivation, i.e. derive from the full view
7497 procedure Copy_And_Build;
7498 -- Copy derived type declaration, replace parent with its full view,
7499 -- and build derivation
7501 ---------------------------
7502 -- Build_Full_Derivation --
7503 ---------------------------
7505 procedure Build_Full_Derivation is
7506 begin
7507 -- If parent scope is not open, install the declarations
7509 if not In_Open_Scopes (Par_Scope) then
7510 Install_Private_Declarations (Par_Scope);
7511 Install_Visible_Declarations (Par_Scope);
7512 Copy_And_Build;
7513 Uninstall_Declarations (Par_Scope);
7515 -- If parent scope is open and in another unit, and parent has a
7516 -- completion, then the derivation is taking place in the visible
7517 -- part of a child unit. In that case retrieve the full view of
7518 -- the parent momentarily.
7520 elsif not In_Same_Source_Unit (N, Parent_Type) then
7521 Full_P := Full_View (Parent_Type);
7522 Exchange_Declarations (Parent_Type);
7523 Copy_And_Build;
7524 Exchange_Declarations (Full_P);
7526 -- Otherwise it is a local derivation
7528 else
7529 Copy_And_Build;
7530 end if;
7531 end Build_Full_Derivation;
7533 --------------------
7534 -- Copy_And_Build --
7535 --------------------
7537 procedure Copy_And_Build is
7538 Full_Parent : Entity_Id := Parent_Type;
7540 begin
7541 -- If the parent is itself derived from another private type,
7542 -- installing the private declarations has not affected its
7543 -- privacy status, so use its own full view explicitly.
7545 if Is_Private_Type (Full_Parent)
7546 and then Present (Full_View (Full_Parent))
7547 then
7548 Full_Parent := Full_View (Full_Parent);
7549 end if;
7551 -- And its underlying full view if necessary
7553 if Is_Private_Type (Full_Parent)
7554 and then Present (Underlying_Full_View (Full_Parent))
7555 then
7556 Full_Parent := Underlying_Full_View (Full_Parent);
7557 end if;
7559 -- For record, access and most enumeration types, derivation from
7560 -- the full view requires a fully-fledged declaration. In the other
7561 -- cases, just use an itype.
7563 if Ekind (Full_Parent) in Record_Kind
7564 or else Ekind (Full_Parent) in Access_Kind
7565 or else
7566 (Ekind (Full_Parent) in Enumeration_Kind
7567 and then not Is_Standard_Character_Type (Full_Parent)
7568 and then not Is_Generic_Type (Root_Type (Full_Parent)))
7569 then
7570 -- Copy and adjust declaration to provide a completion for what
7571 -- is originally a private declaration. Indicate that full view
7572 -- is internally generated.
7574 Set_Comes_From_Source (Full_N, False);
7575 Set_Comes_From_Source (Full_Der, False);
7576 Set_Parent (Full_Der, Full_N);
7577 Set_Defining_Identifier (Full_N, Full_Der);
7579 -- If there are no constraints, adjust the subtype mark
7581 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7582 N_Subtype_Indication
7583 then
7584 Set_Subtype_Indication
7585 (Type_Definition (Full_N),
7586 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7587 end if;
7589 Insert_After (N, Full_N);
7591 -- Build full view of derived type from full view of parent which
7592 -- is now installed. Subprograms have been derived on the partial
7593 -- view, the completion does not derive them anew.
7595 if Ekind (Full_Parent) in Record_Kind then
7597 -- If parent type is tagged, the completion inherits the proper
7598 -- primitive operations.
7600 if Is_Tagged_Type (Parent_Type) then
7601 Build_Derived_Record_Type
7602 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7603 else
7604 Build_Derived_Record_Type
7605 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7606 end if;
7608 else
7609 Build_Derived_Type
7610 (Full_N, Full_Parent, Full_Der,
7611 Is_Completion => False, Derive_Subps => False);
7612 end if;
7614 -- The full declaration has been introduced into the tree and
7615 -- processed in the step above. It should not be analyzed again
7616 -- (when encountered later in the current list of declarations)
7617 -- to prevent spurious name conflicts. The full entity remains
7618 -- invisible.
7620 Set_Analyzed (Full_N);
7622 else
7623 Full_Der :=
7624 Make_Defining_Identifier (Sloc (Derived_Type),
7625 Chars => Chars (Derived_Type));
7626 Set_Is_Itype (Full_Der);
7627 Set_Associated_Node_For_Itype (Full_Der, N);
7628 Set_Parent (Full_Der, N);
7629 Build_Derived_Type
7630 (N, Full_Parent, Full_Der,
7631 Is_Completion => False, Derive_Subps => False);
7632 end if;
7634 Set_Has_Private_Declaration (Full_Der);
7635 Set_Has_Private_Declaration (Derived_Type);
7637 Set_Scope (Full_Der, Scope (Derived_Type));
7638 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7639 Set_Has_Size_Clause (Full_Der, False);
7640 Set_Has_Alignment_Clause (Full_Der, False);
7641 Set_Has_Delayed_Freeze (Full_Der);
7642 Set_Is_Frozen (Full_Der, False);
7643 Set_Freeze_Node (Full_Der, Empty);
7644 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7645 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7647 -- The convention on the base type may be set in the private part
7648 -- and not propagated to the subtype until later, so we obtain the
7649 -- convention from the base type of the parent.
7651 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7652 end Copy_And_Build;
7654 -- Start of processing for Build_Derived_Private_Type
7656 begin
7657 if Is_Tagged_Type (Parent_Type) then
7658 Full_P := Full_View (Parent_Type);
7660 -- A type extension of a type with unknown discriminants is an
7661 -- indefinite type that the back-end cannot handle directly.
7662 -- We treat it as a private type, and build a completion that is
7663 -- derived from the full view of the parent, and hopefully has
7664 -- known discriminants.
7666 -- If the full view of the parent type has an underlying record view,
7667 -- use it to generate the underlying record view of this derived type
7668 -- (required for chains of derivations with unknown discriminants).
7670 -- Minor optimization: we avoid the generation of useless underlying
7671 -- record view entities if the private type declaration has unknown
7672 -- discriminants but its corresponding full view has no
7673 -- discriminants.
7675 if Has_Unknown_Discriminants (Parent_Type)
7676 and then Present (Full_P)
7677 and then (Has_Discriminants (Full_P)
7678 or else Present (Underlying_Record_View (Full_P)))
7679 and then not In_Open_Scopes (Par_Scope)
7680 and then Expander_Active
7681 then
7682 declare
7683 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7684 New_Ext : constant Node_Id :=
7685 Copy_Separate_Tree
7686 (Record_Extension_Part (Type_Definition (N)));
7687 Decl : Node_Id;
7689 begin
7690 Build_Derived_Record_Type
7691 (N, Parent_Type, Derived_Type, Derive_Subps);
7693 -- Build anonymous completion, as a derivation from the full
7694 -- view of the parent. This is not a completion in the usual
7695 -- sense, because the current type is not private.
7697 Decl :=
7698 Make_Full_Type_Declaration (Loc,
7699 Defining_Identifier => Full_Der,
7700 Type_Definition =>
7701 Make_Derived_Type_Definition (Loc,
7702 Subtype_Indication =>
7703 New_Copy_Tree
7704 (Subtype_Indication (Type_Definition (N))),
7705 Record_Extension_Part => New_Ext));
7707 -- If the parent type has an underlying record view, use it
7708 -- here to build the new underlying record view.
7710 if Present (Underlying_Record_View (Full_P)) then
7711 pragma Assert
7712 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7713 = N_Identifier);
7714 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7715 Underlying_Record_View (Full_P));
7716 end if;
7718 Install_Private_Declarations (Par_Scope);
7719 Install_Visible_Declarations (Par_Scope);
7720 Insert_Before (N, Decl);
7722 -- Mark entity as an underlying record view before analysis,
7723 -- to avoid generating the list of its primitive operations
7724 -- (which is not really required for this entity) and thus
7725 -- prevent spurious errors associated with missing overriding
7726 -- of abstract primitives (overridden only for Derived_Type).
7728 Set_Ekind (Full_Der, E_Record_Type);
7729 Set_Is_Underlying_Record_View (Full_Der);
7730 Set_Default_SSO (Full_Der);
7731 Set_No_Reordering (Full_Der, No_Component_Reordering);
7733 Analyze (Decl);
7735 pragma Assert (Has_Discriminants (Full_Der)
7736 and then not Has_Unknown_Discriminants (Full_Der));
7738 Uninstall_Declarations (Par_Scope);
7740 -- Freeze the underlying record view, to prevent generation of
7741 -- useless dispatching information, which is simply shared with
7742 -- the real derived type.
7744 Set_Is_Frozen (Full_Der);
7746 -- If the derived type has access discriminants, create
7747 -- references to their anonymous types now, to prevent
7748 -- back-end problems when their first use is in generated
7749 -- bodies of primitives.
7751 declare
7752 E : Entity_Id;
7754 begin
7755 E := First_Entity (Full_Der);
7757 while Present (E) loop
7758 if Ekind (E) = E_Discriminant
7759 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7760 then
7761 Build_Itype_Reference (Etype (E), Decl);
7762 end if;
7764 Next_Entity (E);
7765 end loop;
7766 end;
7768 -- Set up links between real entity and underlying record view
7770 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7771 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7772 end;
7774 -- If discriminants are known, build derived record
7776 else
7777 Build_Derived_Record_Type
7778 (N, Parent_Type, Derived_Type, Derive_Subps);
7779 end if;
7781 return;
7783 elsif Has_Discriminants (Parent_Type) then
7785 -- Build partial view of derived type from partial view of parent.
7786 -- This must be done before building the full derivation because the
7787 -- second derivation will modify the discriminants of the first and
7788 -- the discriminants are chained with the rest of the components in
7789 -- the full derivation.
7791 Build_Derived_Record_Type
7792 (N, Parent_Type, Derived_Type, Derive_Subps);
7794 -- Build the full derivation if this is not the anonymous derived
7795 -- base type created by Build_Derived_Record_Type in the constrained
7796 -- case (see point 5. of its head comment) since we build it for the
7797 -- derived subtype. And skip it for protected types altogether, as
7798 -- gigi does not use these types directly.
7800 if Present (Full_View (Parent_Type))
7801 and then not Is_Itype (Derived_Type)
7802 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7803 then
7804 declare
7805 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7806 Discr : Entity_Id;
7807 Last_Discr : Entity_Id;
7809 begin
7810 -- If this is not a completion, construct the implicit full
7811 -- view by deriving from the full view of the parent type.
7812 -- But if this is a completion, the derived private type
7813 -- being built is a full view and the full derivation can
7814 -- only be its underlying full view.
7816 Build_Full_Derivation;
7818 if not Is_Completion then
7819 Set_Full_View (Derived_Type, Full_Der);
7820 else
7821 Set_Underlying_Full_View (Derived_Type, Full_Der);
7822 Set_Is_Underlying_Full_View (Full_Der);
7823 end if;
7825 if not Is_Base_Type (Derived_Type) then
7826 Set_Full_View (Der_Base, Base_Type (Full_Der));
7827 end if;
7829 -- Copy the discriminant list from full view to the partial
7830 -- view (base type and its subtype). Gigi requires that the
7831 -- partial and full views have the same discriminants.
7833 -- Note that since the partial view points to discriminants
7834 -- in the full view, their scope will be that of the full
7835 -- view. This might cause some front end problems and need
7836 -- adjustment???
7838 Discr := First_Discriminant (Base_Type (Full_Der));
7839 Set_First_Entity (Der_Base, Discr);
7841 loop
7842 Last_Discr := Discr;
7843 Next_Discriminant (Discr);
7844 exit when No (Discr);
7845 end loop;
7847 Set_Last_Entity (Der_Base, Last_Discr);
7848 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7849 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7850 end;
7851 end if;
7853 elsif Present (Full_View (Parent_Type))
7854 and then Has_Discriminants (Full_View (Parent_Type))
7855 then
7856 if Has_Unknown_Discriminants (Parent_Type)
7857 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7858 N_Subtype_Indication
7859 then
7860 Error_Msg_N
7861 ("cannot constrain type with unknown discriminants",
7862 Subtype_Indication (Type_Definition (N)));
7863 return;
7864 end if;
7866 -- If this is not a completion, construct the implicit full view by
7867 -- deriving from the full view of the parent type. But if this is a
7868 -- completion, the derived private type being built is a full view
7869 -- and the full derivation can only be its underlying full view.
7871 Build_Full_Derivation;
7873 if not Is_Completion then
7874 Set_Full_View (Derived_Type, Full_Der);
7875 else
7876 Set_Underlying_Full_View (Derived_Type, Full_Der);
7877 Set_Is_Underlying_Full_View (Full_Der);
7878 end if;
7880 -- In any case, the primitive operations are inherited from the
7881 -- parent type, not from the internal full view.
7883 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7885 if Derive_Subps then
7886 Derive_Subprograms (Parent_Type, Derived_Type);
7887 end if;
7889 Set_Stored_Constraint (Derived_Type, No_Elist);
7890 Set_Is_Constrained
7891 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7893 else
7894 -- Untagged type, No discriminants on either view
7896 if Nkind (Subtype_Indication (Type_Definition (N))) =
7897 N_Subtype_Indication
7898 then
7899 Error_Msg_N
7900 ("illegal constraint on type without discriminants", N);
7901 end if;
7903 if Present (Discriminant_Specifications (N))
7904 and then Present (Full_View (Parent_Type))
7905 and then not Is_Tagged_Type (Full_View (Parent_Type))
7906 then
7907 Error_Msg_N ("cannot add discriminants to untagged type", N);
7908 end if;
7910 Set_Stored_Constraint (Derived_Type, No_Elist);
7911 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7913 Set_Is_Controlled_Active
7914 (Derived_Type, Is_Controlled_Active (Parent_Type));
7916 Set_Disable_Controlled
7917 (Derived_Type, Disable_Controlled (Parent_Type));
7919 Set_Has_Controlled_Component
7920 (Derived_Type, Has_Controlled_Component (Parent_Type));
7922 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7924 if not Is_Controlled (Parent_Type) then
7925 Set_Finalize_Storage_Only
7926 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7927 end if;
7929 -- If this is not a completion, construct the implicit full view by
7930 -- deriving from the full view of the parent type.
7932 -- ??? If the parent is untagged private and its completion is
7933 -- tagged, this mechanism will not work because we cannot derive from
7934 -- the tagged full view unless we have an extension.
7936 if Present (Full_View (Parent_Type))
7937 and then not Is_Tagged_Type (Full_View (Parent_Type))
7938 and then not Is_Completion
7939 then
7940 Build_Full_Derivation;
7941 Set_Full_View (Derived_Type, Full_Der);
7942 end if;
7943 end if;
7945 Set_Has_Unknown_Discriminants (Derived_Type,
7946 Has_Unknown_Discriminants (Parent_Type));
7948 if Is_Private_Type (Derived_Type) then
7949 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7950 end if;
7952 -- If the parent base type is in scope, add the derived type to its
7953 -- list of private dependents, because its full view may become
7954 -- visible subsequently (in a nested private part, a body, or in a
7955 -- further child unit).
7957 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7958 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7960 -- Check for unusual case where a type completed by a private
7961 -- derivation occurs within a package nested in a child unit, and
7962 -- the parent is declared in an ancestor.
7964 if Is_Child_Unit (Scope (Current_Scope))
7965 and then Is_Completion
7966 and then In_Private_Part (Current_Scope)
7967 and then Scope (Parent_Type) /= Current_Scope
7969 -- Note that if the parent has a completion in the private part,
7970 -- (which is itself a derivation from some other private type)
7971 -- it is that completion that is visible, there is no full view
7972 -- available, and no special processing is needed.
7974 and then Present (Full_View (Parent_Type))
7975 then
7976 -- In this case, the full view of the parent type will become
7977 -- visible in the body of the enclosing child, and only then will
7978 -- the current type be possibly non-private. Build an underlying
7979 -- full view that will be installed when the enclosing child body
7980 -- is compiled.
7982 if Present (Underlying_Full_View (Derived_Type)) then
7983 Full_Der := Underlying_Full_View (Derived_Type);
7984 else
7985 Build_Full_Derivation;
7986 Set_Underlying_Full_View (Derived_Type, Full_Der);
7987 Set_Is_Underlying_Full_View (Full_Der);
7988 end if;
7990 -- The full view will be used to swap entities on entry/exit to
7991 -- the body, and must appear in the entity list for the package.
7993 Append_Entity (Full_Der, Scope (Derived_Type));
7994 end if;
7995 end if;
7996 end Build_Derived_Private_Type;
7998 -------------------------------
7999 -- Build_Derived_Record_Type --
8000 -------------------------------
8002 -- 1. INTRODUCTION
8004 -- Ideally we would like to use the same model of type derivation for
8005 -- tagged and untagged record types. Unfortunately this is not quite
8006 -- possible because the semantics of representation clauses is different
8007 -- for tagged and untagged records under inheritance. Consider the
8008 -- following:
8010 -- type R (...) is [tagged] record ... end record;
8011 -- type T (...) is new R (...) [with ...];
8013 -- The representation clauses for T can specify a completely different
8014 -- record layout from R's. Hence the same component can be placed in two
8015 -- very different positions in objects of type T and R. If R and T are
8016 -- tagged types, representation clauses for T can only specify the layout
8017 -- of non inherited components, thus components that are common in R and T
8018 -- have the same position in objects of type R and T.
8020 -- This has two implications. The first is that the entire tree for R's
8021 -- declaration needs to be copied for T in the untagged case, so that T
8022 -- can be viewed as a record type of its own with its own representation
8023 -- clauses. The second implication is the way we handle discriminants.
8024 -- Specifically, in the untagged case we need a way to communicate to Gigi
8025 -- what are the real discriminants in the record, while for the semantics
8026 -- we need to consider those introduced by the user to rename the
8027 -- discriminants in the parent type. This is handled by introducing the
8028 -- notion of stored discriminants. See below for more.
8030 -- Fortunately the way regular components are inherited can be handled in
8031 -- the same way in tagged and untagged types.
8033 -- To complicate things a bit more the private view of a private extension
8034 -- cannot be handled in the same way as the full view (for one thing the
8035 -- semantic rules are somewhat different). We will explain what differs
8036 -- below.
8038 -- 2. DISCRIMINANTS UNDER INHERITANCE
8040 -- The semantic rules governing the discriminants of derived types are
8041 -- quite subtle.
8043 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
8044 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
8046 -- If parent type has discriminants, then the discriminants that are
8047 -- declared in the derived type are [3.4 (11)]:
8049 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
8050 -- there is one;
8052 -- o Otherwise, each discriminant of the parent type (implicitly declared
8053 -- in the same order with the same specifications). In this case, the
8054 -- discriminants are said to be "inherited", or if unknown in the parent
8055 -- are also unknown in the derived type.
8057 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8059 -- o The parent subtype must be constrained;
8061 -- o If the parent type is not a tagged type, then each discriminant of
8062 -- the derived type must be used in the constraint defining a parent
8063 -- subtype. [Implementation note: This ensures that the new discriminant
8064 -- can share storage with an existing discriminant.]
8066 -- For the derived type each discriminant of the parent type is either
8067 -- inherited, constrained to equal some new discriminant of the derived
8068 -- type, or constrained to the value of an expression.
8070 -- When inherited or constrained to equal some new discriminant, the
8071 -- parent discriminant and the discriminant of the derived type are said
8072 -- to "correspond".
8074 -- If a discriminant of the parent type is constrained to a specific value
8075 -- in the derived type definition, then the discriminant is said to be
8076 -- "specified" by that derived type definition.
8078 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8080 -- We have spoken about stored discriminants in point 1 (introduction)
8081 -- above. There are two sorts of stored discriminants: implicit and
8082 -- explicit. As long as the derived type inherits the same discriminants as
8083 -- the root record type, stored discriminants are the same as regular
8084 -- discriminants, and are said to be implicit. However, if any discriminant
8085 -- in the root type was renamed in the derived type, then the derived
8086 -- type will contain explicit stored discriminants. Explicit stored
8087 -- discriminants are discriminants in addition to the semantically visible
8088 -- discriminants defined for the derived type. Stored discriminants are
8089 -- used by Gigi to figure out what are the physical discriminants in
8090 -- objects of the derived type (see precise definition in einfo.ads).
8091 -- As an example, consider the following:
8093 -- type R (D1, D2, D3 : Int) is record ... end record;
8094 -- type T1 is new R;
8095 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8096 -- type T3 is new T2;
8097 -- type T4 (Y : Int) is new T3 (Y, 99);
8099 -- The following table summarizes the discriminants and stored
8100 -- discriminants in R and T1 through T4:
8102 -- Type Discrim Stored Discrim Comment
8103 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
8104 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
8105 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
8106 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
8107 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
8109 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
8110 -- find the corresponding discriminant in the parent type, while
8111 -- Original_Record_Component (abbreviated ORC below) the actual physical
8112 -- component that is renamed. Finally the field Is_Completely_Hidden
8113 -- (abbreviated ICH below) is set for all explicit stored discriminants
8114 -- (see einfo.ads for more info). For the above example this gives:
8116 -- Discrim CD ORC ICH
8117 -- ^^^^^^^ ^^ ^^^ ^^^
8118 -- D1 in R empty itself no
8119 -- D2 in R empty itself no
8120 -- D3 in R empty itself no
8122 -- D1 in T1 D1 in R itself no
8123 -- D2 in T1 D2 in R itself no
8124 -- D3 in T1 D3 in R itself no
8126 -- X1 in T2 D3 in T1 D3 in T2 no
8127 -- X2 in T2 D1 in T1 D1 in T2 no
8128 -- D1 in T2 empty itself yes
8129 -- D2 in T2 empty itself yes
8130 -- D3 in T2 empty itself yes
8132 -- X1 in T3 X1 in T2 D3 in T3 no
8133 -- X2 in T3 X2 in T2 D1 in T3 no
8134 -- D1 in T3 empty itself yes
8135 -- D2 in T3 empty itself yes
8136 -- D3 in T3 empty itself yes
8138 -- Y in T4 X1 in T3 D3 in T4 no
8139 -- D1 in T4 empty itself yes
8140 -- D2 in T4 empty itself yes
8141 -- D3 in T4 empty itself yes
8143 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8145 -- Type derivation for tagged types is fairly straightforward. If no
8146 -- discriminants are specified by the derived type, these are inherited
8147 -- from the parent. No explicit stored discriminants are ever necessary.
8148 -- The only manipulation that is done to the tree is that of adding a
8149 -- _parent field with parent type and constrained to the same constraint
8150 -- specified for the parent in the derived type definition. For instance:
8152 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
8153 -- type T1 is new R with null record;
8154 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8156 -- are changed into:
8158 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8159 -- _parent : R (D1, D2, D3);
8160 -- end record;
8162 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8163 -- _parent : T1 (X2, 88, X1);
8164 -- end record;
8166 -- The discriminants actually present in R, T1 and T2 as well as their CD,
8167 -- ORC and ICH fields are:
8169 -- Discrim CD ORC ICH
8170 -- ^^^^^^^ ^^ ^^^ ^^^
8171 -- D1 in R empty itself no
8172 -- D2 in R empty itself no
8173 -- D3 in R empty itself no
8175 -- D1 in T1 D1 in R D1 in R no
8176 -- D2 in T1 D2 in R D2 in R no
8177 -- D3 in T1 D3 in R D3 in R no
8179 -- X1 in T2 D3 in T1 D3 in R no
8180 -- X2 in T2 D1 in T1 D1 in R no
8182 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8184 -- Regardless of whether we dealing with a tagged or untagged type
8185 -- we will transform all derived type declarations of the form
8187 -- type T is new R (...) [with ...];
8188 -- or
8189 -- subtype S is R (...);
8190 -- type T is new S [with ...];
8191 -- into
8192 -- type BT is new R [with ...];
8193 -- subtype T is BT (...);
8195 -- That is, the base derived type is constrained only if it has no
8196 -- discriminants. The reason for doing this is that GNAT's semantic model
8197 -- assumes that a base type with discriminants is unconstrained.
8199 -- Note that, strictly speaking, the above transformation is not always
8200 -- correct. Consider for instance the following excerpt from ACVC b34011a:
8202 -- procedure B34011A is
8203 -- type REC (D : integer := 0) is record
8204 -- I : Integer;
8205 -- end record;
8207 -- package P is
8208 -- type T6 is new Rec;
8209 -- function F return T6;
8210 -- end P;
8212 -- use P;
8213 -- package Q6 is
8214 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
8215 -- end Q6;
8217 -- The definition of Q6.U is illegal. However transforming Q6.U into
8219 -- type BaseU is new T6;
8220 -- subtype U is BaseU (Q6.F.I)
8222 -- turns U into a legal subtype, which is incorrect. To avoid this problem
8223 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
8224 -- the transformation described above.
8226 -- There is another instance where the above transformation is incorrect.
8227 -- Consider:
8229 -- package Pack is
8230 -- type Base (D : Integer) is tagged null record;
8231 -- procedure P (X : Base);
8233 -- type Der is new Base (2) with null record;
8234 -- procedure P (X : Der);
8235 -- end Pack;
8237 -- Then the above transformation turns this into
8239 -- type Der_Base is new Base with null record;
8240 -- -- procedure P (X : Base) is implicitly inherited here
8241 -- -- as procedure P (X : Der_Base).
8243 -- subtype Der is Der_Base (2);
8244 -- procedure P (X : Der);
8245 -- -- The overriding of P (X : Der_Base) is illegal since we
8246 -- -- have a parameter conformance problem.
8248 -- To get around this problem, after having semantically processed Der_Base
8249 -- and the rewritten subtype declaration for Der, we copy Der_Base field
8250 -- Discriminant_Constraint from Der so that when parameter conformance is
8251 -- checked when P is overridden, no semantic errors are flagged.
8253 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8255 -- Regardless of whether we are dealing with a tagged or untagged type
8256 -- we will transform all derived type declarations of the form
8258 -- type R (D1, .., Dn : ...) is [tagged] record ...;
8259 -- type T is new R [with ...];
8260 -- into
8261 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8263 -- The reason for such transformation is that it allows us to implement a
8264 -- very clean form of component inheritance as explained below.
8266 -- Note that this transformation is not achieved by direct tree rewriting
8267 -- and manipulation, but rather by redoing the semantic actions that the
8268 -- above transformation will entail. This is done directly in routine
8269 -- Inherit_Components.
8271 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
8273 -- In both tagged and untagged derived types, regular non discriminant
8274 -- components are inherited in the derived type from the parent type. In
8275 -- the absence of discriminants component, inheritance is straightforward
8276 -- as components can simply be copied from the parent.
8278 -- If the parent has discriminants, inheriting components constrained with
8279 -- these discriminants requires caution. Consider the following example:
8281 -- type R (D1, D2 : Positive) is [tagged] record
8282 -- S : String (D1 .. D2);
8283 -- end record;
8285 -- type T1 is new R [with null record];
8286 -- type T2 (X : positive) is new R (1, X) [with null record];
8288 -- As explained in 6. above, T1 is rewritten as
8289 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8290 -- which makes the treatment for T1 and T2 identical.
8292 -- What we want when inheriting S, is that references to D1 and D2 in R are
8293 -- replaced with references to their correct constraints, i.e. D1 and D2 in
8294 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
8295 -- with either discriminant references in the derived type or expressions.
8296 -- This replacement is achieved as follows: before inheriting R's
8297 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8298 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
8299 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8300 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
8301 -- by String (1 .. X).
8303 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8305 -- We explain here the rules governing private type extensions relevant to
8306 -- type derivation. These rules are explained on the following example:
8308 -- type D [(...)] is new A [(...)] with private; <-- partial view
8309 -- type D [(...)] is new P [(...)] with null record; <-- full view
8311 -- Type A is called the ancestor subtype of the private extension.
8312 -- Type P is the parent type of the full view of the private extension. It
8313 -- must be A or a type derived from A.
8315 -- The rules concerning the discriminants of private type extensions are
8316 -- [7.3(10-13)]:
8318 -- o If a private extension inherits known discriminants from the ancestor
8319 -- subtype, then the full view must also inherit its discriminants from
8320 -- the ancestor subtype and the parent subtype of the full view must be
8321 -- constrained if and only if the ancestor subtype is constrained.
8323 -- o If a partial view has unknown discriminants, then the full view may
8324 -- define a definite or an indefinite subtype, with or without
8325 -- discriminants.
8327 -- o If a partial view has neither known nor unknown discriminants, then
8328 -- the full view must define a definite subtype.
8330 -- o If the ancestor subtype of a private extension has constrained
8331 -- discriminants, then the parent subtype of the full view must impose a
8332 -- statically matching constraint on those discriminants.
8334 -- This means that only the following forms of private extensions are
8335 -- allowed:
8337 -- type D is new A with private; <-- partial view
8338 -- type D is new P with null record; <-- full view
8340 -- If A has no discriminants than P has no discriminants, otherwise P must
8341 -- inherit A's discriminants.
8343 -- type D is new A (...) with private; <-- partial view
8344 -- type D is new P (:::) with null record; <-- full view
8346 -- P must inherit A's discriminants and (...) and (:::) must statically
8347 -- match.
8349 -- subtype A is R (...);
8350 -- type D is new A with private; <-- partial view
8351 -- type D is new P with null record; <-- full view
8353 -- P must have inherited R's discriminants and must be derived from A or
8354 -- any of its subtypes.
8356 -- type D (..) is new A with private; <-- partial view
8357 -- type D (..) is new P [(:::)] with null record; <-- full view
8359 -- No specific constraints on P's discriminants or constraint (:::).
8360 -- Note that A can be unconstrained, but the parent subtype P must either
8361 -- be constrained or (:::) must be present.
8363 -- type D (..) is new A [(...)] with private; <-- partial view
8364 -- type D (..) is new P [(:::)] with null record; <-- full view
8366 -- P's constraints on A's discriminants must statically match those
8367 -- imposed by (...).
8369 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8371 -- The full view of a private extension is handled exactly as described
8372 -- above. The model chose for the private view of a private extension is
8373 -- the same for what concerns discriminants (i.e. they receive the same
8374 -- treatment as in the tagged case). However, the private view of the
8375 -- private extension always inherits the components of the parent base,
8376 -- without replacing any discriminant reference. Strictly speaking this is
8377 -- incorrect. However, Gigi never uses this view to generate code so this
8378 -- is a purely semantic issue. In theory, a set of transformations similar
8379 -- to those given in 5. and 6. above could be applied to private views of
8380 -- private extensions to have the same model of component inheritance as
8381 -- for non private extensions. However, this is not done because it would
8382 -- further complicate private type processing. Semantically speaking, this
8383 -- leaves us in an uncomfortable situation. As an example consider:
8385 -- package Pack is
8386 -- type R (D : integer) is tagged record
8387 -- S : String (1 .. D);
8388 -- end record;
8389 -- procedure P (X : R);
8390 -- type T is new R (1) with private;
8391 -- private
8392 -- type T is new R (1) with null record;
8393 -- end;
8395 -- This is transformed into:
8397 -- package Pack is
8398 -- type R (D : integer) is tagged record
8399 -- S : String (1 .. D);
8400 -- end record;
8401 -- procedure P (X : R);
8402 -- type T is new R (1) with private;
8403 -- private
8404 -- type BaseT is new R with null record;
8405 -- subtype T is BaseT (1);
8406 -- end;
8408 -- (strictly speaking the above is incorrect Ada)
8410 -- From the semantic standpoint the private view of private extension T
8411 -- should be flagged as constrained since one can clearly have
8413 -- Obj : T;
8415 -- in a unit withing Pack. However, when deriving subprograms for the
8416 -- private view of private extension T, T must be seen as unconstrained
8417 -- since T has discriminants (this is a constraint of the current
8418 -- subprogram derivation model). Thus, when processing the private view of
8419 -- a private extension such as T, we first mark T as unconstrained, we
8420 -- process it, we perform program derivation and just before returning from
8421 -- Build_Derived_Record_Type we mark T as constrained.
8423 -- ??? Are there are other uncomfortable cases that we will have to
8424 -- deal with.
8426 -- 10. RECORD_TYPE_WITH_PRIVATE complications
8428 -- Types that are derived from a visible record type and have a private
8429 -- extension present other peculiarities. They behave mostly like private
8430 -- types, but if they have primitive operations defined, these will not
8431 -- have the proper signatures for further inheritance, because other
8432 -- primitive operations will use the implicit base that we define for
8433 -- private derivations below. This affect subprogram inheritance (see
8434 -- Derive_Subprograms for details). We also derive the implicit base from
8435 -- the base type of the full view, so that the implicit base is a record
8436 -- type and not another private type, This avoids infinite loops.
8438 procedure Build_Derived_Record_Type
8439 (N : Node_Id;
8440 Parent_Type : Entity_Id;
8441 Derived_Type : Entity_Id;
8442 Derive_Subps : Boolean := True)
8444 Discriminant_Specs : constant Boolean :=
8445 Present (Discriminant_Specifications (N));
8446 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
8447 Loc : constant Source_Ptr := Sloc (N);
8448 Private_Extension : constant Boolean :=
8449 Nkind (N) = N_Private_Extension_Declaration;
8450 Assoc_List : Elist_Id;
8451 Constraint_Present : Boolean;
8452 Constrs : Elist_Id;
8453 Discrim : Entity_Id;
8454 Indic : Node_Id;
8455 Inherit_Discrims : Boolean := False;
8456 Last_Discrim : Entity_Id;
8457 New_Base : Entity_Id;
8458 New_Decl : Node_Id;
8459 New_Discrs : Elist_Id;
8460 New_Indic : Node_Id;
8461 Parent_Base : Entity_Id;
8462 Save_Etype : Entity_Id;
8463 Save_Discr_Constr : Elist_Id;
8464 Save_Next_Entity : Entity_Id;
8465 Type_Def : Node_Id;
8467 Discs : Elist_Id := New_Elmt_List;
8468 -- An empty Discs list means that there were no constraints in the
8469 -- subtype indication or that there was an error processing it.
8471 begin
8472 if Ekind (Parent_Type) = E_Record_Type_With_Private
8473 and then Present (Full_View (Parent_Type))
8474 and then Has_Discriminants (Parent_Type)
8475 then
8476 Parent_Base := Base_Type (Full_View (Parent_Type));
8477 else
8478 Parent_Base := Base_Type (Parent_Type);
8479 end if;
8481 -- AI05-0115 : if this is a derivation from a private type in some
8482 -- other scope that may lead to invisible components for the derived
8483 -- type, mark it accordingly.
8485 if Is_Private_Type (Parent_Type) then
8486 if Scope (Parent_Type) = Scope (Derived_Type) then
8487 null;
8489 elsif In_Open_Scopes (Scope (Parent_Type))
8490 and then In_Private_Part (Scope (Parent_Type))
8491 then
8492 null;
8494 else
8495 Set_Has_Private_Ancestor (Derived_Type);
8496 end if;
8498 else
8499 Set_Has_Private_Ancestor
8500 (Derived_Type, Has_Private_Ancestor (Parent_Type));
8501 end if;
8503 -- Before we start the previously documented transformations, here is
8504 -- little fix for size and alignment of tagged types. Normally when we
8505 -- derive type D from type P, we copy the size and alignment of P as the
8506 -- default for D, and in the absence of explicit representation clauses
8507 -- for D, the size and alignment are indeed the same as the parent.
8509 -- But this is wrong for tagged types, since fields may be added, and
8510 -- the default size may need to be larger, and the default alignment may
8511 -- need to be larger.
8513 -- We therefore reset the size and alignment fields in the tagged case.
8514 -- Note that the size and alignment will in any case be at least as
8515 -- large as the parent type (since the derived type has a copy of the
8516 -- parent type in the _parent field)
8518 -- The type is also marked as being tagged here, which is needed when
8519 -- processing components with a self-referential anonymous access type
8520 -- in the call to Check_Anonymous_Access_Components below. Note that
8521 -- this flag is also set later on for completeness.
8523 if Is_Tagged then
8524 Set_Is_Tagged_Type (Derived_Type);
8525 Init_Size_Align (Derived_Type);
8526 end if;
8528 -- STEP 0a: figure out what kind of derived type declaration we have
8530 if Private_Extension then
8531 Type_Def := N;
8532 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
8533 Set_Default_SSO (Derived_Type);
8534 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8536 else
8537 Type_Def := Type_Definition (N);
8539 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8540 -- Parent_Base can be a private type or private extension. However,
8541 -- for tagged types with an extension the newly added fields are
8542 -- visible and hence the Derived_Type is always an E_Record_Type.
8543 -- (except that the parent may have its own private fields).
8544 -- For untagged types we preserve the Ekind of the Parent_Base.
8546 if Present (Record_Extension_Part (Type_Def)) then
8547 Set_Ekind (Derived_Type, E_Record_Type);
8548 Set_Default_SSO (Derived_Type);
8549 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8551 -- Create internal access types for components with anonymous
8552 -- access types.
8554 if Ada_Version >= Ada_2005 then
8555 Check_Anonymous_Access_Components
8556 (N, Derived_Type, Derived_Type,
8557 Component_List (Record_Extension_Part (Type_Def)));
8558 end if;
8560 else
8561 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8562 end if;
8563 end if;
8565 -- Indic can either be an N_Identifier if the subtype indication
8566 -- contains no constraint or an N_Subtype_Indication if the subtype
8567 -- indication has a constraint.
8569 Indic := Subtype_Indication (Type_Def);
8570 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
8572 -- Check that the type has visible discriminants. The type may be
8573 -- a private type with unknown discriminants whose full view has
8574 -- discriminants which are invisible.
8576 if Constraint_Present then
8577 if not Has_Discriminants (Parent_Base)
8578 or else
8579 (Has_Unknown_Discriminants (Parent_Base)
8580 and then Is_Private_Type (Parent_Base))
8581 then
8582 Error_Msg_N
8583 ("invalid constraint: type has no discriminant",
8584 Constraint (Indic));
8586 Constraint_Present := False;
8587 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8589 elsif Is_Constrained (Parent_Type) then
8590 Error_Msg_N
8591 ("invalid constraint: parent type is already constrained",
8592 Constraint (Indic));
8594 Constraint_Present := False;
8595 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8596 end if;
8597 end if;
8599 -- STEP 0b: If needed, apply transformation given in point 5. above
8601 if not Private_Extension
8602 and then Has_Discriminants (Parent_Type)
8603 and then not Discriminant_Specs
8604 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8605 then
8606 -- First, we must analyze the constraint (see comment in point 5.)
8607 -- The constraint may come from the subtype indication of the full
8608 -- declaration.
8610 if Constraint_Present then
8611 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8613 -- If there is no explicit constraint, there might be one that is
8614 -- inherited from a constrained parent type. In that case verify that
8615 -- it conforms to the constraint in the partial view. In perverse
8616 -- cases the parent subtypes of the partial and full view can have
8617 -- different constraints.
8619 elsif Present (Stored_Constraint (Parent_Type)) then
8620 New_Discrs := Stored_Constraint (Parent_Type);
8622 else
8623 New_Discrs := No_Elist;
8624 end if;
8626 if Has_Discriminants (Derived_Type)
8627 and then Has_Private_Declaration (Derived_Type)
8628 and then Present (Discriminant_Constraint (Derived_Type))
8629 and then Present (New_Discrs)
8630 then
8631 -- Verify that constraints of the full view statically match
8632 -- those given in the partial view.
8634 declare
8635 C1, C2 : Elmt_Id;
8637 begin
8638 C1 := First_Elmt (New_Discrs);
8639 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8640 while Present (C1) and then Present (C2) loop
8641 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8642 or else
8643 (Is_OK_Static_Expression (Node (C1))
8644 and then Is_OK_Static_Expression (Node (C2))
8645 and then
8646 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8647 then
8648 null;
8650 else
8651 if Constraint_Present then
8652 Error_Msg_N
8653 ("constraint not conformant to previous declaration",
8654 Node (C1));
8655 else
8656 Error_Msg_N
8657 ("constraint of full view is incompatible "
8658 & "with partial view", N);
8659 end if;
8660 end if;
8662 Next_Elmt (C1);
8663 Next_Elmt (C2);
8664 end loop;
8665 end;
8666 end if;
8668 -- Insert and analyze the declaration for the unconstrained base type
8670 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8672 New_Decl :=
8673 Make_Full_Type_Declaration (Loc,
8674 Defining_Identifier => New_Base,
8675 Type_Definition =>
8676 Make_Derived_Type_Definition (Loc,
8677 Abstract_Present => Abstract_Present (Type_Def),
8678 Limited_Present => Limited_Present (Type_Def),
8679 Subtype_Indication =>
8680 New_Occurrence_Of (Parent_Base, Loc),
8681 Record_Extension_Part =>
8682 Relocate_Node (Record_Extension_Part (Type_Def)),
8683 Interface_List => Interface_List (Type_Def)));
8685 Set_Parent (New_Decl, Parent (N));
8686 Mark_Rewrite_Insertion (New_Decl);
8687 Insert_Before (N, New_Decl);
8689 -- In the extension case, make sure ancestor is frozen appropriately
8690 -- (see also non-discriminated case below).
8692 if Present (Record_Extension_Part (Type_Def))
8693 or else Is_Interface (Parent_Base)
8694 then
8695 Freeze_Before (New_Decl, Parent_Type);
8696 end if;
8698 -- Note that this call passes False for the Derive_Subps parameter
8699 -- because subprogram derivation is deferred until after creating
8700 -- the subtype (see below).
8702 Build_Derived_Type
8703 (New_Decl, Parent_Base, New_Base,
8704 Is_Completion => False, Derive_Subps => False);
8706 -- ??? This needs re-examination to determine whether the
8707 -- above call can simply be replaced by a call to Analyze.
8709 Set_Analyzed (New_Decl);
8711 -- Insert and analyze the declaration for the constrained subtype
8713 if Constraint_Present then
8714 New_Indic :=
8715 Make_Subtype_Indication (Loc,
8716 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8717 Constraint => Relocate_Node (Constraint (Indic)));
8719 else
8720 declare
8721 Constr_List : constant List_Id := New_List;
8722 C : Elmt_Id;
8723 Expr : Node_Id;
8725 begin
8726 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8727 while Present (C) loop
8728 Expr := Node (C);
8730 -- It is safe here to call New_Copy_Tree since we called
8731 -- Force_Evaluation on each constraint previously
8732 -- in Build_Discriminant_Constraints.
8734 Append (New_Copy_Tree (Expr), To => Constr_List);
8736 Next_Elmt (C);
8737 end loop;
8739 New_Indic :=
8740 Make_Subtype_Indication (Loc,
8741 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8742 Constraint =>
8743 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8744 end;
8745 end if;
8747 Rewrite (N,
8748 Make_Subtype_Declaration (Loc,
8749 Defining_Identifier => Derived_Type,
8750 Subtype_Indication => New_Indic));
8752 Analyze (N);
8754 -- Derivation of subprograms must be delayed until the full subtype
8755 -- has been established, to ensure proper overriding of subprograms
8756 -- inherited by full types. If the derivations occurred as part of
8757 -- the call to Build_Derived_Type above, then the check for type
8758 -- conformance would fail because earlier primitive subprograms
8759 -- could still refer to the full type prior the change to the new
8760 -- subtype and hence would not match the new base type created here.
8761 -- Subprograms are not derived, however, when Derive_Subps is False
8762 -- (since otherwise there could be redundant derivations).
8764 if Derive_Subps then
8765 Derive_Subprograms (Parent_Type, Derived_Type);
8766 end if;
8768 -- For tagged types the Discriminant_Constraint of the new base itype
8769 -- is inherited from the first subtype so that no subtype conformance
8770 -- problem arise when the first subtype overrides primitive
8771 -- operations inherited by the implicit base type.
8773 if Is_Tagged then
8774 Set_Discriminant_Constraint
8775 (New_Base, Discriminant_Constraint (Derived_Type));
8776 end if;
8778 return;
8779 end if;
8781 -- If we get here Derived_Type will have no discriminants or it will be
8782 -- a discriminated unconstrained base type.
8784 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8786 if Is_Tagged then
8788 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8789 -- The declaration of a specific descendant of an interface type
8790 -- freezes the interface type (RM 13.14).
8792 if not Private_Extension or else Is_Interface (Parent_Base) then
8793 Freeze_Before (N, Parent_Type);
8794 end if;
8796 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8797 -- cannot be declared at a deeper level than its parent type is
8798 -- removed. The check on derivation within a generic body is also
8799 -- relaxed, but there's a restriction that a derived tagged type
8800 -- cannot be declared in a generic body if it's derived directly
8801 -- or indirectly from a formal type of that generic.
8803 if Ada_Version >= Ada_2005 then
8804 if Present (Enclosing_Generic_Body (Derived_Type)) then
8805 declare
8806 Ancestor_Type : Entity_Id;
8808 begin
8809 -- Check to see if any ancestor of the derived type is a
8810 -- formal type.
8812 Ancestor_Type := Parent_Type;
8813 while not Is_Generic_Type (Ancestor_Type)
8814 and then Etype (Ancestor_Type) /= Ancestor_Type
8815 loop
8816 Ancestor_Type := Etype (Ancestor_Type);
8817 end loop;
8819 -- If the derived type does have a formal type as an
8820 -- ancestor, then it's an error if the derived type is
8821 -- declared within the body of the generic unit that
8822 -- declares the formal type in its generic formal part. It's
8823 -- sufficient to check whether the ancestor type is declared
8824 -- inside the same generic body as the derived type (such as
8825 -- within a nested generic spec), in which case the
8826 -- derivation is legal. If the formal type is declared
8827 -- outside of that generic body, then it's guaranteed that
8828 -- the derived type is declared within the generic body of
8829 -- the generic unit declaring the formal type.
8831 if Is_Generic_Type (Ancestor_Type)
8832 and then Enclosing_Generic_Body (Ancestor_Type) /=
8833 Enclosing_Generic_Body (Derived_Type)
8834 then
8835 Error_Msg_NE
8836 ("parent type of& must not be descendant of formal type"
8837 & " of an enclosing generic body",
8838 Indic, Derived_Type);
8839 end if;
8840 end;
8841 end if;
8843 elsif Type_Access_Level (Derived_Type) /=
8844 Type_Access_Level (Parent_Type)
8845 and then not Is_Generic_Type (Derived_Type)
8846 then
8847 if Is_Controlled (Parent_Type) then
8848 Error_Msg_N
8849 ("controlled type must be declared at the library level",
8850 Indic);
8851 else
8852 Error_Msg_N
8853 ("type extension at deeper accessibility level than parent",
8854 Indic);
8855 end if;
8857 else
8858 declare
8859 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8860 begin
8861 if Present (GB)
8862 and then GB /= Enclosing_Generic_Body (Parent_Base)
8863 then
8864 Error_Msg_NE
8865 ("parent type of& must not be outside generic body"
8866 & " (RM 3.9.1(4))",
8867 Indic, Derived_Type);
8868 end if;
8869 end;
8870 end if;
8871 end if;
8873 -- Ada 2005 (AI-251)
8875 if Ada_Version >= Ada_2005 and then Is_Tagged then
8877 -- "The declaration of a specific descendant of an interface type
8878 -- freezes the interface type" (RM 13.14).
8880 declare
8881 Iface : Node_Id;
8882 begin
8883 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8884 Iface := First (Interface_List (Type_Def));
8885 while Present (Iface) loop
8886 Freeze_Before (N, Etype (Iface));
8887 Next (Iface);
8888 end loop;
8889 end if;
8890 end;
8891 end if;
8893 -- STEP 1b : preliminary cleanup of the full view of private types
8895 -- If the type is already marked as having discriminants, then it's the
8896 -- completion of a private type or private extension and we need to
8897 -- retain the discriminants from the partial view if the current
8898 -- declaration has Discriminant_Specifications so that we can verify
8899 -- conformance. However, we must remove any existing components that
8900 -- were inherited from the parent (and attached in Copy_And_Swap)
8901 -- because the full type inherits all appropriate components anyway, and
8902 -- we do not want the partial view's components interfering.
8904 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8905 Discrim := First_Discriminant (Derived_Type);
8906 loop
8907 Last_Discrim := Discrim;
8908 Next_Discriminant (Discrim);
8909 exit when No (Discrim);
8910 end loop;
8912 Set_Last_Entity (Derived_Type, Last_Discrim);
8914 -- In all other cases wipe out the list of inherited components (even
8915 -- inherited discriminants), it will be properly rebuilt here.
8917 else
8918 Set_First_Entity (Derived_Type, Empty);
8919 Set_Last_Entity (Derived_Type, Empty);
8920 end if;
8922 -- STEP 1c: Initialize some flags for the Derived_Type
8924 -- The following flags must be initialized here so that
8925 -- Process_Discriminants can check that discriminants of tagged types do
8926 -- not have a default initial value and that access discriminants are
8927 -- only specified for limited records. For completeness, these flags are
8928 -- also initialized along with all the other flags below.
8930 -- AI-419: Limitedness is not inherited from an interface parent, so to
8931 -- be limited in that case the type must be explicitly declared as
8932 -- limited. However, task and protected interfaces are always limited.
8934 if Limited_Present (Type_Def) then
8935 Set_Is_Limited_Record (Derived_Type);
8937 elsif Is_Limited_Record (Parent_Type)
8938 or else (Present (Full_View (Parent_Type))
8939 and then Is_Limited_Record (Full_View (Parent_Type)))
8940 then
8941 if not Is_Interface (Parent_Type)
8942 or else Is_Synchronized_Interface (Parent_Type)
8943 or else Is_Protected_Interface (Parent_Type)
8944 or else Is_Task_Interface (Parent_Type)
8945 then
8946 Set_Is_Limited_Record (Derived_Type);
8947 end if;
8948 end if;
8950 -- STEP 2a: process discriminants of derived type if any
8952 Push_Scope (Derived_Type);
8954 if Discriminant_Specs then
8955 Set_Has_Unknown_Discriminants (Derived_Type, False);
8957 -- The following call initializes fields Has_Discriminants and
8958 -- Discriminant_Constraint, unless we are processing the completion
8959 -- of a private type declaration.
8961 Check_Or_Process_Discriminants (N, Derived_Type);
8963 -- For untagged types, the constraint on the Parent_Type must be
8964 -- present and is used to rename the discriminants.
8966 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8967 Error_Msg_N ("untagged parent must have discriminants", Indic);
8969 elsif not Is_Tagged and then not Constraint_Present then
8970 Error_Msg_N
8971 ("discriminant constraint needed for derived untagged records",
8972 Indic);
8974 -- Otherwise the parent subtype must be constrained unless we have a
8975 -- private extension.
8977 elsif not Constraint_Present
8978 and then not Private_Extension
8979 and then not Is_Constrained (Parent_Type)
8980 then
8981 Error_Msg_N
8982 ("unconstrained type not allowed in this context", Indic);
8984 elsif Constraint_Present then
8985 -- The following call sets the field Corresponding_Discriminant
8986 -- for the discriminants in the Derived_Type.
8988 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8990 -- For untagged types all new discriminants must rename
8991 -- discriminants in the parent. For private extensions new
8992 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8994 Discrim := First_Discriminant (Derived_Type);
8995 while Present (Discrim) loop
8996 if not Is_Tagged
8997 and then No (Corresponding_Discriminant (Discrim))
8998 then
8999 Error_Msg_N
9000 ("new discriminants must constrain old ones", Discrim);
9002 elsif Private_Extension
9003 and then Present (Corresponding_Discriminant (Discrim))
9004 then
9005 Error_Msg_N
9006 ("only static constraints allowed for parent"
9007 & " discriminants in the partial view", Indic);
9008 exit;
9009 end if;
9011 -- If a new discriminant is used in the constraint, then its
9012 -- subtype must be statically compatible with the parent
9013 -- discriminant's subtype (3.7(15)).
9015 -- However, if the record contains an array constrained by
9016 -- the discriminant but with some different bound, the compiler
9017 -- tries to create a smaller range for the discriminant type.
9018 -- (See exp_ch3.Adjust_Discriminants). In this case, where
9019 -- the discriminant type is a scalar type, the check must use
9020 -- the original discriminant type in the parent declaration.
9022 declare
9023 Corr_Disc : constant Entity_Id :=
9024 Corresponding_Discriminant (Discrim);
9025 Disc_Type : constant Entity_Id := Etype (Discrim);
9026 Corr_Type : Entity_Id;
9028 begin
9029 if Present (Corr_Disc) then
9030 if Is_Scalar_Type (Disc_Type) then
9031 Corr_Type :=
9032 Entity (Discriminant_Type (Parent (Corr_Disc)));
9033 else
9034 Corr_Type := Etype (Corr_Disc);
9035 end if;
9037 if not
9038 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
9039 then
9040 Error_Msg_N
9041 ("subtype must be compatible "
9042 & "with parent discriminant",
9043 Discrim);
9044 end if;
9045 end if;
9046 end;
9048 Next_Discriminant (Discrim);
9049 end loop;
9051 -- Check whether the constraints of the full view statically
9052 -- match those imposed by the parent subtype [7.3(13)].
9054 if Present (Stored_Constraint (Derived_Type)) then
9055 declare
9056 C1, C2 : Elmt_Id;
9058 begin
9059 C1 := First_Elmt (Discs);
9060 C2 := First_Elmt (Stored_Constraint (Derived_Type));
9061 while Present (C1) and then Present (C2) loop
9062 if not
9063 Fully_Conformant_Expressions (Node (C1), Node (C2))
9064 then
9065 Error_Msg_N
9066 ("not conformant with previous declaration",
9067 Node (C1));
9068 end if;
9070 Next_Elmt (C1);
9071 Next_Elmt (C2);
9072 end loop;
9073 end;
9074 end if;
9075 end if;
9077 -- STEP 2b: No new discriminants, inherit discriminants if any
9079 else
9080 if Private_Extension then
9081 Set_Has_Unknown_Discriminants
9082 (Derived_Type,
9083 Has_Unknown_Discriminants (Parent_Type)
9084 or else Unknown_Discriminants_Present (N));
9086 -- The partial view of the parent may have unknown discriminants,
9087 -- but if the full view has discriminants and the parent type is
9088 -- in scope they must be inherited.
9090 elsif Has_Unknown_Discriminants (Parent_Type)
9091 and then
9092 (not Has_Discriminants (Parent_Type)
9093 or else not In_Open_Scopes (Scope (Parent_Type)))
9094 then
9095 Set_Has_Unknown_Discriminants (Derived_Type);
9096 end if;
9098 if not Has_Unknown_Discriminants (Derived_Type)
9099 and then not Has_Unknown_Discriminants (Parent_Base)
9100 and then Has_Discriminants (Parent_Type)
9101 then
9102 Inherit_Discrims := True;
9103 Set_Has_Discriminants
9104 (Derived_Type, True);
9105 Set_Discriminant_Constraint
9106 (Derived_Type, Discriminant_Constraint (Parent_Base));
9107 end if;
9109 -- The following test is true for private types (remember
9110 -- transformation 5. is not applied to those) and in an error
9111 -- situation.
9113 if Constraint_Present then
9114 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
9115 end if;
9117 -- For now mark a new derived type as constrained only if it has no
9118 -- discriminants. At the end of Build_Derived_Record_Type we properly
9119 -- set this flag in the case of private extensions. See comments in
9120 -- point 9. just before body of Build_Derived_Record_Type.
9122 Set_Is_Constrained
9123 (Derived_Type,
9124 not (Inherit_Discrims
9125 or else Has_Unknown_Discriminants (Derived_Type)));
9126 end if;
9128 -- STEP 3: initialize fields of derived type
9130 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
9131 Set_Stored_Constraint (Derived_Type, No_Elist);
9133 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
9134 -- but cannot be interfaces
9136 if not Private_Extension
9137 and then Ekind (Derived_Type) /= E_Private_Type
9138 and then Ekind (Derived_Type) /= E_Limited_Private_Type
9139 then
9140 if Interface_Present (Type_Def) then
9141 Analyze_Interface_Declaration (Derived_Type, Type_Def);
9142 end if;
9144 Set_Interfaces (Derived_Type, No_Elist);
9145 end if;
9147 -- Fields inherited from the Parent_Type
9149 Set_Has_Specified_Layout
9150 (Derived_Type, Has_Specified_Layout (Parent_Type));
9151 Set_Is_Limited_Composite
9152 (Derived_Type, Is_Limited_Composite (Parent_Type));
9153 Set_Is_Private_Composite
9154 (Derived_Type, Is_Private_Composite (Parent_Type));
9156 if Is_Tagged_Type (Parent_Type) then
9157 Set_No_Tagged_Streams_Pragma
9158 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9159 end if;
9161 -- Fields inherited from the Parent_Base
9163 Set_Has_Controlled_Component
9164 (Derived_Type, Has_Controlled_Component (Parent_Base));
9165 Set_Has_Non_Standard_Rep
9166 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
9167 Set_Has_Primitive_Operations
9168 (Derived_Type, Has_Primitive_Operations (Parent_Base));
9170 -- Set fields for private derived types
9172 if Is_Private_Type (Derived_Type) then
9173 Set_Depends_On_Private (Derived_Type, True);
9174 Set_Private_Dependents (Derived_Type, New_Elmt_List);
9175 end if;
9177 -- Inherit fields for non-private types. If this is the completion of a
9178 -- derivation from a private type, the parent itself is private and the
9179 -- attributes come from its full view, which must be present.
9181 if Is_Record_Type (Derived_Type) then
9182 declare
9183 Parent_Full : Entity_Id;
9185 begin
9186 if Is_Private_Type (Parent_Base)
9187 and then not Is_Record_Type (Parent_Base)
9188 then
9189 Parent_Full := Full_View (Parent_Base);
9190 else
9191 Parent_Full := Parent_Base;
9192 end if;
9194 Set_Component_Alignment
9195 (Derived_Type, Component_Alignment (Parent_Full));
9196 Set_C_Pass_By_Copy
9197 (Derived_Type, C_Pass_By_Copy (Parent_Full));
9198 Set_Has_Complex_Representation
9199 (Derived_Type, Has_Complex_Representation (Parent_Full));
9201 -- For untagged types, inherit the layout by default to avoid
9202 -- costly changes of representation for type conversions.
9204 if not Is_Tagged then
9205 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Full));
9206 Set_No_Reordering (Derived_Type, No_Reordering (Parent_Full));
9207 end if;
9208 end;
9209 end if;
9211 -- Set fields for tagged types
9213 if Is_Tagged then
9214 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
9216 -- All tagged types defined in Ada.Finalization are controlled
9218 if Chars (Scope (Derived_Type)) = Name_Finalization
9219 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
9220 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
9221 then
9222 Set_Is_Controlled_Active (Derived_Type);
9223 else
9224 Set_Is_Controlled_Active
9225 (Derived_Type, Is_Controlled_Active (Parent_Base));
9226 end if;
9228 -- Minor optimization: there is no need to generate the class-wide
9229 -- entity associated with an underlying record view.
9231 if not Is_Underlying_Record_View (Derived_Type) then
9232 Make_Class_Wide_Type (Derived_Type);
9233 end if;
9235 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
9237 if Has_Discriminants (Derived_Type)
9238 and then Constraint_Present
9239 then
9240 Set_Stored_Constraint
9241 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
9242 end if;
9244 if Ada_Version >= Ada_2005 then
9245 declare
9246 Ifaces_List : Elist_Id;
9248 begin
9249 -- Checks rules 3.9.4 (13/2 and 14/2)
9251 if Comes_From_Source (Derived_Type)
9252 and then not Is_Private_Type (Derived_Type)
9253 and then Is_Interface (Parent_Type)
9254 and then not Is_Interface (Derived_Type)
9255 then
9256 if Is_Task_Interface (Parent_Type) then
9257 Error_Msg_N
9258 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9259 Derived_Type);
9261 elsif Is_Protected_Interface (Parent_Type) then
9262 Error_Msg_N
9263 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9264 Derived_Type);
9265 end if;
9266 end if;
9268 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9270 Check_Interfaces (N, Type_Def);
9272 -- Ada 2005 (AI-251): Collect the list of progenitors that are
9273 -- not already in the parents.
9275 Collect_Interfaces
9276 (T => Derived_Type,
9277 Ifaces_List => Ifaces_List,
9278 Exclude_Parents => True);
9280 Set_Interfaces (Derived_Type, Ifaces_List);
9282 -- If the derived type is the anonymous type created for
9283 -- a declaration whose parent has a constraint, propagate
9284 -- the interface list to the source type. This must be done
9285 -- prior to the completion of the analysis of the source type
9286 -- because the components in the extension may contain current
9287 -- instances whose legality depends on some ancestor.
9289 if Is_Itype (Derived_Type) then
9290 declare
9291 Def : constant Node_Id :=
9292 Associated_Node_For_Itype (Derived_Type);
9293 begin
9294 if Present (Def)
9295 and then Nkind (Def) = N_Full_Type_Declaration
9296 then
9297 Set_Interfaces
9298 (Defining_Identifier (Def), Ifaces_List);
9299 end if;
9300 end;
9301 end if;
9303 -- A type extension is automatically Ghost when one of its
9304 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
9305 -- also inherited when the parent type is Ghost, but this is
9306 -- done in Build_Derived_Type as the mechanism also handles
9307 -- untagged derivations.
9309 if Implements_Ghost_Interface (Derived_Type) then
9310 Set_Is_Ghost_Entity (Derived_Type);
9311 end if;
9312 end;
9313 end if;
9314 end if;
9316 -- STEP 4: Inherit components from the parent base and constrain them.
9317 -- Apply the second transformation described in point 6. above.
9319 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
9320 or else not Has_Discriminants (Parent_Type)
9321 or else not Is_Constrained (Parent_Type)
9322 then
9323 Constrs := Discs;
9324 else
9325 Constrs := Discriminant_Constraint (Parent_Type);
9326 end if;
9328 Assoc_List :=
9329 Inherit_Components
9330 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
9332 -- STEP 5a: Copy the parent record declaration for untagged types
9334 Set_Has_Implicit_Dereference
9335 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
9337 if not Is_Tagged then
9339 -- Discriminant_Constraint (Derived_Type) has been properly
9340 -- constructed. Save it and temporarily set it to Empty because we
9341 -- do not want the call to New_Copy_Tree below to mess this list.
9343 if Has_Discriminants (Derived_Type) then
9344 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
9345 Set_Discriminant_Constraint (Derived_Type, No_Elist);
9346 else
9347 Save_Discr_Constr := No_Elist;
9348 end if;
9350 -- Save the Etype field of Derived_Type. It is correctly set now,
9351 -- but the call to New_Copy tree may remap it to point to itself,
9352 -- which is not what we want. Ditto for the Next_Entity field.
9354 Save_Etype := Etype (Derived_Type);
9355 Save_Next_Entity := Next_Entity (Derived_Type);
9357 -- Assoc_List maps all stored discriminants in the Parent_Base to
9358 -- stored discriminants in the Derived_Type. It is fundamental that
9359 -- no types or itypes with discriminants other than the stored
9360 -- discriminants appear in the entities declared inside
9361 -- Derived_Type, since the back end cannot deal with it.
9363 New_Decl :=
9364 New_Copy_Tree
9365 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
9366 Copy_Dimensions_Of_Components (Derived_Type);
9368 -- Restore the fields saved prior to the New_Copy_Tree call
9369 -- and compute the stored constraint.
9371 Set_Etype (Derived_Type, Save_Etype);
9372 Set_Next_Entity (Derived_Type, Save_Next_Entity);
9374 if Has_Discriminants (Derived_Type) then
9375 Set_Discriminant_Constraint
9376 (Derived_Type, Save_Discr_Constr);
9377 Set_Stored_Constraint
9378 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
9379 Replace_Components (Derived_Type, New_Decl);
9380 end if;
9382 -- Insert the new derived type declaration
9384 Rewrite (N, New_Decl);
9386 -- STEP 5b: Complete the processing for record extensions in generics
9388 -- There is no completion for record extensions declared in the
9389 -- parameter part of a generic, so we need to complete processing for
9390 -- these generic record extensions here. The Record_Type_Definition call
9391 -- will change the Ekind of the components from E_Void to E_Component.
9393 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
9394 Record_Type_Definition (Empty, Derived_Type);
9396 -- STEP 5c: Process the record extension for non private tagged types
9398 elsif not Private_Extension then
9399 Expand_Record_Extension (Derived_Type, Type_Def);
9401 -- Note : previously in ASIS mode we set the Parent_Subtype of the
9402 -- derived type to propagate some semantic information. This led
9403 -- to other ASIS failures and has been removed.
9405 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9406 -- implemented interfaces if we are in expansion mode
9408 if Expander_Active
9409 and then Has_Interfaces (Derived_Type)
9410 then
9411 Add_Interface_Tag_Components (N, Derived_Type);
9412 end if;
9414 -- Analyze the record extension
9416 Record_Type_Definition
9417 (Record_Extension_Part (Type_Def), Derived_Type);
9418 end if;
9420 End_Scope;
9422 -- Nothing else to do if there is an error in the derivation.
9423 -- An unusual case: the full view may be derived from a type in an
9424 -- instance, when the partial view was used illegally as an actual
9425 -- in that instance, leading to a circular definition.
9427 if Etype (Derived_Type) = Any_Type
9428 or else Etype (Parent_Type) = Derived_Type
9429 then
9430 return;
9431 end if;
9433 -- Set delayed freeze and then derive subprograms, we need to do
9434 -- this in this order so that derived subprograms inherit the
9435 -- derived freeze if necessary.
9437 Set_Has_Delayed_Freeze (Derived_Type);
9439 if Derive_Subps then
9440 Derive_Subprograms (Parent_Type, Derived_Type);
9441 end if;
9443 -- If we have a private extension which defines a constrained derived
9444 -- type mark as constrained here after we have derived subprograms. See
9445 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9447 if Private_Extension and then Inherit_Discrims then
9448 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
9449 Set_Is_Constrained (Derived_Type, True);
9450 Set_Discriminant_Constraint (Derived_Type, Discs);
9452 elsif Is_Constrained (Parent_Type) then
9453 Set_Is_Constrained
9454 (Derived_Type, True);
9455 Set_Discriminant_Constraint
9456 (Derived_Type, Discriminant_Constraint (Parent_Type));
9457 end if;
9458 end if;
9460 -- Update the class-wide type, which shares the now-completed entity
9461 -- list with its specific type. In case of underlying record views,
9462 -- we do not generate the corresponding class wide entity.
9464 if Is_Tagged
9465 and then not Is_Underlying_Record_View (Derived_Type)
9466 then
9467 Set_First_Entity
9468 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
9469 Set_Last_Entity
9470 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
9471 end if;
9473 Check_Function_Writable_Actuals (N);
9474 end Build_Derived_Record_Type;
9476 ------------------------
9477 -- Build_Derived_Type --
9478 ------------------------
9480 procedure Build_Derived_Type
9481 (N : Node_Id;
9482 Parent_Type : Entity_Id;
9483 Derived_Type : Entity_Id;
9484 Is_Completion : Boolean;
9485 Derive_Subps : Boolean := True)
9487 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9489 begin
9490 -- Set common attributes
9492 Set_Scope (Derived_Type, Current_Scope);
9493 Set_Etype (Derived_Type, Parent_Base);
9494 Set_Ekind (Derived_Type, Ekind (Parent_Base));
9495 Propagate_Concurrent_Flags (Derived_Type, Parent_Base);
9497 Set_Size_Info (Derived_Type, Parent_Type);
9498 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9500 Set_Is_Controlled_Active
9501 (Derived_Type, Is_Controlled_Active (Parent_Type));
9503 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
9504 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
9505 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
9507 if Is_Tagged_Type (Derived_Type) then
9508 Set_No_Tagged_Streams_Pragma
9509 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9510 end if;
9512 -- If the parent has primitive routines, set the derived type link
9514 if Has_Primitive_Operations (Parent_Type) then
9515 Set_Derived_Type_Link (Parent_Base, Derived_Type);
9516 end if;
9518 -- If the parent type is a private subtype, the convention on the base
9519 -- type may be set in the private part, and not propagated to the
9520 -- subtype until later, so we obtain the convention from the base type.
9522 Set_Convention (Derived_Type, Convention (Parent_Base));
9524 -- Set SSO default for record or array type
9526 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
9527 and then Is_Base_Type (Derived_Type)
9528 then
9529 Set_Default_SSO (Derived_Type);
9530 end if;
9532 -- A derived type inherits the Default_Initial_Condition pragma coming
9533 -- from any parent type within the derivation chain.
9535 if Has_DIC (Parent_Type) then
9536 Set_Has_Inherited_DIC (Derived_Type);
9537 end if;
9539 -- A derived type inherits any class-wide invariants coming from a
9540 -- parent type or an interface. Note that the invariant procedure of
9541 -- the parent type should not be inherited because the derived type may
9542 -- define invariants of its own.
9544 if not Is_Interface (Derived_Type) then
9545 if Has_Inherited_Invariants (Parent_Type)
9546 or else Has_Inheritable_Invariants (Parent_Type)
9547 then
9548 Set_Has_Inherited_Invariants (Derived_Type);
9550 elsif Is_Concurrent_Type (Derived_Type)
9551 or else Is_Tagged_Type (Derived_Type)
9552 then
9553 declare
9554 Iface : Entity_Id;
9555 Ifaces : Elist_Id;
9556 Iface_Elmt : Elmt_Id;
9558 begin
9559 Collect_Interfaces
9560 (T => Derived_Type,
9561 Ifaces_List => Ifaces,
9562 Exclude_Parents => True);
9564 if Present (Ifaces) then
9565 Iface_Elmt := First_Elmt (Ifaces);
9566 while Present (Iface_Elmt) loop
9567 Iface := Node (Iface_Elmt);
9569 if Has_Inheritable_Invariants (Iface) then
9570 Set_Has_Inherited_Invariants (Derived_Type);
9571 exit;
9572 end if;
9574 Next_Elmt (Iface_Elmt);
9575 end loop;
9576 end if;
9577 end;
9578 end if;
9579 end if;
9581 -- We similarly inherit predicates. Note that for scalar derived types
9582 -- the predicate is inherited from the first subtype, and not from its
9583 -- (anonymous) base type.
9585 if Has_Predicates (Parent_Type)
9586 or else Has_Predicates (First_Subtype (Parent_Type))
9587 then
9588 Set_Has_Predicates (Derived_Type);
9589 end if;
9591 -- The derived type inherits representation clauses from the parent
9592 -- type, and from any interfaces.
9594 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
9596 declare
9597 Iface : Node_Id := First (Abstract_Interface_List (Derived_Type));
9598 begin
9599 while Present (Iface) loop
9600 Inherit_Rep_Item_Chain (Derived_Type, Entity (Iface));
9601 Next (Iface);
9602 end loop;
9603 end;
9605 -- If the parent type has delayed rep aspects, then mark the derived
9606 -- type as possibly inheriting a delayed rep aspect.
9608 if Has_Delayed_Rep_Aspects (Parent_Type) then
9609 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9610 end if;
9612 -- A derived type becomes Ghost when its parent type is also Ghost
9613 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
9614 -- directly inherited because the Ghost policy in effect may differ.
9616 if Is_Ghost_Entity (Parent_Type) then
9617 Set_Is_Ghost_Entity (Derived_Type);
9618 end if;
9620 -- Type dependent processing
9622 case Ekind (Parent_Type) is
9623 when Numeric_Kind =>
9624 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9626 when Array_Kind =>
9627 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9629 when Class_Wide_Kind
9630 | E_Record_Subtype
9631 | E_Record_Type
9633 Build_Derived_Record_Type
9634 (N, Parent_Type, Derived_Type, Derive_Subps);
9635 return;
9637 when Enumeration_Kind =>
9638 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9640 when Access_Kind =>
9641 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9643 when Incomplete_Or_Private_Kind =>
9644 Build_Derived_Private_Type
9645 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9647 -- For discriminated types, the derivation includes deriving
9648 -- primitive operations. For others it is done below.
9650 if Is_Tagged_Type (Parent_Type)
9651 or else Has_Discriminants (Parent_Type)
9652 or else (Present (Full_View (Parent_Type))
9653 and then Has_Discriminants (Full_View (Parent_Type)))
9654 then
9655 return;
9656 end if;
9658 when Concurrent_Kind =>
9659 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9661 when others =>
9662 raise Program_Error;
9663 end case;
9665 -- Nothing more to do if some error occurred
9667 if Etype (Derived_Type) = Any_Type then
9668 return;
9669 end if;
9671 -- Set delayed freeze and then derive subprograms, we need to do this
9672 -- in this order so that derived subprograms inherit the derived freeze
9673 -- if necessary.
9675 Set_Has_Delayed_Freeze (Derived_Type);
9677 if Derive_Subps then
9678 Derive_Subprograms (Parent_Type, Derived_Type);
9679 end if;
9681 Set_Has_Primitive_Operations
9682 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9683 end Build_Derived_Type;
9685 -----------------------
9686 -- Build_Discriminal --
9687 -----------------------
9689 procedure Build_Discriminal (Discrim : Entity_Id) is
9690 D_Minal : Entity_Id;
9691 CR_Disc : Entity_Id;
9693 begin
9694 -- A discriminal has the same name as the discriminant
9696 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9698 Set_Ekind (D_Minal, E_In_Parameter);
9699 Set_Mechanism (D_Minal, Default_Mechanism);
9700 Set_Etype (D_Minal, Etype (Discrim));
9701 Set_Scope (D_Minal, Current_Scope);
9702 Set_Parent (D_Minal, Parent (Discrim));
9704 Set_Discriminal (Discrim, D_Minal);
9705 Set_Discriminal_Link (D_Minal, Discrim);
9707 -- For task types, build at once the discriminants of the corresponding
9708 -- record, which are needed if discriminants are used in entry defaults
9709 -- and in family bounds.
9711 if Is_Concurrent_Type (Current_Scope)
9712 or else
9713 Is_Limited_Type (Current_Scope)
9714 then
9715 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9717 Set_Ekind (CR_Disc, E_In_Parameter);
9718 Set_Mechanism (CR_Disc, Default_Mechanism);
9719 Set_Etype (CR_Disc, Etype (Discrim));
9720 Set_Scope (CR_Disc, Current_Scope);
9721 Set_Discriminal_Link (CR_Disc, Discrim);
9722 Set_CR_Discriminant (Discrim, CR_Disc);
9723 end if;
9724 end Build_Discriminal;
9726 ------------------------------------
9727 -- Build_Discriminant_Constraints --
9728 ------------------------------------
9730 function Build_Discriminant_Constraints
9731 (T : Entity_Id;
9732 Def : Node_Id;
9733 Derived_Def : Boolean := False) return Elist_Id
9735 C : constant Node_Id := Constraint (Def);
9736 Nb_Discr : constant Nat := Number_Discriminants (T);
9738 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9739 -- Saves the expression corresponding to a given discriminant in T
9741 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9742 -- Return the Position number within array Discr_Expr of a discriminant
9743 -- D within the discriminant list of the discriminated type T.
9745 procedure Process_Discriminant_Expression
9746 (Expr : Node_Id;
9747 D : Entity_Id);
9748 -- If this is a discriminant constraint on a partial view, do not
9749 -- generate an overflow check on the discriminant expression. The check
9750 -- will be generated when constraining the full view. Otherwise the
9751 -- backend creates duplicate symbols for the temporaries corresponding
9752 -- to the expressions to be checked, causing spurious assembler errors.
9754 ------------------
9755 -- Pos_Of_Discr --
9756 ------------------
9758 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9759 Disc : Entity_Id;
9761 begin
9762 Disc := First_Discriminant (T);
9763 for J in Discr_Expr'Range loop
9764 if Disc = D then
9765 return J;
9766 end if;
9768 Next_Discriminant (Disc);
9769 end loop;
9771 -- Note: Since this function is called on discriminants that are
9772 -- known to belong to the discriminated type, falling through the
9773 -- loop with no match signals an internal compiler error.
9775 raise Program_Error;
9776 end Pos_Of_Discr;
9778 -------------------------------------
9779 -- Process_Discriminant_Expression --
9780 -------------------------------------
9782 procedure Process_Discriminant_Expression
9783 (Expr : Node_Id;
9784 D : Entity_Id)
9786 BDT : constant Entity_Id := Base_Type (Etype (D));
9788 begin
9789 -- If this is a discriminant constraint on a partial view, do
9790 -- not generate an overflow on the discriminant expression. The
9791 -- check will be generated when constraining the full view.
9793 if Is_Private_Type (T)
9794 and then Present (Full_View (T))
9795 then
9796 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9797 else
9798 Analyze_And_Resolve (Expr, BDT);
9799 end if;
9800 end Process_Discriminant_Expression;
9802 -- Declarations local to Build_Discriminant_Constraints
9804 Discr : Entity_Id;
9805 E : Entity_Id;
9806 Elist : constant Elist_Id := New_Elmt_List;
9808 Constr : Node_Id;
9809 Expr : Node_Id;
9810 Id : Node_Id;
9811 Position : Nat;
9812 Found : Boolean;
9814 Discrim_Present : Boolean := False;
9816 -- Start of processing for Build_Discriminant_Constraints
9818 begin
9819 -- The following loop will process positional associations only.
9820 -- For a positional association, the (single) discriminant is
9821 -- implicitly specified by position, in textual order (RM 3.7.2).
9823 Discr := First_Discriminant (T);
9824 Constr := First (Constraints (C));
9825 for D in Discr_Expr'Range loop
9826 exit when Nkind (Constr) = N_Discriminant_Association;
9828 if No (Constr) then
9829 Error_Msg_N ("too few discriminants given in constraint", C);
9830 return New_Elmt_List;
9832 elsif Nkind (Constr) = N_Range
9833 or else (Nkind (Constr) = N_Attribute_Reference
9834 and then Attribute_Name (Constr) = Name_Range)
9835 then
9836 Error_Msg_N
9837 ("a range is not a valid discriminant constraint", Constr);
9838 Discr_Expr (D) := Error;
9840 else
9841 Process_Discriminant_Expression (Constr, Discr);
9842 Discr_Expr (D) := Constr;
9843 end if;
9845 Next_Discriminant (Discr);
9846 Next (Constr);
9847 end loop;
9849 if No (Discr) and then Present (Constr) then
9850 Error_Msg_N ("too many discriminants given in constraint", Constr);
9851 return New_Elmt_List;
9852 end if;
9854 -- Named associations can be given in any order, but if both positional
9855 -- and named associations are used in the same discriminant constraint,
9856 -- then positional associations must occur first, at their normal
9857 -- position. Hence once a named association is used, the rest of the
9858 -- discriminant constraint must use only named associations.
9860 while Present (Constr) loop
9862 -- Positional association forbidden after a named association
9864 if Nkind (Constr) /= N_Discriminant_Association then
9865 Error_Msg_N ("positional association follows named one", Constr);
9866 return New_Elmt_List;
9868 -- Otherwise it is a named association
9870 else
9871 -- E records the type of the discriminants in the named
9872 -- association. All the discriminants specified in the same name
9873 -- association must have the same type.
9875 E := Empty;
9877 -- Search the list of discriminants in T to see if the simple name
9878 -- given in the constraint matches any of them.
9880 Id := First (Selector_Names (Constr));
9881 while Present (Id) loop
9882 Found := False;
9884 -- If Original_Discriminant is present, we are processing a
9885 -- generic instantiation and this is an instance node. We need
9886 -- to find the name of the corresponding discriminant in the
9887 -- actual record type T and not the name of the discriminant in
9888 -- the generic formal. Example:
9890 -- generic
9891 -- type G (D : int) is private;
9892 -- package P is
9893 -- subtype W is G (D => 1);
9894 -- end package;
9895 -- type Rec (X : int) is record ... end record;
9896 -- package Q is new P (G => Rec);
9898 -- At the point of the instantiation, formal type G is Rec
9899 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9900 -- which really looks like "subtype W is Rec (D => 1);" at
9901 -- the point of instantiation, we want to find the discriminant
9902 -- that corresponds to D in Rec, i.e. X.
9904 if Present (Original_Discriminant (Id))
9905 and then In_Instance
9906 then
9907 Discr := Find_Corresponding_Discriminant (Id, T);
9908 Found := True;
9910 else
9911 Discr := First_Discriminant (T);
9912 while Present (Discr) loop
9913 if Chars (Discr) = Chars (Id) then
9914 Found := True;
9915 exit;
9916 end if;
9918 Next_Discriminant (Discr);
9919 end loop;
9921 if not Found then
9922 Error_Msg_N ("& does not match any discriminant", Id);
9923 return New_Elmt_List;
9925 -- If the parent type is a generic formal, preserve the
9926 -- name of the discriminant for subsequent instances.
9927 -- see comment at the beginning of this if statement.
9929 elsif Is_Generic_Type (Root_Type (T)) then
9930 Set_Original_Discriminant (Id, Discr);
9931 end if;
9932 end if;
9934 Position := Pos_Of_Discr (T, Discr);
9936 if Present (Discr_Expr (Position)) then
9937 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9939 else
9940 -- Each discriminant specified in the same named association
9941 -- must be associated with a separate copy of the
9942 -- corresponding expression.
9944 if Present (Next (Id)) then
9945 Expr := New_Copy_Tree (Expression (Constr));
9946 Set_Parent (Expr, Parent (Expression (Constr)));
9947 else
9948 Expr := Expression (Constr);
9949 end if;
9951 Discr_Expr (Position) := Expr;
9952 Process_Discriminant_Expression (Expr, Discr);
9953 end if;
9955 -- A discriminant association with more than one discriminant
9956 -- name is only allowed if the named discriminants are all of
9957 -- the same type (RM 3.7.1(8)).
9959 if E = Empty then
9960 E := Base_Type (Etype (Discr));
9962 elsif Base_Type (Etype (Discr)) /= E then
9963 Error_Msg_N
9964 ("all discriminants in an association " &
9965 "must have the same type", Id);
9966 end if;
9968 Next (Id);
9969 end loop;
9970 end if;
9972 Next (Constr);
9973 end loop;
9975 -- A discriminant constraint must provide exactly one value for each
9976 -- discriminant of the type (RM 3.7.1(8)).
9978 for J in Discr_Expr'Range loop
9979 if No (Discr_Expr (J)) then
9980 Error_Msg_N ("too few discriminants given in constraint", C);
9981 return New_Elmt_List;
9982 end if;
9983 end loop;
9985 -- Determine if there are discriminant expressions in the constraint
9987 for J in Discr_Expr'Range loop
9988 if Denotes_Discriminant
9989 (Discr_Expr (J), Check_Concurrent => True)
9990 then
9991 Discrim_Present := True;
9992 end if;
9993 end loop;
9995 -- Build an element list consisting of the expressions given in the
9996 -- discriminant constraint and apply the appropriate checks. The list
9997 -- is constructed after resolving any named discriminant associations
9998 -- and therefore the expressions appear in the textual order of the
9999 -- discriminants.
10001 Discr := First_Discriminant (T);
10002 for J in Discr_Expr'Range loop
10003 if Discr_Expr (J) /= Error then
10004 Append_Elmt (Discr_Expr (J), Elist);
10006 -- If any of the discriminant constraints is given by a
10007 -- discriminant and we are in a derived type declaration we
10008 -- have a discriminant renaming. Establish link between new
10009 -- and old discriminant. The new discriminant has an implicit
10010 -- dereference if the old one does.
10012 if Denotes_Discriminant (Discr_Expr (J)) then
10013 if Derived_Def then
10014 declare
10015 New_Discr : constant Entity_Id := Entity (Discr_Expr (J));
10017 begin
10018 Set_Corresponding_Discriminant (New_Discr, Discr);
10019 Set_Has_Implicit_Dereference (New_Discr,
10020 Has_Implicit_Dereference (Discr));
10021 end;
10022 end if;
10024 -- Force the evaluation of non-discriminant expressions.
10025 -- If we have found a discriminant in the constraint 3.4(26)
10026 -- and 3.8(18) demand that no range checks are performed are
10027 -- after evaluation. If the constraint is for a component
10028 -- definition that has a per-object constraint, expressions are
10029 -- evaluated but not checked either. In all other cases perform
10030 -- a range check.
10032 else
10033 if Discrim_Present then
10034 null;
10036 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
10037 and then Has_Per_Object_Constraint
10038 (Defining_Identifier (Parent (Parent (Def))))
10039 then
10040 null;
10042 elsif Is_Access_Type (Etype (Discr)) then
10043 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
10045 else
10046 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
10047 end if;
10049 Force_Evaluation (Discr_Expr (J));
10050 end if;
10052 -- Check that the designated type of an access discriminant's
10053 -- expression is not a class-wide type unless the discriminant's
10054 -- designated type is also class-wide.
10056 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
10057 and then not Is_Class_Wide_Type
10058 (Designated_Type (Etype (Discr)))
10059 and then Etype (Discr_Expr (J)) /= Any_Type
10060 and then Is_Class_Wide_Type
10061 (Designated_Type (Etype (Discr_Expr (J))))
10062 then
10063 Wrong_Type (Discr_Expr (J), Etype (Discr));
10065 elsif Is_Access_Type (Etype (Discr))
10066 and then not Is_Access_Constant (Etype (Discr))
10067 and then Is_Access_Type (Etype (Discr_Expr (J)))
10068 and then Is_Access_Constant (Etype (Discr_Expr (J)))
10069 then
10070 Error_Msg_NE
10071 ("constraint for discriminant& must be access to variable",
10072 Def, Discr);
10073 end if;
10074 end if;
10076 Next_Discriminant (Discr);
10077 end loop;
10079 return Elist;
10080 end Build_Discriminant_Constraints;
10082 ---------------------------------
10083 -- Build_Discriminated_Subtype --
10084 ---------------------------------
10086 procedure Build_Discriminated_Subtype
10087 (T : Entity_Id;
10088 Def_Id : Entity_Id;
10089 Elist : Elist_Id;
10090 Related_Nod : Node_Id;
10091 For_Access : Boolean := False)
10093 Has_Discrs : constant Boolean := Has_Discriminants (T);
10094 Constrained : constant Boolean :=
10095 (Has_Discrs
10096 and then not Is_Empty_Elmt_List (Elist)
10097 and then not Is_Class_Wide_Type (T))
10098 or else Is_Constrained (T);
10100 begin
10101 if Ekind (T) = E_Record_Type then
10102 if For_Access then
10103 Set_Ekind (Def_Id, E_Private_Subtype);
10104 Set_Is_For_Access_Subtype (Def_Id, True);
10105 else
10106 Set_Ekind (Def_Id, E_Record_Subtype);
10107 end if;
10109 -- Inherit preelaboration flag from base, for types for which it
10110 -- may have been set: records, private types, protected types.
10112 Set_Known_To_Have_Preelab_Init
10113 (Def_Id, Known_To_Have_Preelab_Init (T));
10115 elsif Ekind (T) = E_Task_Type then
10116 Set_Ekind (Def_Id, E_Task_Subtype);
10118 elsif Ekind (T) = E_Protected_Type then
10119 Set_Ekind (Def_Id, E_Protected_Subtype);
10120 Set_Known_To_Have_Preelab_Init
10121 (Def_Id, Known_To_Have_Preelab_Init (T));
10123 elsif Is_Private_Type (T) then
10124 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10125 Set_Known_To_Have_Preelab_Init
10126 (Def_Id, Known_To_Have_Preelab_Init (T));
10128 -- Private subtypes may have private dependents
10130 Set_Private_Dependents (Def_Id, New_Elmt_List);
10132 elsif Is_Class_Wide_Type (T) then
10133 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
10135 else
10136 -- Incomplete type. Attach subtype to list of dependents, to be
10137 -- completed with full view of parent type, unless is it the
10138 -- designated subtype of a record component within an init_proc.
10139 -- This last case arises for a component of an access type whose
10140 -- designated type is incomplete (e.g. a Taft Amendment type).
10141 -- The designated subtype is within an inner scope, and needs no
10142 -- elaboration, because only the access type is needed in the
10143 -- initialization procedure.
10145 if Ekind (T) = E_Incomplete_Type then
10146 Set_Ekind (Def_Id, E_Incomplete_Subtype);
10147 else
10148 Set_Ekind (Def_Id, Ekind (T));
10149 end if;
10151 if For_Access and then Within_Init_Proc then
10152 null;
10153 else
10154 Append_Elmt (Def_Id, Private_Dependents (T));
10155 end if;
10156 end if;
10158 Set_Etype (Def_Id, T);
10159 Init_Size_Align (Def_Id);
10160 Set_Has_Discriminants (Def_Id, Has_Discrs);
10161 Set_Is_Constrained (Def_Id, Constrained);
10163 Set_First_Entity (Def_Id, First_Entity (T));
10164 Set_Last_Entity (Def_Id, Last_Entity (T));
10165 Set_Has_Implicit_Dereference
10166 (Def_Id, Has_Implicit_Dereference (T));
10167 Set_Has_Pragma_Unreferenced_Objects
10168 (Def_Id, Has_Pragma_Unreferenced_Objects (T));
10170 -- If the subtype is the completion of a private declaration, there may
10171 -- have been representation clauses for the partial view, and they must
10172 -- be preserved. Build_Derived_Type chains the inherited clauses with
10173 -- the ones appearing on the extension. If this comes from a subtype
10174 -- declaration, all clauses are inherited.
10176 if No (First_Rep_Item (Def_Id)) then
10177 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10178 end if;
10180 if Is_Tagged_Type (T) then
10181 Set_Is_Tagged_Type (Def_Id);
10182 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
10183 Make_Class_Wide_Type (Def_Id);
10184 end if;
10186 Set_Stored_Constraint (Def_Id, No_Elist);
10188 if Has_Discrs then
10189 Set_Discriminant_Constraint (Def_Id, Elist);
10190 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
10191 end if;
10193 if Is_Tagged_Type (T) then
10195 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
10196 -- concurrent record type (which has the list of primitive
10197 -- operations).
10199 if Ada_Version >= Ada_2005
10200 and then Is_Concurrent_Type (T)
10201 then
10202 Set_Corresponding_Record_Type (Def_Id,
10203 Corresponding_Record_Type (T));
10204 else
10205 Set_Direct_Primitive_Operations (Def_Id,
10206 Direct_Primitive_Operations (T));
10207 end if;
10209 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
10210 end if;
10212 -- Subtypes introduced by component declarations do not need to be
10213 -- marked as delayed, and do not get freeze nodes, because the semantics
10214 -- verifies that the parents of the subtypes are frozen before the
10215 -- enclosing record is frozen.
10217 if not Is_Type (Scope (Def_Id)) then
10218 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10220 if Is_Private_Type (T)
10221 and then Present (Full_View (T))
10222 then
10223 Conditional_Delay (Def_Id, Full_View (T));
10224 else
10225 Conditional_Delay (Def_Id, T);
10226 end if;
10227 end if;
10229 if Is_Record_Type (T) then
10230 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
10232 if Has_Discrs
10233 and then not Is_Empty_Elmt_List (Elist)
10234 and then not For_Access
10235 then
10236 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
10237 elsif not For_Access then
10238 Set_Cloned_Subtype (Def_Id, T);
10239 end if;
10240 end if;
10241 end Build_Discriminated_Subtype;
10243 ---------------------------
10244 -- Build_Itype_Reference --
10245 ---------------------------
10247 procedure Build_Itype_Reference
10248 (Ityp : Entity_Id;
10249 Nod : Node_Id)
10251 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
10252 begin
10254 -- Itype references are only created for use by the back-end
10256 if Inside_A_Generic then
10257 return;
10258 else
10259 Set_Itype (IR, Ityp);
10260 Insert_After (Nod, IR);
10261 end if;
10262 end Build_Itype_Reference;
10264 ------------------------
10265 -- Build_Scalar_Bound --
10266 ------------------------
10268 function Build_Scalar_Bound
10269 (Bound : Node_Id;
10270 Par_T : Entity_Id;
10271 Der_T : Entity_Id) return Node_Id
10273 New_Bound : Entity_Id;
10275 begin
10276 -- Note: not clear why this is needed, how can the original bound
10277 -- be unanalyzed at this point? and if it is, what business do we
10278 -- have messing around with it? and why is the base type of the
10279 -- parent type the right type for the resolution. It probably is
10280 -- not. It is OK for the new bound we are creating, but not for
10281 -- the old one??? Still if it never happens, no problem.
10283 Analyze_And_Resolve (Bound, Base_Type (Par_T));
10285 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
10286 New_Bound := New_Copy (Bound);
10287 Set_Etype (New_Bound, Der_T);
10288 Set_Analyzed (New_Bound);
10290 elsif Is_Entity_Name (Bound) then
10291 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
10293 -- The following is almost certainly wrong. What business do we have
10294 -- relocating a node (Bound) that is presumably still attached to
10295 -- the tree elsewhere???
10297 else
10298 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
10299 end if;
10301 Set_Etype (New_Bound, Der_T);
10302 return New_Bound;
10303 end Build_Scalar_Bound;
10305 --------------------------------
10306 -- Build_Underlying_Full_View --
10307 --------------------------------
10309 procedure Build_Underlying_Full_View
10310 (N : Node_Id;
10311 Typ : Entity_Id;
10312 Par : Entity_Id)
10314 Loc : constant Source_Ptr := Sloc (N);
10315 Subt : constant Entity_Id :=
10316 Make_Defining_Identifier
10317 (Loc, New_External_Name (Chars (Typ), 'S'));
10319 Constr : Node_Id;
10320 Indic : Node_Id;
10321 C : Node_Id;
10322 Id : Node_Id;
10324 procedure Set_Discriminant_Name (Id : Node_Id);
10325 -- If the derived type has discriminants, they may rename discriminants
10326 -- of the parent. When building the full view of the parent, we need to
10327 -- recover the names of the original discriminants if the constraint is
10328 -- given by named associations.
10330 ---------------------------
10331 -- Set_Discriminant_Name --
10332 ---------------------------
10334 procedure Set_Discriminant_Name (Id : Node_Id) is
10335 Disc : Entity_Id;
10337 begin
10338 Set_Original_Discriminant (Id, Empty);
10340 if Has_Discriminants (Typ) then
10341 Disc := First_Discriminant (Typ);
10342 while Present (Disc) loop
10343 if Chars (Disc) = Chars (Id)
10344 and then Present (Corresponding_Discriminant (Disc))
10345 then
10346 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
10347 end if;
10348 Next_Discriminant (Disc);
10349 end loop;
10350 end if;
10351 end Set_Discriminant_Name;
10353 -- Start of processing for Build_Underlying_Full_View
10355 begin
10356 if Nkind (N) = N_Full_Type_Declaration then
10357 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
10359 elsif Nkind (N) = N_Subtype_Declaration then
10360 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
10362 elsif Nkind (N) = N_Component_Declaration then
10363 Constr :=
10364 New_Copy_Tree
10365 (Constraint (Subtype_Indication (Component_Definition (N))));
10367 else
10368 raise Program_Error;
10369 end if;
10371 C := First (Constraints (Constr));
10372 while Present (C) loop
10373 if Nkind (C) = N_Discriminant_Association then
10374 Id := First (Selector_Names (C));
10375 while Present (Id) loop
10376 Set_Discriminant_Name (Id);
10377 Next (Id);
10378 end loop;
10379 end if;
10381 Next (C);
10382 end loop;
10384 Indic :=
10385 Make_Subtype_Declaration (Loc,
10386 Defining_Identifier => Subt,
10387 Subtype_Indication =>
10388 Make_Subtype_Indication (Loc,
10389 Subtype_Mark => New_Occurrence_Of (Par, Loc),
10390 Constraint => New_Copy_Tree (Constr)));
10392 -- If this is a component subtype for an outer itype, it is not
10393 -- a list member, so simply set the parent link for analysis: if
10394 -- the enclosing type does not need to be in a declarative list,
10395 -- neither do the components.
10397 if Is_List_Member (N)
10398 and then Nkind (N) /= N_Component_Declaration
10399 then
10400 Insert_Before (N, Indic);
10401 else
10402 Set_Parent (Indic, Parent (N));
10403 end if;
10405 Analyze (Indic);
10406 Set_Underlying_Full_View (Typ, Full_View (Subt));
10407 Set_Is_Underlying_Full_View (Full_View (Subt));
10408 end Build_Underlying_Full_View;
10410 -------------------------------
10411 -- Check_Abstract_Overriding --
10412 -------------------------------
10414 procedure Check_Abstract_Overriding (T : Entity_Id) is
10415 Alias_Subp : Entity_Id;
10416 Elmt : Elmt_Id;
10417 Op_List : Elist_Id;
10418 Subp : Entity_Id;
10419 Type_Def : Node_Id;
10421 procedure Check_Pragma_Implemented (Subp : Entity_Id);
10422 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10423 -- which has pragma Implemented already set. Check whether Subp's entity
10424 -- kind conforms to the implementation kind of the overridden routine.
10426 procedure Check_Pragma_Implemented
10427 (Subp : Entity_Id;
10428 Iface_Subp : Entity_Id);
10429 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10430 -- Iface_Subp and both entities have pragma Implemented already set on
10431 -- them. Check whether the two implementation kinds are conforming.
10433 procedure Inherit_Pragma_Implemented
10434 (Subp : Entity_Id;
10435 Iface_Subp : Entity_Id);
10436 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10437 -- subprogram Iface_Subp which has been marked by pragma Implemented.
10438 -- Propagate the implementation kind of Iface_Subp to Subp.
10440 ------------------------------
10441 -- Check_Pragma_Implemented --
10442 ------------------------------
10444 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
10445 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
10446 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
10447 Subp_Alias : constant Entity_Id := Alias (Subp);
10448 Contr_Typ : Entity_Id;
10449 Impl_Subp : Entity_Id;
10451 begin
10452 -- Subp must have an alias since it is a hidden entity used to link
10453 -- an interface subprogram to its overriding counterpart.
10455 pragma Assert (Present (Subp_Alias));
10457 -- Handle aliases to synchronized wrappers
10459 Impl_Subp := Subp_Alias;
10461 if Is_Primitive_Wrapper (Impl_Subp) then
10462 Impl_Subp := Wrapped_Entity (Impl_Subp);
10463 end if;
10465 -- Extract the type of the controlling formal
10467 Contr_Typ := Etype (First_Formal (Subp_Alias));
10469 if Is_Concurrent_Record_Type (Contr_Typ) then
10470 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
10471 end if;
10473 -- An interface subprogram whose implementation kind is By_Entry must
10474 -- be implemented by an entry.
10476 if Impl_Kind = Name_By_Entry
10477 and then Ekind (Impl_Subp) /= E_Entry
10478 then
10479 Error_Msg_Node_2 := Iface_Alias;
10480 Error_Msg_NE
10481 ("type & must implement abstract subprogram & with an entry",
10482 Subp_Alias, Contr_Typ);
10484 elsif Impl_Kind = Name_By_Protected_Procedure then
10486 -- An interface subprogram whose implementation kind is By_
10487 -- Protected_Procedure cannot be implemented by a primitive
10488 -- procedure of a task type.
10490 if Ekind (Contr_Typ) /= E_Protected_Type then
10491 Error_Msg_Node_2 := Contr_Typ;
10492 Error_Msg_NE
10493 ("interface subprogram & cannot be implemented by a " &
10494 "primitive procedure of task type &", Subp_Alias,
10495 Iface_Alias);
10497 -- An interface subprogram whose implementation kind is By_
10498 -- Protected_Procedure must be implemented by a procedure.
10500 elsif Ekind (Impl_Subp) /= E_Procedure then
10501 Error_Msg_Node_2 := Iface_Alias;
10502 Error_Msg_NE
10503 ("type & must implement abstract subprogram & with a " &
10504 "procedure", Subp_Alias, Contr_Typ);
10506 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10507 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10508 then
10509 Error_Msg_Name_1 := Impl_Kind;
10510 Error_Msg_N
10511 ("overriding operation& must have synchronization%",
10512 Subp_Alias);
10513 end if;
10515 -- If primitive has Optional synchronization, overriding operation
10516 -- must match if it has an explicit synchronization..
10518 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10519 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10520 then
10521 Error_Msg_Name_1 := Impl_Kind;
10522 Error_Msg_N
10523 ("overriding operation& must have syncrhonization%",
10524 Subp_Alias);
10525 end if;
10526 end Check_Pragma_Implemented;
10528 ------------------------------
10529 -- Check_Pragma_Implemented --
10530 ------------------------------
10532 procedure Check_Pragma_Implemented
10533 (Subp : Entity_Id;
10534 Iface_Subp : Entity_Id)
10536 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10537 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
10539 begin
10540 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10541 -- and overriding subprogram are different. In general this is an
10542 -- error except when the implementation kind of the overridden
10543 -- subprograms is By_Any or Optional.
10545 if Iface_Kind /= Subp_Kind
10546 and then Iface_Kind /= Name_By_Any
10547 and then Iface_Kind /= Name_Optional
10548 then
10549 if Iface_Kind = Name_By_Entry then
10550 Error_Msg_N
10551 ("incompatible implementation kind, overridden subprogram " &
10552 "is marked By_Entry", Subp);
10553 else
10554 Error_Msg_N
10555 ("incompatible implementation kind, overridden subprogram " &
10556 "is marked By_Protected_Procedure", Subp);
10557 end if;
10558 end if;
10559 end Check_Pragma_Implemented;
10561 --------------------------------
10562 -- Inherit_Pragma_Implemented --
10563 --------------------------------
10565 procedure Inherit_Pragma_Implemented
10566 (Subp : Entity_Id;
10567 Iface_Subp : Entity_Id)
10569 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10570 Loc : constant Source_Ptr := Sloc (Subp);
10571 Impl_Prag : Node_Id;
10573 begin
10574 -- Since the implementation kind is stored as a representation item
10575 -- rather than a flag, create a pragma node.
10577 Impl_Prag :=
10578 Make_Pragma (Loc,
10579 Chars => Name_Implemented,
10580 Pragma_Argument_Associations => New_List (
10581 Make_Pragma_Argument_Association (Loc,
10582 Expression => New_Occurrence_Of (Subp, Loc)),
10584 Make_Pragma_Argument_Association (Loc,
10585 Expression => Make_Identifier (Loc, Iface_Kind))));
10587 -- The pragma doesn't need to be analyzed because it is internally
10588 -- built. It is safe to directly register it as a rep item since we
10589 -- are only interested in the characters of the implementation kind.
10591 Record_Rep_Item (Subp, Impl_Prag);
10592 end Inherit_Pragma_Implemented;
10594 -- Start of processing for Check_Abstract_Overriding
10596 begin
10597 Op_List := Primitive_Operations (T);
10599 -- Loop to check primitive operations
10601 Elmt := First_Elmt (Op_List);
10602 while Present (Elmt) loop
10603 Subp := Node (Elmt);
10604 Alias_Subp := Alias (Subp);
10606 -- Inherited subprograms are identified by the fact that they do not
10607 -- come from source, and the associated source location is the
10608 -- location of the first subtype of the derived type.
10610 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10611 -- subprograms that "require overriding".
10613 -- Special exception, do not complain about failure to override the
10614 -- stream routines _Input and _Output, as well as the primitive
10615 -- operations used in dispatching selects since we always provide
10616 -- automatic overridings for these subprograms.
10618 -- The partial view of T may have been a private extension, for
10619 -- which inherited functions dispatching on result are abstract.
10620 -- If the full view is a null extension, there is no need for
10621 -- overriding in Ada 2005, but wrappers need to be built for them
10622 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10624 if Is_Null_Extension (T)
10625 and then Has_Controlling_Result (Subp)
10626 and then Ada_Version >= Ada_2005
10627 and then Present (Alias_Subp)
10628 and then not Comes_From_Source (Subp)
10629 and then not Is_Abstract_Subprogram (Alias_Subp)
10630 and then not Is_Access_Type (Etype (Subp))
10631 then
10632 null;
10634 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10635 -- processing because this check is done with the aliased
10636 -- entity
10638 elsif Present (Interface_Alias (Subp)) then
10639 null;
10641 elsif (Is_Abstract_Subprogram (Subp)
10642 or else Requires_Overriding (Subp)
10643 or else
10644 (Has_Controlling_Result (Subp)
10645 and then Present (Alias_Subp)
10646 and then not Comes_From_Source (Subp)
10647 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10648 and then not Is_TSS (Subp, TSS_Stream_Input)
10649 and then not Is_TSS (Subp, TSS_Stream_Output)
10650 and then not Is_Abstract_Type (T)
10651 and then not Is_Predefined_Interface_Primitive (Subp)
10653 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10654 -- with abstract interface types because the check will be done
10655 -- with the aliased entity (otherwise we generate a duplicated
10656 -- error message).
10658 and then not Present (Interface_Alias (Subp))
10659 then
10660 if Present (Alias_Subp) then
10662 -- Only perform the check for a derived subprogram when the
10663 -- type has an explicit record extension. This avoids incorrect
10664 -- flagging of abstract subprograms for the case of a type
10665 -- without an extension that is derived from a formal type
10666 -- with a tagged actual (can occur within a private part).
10668 -- Ada 2005 (AI-391): In the case of an inherited function with
10669 -- a controlling result of the type, the rule does not apply if
10670 -- the type is a null extension (unless the parent function
10671 -- itself is abstract, in which case the function must still be
10672 -- be overridden). The expander will generate an overriding
10673 -- wrapper function calling the parent subprogram (see
10674 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10676 Type_Def := Type_Definition (Parent (T));
10678 if Nkind (Type_Def) = N_Derived_Type_Definition
10679 and then Present (Record_Extension_Part (Type_Def))
10680 and then
10681 (Ada_Version < Ada_2005
10682 or else not Is_Null_Extension (T)
10683 or else Ekind (Subp) = E_Procedure
10684 or else not Has_Controlling_Result (Subp)
10685 or else Is_Abstract_Subprogram (Alias_Subp)
10686 or else Requires_Overriding (Subp)
10687 or else Is_Access_Type (Etype (Subp)))
10688 then
10689 -- Avoid reporting error in case of abstract predefined
10690 -- primitive inherited from interface type because the
10691 -- body of internally generated predefined primitives
10692 -- of tagged types are generated later by Freeze_Type
10694 if Is_Interface (Root_Type (T))
10695 and then Is_Abstract_Subprogram (Subp)
10696 and then Is_Predefined_Dispatching_Operation (Subp)
10697 and then not Comes_From_Source (Ultimate_Alias (Subp))
10698 then
10699 null;
10701 -- A null extension is not obliged to override an inherited
10702 -- procedure subject to pragma Extensions_Visible with value
10703 -- False and at least one controlling OUT parameter
10704 -- (SPARK RM 6.1.7(6)).
10706 elsif Is_Null_Extension (T)
10707 and then Is_EVF_Procedure (Subp)
10708 then
10709 null;
10711 else
10712 Error_Msg_NE
10713 ("type must be declared abstract or & overridden",
10714 T, Subp);
10716 -- Traverse the whole chain of aliased subprograms to
10717 -- complete the error notification. This is especially
10718 -- useful for traceability of the chain of entities when
10719 -- the subprogram corresponds with an interface
10720 -- subprogram (which may be defined in another package).
10722 if Present (Alias_Subp) then
10723 declare
10724 E : Entity_Id;
10726 begin
10727 E := Subp;
10728 while Present (Alias (E)) loop
10730 -- Avoid reporting redundant errors on entities
10731 -- inherited from interfaces
10733 if Sloc (E) /= Sloc (T) then
10734 Error_Msg_Sloc := Sloc (E);
10735 Error_Msg_NE
10736 ("\& has been inherited #", T, Subp);
10737 end if;
10739 E := Alias (E);
10740 end loop;
10742 Error_Msg_Sloc := Sloc (E);
10744 -- AI05-0068: report if there is an overriding
10745 -- non-abstract subprogram that is invisible.
10747 if Is_Hidden (E)
10748 and then not Is_Abstract_Subprogram (E)
10749 then
10750 Error_Msg_NE
10751 ("\& subprogram# is not visible",
10752 T, Subp);
10754 -- Clarify the case where a non-null extension must
10755 -- override inherited procedure subject to pragma
10756 -- Extensions_Visible with value False and at least
10757 -- one controlling OUT param.
10759 elsif Is_EVF_Procedure (E) then
10760 Error_Msg_NE
10761 ("\& # is subject to Extensions_Visible False",
10762 T, Subp);
10764 else
10765 Error_Msg_NE
10766 ("\& has been inherited from subprogram #",
10767 T, Subp);
10768 end if;
10769 end;
10770 end if;
10771 end if;
10773 -- Ada 2005 (AI-345): Protected or task type implementing
10774 -- abstract interfaces.
10776 elsif Is_Concurrent_Record_Type (T)
10777 and then Present (Interfaces (T))
10778 then
10779 -- There is no need to check here RM 9.4(11.9/3) since we
10780 -- are processing the corresponding record type and the
10781 -- mode of the overriding subprograms was verified by
10782 -- Check_Conformance when the corresponding concurrent
10783 -- type declaration was analyzed.
10785 Error_Msg_NE
10786 ("interface subprogram & must be overridden", T, Subp);
10788 -- Examine primitive operations of synchronized type to find
10789 -- homonyms that have the wrong profile.
10791 declare
10792 Prim : Entity_Id;
10794 begin
10795 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10796 while Present (Prim) loop
10797 if Chars (Prim) = Chars (Subp) then
10798 Error_Msg_NE
10799 ("profile is not type conformant with prefixed "
10800 & "view profile of inherited operation&",
10801 Prim, Subp);
10802 end if;
10804 Next_Entity (Prim);
10805 end loop;
10806 end;
10807 end if;
10809 else
10810 Error_Msg_Node_2 := T;
10811 Error_Msg_N
10812 ("abstract subprogram& not allowed for type&", Subp);
10814 -- Also post unconditional warning on the type (unconditional
10815 -- so that if there are more than one of these cases, we get
10816 -- them all, and not just the first one).
10818 Error_Msg_Node_2 := Subp;
10819 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10820 end if;
10822 -- A subprogram subject to pragma Extensions_Visible with value
10823 -- "True" cannot override a subprogram subject to the same pragma
10824 -- with value "False" (SPARK RM 6.1.7(5)).
10826 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10827 and then Present (Overridden_Operation (Subp))
10828 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10829 Extensions_Visible_False
10830 then
10831 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10832 Error_Msg_N
10833 ("subprogram & with Extensions_Visible True cannot override "
10834 & "subprogram # with Extensions_Visible False", Subp);
10835 end if;
10837 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10839 -- Subp is an expander-generated procedure which maps an interface
10840 -- alias to a protected wrapper. The interface alias is flagged by
10841 -- pragma Implemented. Ensure that Subp is a procedure when the
10842 -- implementation kind is By_Protected_Procedure or an entry when
10843 -- By_Entry.
10845 if Ada_Version >= Ada_2012
10846 and then Is_Hidden (Subp)
10847 and then Present (Interface_Alias (Subp))
10848 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10849 then
10850 Check_Pragma_Implemented (Subp);
10851 end if;
10853 -- Subp is an interface primitive which overrides another interface
10854 -- primitive marked with pragma Implemented.
10856 if Ada_Version >= Ada_2012
10857 and then Present (Overridden_Operation (Subp))
10858 and then Has_Rep_Pragma
10859 (Overridden_Operation (Subp), Name_Implemented)
10860 then
10861 -- If the overriding routine is also marked by Implemented, check
10862 -- that the two implementation kinds are conforming.
10864 if Has_Rep_Pragma (Subp, Name_Implemented) then
10865 Check_Pragma_Implemented
10866 (Subp => Subp,
10867 Iface_Subp => Overridden_Operation (Subp));
10869 -- Otherwise the overriding routine inherits the implementation
10870 -- kind from the overridden subprogram.
10872 else
10873 Inherit_Pragma_Implemented
10874 (Subp => Subp,
10875 Iface_Subp => Overridden_Operation (Subp));
10876 end if;
10877 end if;
10879 -- If the operation is a wrapper for a synchronized primitive, it
10880 -- may be called indirectly through a dispatching select. We assume
10881 -- that it will be referenced elsewhere indirectly, and suppress
10882 -- warnings about an unused entity.
10884 if Is_Primitive_Wrapper (Subp)
10885 and then Present (Wrapped_Entity (Subp))
10886 then
10887 Set_Referenced (Wrapped_Entity (Subp));
10888 end if;
10890 Next_Elmt (Elmt);
10891 end loop;
10892 end Check_Abstract_Overriding;
10894 ------------------------------------------------
10895 -- Check_Access_Discriminant_Requires_Limited --
10896 ------------------------------------------------
10898 procedure Check_Access_Discriminant_Requires_Limited
10899 (D : Node_Id;
10900 Loc : Node_Id)
10902 begin
10903 -- A discriminant_specification for an access discriminant shall appear
10904 -- only in the declaration for a task or protected type, or for a type
10905 -- with the reserved word 'limited' in its definition or in one of its
10906 -- ancestors (RM 3.7(10)).
10908 -- AI-0063: The proper condition is that type must be immutably limited,
10909 -- or else be a partial view.
10911 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10912 if Is_Limited_View (Current_Scope)
10913 or else
10914 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10915 and then Limited_Present (Parent (Current_Scope)))
10916 then
10917 null;
10919 else
10920 Error_Msg_N
10921 ("access discriminants allowed only for limited types", Loc);
10922 end if;
10923 end if;
10924 end Check_Access_Discriminant_Requires_Limited;
10926 -----------------------------------
10927 -- Check_Aliased_Component_Types --
10928 -----------------------------------
10930 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10931 C : Entity_Id;
10933 begin
10934 -- ??? Also need to check components of record extensions, but not
10935 -- components of protected types (which are always limited).
10937 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10938 -- types to be unconstrained. This is safe because it is illegal to
10939 -- create access subtypes to such types with explicit discriminant
10940 -- constraints.
10942 if not Is_Limited_Type (T) then
10943 if Ekind (T) = E_Record_Type then
10944 C := First_Component (T);
10945 while Present (C) loop
10946 if Is_Aliased (C)
10947 and then Has_Discriminants (Etype (C))
10948 and then not Is_Constrained (Etype (C))
10949 and then not In_Instance_Body
10950 and then Ada_Version < Ada_2005
10951 then
10952 Error_Msg_N
10953 ("aliased component must be constrained (RM 3.6(11))",
10955 end if;
10957 Next_Component (C);
10958 end loop;
10960 elsif Ekind (T) = E_Array_Type then
10961 if Has_Aliased_Components (T)
10962 and then Has_Discriminants (Component_Type (T))
10963 and then not Is_Constrained (Component_Type (T))
10964 and then not In_Instance_Body
10965 and then Ada_Version < Ada_2005
10966 then
10967 Error_Msg_N
10968 ("aliased component type must be constrained (RM 3.6(11))",
10970 end if;
10971 end if;
10972 end if;
10973 end Check_Aliased_Component_Types;
10975 ---------------------------------------
10976 -- Check_Anonymous_Access_Components --
10977 ---------------------------------------
10979 procedure Check_Anonymous_Access_Components
10980 (Typ_Decl : Node_Id;
10981 Typ : Entity_Id;
10982 Prev : Entity_Id;
10983 Comp_List : Node_Id)
10985 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10986 Anon_Access : Entity_Id;
10987 Acc_Def : Node_Id;
10988 Comp : Node_Id;
10989 Comp_Def : Node_Id;
10990 Decl : Node_Id;
10991 Type_Def : Node_Id;
10993 procedure Build_Incomplete_Type_Declaration;
10994 -- If the record type contains components that include an access to the
10995 -- current record, then create an incomplete type declaration for the
10996 -- record, to be used as the designated type of the anonymous access.
10997 -- This is done only once, and only if there is no previous partial
10998 -- view of the type.
11000 function Designates_T (Subt : Node_Id) return Boolean;
11001 -- Check whether a node designates the enclosing record type, or 'Class
11002 -- of that type
11004 function Mentions_T (Acc_Def : Node_Id) return Boolean;
11005 -- Check whether an access definition includes a reference to
11006 -- the enclosing record type. The reference can be a subtype mark
11007 -- in the access definition itself, a 'Class attribute reference, or
11008 -- recursively a reference appearing in a parameter specification
11009 -- or result definition of an access_to_subprogram definition.
11011 --------------------------------------
11012 -- Build_Incomplete_Type_Declaration --
11013 --------------------------------------
11015 procedure Build_Incomplete_Type_Declaration is
11016 Decl : Node_Id;
11017 Inc_T : Entity_Id;
11018 H : Entity_Id;
11020 -- Is_Tagged indicates whether the type is tagged. It is tagged if
11021 -- it's "is new ... with record" or else "is tagged record ...".
11023 Is_Tagged : constant Boolean :=
11024 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
11025 and then
11026 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
11027 or else
11028 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
11029 and then Tagged_Present (Type_Definition (Typ_Decl)));
11031 begin
11032 -- If there is a previous partial view, no need to create a new one
11033 -- If the partial view, given by Prev, is incomplete, If Prev is
11034 -- a private declaration, full declaration is flagged accordingly.
11036 if Prev /= Typ then
11037 if Is_Tagged then
11038 Make_Class_Wide_Type (Prev);
11039 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
11040 Set_Etype (Class_Wide_Type (Typ), Typ);
11041 end if;
11043 return;
11045 elsif Has_Private_Declaration (Typ) then
11047 -- If we refer to T'Class inside T, and T is the completion of a
11048 -- private type, then make sure the class-wide type exists.
11050 if Is_Tagged then
11051 Make_Class_Wide_Type (Typ);
11052 end if;
11054 return;
11056 -- If there was a previous anonymous access type, the incomplete
11057 -- type declaration will have been created already.
11059 elsif Present (Current_Entity (Typ))
11060 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
11061 and then Full_View (Current_Entity (Typ)) = Typ
11062 then
11063 if Is_Tagged
11064 and then Comes_From_Source (Current_Entity (Typ))
11065 and then not Is_Tagged_Type (Current_Entity (Typ))
11066 then
11067 Make_Class_Wide_Type (Typ);
11068 Error_Msg_N
11069 ("incomplete view of tagged type should be declared tagged??",
11070 Parent (Current_Entity (Typ)));
11071 end if;
11072 return;
11074 else
11075 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
11076 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
11078 -- Type has already been inserted into the current scope. Remove
11079 -- it, and add incomplete declaration for type, so that subsequent
11080 -- anonymous access types can use it. The entity is unchained from
11081 -- the homonym list and from immediate visibility. After analysis,
11082 -- the entity in the incomplete declaration becomes immediately
11083 -- visible in the record declaration that follows.
11085 H := Current_Entity (Typ);
11087 if H = Typ then
11088 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
11089 else
11090 while Present (H)
11091 and then Homonym (H) /= Typ
11092 loop
11093 H := Homonym (Typ);
11094 end loop;
11096 Set_Homonym (H, Homonym (Typ));
11097 end if;
11099 Insert_Before (Typ_Decl, Decl);
11100 Analyze (Decl);
11101 Set_Full_View (Inc_T, Typ);
11103 if Is_Tagged then
11105 -- Create a common class-wide type for both views, and set the
11106 -- Etype of the class-wide type to the full view.
11108 Make_Class_Wide_Type (Inc_T);
11109 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
11110 Set_Etype (Class_Wide_Type (Typ), Typ);
11111 end if;
11112 end if;
11113 end Build_Incomplete_Type_Declaration;
11115 ------------------
11116 -- Designates_T --
11117 ------------------
11119 function Designates_T (Subt : Node_Id) return Boolean is
11120 Type_Id : constant Name_Id := Chars (Typ);
11122 function Names_T (Nam : Node_Id) return Boolean;
11123 -- The record type has not been introduced in the current scope
11124 -- yet, so we must examine the name of the type itself, either
11125 -- an identifier T, or an expanded name of the form P.T, where
11126 -- P denotes the current scope.
11128 -------------
11129 -- Names_T --
11130 -------------
11132 function Names_T (Nam : Node_Id) return Boolean is
11133 begin
11134 if Nkind (Nam) = N_Identifier then
11135 return Chars (Nam) = Type_Id;
11137 elsif Nkind (Nam) = N_Selected_Component then
11138 if Chars (Selector_Name (Nam)) = Type_Id then
11139 if Nkind (Prefix (Nam)) = N_Identifier then
11140 return Chars (Prefix (Nam)) = Chars (Current_Scope);
11142 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
11143 return Chars (Selector_Name (Prefix (Nam))) =
11144 Chars (Current_Scope);
11145 else
11146 return False;
11147 end if;
11149 else
11150 return False;
11151 end if;
11153 else
11154 return False;
11155 end if;
11156 end Names_T;
11158 -- Start of processing for Designates_T
11160 begin
11161 if Nkind (Subt) = N_Identifier then
11162 return Chars (Subt) = Type_Id;
11164 -- Reference can be through an expanded name which has not been
11165 -- analyzed yet, and which designates enclosing scopes.
11167 elsif Nkind (Subt) = N_Selected_Component then
11168 if Names_T (Subt) then
11169 return True;
11171 -- Otherwise it must denote an entity that is already visible.
11172 -- The access definition may name a subtype of the enclosing
11173 -- type, if there is a previous incomplete declaration for it.
11175 else
11176 Find_Selected_Component (Subt);
11177 return
11178 Is_Entity_Name (Subt)
11179 and then Scope (Entity (Subt)) = Current_Scope
11180 and then
11181 (Chars (Base_Type (Entity (Subt))) = Type_Id
11182 or else
11183 (Is_Class_Wide_Type (Entity (Subt))
11184 and then
11185 Chars (Etype (Base_Type (Entity (Subt)))) =
11186 Type_Id));
11187 end if;
11189 -- A reference to the current type may appear as the prefix of
11190 -- a 'Class attribute.
11192 elsif Nkind (Subt) = N_Attribute_Reference
11193 and then Attribute_Name (Subt) = Name_Class
11194 then
11195 return Names_T (Prefix (Subt));
11197 else
11198 return False;
11199 end if;
11200 end Designates_T;
11202 ----------------
11203 -- Mentions_T --
11204 ----------------
11206 function Mentions_T (Acc_Def : Node_Id) return Boolean is
11207 Param_Spec : Node_Id;
11209 Acc_Subprg : constant Node_Id :=
11210 Access_To_Subprogram_Definition (Acc_Def);
11212 begin
11213 if No (Acc_Subprg) then
11214 return Designates_T (Subtype_Mark (Acc_Def));
11215 end if;
11217 -- Component is an access_to_subprogram: examine its formals,
11218 -- and result definition in the case of an access_to_function.
11220 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
11221 while Present (Param_Spec) loop
11222 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
11223 and then Mentions_T (Parameter_Type (Param_Spec))
11224 then
11225 return True;
11227 elsif Designates_T (Parameter_Type (Param_Spec)) then
11228 return True;
11229 end if;
11231 Next (Param_Spec);
11232 end loop;
11234 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
11235 if Nkind (Result_Definition (Acc_Subprg)) =
11236 N_Access_Definition
11237 then
11238 return Mentions_T (Result_Definition (Acc_Subprg));
11239 else
11240 return Designates_T (Result_Definition (Acc_Subprg));
11241 end if;
11242 end if;
11244 return False;
11245 end Mentions_T;
11247 -- Start of processing for Check_Anonymous_Access_Components
11249 begin
11250 if No (Comp_List) then
11251 return;
11252 end if;
11254 Comp := First (Component_Items (Comp_List));
11255 while Present (Comp) loop
11256 if Nkind (Comp) = N_Component_Declaration
11257 and then Present
11258 (Access_Definition (Component_Definition (Comp)))
11259 and then
11260 Mentions_T (Access_Definition (Component_Definition (Comp)))
11261 then
11262 Comp_Def := Component_Definition (Comp);
11263 Acc_Def :=
11264 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
11266 Build_Incomplete_Type_Declaration;
11267 Anon_Access := Make_Temporary (Loc, 'S');
11269 -- Create a declaration for the anonymous access type: either
11270 -- an access_to_object or an access_to_subprogram.
11272 if Present (Acc_Def) then
11273 if Nkind (Acc_Def) = N_Access_Function_Definition then
11274 Type_Def :=
11275 Make_Access_Function_Definition (Loc,
11276 Parameter_Specifications =>
11277 Parameter_Specifications (Acc_Def),
11278 Result_Definition => Result_Definition (Acc_Def));
11279 else
11280 Type_Def :=
11281 Make_Access_Procedure_Definition (Loc,
11282 Parameter_Specifications =>
11283 Parameter_Specifications (Acc_Def));
11284 end if;
11286 else
11287 Type_Def :=
11288 Make_Access_To_Object_Definition (Loc,
11289 Subtype_Indication =>
11290 Relocate_Node
11291 (Subtype_Mark (Access_Definition (Comp_Def))));
11293 Set_Constant_Present
11294 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
11295 Set_All_Present
11296 (Type_Def, All_Present (Access_Definition (Comp_Def)));
11297 end if;
11299 Set_Null_Exclusion_Present
11300 (Type_Def,
11301 Null_Exclusion_Present (Access_Definition (Comp_Def)));
11303 Decl :=
11304 Make_Full_Type_Declaration (Loc,
11305 Defining_Identifier => Anon_Access,
11306 Type_Definition => Type_Def);
11308 Insert_Before (Typ_Decl, Decl);
11309 Analyze (Decl);
11311 -- If an access to subprogram, create the extra formals
11313 if Present (Acc_Def) then
11314 Create_Extra_Formals (Designated_Type (Anon_Access));
11316 -- If an access to object, preserve entity of designated type,
11317 -- for ASIS use, before rewriting the component definition.
11319 else
11320 declare
11321 Desig : Entity_Id;
11323 begin
11324 Desig := Entity (Subtype_Indication (Type_Def));
11326 -- If the access definition is to the current record,
11327 -- the visible entity at this point is an incomplete
11328 -- type. Retrieve the full view to simplify ASIS queries
11330 if Ekind (Desig) = E_Incomplete_Type then
11331 Desig := Full_View (Desig);
11332 end if;
11334 Set_Entity
11335 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
11336 end;
11337 end if;
11339 Rewrite (Comp_Def,
11340 Make_Component_Definition (Loc,
11341 Subtype_Indication =>
11342 New_Occurrence_Of (Anon_Access, Loc)));
11344 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
11345 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
11346 else
11347 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
11348 end if;
11350 Set_Is_Local_Anonymous_Access (Anon_Access);
11351 end if;
11353 Next (Comp);
11354 end loop;
11356 if Present (Variant_Part (Comp_List)) then
11357 declare
11358 V : Node_Id;
11359 begin
11360 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
11361 while Present (V) loop
11362 Check_Anonymous_Access_Components
11363 (Typ_Decl, Typ, Prev, Component_List (V));
11364 Next_Non_Pragma (V);
11365 end loop;
11366 end;
11367 end if;
11368 end Check_Anonymous_Access_Components;
11370 ----------------------
11371 -- Check_Completion --
11372 ----------------------
11374 procedure Check_Completion (Body_Id : Node_Id := Empty) is
11375 E : Entity_Id;
11377 procedure Post_Error;
11378 -- Post error message for lack of completion for entity E
11380 ----------------
11381 -- Post_Error --
11382 ----------------
11384 procedure Post_Error is
11385 procedure Missing_Body;
11386 -- Output missing body message
11388 ------------------
11389 -- Missing_Body --
11390 ------------------
11392 procedure Missing_Body is
11393 begin
11394 -- Spec is in same unit, so we can post on spec
11396 if In_Same_Source_Unit (Body_Id, E) then
11397 Error_Msg_N ("missing body for &", E);
11399 -- Spec is in a separate unit, so we have to post on the body
11401 else
11402 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
11403 end if;
11404 end Missing_Body;
11406 -- Start of processing for Post_Error
11408 begin
11409 if not Comes_From_Source (E) then
11410 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
11412 -- It may be an anonymous protected type created for a
11413 -- single variable. Post error on variable, if present.
11415 declare
11416 Var : Entity_Id;
11418 begin
11419 Var := First_Entity (Current_Scope);
11420 while Present (Var) loop
11421 exit when Etype (Var) = E
11422 and then Comes_From_Source (Var);
11424 Next_Entity (Var);
11425 end loop;
11427 if Present (Var) then
11428 E := Var;
11429 end if;
11430 end;
11431 end if;
11432 end if;
11434 -- If a generated entity has no completion, then either previous
11435 -- semantic errors have disabled the expansion phase, or else we had
11436 -- missing subunits, or else we are compiling without expansion,
11437 -- or else something is very wrong.
11439 if not Comes_From_Source (E) then
11440 pragma Assert
11441 (Serious_Errors_Detected > 0
11442 or else Configurable_Run_Time_Violations > 0
11443 or else Subunits_Missing
11444 or else not Expander_Active);
11445 return;
11447 -- Here for source entity
11449 else
11450 -- Here if no body to post the error message, so we post the error
11451 -- on the declaration that has no completion. This is not really
11452 -- the right place to post it, think about this later ???
11454 if No (Body_Id) then
11455 if Is_Type (E) then
11456 Error_Msg_NE
11457 ("missing full declaration for }", Parent (E), E);
11458 else
11459 Error_Msg_NE ("missing body for &", Parent (E), E);
11460 end if;
11462 -- Package body has no completion for a declaration that appears
11463 -- in the corresponding spec. Post error on the body, with a
11464 -- reference to the non-completed declaration.
11466 else
11467 Error_Msg_Sloc := Sloc (E);
11469 if Is_Type (E) then
11470 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
11472 elsif Is_Overloadable (E)
11473 and then Current_Entity_In_Scope (E) /= E
11474 then
11475 -- It may be that the completion is mistyped and appears as
11476 -- a distinct overloading of the entity.
11478 declare
11479 Candidate : constant Entity_Id :=
11480 Current_Entity_In_Scope (E);
11481 Decl : constant Node_Id :=
11482 Unit_Declaration_Node (Candidate);
11484 begin
11485 if Is_Overloadable (Candidate)
11486 and then Ekind (Candidate) = Ekind (E)
11487 and then Nkind (Decl) = N_Subprogram_Body
11488 and then Acts_As_Spec (Decl)
11489 then
11490 Check_Type_Conformant (Candidate, E);
11492 else
11493 Missing_Body;
11494 end if;
11495 end;
11497 else
11498 Missing_Body;
11499 end if;
11500 end if;
11501 end if;
11502 end Post_Error;
11504 -- Local variables
11506 Pack_Id : constant Entity_Id := Current_Scope;
11508 -- Start of processing for Check_Completion
11510 begin
11511 E := First_Entity (Pack_Id);
11512 while Present (E) loop
11513 if Is_Intrinsic_Subprogram (E) then
11514 null;
11516 -- The following situation requires special handling: a child unit
11517 -- that appears in the context clause of the body of its parent:
11519 -- procedure Parent.Child (...);
11521 -- with Parent.Child;
11522 -- package body Parent is
11524 -- Here Parent.Child appears as a local entity, but should not be
11525 -- flagged as requiring completion, because it is a compilation
11526 -- unit.
11528 -- Ignore missing completion for a subprogram that does not come from
11529 -- source (including the _Call primitive operation of RAS types,
11530 -- which has to have the flag Comes_From_Source for other purposes):
11531 -- we assume that the expander will provide the missing completion.
11532 -- In case of previous errors, other expansion actions that provide
11533 -- bodies for null procedures with not be invoked, so inhibit message
11534 -- in those cases.
11536 -- Note that E_Operator is not in the list that follows, because
11537 -- this kind is reserved for predefined operators, that are
11538 -- intrinsic and do not need completion.
11540 elsif Ekind_In (E, E_Function,
11541 E_Procedure,
11542 E_Generic_Function,
11543 E_Generic_Procedure)
11544 then
11545 if Has_Completion (E) then
11546 null;
11548 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
11549 null;
11551 elsif Is_Subprogram (E)
11552 and then (not Comes_From_Source (E)
11553 or else Chars (E) = Name_uCall)
11554 then
11555 null;
11557 elsif
11558 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
11559 then
11560 null;
11562 elsif Nkind (Parent (E)) = N_Procedure_Specification
11563 and then Null_Present (Parent (E))
11564 and then Serious_Errors_Detected > 0
11565 then
11566 null;
11568 else
11569 Post_Error;
11570 end if;
11572 elsif Is_Entry (E) then
11573 if not Has_Completion (E) and then
11574 (Ekind (Scope (E)) = E_Protected_Object
11575 or else Ekind (Scope (E)) = E_Protected_Type)
11576 then
11577 Post_Error;
11578 end if;
11580 elsif Is_Package_Or_Generic_Package (E) then
11581 if Unit_Requires_Body (E) then
11582 if not Has_Completion (E)
11583 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
11584 N_Compilation_Unit
11585 then
11586 Post_Error;
11587 end if;
11589 elsif not Is_Child_Unit (E) then
11590 May_Need_Implicit_Body (E);
11591 end if;
11593 -- A formal incomplete type (Ada 2012) does not require a completion;
11594 -- other incomplete type declarations do.
11596 elsif Ekind (E) = E_Incomplete_Type
11597 and then No (Underlying_Type (E))
11598 and then not Is_Generic_Type (E)
11599 then
11600 Post_Error;
11602 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
11603 and then not Has_Completion (E)
11604 then
11605 Post_Error;
11607 -- A single task declared in the current scope is a constant, verify
11608 -- that the body of its anonymous type is in the same scope. If the
11609 -- task is defined elsewhere, this may be a renaming declaration for
11610 -- which no completion is needed.
11612 elsif Ekind (E) = E_Constant
11613 and then Ekind (Etype (E)) = E_Task_Type
11614 and then not Has_Completion (Etype (E))
11615 and then Scope (Etype (E)) = Current_Scope
11616 then
11617 Post_Error;
11619 elsif Ekind (E) = E_Protected_Object
11620 and then not Has_Completion (Etype (E))
11621 then
11622 Post_Error;
11624 elsif Ekind (E) = E_Record_Type then
11625 if Is_Tagged_Type (E) then
11626 Check_Abstract_Overriding (E);
11627 Check_Conventions (E);
11628 end if;
11630 Check_Aliased_Component_Types (E);
11632 elsif Ekind (E) = E_Array_Type then
11633 Check_Aliased_Component_Types (E);
11635 end if;
11637 Next_Entity (E);
11638 end loop;
11639 end Check_Completion;
11641 ------------------------------------
11642 -- Check_CPP_Type_Has_No_Defaults --
11643 ------------------------------------
11645 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11646 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11647 Clist : Node_Id;
11648 Comp : Node_Id;
11650 begin
11651 -- Obtain the component list
11653 if Nkind (Tdef) = N_Record_Definition then
11654 Clist := Component_List (Tdef);
11655 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11656 Clist := Component_List (Record_Extension_Part (Tdef));
11657 end if;
11659 -- Check all components to ensure no default expressions
11661 if Present (Clist) then
11662 Comp := First (Component_Items (Clist));
11663 while Present (Comp) loop
11664 if Present (Expression (Comp)) then
11665 Error_Msg_N
11666 ("component of imported 'C'P'P type cannot have "
11667 & "default expression", Expression (Comp));
11668 end if;
11670 Next (Comp);
11671 end loop;
11672 end if;
11673 end Check_CPP_Type_Has_No_Defaults;
11675 ----------------------------
11676 -- Check_Delta_Expression --
11677 ----------------------------
11679 procedure Check_Delta_Expression (E : Node_Id) is
11680 begin
11681 if not (Is_Real_Type (Etype (E))) then
11682 Wrong_Type (E, Any_Real);
11684 elsif not Is_OK_Static_Expression (E) then
11685 Flag_Non_Static_Expr
11686 ("non-static expression used for delta value!", E);
11688 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11689 Error_Msg_N ("delta expression must be positive", E);
11691 else
11692 return;
11693 end if;
11695 -- If any of above errors occurred, then replace the incorrect
11696 -- expression by the real 0.1, which should prevent further errors.
11698 Rewrite (E,
11699 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11700 Analyze_And_Resolve (E, Standard_Float);
11701 end Check_Delta_Expression;
11703 -----------------------------
11704 -- Check_Digits_Expression --
11705 -----------------------------
11707 procedure Check_Digits_Expression (E : Node_Id) is
11708 begin
11709 if not (Is_Integer_Type (Etype (E))) then
11710 Wrong_Type (E, Any_Integer);
11712 elsif not Is_OK_Static_Expression (E) then
11713 Flag_Non_Static_Expr
11714 ("non-static expression used for digits value!", E);
11716 elsif Expr_Value (E) <= 0 then
11717 Error_Msg_N ("digits value must be greater than zero", E);
11719 else
11720 return;
11721 end if;
11723 -- If any of above errors occurred, then replace the incorrect
11724 -- expression by the integer 1, which should prevent further errors.
11726 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11727 Analyze_And_Resolve (E, Standard_Integer);
11729 end Check_Digits_Expression;
11731 --------------------------
11732 -- Check_Initialization --
11733 --------------------------
11735 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11736 begin
11737 -- Special processing for limited types
11739 if Is_Limited_Type (T)
11740 and then not In_Instance
11741 and then not In_Inlined_Body
11742 then
11743 if not OK_For_Limited_Init (T, Exp) then
11745 -- In GNAT mode, this is just a warning, to allow it to be evilly
11746 -- turned off. Otherwise it is a real error.
11748 if GNAT_Mode then
11749 Error_Msg_N
11750 ("??cannot initialize entities of limited type!", Exp);
11752 elsif Ada_Version < Ada_2005 then
11754 -- The side effect removal machinery may generate illegal Ada
11755 -- code to avoid the usage of access types and 'reference in
11756 -- SPARK mode. Since this is legal code with respect to theorem
11757 -- proving, do not emit the error.
11759 if GNATprove_Mode
11760 and then Nkind (Exp) = N_Function_Call
11761 and then Nkind (Parent (Exp)) = N_Object_Declaration
11762 and then not Comes_From_Source
11763 (Defining_Identifier (Parent (Exp)))
11764 then
11765 null;
11767 else
11768 Error_Msg_N
11769 ("cannot initialize entities of limited type", Exp);
11770 Explain_Limited_Type (T, Exp);
11771 end if;
11773 else
11774 -- Specialize error message according to kind of illegal
11775 -- initial expression.
11777 if Nkind (Exp) = N_Type_Conversion
11778 and then Nkind (Expression (Exp)) = N_Function_Call
11779 then
11780 Error_Msg_N
11781 ("illegal context for call"
11782 & " to function with limited result", Exp);
11784 else
11785 Error_Msg_N
11786 ("initialization of limited object requires aggregate "
11787 & "or function call", Exp);
11788 end if;
11789 end if;
11790 end if;
11791 end if;
11793 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11794 -- set unless we can be sure that no range check is required.
11796 if (GNATprove_Mode or not Expander_Active)
11797 and then Is_Scalar_Type (T)
11798 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11799 then
11800 Set_Do_Range_Check (Exp);
11801 end if;
11802 end Check_Initialization;
11804 ----------------------
11805 -- Check_Interfaces --
11806 ----------------------
11808 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11809 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11811 Iface : Node_Id;
11812 Iface_Def : Node_Id;
11813 Iface_Typ : Entity_Id;
11814 Parent_Node : Node_Id;
11816 Is_Task : Boolean := False;
11817 -- Set True if parent type or any progenitor is a task interface
11819 Is_Protected : Boolean := False;
11820 -- Set True if parent type or any progenitor is a protected interface
11822 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11823 -- Check that a progenitor is compatible with declaration. If an error
11824 -- message is output, it is posted on Error_Node.
11826 ------------------
11827 -- Check_Ifaces --
11828 ------------------
11830 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11831 Iface_Id : constant Entity_Id :=
11832 Defining_Identifier (Parent (Iface_Def));
11833 Type_Def : Node_Id;
11835 begin
11836 if Nkind (N) = N_Private_Extension_Declaration then
11837 Type_Def := N;
11838 else
11839 Type_Def := Type_Definition (N);
11840 end if;
11842 if Is_Task_Interface (Iface_Id) then
11843 Is_Task := True;
11845 elsif Is_Protected_Interface (Iface_Id) then
11846 Is_Protected := True;
11847 end if;
11849 if Is_Synchronized_Interface (Iface_Id) then
11851 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11852 -- extension derived from a synchronized interface must explicitly
11853 -- be declared synchronized, because the full view will be a
11854 -- synchronized type.
11856 if Nkind (N) = N_Private_Extension_Declaration then
11857 if not Synchronized_Present (N) then
11858 Error_Msg_NE
11859 ("private extension of& must be explicitly synchronized",
11860 N, Iface_Id);
11861 end if;
11863 -- However, by 3.9.4(16/2), a full type that is a record extension
11864 -- is never allowed to derive from a synchronized interface (note
11865 -- that interfaces must be excluded from this check, because those
11866 -- are represented by derived type definitions in some cases).
11868 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11869 and then not Interface_Present (Type_Definition (N))
11870 then
11871 Error_Msg_N ("record extension cannot derive from synchronized "
11872 & "interface", Error_Node);
11873 end if;
11874 end if;
11876 -- Check that the characteristics of the progenitor are compatible
11877 -- with the explicit qualifier in the declaration.
11878 -- The check only applies to qualifiers that come from source.
11879 -- Limited_Present also appears in the declaration of corresponding
11880 -- records, and the check does not apply to them.
11882 if Limited_Present (Type_Def)
11883 and then not
11884 Is_Concurrent_Record_Type (Defining_Identifier (N))
11885 then
11886 if Is_Limited_Interface (Parent_Type)
11887 and then not Is_Limited_Interface (Iface_Id)
11888 then
11889 Error_Msg_NE
11890 ("progenitor & must be limited interface",
11891 Error_Node, Iface_Id);
11893 elsif
11894 (Task_Present (Iface_Def)
11895 or else Protected_Present (Iface_Def)
11896 or else Synchronized_Present (Iface_Def))
11897 and then Nkind (N) /= N_Private_Extension_Declaration
11898 and then not Error_Posted (N)
11899 then
11900 Error_Msg_NE
11901 ("progenitor & must be limited interface",
11902 Error_Node, Iface_Id);
11903 end if;
11905 -- Protected interfaces can only inherit from limited, synchronized
11906 -- or protected interfaces.
11908 elsif Nkind (N) = N_Full_Type_Declaration
11909 and then Protected_Present (Type_Def)
11910 then
11911 if Limited_Present (Iface_Def)
11912 or else Synchronized_Present (Iface_Def)
11913 or else Protected_Present (Iface_Def)
11914 then
11915 null;
11917 elsif Task_Present (Iface_Def) then
11918 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11919 & "from task interface", Error_Node);
11921 else
11922 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11923 & "from non-limited interface", Error_Node);
11924 end if;
11926 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11927 -- limited and synchronized.
11929 elsif Synchronized_Present (Type_Def) then
11930 if Limited_Present (Iface_Def)
11931 or else Synchronized_Present (Iface_Def)
11932 then
11933 null;
11935 elsif Protected_Present (Iface_Def)
11936 and then Nkind (N) /= N_Private_Extension_Declaration
11937 then
11938 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11939 & "from protected interface", Error_Node);
11941 elsif Task_Present (Iface_Def)
11942 and then Nkind (N) /= N_Private_Extension_Declaration
11943 then
11944 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11945 & "from task interface", Error_Node);
11947 elsif not Is_Limited_Interface (Iface_Id) then
11948 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11949 & "from non-limited interface", Error_Node);
11950 end if;
11952 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11953 -- synchronized or task interfaces.
11955 elsif Nkind (N) = N_Full_Type_Declaration
11956 and then Task_Present (Type_Def)
11957 then
11958 if Limited_Present (Iface_Def)
11959 or else Synchronized_Present (Iface_Def)
11960 or else Task_Present (Iface_Def)
11961 then
11962 null;
11964 elsif Protected_Present (Iface_Def) then
11965 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11966 & "protected interface", Error_Node);
11968 else
11969 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11970 & "non-limited interface", Error_Node);
11971 end if;
11972 end if;
11973 end Check_Ifaces;
11975 -- Start of processing for Check_Interfaces
11977 begin
11978 if Is_Interface (Parent_Type) then
11979 if Is_Task_Interface (Parent_Type) then
11980 Is_Task := True;
11982 elsif Is_Protected_Interface (Parent_Type) then
11983 Is_Protected := True;
11984 end if;
11985 end if;
11987 if Nkind (N) = N_Private_Extension_Declaration then
11989 -- Check that progenitors are compatible with declaration
11991 Iface := First (Interface_List (Def));
11992 while Present (Iface) loop
11993 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11995 Parent_Node := Parent (Base_Type (Iface_Typ));
11996 Iface_Def := Type_Definition (Parent_Node);
11998 if not Is_Interface (Iface_Typ) then
11999 Diagnose_Interface (Iface, Iface_Typ);
12000 else
12001 Check_Ifaces (Iface_Def, Iface);
12002 end if;
12004 Next (Iface);
12005 end loop;
12007 if Is_Task and Is_Protected then
12008 Error_Msg_N
12009 ("type cannot derive from task and protected interface", N);
12010 end if;
12012 return;
12013 end if;
12015 -- Full type declaration of derived type.
12016 -- Check compatibility with parent if it is interface type
12018 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
12019 and then Is_Interface (Parent_Type)
12020 then
12021 Parent_Node := Parent (Parent_Type);
12023 -- More detailed checks for interface varieties
12025 Check_Ifaces
12026 (Iface_Def => Type_Definition (Parent_Node),
12027 Error_Node => Subtype_Indication (Type_Definition (N)));
12028 end if;
12030 Iface := First (Interface_List (Def));
12031 while Present (Iface) loop
12032 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12034 Parent_Node := Parent (Base_Type (Iface_Typ));
12035 Iface_Def := Type_Definition (Parent_Node);
12037 if not Is_Interface (Iface_Typ) then
12038 Diagnose_Interface (Iface, Iface_Typ);
12040 else
12041 -- "The declaration of a specific descendant of an interface
12042 -- type freezes the interface type" RM 13.14
12044 Freeze_Before (N, Iface_Typ);
12045 Check_Ifaces (Iface_Def, Error_Node => Iface);
12046 end if;
12048 Next (Iface);
12049 end loop;
12051 if Is_Task and Is_Protected then
12052 Error_Msg_N
12053 ("type cannot derive from task and protected interface", N);
12054 end if;
12055 end Check_Interfaces;
12057 ------------------------------------
12058 -- Check_Or_Process_Discriminants --
12059 ------------------------------------
12061 -- If an incomplete or private type declaration was already given for the
12062 -- type, the discriminants may have already been processed if they were
12063 -- present on the incomplete declaration. In this case a full conformance
12064 -- check has been performed in Find_Type_Name, and we then recheck here
12065 -- some properties that can't be checked on the partial view alone.
12066 -- Otherwise we call Process_Discriminants.
12068 procedure Check_Or_Process_Discriminants
12069 (N : Node_Id;
12070 T : Entity_Id;
12071 Prev : Entity_Id := Empty)
12073 begin
12074 if Has_Discriminants (T) then
12076 -- Discriminants are already set on T if they were already present
12077 -- on the partial view. Make them visible to component declarations.
12079 declare
12080 D : Entity_Id;
12081 -- Discriminant on T (full view) referencing expr on partial view
12083 Prev_D : Entity_Id;
12084 -- Entity of corresponding discriminant on partial view
12086 New_D : Node_Id;
12087 -- Discriminant specification for full view, expression is
12088 -- the syntactic copy on full view (which has been checked for
12089 -- conformance with partial view), only used here to post error
12090 -- message.
12092 begin
12093 D := First_Discriminant (T);
12094 New_D := First (Discriminant_Specifications (N));
12095 while Present (D) loop
12096 Prev_D := Current_Entity (D);
12097 Set_Current_Entity (D);
12098 Set_Is_Immediately_Visible (D);
12099 Set_Homonym (D, Prev_D);
12101 -- Handle the case where there is an untagged partial view and
12102 -- the full view is tagged: must disallow discriminants with
12103 -- defaults, unless compiling for Ada 2012, which allows a
12104 -- limited tagged type to have defaulted discriminants (see
12105 -- AI05-0214). However, suppress error here if it was already
12106 -- reported on the default expression of the partial view.
12108 if Is_Tagged_Type (T)
12109 and then Present (Expression (Parent (D)))
12110 and then (not Is_Limited_Type (Current_Scope)
12111 or else Ada_Version < Ada_2012)
12112 and then not Error_Posted (Expression (Parent (D)))
12113 then
12114 if Ada_Version >= Ada_2012 then
12115 Error_Msg_N
12116 ("discriminants of nonlimited tagged type cannot have "
12117 & "defaults",
12118 Expression (New_D));
12119 else
12120 Error_Msg_N
12121 ("discriminants of tagged type cannot have defaults",
12122 Expression (New_D));
12123 end if;
12124 end if;
12126 -- Ada 2005 (AI-230): Access discriminant allowed in
12127 -- non-limited record types.
12129 if Ada_Version < Ada_2005 then
12131 -- This restriction gets applied to the full type here. It
12132 -- has already been applied earlier to the partial view.
12134 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
12135 end if;
12137 Next_Discriminant (D);
12138 Next (New_D);
12139 end loop;
12140 end;
12142 elsif Present (Discriminant_Specifications (N)) then
12143 Process_Discriminants (N, Prev);
12144 end if;
12145 end Check_Or_Process_Discriminants;
12147 ----------------------
12148 -- Check_Real_Bound --
12149 ----------------------
12151 procedure Check_Real_Bound (Bound : Node_Id) is
12152 begin
12153 if not Is_Real_Type (Etype (Bound)) then
12154 Error_Msg_N
12155 ("bound in real type definition must be of real type", Bound);
12157 elsif not Is_OK_Static_Expression (Bound) then
12158 Flag_Non_Static_Expr
12159 ("non-static expression used for real type bound!", Bound);
12161 else
12162 return;
12163 end if;
12165 Rewrite
12166 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
12167 Analyze (Bound);
12168 Resolve (Bound, Standard_Float);
12169 end Check_Real_Bound;
12171 ------------------------------
12172 -- Complete_Private_Subtype --
12173 ------------------------------
12175 procedure Complete_Private_Subtype
12176 (Priv : Entity_Id;
12177 Full : Entity_Id;
12178 Full_Base : Entity_Id;
12179 Related_Nod : Node_Id)
12181 Save_Next_Entity : Entity_Id;
12182 Save_Homonym : Entity_Id;
12184 begin
12185 -- Set semantic attributes for (implicit) private subtype completion.
12186 -- If the full type has no discriminants, then it is a copy of the
12187 -- full view of the base. Otherwise, it is a subtype of the base with
12188 -- a possible discriminant constraint. Save and restore the original
12189 -- Next_Entity field of full to ensure that the calls to Copy_Node do
12190 -- not corrupt the entity chain.
12192 -- Note that the type of the full view is the same entity as the type
12193 -- of the partial view. In this fashion, the subtype has access to the
12194 -- correct view of the parent.
12196 Save_Next_Entity := Next_Entity (Full);
12197 Save_Homonym := Homonym (Priv);
12199 case Ekind (Full_Base) is
12200 when Class_Wide_Kind
12201 | Private_Kind
12202 | Protected_Kind
12203 | Task_Kind
12204 | E_Record_Subtype
12205 | E_Record_Type
12207 Copy_Node (Priv, Full);
12209 Set_Has_Discriminants
12210 (Full, Has_Discriminants (Full_Base));
12211 Set_Has_Unknown_Discriminants
12212 (Full, Has_Unknown_Discriminants (Full_Base));
12213 Set_First_Entity (Full, First_Entity (Full_Base));
12214 Set_Last_Entity (Full, Last_Entity (Full_Base));
12216 -- If the underlying base type is constrained, we know that the
12217 -- full view of the subtype is constrained as well (the converse
12218 -- is not necessarily true).
12220 if Is_Constrained (Full_Base) then
12221 Set_Is_Constrained (Full);
12222 end if;
12224 when others =>
12225 Copy_Node (Full_Base, Full);
12227 Set_Chars (Full, Chars (Priv));
12228 Conditional_Delay (Full, Priv);
12229 Set_Sloc (Full, Sloc (Priv));
12230 end case;
12232 Set_Next_Entity (Full, Save_Next_Entity);
12233 Set_Homonym (Full, Save_Homonym);
12234 Set_Associated_Node_For_Itype (Full, Related_Nod);
12236 -- Set common attributes for all subtypes: kind, convention, etc.
12238 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
12239 Set_Convention (Full, Convention (Full_Base));
12241 -- The Etype of the full view is inconsistent. Gigi needs to see the
12242 -- structural full view, which is what the current scheme gives: the
12243 -- Etype of the full view is the etype of the full base. However, if the
12244 -- full base is a derived type, the full view then looks like a subtype
12245 -- of the parent, not a subtype of the full base. If instead we write:
12247 -- Set_Etype (Full, Full_Base);
12249 -- then we get inconsistencies in the front-end (confusion between
12250 -- views). Several outstanding bugs are related to this ???
12252 Set_Is_First_Subtype (Full, False);
12253 Set_Scope (Full, Scope (Priv));
12254 Set_Size_Info (Full, Full_Base);
12255 Set_RM_Size (Full, RM_Size (Full_Base));
12256 Set_Is_Itype (Full);
12258 -- A subtype of a private-type-without-discriminants, whose full-view
12259 -- has discriminants with default expressions, is not constrained.
12261 if not Has_Discriminants (Priv) then
12262 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
12264 if Has_Discriminants (Full_Base) then
12265 Set_Discriminant_Constraint
12266 (Full, Discriminant_Constraint (Full_Base));
12268 -- The partial view may have been indefinite, the full view
12269 -- might not be.
12271 Set_Has_Unknown_Discriminants
12272 (Full, Has_Unknown_Discriminants (Full_Base));
12273 end if;
12274 end if;
12276 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
12277 Set_Depends_On_Private (Full, Has_Private_Component (Full));
12279 -- Freeze the private subtype entity if its parent is delayed, and not
12280 -- already frozen. We skip this processing if the type is an anonymous
12281 -- subtype of a record component, or is the corresponding record of a
12282 -- protected type, since these are processed when the enclosing type
12283 -- is frozen. If the parent type is declared in a nested package then
12284 -- the freezing of the private and full views also happens later.
12286 if not Is_Type (Scope (Full)) then
12287 if Is_Itype (Priv)
12288 and then In_Same_Source_Unit (Full, Full_Base)
12289 and then Scope (Full_Base) /= Scope (Full)
12290 then
12291 Set_Has_Delayed_Freeze (Full);
12292 Set_Has_Delayed_Freeze (Priv);
12294 else
12295 Set_Has_Delayed_Freeze (Full,
12296 Has_Delayed_Freeze (Full_Base)
12297 and then not Is_Frozen (Full_Base));
12298 end if;
12299 end if;
12301 Set_Freeze_Node (Full, Empty);
12302 Set_Is_Frozen (Full, False);
12303 Set_Full_View (Priv, Full);
12305 if Has_Discriminants (Full) then
12306 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
12307 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
12309 if Has_Unknown_Discriminants (Full) then
12310 Set_Discriminant_Constraint (Full, No_Elist);
12311 end if;
12312 end if;
12314 if Ekind (Full_Base) = E_Record_Type
12315 and then Has_Discriminants (Full_Base)
12316 and then Has_Discriminants (Priv) -- might not, if errors
12317 and then not Has_Unknown_Discriminants (Priv)
12318 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
12319 then
12320 Create_Constrained_Components
12321 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
12323 -- If the full base is itself derived from private, build a congruent
12324 -- subtype of its underlying type, for use by the back end. For a
12325 -- constrained record component, the declaration cannot be placed on
12326 -- the component list, but it must nevertheless be built an analyzed, to
12327 -- supply enough information for Gigi to compute the size of component.
12329 elsif Ekind (Full_Base) in Private_Kind
12330 and then Is_Derived_Type (Full_Base)
12331 and then Has_Discriminants (Full_Base)
12332 and then (Ekind (Current_Scope) /= E_Record_Subtype)
12333 then
12334 if not Is_Itype (Priv)
12335 and then
12336 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
12337 then
12338 Build_Underlying_Full_View
12339 (Parent (Priv), Full, Etype (Full_Base));
12341 elsif Nkind (Related_Nod) = N_Component_Declaration then
12342 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
12343 end if;
12345 elsif Is_Record_Type (Full_Base) then
12347 -- Show Full is simply a renaming of Full_Base
12349 Set_Cloned_Subtype (Full, Full_Base);
12350 end if;
12352 -- It is unsafe to share the bounds of a scalar type, because the Itype
12353 -- is elaborated on demand, and if a bound is non-static then different
12354 -- orders of elaboration in different units will lead to different
12355 -- external symbols.
12357 if Is_Scalar_Type (Full_Base) then
12358 Set_Scalar_Range (Full,
12359 Make_Range (Sloc (Related_Nod),
12360 Low_Bound =>
12361 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
12362 High_Bound =>
12363 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
12365 -- This completion inherits the bounds of the full parent, but if
12366 -- the parent is an unconstrained floating point type, so is the
12367 -- completion.
12369 if Is_Floating_Point_Type (Full_Base) then
12370 Set_Includes_Infinities
12371 (Scalar_Range (Full), Has_Infinities (Full_Base));
12372 end if;
12373 end if;
12375 -- ??? It seems that a lot of fields are missing that should be copied
12376 -- from Full_Base to Full. Here are some that are introduced in a
12377 -- non-disruptive way but a cleanup is necessary.
12379 if Is_Tagged_Type (Full_Base) then
12380 Set_Is_Tagged_Type (Full);
12381 Set_Direct_Primitive_Operations
12382 (Full, Direct_Primitive_Operations (Full_Base));
12383 Set_No_Tagged_Streams_Pragma
12384 (Full, No_Tagged_Streams_Pragma (Full_Base));
12386 -- Inherit class_wide type of full_base in case the partial view was
12387 -- not tagged. Otherwise it has already been created when the private
12388 -- subtype was analyzed.
12390 if No (Class_Wide_Type (Full)) then
12391 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
12392 end if;
12394 -- If this is a subtype of a protected or task type, constrain its
12395 -- corresponding record, unless this is a subtype without constraints,
12396 -- i.e. a simple renaming as with an actual subtype in an instance.
12398 elsif Is_Concurrent_Type (Full_Base) then
12399 if Has_Discriminants (Full)
12400 and then Present (Corresponding_Record_Type (Full_Base))
12401 and then
12402 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
12403 then
12404 Set_Corresponding_Record_Type (Full,
12405 Constrain_Corresponding_Record
12406 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
12408 else
12409 Set_Corresponding_Record_Type (Full,
12410 Corresponding_Record_Type (Full_Base));
12411 end if;
12412 end if;
12414 -- Link rep item chain, and also setting of Has_Predicates from private
12415 -- subtype to full subtype, since we will need these on the full subtype
12416 -- to create the predicate function. Note that the full subtype may
12417 -- already have rep items, inherited from the full view of the base
12418 -- type, so we must be sure not to overwrite these entries.
12420 declare
12421 Append : Boolean;
12422 Item : Node_Id;
12423 Next_Item : Node_Id;
12424 Priv_Item : Node_Id;
12426 begin
12427 Item := First_Rep_Item (Full);
12428 Priv_Item := First_Rep_Item (Priv);
12430 -- If no existing rep items on full type, we can just link directly
12431 -- to the list of items on the private type, if any exist.. Same if
12432 -- the rep items are only those inherited from the base
12434 if (No (Item)
12435 or else Nkind (Item) /= N_Aspect_Specification
12436 or else Entity (Item) = Full_Base)
12437 and then Present (First_Rep_Item (Priv))
12438 then
12439 Set_First_Rep_Item (Full, Priv_Item);
12441 -- Otherwise, search to the end of items currently linked to the full
12442 -- subtype and append the private items to the end. However, if Priv
12443 -- and Full already have the same list of rep items, then the append
12444 -- is not done, as that would create a circularity.
12446 -- The partial view may have a predicate and the rep item lists of
12447 -- both views agree when inherited from the same ancestor. In that
12448 -- case, simply propagate the list from one view to the other.
12449 -- A more complex analysis needed here ???
12451 elsif Present (Priv_Item)
12452 and then Item = Next_Rep_Item (Priv_Item)
12453 then
12454 Set_First_Rep_Item (Full, Priv_Item);
12456 elsif Item /= Priv_Item then
12457 Append := True;
12458 loop
12459 Next_Item := Next_Rep_Item (Item);
12460 exit when No (Next_Item);
12461 Item := Next_Item;
12463 -- If the private view has aspect specifications, the full view
12464 -- inherits them. Since these aspects may already have been
12465 -- attached to the full view during derivation, do not append
12466 -- them if already present.
12468 if Item = First_Rep_Item (Priv) then
12469 Append := False;
12470 exit;
12471 end if;
12472 end loop;
12474 -- And link the private type items at the end of the chain
12476 if Append then
12477 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
12478 end if;
12479 end if;
12480 end;
12482 -- Make sure Has_Predicates is set on full type if it is set on the
12483 -- private type. Note that it may already be set on the full type and
12484 -- if so, we don't want to unset it. Similarly, propagate information
12485 -- about delayed aspects, because the corresponding pragmas must be
12486 -- analyzed when one of the views is frozen. This last step is needed
12487 -- in particular when the full type is a scalar type for which an
12488 -- anonymous base type is constructed.
12490 -- The predicate functions are generated either at the freeze point
12491 -- of the type or at the end of the visible part, and we must avoid
12492 -- generating them twice.
12494 if Has_Predicates (Priv) then
12495 Set_Has_Predicates (Full);
12497 if Present (Predicate_Function (Priv))
12498 and then No (Predicate_Function (Full))
12499 then
12500 Set_Predicate_Function (Full, Predicate_Function (Priv));
12501 end if;
12502 end if;
12504 if Has_Delayed_Aspects (Priv) then
12505 Set_Has_Delayed_Aspects (Full);
12506 end if;
12507 end Complete_Private_Subtype;
12509 ----------------------------
12510 -- Constant_Redeclaration --
12511 ----------------------------
12513 procedure Constant_Redeclaration
12514 (Id : Entity_Id;
12515 N : Node_Id;
12516 T : out Entity_Id)
12518 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
12519 Obj_Def : constant Node_Id := Object_Definition (N);
12520 New_T : Entity_Id;
12522 procedure Check_Possible_Deferred_Completion
12523 (Prev_Id : Entity_Id;
12524 Prev_Obj_Def : Node_Id;
12525 Curr_Obj_Def : Node_Id);
12526 -- Determine whether the two object definitions describe the partial
12527 -- and the full view of a constrained deferred constant. Generate
12528 -- a subtype for the full view and verify that it statically matches
12529 -- the subtype of the partial view.
12531 procedure Check_Recursive_Declaration (Typ : Entity_Id);
12532 -- If deferred constant is an access type initialized with an allocator,
12533 -- check whether there is an illegal recursion in the definition,
12534 -- through a default value of some record subcomponent. This is normally
12535 -- detected when generating init procs, but requires this additional
12536 -- mechanism when expansion is disabled.
12538 ----------------------------------------
12539 -- Check_Possible_Deferred_Completion --
12540 ----------------------------------------
12542 procedure Check_Possible_Deferred_Completion
12543 (Prev_Id : Entity_Id;
12544 Prev_Obj_Def : Node_Id;
12545 Curr_Obj_Def : Node_Id)
12547 begin
12548 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
12549 and then Present (Constraint (Prev_Obj_Def))
12550 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
12551 and then Present (Constraint (Curr_Obj_Def))
12552 then
12553 declare
12554 Loc : constant Source_Ptr := Sloc (N);
12555 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
12556 Decl : constant Node_Id :=
12557 Make_Subtype_Declaration (Loc,
12558 Defining_Identifier => Def_Id,
12559 Subtype_Indication =>
12560 Relocate_Node (Curr_Obj_Def));
12562 begin
12563 Insert_Before_And_Analyze (N, Decl);
12564 Set_Etype (Id, Def_Id);
12566 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
12567 Error_Msg_Sloc := Sloc (Prev_Id);
12568 Error_Msg_N ("subtype does not statically match deferred "
12569 & "declaration #", N);
12570 end if;
12571 end;
12572 end if;
12573 end Check_Possible_Deferred_Completion;
12575 ---------------------------------
12576 -- Check_Recursive_Declaration --
12577 ---------------------------------
12579 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
12580 Comp : Entity_Id;
12582 begin
12583 if Is_Record_Type (Typ) then
12584 Comp := First_Component (Typ);
12585 while Present (Comp) loop
12586 if Comes_From_Source (Comp) then
12587 if Present (Expression (Parent (Comp)))
12588 and then Is_Entity_Name (Expression (Parent (Comp)))
12589 and then Entity (Expression (Parent (Comp))) = Prev
12590 then
12591 Error_Msg_Sloc := Sloc (Parent (Comp));
12592 Error_Msg_NE
12593 ("illegal circularity with declaration for & #",
12594 N, Comp);
12595 return;
12597 elsif Is_Record_Type (Etype (Comp)) then
12598 Check_Recursive_Declaration (Etype (Comp));
12599 end if;
12600 end if;
12602 Next_Component (Comp);
12603 end loop;
12604 end if;
12605 end Check_Recursive_Declaration;
12607 -- Start of processing for Constant_Redeclaration
12609 begin
12610 if Nkind (Parent (Prev)) = N_Object_Declaration then
12611 if Nkind (Object_Definition
12612 (Parent (Prev))) = N_Subtype_Indication
12613 then
12614 -- Find type of new declaration. The constraints of the two
12615 -- views must match statically, but there is no point in
12616 -- creating an itype for the full view.
12618 if Nkind (Obj_Def) = N_Subtype_Indication then
12619 Find_Type (Subtype_Mark (Obj_Def));
12620 New_T := Entity (Subtype_Mark (Obj_Def));
12622 else
12623 Find_Type (Obj_Def);
12624 New_T := Entity (Obj_Def);
12625 end if;
12627 T := Etype (Prev);
12629 else
12630 -- The full view may impose a constraint, even if the partial
12631 -- view does not, so construct the subtype.
12633 New_T := Find_Type_Of_Object (Obj_Def, N);
12634 T := New_T;
12635 end if;
12637 else
12638 -- Current declaration is illegal, diagnosed below in Enter_Name
12640 T := Empty;
12641 New_T := Any_Type;
12642 end if;
12644 -- If previous full declaration or a renaming declaration exists, or if
12645 -- a homograph is present, let Enter_Name handle it, either with an
12646 -- error or with the removal of an overridden implicit subprogram.
12647 -- The previous one is a full declaration if it has an expression
12648 -- (which in the case of an aggregate is indicated by the Init flag).
12650 if Ekind (Prev) /= E_Constant
12651 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12652 or else Present (Expression (Parent (Prev)))
12653 or else Has_Init_Expression (Parent (Prev))
12654 or else Present (Full_View (Prev))
12655 then
12656 Enter_Name (Id);
12658 -- Verify that types of both declarations match, or else that both types
12659 -- are anonymous access types whose designated subtypes statically match
12660 -- (as allowed in Ada 2005 by AI-385).
12662 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12663 and then
12664 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12665 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12666 or else Is_Access_Constant (Etype (New_T)) /=
12667 Is_Access_Constant (Etype (Prev))
12668 or else Can_Never_Be_Null (Etype (New_T)) /=
12669 Can_Never_Be_Null (Etype (Prev))
12670 or else Null_Exclusion_Present (Parent (Prev)) /=
12671 Null_Exclusion_Present (Parent (Id))
12672 or else not Subtypes_Statically_Match
12673 (Designated_Type (Etype (Prev)),
12674 Designated_Type (Etype (New_T))))
12675 then
12676 Error_Msg_Sloc := Sloc (Prev);
12677 Error_Msg_N ("type does not match declaration#", N);
12678 Set_Full_View (Prev, Id);
12679 Set_Etype (Id, Any_Type);
12681 -- A deferred constant whose type is an anonymous array is always
12682 -- illegal (unless imported). A detailed error message might be
12683 -- helpful for Ada beginners.
12685 if Nkind (Object_Definition (Parent (Prev)))
12686 = N_Constrained_Array_Definition
12687 and then Nkind (Object_Definition (N))
12688 = N_Constrained_Array_Definition
12689 then
12690 Error_Msg_N ("\each anonymous array is a distinct type", N);
12691 Error_Msg_N ("a deferred constant must have a named type",
12692 Object_Definition (Parent (Prev)));
12693 end if;
12695 elsif
12696 Null_Exclusion_Present (Parent (Prev))
12697 and then not Null_Exclusion_Present (N)
12698 then
12699 Error_Msg_Sloc := Sloc (Prev);
12700 Error_Msg_N ("null-exclusion does not match declaration#", N);
12701 Set_Full_View (Prev, Id);
12702 Set_Etype (Id, Any_Type);
12704 -- If so, process the full constant declaration
12706 else
12707 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12708 -- the deferred declaration is constrained, then the subtype defined
12709 -- by the subtype_indication in the full declaration shall match it
12710 -- statically.
12712 Check_Possible_Deferred_Completion
12713 (Prev_Id => Prev,
12714 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12715 Curr_Obj_Def => Obj_Def);
12717 Set_Full_View (Prev, Id);
12718 Set_Is_Public (Id, Is_Public (Prev));
12719 Set_Is_Internal (Id);
12720 Append_Entity (Id, Current_Scope);
12722 -- Check ALIASED present if present before (RM 7.4(7))
12724 if Is_Aliased (Prev)
12725 and then not Aliased_Present (N)
12726 then
12727 Error_Msg_Sloc := Sloc (Prev);
12728 Error_Msg_N ("ALIASED required (see declaration #)", N);
12729 end if;
12731 -- Check that placement is in private part and that the incomplete
12732 -- declaration appeared in the visible part.
12734 if Ekind (Current_Scope) = E_Package
12735 and then not In_Private_Part (Current_Scope)
12736 then
12737 Error_Msg_Sloc := Sloc (Prev);
12738 Error_Msg_N
12739 ("full constant for declaration # must be in private part", N);
12741 elsif Ekind (Current_Scope) = E_Package
12742 and then
12743 List_Containing (Parent (Prev)) /=
12744 Visible_Declarations (Package_Specification (Current_Scope))
12745 then
12746 Error_Msg_N
12747 ("deferred constant must be declared in visible part",
12748 Parent (Prev));
12749 end if;
12751 if Is_Access_Type (T)
12752 and then Nkind (Expression (N)) = N_Allocator
12753 then
12754 Check_Recursive_Declaration (Designated_Type (T));
12755 end if;
12757 -- A deferred constant is a visible entity. If type has invariants,
12758 -- verify that the initial value satisfies them. This is not done in
12759 -- GNATprove mode, as GNATprove handles invariant checks itself.
12761 if Has_Invariants (T)
12762 and then Present (Invariant_Procedure (T))
12763 and then not GNATprove_Mode
12764 then
12765 Insert_After (N,
12766 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12767 end if;
12768 end if;
12769 end Constant_Redeclaration;
12771 ----------------------
12772 -- Constrain_Access --
12773 ----------------------
12775 procedure Constrain_Access
12776 (Def_Id : in out Entity_Id;
12777 S : Node_Id;
12778 Related_Nod : Node_Id)
12780 T : constant Entity_Id := Entity (Subtype_Mark (S));
12781 Desig_Type : constant Entity_Id := Designated_Type (T);
12782 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12783 Constraint_OK : Boolean := True;
12785 begin
12786 if Is_Array_Type (Desig_Type) then
12787 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12789 elsif (Is_Record_Type (Desig_Type)
12790 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12791 and then not Is_Constrained (Desig_Type)
12792 then
12793 -- ??? The following code is a temporary bypass to ignore a
12794 -- discriminant constraint on access type if it is constraining
12795 -- the current record. Avoid creating the implicit subtype of the
12796 -- record we are currently compiling since right now, we cannot
12797 -- handle these. For now, just return the access type itself.
12799 if Desig_Type = Current_Scope
12800 and then No (Def_Id)
12801 then
12802 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12803 Def_Id := Entity (Subtype_Mark (S));
12805 -- This call added to ensure that the constraint is analyzed
12806 -- (needed for a B test). Note that we still return early from
12807 -- this procedure to avoid recursive processing. ???
12809 Constrain_Discriminated_Type
12810 (Desig_Subtype, S, Related_Nod, For_Access => True);
12811 return;
12812 end if;
12814 -- Enforce rule that the constraint is illegal if there is an
12815 -- unconstrained view of the designated type. This means that the
12816 -- partial view (either a private type declaration or a derivation
12817 -- from a private type) has no discriminants. (Defect Report
12818 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12820 -- Rule updated for Ada 2005: The private type is said to have
12821 -- a constrained partial view, given that objects of the type
12822 -- can be declared. Furthermore, the rule applies to all access
12823 -- types, unlike the rule concerning default discriminants (see
12824 -- RM 3.7.1(7/3))
12826 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12827 and then Has_Private_Declaration (Desig_Type)
12828 and then In_Open_Scopes (Scope (Desig_Type))
12829 and then Has_Discriminants (Desig_Type)
12830 then
12831 declare
12832 Pack : constant Node_Id :=
12833 Unit_Declaration_Node (Scope (Desig_Type));
12834 Decls : List_Id;
12835 Decl : Node_Id;
12837 begin
12838 if Nkind (Pack) = N_Package_Declaration then
12839 Decls := Visible_Declarations (Specification (Pack));
12840 Decl := First (Decls);
12841 while Present (Decl) loop
12842 if (Nkind (Decl) = N_Private_Type_Declaration
12843 and then Chars (Defining_Identifier (Decl)) =
12844 Chars (Desig_Type))
12846 or else
12847 (Nkind (Decl) = N_Full_Type_Declaration
12848 and then
12849 Chars (Defining_Identifier (Decl)) =
12850 Chars (Desig_Type)
12851 and then Is_Derived_Type (Desig_Type)
12852 and then
12853 Has_Private_Declaration (Etype (Desig_Type)))
12854 then
12855 if No (Discriminant_Specifications (Decl)) then
12856 Error_Msg_N
12857 ("cannot constrain access type if designated "
12858 & "type has constrained partial view", S);
12859 end if;
12861 exit;
12862 end if;
12864 Next (Decl);
12865 end loop;
12866 end if;
12867 end;
12868 end if;
12870 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12871 For_Access => True);
12873 elsif Is_Concurrent_Type (Desig_Type)
12874 and then not Is_Constrained (Desig_Type)
12875 then
12876 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12878 else
12879 Error_Msg_N ("invalid constraint on access type", S);
12881 -- We simply ignore an invalid constraint
12883 Desig_Subtype := Desig_Type;
12884 Constraint_OK := False;
12885 end if;
12887 if No (Def_Id) then
12888 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12889 else
12890 Set_Ekind (Def_Id, E_Access_Subtype);
12891 end if;
12893 if Constraint_OK then
12894 Set_Etype (Def_Id, Base_Type (T));
12896 if Is_Private_Type (Desig_Type) then
12897 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12898 end if;
12899 else
12900 Set_Etype (Def_Id, Any_Type);
12901 end if;
12903 Set_Size_Info (Def_Id, T);
12904 Set_Is_Constrained (Def_Id, Constraint_OK);
12905 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12906 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12907 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
12909 Conditional_Delay (Def_Id, T);
12911 -- AI-363 : Subtypes of general access types whose designated types have
12912 -- default discriminants are disallowed. In instances, the rule has to
12913 -- be checked against the actual, of which T is the subtype. In a
12914 -- generic body, the rule is checked assuming that the actual type has
12915 -- defaulted discriminants.
12917 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12918 if Ekind (Base_Type (T)) = E_General_Access_Type
12919 and then Has_Defaulted_Discriminants (Desig_Type)
12920 then
12921 if Ada_Version < Ada_2005 then
12922 Error_Msg_N
12923 ("access subtype of general access type would not " &
12924 "be allowed in Ada 2005?y?", S);
12925 else
12926 Error_Msg_N
12927 ("access subtype of general access type not allowed", S);
12928 end if;
12930 Error_Msg_N ("\discriminants have defaults", S);
12932 elsif Is_Access_Type (T)
12933 and then Is_Generic_Type (Desig_Type)
12934 and then Has_Discriminants (Desig_Type)
12935 and then In_Package_Body (Current_Scope)
12936 then
12937 if Ada_Version < Ada_2005 then
12938 Error_Msg_N
12939 ("access subtype would not be allowed in generic body "
12940 & "in Ada 2005?y?", S);
12941 else
12942 Error_Msg_N
12943 ("access subtype not allowed in generic body", S);
12944 end if;
12946 Error_Msg_N
12947 ("\designated type is a discriminated formal", S);
12948 end if;
12949 end if;
12950 end Constrain_Access;
12952 ---------------------
12953 -- Constrain_Array --
12954 ---------------------
12956 procedure Constrain_Array
12957 (Def_Id : in out Entity_Id;
12958 SI : Node_Id;
12959 Related_Nod : Node_Id;
12960 Related_Id : Entity_Id;
12961 Suffix : Character)
12963 C : constant Node_Id := Constraint (SI);
12964 Number_Of_Constraints : Nat := 0;
12965 Index : Node_Id;
12966 S, T : Entity_Id;
12967 Constraint_OK : Boolean := True;
12969 begin
12970 T := Entity (Subtype_Mark (SI));
12972 if Is_Access_Type (T) then
12973 T := Designated_Type (T);
12974 end if;
12976 -- If an index constraint follows a subtype mark in a subtype indication
12977 -- then the type or subtype denoted by the subtype mark must not already
12978 -- impose an index constraint. The subtype mark must denote either an
12979 -- unconstrained array type or an access type whose designated type
12980 -- is such an array type... (RM 3.6.1)
12982 if Is_Constrained (T) then
12983 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12984 Constraint_OK := False;
12986 else
12987 S := First (Constraints (C));
12988 while Present (S) loop
12989 Number_Of_Constraints := Number_Of_Constraints + 1;
12990 Next (S);
12991 end loop;
12993 -- In either case, the index constraint must provide a discrete
12994 -- range for each index of the array type and the type of each
12995 -- discrete range must be the same as that of the corresponding
12996 -- index. (RM 3.6.1)
12998 if Number_Of_Constraints /= Number_Dimensions (T) then
12999 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
13000 Constraint_OK := False;
13002 else
13003 S := First (Constraints (C));
13004 Index := First_Index (T);
13005 Analyze (Index);
13007 -- Apply constraints to each index type
13009 for J in 1 .. Number_Of_Constraints loop
13010 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
13011 Next (Index);
13012 Next (S);
13013 end loop;
13015 end if;
13016 end if;
13018 if No (Def_Id) then
13019 Def_Id :=
13020 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
13021 Set_Parent (Def_Id, Related_Nod);
13023 else
13024 Set_Ekind (Def_Id, E_Array_Subtype);
13025 end if;
13027 Set_Size_Info (Def_Id, (T));
13028 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13029 Set_Etype (Def_Id, Base_Type (T));
13031 if Constraint_OK then
13032 Set_First_Index (Def_Id, First (Constraints (C)));
13033 else
13034 Set_First_Index (Def_Id, First_Index (T));
13035 end if;
13037 Set_Is_Constrained (Def_Id, True);
13038 Set_Is_Aliased (Def_Id, Is_Aliased (T));
13039 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13041 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
13042 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
13044 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
13045 -- We need to initialize the attribute because if Def_Id is previously
13046 -- analyzed through a limited_with clause, it will have the attributes
13047 -- of an incomplete type, one of which is an Elist that overlaps the
13048 -- Packed_Array_Impl_Type field.
13050 Set_Packed_Array_Impl_Type (Def_Id, Empty);
13052 -- Build a freeze node if parent still needs one. Also make sure that
13053 -- the Depends_On_Private status is set because the subtype will need
13054 -- reprocessing at the time the base type does, and also we must set a
13055 -- conditional delay.
13057 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
13058 Conditional_Delay (Def_Id, T);
13059 end Constrain_Array;
13061 ------------------------------
13062 -- Constrain_Component_Type --
13063 ------------------------------
13065 function Constrain_Component_Type
13066 (Comp : Entity_Id;
13067 Constrained_Typ : Entity_Id;
13068 Related_Node : Node_Id;
13069 Typ : Entity_Id;
13070 Constraints : Elist_Id) return Entity_Id
13072 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
13073 Compon_Type : constant Entity_Id := Etype (Comp);
13075 function Build_Constrained_Array_Type
13076 (Old_Type : Entity_Id) return Entity_Id;
13077 -- If Old_Type is an array type, one of whose indexes is constrained
13078 -- by a discriminant, build an Itype whose constraint replaces the
13079 -- discriminant with its value in the constraint.
13081 function Build_Constrained_Discriminated_Type
13082 (Old_Type : Entity_Id) return Entity_Id;
13083 -- Ditto for record components
13085 function Build_Constrained_Access_Type
13086 (Old_Type : Entity_Id) return Entity_Id;
13087 -- Ditto for access types. Makes use of previous two functions, to
13088 -- constrain designated type.
13090 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
13091 -- T is an array or discriminated type, C is a list of constraints
13092 -- that apply to T. This routine builds the constrained subtype.
13094 function Is_Discriminant (Expr : Node_Id) return Boolean;
13095 -- Returns True if Expr is a discriminant
13097 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
13098 -- Find the value of discriminant Discrim in Constraint
13100 -----------------------------------
13101 -- Build_Constrained_Access_Type --
13102 -----------------------------------
13104 function Build_Constrained_Access_Type
13105 (Old_Type : Entity_Id) return Entity_Id
13107 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
13108 Itype : Entity_Id;
13109 Desig_Subtype : Entity_Id;
13110 Scop : Entity_Id;
13112 begin
13113 -- if the original access type was not embedded in the enclosing
13114 -- type definition, there is no need to produce a new access
13115 -- subtype. In fact every access type with an explicit constraint
13116 -- generates an itype whose scope is the enclosing record.
13118 if not Is_Type (Scope (Old_Type)) then
13119 return Old_Type;
13121 elsif Is_Array_Type (Desig_Type) then
13122 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
13124 elsif Has_Discriminants (Desig_Type) then
13126 -- This may be an access type to an enclosing record type for
13127 -- which we are constructing the constrained components. Return
13128 -- the enclosing record subtype. This is not always correct,
13129 -- but avoids infinite recursion. ???
13131 Desig_Subtype := Any_Type;
13133 for J in reverse 0 .. Scope_Stack.Last loop
13134 Scop := Scope_Stack.Table (J).Entity;
13136 if Is_Type (Scop)
13137 and then Base_Type (Scop) = Base_Type (Desig_Type)
13138 then
13139 Desig_Subtype := Scop;
13140 end if;
13142 exit when not Is_Type (Scop);
13143 end loop;
13145 if Desig_Subtype = Any_Type then
13146 Desig_Subtype :=
13147 Build_Constrained_Discriminated_Type (Desig_Type);
13148 end if;
13150 else
13151 return Old_Type;
13152 end if;
13154 if Desig_Subtype /= Desig_Type then
13156 -- The Related_Node better be here or else we won't be able
13157 -- to attach new itypes to a node in the tree.
13159 pragma Assert (Present (Related_Node));
13161 Itype := Create_Itype (E_Access_Subtype, Related_Node);
13163 Set_Etype (Itype, Base_Type (Old_Type));
13164 Set_Size_Info (Itype, (Old_Type));
13165 Set_Directly_Designated_Type (Itype, Desig_Subtype);
13166 Set_Depends_On_Private (Itype, Has_Private_Component
13167 (Old_Type));
13168 Set_Is_Access_Constant (Itype, Is_Access_Constant
13169 (Old_Type));
13171 -- The new itype needs freezing when it depends on a not frozen
13172 -- type and the enclosing subtype needs freezing.
13174 if Has_Delayed_Freeze (Constrained_Typ)
13175 and then not Is_Frozen (Constrained_Typ)
13176 then
13177 Conditional_Delay (Itype, Base_Type (Old_Type));
13178 end if;
13180 return Itype;
13182 else
13183 return Old_Type;
13184 end if;
13185 end Build_Constrained_Access_Type;
13187 ----------------------------------
13188 -- Build_Constrained_Array_Type --
13189 ----------------------------------
13191 function Build_Constrained_Array_Type
13192 (Old_Type : Entity_Id) return Entity_Id
13194 Lo_Expr : Node_Id;
13195 Hi_Expr : Node_Id;
13196 Old_Index : Node_Id;
13197 Range_Node : Node_Id;
13198 Constr_List : List_Id;
13200 Need_To_Create_Itype : Boolean := False;
13202 begin
13203 Old_Index := First_Index (Old_Type);
13204 while Present (Old_Index) loop
13205 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13207 if Is_Discriminant (Lo_Expr)
13208 or else
13209 Is_Discriminant (Hi_Expr)
13210 then
13211 Need_To_Create_Itype := True;
13212 end if;
13214 Next_Index (Old_Index);
13215 end loop;
13217 if Need_To_Create_Itype then
13218 Constr_List := New_List;
13220 Old_Index := First_Index (Old_Type);
13221 while Present (Old_Index) loop
13222 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13224 if Is_Discriminant (Lo_Expr) then
13225 Lo_Expr := Get_Discr_Value (Lo_Expr);
13226 end if;
13228 if Is_Discriminant (Hi_Expr) then
13229 Hi_Expr := Get_Discr_Value (Hi_Expr);
13230 end if;
13232 Range_Node :=
13233 Make_Range
13234 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
13236 Append (Range_Node, To => Constr_List);
13238 Next_Index (Old_Index);
13239 end loop;
13241 return Build_Subtype (Old_Type, Constr_List);
13243 else
13244 return Old_Type;
13245 end if;
13246 end Build_Constrained_Array_Type;
13248 ------------------------------------------
13249 -- Build_Constrained_Discriminated_Type --
13250 ------------------------------------------
13252 function Build_Constrained_Discriminated_Type
13253 (Old_Type : Entity_Id) return Entity_Id
13255 Expr : Node_Id;
13256 Constr_List : List_Id;
13257 Old_Constraint : Elmt_Id;
13259 Need_To_Create_Itype : Boolean := False;
13261 begin
13262 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13263 while Present (Old_Constraint) loop
13264 Expr := Node (Old_Constraint);
13266 if Is_Discriminant (Expr) then
13267 Need_To_Create_Itype := True;
13268 end if;
13270 Next_Elmt (Old_Constraint);
13271 end loop;
13273 if Need_To_Create_Itype then
13274 Constr_List := New_List;
13276 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13277 while Present (Old_Constraint) loop
13278 Expr := Node (Old_Constraint);
13280 if Is_Discriminant (Expr) then
13281 Expr := Get_Discr_Value (Expr);
13282 end if;
13284 Append (New_Copy_Tree (Expr), To => Constr_List);
13286 Next_Elmt (Old_Constraint);
13287 end loop;
13289 return Build_Subtype (Old_Type, Constr_List);
13291 else
13292 return Old_Type;
13293 end if;
13294 end Build_Constrained_Discriminated_Type;
13296 -------------------
13297 -- Build_Subtype --
13298 -------------------
13300 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
13301 Indic : Node_Id;
13302 Subtyp_Decl : Node_Id;
13303 Def_Id : Entity_Id;
13304 Btyp : Entity_Id := Base_Type (T);
13306 begin
13307 -- The Related_Node better be here or else we won't be able to
13308 -- attach new itypes to a node in the tree.
13310 pragma Assert (Present (Related_Node));
13312 -- If the view of the component's type is incomplete or private
13313 -- with unknown discriminants, then the constraint must be applied
13314 -- to the full type.
13316 if Has_Unknown_Discriminants (Btyp)
13317 and then Present (Underlying_Type (Btyp))
13318 then
13319 Btyp := Underlying_Type (Btyp);
13320 end if;
13322 Indic :=
13323 Make_Subtype_Indication (Loc,
13324 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
13325 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
13327 Def_Id := Create_Itype (Ekind (T), Related_Node);
13329 Subtyp_Decl :=
13330 Make_Subtype_Declaration (Loc,
13331 Defining_Identifier => Def_Id,
13332 Subtype_Indication => Indic);
13334 Set_Parent (Subtyp_Decl, Parent (Related_Node));
13336 -- Itypes must be analyzed with checks off (see package Itypes)
13338 Analyze (Subtyp_Decl, Suppress => All_Checks);
13340 return Def_Id;
13341 end Build_Subtype;
13343 ---------------------
13344 -- Get_Discr_Value --
13345 ---------------------
13347 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
13348 D : Entity_Id;
13349 E : Elmt_Id;
13351 begin
13352 -- The discriminant may be declared for the type, in which case we
13353 -- find it by iterating over the list of discriminants. If the
13354 -- discriminant is inherited from a parent type, it appears as the
13355 -- corresponding discriminant of the current type. This will be the
13356 -- case when constraining an inherited component whose constraint is
13357 -- given by a discriminant of the parent.
13359 D := First_Discriminant (Typ);
13360 E := First_Elmt (Constraints);
13362 while Present (D) loop
13363 if D = Entity (Discrim)
13364 or else D = CR_Discriminant (Entity (Discrim))
13365 or else Corresponding_Discriminant (D) = Entity (Discrim)
13366 then
13367 return Node (E);
13368 end if;
13370 Next_Discriminant (D);
13371 Next_Elmt (E);
13372 end loop;
13374 -- The Corresponding_Discriminant mechanism is incomplete, because
13375 -- the correspondence between new and old discriminants is not one
13376 -- to one: one new discriminant can constrain several old ones. In
13377 -- that case, scan sequentially the stored_constraint, the list of
13378 -- discriminants of the parents, and the constraints.
13380 -- Previous code checked for the present of the Stored_Constraint
13381 -- list for the derived type, but did not use it at all. Should it
13382 -- be present when the component is a discriminated task type?
13384 if Is_Derived_Type (Typ)
13385 and then Scope (Entity (Discrim)) = Etype (Typ)
13386 then
13387 D := First_Discriminant (Etype (Typ));
13388 E := First_Elmt (Constraints);
13389 while Present (D) loop
13390 if D = Entity (Discrim) then
13391 return Node (E);
13392 end if;
13394 Next_Discriminant (D);
13395 Next_Elmt (E);
13396 end loop;
13397 end if;
13399 -- Something is wrong if we did not find the value
13401 raise Program_Error;
13402 end Get_Discr_Value;
13404 ---------------------
13405 -- Is_Discriminant --
13406 ---------------------
13408 function Is_Discriminant (Expr : Node_Id) return Boolean is
13409 Discrim_Scope : Entity_Id;
13411 begin
13412 if Denotes_Discriminant (Expr) then
13413 Discrim_Scope := Scope (Entity (Expr));
13415 -- Either we have a reference to one of Typ's discriminants,
13417 pragma Assert (Discrim_Scope = Typ
13419 -- or to the discriminants of the parent type, in the case
13420 -- of a derivation of a tagged type with variants.
13422 or else Discrim_Scope = Etype (Typ)
13423 or else Full_View (Discrim_Scope) = Etype (Typ)
13425 -- or same as above for the case where the discriminants
13426 -- were declared in Typ's private view.
13428 or else (Is_Private_Type (Discrim_Scope)
13429 and then Chars (Discrim_Scope) = Chars (Typ))
13431 -- or else we are deriving from the full view and the
13432 -- discriminant is declared in the private entity.
13434 or else (Is_Private_Type (Typ)
13435 and then Chars (Discrim_Scope) = Chars (Typ))
13437 -- Or we are constrained the corresponding record of a
13438 -- synchronized type that completes a private declaration.
13440 or else (Is_Concurrent_Record_Type (Typ)
13441 and then
13442 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
13444 -- or we have a class-wide type, in which case make sure the
13445 -- discriminant found belongs to the root type.
13447 or else (Is_Class_Wide_Type (Typ)
13448 and then Etype (Typ) = Discrim_Scope));
13450 return True;
13451 end if;
13453 -- In all other cases we have something wrong
13455 return False;
13456 end Is_Discriminant;
13458 -- Start of processing for Constrain_Component_Type
13460 begin
13461 if Nkind (Parent (Comp)) = N_Component_Declaration
13462 and then Comes_From_Source (Parent (Comp))
13463 and then Comes_From_Source
13464 (Subtype_Indication (Component_Definition (Parent (Comp))))
13465 and then
13466 Is_Entity_Name
13467 (Subtype_Indication (Component_Definition (Parent (Comp))))
13468 then
13469 return Compon_Type;
13471 elsif Is_Array_Type (Compon_Type) then
13472 return Build_Constrained_Array_Type (Compon_Type);
13474 elsif Has_Discriminants (Compon_Type) then
13475 return Build_Constrained_Discriminated_Type (Compon_Type);
13477 elsif Is_Access_Type (Compon_Type) then
13478 return Build_Constrained_Access_Type (Compon_Type);
13480 else
13481 return Compon_Type;
13482 end if;
13483 end Constrain_Component_Type;
13485 --------------------------
13486 -- Constrain_Concurrent --
13487 --------------------------
13489 -- For concurrent types, the associated record value type carries the same
13490 -- discriminants, so when we constrain a concurrent type, we must constrain
13491 -- the corresponding record type as well.
13493 procedure Constrain_Concurrent
13494 (Def_Id : in out Entity_Id;
13495 SI : Node_Id;
13496 Related_Nod : Node_Id;
13497 Related_Id : Entity_Id;
13498 Suffix : Character)
13500 -- Retrieve Base_Type to ensure getting to the concurrent type in the
13501 -- case of a private subtype (needed when only doing semantic analysis).
13503 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
13504 T_Val : Entity_Id;
13506 begin
13507 if Is_Access_Type (T_Ent) then
13508 T_Ent := Designated_Type (T_Ent);
13509 end if;
13511 T_Val := Corresponding_Record_Type (T_Ent);
13513 if Present (T_Val) then
13515 if No (Def_Id) then
13516 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13518 -- Elaborate itype now, as it may be used in a subsequent
13519 -- synchronized operation in another scope.
13521 if Nkind (Related_Nod) = N_Full_Type_Declaration then
13522 Build_Itype_Reference (Def_Id, Related_Nod);
13523 end if;
13524 end if;
13526 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13527 Set_First_Private_Entity (Def_Id, First_Private_Entity (T_Ent));
13529 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13530 Set_Corresponding_Record_Type (Def_Id,
13531 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
13533 else
13534 -- If there is no associated record, expansion is disabled and this
13535 -- is a generic context. Create a subtype in any case, so that
13536 -- semantic analysis can proceed.
13538 if No (Def_Id) then
13539 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13540 end if;
13542 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13543 end if;
13544 end Constrain_Concurrent;
13546 ------------------------------------
13547 -- Constrain_Corresponding_Record --
13548 ------------------------------------
13550 function Constrain_Corresponding_Record
13551 (Prot_Subt : Entity_Id;
13552 Corr_Rec : Entity_Id;
13553 Related_Nod : Node_Id) return Entity_Id
13555 T_Sub : constant Entity_Id :=
13556 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
13558 begin
13559 Set_Etype (T_Sub, Corr_Rec);
13560 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
13561 Set_Is_Constrained (T_Sub, True);
13562 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
13563 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
13565 if Has_Discriminants (Prot_Subt) then -- False only if errors.
13566 Set_Discriminant_Constraint
13567 (T_Sub, Discriminant_Constraint (Prot_Subt));
13568 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
13569 Create_Constrained_Components
13570 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
13571 end if;
13573 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
13575 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
13576 Conditional_Delay (T_Sub, Corr_Rec);
13578 else
13579 -- This is a component subtype: it will be frozen in the context of
13580 -- the enclosing record's init_proc, so that discriminant references
13581 -- are resolved to discriminals. (Note: we used to skip freezing
13582 -- altogether in that case, which caused errors downstream for
13583 -- components of a bit packed array type).
13585 Set_Has_Delayed_Freeze (T_Sub);
13586 end if;
13588 return T_Sub;
13589 end Constrain_Corresponding_Record;
13591 -----------------------
13592 -- Constrain_Decimal --
13593 -----------------------
13595 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
13596 T : constant Entity_Id := Entity (Subtype_Mark (S));
13597 C : constant Node_Id := Constraint (S);
13598 Loc : constant Source_Ptr := Sloc (C);
13599 Range_Expr : Node_Id;
13600 Digits_Expr : Node_Id;
13601 Digits_Val : Uint;
13602 Bound_Val : Ureal;
13604 begin
13605 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
13607 if Nkind (C) = N_Range_Constraint then
13608 Range_Expr := Range_Expression (C);
13609 Digits_Val := Digits_Value (T);
13611 else
13612 pragma Assert (Nkind (C) = N_Digits_Constraint);
13614 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13616 Digits_Expr := Digits_Expression (C);
13617 Analyze_And_Resolve (Digits_Expr, Any_Integer);
13619 Check_Digits_Expression (Digits_Expr);
13620 Digits_Val := Expr_Value (Digits_Expr);
13622 if Digits_Val > Digits_Value (T) then
13623 Error_Msg_N
13624 ("digits expression is incompatible with subtype", C);
13625 Digits_Val := Digits_Value (T);
13626 end if;
13628 if Present (Range_Constraint (C)) then
13629 Range_Expr := Range_Expression (Range_Constraint (C));
13630 else
13631 Range_Expr := Empty;
13632 end if;
13633 end if;
13635 Set_Etype (Def_Id, Base_Type (T));
13636 Set_Size_Info (Def_Id, (T));
13637 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13638 Set_Delta_Value (Def_Id, Delta_Value (T));
13639 Set_Scale_Value (Def_Id, Scale_Value (T));
13640 Set_Small_Value (Def_Id, Small_Value (T));
13641 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
13642 Set_Digits_Value (Def_Id, Digits_Val);
13644 -- Manufacture range from given digits value if no range present
13646 if No (Range_Expr) then
13647 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13648 Range_Expr :=
13649 Make_Range (Loc,
13650 Low_Bound =>
13651 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13652 High_Bound =>
13653 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13654 end if;
13656 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13657 Set_Discrete_RM_Size (Def_Id);
13659 -- Unconditionally delay the freeze, since we cannot set size
13660 -- information in all cases correctly until the freeze point.
13662 Set_Has_Delayed_Freeze (Def_Id);
13663 end Constrain_Decimal;
13665 ----------------------------------
13666 -- Constrain_Discriminated_Type --
13667 ----------------------------------
13669 procedure Constrain_Discriminated_Type
13670 (Def_Id : Entity_Id;
13671 S : Node_Id;
13672 Related_Nod : Node_Id;
13673 For_Access : Boolean := False)
13675 E : Entity_Id := Entity (Subtype_Mark (S));
13676 T : Entity_Id;
13678 procedure Fixup_Bad_Constraint;
13679 -- Called after finding a bad constraint, and after having posted an
13680 -- appropriate error message. The goal is to leave type Def_Id in as
13681 -- reasonable state as possible.
13683 --------------------------
13684 -- Fixup_Bad_Constraint --
13685 --------------------------
13687 procedure Fixup_Bad_Constraint is
13688 begin
13689 -- Set a reasonable Ekind for the entity, including incomplete types.
13691 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13693 -- Set Etype to the known type, to reduce chances of cascaded errors
13695 Set_Etype (Def_Id, E);
13696 Set_Error_Posted (Def_Id);
13697 end Fixup_Bad_Constraint;
13699 -- Local variables
13701 C : Node_Id;
13702 Constr : Elist_Id := New_Elmt_List;
13704 -- Start of processing for Constrain_Discriminated_Type
13706 begin
13707 C := Constraint (S);
13709 -- A discriminant constraint is only allowed in a subtype indication,
13710 -- after a subtype mark. This subtype mark must denote either a type
13711 -- with discriminants, or an access type whose designated type is a
13712 -- type with discriminants. A discriminant constraint specifies the
13713 -- values of these discriminants (RM 3.7.2(5)).
13715 T := Base_Type (Entity (Subtype_Mark (S)));
13717 if Is_Access_Type (T) then
13718 T := Designated_Type (T);
13719 end if;
13721 -- In an instance it may be necessary to retrieve the full view of a
13722 -- type with unknown discriminants, or a full view with defaulted
13723 -- discriminants. In other contexts the constraint is illegal.
13725 if In_Instance
13726 and then Is_Private_Type (T)
13727 and then Present (Full_View (T))
13728 and then
13729 (Has_Unknown_Discriminants (T)
13730 or else
13731 (not Has_Discriminants (T)
13732 and then Has_Discriminants (Full_View (T))
13733 and then Present (Discriminant_Default_Value
13734 (First_Discriminant (Full_View (T))))))
13735 then
13736 T := Full_View (T);
13737 E := Full_View (E);
13738 end if;
13740 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13741 -- generating an error for access-to-incomplete subtypes.
13743 if Ada_Version >= Ada_2005
13744 and then Ekind (T) = E_Incomplete_Type
13745 and then Nkind (Parent (S)) = N_Subtype_Declaration
13746 and then not Is_Itype (Def_Id)
13747 then
13748 -- A little sanity check: emit an error message if the type has
13749 -- discriminants to begin with. Type T may be a regular incomplete
13750 -- type or imported via a limited with clause.
13752 if Has_Discriminants (T)
13753 or else (From_Limited_With (T)
13754 and then Present (Non_Limited_View (T))
13755 and then Nkind (Parent (Non_Limited_View (T))) =
13756 N_Full_Type_Declaration
13757 and then Present (Discriminant_Specifications
13758 (Parent (Non_Limited_View (T)))))
13759 then
13760 Error_Msg_N
13761 ("(Ada 2005) incomplete subtype may not be constrained", C);
13762 else
13763 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13764 end if;
13766 Fixup_Bad_Constraint;
13767 return;
13769 -- Check that the type has visible discriminants. The type may be
13770 -- a private type with unknown discriminants whose full view has
13771 -- discriminants which are invisible.
13773 elsif not Has_Discriminants (T)
13774 or else
13775 (Has_Unknown_Discriminants (T)
13776 and then Is_Private_Type (T))
13777 then
13778 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13779 Fixup_Bad_Constraint;
13780 return;
13782 elsif Is_Constrained (E)
13783 or else (Ekind (E) = E_Class_Wide_Subtype
13784 and then Present (Discriminant_Constraint (E)))
13785 then
13786 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13787 Fixup_Bad_Constraint;
13788 return;
13789 end if;
13791 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13792 -- applies to the base type.
13794 T := Base_Type (T);
13796 Constr := Build_Discriminant_Constraints (T, S);
13798 -- If the list returned was empty we had an error in building the
13799 -- discriminant constraint. We have also already signalled an error
13800 -- in the incomplete type case
13802 if Is_Empty_Elmt_List (Constr) then
13803 Fixup_Bad_Constraint;
13804 return;
13805 end if;
13807 Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access);
13808 end Constrain_Discriminated_Type;
13810 ---------------------------
13811 -- Constrain_Enumeration --
13812 ---------------------------
13814 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13815 T : constant Entity_Id := Entity (Subtype_Mark (S));
13816 C : constant Node_Id := Constraint (S);
13818 begin
13819 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13821 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13823 Set_Etype (Def_Id, Base_Type (T));
13824 Set_Size_Info (Def_Id, (T));
13825 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13826 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13828 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13830 Set_Discrete_RM_Size (Def_Id);
13831 end Constrain_Enumeration;
13833 ----------------------
13834 -- Constrain_Float --
13835 ----------------------
13837 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13838 T : constant Entity_Id := Entity (Subtype_Mark (S));
13839 C : Node_Id;
13840 D : Node_Id;
13841 Rais : Node_Id;
13843 begin
13844 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13846 Set_Etype (Def_Id, Base_Type (T));
13847 Set_Size_Info (Def_Id, (T));
13848 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13850 -- Process the constraint
13852 C := Constraint (S);
13854 -- Digits constraint present
13856 if Nkind (C) = N_Digits_Constraint then
13858 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13859 Check_Restriction (No_Obsolescent_Features, C);
13861 if Warn_On_Obsolescent_Feature then
13862 Error_Msg_N
13863 ("subtype digits constraint is an " &
13864 "obsolescent feature (RM J.3(8))?j?", C);
13865 end if;
13867 D := Digits_Expression (C);
13868 Analyze_And_Resolve (D, Any_Integer);
13869 Check_Digits_Expression (D);
13870 Set_Digits_Value (Def_Id, Expr_Value (D));
13872 -- Check that digits value is in range. Obviously we can do this
13873 -- at compile time, but it is strictly a runtime check, and of
13874 -- course there is an ACVC test that checks this.
13876 if Digits_Value (Def_Id) > Digits_Value (T) then
13877 Error_Msg_Uint_1 := Digits_Value (T);
13878 Error_Msg_N ("??digits value is too large, maximum is ^", D);
13879 Rais :=
13880 Make_Raise_Constraint_Error (Sloc (D),
13881 Reason => CE_Range_Check_Failed);
13882 Insert_Action (Declaration_Node (Def_Id), Rais);
13883 end if;
13885 C := Range_Constraint (C);
13887 -- No digits constraint present
13889 else
13890 Set_Digits_Value (Def_Id, Digits_Value (T));
13891 end if;
13893 -- Range constraint present
13895 if Nkind (C) = N_Range_Constraint then
13896 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13898 -- No range constraint present
13900 else
13901 pragma Assert (No (C));
13902 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13903 end if;
13905 Set_Is_Constrained (Def_Id);
13906 end Constrain_Float;
13908 ---------------------
13909 -- Constrain_Index --
13910 ---------------------
13912 procedure Constrain_Index
13913 (Index : Node_Id;
13914 S : Node_Id;
13915 Related_Nod : Node_Id;
13916 Related_Id : Entity_Id;
13917 Suffix : Character;
13918 Suffix_Index : Nat)
13920 Def_Id : Entity_Id;
13921 R : Node_Id := Empty;
13922 T : constant Entity_Id := Etype (Index);
13924 begin
13925 Def_Id :=
13926 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13927 Set_Etype (Def_Id, Base_Type (T));
13929 if Nkind (S) = N_Range
13930 or else
13931 (Nkind (S) = N_Attribute_Reference
13932 and then Attribute_Name (S) = Name_Range)
13933 then
13934 -- A Range attribute will be transformed into N_Range by Resolve
13936 Analyze (S);
13937 Set_Etype (S, T);
13938 R := S;
13940 Process_Range_Expr_In_Decl (R, T);
13942 if not Error_Posted (S)
13943 and then
13944 (Nkind (S) /= N_Range
13945 or else not Covers (T, (Etype (Low_Bound (S))))
13946 or else not Covers (T, (Etype (High_Bound (S)))))
13947 then
13948 if Base_Type (T) /= Any_Type
13949 and then Etype (Low_Bound (S)) /= Any_Type
13950 and then Etype (High_Bound (S)) /= Any_Type
13951 then
13952 Error_Msg_N ("range expected", S);
13953 end if;
13954 end if;
13956 elsif Nkind (S) = N_Subtype_Indication then
13958 -- The parser has verified that this is a discrete indication
13960 Resolve_Discrete_Subtype_Indication (S, T);
13961 Bad_Predicated_Subtype_Use
13962 ("subtype& has predicate, not allowed in index constraint",
13963 S, Entity (Subtype_Mark (S)));
13965 R := Range_Expression (Constraint (S));
13967 -- Capture values of bounds and generate temporaries for them if
13968 -- needed, since checks may cause duplication of the expressions
13969 -- which must not be reevaluated.
13971 -- The forced evaluation removes side effects from expressions, which
13972 -- should occur also in GNATprove mode. Otherwise, we end up with
13973 -- unexpected insertions of actions at places where this is not
13974 -- supposed to occur, e.g. on default parameters of a call.
13976 if Expander_Active or GNATprove_Mode then
13977 Force_Evaluation
13978 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
13979 Force_Evaluation
13980 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
13981 end if;
13983 elsif Nkind (S) = N_Discriminant_Association then
13985 -- Syntactically valid in subtype indication
13987 Error_Msg_N ("invalid index constraint", S);
13988 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13989 return;
13991 -- Subtype_Mark case, no anonymous subtypes to construct
13993 else
13994 Analyze (S);
13996 if Is_Entity_Name (S) then
13997 if not Is_Type (Entity (S)) then
13998 Error_Msg_N ("expect subtype mark for index constraint", S);
14000 elsif Base_Type (Entity (S)) /= Base_Type (T) then
14001 Wrong_Type (S, Base_Type (T));
14003 -- Check error of subtype with predicate in index constraint
14005 else
14006 Bad_Predicated_Subtype_Use
14007 ("subtype& has predicate, not allowed in index constraint",
14008 S, Entity (S));
14009 end if;
14011 return;
14013 else
14014 Error_Msg_N ("invalid index constraint", S);
14015 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14016 return;
14017 end if;
14018 end if;
14020 -- Complete construction of the Itype
14022 if Is_Modular_Integer_Type (T) then
14023 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14025 elsif Is_Integer_Type (T) then
14026 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14028 else
14029 Set_Ekind (Def_Id, E_Enumeration_Subtype);
14030 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
14031 Set_First_Literal (Def_Id, First_Literal (T));
14032 end if;
14034 Set_Size_Info (Def_Id, (T));
14035 Set_RM_Size (Def_Id, RM_Size (T));
14036 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14038 Set_Scalar_Range (Def_Id, R);
14040 Set_Etype (S, Def_Id);
14041 Set_Discrete_RM_Size (Def_Id);
14042 end Constrain_Index;
14044 -----------------------
14045 -- Constrain_Integer --
14046 -----------------------
14048 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
14049 T : constant Entity_Id := Entity (Subtype_Mark (S));
14050 C : constant Node_Id := Constraint (S);
14052 begin
14053 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14055 if Is_Modular_Integer_Type (T) then
14056 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14057 else
14058 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14059 end if;
14061 Set_Etype (Def_Id, Base_Type (T));
14062 Set_Size_Info (Def_Id, (T));
14063 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14064 Set_Discrete_RM_Size (Def_Id);
14065 end Constrain_Integer;
14067 ------------------------------
14068 -- Constrain_Ordinary_Fixed --
14069 ------------------------------
14071 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
14072 T : constant Entity_Id := Entity (Subtype_Mark (S));
14073 C : Node_Id;
14074 D : Node_Id;
14075 Rais : Node_Id;
14077 begin
14078 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
14079 Set_Etype (Def_Id, Base_Type (T));
14080 Set_Size_Info (Def_Id, (T));
14081 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14082 Set_Small_Value (Def_Id, Small_Value (T));
14084 -- Process the constraint
14086 C := Constraint (S);
14088 -- Delta constraint present
14090 if Nkind (C) = N_Delta_Constraint then
14092 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
14093 Check_Restriction (No_Obsolescent_Features, C);
14095 if Warn_On_Obsolescent_Feature then
14096 Error_Msg_S
14097 ("subtype delta constraint is an " &
14098 "obsolescent feature (RM J.3(7))?j?");
14099 end if;
14101 D := Delta_Expression (C);
14102 Analyze_And_Resolve (D, Any_Real);
14103 Check_Delta_Expression (D);
14104 Set_Delta_Value (Def_Id, Expr_Value_R (D));
14106 -- Check that delta value is in range. Obviously we can do this
14107 -- at compile time, but it is strictly a runtime check, and of
14108 -- course there is an ACVC test that checks this.
14110 if Delta_Value (Def_Id) < Delta_Value (T) then
14111 Error_Msg_N ("??delta value is too small", D);
14112 Rais :=
14113 Make_Raise_Constraint_Error (Sloc (D),
14114 Reason => CE_Range_Check_Failed);
14115 Insert_Action (Declaration_Node (Def_Id), Rais);
14116 end if;
14118 C := Range_Constraint (C);
14120 -- No delta constraint present
14122 else
14123 Set_Delta_Value (Def_Id, Delta_Value (T));
14124 end if;
14126 -- Range constraint present
14128 if Nkind (C) = N_Range_Constraint then
14129 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14131 -- No range constraint present
14133 else
14134 pragma Assert (No (C));
14135 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14136 end if;
14138 Set_Discrete_RM_Size (Def_Id);
14140 -- Unconditionally delay the freeze, since we cannot set size
14141 -- information in all cases correctly until the freeze point.
14143 Set_Has_Delayed_Freeze (Def_Id);
14144 end Constrain_Ordinary_Fixed;
14146 -----------------------
14147 -- Contain_Interface --
14148 -----------------------
14150 function Contain_Interface
14151 (Iface : Entity_Id;
14152 Ifaces : Elist_Id) return Boolean
14154 Iface_Elmt : Elmt_Id;
14156 begin
14157 if Present (Ifaces) then
14158 Iface_Elmt := First_Elmt (Ifaces);
14159 while Present (Iface_Elmt) loop
14160 if Node (Iface_Elmt) = Iface then
14161 return True;
14162 end if;
14164 Next_Elmt (Iface_Elmt);
14165 end loop;
14166 end if;
14168 return False;
14169 end Contain_Interface;
14171 ---------------------------
14172 -- Convert_Scalar_Bounds --
14173 ---------------------------
14175 procedure Convert_Scalar_Bounds
14176 (N : Node_Id;
14177 Parent_Type : Entity_Id;
14178 Derived_Type : Entity_Id;
14179 Loc : Source_Ptr)
14181 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
14183 Lo : Node_Id;
14184 Hi : Node_Id;
14185 Rng : Node_Id;
14187 begin
14188 -- Defend against previous errors
14190 if No (Scalar_Range (Derived_Type)) then
14191 Check_Error_Detected;
14192 return;
14193 end if;
14195 Lo := Build_Scalar_Bound
14196 (Type_Low_Bound (Derived_Type),
14197 Parent_Type, Implicit_Base);
14199 Hi := Build_Scalar_Bound
14200 (Type_High_Bound (Derived_Type),
14201 Parent_Type, Implicit_Base);
14203 Rng :=
14204 Make_Range (Loc,
14205 Low_Bound => Lo,
14206 High_Bound => Hi);
14208 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
14210 Set_Parent (Rng, N);
14211 Set_Scalar_Range (Derived_Type, Rng);
14213 -- Analyze the bounds
14215 Analyze_And_Resolve (Lo, Implicit_Base);
14216 Analyze_And_Resolve (Hi, Implicit_Base);
14218 -- Analyze the range itself, except that we do not analyze it if
14219 -- the bounds are real literals, and we have a fixed-point type.
14220 -- The reason for this is that we delay setting the bounds in this
14221 -- case till we know the final Small and Size values (see circuit
14222 -- in Freeze.Freeze_Fixed_Point_Type for further details).
14224 if Is_Fixed_Point_Type (Parent_Type)
14225 and then Nkind (Lo) = N_Real_Literal
14226 and then Nkind (Hi) = N_Real_Literal
14227 then
14228 return;
14230 -- Here we do the analysis of the range
14232 -- Note: we do this manually, since if we do a normal Analyze and
14233 -- Resolve call, there are problems with the conversions used for
14234 -- the derived type range.
14236 else
14237 Set_Etype (Rng, Implicit_Base);
14238 Set_Analyzed (Rng, True);
14239 end if;
14240 end Convert_Scalar_Bounds;
14242 -------------------
14243 -- Copy_And_Swap --
14244 -------------------
14246 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
14247 begin
14248 -- Initialize new full declaration entity by copying the pertinent
14249 -- fields of the corresponding private declaration entity.
14251 -- We temporarily set Ekind to a value appropriate for a type to
14252 -- avoid assert failures in Einfo from checking for setting type
14253 -- attributes on something that is not a type. Ekind (Priv) is an
14254 -- appropriate choice, since it allowed the attributes to be set
14255 -- in the first place. This Ekind value will be modified later.
14257 Set_Ekind (Full, Ekind (Priv));
14259 -- Also set Etype temporarily to Any_Type, again, in the absence
14260 -- of errors, it will be properly reset, and if there are errors,
14261 -- then we want a value of Any_Type to remain.
14263 Set_Etype (Full, Any_Type);
14265 -- Now start copying attributes
14267 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
14269 if Has_Discriminants (Full) then
14270 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
14271 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
14272 end if;
14274 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
14275 Set_Homonym (Full, Homonym (Priv));
14276 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
14277 Set_Is_Public (Full, Is_Public (Priv));
14278 Set_Is_Pure (Full, Is_Pure (Priv));
14279 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
14280 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
14281 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
14282 Set_Has_Pragma_Unreferenced_Objects
14283 (Full, Has_Pragma_Unreferenced_Objects
14284 (Priv));
14286 Conditional_Delay (Full, Priv);
14288 if Is_Tagged_Type (Full) then
14289 Set_Direct_Primitive_Operations
14290 (Full, Direct_Primitive_Operations (Priv));
14291 Set_No_Tagged_Streams_Pragma
14292 (Full, No_Tagged_Streams_Pragma (Priv));
14294 if Is_Base_Type (Priv) then
14295 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
14296 end if;
14297 end if;
14299 Set_Is_Volatile (Full, Is_Volatile (Priv));
14300 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
14301 Set_Scope (Full, Scope (Priv));
14302 Set_Next_Entity (Full, Next_Entity (Priv));
14303 Set_First_Entity (Full, First_Entity (Priv));
14304 Set_Last_Entity (Full, Last_Entity (Priv));
14306 -- If access types have been recorded for later handling, keep them in
14307 -- the full view so that they get handled when the full view freeze
14308 -- node is expanded.
14310 if Present (Freeze_Node (Priv))
14311 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
14312 then
14313 Ensure_Freeze_Node (Full);
14314 Set_Access_Types_To_Process
14315 (Freeze_Node (Full),
14316 Access_Types_To_Process (Freeze_Node (Priv)));
14317 end if;
14319 -- Swap the two entities. Now Private is the full type entity and Full
14320 -- is the private one. They will be swapped back at the end of the
14321 -- private part. This swapping ensures that the entity that is visible
14322 -- in the private part is the full declaration.
14324 Exchange_Entities (Priv, Full);
14325 Append_Entity (Full, Scope (Full));
14326 end Copy_And_Swap;
14328 -------------------------------------
14329 -- Copy_Array_Base_Type_Attributes --
14330 -------------------------------------
14332 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
14333 begin
14334 Set_Component_Alignment (T1, Component_Alignment (T2));
14335 Set_Component_Type (T1, Component_Type (T2));
14336 Set_Component_Size (T1, Component_Size (T2));
14337 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
14338 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
14339 Propagate_Concurrent_Flags (T1, T2);
14340 Set_Is_Packed (T1, Is_Packed (T2));
14341 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
14342 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
14343 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
14344 end Copy_Array_Base_Type_Attributes;
14346 -----------------------------------
14347 -- Copy_Array_Subtype_Attributes --
14348 -----------------------------------
14350 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
14351 begin
14352 Set_Size_Info (T1, T2);
14354 Set_First_Index (T1, First_Index (T2));
14355 Set_Is_Aliased (T1, Is_Aliased (T2));
14356 Set_Is_Volatile (T1, Is_Volatile (T2));
14357 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
14358 Set_Is_Constrained (T1, Is_Constrained (T2));
14359 Set_Depends_On_Private (T1, Has_Private_Component (T2));
14360 Inherit_Rep_Item_Chain (T1, T2);
14361 Set_Convention (T1, Convention (T2));
14362 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
14363 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
14364 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
14365 end Copy_Array_Subtype_Attributes;
14367 -----------------------------------
14368 -- Create_Constrained_Components --
14369 -----------------------------------
14371 procedure Create_Constrained_Components
14372 (Subt : Entity_Id;
14373 Decl_Node : Node_Id;
14374 Typ : Entity_Id;
14375 Constraints : Elist_Id)
14377 Loc : constant Source_Ptr := Sloc (Subt);
14378 Comp_List : constant Elist_Id := New_Elmt_List;
14379 Parent_Type : constant Entity_Id := Etype (Typ);
14380 Assoc_List : constant List_Id := New_List;
14381 Discr_Val : Elmt_Id;
14382 Errors : Boolean;
14383 New_C : Entity_Id;
14384 Old_C : Entity_Id;
14385 Is_Static : Boolean := True;
14387 procedure Collect_Fixed_Components (Typ : Entity_Id);
14388 -- Collect parent type components that do not appear in a variant part
14390 procedure Create_All_Components;
14391 -- Iterate over Comp_List to create the components of the subtype
14393 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
14394 -- Creates a new component from Old_Compon, copying all the fields from
14395 -- it, including its Etype, inserts the new component in the Subt entity
14396 -- chain and returns the new component.
14398 function Is_Variant_Record (T : Entity_Id) return Boolean;
14399 -- If true, and discriminants are static, collect only components from
14400 -- variants selected by discriminant values.
14402 ------------------------------
14403 -- Collect_Fixed_Components --
14404 ------------------------------
14406 procedure Collect_Fixed_Components (Typ : Entity_Id) is
14407 begin
14408 -- Build association list for discriminants, and find components of the
14409 -- variant part selected by the values of the discriminants.
14411 Old_C := First_Discriminant (Typ);
14412 Discr_Val := First_Elmt (Constraints);
14413 while Present (Old_C) loop
14414 Append_To (Assoc_List,
14415 Make_Component_Association (Loc,
14416 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
14417 Expression => New_Copy (Node (Discr_Val))));
14419 Next_Elmt (Discr_Val);
14420 Next_Discriminant (Old_C);
14421 end loop;
14423 -- The tag and the possible parent component are unconditionally in
14424 -- the subtype.
14426 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
14427 Old_C := First_Component (Typ);
14428 while Present (Old_C) loop
14429 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
14430 Append_Elmt (Old_C, Comp_List);
14431 end if;
14433 Next_Component (Old_C);
14434 end loop;
14435 end if;
14436 end Collect_Fixed_Components;
14438 ---------------------------
14439 -- Create_All_Components --
14440 ---------------------------
14442 procedure Create_All_Components is
14443 Comp : Elmt_Id;
14445 begin
14446 Comp := First_Elmt (Comp_List);
14447 while Present (Comp) loop
14448 Old_C := Node (Comp);
14449 New_C := Create_Component (Old_C);
14451 Set_Etype
14452 (New_C,
14453 Constrain_Component_Type
14454 (Old_C, Subt, Decl_Node, Typ, Constraints));
14455 Set_Is_Public (New_C, Is_Public (Subt));
14457 Next_Elmt (Comp);
14458 end loop;
14459 end Create_All_Components;
14461 ----------------------
14462 -- Create_Component --
14463 ----------------------
14465 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
14466 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
14468 begin
14469 if Ekind (Old_Compon) = E_Discriminant
14470 and then Is_Completely_Hidden (Old_Compon)
14471 then
14472 -- This is a shadow discriminant created for a discriminant of
14473 -- the parent type, which needs to be present in the subtype.
14474 -- Give the shadow discriminant an internal name that cannot
14475 -- conflict with that of visible components.
14477 Set_Chars (New_Compon, New_Internal_Name ('C'));
14478 end if;
14480 -- Set the parent so we have a proper link for freezing etc. This is
14481 -- not a real parent pointer, since of course our parent does not own
14482 -- up to us and reference us, we are an illegitimate child of the
14483 -- original parent.
14485 Set_Parent (New_Compon, Parent (Old_Compon));
14487 -- We do not want this node marked as Comes_From_Source, since
14488 -- otherwise it would get first class status and a separate cross-
14489 -- reference line would be generated. Illegitimate children do not
14490 -- rate such recognition.
14492 Set_Comes_From_Source (New_Compon, False);
14494 -- But it is a real entity, and a birth certificate must be properly
14495 -- registered by entering it into the entity list.
14497 Enter_Name (New_Compon);
14499 return New_Compon;
14500 end Create_Component;
14502 -----------------------
14503 -- Is_Variant_Record --
14504 -----------------------
14506 function Is_Variant_Record (T : Entity_Id) return Boolean is
14507 begin
14508 return Nkind (Parent (T)) = N_Full_Type_Declaration
14509 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
14510 and then Present (Component_List (Type_Definition (Parent (T))))
14511 and then
14512 Present
14513 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
14514 end Is_Variant_Record;
14516 -- Start of processing for Create_Constrained_Components
14518 begin
14519 pragma Assert (Subt /= Base_Type (Subt));
14520 pragma Assert (Typ = Base_Type (Typ));
14522 Set_First_Entity (Subt, Empty);
14523 Set_Last_Entity (Subt, Empty);
14525 -- Check whether constraint is fully static, in which case we can
14526 -- optimize the list of components.
14528 Discr_Val := First_Elmt (Constraints);
14529 while Present (Discr_Val) loop
14530 if not Is_OK_Static_Expression (Node (Discr_Val)) then
14531 Is_Static := False;
14532 exit;
14533 end if;
14535 Next_Elmt (Discr_Val);
14536 end loop;
14538 Set_Has_Static_Discriminants (Subt, Is_Static);
14540 Push_Scope (Subt);
14542 -- Inherit the discriminants of the parent type
14544 Add_Discriminants : declare
14545 Num_Disc : Nat;
14546 Num_Gird : Nat;
14548 begin
14549 Num_Disc := 0;
14550 Old_C := First_Discriminant (Typ);
14552 while Present (Old_C) loop
14553 Num_Disc := Num_Disc + 1;
14554 New_C := Create_Component (Old_C);
14555 Set_Is_Public (New_C, Is_Public (Subt));
14556 Next_Discriminant (Old_C);
14557 end loop;
14559 -- For an untagged derived subtype, the number of discriminants may
14560 -- be smaller than the number of inherited discriminants, because
14561 -- several of them may be renamed by a single new discriminant or
14562 -- constrained. In this case, add the hidden discriminants back into
14563 -- the subtype, because they need to be present if the optimizer of
14564 -- the GCC 4.x back-end decides to break apart assignments between
14565 -- objects using the parent view into member-wise assignments.
14567 Num_Gird := 0;
14569 if Is_Derived_Type (Typ)
14570 and then not Is_Tagged_Type (Typ)
14571 then
14572 Old_C := First_Stored_Discriminant (Typ);
14574 while Present (Old_C) loop
14575 Num_Gird := Num_Gird + 1;
14576 Next_Stored_Discriminant (Old_C);
14577 end loop;
14578 end if;
14580 if Num_Gird > Num_Disc then
14582 -- Find out multiple uses of new discriminants, and add hidden
14583 -- components for the extra renamed discriminants. We recognize
14584 -- multiple uses through the Corresponding_Discriminant of a
14585 -- new discriminant: if it constrains several old discriminants,
14586 -- this field points to the last one in the parent type. The
14587 -- stored discriminants of the derived type have the same name
14588 -- as those of the parent.
14590 declare
14591 Constr : Elmt_Id;
14592 New_Discr : Entity_Id;
14593 Old_Discr : Entity_Id;
14595 begin
14596 Constr := First_Elmt (Stored_Constraint (Typ));
14597 Old_Discr := First_Stored_Discriminant (Typ);
14598 while Present (Constr) loop
14599 if Is_Entity_Name (Node (Constr))
14600 and then Ekind (Entity (Node (Constr))) = E_Discriminant
14601 then
14602 New_Discr := Entity (Node (Constr));
14604 if Chars (Corresponding_Discriminant (New_Discr)) /=
14605 Chars (Old_Discr)
14606 then
14607 -- The new discriminant has been used to rename a
14608 -- subsequent old discriminant. Introduce a shadow
14609 -- component for the current old discriminant.
14611 New_C := Create_Component (Old_Discr);
14612 Set_Original_Record_Component (New_C, Old_Discr);
14613 end if;
14615 else
14616 -- The constraint has eliminated the old discriminant.
14617 -- Introduce a shadow component.
14619 New_C := Create_Component (Old_Discr);
14620 Set_Original_Record_Component (New_C, Old_Discr);
14621 end if;
14623 Next_Elmt (Constr);
14624 Next_Stored_Discriminant (Old_Discr);
14625 end loop;
14626 end;
14627 end if;
14628 end Add_Discriminants;
14630 if Is_Static
14631 and then Is_Variant_Record (Typ)
14632 then
14633 Collect_Fixed_Components (Typ);
14635 Gather_Components (
14636 Typ,
14637 Component_List (Type_Definition (Parent (Typ))),
14638 Governed_By => Assoc_List,
14639 Into => Comp_List,
14640 Report_Errors => Errors);
14641 pragma Assert (not Errors
14642 or else Serious_Errors_Detected > 0);
14644 Create_All_Components;
14646 -- If the subtype declaration is created for a tagged type derivation
14647 -- with constraints, we retrieve the record definition of the parent
14648 -- type to select the components of the proper variant.
14650 elsif Is_Static
14651 and then Is_Tagged_Type (Typ)
14652 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14653 and then
14654 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14655 and then Is_Variant_Record (Parent_Type)
14656 then
14657 Collect_Fixed_Components (Typ);
14659 Gather_Components
14660 (Typ,
14661 Component_List (Type_Definition (Parent (Parent_Type))),
14662 Governed_By => Assoc_List,
14663 Into => Comp_List,
14664 Report_Errors => Errors);
14666 -- Note: previously there was a check at this point that no errors
14667 -- were detected. As a consequence of AI05-220 there may be an error
14668 -- if an inherited discriminant that controls a variant has a non-
14669 -- static constraint.
14671 -- If the tagged derivation has a type extension, collect all the
14672 -- new components therein.
14674 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14675 then
14676 Old_C := First_Component (Typ);
14677 while Present (Old_C) loop
14678 if Original_Record_Component (Old_C) = Old_C
14679 and then Chars (Old_C) /= Name_uTag
14680 and then Chars (Old_C) /= Name_uParent
14681 then
14682 Append_Elmt (Old_C, Comp_List);
14683 end if;
14685 Next_Component (Old_C);
14686 end loop;
14687 end if;
14689 Create_All_Components;
14691 else
14692 -- If discriminants are not static, or if this is a multi-level type
14693 -- extension, we have to include all components of the parent type.
14695 Old_C := First_Component (Typ);
14696 while Present (Old_C) loop
14697 New_C := Create_Component (Old_C);
14699 Set_Etype
14700 (New_C,
14701 Constrain_Component_Type
14702 (Old_C, Subt, Decl_Node, Typ, Constraints));
14703 Set_Is_Public (New_C, Is_Public (Subt));
14705 Next_Component (Old_C);
14706 end loop;
14707 end if;
14709 End_Scope;
14710 end Create_Constrained_Components;
14712 ------------------------------------------
14713 -- Decimal_Fixed_Point_Type_Declaration --
14714 ------------------------------------------
14716 procedure Decimal_Fixed_Point_Type_Declaration
14717 (T : Entity_Id;
14718 Def : Node_Id)
14720 Loc : constant Source_Ptr := Sloc (Def);
14721 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14722 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14723 Implicit_Base : Entity_Id;
14724 Digs_Val : Uint;
14725 Delta_Val : Ureal;
14726 Scale_Val : Uint;
14727 Bound_Val : Ureal;
14729 begin
14730 Check_SPARK_05_Restriction
14731 ("decimal fixed point type is not allowed", Def);
14732 Check_Restriction (No_Fixed_Point, Def);
14734 -- Create implicit base type
14736 Implicit_Base :=
14737 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14738 Set_Etype (Implicit_Base, Implicit_Base);
14740 -- Analyze and process delta expression
14742 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14744 Check_Delta_Expression (Delta_Expr);
14745 Delta_Val := Expr_Value_R (Delta_Expr);
14747 -- Check delta is power of 10, and determine scale value from it
14749 declare
14750 Val : Ureal;
14752 begin
14753 Scale_Val := Uint_0;
14754 Val := Delta_Val;
14756 if Val < Ureal_1 then
14757 while Val < Ureal_1 loop
14758 Val := Val * Ureal_10;
14759 Scale_Val := Scale_Val + 1;
14760 end loop;
14762 if Scale_Val > 18 then
14763 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14764 Scale_Val := UI_From_Int (+18);
14765 end if;
14767 else
14768 while Val > Ureal_1 loop
14769 Val := Val / Ureal_10;
14770 Scale_Val := Scale_Val - 1;
14771 end loop;
14773 if Scale_Val < -18 then
14774 Error_Msg_N ("scale is less than minimum value of -18", Def);
14775 Scale_Val := UI_From_Int (-18);
14776 end if;
14777 end if;
14779 if Val /= Ureal_1 then
14780 Error_Msg_N ("delta expression must be a power of 10", Def);
14781 Delta_Val := Ureal_10 ** (-Scale_Val);
14782 end if;
14783 end;
14785 -- Set delta, scale and small (small = delta for decimal type)
14787 Set_Delta_Value (Implicit_Base, Delta_Val);
14788 Set_Scale_Value (Implicit_Base, Scale_Val);
14789 Set_Small_Value (Implicit_Base, Delta_Val);
14791 -- Analyze and process digits expression
14793 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14794 Check_Digits_Expression (Digs_Expr);
14795 Digs_Val := Expr_Value (Digs_Expr);
14797 if Digs_Val > 18 then
14798 Digs_Val := UI_From_Int (+18);
14799 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14800 end if;
14802 Set_Digits_Value (Implicit_Base, Digs_Val);
14803 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14805 -- Set range of base type from digits value for now. This will be
14806 -- expanded to represent the true underlying base range by Freeze.
14808 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14810 -- Note: We leave size as zero for now, size will be set at freeze
14811 -- time. We have to do this for ordinary fixed-point, because the size
14812 -- depends on the specified small, and we might as well do the same for
14813 -- decimal fixed-point.
14815 pragma Assert (Esize (Implicit_Base) = Uint_0);
14817 -- If there are bounds given in the declaration use them as the
14818 -- bounds of the first named subtype.
14820 if Present (Real_Range_Specification (Def)) then
14821 declare
14822 RRS : constant Node_Id := Real_Range_Specification (Def);
14823 Low : constant Node_Id := Low_Bound (RRS);
14824 High : constant Node_Id := High_Bound (RRS);
14825 Low_Val : Ureal;
14826 High_Val : Ureal;
14828 begin
14829 Analyze_And_Resolve (Low, Any_Real);
14830 Analyze_And_Resolve (High, Any_Real);
14831 Check_Real_Bound (Low);
14832 Check_Real_Bound (High);
14833 Low_Val := Expr_Value_R (Low);
14834 High_Val := Expr_Value_R (High);
14836 if Low_Val < (-Bound_Val) then
14837 Error_Msg_N
14838 ("range low bound too small for digits value", Low);
14839 Low_Val := -Bound_Val;
14840 end if;
14842 if High_Val > Bound_Val then
14843 Error_Msg_N
14844 ("range high bound too large for digits value", High);
14845 High_Val := Bound_Val;
14846 end if;
14848 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14849 end;
14851 -- If no explicit range, use range that corresponds to given
14852 -- digits value. This will end up as the final range for the
14853 -- first subtype.
14855 else
14856 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14857 end if;
14859 -- Complete entity for first subtype. The inheritance of the rep item
14860 -- chain ensures that SPARK-related pragmas are not clobbered when the
14861 -- decimal fixed point type acts as a full view of a private type.
14863 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14864 Set_Etype (T, Implicit_Base);
14865 Set_Size_Info (T, Implicit_Base);
14866 Inherit_Rep_Item_Chain (T, Implicit_Base);
14867 Set_Digits_Value (T, Digs_Val);
14868 Set_Delta_Value (T, Delta_Val);
14869 Set_Small_Value (T, Delta_Val);
14870 Set_Scale_Value (T, Scale_Val);
14871 Set_Is_Constrained (T);
14872 end Decimal_Fixed_Point_Type_Declaration;
14874 -----------------------------------
14875 -- Derive_Progenitor_Subprograms --
14876 -----------------------------------
14878 procedure Derive_Progenitor_Subprograms
14879 (Parent_Type : Entity_Id;
14880 Tagged_Type : Entity_Id)
14882 E : Entity_Id;
14883 Elmt : Elmt_Id;
14884 Iface : Entity_Id;
14885 Iface_Elmt : Elmt_Id;
14886 Iface_Subp : Entity_Id;
14887 New_Subp : Entity_Id := Empty;
14888 Prim_Elmt : Elmt_Id;
14889 Subp : Entity_Id;
14890 Typ : Entity_Id;
14892 begin
14893 pragma Assert (Ada_Version >= Ada_2005
14894 and then Is_Record_Type (Tagged_Type)
14895 and then Is_Tagged_Type (Tagged_Type)
14896 and then Has_Interfaces (Tagged_Type));
14898 -- Step 1: Transfer to the full-view primitives associated with the
14899 -- partial-view that cover interface primitives. Conceptually this
14900 -- work should be done later by Process_Full_View; done here to
14901 -- simplify its implementation at later stages. It can be safely
14902 -- done here because interfaces must be visible in the partial and
14903 -- private view (RM 7.3(7.3/2)).
14905 -- Small optimization: This work is only required if the parent may
14906 -- have entities whose Alias attribute reference an interface primitive.
14907 -- Such a situation may occur if the parent is an abstract type and the
14908 -- primitive has not been yet overridden or if the parent is a generic
14909 -- formal type covering interfaces.
14911 -- If the tagged type is not abstract, it cannot have abstract
14912 -- primitives (the only entities in the list of primitives of
14913 -- non-abstract tagged types that can reference abstract primitives
14914 -- through its Alias attribute are the internal entities that have
14915 -- attribute Interface_Alias, and these entities are generated later
14916 -- by Add_Internal_Interface_Entities).
14918 if In_Private_Part (Current_Scope)
14919 and then (Is_Abstract_Type (Parent_Type)
14920 or else
14921 Is_Generic_Type (Parent_Type))
14922 then
14923 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14924 while Present (Elmt) loop
14925 Subp := Node (Elmt);
14927 -- At this stage it is not possible to have entities in the list
14928 -- of primitives that have attribute Interface_Alias.
14930 pragma Assert (No (Interface_Alias (Subp)));
14932 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14934 if Is_Interface (Typ) then
14935 E := Find_Primitive_Covering_Interface
14936 (Tagged_Type => Tagged_Type,
14937 Iface_Prim => Subp);
14939 if Present (E)
14940 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14941 then
14942 Replace_Elmt (Elmt, E);
14943 Remove_Homonym (Subp);
14944 end if;
14945 end if;
14947 Next_Elmt (Elmt);
14948 end loop;
14949 end if;
14951 -- Step 2: Add primitives of progenitors that are not implemented by
14952 -- parents of Tagged_Type.
14954 if Present (Interfaces (Base_Type (Tagged_Type))) then
14955 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14956 while Present (Iface_Elmt) loop
14957 Iface := Node (Iface_Elmt);
14959 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14960 while Present (Prim_Elmt) loop
14961 Iface_Subp := Node (Prim_Elmt);
14963 -- Exclude derivation of predefined primitives except those
14964 -- that come from source, or are inherited from one that comes
14965 -- from source. Required to catch declarations of equality
14966 -- operators of interfaces. For example:
14968 -- type Iface is interface;
14969 -- function "=" (Left, Right : Iface) return Boolean;
14971 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14972 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14973 then
14974 E := Find_Primitive_Covering_Interface
14975 (Tagged_Type => Tagged_Type,
14976 Iface_Prim => Iface_Subp);
14978 -- If not found we derive a new primitive leaving its alias
14979 -- attribute referencing the interface primitive.
14981 if No (E) then
14982 Derive_Subprogram
14983 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14985 -- Ada 2012 (AI05-0197): If the covering primitive's name
14986 -- differs from the name of the interface primitive then it
14987 -- is a private primitive inherited from a parent type. In
14988 -- such case, given that Tagged_Type covers the interface,
14989 -- the inherited private primitive becomes visible. For such
14990 -- purpose we add a new entity that renames the inherited
14991 -- private primitive.
14993 elsif Chars (E) /= Chars (Iface_Subp) then
14994 pragma Assert (Has_Suffix (E, 'P'));
14995 Derive_Subprogram
14996 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14997 Set_Alias (New_Subp, E);
14998 Set_Is_Abstract_Subprogram (New_Subp,
14999 Is_Abstract_Subprogram (E));
15001 -- Propagate to the full view interface entities associated
15002 -- with the partial view.
15004 elsif In_Private_Part (Current_Scope)
15005 and then Present (Alias (E))
15006 and then Alias (E) = Iface_Subp
15007 and then
15008 List_Containing (Parent (E)) /=
15009 Private_Declarations
15010 (Specification
15011 (Unit_Declaration_Node (Current_Scope)))
15012 then
15013 Append_Elmt (E, Primitive_Operations (Tagged_Type));
15014 end if;
15015 end if;
15017 Next_Elmt (Prim_Elmt);
15018 end loop;
15020 Next_Elmt (Iface_Elmt);
15021 end loop;
15022 end if;
15023 end Derive_Progenitor_Subprograms;
15025 -----------------------
15026 -- Derive_Subprogram --
15027 -----------------------
15029 procedure Derive_Subprogram
15030 (New_Subp : out Entity_Id;
15031 Parent_Subp : Entity_Id;
15032 Derived_Type : Entity_Id;
15033 Parent_Type : Entity_Id;
15034 Actual_Subp : Entity_Id := Empty)
15036 Formal : Entity_Id;
15037 -- Formal parameter of parent primitive operation
15039 Formal_Of_Actual : Entity_Id;
15040 -- Formal parameter of actual operation, when the derivation is to
15041 -- create a renaming for a primitive operation of an actual in an
15042 -- instantiation.
15044 New_Formal : Entity_Id;
15045 -- Formal of inherited operation
15047 Visible_Subp : Entity_Id := Parent_Subp;
15049 function Is_Private_Overriding return Boolean;
15050 -- If Subp is a private overriding of a visible operation, the inherited
15051 -- operation derives from the overridden op (even though its body is the
15052 -- overriding one) and the inherited operation is visible now. See
15053 -- sem_disp to see the full details of the handling of the overridden
15054 -- subprogram, which is removed from the list of primitive operations of
15055 -- the type. The overridden subprogram is saved locally in Visible_Subp,
15056 -- and used to diagnose abstract operations that need overriding in the
15057 -- derived type.
15059 procedure Replace_Type (Id, New_Id : Entity_Id);
15060 -- When the type is an anonymous access type, create a new access type
15061 -- designating the derived type.
15063 procedure Set_Derived_Name;
15064 -- This procedure sets the appropriate Chars name for New_Subp. This
15065 -- is normally just a copy of the parent name. An exception arises for
15066 -- type support subprograms, where the name is changed to reflect the
15067 -- name of the derived type, e.g. if type foo is derived from type bar,
15068 -- then a procedure barDA is derived with a name fooDA.
15070 ---------------------------
15071 -- Is_Private_Overriding --
15072 ---------------------------
15074 function Is_Private_Overriding return Boolean is
15075 Prev : Entity_Id;
15077 begin
15078 -- If the parent is not a dispatching operation there is no
15079 -- need to investigate overridings
15081 if not Is_Dispatching_Operation (Parent_Subp) then
15082 return False;
15083 end if;
15085 -- The visible operation that is overridden is a homonym of the
15086 -- parent subprogram. We scan the homonym chain to find the one
15087 -- whose alias is the subprogram we are deriving.
15089 Prev := Current_Entity (Parent_Subp);
15090 while Present (Prev) loop
15091 if Ekind (Prev) = Ekind (Parent_Subp)
15092 and then Alias (Prev) = Parent_Subp
15093 and then Scope (Parent_Subp) = Scope (Prev)
15094 and then not Is_Hidden (Prev)
15095 then
15096 Visible_Subp := Prev;
15097 return True;
15098 end if;
15100 Prev := Homonym (Prev);
15101 end loop;
15103 return False;
15104 end Is_Private_Overriding;
15106 ------------------
15107 -- Replace_Type --
15108 ------------------
15110 procedure Replace_Type (Id, New_Id : Entity_Id) is
15111 Id_Type : constant Entity_Id := Etype (Id);
15112 Acc_Type : Entity_Id;
15113 Par : constant Node_Id := Parent (Derived_Type);
15115 begin
15116 -- When the type is an anonymous access type, create a new access
15117 -- type designating the derived type. This itype must be elaborated
15118 -- at the point of the derivation, not on subsequent calls that may
15119 -- be out of the proper scope for Gigi, so we insert a reference to
15120 -- it after the derivation.
15122 if Ekind (Id_Type) = E_Anonymous_Access_Type then
15123 declare
15124 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
15126 begin
15127 if Ekind (Desig_Typ) = E_Record_Type_With_Private
15128 and then Present (Full_View (Desig_Typ))
15129 and then not Is_Private_Type (Parent_Type)
15130 then
15131 Desig_Typ := Full_View (Desig_Typ);
15132 end if;
15134 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
15136 -- Ada 2005 (AI-251): Handle also derivations of abstract
15137 -- interface primitives.
15139 or else (Is_Interface (Desig_Typ)
15140 and then not Is_Class_Wide_Type (Desig_Typ))
15141 then
15142 Acc_Type := New_Copy (Id_Type);
15143 Set_Etype (Acc_Type, Acc_Type);
15144 Set_Scope (Acc_Type, New_Subp);
15146 -- Set size of anonymous access type. If we have an access
15147 -- to an unconstrained array, this is a fat pointer, so it
15148 -- is sizes at twice addtress size.
15150 if Is_Array_Type (Desig_Typ)
15151 and then not Is_Constrained (Desig_Typ)
15152 then
15153 Init_Size (Acc_Type, 2 * System_Address_Size);
15155 -- Other cases use a thin pointer
15157 else
15158 Init_Size (Acc_Type, System_Address_Size);
15159 end if;
15161 -- Set remaining characterstics of anonymous access type
15163 Init_Alignment (Acc_Type);
15164 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
15166 Set_Etype (New_Id, Acc_Type);
15167 Set_Scope (New_Id, New_Subp);
15169 -- Create a reference to it
15171 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
15173 else
15174 Set_Etype (New_Id, Id_Type);
15175 end if;
15176 end;
15178 -- In Ada2012, a formal may have an incomplete type but the type
15179 -- derivation that inherits the primitive follows the full view.
15181 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
15182 or else
15183 (Ekind (Id_Type) = E_Record_Type_With_Private
15184 and then Present (Full_View (Id_Type))
15185 and then
15186 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
15187 or else
15188 (Ada_Version >= Ada_2012
15189 and then Ekind (Id_Type) = E_Incomplete_Type
15190 and then Full_View (Id_Type) = Parent_Type)
15191 then
15192 -- Constraint checks on formals are generated during expansion,
15193 -- based on the signature of the original subprogram. The bounds
15194 -- of the derived type are not relevant, and thus we can use
15195 -- the base type for the formals. However, the return type may be
15196 -- used in a context that requires that the proper static bounds
15197 -- be used (a case statement, for example) and for those cases
15198 -- we must use the derived type (first subtype), not its base.
15200 -- If the derived_type_definition has no constraints, we know that
15201 -- the derived type has the same constraints as the first subtype
15202 -- of the parent, and we can also use it rather than its base,
15203 -- which can lead to more efficient code.
15205 if Etype (Id) = Parent_Type then
15206 if Is_Scalar_Type (Parent_Type)
15207 and then
15208 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
15209 then
15210 Set_Etype (New_Id, Derived_Type);
15212 elsif Nkind (Par) = N_Full_Type_Declaration
15213 and then
15214 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
15215 and then
15216 Is_Entity_Name
15217 (Subtype_Indication (Type_Definition (Par)))
15218 then
15219 Set_Etype (New_Id, Derived_Type);
15221 else
15222 Set_Etype (New_Id, Base_Type (Derived_Type));
15223 end if;
15225 else
15226 Set_Etype (New_Id, Base_Type (Derived_Type));
15227 end if;
15229 else
15230 Set_Etype (New_Id, Etype (Id));
15231 end if;
15232 end Replace_Type;
15234 ----------------------
15235 -- Set_Derived_Name --
15236 ----------------------
15238 procedure Set_Derived_Name is
15239 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
15240 begin
15241 if Nm = TSS_Null then
15242 Set_Chars (New_Subp, Chars (Parent_Subp));
15243 else
15244 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
15245 end if;
15246 end Set_Derived_Name;
15248 -- Start of processing for Derive_Subprogram
15250 begin
15251 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
15252 Set_Ekind (New_Subp, Ekind (Parent_Subp));
15254 -- Check whether the inherited subprogram is a private operation that
15255 -- should be inherited but not yet made visible. Such subprograms can
15256 -- become visible at a later point (e.g., the private part of a public
15257 -- child unit) via Declare_Inherited_Private_Subprograms. If the
15258 -- following predicate is true, then this is not such a private
15259 -- operation and the subprogram simply inherits the name of the parent
15260 -- subprogram. Note the special check for the names of controlled
15261 -- operations, which are currently exempted from being inherited with
15262 -- a hidden name because they must be findable for generation of
15263 -- implicit run-time calls.
15265 if not Is_Hidden (Parent_Subp)
15266 or else Is_Internal (Parent_Subp)
15267 or else Is_Private_Overriding
15268 or else Is_Internal_Name (Chars (Parent_Subp))
15269 or else (Is_Controlled (Parent_Type)
15270 and then Nam_In (Chars (Parent_Subp), Name_Adjust,
15271 Name_Finalize,
15272 Name_Initialize))
15273 then
15274 Set_Derived_Name;
15276 -- An inherited dispatching equality will be overridden by an internally
15277 -- generated one, or by an explicit one, so preserve its name and thus
15278 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
15279 -- private operation it may become invisible if the full view has
15280 -- progenitors, and the dispatch table will be malformed.
15281 -- We check that the type is limited to handle the anomalous declaration
15282 -- of Limited_Controlled, which is derived from a non-limited type, and
15283 -- which is handled specially elsewhere as well.
15285 elsif Chars (Parent_Subp) = Name_Op_Eq
15286 and then Is_Dispatching_Operation (Parent_Subp)
15287 and then Etype (Parent_Subp) = Standard_Boolean
15288 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
15289 and then
15290 Etype (First_Formal (Parent_Subp)) =
15291 Etype (Next_Formal (First_Formal (Parent_Subp)))
15292 then
15293 Set_Derived_Name;
15295 -- If parent is hidden, this can be a regular derivation if the
15296 -- parent is immediately visible in a non-instantiating context,
15297 -- or if we are in the private part of an instance. This test
15298 -- should still be refined ???
15300 -- The test for In_Instance_Not_Visible avoids inheriting the derived
15301 -- operation as a non-visible operation in cases where the parent
15302 -- subprogram might not be visible now, but was visible within the
15303 -- original generic, so it would be wrong to make the inherited
15304 -- subprogram non-visible now. (Not clear if this test is fully
15305 -- correct; are there any cases where we should declare the inherited
15306 -- operation as not visible to avoid it being overridden, e.g., when
15307 -- the parent type is a generic actual with private primitives ???)
15309 -- (they should be treated the same as other private inherited
15310 -- subprograms, but it's not clear how to do this cleanly). ???
15312 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15313 and then Is_Immediately_Visible (Parent_Subp)
15314 and then not In_Instance)
15315 or else In_Instance_Not_Visible
15316 then
15317 Set_Derived_Name;
15319 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
15320 -- overrides an interface primitive because interface primitives
15321 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15323 elsif Ada_Version >= Ada_2005
15324 and then Is_Dispatching_Operation (Parent_Subp)
15325 and then Present (Covered_Interface_Op (Parent_Subp))
15326 then
15327 Set_Derived_Name;
15329 -- Otherwise, the type is inheriting a private operation, so enter it
15330 -- with a special name so it can't be overridden.
15332 else
15333 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
15334 end if;
15336 Set_Parent (New_Subp, Parent (Derived_Type));
15338 if Present (Actual_Subp) then
15339 Replace_Type (Actual_Subp, New_Subp);
15340 else
15341 Replace_Type (Parent_Subp, New_Subp);
15342 end if;
15344 Conditional_Delay (New_Subp, Parent_Subp);
15346 -- If we are creating a renaming for a primitive operation of an
15347 -- actual of a generic derived type, we must examine the signature
15348 -- of the actual primitive, not that of the generic formal, which for
15349 -- example may be an interface. However the name and initial value
15350 -- of the inherited operation are those of the formal primitive.
15352 Formal := First_Formal (Parent_Subp);
15354 if Present (Actual_Subp) then
15355 Formal_Of_Actual := First_Formal (Actual_Subp);
15356 else
15357 Formal_Of_Actual := Empty;
15358 end if;
15360 while Present (Formal) loop
15361 New_Formal := New_Copy (Formal);
15363 -- Normally we do not go copying parents, but in the case of
15364 -- formals, we need to link up to the declaration (which is the
15365 -- parameter specification), and it is fine to link up to the
15366 -- original formal's parameter specification in this case.
15368 Set_Parent (New_Formal, Parent (Formal));
15369 Append_Entity (New_Formal, New_Subp);
15371 if Present (Formal_Of_Actual) then
15372 Replace_Type (Formal_Of_Actual, New_Formal);
15373 Next_Formal (Formal_Of_Actual);
15374 else
15375 Replace_Type (Formal, New_Formal);
15376 end if;
15378 Next_Formal (Formal);
15379 end loop;
15381 -- If this derivation corresponds to a tagged generic actual, then
15382 -- primitive operations rename those of the actual. Otherwise the
15383 -- primitive operations rename those of the parent type, If the parent
15384 -- renames an intrinsic operator, so does the new subprogram. We except
15385 -- concatenation, which is always properly typed, and does not get
15386 -- expanded as other intrinsic operations.
15388 if No (Actual_Subp) then
15389 if Is_Intrinsic_Subprogram (Parent_Subp) then
15390 Set_Is_Intrinsic_Subprogram (New_Subp);
15392 if Present (Alias (Parent_Subp))
15393 and then Chars (Parent_Subp) /= Name_Op_Concat
15394 then
15395 Set_Alias (New_Subp, Alias (Parent_Subp));
15396 else
15397 Set_Alias (New_Subp, Parent_Subp);
15398 end if;
15400 else
15401 Set_Alias (New_Subp, Parent_Subp);
15402 end if;
15404 else
15405 Set_Alias (New_Subp, Actual_Subp);
15406 end if;
15408 -- Derived subprograms of a tagged type must inherit the convention
15409 -- of the parent subprogram (a requirement of AI-117). Derived
15410 -- subprograms of untagged types simply get convention Ada by default.
15412 -- If the derived type is a tagged generic formal type with unknown
15413 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
15415 -- However, if the type is derived from a generic formal, the further
15416 -- inherited subprogram has the convention of the non-generic ancestor.
15417 -- Otherwise there would be no way to override the operation.
15418 -- (This is subject to forthcoming ARG discussions).
15420 if Is_Tagged_Type (Derived_Type) then
15421 if Is_Generic_Type (Derived_Type)
15422 and then Has_Unknown_Discriminants (Derived_Type)
15423 then
15424 Set_Convention (New_Subp, Convention_Intrinsic);
15426 else
15427 if Is_Generic_Type (Parent_Type)
15428 and then Has_Unknown_Discriminants (Parent_Type)
15429 then
15430 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
15431 else
15432 Set_Convention (New_Subp, Convention (Parent_Subp));
15433 end if;
15434 end if;
15435 end if;
15437 -- Predefined controlled operations retain their name even if the parent
15438 -- is hidden (see above), but they are not primitive operations if the
15439 -- ancestor is not visible, for example if the parent is a private
15440 -- extension completed with a controlled extension. Note that a full
15441 -- type that is controlled can break privacy: the flag Is_Controlled is
15442 -- set on both views of the type.
15444 if Is_Controlled (Parent_Type)
15445 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
15446 Name_Adjust,
15447 Name_Finalize)
15448 and then Is_Hidden (Parent_Subp)
15449 and then not Is_Visibly_Controlled (Parent_Type)
15450 then
15451 Set_Is_Hidden (New_Subp);
15452 end if;
15454 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
15455 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
15457 if Ekind (Parent_Subp) = E_Procedure then
15458 Set_Is_Valued_Procedure
15459 (New_Subp, Is_Valued_Procedure (Parent_Subp));
15460 else
15461 Set_Has_Controlling_Result
15462 (New_Subp, Has_Controlling_Result (Parent_Subp));
15463 end if;
15465 -- No_Return must be inherited properly. If this is overridden in the
15466 -- case of a dispatching operation, then a check is made in Sem_Disp
15467 -- that the overriding operation is also No_Return (no such check is
15468 -- required for the case of non-dispatching operation.
15470 Set_No_Return (New_Subp, No_Return (Parent_Subp));
15472 -- A derived function with a controlling result is abstract. If the
15473 -- Derived_Type is a nonabstract formal generic derived type, then
15474 -- inherited operations are not abstract: the required check is done at
15475 -- instantiation time. If the derivation is for a generic actual, the
15476 -- function is not abstract unless the actual is.
15478 if Is_Generic_Type (Derived_Type)
15479 and then not Is_Abstract_Type (Derived_Type)
15480 then
15481 null;
15483 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
15484 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
15486 -- A subprogram subject to pragma Extensions_Visible with value False
15487 -- requires overriding if the subprogram has at least one controlling
15488 -- OUT parameter (SPARK RM 6.1.7(6)).
15490 elsif Ada_Version >= Ada_2005
15491 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15492 or else (Is_Tagged_Type (Derived_Type)
15493 and then Etype (New_Subp) = Derived_Type
15494 and then not Is_Null_Extension (Derived_Type))
15495 or else (Is_Tagged_Type (Derived_Type)
15496 and then Ekind (Etype (New_Subp)) =
15497 E_Anonymous_Access_Type
15498 and then Designated_Type (Etype (New_Subp)) =
15499 Derived_Type
15500 and then not Is_Null_Extension (Derived_Type))
15501 or else (Comes_From_Source (Alias (New_Subp))
15502 and then Is_EVF_Procedure (Alias (New_Subp))))
15503 and then No (Actual_Subp)
15504 then
15505 if not Is_Tagged_Type (Derived_Type)
15506 or else Is_Abstract_Type (Derived_Type)
15507 or else Is_Abstract_Subprogram (Alias (New_Subp))
15508 then
15509 Set_Is_Abstract_Subprogram (New_Subp);
15510 else
15511 Set_Requires_Overriding (New_Subp);
15512 end if;
15514 elsif Ada_Version < Ada_2005
15515 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15516 or else (Is_Tagged_Type (Derived_Type)
15517 and then Etype (New_Subp) = Derived_Type
15518 and then No (Actual_Subp)))
15519 then
15520 Set_Is_Abstract_Subprogram (New_Subp);
15522 -- AI05-0097 : an inherited operation that dispatches on result is
15523 -- abstract if the derived type is abstract, even if the parent type
15524 -- is concrete and the derived type is a null extension.
15526 elsif Has_Controlling_Result (Alias (New_Subp))
15527 and then Is_Abstract_Type (Etype (New_Subp))
15528 then
15529 Set_Is_Abstract_Subprogram (New_Subp);
15531 -- Finally, if the parent type is abstract we must verify that all
15532 -- inherited operations are either non-abstract or overridden, or that
15533 -- the derived type itself is abstract (this check is performed at the
15534 -- end of a package declaration, in Check_Abstract_Overriding). A
15535 -- private overriding in the parent type will not be visible in the
15536 -- derivation if we are not in an inner package or in a child unit of
15537 -- the parent type, in which case the abstractness of the inherited
15538 -- operation is carried to the new subprogram.
15540 elsif Is_Abstract_Type (Parent_Type)
15541 and then not In_Open_Scopes (Scope (Parent_Type))
15542 and then Is_Private_Overriding
15543 and then Is_Abstract_Subprogram (Visible_Subp)
15544 then
15545 if No (Actual_Subp) then
15546 Set_Alias (New_Subp, Visible_Subp);
15547 Set_Is_Abstract_Subprogram (New_Subp, True);
15549 else
15550 -- If this is a derivation for an instance of a formal derived
15551 -- type, abstractness comes from the primitive operation of the
15552 -- actual, not from the operation inherited from the ancestor.
15554 Set_Is_Abstract_Subprogram
15555 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
15556 end if;
15557 end if;
15559 New_Overloaded_Entity (New_Subp, Derived_Type);
15561 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
15562 -- preconditions and the derived type is abstract, the derived operation
15563 -- is abstract as well if parent subprogram is not abstract or null.
15565 if Is_Abstract_Type (Derived_Type)
15566 and then Has_Non_Trivial_Precondition (Parent_Subp)
15567 and then Present (Interfaces (Derived_Type))
15568 then
15570 -- Add useful attributes of subprogram before the freeze point,
15571 -- in case freezing is delayed or there are previous errors.
15573 Set_Is_Dispatching_Operation (New_Subp);
15575 declare
15576 Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp);
15578 begin
15579 if Present (Iface_Prim)
15580 and then Has_Non_Trivial_Precondition (Iface_Prim)
15581 then
15582 Set_Is_Abstract_Subprogram (New_Subp);
15583 end if;
15584 end;
15585 end if;
15587 -- Check for case of a derived subprogram for the instantiation of a
15588 -- formal derived tagged type, if so mark the subprogram as dispatching
15589 -- and inherit the dispatching attributes of the actual subprogram. The
15590 -- derived subprogram is effectively renaming of the actual subprogram,
15591 -- so it needs to have the same attributes as the actual.
15593 if Present (Actual_Subp)
15594 and then Is_Dispatching_Operation (Actual_Subp)
15595 then
15596 Set_Is_Dispatching_Operation (New_Subp);
15598 if Present (DTC_Entity (Actual_Subp)) then
15599 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
15600 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
15601 end if;
15602 end if;
15604 -- Indicate that a derived subprogram does not require a body and that
15605 -- it does not require processing of default expressions.
15607 Set_Has_Completion (New_Subp);
15608 Set_Default_Expressions_Processed (New_Subp);
15610 if Ekind (New_Subp) = E_Function then
15611 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
15612 end if;
15613 end Derive_Subprogram;
15615 ------------------------
15616 -- Derive_Subprograms --
15617 ------------------------
15619 procedure Derive_Subprograms
15620 (Parent_Type : Entity_Id;
15621 Derived_Type : Entity_Id;
15622 Generic_Actual : Entity_Id := Empty)
15624 Op_List : constant Elist_Id :=
15625 Collect_Primitive_Operations (Parent_Type);
15627 function Check_Derived_Type return Boolean;
15628 -- Check that all the entities derived from Parent_Type are found in
15629 -- the list of primitives of Derived_Type exactly in the same order.
15631 procedure Derive_Interface_Subprogram
15632 (New_Subp : out Entity_Id;
15633 Subp : Entity_Id;
15634 Actual_Subp : Entity_Id);
15635 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15636 -- (which is an interface primitive). If Generic_Actual is present then
15637 -- Actual_Subp is the actual subprogram corresponding with the generic
15638 -- subprogram Subp.
15640 ------------------------
15641 -- Check_Derived_Type --
15642 ------------------------
15644 function Check_Derived_Type return Boolean is
15645 E : Entity_Id;
15646 Elmt : Elmt_Id;
15647 List : Elist_Id;
15648 New_Subp : Entity_Id;
15649 Op_Elmt : Elmt_Id;
15650 Subp : Entity_Id;
15652 begin
15653 -- Traverse list of entities in the current scope searching for
15654 -- an incomplete type whose full-view is derived type.
15656 E := First_Entity (Scope (Derived_Type));
15657 while Present (E) and then E /= Derived_Type loop
15658 if Ekind (E) = E_Incomplete_Type
15659 and then Present (Full_View (E))
15660 and then Full_View (E) = Derived_Type
15661 then
15662 -- Disable this test if Derived_Type completes an incomplete
15663 -- type because in such case more primitives can be added
15664 -- later to the list of primitives of Derived_Type by routine
15665 -- Process_Incomplete_Dependents
15667 return True;
15668 end if;
15670 E := Next_Entity (E);
15671 end loop;
15673 List := Collect_Primitive_Operations (Derived_Type);
15674 Elmt := First_Elmt (List);
15676 Op_Elmt := First_Elmt (Op_List);
15677 while Present (Op_Elmt) loop
15678 Subp := Node (Op_Elmt);
15679 New_Subp := Node (Elmt);
15681 -- At this early stage Derived_Type has no entities with attribute
15682 -- Interface_Alias. In addition, such primitives are always
15683 -- located at the end of the list of primitives of Parent_Type.
15684 -- Therefore, if found we can safely stop processing pending
15685 -- entities.
15687 exit when Present (Interface_Alias (Subp));
15689 -- Handle hidden entities
15691 if not Is_Predefined_Dispatching_Operation (Subp)
15692 and then Is_Hidden (Subp)
15693 then
15694 if Present (New_Subp)
15695 and then Primitive_Names_Match (Subp, New_Subp)
15696 then
15697 Next_Elmt (Elmt);
15698 end if;
15700 else
15701 if not Present (New_Subp)
15702 or else Ekind (Subp) /= Ekind (New_Subp)
15703 or else not Primitive_Names_Match (Subp, New_Subp)
15704 then
15705 return False;
15706 end if;
15708 Next_Elmt (Elmt);
15709 end if;
15711 Next_Elmt (Op_Elmt);
15712 end loop;
15714 return True;
15715 end Check_Derived_Type;
15717 ---------------------------------
15718 -- Derive_Interface_Subprogram --
15719 ---------------------------------
15721 procedure Derive_Interface_Subprogram
15722 (New_Subp : out Entity_Id;
15723 Subp : Entity_Id;
15724 Actual_Subp : Entity_Id)
15726 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15727 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15729 begin
15730 pragma Assert (Is_Interface (Iface_Type));
15732 Derive_Subprogram
15733 (New_Subp => New_Subp,
15734 Parent_Subp => Iface_Subp,
15735 Derived_Type => Derived_Type,
15736 Parent_Type => Iface_Type,
15737 Actual_Subp => Actual_Subp);
15739 -- Given that this new interface entity corresponds with a primitive
15740 -- of the parent that was not overridden we must leave it associated
15741 -- with its parent primitive to ensure that it will share the same
15742 -- dispatch table slot when overridden. We must set the Alias to Subp
15743 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15744 -- (in case we inherited Subp from Iface_Type via a nonabstract
15745 -- generic formal type).
15747 if No (Actual_Subp) then
15748 Set_Alias (New_Subp, Subp);
15750 declare
15751 T : Entity_Id := Find_Dispatching_Type (Subp);
15752 begin
15753 while Etype (T) /= T loop
15754 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15755 Set_Is_Abstract_Subprogram (New_Subp, False);
15756 exit;
15757 end if;
15759 T := Etype (T);
15760 end loop;
15761 end;
15763 -- For instantiations this is not needed since the previous call to
15764 -- Derive_Subprogram leaves the entity well decorated.
15766 else
15767 pragma Assert (Alias (New_Subp) = Actual_Subp);
15768 null;
15769 end if;
15770 end Derive_Interface_Subprogram;
15772 -- Local variables
15774 Alias_Subp : Entity_Id;
15775 Act_List : Elist_Id;
15776 Act_Elmt : Elmt_Id;
15777 Act_Subp : Entity_Id := Empty;
15778 Elmt : Elmt_Id;
15779 Need_Search : Boolean := False;
15780 New_Subp : Entity_Id := Empty;
15781 Parent_Base : Entity_Id;
15782 Subp : Entity_Id;
15784 -- Start of processing for Derive_Subprograms
15786 begin
15787 if Ekind (Parent_Type) = E_Record_Type_With_Private
15788 and then Has_Discriminants (Parent_Type)
15789 and then Present (Full_View (Parent_Type))
15790 then
15791 Parent_Base := Full_View (Parent_Type);
15792 else
15793 Parent_Base := Parent_Type;
15794 end if;
15796 if Present (Generic_Actual) then
15797 Act_List := Collect_Primitive_Operations (Generic_Actual);
15798 Act_Elmt := First_Elmt (Act_List);
15799 else
15800 Act_List := No_Elist;
15801 Act_Elmt := No_Elmt;
15802 end if;
15804 -- Derive primitives inherited from the parent. Note that if the generic
15805 -- actual is present, this is not really a type derivation, it is a
15806 -- completion within an instance.
15808 -- Case 1: Derived_Type does not implement interfaces
15810 if not Is_Tagged_Type (Derived_Type)
15811 or else (not Has_Interfaces (Derived_Type)
15812 and then not (Present (Generic_Actual)
15813 and then Has_Interfaces (Generic_Actual)))
15814 then
15815 Elmt := First_Elmt (Op_List);
15816 while Present (Elmt) loop
15817 Subp := Node (Elmt);
15819 -- Literals are derived earlier in the process of building the
15820 -- derived type, and are skipped here.
15822 if Ekind (Subp) = E_Enumeration_Literal then
15823 null;
15825 -- The actual is a direct descendant and the common primitive
15826 -- operations appear in the same order.
15828 -- If the generic parent type is present, the derived type is an
15829 -- instance of a formal derived type, and within the instance its
15830 -- operations are those of the actual. We derive from the formal
15831 -- type but make the inherited operations aliases of the
15832 -- corresponding operations of the actual.
15834 else
15835 pragma Assert (No (Node (Act_Elmt))
15836 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15837 and then
15838 Type_Conformant
15839 (Subp, Node (Act_Elmt),
15840 Skip_Controlling_Formals => True)));
15842 Derive_Subprogram
15843 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15845 if Present (Act_Elmt) then
15846 Next_Elmt (Act_Elmt);
15847 end if;
15848 end if;
15850 Next_Elmt (Elmt);
15851 end loop;
15853 -- Case 2: Derived_Type implements interfaces
15855 else
15856 -- If the parent type has no predefined primitives we remove
15857 -- predefined primitives from the list of primitives of generic
15858 -- actual to simplify the complexity of this algorithm.
15860 if Present (Generic_Actual) then
15861 declare
15862 Has_Predefined_Primitives : Boolean := False;
15864 begin
15865 -- Check if the parent type has predefined primitives
15867 Elmt := First_Elmt (Op_List);
15868 while Present (Elmt) loop
15869 Subp := Node (Elmt);
15871 if Is_Predefined_Dispatching_Operation (Subp)
15872 and then not Comes_From_Source (Ultimate_Alias (Subp))
15873 then
15874 Has_Predefined_Primitives := True;
15875 exit;
15876 end if;
15878 Next_Elmt (Elmt);
15879 end loop;
15881 -- Remove predefined primitives of Generic_Actual. We must use
15882 -- an auxiliary list because in case of tagged types the value
15883 -- returned by Collect_Primitive_Operations is the value stored
15884 -- in its Primitive_Operations attribute (and we don't want to
15885 -- modify its current contents).
15887 if not Has_Predefined_Primitives then
15888 declare
15889 Aux_List : constant Elist_Id := New_Elmt_List;
15891 begin
15892 Elmt := First_Elmt (Act_List);
15893 while Present (Elmt) loop
15894 Subp := Node (Elmt);
15896 if not Is_Predefined_Dispatching_Operation (Subp)
15897 or else Comes_From_Source (Subp)
15898 then
15899 Append_Elmt (Subp, Aux_List);
15900 end if;
15902 Next_Elmt (Elmt);
15903 end loop;
15905 Act_List := Aux_List;
15906 end;
15907 end if;
15909 Act_Elmt := First_Elmt (Act_List);
15910 Act_Subp := Node (Act_Elmt);
15911 end;
15912 end if;
15914 -- Stage 1: If the generic actual is not present we derive the
15915 -- primitives inherited from the parent type. If the generic parent
15916 -- type is present, the derived type is an instance of a formal
15917 -- derived type, and within the instance its operations are those of
15918 -- the actual. We derive from the formal type but make the inherited
15919 -- operations aliases of the corresponding operations of the actual.
15921 Elmt := First_Elmt (Op_List);
15922 while Present (Elmt) loop
15923 Subp := Node (Elmt);
15924 Alias_Subp := Ultimate_Alias (Subp);
15926 -- Do not derive internal entities of the parent that link
15927 -- interface primitives with their covering primitive. These
15928 -- entities will be added to this type when frozen.
15930 if Present (Interface_Alias (Subp)) then
15931 goto Continue;
15932 end if;
15934 -- If the generic actual is present find the corresponding
15935 -- operation in the generic actual. If the parent type is a
15936 -- direct ancestor of the derived type then, even if it is an
15937 -- interface, the operations are inherited from the primary
15938 -- dispatch table and are in the proper order. If we detect here
15939 -- that primitives are not in the same order we traverse the list
15940 -- of primitive operations of the actual to find the one that
15941 -- implements the interface primitive.
15943 if Need_Search
15944 or else
15945 (Present (Generic_Actual)
15946 and then Present (Act_Subp)
15947 and then not
15948 (Primitive_Names_Match (Subp, Act_Subp)
15949 and then
15950 Type_Conformant (Subp, Act_Subp,
15951 Skip_Controlling_Formals => True)))
15952 then
15953 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
15954 Use_Full_View => True));
15956 -- Remember that we need searching for all pending primitives
15958 Need_Search := True;
15960 -- Handle entities associated with interface primitives
15962 if Present (Alias_Subp)
15963 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15964 and then not Is_Predefined_Dispatching_Operation (Subp)
15965 then
15966 -- Search for the primitive in the homonym chain
15968 Act_Subp :=
15969 Find_Primitive_Covering_Interface
15970 (Tagged_Type => Generic_Actual,
15971 Iface_Prim => Alias_Subp);
15973 -- Previous search may not locate primitives covering
15974 -- interfaces defined in generics units or instantiations.
15975 -- (it fails if the covering primitive has formals whose
15976 -- type is also defined in generics or instantiations).
15977 -- In such case we search in the list of primitives of the
15978 -- generic actual for the internal entity that links the
15979 -- interface primitive and the covering primitive.
15981 if No (Act_Subp)
15982 and then Is_Generic_Type (Parent_Type)
15983 then
15984 -- This code has been designed to handle only generic
15985 -- formals that implement interfaces that are defined
15986 -- in a generic unit or instantiation. If this code is
15987 -- needed for other cases we must review it because
15988 -- (given that it relies on Original_Location to locate
15989 -- the primitive of Generic_Actual that covers the
15990 -- interface) it could leave linked through attribute
15991 -- Alias entities of unrelated instantiations).
15993 pragma Assert
15994 (Is_Generic_Unit
15995 (Scope (Find_Dispatching_Type (Alias_Subp)))
15996 or else
15997 Instantiation_Depth
15998 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
16000 declare
16001 Iface_Prim_Loc : constant Source_Ptr :=
16002 Original_Location (Sloc (Alias_Subp));
16004 Elmt : Elmt_Id;
16005 Prim : Entity_Id;
16007 begin
16008 Elmt :=
16009 First_Elmt (Primitive_Operations (Generic_Actual));
16011 Search : while Present (Elmt) loop
16012 Prim := Node (Elmt);
16014 if Present (Interface_Alias (Prim))
16015 and then Original_Location
16016 (Sloc (Interface_Alias (Prim))) =
16017 Iface_Prim_Loc
16018 then
16019 Act_Subp := Alias (Prim);
16020 exit Search;
16021 end if;
16023 Next_Elmt (Elmt);
16024 end loop Search;
16025 end;
16026 end if;
16028 pragma Assert (Present (Act_Subp)
16029 or else Is_Abstract_Type (Generic_Actual)
16030 or else Serious_Errors_Detected > 0);
16032 -- Handle predefined primitives plus the rest of user-defined
16033 -- primitives
16035 else
16036 Act_Elmt := First_Elmt (Act_List);
16037 while Present (Act_Elmt) loop
16038 Act_Subp := Node (Act_Elmt);
16040 exit when Primitive_Names_Match (Subp, Act_Subp)
16041 and then Type_Conformant
16042 (Subp, Act_Subp,
16043 Skip_Controlling_Formals => True)
16044 and then No (Interface_Alias (Act_Subp));
16046 Next_Elmt (Act_Elmt);
16047 end loop;
16049 if No (Act_Elmt) then
16050 Act_Subp := Empty;
16051 end if;
16052 end if;
16053 end if;
16055 -- Case 1: If the parent is a limited interface then it has the
16056 -- predefined primitives of synchronized interfaces. However, the
16057 -- actual type may be a non-limited type and hence it does not
16058 -- have such primitives.
16060 if Present (Generic_Actual)
16061 and then not Present (Act_Subp)
16062 and then Is_Limited_Interface (Parent_Base)
16063 and then Is_Predefined_Interface_Primitive (Subp)
16064 then
16065 null;
16067 -- Case 2: Inherit entities associated with interfaces that were
16068 -- not covered by the parent type. We exclude here null interface
16069 -- primitives because they do not need special management.
16071 -- We also exclude interface operations that are renamings. If the
16072 -- subprogram is an explicit renaming of an interface primitive,
16073 -- it is a regular primitive operation, and the presence of its
16074 -- alias is not relevant: it has to be derived like any other
16075 -- primitive.
16077 elsif Present (Alias (Subp))
16078 and then Nkind (Unit_Declaration_Node (Subp)) /=
16079 N_Subprogram_Renaming_Declaration
16080 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16081 and then not
16082 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
16083 and then Null_Present (Parent (Alias_Subp)))
16084 then
16085 -- If this is an abstract private type then we transfer the
16086 -- derivation of the interface primitive from the partial view
16087 -- to the full view. This is safe because all the interfaces
16088 -- must be visible in the partial view. Done to avoid adding
16089 -- a new interface derivation to the private part of the
16090 -- enclosing package; otherwise this new derivation would be
16091 -- decorated as hidden when the analysis of the enclosing
16092 -- package completes.
16094 if Is_Abstract_Type (Derived_Type)
16095 and then In_Private_Part (Current_Scope)
16096 and then Has_Private_Declaration (Derived_Type)
16097 then
16098 declare
16099 Partial_View : Entity_Id;
16100 Elmt : Elmt_Id;
16101 Ent : Entity_Id;
16103 begin
16104 Partial_View := First_Entity (Current_Scope);
16105 loop
16106 exit when No (Partial_View)
16107 or else (Has_Private_Declaration (Partial_View)
16108 and then
16109 Full_View (Partial_View) = Derived_Type);
16111 Next_Entity (Partial_View);
16112 end loop;
16114 -- If the partial view was not found then the source code
16115 -- has errors and the derivation is not needed.
16117 if Present (Partial_View) then
16118 Elmt :=
16119 First_Elmt (Primitive_Operations (Partial_View));
16120 while Present (Elmt) loop
16121 Ent := Node (Elmt);
16123 if Present (Alias (Ent))
16124 and then Ultimate_Alias (Ent) = Alias (Subp)
16125 then
16126 Append_Elmt
16127 (Ent, Primitive_Operations (Derived_Type));
16128 exit;
16129 end if;
16131 Next_Elmt (Elmt);
16132 end loop;
16134 -- If the interface primitive was not found in the
16135 -- partial view then this interface primitive was
16136 -- overridden. We add a derivation to activate in
16137 -- Derive_Progenitor_Subprograms the machinery to
16138 -- search for it.
16140 if No (Elmt) then
16141 Derive_Interface_Subprogram
16142 (New_Subp => New_Subp,
16143 Subp => Subp,
16144 Actual_Subp => Act_Subp);
16145 end if;
16146 end if;
16147 end;
16148 else
16149 Derive_Interface_Subprogram
16150 (New_Subp => New_Subp,
16151 Subp => Subp,
16152 Actual_Subp => Act_Subp);
16153 end if;
16155 -- Case 3: Common derivation
16157 else
16158 Derive_Subprogram
16159 (New_Subp => New_Subp,
16160 Parent_Subp => Subp,
16161 Derived_Type => Derived_Type,
16162 Parent_Type => Parent_Base,
16163 Actual_Subp => Act_Subp);
16164 end if;
16166 -- No need to update Act_Elm if we must search for the
16167 -- corresponding operation in the generic actual
16169 if not Need_Search
16170 and then Present (Act_Elmt)
16171 then
16172 Next_Elmt (Act_Elmt);
16173 Act_Subp := Node (Act_Elmt);
16174 end if;
16176 <<Continue>>
16177 Next_Elmt (Elmt);
16178 end loop;
16180 -- Inherit additional operations from progenitors. If the derived
16181 -- type is a generic actual, there are not new primitive operations
16182 -- for the type because it has those of the actual, and therefore
16183 -- nothing needs to be done. The renamings generated above are not
16184 -- primitive operations, and their purpose is simply to make the
16185 -- proper operations visible within an instantiation.
16187 if No (Generic_Actual) then
16188 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
16189 end if;
16190 end if;
16192 -- Final check: Direct descendants must have their primitives in the
16193 -- same order. We exclude from this test untagged types and instances
16194 -- of formal derived types. We skip this test if we have already
16195 -- reported serious errors in the sources.
16197 pragma Assert (not Is_Tagged_Type (Derived_Type)
16198 or else Present (Generic_Actual)
16199 or else Serious_Errors_Detected > 0
16200 or else Check_Derived_Type);
16201 end Derive_Subprograms;
16203 --------------------------------
16204 -- Derived_Standard_Character --
16205 --------------------------------
16207 procedure Derived_Standard_Character
16208 (N : Node_Id;
16209 Parent_Type : Entity_Id;
16210 Derived_Type : Entity_Id)
16212 Loc : constant Source_Ptr := Sloc (N);
16213 Def : constant Node_Id := Type_Definition (N);
16214 Indic : constant Node_Id := Subtype_Indication (Def);
16215 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
16216 Implicit_Base : constant Entity_Id :=
16217 Create_Itype
16218 (E_Enumeration_Type, N, Derived_Type, 'B');
16220 Lo : Node_Id;
16221 Hi : Node_Id;
16223 begin
16224 Discard_Node (Process_Subtype (Indic, N));
16226 Set_Etype (Implicit_Base, Parent_Base);
16227 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
16228 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
16230 Set_Is_Character_Type (Implicit_Base, True);
16231 Set_Has_Delayed_Freeze (Implicit_Base);
16233 -- The bounds of the implicit base are the bounds of the parent base.
16234 -- Note that their type is the parent base.
16236 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
16237 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
16239 Set_Scalar_Range (Implicit_Base,
16240 Make_Range (Loc,
16241 Low_Bound => Lo,
16242 High_Bound => Hi));
16244 Conditional_Delay (Derived_Type, Parent_Type);
16246 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
16247 Set_Etype (Derived_Type, Implicit_Base);
16248 Set_Size_Info (Derived_Type, Parent_Type);
16250 if Unknown_RM_Size (Derived_Type) then
16251 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
16252 end if;
16254 Set_Is_Character_Type (Derived_Type, True);
16256 if Nkind (Indic) /= N_Subtype_Indication then
16258 -- If no explicit constraint, the bounds are those
16259 -- of the parent type.
16261 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
16262 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
16263 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
16264 end if;
16266 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
16268 -- Because the implicit base is used in the conversion of the bounds, we
16269 -- have to freeze it now. This is similar to what is done for numeric
16270 -- types, and it equally suspicious, but otherwise a non-static bound
16271 -- will have a reference to an unfrozen type, which is rejected by Gigi
16272 -- (???). This requires specific care for definition of stream
16273 -- attributes. For details, see comments at the end of
16274 -- Build_Derived_Numeric_Type.
16276 Freeze_Before (N, Implicit_Base);
16277 end Derived_Standard_Character;
16279 ------------------------------
16280 -- Derived_Type_Declaration --
16281 ------------------------------
16283 procedure Derived_Type_Declaration
16284 (T : Entity_Id;
16285 N : Node_Id;
16286 Is_Completion : Boolean)
16288 Parent_Type : Entity_Id;
16290 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
16291 -- Check whether the parent type is a generic formal, or derives
16292 -- directly or indirectly from one.
16294 ------------------------
16295 -- Comes_From_Generic --
16296 ------------------------
16298 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
16299 begin
16300 if Is_Generic_Type (Typ) then
16301 return True;
16303 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
16304 return True;
16306 elsif Is_Private_Type (Typ)
16307 and then Present (Full_View (Typ))
16308 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
16309 then
16310 return True;
16312 elsif Is_Generic_Actual_Type (Typ) then
16313 return True;
16315 else
16316 return False;
16317 end if;
16318 end Comes_From_Generic;
16320 -- Local variables
16322 Def : constant Node_Id := Type_Definition (N);
16323 Iface_Def : Node_Id;
16324 Indic : constant Node_Id := Subtype_Indication (Def);
16325 Extension : constant Node_Id := Record_Extension_Part (Def);
16326 Parent_Node : Node_Id;
16327 Taggd : Boolean;
16329 -- Start of processing for Derived_Type_Declaration
16331 begin
16332 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
16334 if SPARK_Mode = On
16335 and then Is_Tagged_Type (Parent_Type)
16336 then
16337 declare
16338 Partial_View : constant Entity_Id :=
16339 Incomplete_Or_Partial_View (Parent_Type);
16341 begin
16342 -- If the partial view was not found then the parent type is not
16343 -- a private type. Otherwise check if the partial view is a tagged
16344 -- private type.
16346 if Present (Partial_View)
16347 and then Is_Private_Type (Partial_View)
16348 and then not Is_Tagged_Type (Partial_View)
16349 then
16350 Error_Msg_NE
16351 ("cannot derive from & declared as untagged private "
16352 & "(SPARK RM 3.4(1))", N, Partial_View);
16353 end if;
16354 end;
16355 end if;
16357 -- Ada 2005 (AI-251): In case of interface derivation check that the
16358 -- parent is also an interface.
16360 if Interface_Present (Def) then
16361 Check_SPARK_05_Restriction ("interface is not allowed", Def);
16363 if not Is_Interface (Parent_Type) then
16364 Diagnose_Interface (Indic, Parent_Type);
16366 else
16367 Parent_Node := Parent (Base_Type (Parent_Type));
16368 Iface_Def := Type_Definition (Parent_Node);
16370 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
16371 -- other limited interfaces.
16373 if Limited_Present (Def) then
16374 if Limited_Present (Iface_Def) then
16375 null;
16377 elsif Protected_Present (Iface_Def) then
16378 Error_Msg_NE
16379 ("descendant of & must be declared as a protected "
16380 & "interface", N, Parent_Type);
16382 elsif Synchronized_Present (Iface_Def) then
16383 Error_Msg_NE
16384 ("descendant of & must be declared as a synchronized "
16385 & "interface", N, Parent_Type);
16387 elsif Task_Present (Iface_Def) then
16388 Error_Msg_NE
16389 ("descendant of & must be declared as a task interface",
16390 N, Parent_Type);
16392 else
16393 Error_Msg_N
16394 ("(Ada 2005) limited interface cannot inherit from "
16395 & "non-limited interface", Indic);
16396 end if;
16398 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
16399 -- from non-limited or limited interfaces.
16401 elsif not Protected_Present (Def)
16402 and then not Synchronized_Present (Def)
16403 and then not Task_Present (Def)
16404 then
16405 if Limited_Present (Iface_Def) then
16406 null;
16408 elsif Protected_Present (Iface_Def) then
16409 Error_Msg_NE
16410 ("descendant of & must be declared as a protected "
16411 & "interface", N, Parent_Type);
16413 elsif Synchronized_Present (Iface_Def) then
16414 Error_Msg_NE
16415 ("descendant of & must be declared as a synchronized "
16416 & "interface", N, Parent_Type);
16418 elsif Task_Present (Iface_Def) then
16419 Error_Msg_NE
16420 ("descendant of & must be declared as a task interface",
16421 N, Parent_Type);
16422 else
16423 null;
16424 end if;
16425 end if;
16426 end if;
16427 end if;
16429 if Is_Tagged_Type (Parent_Type)
16430 and then Is_Concurrent_Type (Parent_Type)
16431 and then not Is_Interface (Parent_Type)
16432 then
16433 Error_Msg_N
16434 ("parent type of a record extension cannot be a synchronized "
16435 & "tagged type (RM 3.9.1 (3/1))", N);
16436 Set_Etype (T, Any_Type);
16437 return;
16438 end if;
16440 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
16441 -- interfaces
16443 if Is_Tagged_Type (Parent_Type)
16444 and then Is_Non_Empty_List (Interface_List (Def))
16445 then
16446 declare
16447 Intf : Node_Id;
16448 T : Entity_Id;
16450 begin
16451 Intf := First (Interface_List (Def));
16452 while Present (Intf) loop
16453 T := Find_Type_Of_Subtype_Indic (Intf);
16455 if not Is_Interface (T) then
16456 Diagnose_Interface (Intf, T);
16458 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
16459 -- a limited type from having a nonlimited progenitor.
16461 elsif (Limited_Present (Def)
16462 or else (not Is_Interface (Parent_Type)
16463 and then Is_Limited_Type (Parent_Type)))
16464 and then not Is_Limited_Interface (T)
16465 then
16466 Error_Msg_NE
16467 ("progenitor interface& of limited type must be limited",
16468 N, T);
16469 end if;
16471 Next (Intf);
16472 end loop;
16473 end;
16474 end if;
16476 if Parent_Type = Any_Type
16477 or else Etype (Parent_Type) = Any_Type
16478 or else (Is_Class_Wide_Type (Parent_Type)
16479 and then Etype (Parent_Type) = T)
16480 then
16481 -- If Parent_Type is undefined or illegal, make new type into a
16482 -- subtype of Any_Type, and set a few attributes to prevent cascaded
16483 -- errors. If this is a self-definition, emit error now.
16485 if T = Parent_Type or else T = Etype (Parent_Type) then
16486 Error_Msg_N ("type cannot be used in its own definition", Indic);
16487 end if;
16489 Set_Ekind (T, Ekind (Parent_Type));
16490 Set_Etype (T, Any_Type);
16491 Set_Scalar_Range (T, Scalar_Range (Any_Type));
16493 if Is_Tagged_Type (T)
16494 and then Is_Record_Type (T)
16495 then
16496 Set_Direct_Primitive_Operations (T, New_Elmt_List);
16497 end if;
16499 return;
16500 end if;
16502 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
16503 -- an interface is special because the list of interfaces in the full
16504 -- view can be given in any order. For example:
16506 -- type A is interface;
16507 -- type B is interface and A;
16508 -- type D is new B with private;
16509 -- private
16510 -- type D is new A and B with null record; -- 1 --
16512 -- In this case we perform the following transformation of -1-:
16514 -- type D is new B and A with null record;
16516 -- If the parent of the full-view covers the parent of the partial-view
16517 -- we have two possible cases:
16519 -- 1) They have the same parent
16520 -- 2) The parent of the full-view implements some further interfaces
16522 -- In both cases we do not need to perform the transformation. In the
16523 -- first case the source program is correct and the transformation is
16524 -- not needed; in the second case the source program does not fulfill
16525 -- the no-hidden interfaces rule (AI-396) and the error will be reported
16526 -- later.
16528 -- This transformation not only simplifies the rest of the analysis of
16529 -- this type declaration but also simplifies the correct generation of
16530 -- the object layout to the expander.
16532 if In_Private_Part (Current_Scope)
16533 and then Is_Interface (Parent_Type)
16534 then
16535 declare
16536 Iface : Node_Id;
16537 Partial_View : Entity_Id;
16538 Partial_View_Parent : Entity_Id;
16539 New_Iface : Node_Id;
16541 begin
16542 -- Look for the associated private type declaration
16544 Partial_View := Incomplete_Or_Partial_View (T);
16546 -- If the partial view was not found then the source code has
16547 -- errors and the transformation is not needed.
16549 if Present (Partial_View) then
16550 Partial_View_Parent := Etype (Partial_View);
16552 -- If the parent of the full-view covers the parent of the
16553 -- partial-view we have nothing else to do.
16555 if Interface_Present_In_Ancestor
16556 (Parent_Type, Partial_View_Parent)
16557 then
16558 null;
16560 -- Traverse the list of interfaces of the full-view to look
16561 -- for the parent of the partial-view and perform the tree
16562 -- transformation.
16564 else
16565 Iface := First (Interface_List (Def));
16566 while Present (Iface) loop
16567 if Etype (Iface) = Etype (Partial_View) then
16568 Rewrite (Subtype_Indication (Def),
16569 New_Copy (Subtype_Indication
16570 (Parent (Partial_View))));
16572 New_Iface :=
16573 Make_Identifier (Sloc (N), Chars (Parent_Type));
16574 Append (New_Iface, Interface_List (Def));
16576 -- Analyze the transformed code
16578 Derived_Type_Declaration (T, N, Is_Completion);
16579 return;
16580 end if;
16582 Next (Iface);
16583 end loop;
16584 end if;
16585 end if;
16586 end;
16587 end if;
16589 -- Only composite types other than array types are allowed to have
16590 -- discriminants.
16592 if Present (Discriminant_Specifications (N)) then
16593 if (Is_Elementary_Type (Parent_Type)
16594 or else
16595 Is_Array_Type (Parent_Type))
16596 and then not Error_Posted (N)
16597 then
16598 Error_Msg_N
16599 ("elementary or array type cannot have discriminants",
16600 Defining_Identifier (First (Discriminant_Specifications (N))));
16601 Set_Has_Discriminants (T, False);
16603 -- The type is allowed to have discriminants
16605 else
16606 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
16607 end if;
16608 end if;
16610 -- In Ada 83, a derived type defined in a package specification cannot
16611 -- be used for further derivation until the end of its visible part.
16612 -- Note that derivation in the private part of the package is allowed.
16614 if Ada_Version = Ada_83
16615 and then Is_Derived_Type (Parent_Type)
16616 and then In_Visible_Part (Scope (Parent_Type))
16617 then
16618 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
16619 Error_Msg_N
16620 ("(Ada 83): premature use of type for derivation", Indic);
16621 end if;
16622 end if;
16624 -- Check for early use of incomplete or private type
16626 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
16627 Error_Msg_N ("premature derivation of incomplete type", Indic);
16628 return;
16630 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
16631 and then not Comes_From_Generic (Parent_Type))
16632 or else Has_Private_Component (Parent_Type)
16633 then
16634 -- The ancestor type of a formal type can be incomplete, in which
16635 -- case only the operations of the partial view are available in the
16636 -- generic. Subsequent checks may be required when the full view is
16637 -- analyzed to verify that a derivation from a tagged type has an
16638 -- extension.
16640 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
16641 null;
16643 elsif No (Underlying_Type (Parent_Type))
16644 or else Has_Private_Component (Parent_Type)
16645 then
16646 Error_Msg_N
16647 ("premature derivation of derived or private type", Indic);
16649 -- Flag the type itself as being in error, this prevents some
16650 -- nasty problems with subsequent uses of the malformed type.
16652 Set_Error_Posted (T);
16654 -- Check that within the immediate scope of an untagged partial
16655 -- view it's illegal to derive from the partial view if the
16656 -- full view is tagged. (7.3(7))
16658 -- We verify that the Parent_Type is a partial view by checking
16659 -- that it is not a Full_Type_Declaration (i.e. a private type or
16660 -- private extension declaration), to distinguish a partial view
16661 -- from a derivation from a private type which also appears as
16662 -- E_Private_Type. If the parent base type is not declared in an
16663 -- enclosing scope there is no need to check.
16665 elsif Present (Full_View (Parent_Type))
16666 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
16667 and then not Is_Tagged_Type (Parent_Type)
16668 and then Is_Tagged_Type (Full_View (Parent_Type))
16669 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
16670 then
16671 Error_Msg_N
16672 ("premature derivation from type with tagged full view",
16673 Indic);
16674 end if;
16675 end if;
16677 -- Check that form of derivation is appropriate
16679 Taggd := Is_Tagged_Type (Parent_Type);
16681 -- Set the parent type to the class-wide type's specific type in this
16682 -- case to prevent cascading errors
16684 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16685 Error_Msg_N ("parent type must not be a class-wide type", Indic);
16686 Set_Etype (T, Etype (Parent_Type));
16687 return;
16688 end if;
16690 if Present (Extension) and then not Taggd then
16691 Error_Msg_N
16692 ("type derived from untagged type cannot have extension", Indic);
16694 elsif No (Extension) and then Taggd then
16696 -- If this declaration is within a private part (or body) of a
16697 -- generic instantiation then the derivation is allowed (the parent
16698 -- type can only appear tagged in this case if it's a generic actual
16699 -- type, since it would otherwise have been rejected in the analysis
16700 -- of the generic template).
16702 if not Is_Generic_Actual_Type (Parent_Type)
16703 or else In_Visible_Part (Scope (Parent_Type))
16704 then
16705 if Is_Class_Wide_Type (Parent_Type) then
16706 Error_Msg_N
16707 ("parent type must not be a class-wide type", Indic);
16709 -- Use specific type to prevent cascaded errors.
16711 Parent_Type := Etype (Parent_Type);
16713 else
16714 Error_Msg_N
16715 ("type derived from tagged type must have extension", Indic);
16716 end if;
16717 end if;
16718 end if;
16720 -- AI-443: Synchronized formal derived types require a private
16721 -- extension. There is no point in checking the ancestor type or
16722 -- the progenitors since the construct is wrong to begin with.
16724 if Ada_Version >= Ada_2005
16725 and then Is_Generic_Type (T)
16726 and then Present (Original_Node (N))
16727 then
16728 declare
16729 Decl : constant Node_Id := Original_Node (N);
16731 begin
16732 if Nkind (Decl) = N_Formal_Type_Declaration
16733 and then Nkind (Formal_Type_Definition (Decl)) =
16734 N_Formal_Derived_Type_Definition
16735 and then Synchronized_Present (Formal_Type_Definition (Decl))
16736 and then No (Extension)
16738 -- Avoid emitting a duplicate error message
16740 and then not Error_Posted (Indic)
16741 then
16742 Error_Msg_N
16743 ("synchronized derived type must have extension", N);
16744 end if;
16745 end;
16746 end if;
16748 if Null_Exclusion_Present (Def)
16749 and then not Is_Access_Type (Parent_Type)
16750 then
16751 Error_Msg_N ("null exclusion can only apply to an access type", N);
16752 end if;
16754 -- Avoid deriving parent primitives of underlying record views
16756 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16757 Derive_Subps => not Is_Underlying_Record_View (T));
16759 -- AI-419: The parent type of an explicitly limited derived type must
16760 -- be a limited type or a limited interface.
16762 if Limited_Present (Def) then
16763 Set_Is_Limited_Record (T);
16765 if Is_Interface (T) then
16766 Set_Is_Limited_Interface (T);
16767 end if;
16769 if not Is_Limited_Type (Parent_Type)
16770 and then
16771 (not Is_Interface (Parent_Type)
16772 or else not Is_Limited_Interface (Parent_Type))
16773 then
16774 -- AI05-0096: a derivation in the private part of an instance is
16775 -- legal if the generic formal is untagged limited, and the actual
16776 -- is non-limited.
16778 if Is_Generic_Actual_Type (Parent_Type)
16779 and then In_Private_Part (Current_Scope)
16780 and then
16781 not Is_Tagged_Type
16782 (Generic_Parent_Type (Parent (Parent_Type)))
16783 then
16784 null;
16786 else
16787 Error_Msg_NE
16788 ("parent type& of limited type must be limited",
16789 N, Parent_Type);
16790 end if;
16791 end if;
16792 end if;
16794 -- In SPARK, there are no derived type definitions other than type
16795 -- extensions of tagged record types.
16797 if No (Extension) then
16798 Check_SPARK_05_Restriction
16799 ("derived type is not allowed", Original_Node (N));
16800 end if;
16801 end Derived_Type_Declaration;
16803 ------------------------
16804 -- Diagnose_Interface --
16805 ------------------------
16807 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16808 begin
16809 if not Is_Interface (E) and then E /= Any_Type then
16810 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16811 end if;
16812 end Diagnose_Interface;
16814 ----------------------------------
16815 -- Enumeration_Type_Declaration --
16816 ----------------------------------
16818 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16819 Ev : Uint;
16820 L : Node_Id;
16821 R_Node : Node_Id;
16822 B_Node : Node_Id;
16824 begin
16825 -- Create identifier node representing lower bound
16827 B_Node := New_Node (N_Identifier, Sloc (Def));
16828 L := First (Literals (Def));
16829 Set_Chars (B_Node, Chars (L));
16830 Set_Entity (B_Node, L);
16831 Set_Etype (B_Node, T);
16832 Set_Is_Static_Expression (B_Node, True);
16834 R_Node := New_Node (N_Range, Sloc (Def));
16835 Set_Low_Bound (R_Node, B_Node);
16837 Set_Ekind (T, E_Enumeration_Type);
16838 Set_First_Literal (T, L);
16839 Set_Etype (T, T);
16840 Set_Is_Constrained (T);
16842 Ev := Uint_0;
16844 -- Loop through literals of enumeration type setting pos and rep values
16845 -- except that if the Ekind is already set, then it means the literal
16846 -- was already constructed (case of a derived type declaration and we
16847 -- should not disturb the Pos and Rep values.
16849 while Present (L) loop
16850 if Ekind (L) /= E_Enumeration_Literal then
16851 Set_Ekind (L, E_Enumeration_Literal);
16852 Set_Enumeration_Pos (L, Ev);
16853 Set_Enumeration_Rep (L, Ev);
16854 Set_Is_Known_Valid (L, True);
16855 end if;
16857 Set_Etype (L, T);
16858 New_Overloaded_Entity (L);
16859 Generate_Definition (L);
16860 Set_Convention (L, Convention_Intrinsic);
16862 -- Case of character literal
16864 if Nkind (L) = N_Defining_Character_Literal then
16865 Set_Is_Character_Type (T, True);
16867 -- Check violation of No_Wide_Characters
16869 if Restriction_Check_Required (No_Wide_Characters) then
16870 Get_Name_String (Chars (L));
16872 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16873 Check_Restriction (No_Wide_Characters, L);
16874 end if;
16875 end if;
16876 end if;
16878 Ev := Ev + 1;
16879 Next (L);
16880 end loop;
16882 -- Now create a node representing upper bound
16884 B_Node := New_Node (N_Identifier, Sloc (Def));
16885 Set_Chars (B_Node, Chars (Last (Literals (Def))));
16886 Set_Entity (B_Node, Last (Literals (Def)));
16887 Set_Etype (B_Node, T);
16888 Set_Is_Static_Expression (B_Node, True);
16890 Set_High_Bound (R_Node, B_Node);
16892 -- Initialize various fields of the type. Some of this information
16893 -- may be overwritten later through rep.clauses.
16895 Set_Scalar_Range (T, R_Node);
16896 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
16897 Set_Enum_Esize (T);
16898 Set_Enum_Pos_To_Rep (T, Empty);
16900 -- Set Discard_Names if configuration pragma set, or if there is
16901 -- a parameterless pragma in the current declarative region
16903 if Global_Discard_Names or else Discard_Names (Scope (T)) then
16904 Set_Discard_Names (T);
16905 end if;
16907 -- Process end label if there is one
16909 if Present (Def) then
16910 Process_End_Label (Def, 'e', T);
16911 end if;
16912 end Enumeration_Type_Declaration;
16914 ---------------------------------
16915 -- Expand_To_Stored_Constraint --
16916 ---------------------------------
16918 function Expand_To_Stored_Constraint
16919 (Typ : Entity_Id;
16920 Constraint : Elist_Id) return Elist_Id
16922 Explicitly_Discriminated_Type : Entity_Id;
16923 Expansion : Elist_Id;
16924 Discriminant : Entity_Id;
16926 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16927 -- Find the nearest type that actually specifies discriminants
16929 ---------------------------------
16930 -- Type_With_Explicit_Discrims --
16931 ---------------------------------
16933 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
16934 Typ : constant E := Base_Type (Id);
16936 begin
16937 if Ekind (Typ) in Incomplete_Or_Private_Kind then
16938 if Present (Full_View (Typ)) then
16939 return Type_With_Explicit_Discrims (Full_View (Typ));
16940 end if;
16942 else
16943 if Has_Discriminants (Typ) then
16944 return Typ;
16945 end if;
16946 end if;
16948 if Etype (Typ) = Typ then
16949 return Empty;
16950 elsif Has_Discriminants (Typ) then
16951 return Typ;
16952 else
16953 return Type_With_Explicit_Discrims (Etype (Typ));
16954 end if;
16956 end Type_With_Explicit_Discrims;
16958 -- Start of processing for Expand_To_Stored_Constraint
16960 begin
16961 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
16962 return No_Elist;
16963 end if;
16965 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
16967 if No (Explicitly_Discriminated_Type) then
16968 return No_Elist;
16969 end if;
16971 Expansion := New_Elmt_List;
16973 Discriminant :=
16974 First_Stored_Discriminant (Explicitly_Discriminated_Type);
16975 while Present (Discriminant) loop
16976 Append_Elmt
16977 (Get_Discriminant_Value
16978 (Discriminant, Explicitly_Discriminated_Type, Constraint),
16979 To => Expansion);
16980 Next_Stored_Discriminant (Discriminant);
16981 end loop;
16983 return Expansion;
16984 end Expand_To_Stored_Constraint;
16986 ---------------------------
16987 -- Find_Hidden_Interface --
16988 ---------------------------
16990 function Find_Hidden_Interface
16991 (Src : Elist_Id;
16992 Dest : Elist_Id) return Entity_Id
16994 Iface : Entity_Id;
16995 Iface_Elmt : Elmt_Id;
16997 begin
16998 if Present (Src) and then Present (Dest) then
16999 Iface_Elmt := First_Elmt (Src);
17000 while Present (Iface_Elmt) loop
17001 Iface := Node (Iface_Elmt);
17003 if Is_Interface (Iface)
17004 and then not Contain_Interface (Iface, Dest)
17005 then
17006 return Iface;
17007 end if;
17009 Next_Elmt (Iface_Elmt);
17010 end loop;
17011 end if;
17013 return Empty;
17014 end Find_Hidden_Interface;
17016 --------------------
17017 -- Find_Type_Name --
17018 --------------------
17020 function Find_Type_Name (N : Node_Id) return Entity_Id is
17021 Id : constant Entity_Id := Defining_Identifier (N);
17022 New_Id : Entity_Id;
17023 Prev : Entity_Id;
17024 Prev_Par : Node_Id;
17026 procedure Check_Duplicate_Aspects;
17027 -- Check that aspects specified in a completion have not been specified
17028 -- already in the partial view.
17030 procedure Tag_Mismatch;
17031 -- Diagnose a tagged partial view whose full view is untagged. We post
17032 -- the message on the full view, with a reference to the previous
17033 -- partial view. The partial view can be private or incomplete, and
17034 -- these are handled in a different manner, so we determine the position
17035 -- of the error message from the respective slocs of both.
17037 -----------------------------
17038 -- Check_Duplicate_Aspects --
17039 -----------------------------
17041 procedure Check_Duplicate_Aspects is
17042 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id;
17043 -- Return the corresponding aspect of the partial view which matches
17044 -- the aspect id of Asp. Return Empty is no such aspect exists.
17046 -----------------------------
17047 -- Get_Partial_View_Aspect --
17048 -----------------------------
17050 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is
17051 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
17052 Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par);
17053 Prev_Asp : Node_Id;
17055 begin
17056 if Present (Prev_Asps) then
17057 Prev_Asp := First (Prev_Asps);
17058 while Present (Prev_Asp) loop
17059 if Get_Aspect_Id (Prev_Asp) = Asp_Id then
17060 return Prev_Asp;
17061 end if;
17063 Next (Prev_Asp);
17064 end loop;
17065 end if;
17067 return Empty;
17068 end Get_Partial_View_Aspect;
17070 -- Local variables
17072 Full_Asps : constant List_Id := Aspect_Specifications (N);
17073 Full_Asp : Node_Id;
17074 Part_Asp : Node_Id;
17076 -- Start of processing for Check_Duplicate_Aspects
17078 begin
17079 if Present (Full_Asps) then
17080 Full_Asp := First (Full_Asps);
17081 while Present (Full_Asp) loop
17082 Part_Asp := Get_Partial_View_Aspect (Full_Asp);
17084 -- An aspect and its class-wide counterpart are two distinct
17085 -- aspects and may apply to both views of an entity.
17087 if Present (Part_Asp)
17088 and then Class_Present (Part_Asp) = Class_Present (Full_Asp)
17089 then
17090 Error_Msg_N
17091 ("aspect already specified in private declaration",
17092 Full_Asp);
17094 Remove (Full_Asp);
17095 return;
17096 end if;
17098 if Has_Discriminants (Prev)
17099 and then not Has_Unknown_Discriminants (Prev)
17100 and then Get_Aspect_Id (Full_Asp) =
17101 Aspect_Implicit_Dereference
17102 then
17103 Error_Msg_N
17104 ("cannot specify aspect if partial view has known "
17105 & "discriminants", Full_Asp);
17106 end if;
17108 Next (Full_Asp);
17109 end loop;
17110 end if;
17111 end Check_Duplicate_Aspects;
17113 ------------------
17114 -- Tag_Mismatch --
17115 ------------------
17117 procedure Tag_Mismatch is
17118 begin
17119 if Sloc (Prev) < Sloc (Id) then
17120 if Ada_Version >= Ada_2012
17121 and then Nkind (N) = N_Private_Type_Declaration
17122 then
17123 Error_Msg_NE
17124 ("declaration of private } must be a tagged type ", Id, Prev);
17125 else
17126 Error_Msg_NE
17127 ("full declaration of } must be a tagged type ", Id, Prev);
17128 end if;
17130 else
17131 if Ada_Version >= Ada_2012
17132 and then Nkind (N) = N_Private_Type_Declaration
17133 then
17134 Error_Msg_NE
17135 ("declaration of private } must be a tagged type ", Prev, Id);
17136 else
17137 Error_Msg_NE
17138 ("full declaration of } must be a tagged type ", Prev, Id);
17139 end if;
17140 end if;
17141 end Tag_Mismatch;
17143 -- Start of processing for Find_Type_Name
17145 begin
17146 -- Find incomplete declaration, if one was given
17148 Prev := Current_Entity_In_Scope (Id);
17150 -- New type declaration
17152 if No (Prev) then
17153 Enter_Name (Id);
17154 return Id;
17156 -- Previous declaration exists
17158 else
17159 Prev_Par := Parent (Prev);
17161 -- Error if not incomplete/private case except if previous
17162 -- declaration is implicit, etc. Enter_Name will emit error if
17163 -- appropriate.
17165 if not Is_Incomplete_Or_Private_Type (Prev) then
17166 Enter_Name (Id);
17167 New_Id := Id;
17169 -- Check invalid completion of private or incomplete type
17171 elsif not Nkind_In (N, N_Full_Type_Declaration,
17172 N_Task_Type_Declaration,
17173 N_Protected_Type_Declaration)
17174 and then
17175 (Ada_Version < Ada_2012
17176 or else not Is_Incomplete_Type (Prev)
17177 or else not Nkind_In (N, N_Private_Type_Declaration,
17178 N_Private_Extension_Declaration))
17179 then
17180 -- Completion must be a full type declarations (RM 7.3(4))
17182 Error_Msg_Sloc := Sloc (Prev);
17183 Error_Msg_NE ("invalid completion of }", Id, Prev);
17185 -- Set scope of Id to avoid cascaded errors. Entity is never
17186 -- examined again, except when saving globals in generics.
17188 Set_Scope (Id, Current_Scope);
17189 New_Id := Id;
17191 -- If this is a repeated incomplete declaration, no further
17192 -- checks are possible.
17194 if Nkind (N) = N_Incomplete_Type_Declaration then
17195 return Prev;
17196 end if;
17198 -- Case of full declaration of incomplete type
17200 elsif Ekind (Prev) = E_Incomplete_Type
17201 and then (Ada_Version < Ada_2012
17202 or else No (Full_View (Prev))
17203 or else not Is_Private_Type (Full_View (Prev)))
17204 then
17205 -- Indicate that the incomplete declaration has a matching full
17206 -- declaration. The defining occurrence of the incomplete
17207 -- declaration remains the visible one, and the procedure
17208 -- Get_Full_View dereferences it whenever the type is used.
17210 if Present (Full_View (Prev)) then
17211 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17212 end if;
17214 Set_Full_View (Prev, Id);
17215 Append_Entity (Id, Current_Scope);
17216 Set_Is_Public (Id, Is_Public (Prev));
17217 Set_Is_Internal (Id);
17218 New_Id := Prev;
17220 -- If the incomplete view is tagged, a class_wide type has been
17221 -- created already. Use it for the private type as well, in order
17222 -- to prevent multiple incompatible class-wide types that may be
17223 -- created for self-referential anonymous access components.
17225 if Is_Tagged_Type (Prev)
17226 and then Present (Class_Wide_Type (Prev))
17227 then
17228 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
17229 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
17231 -- Type of the class-wide type is the current Id. Previously
17232 -- this was not done for private declarations because of order-
17233 -- of-elaboration issues in the back end, but gigi now handles
17234 -- this properly.
17236 Set_Etype (Class_Wide_Type (Id), Id);
17237 end if;
17239 -- Case of full declaration of private type
17241 else
17242 -- If the private type was a completion of an incomplete type then
17243 -- update Prev to reference the private type
17245 if Ada_Version >= Ada_2012
17246 and then Ekind (Prev) = E_Incomplete_Type
17247 and then Present (Full_View (Prev))
17248 and then Is_Private_Type (Full_View (Prev))
17249 then
17250 Prev := Full_View (Prev);
17251 Prev_Par := Parent (Prev);
17252 end if;
17254 if Nkind (N) = N_Full_Type_Declaration
17255 and then Nkind_In
17256 (Type_Definition (N), N_Record_Definition,
17257 N_Derived_Type_Definition)
17258 and then Interface_Present (Type_Definition (N))
17259 then
17260 Error_Msg_N
17261 ("completion of private type cannot be an interface", N);
17262 end if;
17264 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
17265 if Etype (Prev) /= Prev then
17267 -- Prev is a private subtype or a derived type, and needs
17268 -- no completion.
17270 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17271 New_Id := Id;
17273 elsif Ekind (Prev) = E_Private_Type
17274 and then Nkind_In (N, N_Task_Type_Declaration,
17275 N_Protected_Type_Declaration)
17276 then
17277 Error_Msg_N
17278 ("completion of nonlimited type cannot be limited", N);
17280 elsif Ekind (Prev) = E_Record_Type_With_Private
17281 and then Nkind_In (N, N_Task_Type_Declaration,
17282 N_Protected_Type_Declaration)
17283 then
17284 if not Is_Limited_Record (Prev) then
17285 Error_Msg_N
17286 ("completion of nonlimited type cannot be limited", N);
17288 elsif No (Interface_List (N)) then
17289 Error_Msg_N
17290 ("completion of tagged private type must be tagged",
17292 end if;
17293 end if;
17295 -- Ada 2005 (AI-251): Private extension declaration of a task
17296 -- type or a protected type. This case arises when covering
17297 -- interface types.
17299 elsif Nkind_In (N, N_Task_Type_Declaration,
17300 N_Protected_Type_Declaration)
17301 then
17302 null;
17304 elsif Nkind (N) /= N_Full_Type_Declaration
17305 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
17306 then
17307 Error_Msg_N
17308 ("full view of private extension must be an extension", N);
17310 elsif not (Abstract_Present (Parent (Prev)))
17311 and then Abstract_Present (Type_Definition (N))
17312 then
17313 Error_Msg_N
17314 ("full view of non-abstract extension cannot be abstract", N);
17315 end if;
17317 if not In_Private_Part (Current_Scope) then
17318 Error_Msg_N
17319 ("declaration of full view must appear in private part", N);
17320 end if;
17322 if Ada_Version >= Ada_2012 then
17323 Check_Duplicate_Aspects;
17324 end if;
17326 Copy_And_Swap (Prev, Id);
17327 Set_Has_Private_Declaration (Prev);
17328 Set_Has_Private_Declaration (Id);
17330 -- AI12-0133: Indicate whether we have a partial view with
17331 -- unknown discriminants, in which case initialization of objects
17332 -- of the type do not receive an invariant check.
17334 Set_Partial_View_Has_Unknown_Discr
17335 (Prev, Has_Unknown_Discriminants (Id));
17337 -- Preserve aspect and iterator flags that may have been set on
17338 -- the partial view.
17340 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
17341 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
17343 -- If no error, propagate freeze_node from private to full view.
17344 -- It may have been generated for an early operational item.
17346 if Present (Freeze_Node (Id))
17347 and then Serious_Errors_Detected = 0
17348 and then No (Full_View (Id))
17349 then
17350 Set_Freeze_Node (Prev, Freeze_Node (Id));
17351 Set_Freeze_Node (Id, Empty);
17352 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
17353 end if;
17355 Set_Full_View (Id, Prev);
17356 New_Id := Prev;
17357 end if;
17359 -- Verify that full declaration conforms to partial one
17361 if Is_Incomplete_Or_Private_Type (Prev)
17362 and then Present (Discriminant_Specifications (Prev_Par))
17363 then
17364 if Present (Discriminant_Specifications (N)) then
17365 if Ekind (Prev) = E_Incomplete_Type then
17366 Check_Discriminant_Conformance (N, Prev, Prev);
17367 else
17368 Check_Discriminant_Conformance (N, Prev, Id);
17369 end if;
17371 else
17372 Error_Msg_N
17373 ("missing discriminants in full type declaration", N);
17375 -- To avoid cascaded errors on subsequent use, share the
17376 -- discriminants of the partial view.
17378 Set_Discriminant_Specifications (N,
17379 Discriminant_Specifications (Prev_Par));
17380 end if;
17381 end if;
17383 -- A prior untagged partial view can have an associated class-wide
17384 -- type due to use of the class attribute, and in this case the full
17385 -- type must also be tagged. This Ada 95 usage is deprecated in favor
17386 -- of incomplete tagged declarations, but we check for it.
17388 if Is_Type (Prev)
17389 and then (Is_Tagged_Type (Prev)
17390 or else Present (Class_Wide_Type (Prev)))
17391 then
17392 -- Ada 2012 (AI05-0162): A private type may be the completion of
17393 -- an incomplete type.
17395 if Ada_Version >= Ada_2012
17396 and then Is_Incomplete_Type (Prev)
17397 and then Nkind_In (N, N_Private_Type_Declaration,
17398 N_Private_Extension_Declaration)
17399 then
17400 -- No need to check private extensions since they are tagged
17402 if Nkind (N) = N_Private_Type_Declaration
17403 and then not Tagged_Present (N)
17404 then
17405 Tag_Mismatch;
17406 end if;
17408 -- The full declaration is either a tagged type (including
17409 -- a synchronized type that implements interfaces) or a
17410 -- type extension, otherwise this is an error.
17412 elsif Nkind_In (N, N_Task_Type_Declaration,
17413 N_Protected_Type_Declaration)
17414 then
17415 if No (Interface_List (N)) and then not Error_Posted (N) then
17416 Tag_Mismatch;
17417 end if;
17419 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
17421 -- Indicate that the previous declaration (tagged incomplete
17422 -- or private declaration) requires the same on the full one.
17424 if not Tagged_Present (Type_Definition (N)) then
17425 Tag_Mismatch;
17426 Set_Is_Tagged_Type (Id);
17427 end if;
17429 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
17430 if No (Record_Extension_Part (Type_Definition (N))) then
17431 Error_Msg_NE
17432 ("full declaration of } must be a record extension",
17433 Prev, Id);
17435 -- Set some attributes to produce a usable full view
17437 Set_Is_Tagged_Type (Id);
17438 end if;
17440 else
17441 Tag_Mismatch;
17442 end if;
17443 end if;
17445 if Present (Prev)
17446 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
17447 and then Present (Premature_Use (Parent (Prev)))
17448 then
17449 Error_Msg_Sloc := Sloc (N);
17450 Error_Msg_N
17451 ("\full declaration #", Premature_Use (Parent (Prev)));
17452 end if;
17454 return New_Id;
17455 end if;
17456 end Find_Type_Name;
17458 -------------------------
17459 -- Find_Type_Of_Object --
17460 -------------------------
17462 function Find_Type_Of_Object
17463 (Obj_Def : Node_Id;
17464 Related_Nod : Node_Id) return Entity_Id
17466 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
17467 P : Node_Id := Parent (Obj_Def);
17468 T : Entity_Id;
17469 Nam : Name_Id;
17471 begin
17472 -- If the parent is a component_definition node we climb to the
17473 -- component_declaration node
17475 if Nkind (P) = N_Component_Definition then
17476 P := Parent (P);
17477 end if;
17479 -- Case of an anonymous array subtype
17481 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
17482 N_Unconstrained_Array_Definition)
17483 then
17484 T := Empty;
17485 Array_Type_Declaration (T, Obj_Def);
17487 -- Create an explicit subtype whenever possible
17489 elsif Nkind (P) /= N_Component_Declaration
17490 and then Def_Kind = N_Subtype_Indication
17491 then
17492 -- Base name of subtype on object name, which will be unique in
17493 -- the current scope.
17495 -- If this is a duplicate declaration, return base type, to avoid
17496 -- generating duplicate anonymous types.
17498 if Error_Posted (P) then
17499 Analyze (Subtype_Mark (Obj_Def));
17500 return Entity (Subtype_Mark (Obj_Def));
17501 end if;
17503 Nam :=
17504 New_External_Name
17505 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
17507 T := Make_Defining_Identifier (Sloc (P), Nam);
17509 Insert_Action (Obj_Def,
17510 Make_Subtype_Declaration (Sloc (P),
17511 Defining_Identifier => T,
17512 Subtype_Indication => Relocate_Node (Obj_Def)));
17514 -- This subtype may need freezing, and this will not be done
17515 -- automatically if the object declaration is not in declarative
17516 -- part. Since this is an object declaration, the type cannot always
17517 -- be frozen here. Deferred constants do not freeze their type
17518 -- (which often enough will be private).
17520 if Nkind (P) = N_Object_Declaration
17521 and then Constant_Present (P)
17522 and then No (Expression (P))
17523 then
17524 null;
17526 -- Here we freeze the base type of object type to catch premature use
17527 -- of discriminated private type without a full view.
17529 else
17530 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
17531 end if;
17533 -- Ada 2005 AI-406: the object definition in an object declaration
17534 -- can be an access definition.
17536 elsif Def_Kind = N_Access_Definition then
17537 T := Access_Definition (Related_Nod, Obj_Def);
17539 Set_Is_Local_Anonymous_Access
17541 V => (Ada_Version < Ada_2012)
17542 or else (Nkind (P) /= N_Object_Declaration)
17543 or else Is_Library_Level_Entity (Defining_Identifier (P)));
17545 -- Otherwise, the object definition is just a subtype_mark
17547 else
17548 T := Process_Subtype (Obj_Def, Related_Nod);
17550 -- If expansion is disabled an object definition that is an aggregate
17551 -- will not get expanded and may lead to scoping problems in the back
17552 -- end, if the object is referenced in an inner scope. In that case
17553 -- create an itype reference for the object definition now. This
17554 -- may be redundant in some cases, but harmless.
17556 if Is_Itype (T)
17557 and then Nkind (Related_Nod) = N_Object_Declaration
17558 and then ASIS_Mode
17559 then
17560 Build_Itype_Reference (T, Related_Nod);
17561 end if;
17562 end if;
17564 return T;
17565 end Find_Type_Of_Object;
17567 --------------------------------
17568 -- Find_Type_Of_Subtype_Indic --
17569 --------------------------------
17571 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
17572 Typ : Entity_Id;
17574 begin
17575 -- Case of subtype mark with a constraint
17577 if Nkind (S) = N_Subtype_Indication then
17578 Find_Type (Subtype_Mark (S));
17579 Typ := Entity (Subtype_Mark (S));
17581 if not
17582 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
17583 then
17584 Error_Msg_N
17585 ("incorrect constraint for this kind of type", Constraint (S));
17586 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17587 end if;
17589 -- Otherwise we have a subtype mark without a constraint
17591 elsif Error_Posted (S) then
17592 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
17593 return Any_Type;
17595 else
17596 Find_Type (S);
17597 Typ := Entity (S);
17598 end if;
17600 -- Check No_Wide_Characters restriction
17602 Check_Wide_Character_Restriction (Typ, S);
17604 return Typ;
17605 end Find_Type_Of_Subtype_Indic;
17607 -------------------------------------
17608 -- Floating_Point_Type_Declaration --
17609 -------------------------------------
17611 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17612 Digs : constant Node_Id := Digits_Expression (Def);
17613 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
17614 Digs_Val : Uint;
17615 Base_Typ : Entity_Id;
17616 Implicit_Base : Entity_Id;
17617 Bound : Node_Id;
17619 function Can_Derive_From (E : Entity_Id) return Boolean;
17620 -- Find if given digits value, and possibly a specified range, allows
17621 -- derivation from specified type
17623 function Find_Base_Type return Entity_Id;
17624 -- Find a predefined base type that Def can derive from, or generate
17625 -- an error and substitute Long_Long_Float if none exists.
17627 ---------------------
17628 -- Can_Derive_From --
17629 ---------------------
17631 function Can_Derive_From (E : Entity_Id) return Boolean is
17632 Spec : constant Entity_Id := Real_Range_Specification (Def);
17634 begin
17635 -- Check specified "digits" constraint
17637 if Digs_Val > Digits_Value (E) then
17638 return False;
17639 end if;
17641 -- Check for matching range, if specified
17643 if Present (Spec) then
17644 if Expr_Value_R (Type_Low_Bound (E)) >
17645 Expr_Value_R (Low_Bound (Spec))
17646 then
17647 return False;
17648 end if;
17650 if Expr_Value_R (Type_High_Bound (E)) <
17651 Expr_Value_R (High_Bound (Spec))
17652 then
17653 return False;
17654 end if;
17655 end if;
17657 return True;
17658 end Can_Derive_From;
17660 --------------------
17661 -- Find_Base_Type --
17662 --------------------
17664 function Find_Base_Type return Entity_Id is
17665 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
17667 begin
17668 -- Iterate over the predefined types in order, returning the first
17669 -- one that Def can derive from.
17671 while Present (Choice) loop
17672 if Can_Derive_From (Node (Choice)) then
17673 return Node (Choice);
17674 end if;
17676 Next_Elmt (Choice);
17677 end loop;
17679 -- If we can't derive from any existing type, use Long_Long_Float
17680 -- and give appropriate message explaining the problem.
17682 if Digs_Val > Max_Digs_Val then
17683 -- It might be the case that there is a type with the requested
17684 -- range, just not the combination of digits and range.
17686 Error_Msg_N
17687 ("no predefined type has requested range and precision",
17688 Real_Range_Specification (Def));
17690 else
17691 Error_Msg_N
17692 ("range too large for any predefined type",
17693 Real_Range_Specification (Def));
17694 end if;
17696 return Standard_Long_Long_Float;
17697 end Find_Base_Type;
17699 -- Start of processing for Floating_Point_Type_Declaration
17701 begin
17702 Check_Restriction (No_Floating_Point, Def);
17704 -- Create an implicit base type
17706 Implicit_Base :=
17707 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
17709 -- Analyze and verify digits value
17711 Analyze_And_Resolve (Digs, Any_Integer);
17712 Check_Digits_Expression (Digs);
17713 Digs_Val := Expr_Value (Digs);
17715 -- Process possible range spec and find correct type to derive from
17717 Process_Real_Range_Specification (Def);
17719 -- Check that requested number of digits is not too high.
17721 if Digs_Val > Max_Digs_Val then
17723 -- The check for Max_Base_Digits may be somewhat expensive, as it
17724 -- requires reading System, so only do it when necessary.
17726 declare
17727 Max_Base_Digits : constant Uint :=
17728 Expr_Value
17729 (Expression
17730 (Parent (RTE (RE_Max_Base_Digits))));
17732 begin
17733 if Digs_Val > Max_Base_Digits then
17734 Error_Msg_Uint_1 := Max_Base_Digits;
17735 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17737 elsif No (Real_Range_Specification (Def)) then
17738 Error_Msg_Uint_1 := Max_Digs_Val;
17739 Error_Msg_N ("types with more than ^ digits need range spec "
17740 & "(RM 3.5.7(6))", Digs);
17741 end if;
17742 end;
17743 end if;
17745 -- Find a suitable type to derive from or complain and use a substitute
17747 Base_Typ := Find_Base_Type;
17749 -- If there are bounds given in the declaration use them as the bounds
17750 -- of the type, otherwise use the bounds of the predefined base type
17751 -- that was chosen based on the Digits value.
17753 if Present (Real_Range_Specification (Def)) then
17754 Set_Scalar_Range (T, Real_Range_Specification (Def));
17755 Set_Is_Constrained (T);
17757 -- The bounds of this range must be converted to machine numbers
17758 -- in accordance with RM 4.9(38).
17760 Bound := Type_Low_Bound (T);
17762 if Nkind (Bound) = N_Real_Literal then
17763 Set_Realval
17764 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17765 Set_Is_Machine_Number (Bound);
17766 end if;
17768 Bound := Type_High_Bound (T);
17770 if Nkind (Bound) = N_Real_Literal then
17771 Set_Realval
17772 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17773 Set_Is_Machine_Number (Bound);
17774 end if;
17776 else
17777 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17778 end if;
17780 -- Complete definition of implicit base and declared first subtype. The
17781 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17782 -- are not clobbered when the floating point type acts as a full view of
17783 -- a private type.
17785 Set_Etype (Implicit_Base, Base_Typ);
17786 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17787 Set_Size_Info (Implicit_Base, Base_Typ);
17788 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17789 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17790 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17791 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17793 Set_Ekind (T, E_Floating_Point_Subtype);
17794 Set_Etype (T, Implicit_Base);
17795 Set_Size_Info (T, Implicit_Base);
17796 Set_RM_Size (T, RM_Size (Implicit_Base));
17797 Inherit_Rep_Item_Chain (T, Implicit_Base);
17798 Set_Digits_Value (T, Digs_Val);
17799 end Floating_Point_Type_Declaration;
17801 ----------------------------
17802 -- Get_Discriminant_Value --
17803 ----------------------------
17805 -- This is the situation:
17807 -- There is a non-derived type
17809 -- type T0 (Dx, Dy, Dz...)
17811 -- There are zero or more levels of derivation, with each derivation
17812 -- either purely inheriting the discriminants, or defining its own.
17814 -- type Ti is new Ti-1
17815 -- or
17816 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17817 -- or
17818 -- subtype Ti is ...
17820 -- The subtype issue is avoided by the use of Original_Record_Component,
17821 -- and the fact that derived subtypes also derive the constraints.
17823 -- This chain leads back from
17825 -- Typ_For_Constraint
17827 -- Typ_For_Constraint has discriminants, and the value for each
17828 -- discriminant is given by its corresponding Elmt of Constraints.
17830 -- Discriminant is some discriminant in this hierarchy
17832 -- We need to return its value
17834 -- We do this by recursively searching each level, and looking for
17835 -- Discriminant. Once we get to the bottom, we start backing up
17836 -- returning the value for it which may in turn be a discriminant
17837 -- further up, so on the backup we continue the substitution.
17839 function Get_Discriminant_Value
17840 (Discriminant : Entity_Id;
17841 Typ_For_Constraint : Entity_Id;
17842 Constraint : Elist_Id) return Node_Id
17844 function Root_Corresponding_Discriminant
17845 (Discr : Entity_Id) return Entity_Id;
17846 -- Given a discriminant, traverse the chain of inherited discriminants
17847 -- and return the topmost discriminant.
17849 function Search_Derivation_Levels
17850 (Ti : Entity_Id;
17851 Discrim_Values : Elist_Id;
17852 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17853 -- This is the routine that performs the recursive search of levels
17854 -- as described above.
17856 -------------------------------------
17857 -- Root_Corresponding_Discriminant --
17858 -------------------------------------
17860 function Root_Corresponding_Discriminant
17861 (Discr : Entity_Id) return Entity_Id
17863 D : Entity_Id;
17865 begin
17866 D := Discr;
17867 while Present (Corresponding_Discriminant (D)) loop
17868 D := Corresponding_Discriminant (D);
17869 end loop;
17871 return D;
17872 end Root_Corresponding_Discriminant;
17874 ------------------------------
17875 -- Search_Derivation_Levels --
17876 ------------------------------
17878 function Search_Derivation_Levels
17879 (Ti : Entity_Id;
17880 Discrim_Values : Elist_Id;
17881 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17883 Assoc : Elmt_Id;
17884 Disc : Entity_Id;
17885 Result : Node_Or_Entity_Id;
17886 Result_Entity : Node_Id;
17888 begin
17889 -- If inappropriate type, return Error, this happens only in
17890 -- cascaded error situations, and we want to avoid a blow up.
17892 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17893 return Error;
17894 end if;
17896 -- Look deeper if possible. Use Stored_Constraints only for
17897 -- untagged types. For tagged types use the given constraint.
17898 -- This asymmetry needs explanation???
17900 if not Stored_Discrim_Values
17901 and then Present (Stored_Constraint (Ti))
17902 and then not Is_Tagged_Type (Ti)
17903 then
17904 Result :=
17905 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17906 else
17907 declare
17908 Td : constant Entity_Id := Etype (Ti);
17910 begin
17911 if Td = Ti then
17912 Result := Discriminant;
17914 else
17915 if Present (Stored_Constraint (Ti)) then
17916 Result :=
17917 Search_Derivation_Levels
17918 (Td, Stored_Constraint (Ti), True);
17919 else
17920 Result :=
17921 Search_Derivation_Levels
17922 (Td, Discrim_Values, Stored_Discrim_Values);
17923 end if;
17924 end if;
17925 end;
17926 end if;
17928 -- Extra underlying places to search, if not found above. For
17929 -- concurrent types, the relevant discriminant appears in the
17930 -- corresponding record. For a type derived from a private type
17931 -- without discriminant, the full view inherits the discriminants
17932 -- of the full view of the parent.
17934 if Result = Discriminant then
17935 if Is_Concurrent_Type (Ti)
17936 and then Present (Corresponding_Record_Type (Ti))
17937 then
17938 Result :=
17939 Search_Derivation_Levels (
17940 Corresponding_Record_Type (Ti),
17941 Discrim_Values,
17942 Stored_Discrim_Values);
17944 elsif Is_Private_Type (Ti)
17945 and then not Has_Discriminants (Ti)
17946 and then Present (Full_View (Ti))
17947 and then Etype (Full_View (Ti)) /= Ti
17948 then
17949 Result :=
17950 Search_Derivation_Levels (
17951 Full_View (Ti),
17952 Discrim_Values,
17953 Stored_Discrim_Values);
17954 end if;
17955 end if;
17957 -- If Result is not a (reference to a) discriminant, return it,
17958 -- otherwise set Result_Entity to the discriminant.
17960 if Nkind (Result) = N_Defining_Identifier then
17961 pragma Assert (Result = Discriminant);
17962 Result_Entity := Result;
17964 else
17965 if not Denotes_Discriminant (Result) then
17966 return Result;
17967 end if;
17969 Result_Entity := Entity (Result);
17970 end if;
17972 -- See if this level of derivation actually has discriminants because
17973 -- tagged derivations can add them, hence the lower levels need not
17974 -- have any.
17976 if not Has_Discriminants (Ti) then
17977 return Result;
17978 end if;
17980 -- Scan Ti's discriminants for Result_Entity, and return its
17981 -- corresponding value, if any.
17983 Result_Entity := Original_Record_Component (Result_Entity);
17985 Assoc := First_Elmt (Discrim_Values);
17987 if Stored_Discrim_Values then
17988 Disc := First_Stored_Discriminant (Ti);
17989 else
17990 Disc := First_Discriminant (Ti);
17991 end if;
17993 while Present (Disc) loop
17995 -- If no further associations return the discriminant, value will
17996 -- be found on the second pass.
17998 if No (Assoc) then
17999 return Result;
18000 end if;
18002 if Original_Record_Component (Disc) = Result_Entity then
18003 return Node (Assoc);
18004 end if;
18006 Next_Elmt (Assoc);
18008 if Stored_Discrim_Values then
18009 Next_Stored_Discriminant (Disc);
18010 else
18011 Next_Discriminant (Disc);
18012 end if;
18013 end loop;
18015 -- Could not find it
18017 return Result;
18018 end Search_Derivation_Levels;
18020 -- Local Variables
18022 Result : Node_Or_Entity_Id;
18024 -- Start of processing for Get_Discriminant_Value
18026 begin
18027 -- ??? This routine is a gigantic mess and will be deleted. For the
18028 -- time being just test for the trivial case before calling recurse.
18030 -- We are now celebrating the 20th anniversary of this comment!
18032 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
18033 declare
18034 D : Entity_Id;
18035 E : Elmt_Id;
18037 begin
18038 D := First_Discriminant (Typ_For_Constraint);
18039 E := First_Elmt (Constraint);
18040 while Present (D) loop
18041 if Chars (D) = Chars (Discriminant) then
18042 return Node (E);
18043 end if;
18045 Next_Discriminant (D);
18046 Next_Elmt (E);
18047 end loop;
18048 end;
18049 end if;
18051 Result := Search_Derivation_Levels
18052 (Typ_For_Constraint, Constraint, False);
18054 -- ??? hack to disappear when this routine is gone
18056 if Nkind (Result) = N_Defining_Identifier then
18057 declare
18058 D : Entity_Id;
18059 E : Elmt_Id;
18061 begin
18062 D := First_Discriminant (Typ_For_Constraint);
18063 E := First_Elmt (Constraint);
18064 while Present (D) loop
18065 if Root_Corresponding_Discriminant (D) = Discriminant then
18066 return Node (E);
18067 end if;
18069 Next_Discriminant (D);
18070 Next_Elmt (E);
18071 end loop;
18072 end;
18073 end if;
18075 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
18076 return Result;
18077 end Get_Discriminant_Value;
18079 --------------------------
18080 -- Has_Range_Constraint --
18081 --------------------------
18083 function Has_Range_Constraint (N : Node_Id) return Boolean is
18084 C : constant Node_Id := Constraint (N);
18086 begin
18087 if Nkind (C) = N_Range_Constraint then
18088 return True;
18090 elsif Nkind (C) = N_Digits_Constraint then
18091 return
18092 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
18093 or else Present (Range_Constraint (C));
18095 elsif Nkind (C) = N_Delta_Constraint then
18096 return Present (Range_Constraint (C));
18098 else
18099 return False;
18100 end if;
18101 end Has_Range_Constraint;
18103 ------------------------
18104 -- Inherit_Components --
18105 ------------------------
18107 function Inherit_Components
18108 (N : Node_Id;
18109 Parent_Base : Entity_Id;
18110 Derived_Base : Entity_Id;
18111 Is_Tagged : Boolean;
18112 Inherit_Discr : Boolean;
18113 Discs : Elist_Id) return Elist_Id
18115 Assoc_List : constant Elist_Id := New_Elmt_List;
18117 procedure Inherit_Component
18118 (Old_C : Entity_Id;
18119 Plain_Discrim : Boolean := False;
18120 Stored_Discrim : Boolean := False);
18121 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
18122 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18123 -- True, Old_C is a stored discriminant. If they are both false then
18124 -- Old_C is a regular component.
18126 -----------------------
18127 -- Inherit_Component --
18128 -----------------------
18130 procedure Inherit_Component
18131 (Old_C : Entity_Id;
18132 Plain_Discrim : Boolean := False;
18133 Stored_Discrim : Boolean := False)
18135 procedure Set_Anonymous_Type (Id : Entity_Id);
18136 -- Id denotes the entity of an access discriminant or anonymous
18137 -- access component. Set the type of Id to either the same type of
18138 -- Old_C or create a new one depending on whether the parent and
18139 -- the child types are in the same scope.
18141 ------------------------
18142 -- Set_Anonymous_Type --
18143 ------------------------
18145 procedure Set_Anonymous_Type (Id : Entity_Id) is
18146 Old_Typ : constant Entity_Id := Etype (Old_C);
18148 begin
18149 if Scope (Parent_Base) = Scope (Derived_Base) then
18150 Set_Etype (Id, Old_Typ);
18152 -- The parent and the derived type are in two different scopes.
18153 -- Reuse the type of the original discriminant / component by
18154 -- copying it in order to preserve all attributes.
18156 else
18157 declare
18158 Typ : constant Entity_Id := New_Copy (Old_Typ);
18160 begin
18161 Set_Etype (Id, Typ);
18163 -- Since we do not generate component declarations for
18164 -- inherited components, associate the itype with the
18165 -- derived type.
18167 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
18168 Set_Scope (Typ, Derived_Base);
18169 end;
18170 end if;
18171 end Set_Anonymous_Type;
18173 -- Local variables and constants
18175 New_C : constant Entity_Id := New_Copy (Old_C);
18177 Corr_Discrim : Entity_Id;
18178 Discrim : Entity_Id;
18180 -- Start of processing for Inherit_Component
18182 begin
18183 pragma Assert (not Is_Tagged or not Stored_Discrim);
18185 Set_Parent (New_C, Parent (Old_C));
18187 -- Regular discriminants and components must be inserted in the scope
18188 -- of the Derived_Base. Do it here.
18190 if not Stored_Discrim then
18191 Enter_Name (New_C);
18192 end if;
18194 -- For tagged types the Original_Record_Component must point to
18195 -- whatever this field was pointing to in the parent type. This has
18196 -- already been achieved by the call to New_Copy above.
18198 if not Is_Tagged then
18199 Set_Original_Record_Component (New_C, New_C);
18200 Set_Corresponding_Record_Component (New_C, Old_C);
18201 end if;
18203 -- Set the proper type of an access discriminant
18205 if Ekind (New_C) = E_Discriminant
18206 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
18207 then
18208 Set_Anonymous_Type (New_C);
18209 end if;
18211 -- If we have inherited a component then see if its Etype contains
18212 -- references to Parent_Base discriminants. In this case, replace
18213 -- these references with the constraints given in Discs. We do not
18214 -- do this for the partial view of private types because this is
18215 -- not needed (only the components of the full view will be used
18216 -- for code generation) and cause problem. We also avoid this
18217 -- transformation in some error situations.
18219 if Ekind (New_C) = E_Component then
18221 -- Set the proper type of an anonymous access component
18223 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
18224 Set_Anonymous_Type (New_C);
18226 elsif (Is_Private_Type (Derived_Base)
18227 and then not Is_Generic_Type (Derived_Base))
18228 or else (Is_Empty_Elmt_List (Discs)
18229 and then not Expander_Active)
18230 then
18231 Set_Etype (New_C, Etype (Old_C));
18233 else
18234 -- The current component introduces a circularity of the
18235 -- following kind:
18237 -- limited with Pack_2;
18238 -- package Pack_1 is
18239 -- type T_1 is tagged record
18240 -- Comp : access Pack_2.T_2;
18241 -- ...
18242 -- end record;
18243 -- end Pack_1;
18245 -- with Pack_1;
18246 -- package Pack_2 is
18247 -- type T_2 is new Pack_1.T_1 with ...;
18248 -- end Pack_2;
18250 Set_Etype
18251 (New_C,
18252 Constrain_Component_Type
18253 (Old_C, Derived_Base, N, Parent_Base, Discs));
18254 end if;
18255 end if;
18257 -- In derived tagged types it is illegal to reference a non
18258 -- discriminant component in the parent type. To catch this, mark
18259 -- these components with an Ekind of E_Void. This will be reset in
18260 -- Record_Type_Definition after processing the record extension of
18261 -- the derived type.
18263 -- If the declaration is a private extension, there is no further
18264 -- record extension to process, and the components retain their
18265 -- current kind, because they are visible at this point.
18267 if Is_Tagged and then Ekind (New_C) = E_Component
18268 and then Nkind (N) /= N_Private_Extension_Declaration
18269 then
18270 Set_Ekind (New_C, E_Void);
18271 end if;
18273 if Plain_Discrim then
18274 Set_Corresponding_Discriminant (New_C, Old_C);
18275 Build_Discriminal (New_C);
18277 -- If we are explicitly inheriting a stored discriminant it will be
18278 -- completely hidden.
18280 elsif Stored_Discrim then
18281 Set_Corresponding_Discriminant (New_C, Empty);
18282 Set_Discriminal (New_C, Empty);
18283 Set_Is_Completely_Hidden (New_C);
18285 -- Set the Original_Record_Component of each discriminant in the
18286 -- derived base to point to the corresponding stored that we just
18287 -- created.
18289 Discrim := First_Discriminant (Derived_Base);
18290 while Present (Discrim) loop
18291 Corr_Discrim := Corresponding_Discriminant (Discrim);
18293 -- Corr_Discrim could be missing in an error situation
18295 if Present (Corr_Discrim)
18296 and then Original_Record_Component (Corr_Discrim) = Old_C
18297 then
18298 Set_Original_Record_Component (Discrim, New_C);
18299 Set_Corresponding_Record_Component (Discrim, Empty);
18300 end if;
18302 Next_Discriminant (Discrim);
18303 end loop;
18305 Append_Entity (New_C, Derived_Base);
18306 end if;
18308 if not Is_Tagged then
18309 Append_Elmt (Old_C, Assoc_List);
18310 Append_Elmt (New_C, Assoc_List);
18311 end if;
18312 end Inherit_Component;
18314 -- Variables local to Inherit_Component
18316 Loc : constant Source_Ptr := Sloc (N);
18318 Parent_Discrim : Entity_Id;
18319 Stored_Discrim : Entity_Id;
18320 D : Entity_Id;
18321 Component : Entity_Id;
18323 -- Start of processing for Inherit_Components
18325 begin
18326 if not Is_Tagged then
18327 Append_Elmt (Parent_Base, Assoc_List);
18328 Append_Elmt (Derived_Base, Assoc_List);
18329 end if;
18331 -- Inherit parent discriminants if needed
18333 if Inherit_Discr then
18334 Parent_Discrim := First_Discriminant (Parent_Base);
18335 while Present (Parent_Discrim) loop
18336 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
18337 Next_Discriminant (Parent_Discrim);
18338 end loop;
18339 end if;
18341 -- Create explicit stored discrims for untagged types when necessary
18343 if not Has_Unknown_Discriminants (Derived_Base)
18344 and then Has_Discriminants (Parent_Base)
18345 and then not Is_Tagged
18346 and then
18347 (not Inherit_Discr
18348 or else First_Discriminant (Parent_Base) /=
18349 First_Stored_Discriminant (Parent_Base))
18350 then
18351 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
18352 while Present (Stored_Discrim) loop
18353 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
18354 Next_Stored_Discriminant (Stored_Discrim);
18355 end loop;
18356 end if;
18358 -- See if we can apply the second transformation for derived types, as
18359 -- explained in point 6. in the comments above Build_Derived_Record_Type
18360 -- This is achieved by appending Derived_Base discriminants into Discs,
18361 -- which has the side effect of returning a non empty Discs list to the
18362 -- caller of Inherit_Components, which is what we want. This must be
18363 -- done for private derived types if there are explicit stored
18364 -- discriminants, to ensure that we can retrieve the values of the
18365 -- constraints provided in the ancestors.
18367 if Inherit_Discr
18368 and then Is_Empty_Elmt_List (Discs)
18369 and then Present (First_Discriminant (Derived_Base))
18370 and then
18371 (not Is_Private_Type (Derived_Base)
18372 or else Is_Completely_Hidden
18373 (First_Stored_Discriminant (Derived_Base))
18374 or else Is_Generic_Type (Derived_Base))
18375 then
18376 D := First_Discriminant (Derived_Base);
18377 while Present (D) loop
18378 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
18379 Next_Discriminant (D);
18380 end loop;
18381 end if;
18383 -- Finally, inherit non-discriminant components unless they are not
18384 -- visible because defined or inherited from the full view of the
18385 -- parent. Don't inherit the _parent field of the parent type.
18387 Component := First_Entity (Parent_Base);
18388 while Present (Component) loop
18390 -- Ada 2005 (AI-251): Do not inherit components associated with
18391 -- secondary tags of the parent.
18393 if Ekind (Component) = E_Component
18394 and then Present (Related_Type (Component))
18395 then
18396 null;
18398 elsif Ekind (Component) /= E_Component
18399 or else Chars (Component) = Name_uParent
18400 then
18401 null;
18403 -- If the derived type is within the parent type's declarative
18404 -- region, then the components can still be inherited even though
18405 -- they aren't visible at this point. This can occur for cases
18406 -- such as within public child units where the components must
18407 -- become visible upon entering the child unit's private part.
18409 elsif not Is_Visible_Component (Component)
18410 and then not In_Open_Scopes (Scope (Parent_Base))
18411 then
18412 null;
18414 elsif Ekind_In (Derived_Base, E_Private_Type,
18415 E_Limited_Private_Type)
18416 then
18417 null;
18419 else
18420 Inherit_Component (Component);
18421 end if;
18423 Next_Entity (Component);
18424 end loop;
18426 -- For tagged derived types, inherited discriminants cannot be used in
18427 -- component declarations of the record extension part. To achieve this
18428 -- we mark the inherited discriminants as not visible.
18430 if Is_Tagged and then Inherit_Discr then
18431 D := First_Discriminant (Derived_Base);
18432 while Present (D) loop
18433 Set_Is_Immediately_Visible (D, False);
18434 Next_Discriminant (D);
18435 end loop;
18436 end if;
18438 return Assoc_List;
18439 end Inherit_Components;
18441 -----------------------------
18442 -- Inherit_Predicate_Flags --
18443 -----------------------------
18445 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
18446 begin
18447 Set_Has_Predicates (Subt, Has_Predicates (Par));
18448 Set_Has_Static_Predicate_Aspect
18449 (Subt, Has_Static_Predicate_Aspect (Par));
18450 Set_Has_Dynamic_Predicate_Aspect
18451 (Subt, Has_Dynamic_Predicate_Aspect (Par));
18453 -- A named subtype does not inherit the predicate function of its
18454 -- parent but an itype declared for a loop index needs the discrete
18455 -- predicate information of its parent to execute the loop properly.
18457 if Is_Itype (Subt) and then Present (Predicate_Function (Par)) then
18458 Set_Subprograms_For_Type (Subt, Subprograms_For_Type (Par));
18460 if Has_Static_Predicate (Par) then
18461 Set_Static_Discrete_Predicate
18462 (Subt, Static_Discrete_Predicate (Par));
18463 end if;
18464 end if;
18465 end Inherit_Predicate_Flags;
18467 ----------------------
18468 -- Is_EVF_Procedure --
18469 ----------------------
18471 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
18472 Formal : Entity_Id;
18474 begin
18475 -- Examine the formals of an Extensions_Visible False procedure looking
18476 -- for a controlling OUT parameter.
18478 if Ekind (Subp) = E_Procedure
18479 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
18480 then
18481 Formal := First_Formal (Subp);
18482 while Present (Formal) loop
18483 if Ekind (Formal) = E_Out_Parameter
18484 and then Is_Controlling_Formal (Formal)
18485 then
18486 return True;
18487 end if;
18489 Next_Formal (Formal);
18490 end loop;
18491 end if;
18493 return False;
18494 end Is_EVF_Procedure;
18496 -----------------------
18497 -- Is_Null_Extension --
18498 -----------------------
18500 function Is_Null_Extension (T : Entity_Id) return Boolean is
18501 Type_Decl : constant Node_Id := Parent (Base_Type (T));
18502 Comp_List : Node_Id;
18503 Comp : Node_Id;
18505 begin
18506 if Nkind (Type_Decl) /= N_Full_Type_Declaration
18507 or else not Is_Tagged_Type (T)
18508 or else Nkind (Type_Definition (Type_Decl)) /=
18509 N_Derived_Type_Definition
18510 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
18511 then
18512 return False;
18513 end if;
18515 Comp_List :=
18516 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
18518 if Present (Discriminant_Specifications (Type_Decl)) then
18519 return False;
18521 elsif Present (Comp_List)
18522 and then Is_Non_Empty_List (Component_Items (Comp_List))
18523 then
18524 Comp := First (Component_Items (Comp_List));
18526 -- Only user-defined components are relevant. The component list
18527 -- may also contain a parent component and internal components
18528 -- corresponding to secondary tags, but these do not determine
18529 -- whether this is a null extension.
18531 while Present (Comp) loop
18532 if Comes_From_Source (Comp) then
18533 return False;
18534 end if;
18536 Next (Comp);
18537 end loop;
18539 return True;
18541 else
18542 return True;
18543 end if;
18544 end Is_Null_Extension;
18546 ------------------------------
18547 -- Is_Valid_Constraint_Kind --
18548 ------------------------------
18550 function Is_Valid_Constraint_Kind
18551 (T_Kind : Type_Kind;
18552 Constraint_Kind : Node_Kind) return Boolean
18554 begin
18555 case T_Kind is
18556 when Enumeration_Kind
18557 | Integer_Kind
18559 return Constraint_Kind = N_Range_Constraint;
18561 when Decimal_Fixed_Point_Kind =>
18562 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18563 N_Range_Constraint);
18565 when Ordinary_Fixed_Point_Kind =>
18566 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
18567 N_Range_Constraint);
18569 when Float_Kind =>
18570 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18571 N_Range_Constraint);
18573 when Access_Kind
18574 | Array_Kind
18575 | Class_Wide_Kind
18576 | Concurrent_Kind
18577 | Private_Kind
18578 | E_Incomplete_Type
18579 | E_Record_Subtype
18580 | E_Record_Type
18582 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
18584 when others =>
18585 return True; -- Error will be detected later
18586 end case;
18587 end Is_Valid_Constraint_Kind;
18589 --------------------------
18590 -- Is_Visible_Component --
18591 --------------------------
18593 function Is_Visible_Component
18594 (C : Entity_Id;
18595 N : Node_Id := Empty) return Boolean
18597 Original_Comp : Entity_Id := Empty;
18598 Original_Type : Entity_Id;
18599 Type_Scope : Entity_Id;
18601 function Is_Local_Type (Typ : Entity_Id) return Boolean;
18602 -- Check whether parent type of inherited component is declared locally,
18603 -- possibly within a nested package or instance. The current scope is
18604 -- the derived record itself.
18606 -------------------
18607 -- Is_Local_Type --
18608 -------------------
18610 function Is_Local_Type (Typ : Entity_Id) return Boolean is
18611 Scop : Entity_Id;
18613 begin
18614 Scop := Scope (Typ);
18615 while Present (Scop)
18616 and then Scop /= Standard_Standard
18617 loop
18618 if Scop = Scope (Current_Scope) then
18619 return True;
18620 end if;
18622 Scop := Scope (Scop);
18623 end loop;
18625 return False;
18626 end Is_Local_Type;
18628 -- Start of processing for Is_Visible_Component
18630 begin
18631 if Ekind_In (C, E_Component, E_Discriminant) then
18632 Original_Comp := Original_Record_Component (C);
18633 end if;
18635 if No (Original_Comp) then
18637 -- Premature usage, or previous error
18639 return False;
18641 else
18642 Original_Type := Scope (Original_Comp);
18643 Type_Scope := Scope (Base_Type (Scope (C)));
18644 end if;
18646 -- This test only concerns tagged types
18648 if not Is_Tagged_Type (Original_Type) then
18649 return True;
18651 -- If it is _Parent or _Tag, there is no visibility issue
18653 elsif not Comes_From_Source (Original_Comp) then
18654 return True;
18656 -- Discriminants are visible unless the (private) type has unknown
18657 -- discriminants. If the discriminant reference is inserted for a
18658 -- discriminant check on a full view it is also visible.
18660 elsif Ekind (Original_Comp) = E_Discriminant
18661 and then
18662 (not Has_Unknown_Discriminants (Original_Type)
18663 or else (Present (N)
18664 and then Nkind (N) = N_Selected_Component
18665 and then Nkind (Prefix (N)) = N_Type_Conversion
18666 and then not Comes_From_Source (Prefix (N))))
18667 then
18668 return True;
18670 -- In the body of an instantiation, check the visibility of a component
18671 -- in case it has a homograph that is a primitive operation of a private
18672 -- type which was not visible in the generic unit.
18674 -- Should Is_Prefixed_Call be propagated from template to instance???
18676 elsif In_Instance_Body then
18677 if not Is_Tagged_Type (Original_Type)
18678 or else not Is_Private_Type (Original_Type)
18679 then
18680 return True;
18682 else
18683 declare
18684 Subp_Elmt : Elmt_Id;
18686 begin
18687 Subp_Elmt := First_Elmt (Primitive_Operations (Original_Type));
18688 while Present (Subp_Elmt) loop
18690 -- The component is hidden by a primitive operation
18692 if Chars (Node (Subp_Elmt)) = Chars (C) then
18693 return False;
18694 end if;
18696 Next_Elmt (Subp_Elmt);
18697 end loop;
18699 return True;
18700 end;
18701 end if;
18703 -- If the component has been declared in an ancestor which is currently
18704 -- a private type, then it is not visible. The same applies if the
18705 -- component's containing type is not in an open scope and the original
18706 -- component's enclosing type is a visible full view of a private type
18707 -- (which can occur in cases where an attempt is being made to reference
18708 -- a component in a sibling package that is inherited from a visible
18709 -- component of a type in an ancestor package; the component in the
18710 -- sibling package should not be visible even though the component it
18711 -- inherited from is visible). This does not apply however in the case
18712 -- where the scope of the type is a private child unit, or when the
18713 -- parent comes from a local package in which the ancestor is currently
18714 -- visible. The latter suppression of visibility is needed for cases
18715 -- that are tested in B730006.
18717 elsif Is_Private_Type (Original_Type)
18718 or else
18719 (not Is_Private_Descendant (Type_Scope)
18720 and then not In_Open_Scopes (Type_Scope)
18721 and then Has_Private_Declaration (Original_Type))
18722 then
18723 -- If the type derives from an entity in a formal package, there
18724 -- are no additional visible components.
18726 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
18727 N_Formal_Package_Declaration
18728 then
18729 return False;
18731 -- if we are not in the private part of the current package, there
18732 -- are no additional visible components.
18734 elsif Ekind (Scope (Current_Scope)) = E_Package
18735 and then not In_Private_Part (Scope (Current_Scope))
18736 then
18737 return False;
18738 else
18739 return
18740 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
18741 and then In_Open_Scopes (Scope (Original_Type))
18742 and then Is_Local_Type (Type_Scope);
18743 end if;
18745 -- There is another weird way in which a component may be invisible when
18746 -- the private and the full view are not derived from the same ancestor.
18747 -- Here is an example :
18749 -- type A1 is tagged record F1 : integer; end record;
18750 -- type A2 is new A1 with record F2 : integer; end record;
18751 -- type T is new A1 with private;
18752 -- private
18753 -- type T is new A2 with null record;
18755 -- In this case, the full view of T inherits F1 and F2 but the private
18756 -- view inherits only F1
18758 else
18759 declare
18760 Ancestor : Entity_Id := Scope (C);
18762 begin
18763 loop
18764 if Ancestor = Original_Type then
18765 return True;
18767 -- The ancestor may have a partial view of the original type,
18768 -- but if the full view is in scope, as in a child body, the
18769 -- component is visible.
18771 elsif In_Private_Part (Scope (Original_Type))
18772 and then Full_View (Ancestor) = Original_Type
18773 then
18774 return True;
18776 elsif Ancestor = Etype (Ancestor) then
18778 -- No further ancestors to examine
18780 return False;
18781 end if;
18783 Ancestor := Etype (Ancestor);
18784 end loop;
18785 end;
18786 end if;
18787 end Is_Visible_Component;
18789 --------------------------
18790 -- Make_Class_Wide_Type --
18791 --------------------------
18793 procedure Make_Class_Wide_Type (T : Entity_Id) is
18794 CW_Type : Entity_Id;
18795 CW_Name : Name_Id;
18796 Next_E : Entity_Id;
18798 begin
18799 if Present (Class_Wide_Type (T)) then
18801 -- The class-wide type is a partially decorated entity created for a
18802 -- unanalyzed tagged type referenced through a limited with clause.
18803 -- When the tagged type is analyzed, its class-wide type needs to be
18804 -- redecorated. Note that we reuse the entity created by Decorate_
18805 -- Tagged_Type in order to preserve all links.
18807 if Materialize_Entity (Class_Wide_Type (T)) then
18808 CW_Type := Class_Wide_Type (T);
18809 Set_Materialize_Entity (CW_Type, False);
18811 -- The class wide type can have been defined by the partial view, in
18812 -- which case everything is already done.
18814 else
18815 return;
18816 end if;
18818 -- Default case, we need to create a new class-wide type
18820 else
18821 CW_Type :=
18822 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18823 end if;
18825 -- Inherit root type characteristics
18827 CW_Name := Chars (CW_Type);
18828 Next_E := Next_Entity (CW_Type);
18829 Copy_Node (T, CW_Type);
18830 Set_Comes_From_Source (CW_Type, False);
18831 Set_Chars (CW_Type, CW_Name);
18832 Set_Parent (CW_Type, Parent (T));
18833 Set_Next_Entity (CW_Type, Next_E);
18835 -- Ensure we have a new freeze node for the class-wide type. The partial
18836 -- view may have freeze action of its own, requiring a proper freeze
18837 -- node, and the same freeze node cannot be shared between the two
18838 -- types.
18840 Set_Has_Delayed_Freeze (CW_Type);
18841 Set_Freeze_Node (CW_Type, Empty);
18843 -- Customize the class-wide type: It has no prim. op., it cannot be
18844 -- abstract, its Etype points back to the specific root type, and it
18845 -- cannot have any invariants.
18847 Set_Ekind (CW_Type, E_Class_Wide_Type);
18848 Set_Is_Tagged_Type (CW_Type, True);
18849 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
18850 Set_Is_Abstract_Type (CW_Type, False);
18851 Set_Is_Constrained (CW_Type, False);
18852 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
18853 Set_Default_SSO (CW_Type);
18854 Set_Has_Inheritable_Invariants (CW_Type, False);
18855 Set_Has_Inherited_Invariants (CW_Type, False);
18856 Set_Has_Own_Invariants (CW_Type, False);
18858 if Ekind (T) = E_Class_Wide_Subtype then
18859 Set_Etype (CW_Type, Etype (Base_Type (T)));
18860 else
18861 Set_Etype (CW_Type, T);
18862 end if;
18864 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
18866 -- If this is the class_wide type of a constrained subtype, it does
18867 -- not have discriminants.
18869 Set_Has_Discriminants (CW_Type,
18870 Has_Discriminants (T) and then not Is_Constrained (T));
18872 Set_Has_Unknown_Discriminants (CW_Type, True);
18873 Set_Class_Wide_Type (T, CW_Type);
18874 Set_Equivalent_Type (CW_Type, Empty);
18876 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18878 Set_Class_Wide_Type (CW_Type, CW_Type);
18879 end Make_Class_Wide_Type;
18881 ----------------
18882 -- Make_Index --
18883 ----------------
18885 procedure Make_Index
18886 (N : Node_Id;
18887 Related_Nod : Node_Id;
18888 Related_Id : Entity_Id := Empty;
18889 Suffix_Index : Nat := 1;
18890 In_Iter_Schm : Boolean := False)
18892 R : Node_Id;
18893 T : Entity_Id;
18894 Def_Id : Entity_Id := Empty;
18895 Found : Boolean := False;
18897 begin
18898 -- For a discrete range used in a constrained array definition and
18899 -- defined by a range, an implicit conversion to the predefined type
18900 -- INTEGER is assumed if each bound is either a numeric literal, a named
18901 -- number, or an attribute, and the type of both bounds (prior to the
18902 -- implicit conversion) is the type universal_integer. Otherwise, both
18903 -- bounds must be of the same discrete type, other than universal
18904 -- integer; this type must be determinable independently of the
18905 -- context, but using the fact that the type must be discrete and that
18906 -- both bounds must have the same type.
18908 -- Character literals also have a universal type in the absence of
18909 -- of additional context, and are resolved to Standard_Character.
18911 if Nkind (N) = N_Range then
18913 -- The index is given by a range constraint. The bounds are known
18914 -- to be of a consistent type.
18916 if not Is_Overloaded (N) then
18917 T := Etype (N);
18919 -- For universal bounds, choose the specific predefined type
18921 if T = Universal_Integer then
18922 T := Standard_Integer;
18924 elsif T = Any_Character then
18925 Ambiguous_Character (Low_Bound (N));
18927 T := Standard_Character;
18928 end if;
18930 -- The node may be overloaded because some user-defined operators
18931 -- are available, but if a universal interpretation exists it is
18932 -- also the selected one.
18934 elsif Universal_Interpretation (N) = Universal_Integer then
18935 T := Standard_Integer;
18937 else
18938 T := Any_Type;
18940 declare
18941 Ind : Interp_Index;
18942 It : Interp;
18944 begin
18945 Get_First_Interp (N, Ind, It);
18946 while Present (It.Typ) loop
18947 if Is_Discrete_Type (It.Typ) then
18949 if Found
18950 and then not Covers (It.Typ, T)
18951 and then not Covers (T, It.Typ)
18952 then
18953 Error_Msg_N ("ambiguous bounds in discrete range", N);
18954 exit;
18955 else
18956 T := It.Typ;
18957 Found := True;
18958 end if;
18959 end if;
18961 Get_Next_Interp (Ind, It);
18962 end loop;
18964 if T = Any_Type then
18965 Error_Msg_N ("discrete type required for range", N);
18966 Set_Etype (N, Any_Type);
18967 return;
18969 elsif T = Universal_Integer then
18970 T := Standard_Integer;
18971 end if;
18972 end;
18973 end if;
18975 if not Is_Discrete_Type (T) then
18976 Error_Msg_N ("discrete type required for range", N);
18977 Set_Etype (N, Any_Type);
18978 return;
18979 end if;
18981 if Nkind (Low_Bound (N)) = N_Attribute_Reference
18982 and then Attribute_Name (Low_Bound (N)) = Name_First
18983 and then Is_Entity_Name (Prefix (Low_Bound (N)))
18984 and then Is_Type (Entity (Prefix (Low_Bound (N))))
18985 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
18986 then
18987 -- The type of the index will be the type of the prefix, as long
18988 -- as the upper bound is 'Last of the same type.
18990 Def_Id := Entity (Prefix (Low_Bound (N)));
18992 if Nkind (High_Bound (N)) /= N_Attribute_Reference
18993 or else Attribute_Name (High_Bound (N)) /= Name_Last
18994 or else not Is_Entity_Name (Prefix (High_Bound (N)))
18995 or else Entity (Prefix (High_Bound (N))) /= Def_Id
18996 then
18997 Def_Id := Empty;
18998 end if;
18999 end if;
19001 R := N;
19002 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
19004 elsif Nkind (N) = N_Subtype_Indication then
19006 -- The index is given by a subtype with a range constraint
19008 T := Base_Type (Entity (Subtype_Mark (N)));
19010 if not Is_Discrete_Type (T) then
19011 Error_Msg_N ("discrete type required for range", N);
19012 Set_Etype (N, Any_Type);
19013 return;
19014 end if;
19016 R := Range_Expression (Constraint (N));
19018 Resolve (R, T);
19019 Process_Range_Expr_In_Decl
19020 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
19022 elsif Nkind (N) = N_Attribute_Reference then
19024 -- Catch beginner's error (use of attribute other than 'Range)
19026 if Attribute_Name (N) /= Name_Range then
19027 Error_Msg_N ("expect attribute ''Range", N);
19028 Set_Etype (N, Any_Type);
19029 return;
19030 end if;
19032 -- If the node denotes the range of a type mark, that is also the
19033 -- resulting type, and we do not need to create an Itype for it.
19035 if Is_Entity_Name (Prefix (N))
19036 and then Comes_From_Source (N)
19037 and then Is_Type (Entity (Prefix (N)))
19038 and then Is_Discrete_Type (Entity (Prefix (N)))
19039 then
19040 Def_Id := Entity (Prefix (N));
19041 end if;
19043 Analyze_And_Resolve (N);
19044 T := Etype (N);
19045 R := N;
19047 -- If none of the above, must be a subtype. We convert this to a
19048 -- range attribute reference because in the case of declared first
19049 -- named subtypes, the types in the range reference can be different
19050 -- from the type of the entity. A range attribute normalizes the
19051 -- reference and obtains the correct types for the bounds.
19053 -- This transformation is in the nature of an expansion, is only
19054 -- done if expansion is active. In particular, it is not done on
19055 -- formal generic types, because we need to retain the name of the
19056 -- original index for instantiation purposes.
19058 else
19059 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
19060 Error_Msg_N ("invalid subtype mark in discrete range ", N);
19061 Set_Etype (N, Any_Integer);
19062 return;
19064 else
19065 -- The type mark may be that of an incomplete type. It is only
19066 -- now that we can get the full view, previous analysis does
19067 -- not look specifically for a type mark.
19069 Set_Entity (N, Get_Full_View (Entity (N)));
19070 Set_Etype (N, Entity (N));
19071 Def_Id := Entity (N);
19073 if not Is_Discrete_Type (Def_Id) then
19074 Error_Msg_N ("discrete type required for index", N);
19075 Set_Etype (N, Any_Type);
19076 return;
19077 end if;
19078 end if;
19080 if Expander_Active then
19081 Rewrite (N,
19082 Make_Attribute_Reference (Sloc (N),
19083 Attribute_Name => Name_Range,
19084 Prefix => Relocate_Node (N)));
19086 -- The original was a subtype mark that does not freeze. This
19087 -- means that the rewritten version must not freeze either.
19089 Set_Must_Not_Freeze (N);
19090 Set_Must_Not_Freeze (Prefix (N));
19091 Analyze_And_Resolve (N);
19092 T := Etype (N);
19093 R := N;
19095 -- If expander is inactive, type is legal, nothing else to construct
19097 else
19098 return;
19099 end if;
19100 end if;
19102 if not Is_Discrete_Type (T) then
19103 Error_Msg_N ("discrete type required for range", N);
19104 Set_Etype (N, Any_Type);
19105 return;
19107 elsif T = Any_Type then
19108 Set_Etype (N, Any_Type);
19109 return;
19110 end if;
19112 -- We will now create the appropriate Itype to describe the range, but
19113 -- first a check. If we originally had a subtype, then we just label
19114 -- the range with this subtype. Not only is there no need to construct
19115 -- a new subtype, but it is wrong to do so for two reasons:
19117 -- 1. A legality concern, if we have a subtype, it must not freeze,
19118 -- and the Itype would cause freezing incorrectly
19120 -- 2. An efficiency concern, if we created an Itype, it would not be
19121 -- recognized as the same type for the purposes of eliminating
19122 -- checks in some circumstances.
19124 -- We signal this case by setting the subtype entity in Def_Id
19126 if No (Def_Id) then
19127 Def_Id :=
19128 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
19129 Set_Etype (Def_Id, Base_Type (T));
19131 if Is_Signed_Integer_Type (T) then
19132 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
19134 elsif Is_Modular_Integer_Type (T) then
19135 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
19137 else
19138 Set_Ekind (Def_Id, E_Enumeration_Subtype);
19139 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
19140 Set_First_Literal (Def_Id, First_Literal (T));
19141 end if;
19143 Set_Size_Info (Def_Id, (T));
19144 Set_RM_Size (Def_Id, RM_Size (T));
19145 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
19147 Set_Scalar_Range (Def_Id, R);
19148 Conditional_Delay (Def_Id, T);
19150 if Nkind (N) = N_Subtype_Indication then
19151 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
19152 end if;
19154 -- In the subtype indication case, if the immediate parent of the
19155 -- new subtype is non-static, then the subtype we create is non-
19156 -- static, even if its bounds are static.
19158 if Nkind (N) = N_Subtype_Indication
19159 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
19160 then
19161 Set_Is_Non_Static_Subtype (Def_Id);
19162 end if;
19163 end if;
19165 -- Final step is to label the index with this constructed type
19167 Set_Etype (N, Def_Id);
19168 end Make_Index;
19170 ------------------------------
19171 -- Modular_Type_Declaration --
19172 ------------------------------
19174 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
19175 Mod_Expr : constant Node_Id := Expression (Def);
19176 M_Val : Uint;
19178 procedure Set_Modular_Size (Bits : Int);
19179 -- Sets RM_Size to Bits, and Esize to normal word size above this
19181 ----------------------
19182 -- Set_Modular_Size --
19183 ----------------------
19185 procedure Set_Modular_Size (Bits : Int) is
19186 begin
19187 Set_RM_Size (T, UI_From_Int (Bits));
19189 if Bits <= 8 then
19190 Init_Esize (T, 8);
19192 elsif Bits <= 16 then
19193 Init_Esize (T, 16);
19195 elsif Bits <= 32 then
19196 Init_Esize (T, 32);
19198 else
19199 Init_Esize (T, System_Max_Binary_Modulus_Power);
19200 end if;
19202 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
19203 Set_Is_Known_Valid (T);
19204 end if;
19205 end Set_Modular_Size;
19207 -- Start of processing for Modular_Type_Declaration
19209 begin
19210 -- If the mod expression is (exactly) 2 * literal, where literal is
19211 -- 64 or less,then almost certainly the * was meant to be **. Warn.
19213 if Warn_On_Suspicious_Modulus_Value
19214 and then Nkind (Mod_Expr) = N_Op_Multiply
19215 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
19216 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
19217 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
19218 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
19219 then
19220 Error_Msg_N
19221 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
19222 end if;
19224 -- Proceed with analysis of mod expression
19226 Analyze_And_Resolve (Mod_Expr, Any_Integer);
19227 Set_Etype (T, T);
19228 Set_Ekind (T, E_Modular_Integer_Type);
19229 Init_Alignment (T);
19230 Set_Is_Constrained (T);
19232 if not Is_OK_Static_Expression (Mod_Expr) then
19233 Flag_Non_Static_Expr
19234 ("non-static expression used for modular type bound!", Mod_Expr);
19235 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19236 else
19237 M_Val := Expr_Value (Mod_Expr);
19238 end if;
19240 if M_Val < 1 then
19241 Error_Msg_N ("modulus value must be positive", Mod_Expr);
19242 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19243 end if;
19245 if M_Val > 2 ** Standard_Long_Integer_Size then
19246 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
19247 end if;
19249 Set_Modulus (T, M_Val);
19251 -- Create bounds for the modular type based on the modulus given in
19252 -- the type declaration and then analyze and resolve those bounds.
19254 Set_Scalar_Range (T,
19255 Make_Range (Sloc (Mod_Expr),
19256 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
19257 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
19259 -- Properly analyze the literals for the range. We do this manually
19260 -- because we can't go calling Resolve, since we are resolving these
19261 -- bounds with the type, and this type is certainly not complete yet.
19263 Set_Etype (Low_Bound (Scalar_Range (T)), T);
19264 Set_Etype (High_Bound (Scalar_Range (T)), T);
19265 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
19266 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
19268 -- Loop through powers of two to find number of bits required
19270 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
19272 -- Binary case
19274 if M_Val = 2 ** Bits then
19275 Set_Modular_Size (Bits);
19276 return;
19278 -- Nonbinary case
19280 elsif M_Val < 2 ** Bits then
19281 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
19282 Set_Non_Binary_Modulus (T);
19284 if Bits > System_Max_Nonbinary_Modulus_Power then
19285 Error_Msg_Uint_1 :=
19286 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
19287 Error_Msg_F
19288 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
19289 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19290 return;
19292 else
19293 -- In the nonbinary case, set size as per RM 13.3(55)
19295 Set_Modular_Size (Bits);
19296 return;
19297 end if;
19298 end if;
19300 end loop;
19302 -- If we fall through, then the size exceed System.Max_Binary_Modulus
19303 -- so we just signal an error and set the maximum size.
19305 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
19306 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
19308 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19309 Init_Alignment (T);
19311 end Modular_Type_Declaration;
19313 --------------------------
19314 -- New_Concatenation_Op --
19315 --------------------------
19317 procedure New_Concatenation_Op (Typ : Entity_Id) is
19318 Loc : constant Source_Ptr := Sloc (Typ);
19319 Op : Entity_Id;
19321 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
19322 -- Create abbreviated declaration for the formal of a predefined
19323 -- Operator 'Op' of type 'Typ'
19325 --------------------
19326 -- Make_Op_Formal --
19327 --------------------
19329 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
19330 Formal : Entity_Id;
19331 begin
19332 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
19333 Set_Etype (Formal, Typ);
19334 Set_Mechanism (Formal, Default_Mechanism);
19335 return Formal;
19336 end Make_Op_Formal;
19338 -- Start of processing for New_Concatenation_Op
19340 begin
19341 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
19343 Set_Ekind (Op, E_Operator);
19344 Set_Scope (Op, Current_Scope);
19345 Set_Etype (Op, Typ);
19346 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
19347 Set_Is_Immediately_Visible (Op);
19348 Set_Is_Intrinsic_Subprogram (Op);
19349 Set_Has_Completion (Op);
19350 Append_Entity (Op, Current_Scope);
19352 Set_Name_Entity_Id (Name_Op_Concat, Op);
19354 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19355 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19356 end New_Concatenation_Op;
19358 -------------------------
19359 -- OK_For_Limited_Init --
19360 -------------------------
19362 -- ???Check all calls of this, and compare the conditions under which it's
19363 -- called.
19365 function OK_For_Limited_Init
19366 (Typ : Entity_Id;
19367 Exp : Node_Id) return Boolean
19369 begin
19370 return Is_CPP_Constructor_Call (Exp)
19371 or else (Ada_Version >= Ada_2005
19372 and then not Debug_Flag_Dot_L
19373 and then OK_For_Limited_Init_In_05 (Typ, Exp));
19374 end OK_For_Limited_Init;
19376 -------------------------------
19377 -- OK_For_Limited_Init_In_05 --
19378 -------------------------------
19380 function OK_For_Limited_Init_In_05
19381 (Typ : Entity_Id;
19382 Exp : Node_Id) return Boolean
19384 begin
19385 -- An object of a limited interface type can be initialized with any
19386 -- expression of a nonlimited descendant type. However this does not
19387 -- apply if this is a view conversion of some other expression. This
19388 -- is checked below.
19390 if Is_Class_Wide_Type (Typ)
19391 and then Is_Limited_Interface (Typ)
19392 and then not Is_Limited_Type (Etype (Exp))
19393 and then Nkind (Exp) /= N_Type_Conversion
19394 then
19395 return True;
19396 end if;
19398 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
19399 -- case of limited aggregates (including extension aggregates), and
19400 -- function calls. The function call may have been given in prefixed
19401 -- notation, in which case the original node is an indexed component.
19402 -- If the function is parameterless, the original node was an explicit
19403 -- dereference. The function may also be parameterless, in which case
19404 -- the source node is just an identifier.
19406 -- A branch of a conditional expression may have been removed if the
19407 -- condition is statically known. This happens during expansion, and
19408 -- thus will not happen if previous errors were encountered. The check
19409 -- will have been performed on the chosen branch, which replaces the
19410 -- original conditional expression.
19412 if No (Exp) then
19413 return True;
19414 end if;
19416 case Nkind (Original_Node (Exp)) is
19417 when N_Aggregate
19418 | N_Extension_Aggregate
19419 | N_Function_Call
19420 | N_Op
19422 return True;
19424 when N_Identifier =>
19425 return Present (Entity (Original_Node (Exp)))
19426 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
19428 when N_Qualified_Expression =>
19429 return
19430 OK_For_Limited_Init_In_05
19431 (Typ, Expression (Original_Node (Exp)));
19433 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
19434 -- with a function call, the expander has rewritten the call into an
19435 -- N_Type_Conversion node to force displacement of the pointer to
19436 -- reference the component containing the secondary dispatch table.
19437 -- Otherwise a type conversion is not a legal context.
19438 -- A return statement for a build-in-place function returning a
19439 -- synchronized type also introduces an unchecked conversion.
19441 when N_Type_Conversion
19442 | N_Unchecked_Type_Conversion
19444 return not Comes_From_Source (Exp)
19445 and then
19446 OK_For_Limited_Init_In_05
19447 (Typ, Expression (Original_Node (Exp)));
19449 when N_Explicit_Dereference
19450 | N_Indexed_Component
19451 | N_Selected_Component
19453 return Nkind (Exp) = N_Function_Call;
19455 -- A use of 'Input is a function call, hence allowed. Normally the
19456 -- attribute will be changed to a call, but the attribute by itself
19457 -- can occur with -gnatc.
19459 when N_Attribute_Reference =>
19460 return Attribute_Name (Original_Node (Exp)) = Name_Input;
19462 -- "return raise ..." is OK
19464 when N_Raise_Expression =>
19465 return True;
19467 -- For a case expression, all dependent expressions must be legal
19469 when N_Case_Expression =>
19470 declare
19471 Alt : Node_Id;
19473 begin
19474 Alt := First (Alternatives (Original_Node (Exp)));
19475 while Present (Alt) loop
19476 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
19477 return False;
19478 end if;
19480 Next (Alt);
19481 end loop;
19483 return True;
19484 end;
19486 -- For an if expression, all dependent expressions must be legal
19488 when N_If_Expression =>
19489 declare
19490 Then_Expr : constant Node_Id :=
19491 Next (First (Expressions (Original_Node (Exp))));
19492 Else_Expr : constant Node_Id := Next (Then_Expr);
19493 begin
19494 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
19495 and then
19496 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
19497 end;
19499 when others =>
19500 return False;
19501 end case;
19502 end OK_For_Limited_Init_In_05;
19504 -------------------------------------------
19505 -- Ordinary_Fixed_Point_Type_Declaration --
19506 -------------------------------------------
19508 procedure Ordinary_Fixed_Point_Type_Declaration
19509 (T : Entity_Id;
19510 Def : Node_Id)
19512 Loc : constant Source_Ptr := Sloc (Def);
19513 Delta_Expr : constant Node_Id := Delta_Expression (Def);
19514 RRS : constant Node_Id := Real_Range_Specification (Def);
19515 Implicit_Base : Entity_Id;
19516 Delta_Val : Ureal;
19517 Small_Val : Ureal;
19518 Low_Val : Ureal;
19519 High_Val : Ureal;
19521 begin
19522 Check_Restriction (No_Fixed_Point, Def);
19524 -- Create implicit base type
19526 Implicit_Base :=
19527 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
19528 Set_Etype (Implicit_Base, Implicit_Base);
19530 -- Analyze and process delta expression
19532 Analyze_And_Resolve (Delta_Expr, Any_Real);
19534 Check_Delta_Expression (Delta_Expr);
19535 Delta_Val := Expr_Value_R (Delta_Expr);
19537 Set_Delta_Value (Implicit_Base, Delta_Val);
19539 -- Compute default small from given delta, which is the largest power
19540 -- of two that does not exceed the given delta value.
19542 declare
19543 Tmp : Ureal;
19544 Scale : Int;
19546 begin
19547 Tmp := Ureal_1;
19548 Scale := 0;
19550 if Delta_Val < Ureal_1 then
19551 while Delta_Val < Tmp loop
19552 Tmp := Tmp / Ureal_2;
19553 Scale := Scale + 1;
19554 end loop;
19556 else
19557 loop
19558 Tmp := Tmp * Ureal_2;
19559 exit when Tmp > Delta_Val;
19560 Scale := Scale - 1;
19561 end loop;
19562 end if;
19564 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
19565 end;
19567 Set_Small_Value (Implicit_Base, Small_Val);
19569 -- If no range was given, set a dummy range
19571 if RRS <= Empty_Or_Error then
19572 Low_Val := -Small_Val;
19573 High_Val := Small_Val;
19575 -- Otherwise analyze and process given range
19577 else
19578 declare
19579 Low : constant Node_Id := Low_Bound (RRS);
19580 High : constant Node_Id := High_Bound (RRS);
19582 begin
19583 Analyze_And_Resolve (Low, Any_Real);
19584 Analyze_And_Resolve (High, Any_Real);
19585 Check_Real_Bound (Low);
19586 Check_Real_Bound (High);
19588 -- Obtain and set the range
19590 Low_Val := Expr_Value_R (Low);
19591 High_Val := Expr_Value_R (High);
19593 if Low_Val > High_Val then
19594 Error_Msg_NE ("??fixed point type& has null range", Def, T);
19595 end if;
19596 end;
19597 end if;
19599 -- The range for both the implicit base and the declared first subtype
19600 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
19601 -- set a temporary range in place. Note that the bounds of the base
19602 -- type will be widened to be symmetrical and to fill the available
19603 -- bits when the type is frozen.
19605 -- We could do this with all discrete types, and probably should, but
19606 -- we absolutely have to do it for fixed-point, since the end-points
19607 -- of the range and the size are determined by the small value, which
19608 -- could be reset before the freeze point.
19610 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
19611 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
19613 -- Complete definition of first subtype. The inheritance of the rep item
19614 -- chain ensures that SPARK-related pragmas are not clobbered when the
19615 -- ordinary fixed point type acts as a full view of a private type.
19617 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
19618 Set_Etype (T, Implicit_Base);
19619 Init_Size_Align (T);
19620 Inherit_Rep_Item_Chain (T, Implicit_Base);
19621 Set_Small_Value (T, Small_Val);
19622 Set_Delta_Value (T, Delta_Val);
19623 Set_Is_Constrained (T);
19624 end Ordinary_Fixed_Point_Type_Declaration;
19626 ----------------------------------
19627 -- Preanalyze_Assert_Expression --
19628 ----------------------------------
19630 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19631 begin
19632 In_Assertion_Expr := In_Assertion_Expr + 1;
19633 Preanalyze_Spec_Expression (N, T);
19634 In_Assertion_Expr := In_Assertion_Expr - 1;
19635 end Preanalyze_Assert_Expression;
19637 -----------------------------------
19638 -- Preanalyze_Default_Expression --
19639 -----------------------------------
19641 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
19642 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
19643 begin
19644 In_Default_Expr := True;
19645 Preanalyze_Spec_Expression (N, T);
19646 In_Default_Expr := Save_In_Default_Expr;
19647 end Preanalyze_Default_Expression;
19649 --------------------------------
19650 -- Preanalyze_Spec_Expression --
19651 --------------------------------
19653 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19654 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19655 begin
19656 In_Spec_Expression := True;
19657 Preanalyze_And_Resolve (N, T);
19658 In_Spec_Expression := Save_In_Spec_Expression;
19659 end Preanalyze_Spec_Expression;
19661 ----------------------------------------
19662 -- Prepare_Private_Subtype_Completion --
19663 ----------------------------------------
19665 procedure Prepare_Private_Subtype_Completion
19666 (Id : Entity_Id;
19667 Related_Nod : Node_Id)
19669 Id_B : constant Entity_Id := Base_Type (Id);
19670 Full_B : Entity_Id := Full_View (Id_B);
19671 Full : Entity_Id;
19673 begin
19674 if Present (Full_B) then
19676 -- Get to the underlying full view if necessary
19678 if Is_Private_Type (Full_B)
19679 and then Present (Underlying_Full_View (Full_B))
19680 then
19681 Full_B := Underlying_Full_View (Full_B);
19682 end if;
19684 -- The Base_Type is already completed, we can complete the subtype
19685 -- now. We have to create a new entity with the same name, Thus we
19686 -- can't use Create_Itype.
19688 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
19689 Set_Is_Itype (Full);
19690 Set_Associated_Node_For_Itype (Full, Related_Nod);
19691 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
19692 end if;
19694 -- The parent subtype may be private, but the base might not, in some
19695 -- nested instances. In that case, the subtype does not need to be
19696 -- exchanged. It would still be nice to make private subtypes and their
19697 -- bases consistent at all times ???
19699 if Is_Private_Type (Id_B) then
19700 Append_Elmt (Id, Private_Dependents (Id_B));
19701 end if;
19702 end Prepare_Private_Subtype_Completion;
19704 ---------------------------
19705 -- Process_Discriminants --
19706 ---------------------------
19708 procedure Process_Discriminants
19709 (N : Node_Id;
19710 Prev : Entity_Id := Empty)
19712 Elist : constant Elist_Id := New_Elmt_List;
19713 Id : Node_Id;
19714 Discr : Node_Id;
19715 Discr_Number : Uint;
19716 Discr_Type : Entity_Id;
19717 Default_Present : Boolean := False;
19718 Default_Not_Present : Boolean := False;
19720 begin
19721 -- A composite type other than an array type can have discriminants.
19722 -- On entry, the current scope is the composite type.
19724 -- The discriminants are initially entered into the scope of the type
19725 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19726 -- use, as explained at the end of this procedure.
19728 Discr := First (Discriminant_Specifications (N));
19729 while Present (Discr) loop
19730 Enter_Name (Defining_Identifier (Discr));
19732 -- For navigation purposes we add a reference to the discriminant
19733 -- in the entity for the type. If the current declaration is a
19734 -- completion, place references on the partial view. Otherwise the
19735 -- type is the current scope.
19737 if Present (Prev) then
19739 -- The references go on the partial view, if present. If the
19740 -- partial view has discriminants, the references have been
19741 -- generated already.
19743 if not Has_Discriminants (Prev) then
19744 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
19745 end if;
19746 else
19747 Generate_Reference
19748 (Current_Scope, Defining_Identifier (Discr), 'd');
19749 end if;
19751 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
19752 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
19754 -- Ada 2005 (AI-254)
19756 if Present (Access_To_Subprogram_Definition
19757 (Discriminant_Type (Discr)))
19758 and then Protected_Present (Access_To_Subprogram_Definition
19759 (Discriminant_Type (Discr)))
19760 then
19761 Discr_Type :=
19762 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
19763 end if;
19765 else
19766 Find_Type (Discriminant_Type (Discr));
19767 Discr_Type := Etype (Discriminant_Type (Discr));
19769 if Error_Posted (Discriminant_Type (Discr)) then
19770 Discr_Type := Any_Type;
19771 end if;
19772 end if;
19774 -- Handling of discriminants that are access types
19776 if Is_Access_Type (Discr_Type) then
19778 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19779 -- limited record types
19781 if Ada_Version < Ada_2005 then
19782 Check_Access_Discriminant_Requires_Limited
19783 (Discr, Discriminant_Type (Discr));
19784 end if;
19786 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
19787 Error_Msg_N
19788 ("(Ada 83) access discriminant not allowed", Discr);
19789 end if;
19791 -- If not access type, must be a discrete type
19793 elsif not Is_Discrete_Type (Discr_Type) then
19794 Error_Msg_N
19795 ("discriminants must have a discrete or access type",
19796 Discriminant_Type (Discr));
19797 end if;
19799 Set_Etype (Defining_Identifier (Discr), Discr_Type);
19801 -- If a discriminant specification includes the assignment compound
19802 -- delimiter followed by an expression, the expression is the default
19803 -- expression of the discriminant; the default expression must be of
19804 -- the type of the discriminant. (RM 3.7.1) Since this expression is
19805 -- a default expression, we do the special preanalysis, since this
19806 -- expression does not freeze (see section "Handling of Default and
19807 -- Per-Object Expressions" in spec of package Sem).
19809 if Present (Expression (Discr)) then
19810 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
19812 -- Legaity checks
19814 if Nkind (N) = N_Formal_Type_Declaration then
19815 Error_Msg_N
19816 ("discriminant defaults not allowed for formal type",
19817 Expression (Discr));
19819 -- Flag an error for a tagged type with defaulted discriminants,
19820 -- excluding limited tagged types when compiling for Ada 2012
19821 -- (see AI05-0214).
19823 elsif Is_Tagged_Type (Current_Scope)
19824 and then (not Is_Limited_Type (Current_Scope)
19825 or else Ada_Version < Ada_2012)
19826 and then Comes_From_Source (N)
19827 then
19828 -- Note: see similar test in Check_Or_Process_Discriminants, to
19829 -- handle the (illegal) case of the completion of an untagged
19830 -- view with discriminants with defaults by a tagged full view.
19831 -- We skip the check if Discr does not come from source, to
19832 -- account for the case of an untagged derived type providing
19833 -- defaults for a renamed discriminant from a private untagged
19834 -- ancestor with a tagged full view (ACATS B460006).
19836 if Ada_Version >= Ada_2012 then
19837 Error_Msg_N
19838 ("discriminants of nonlimited tagged type cannot have"
19839 & " defaults",
19840 Expression (Discr));
19841 else
19842 Error_Msg_N
19843 ("discriminants of tagged type cannot have defaults",
19844 Expression (Discr));
19845 end if;
19847 else
19848 Default_Present := True;
19849 Append_Elmt (Expression (Discr), Elist);
19851 -- Tag the defining identifiers for the discriminants with
19852 -- their corresponding default expressions from the tree.
19854 Set_Discriminant_Default_Value
19855 (Defining_Identifier (Discr), Expression (Discr));
19856 end if;
19858 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19859 -- gets set unless we can be sure that no range check is required.
19861 if (GNATprove_Mode or not Expander_Active)
19862 and then not
19863 Is_In_Range
19864 (Expression (Discr), Discr_Type, Assume_Valid => True)
19865 then
19866 Set_Do_Range_Check (Expression (Discr));
19867 end if;
19869 -- No default discriminant value given
19871 else
19872 Default_Not_Present := True;
19873 end if;
19875 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19876 -- Discr_Type but with the null-exclusion attribute
19878 if Ada_Version >= Ada_2005 then
19880 -- Ada 2005 (AI-231): Static checks
19882 if Can_Never_Be_Null (Discr_Type) then
19883 Null_Exclusion_Static_Checks (Discr);
19885 elsif Is_Access_Type (Discr_Type)
19886 and then Null_Exclusion_Present (Discr)
19888 -- No need to check itypes because in their case this check
19889 -- was done at their point of creation
19891 and then not Is_Itype (Discr_Type)
19892 then
19893 if Can_Never_Be_Null (Discr_Type) then
19894 Error_Msg_NE
19895 ("`NOT NULL` not allowed (& already excludes null)",
19896 Discr,
19897 Discr_Type);
19898 end if;
19900 Set_Etype (Defining_Identifier (Discr),
19901 Create_Null_Excluding_Itype
19902 (T => Discr_Type,
19903 Related_Nod => Discr));
19905 -- Check for improper null exclusion if the type is otherwise
19906 -- legal for a discriminant.
19908 elsif Null_Exclusion_Present (Discr)
19909 and then Is_Discrete_Type (Discr_Type)
19910 then
19911 Error_Msg_N
19912 ("null exclusion can only apply to an access type", Discr);
19913 end if;
19915 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19916 -- can't have defaults. Synchronized types, or types that are
19917 -- explicitly limited are fine, but special tests apply to derived
19918 -- types in generics: in a generic body we have to assume the
19919 -- worst, and therefore defaults are not allowed if the parent is
19920 -- a generic formal private type (see ACATS B370001).
19922 if Is_Access_Type (Discr_Type) and then Default_Present then
19923 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
19924 or else Is_Limited_Record (Current_Scope)
19925 or else Is_Concurrent_Type (Current_Scope)
19926 or else Is_Concurrent_Record_Type (Current_Scope)
19927 or else Ekind (Current_Scope) = E_Limited_Private_Type
19928 then
19929 if not Is_Derived_Type (Current_Scope)
19930 or else not Is_Generic_Type (Etype (Current_Scope))
19931 or else not In_Package_Body (Scope (Etype (Current_Scope)))
19932 or else Limited_Present
19933 (Type_Definition (Parent (Current_Scope)))
19934 then
19935 null;
19937 else
19938 Error_Msg_N
19939 ("access discriminants of nonlimited types cannot "
19940 & "have defaults", Expression (Discr));
19941 end if;
19943 elsif Present (Expression (Discr)) then
19944 Error_Msg_N
19945 ("(Ada 2005) access discriminants of nonlimited types "
19946 & "cannot have defaults", Expression (Discr));
19947 end if;
19948 end if;
19949 end if;
19951 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
19952 -- This check is relevant only when SPARK_Mode is on as it is not a
19953 -- standard Ada legality rule.
19955 if SPARK_Mode = On
19956 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
19957 then
19958 Error_Msg_N ("discriminant cannot be volatile", Discr);
19959 end if;
19961 Next (Discr);
19962 end loop;
19964 -- An element list consisting of the default expressions of the
19965 -- discriminants is constructed in the above loop and used to set
19966 -- the Discriminant_Constraint attribute for the type. If an object
19967 -- is declared of this (record or task) type without any explicit
19968 -- discriminant constraint given, this element list will form the
19969 -- actual parameters for the corresponding initialization procedure
19970 -- for the type.
19972 Set_Discriminant_Constraint (Current_Scope, Elist);
19973 Set_Stored_Constraint (Current_Scope, No_Elist);
19975 -- Default expressions must be provided either for all or for none
19976 -- of the discriminants of a discriminant part. (RM 3.7.1)
19978 if Default_Present and then Default_Not_Present then
19979 Error_Msg_N
19980 ("incomplete specification of defaults for discriminants", N);
19981 end if;
19983 -- The use of the name of a discriminant is not allowed in default
19984 -- expressions of a discriminant part if the specification of the
19985 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19987 -- To detect this, the discriminant names are entered initially with an
19988 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19989 -- attempt to use a void entity (for example in an expression that is
19990 -- type-checked) produces the error message: premature usage. Now after
19991 -- completing the semantic analysis of the discriminant part, we can set
19992 -- the Ekind of all the discriminants appropriately.
19994 Discr := First (Discriminant_Specifications (N));
19995 Discr_Number := Uint_1;
19996 while Present (Discr) loop
19997 Id := Defining_Identifier (Discr);
19998 Set_Ekind (Id, E_Discriminant);
19999 Init_Component_Location (Id);
20000 Init_Esize (Id);
20001 Set_Discriminant_Number (Id, Discr_Number);
20003 -- Make sure this is always set, even in illegal programs
20005 Set_Corresponding_Discriminant (Id, Empty);
20007 -- Initialize the Original_Record_Component to the entity itself.
20008 -- Inherit_Components will propagate the right value to
20009 -- discriminants in derived record types.
20011 Set_Original_Record_Component (Id, Id);
20013 -- Create the discriminal for the discriminant
20015 Build_Discriminal (Id);
20017 Next (Discr);
20018 Discr_Number := Discr_Number + 1;
20019 end loop;
20021 Set_Has_Discriminants (Current_Scope);
20022 end Process_Discriminants;
20024 -----------------------
20025 -- Process_Full_View --
20026 -----------------------
20028 -- WARNING: This routine manages Ghost regions. Return statements must be
20029 -- replaced by gotos which jump to the end of the routine and restore the
20030 -- Ghost mode.
20032 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
20033 procedure Collect_Implemented_Interfaces
20034 (Typ : Entity_Id;
20035 Ifaces : Elist_Id);
20036 -- Ada 2005: Gather all the interfaces that Typ directly or
20037 -- inherently implements. Duplicate entries are not added to
20038 -- the list Ifaces.
20040 ------------------------------------
20041 -- Collect_Implemented_Interfaces --
20042 ------------------------------------
20044 procedure Collect_Implemented_Interfaces
20045 (Typ : Entity_Id;
20046 Ifaces : Elist_Id)
20048 Iface : Entity_Id;
20049 Iface_Elmt : Elmt_Id;
20051 begin
20052 -- Abstract interfaces are only associated with tagged record types
20054 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
20055 return;
20056 end if;
20058 -- Recursively climb to the ancestors
20060 if Etype (Typ) /= Typ
20062 -- Protect the frontend against wrong cyclic declarations like:
20064 -- type B is new A with private;
20065 -- type C is new A with private;
20066 -- private
20067 -- type B is new C with null record;
20068 -- type C is new B with null record;
20070 and then Etype (Typ) /= Priv_T
20071 and then Etype (Typ) /= Full_T
20072 then
20073 -- Keep separate the management of private type declarations
20075 if Ekind (Typ) = E_Record_Type_With_Private then
20077 -- Handle the following illegal usage:
20078 -- type Private_Type is tagged private;
20079 -- private
20080 -- type Private_Type is new Type_Implementing_Iface;
20082 if Present (Full_View (Typ))
20083 and then Etype (Typ) /= Full_View (Typ)
20084 then
20085 if Is_Interface (Etype (Typ)) then
20086 Append_Unique_Elmt (Etype (Typ), Ifaces);
20087 end if;
20089 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20090 end if;
20092 -- Non-private types
20094 else
20095 if Is_Interface (Etype (Typ)) then
20096 Append_Unique_Elmt (Etype (Typ), Ifaces);
20097 end if;
20099 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20100 end if;
20101 end if;
20103 -- Handle entities in the list of abstract interfaces
20105 if Present (Interfaces (Typ)) then
20106 Iface_Elmt := First_Elmt (Interfaces (Typ));
20107 while Present (Iface_Elmt) loop
20108 Iface := Node (Iface_Elmt);
20110 pragma Assert (Is_Interface (Iface));
20112 if not Contain_Interface (Iface, Ifaces) then
20113 Append_Elmt (Iface, Ifaces);
20114 Collect_Implemented_Interfaces (Iface, Ifaces);
20115 end if;
20117 Next_Elmt (Iface_Elmt);
20118 end loop;
20119 end if;
20120 end Collect_Implemented_Interfaces;
20122 -- Local variables
20124 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
20126 Full_Indic : Node_Id;
20127 Full_Parent : Entity_Id;
20128 Priv_Parent : Entity_Id;
20130 -- Start of processing for Process_Full_View
20132 begin
20133 Mark_And_Set_Ghost_Completion (N, Priv_T);
20135 -- First some sanity checks that must be done after semantic
20136 -- decoration of the full view and thus cannot be placed with other
20137 -- similar checks in Find_Type_Name
20139 if not Is_Limited_Type (Priv_T)
20140 and then (Is_Limited_Type (Full_T)
20141 or else Is_Limited_Composite (Full_T))
20142 then
20143 if In_Instance then
20144 null;
20145 else
20146 Error_Msg_N
20147 ("completion of nonlimited type cannot be limited", Full_T);
20148 Explain_Limited_Type (Full_T, Full_T);
20149 end if;
20151 elsif Is_Abstract_Type (Full_T)
20152 and then not Is_Abstract_Type (Priv_T)
20153 then
20154 Error_Msg_N
20155 ("completion of nonabstract type cannot be abstract", Full_T);
20157 elsif Is_Tagged_Type (Priv_T)
20158 and then Is_Limited_Type (Priv_T)
20159 and then not Is_Limited_Type (Full_T)
20160 then
20161 -- If pragma CPP_Class was applied to the private declaration
20162 -- propagate the limitedness to the full-view
20164 if Is_CPP_Class (Priv_T) then
20165 Set_Is_Limited_Record (Full_T);
20167 -- GNAT allow its own definition of Limited_Controlled to disobey
20168 -- this rule in order in ease the implementation. This test is safe
20169 -- because Root_Controlled is defined in a child of System that
20170 -- normal programs are not supposed to use.
20172 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
20173 Set_Is_Limited_Composite (Full_T);
20174 else
20175 Error_Msg_N
20176 ("completion of limited tagged type must be limited", Full_T);
20177 end if;
20179 elsif Is_Generic_Type (Priv_T) then
20180 Error_Msg_N ("generic type cannot have a completion", Full_T);
20181 end if;
20183 -- Check that ancestor interfaces of private and full views are
20184 -- consistent. We omit this check for synchronized types because
20185 -- they are performed on the corresponding record type when frozen.
20187 if Ada_Version >= Ada_2005
20188 and then Is_Tagged_Type (Priv_T)
20189 and then Is_Tagged_Type (Full_T)
20190 and then not Is_Concurrent_Type (Full_T)
20191 then
20192 declare
20193 Iface : Entity_Id;
20194 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
20195 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
20197 begin
20198 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
20199 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
20201 -- Ada 2005 (AI-251): The partial view shall be a descendant of
20202 -- an interface type if and only if the full type is descendant
20203 -- of the interface type (AARM 7.3 (7.3/2)).
20205 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
20207 if Present (Iface) then
20208 Error_Msg_NE
20209 ("interface in partial view& not implemented by full type "
20210 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20211 end if;
20213 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
20215 if Present (Iface) then
20216 Error_Msg_NE
20217 ("interface & not implemented by partial view "
20218 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20219 end if;
20220 end;
20221 end if;
20223 if Is_Tagged_Type (Priv_T)
20224 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20225 and then Is_Derived_Type (Full_T)
20226 then
20227 Priv_Parent := Etype (Priv_T);
20229 -- The full view of a private extension may have been transformed
20230 -- into an unconstrained derived type declaration and a subtype
20231 -- declaration (see build_derived_record_type for details).
20233 if Nkind (N) = N_Subtype_Declaration then
20234 Full_Indic := Subtype_Indication (N);
20235 Full_Parent := Etype (Base_Type (Full_T));
20236 else
20237 Full_Indic := Subtype_Indication (Type_Definition (N));
20238 Full_Parent := Etype (Full_T);
20239 end if;
20241 -- Check that the parent type of the full type is a descendant of
20242 -- the ancestor subtype given in the private extension. If either
20243 -- entity has an Etype equal to Any_Type then we had some previous
20244 -- error situation [7.3(8)].
20246 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
20247 goto Leave;
20249 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
20250 -- any order. Therefore we don't have to check that its parent must
20251 -- be a descendant of the parent of the private type declaration.
20253 elsif Is_Interface (Priv_Parent)
20254 and then Is_Interface (Full_Parent)
20255 then
20256 null;
20258 -- Ada 2005 (AI-251): If the parent of the private type declaration
20259 -- is an interface there is no need to check that it is an ancestor
20260 -- of the associated full type declaration. The required tests for
20261 -- this case are performed by Build_Derived_Record_Type.
20263 elsif not Is_Interface (Base_Type (Priv_Parent))
20264 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
20265 then
20266 Error_Msg_N
20267 ("parent of full type must descend from parent of private "
20268 & "extension", Full_Indic);
20270 -- First check a formal restriction, and then proceed with checking
20271 -- Ada rules. Since the formal restriction is not a serious error, we
20272 -- don't prevent further error detection for this check, hence the
20273 -- ELSE.
20275 else
20276 -- In formal mode, when completing a private extension the type
20277 -- named in the private part must be exactly the same as that
20278 -- named in the visible part.
20280 if Priv_Parent /= Full_Parent then
20281 Error_Msg_Name_1 := Chars (Priv_Parent);
20282 Check_SPARK_05_Restriction ("% expected", Full_Indic);
20283 end if;
20285 -- Check the rules of 7.3(10): if the private extension inherits
20286 -- known discriminants, then the full type must also inherit those
20287 -- discriminants from the same (ancestor) type, and the parent
20288 -- subtype of the full type must be constrained if and only if
20289 -- the ancestor subtype of the private extension is constrained.
20291 if No (Discriminant_Specifications (Parent (Priv_T)))
20292 and then not Has_Unknown_Discriminants (Priv_T)
20293 and then Has_Discriminants (Base_Type (Priv_Parent))
20294 then
20295 declare
20296 Priv_Indic : constant Node_Id :=
20297 Subtype_Indication (Parent (Priv_T));
20299 Priv_Constr : constant Boolean :=
20300 Is_Constrained (Priv_Parent)
20301 or else
20302 Nkind (Priv_Indic) = N_Subtype_Indication
20303 or else
20304 Is_Constrained (Entity (Priv_Indic));
20306 Full_Constr : constant Boolean :=
20307 Is_Constrained (Full_Parent)
20308 or else
20309 Nkind (Full_Indic) = N_Subtype_Indication
20310 or else
20311 Is_Constrained (Entity (Full_Indic));
20313 Priv_Discr : Entity_Id;
20314 Full_Discr : Entity_Id;
20316 begin
20317 Priv_Discr := First_Discriminant (Priv_Parent);
20318 Full_Discr := First_Discriminant (Full_Parent);
20319 while Present (Priv_Discr) and then Present (Full_Discr) loop
20320 if Original_Record_Component (Priv_Discr) =
20321 Original_Record_Component (Full_Discr)
20322 or else
20323 Corresponding_Discriminant (Priv_Discr) =
20324 Corresponding_Discriminant (Full_Discr)
20325 then
20326 null;
20327 else
20328 exit;
20329 end if;
20331 Next_Discriminant (Priv_Discr);
20332 Next_Discriminant (Full_Discr);
20333 end loop;
20335 if Present (Priv_Discr) or else Present (Full_Discr) then
20336 Error_Msg_N
20337 ("full view must inherit discriminants of the parent "
20338 & "type used in the private extension", Full_Indic);
20340 elsif Priv_Constr and then not Full_Constr then
20341 Error_Msg_N
20342 ("parent subtype of full type must be constrained",
20343 Full_Indic);
20345 elsif Full_Constr and then not Priv_Constr then
20346 Error_Msg_N
20347 ("parent subtype of full type must be unconstrained",
20348 Full_Indic);
20349 end if;
20350 end;
20352 -- Check the rules of 7.3(12): if a partial view has neither
20353 -- known or unknown discriminants, then the full type
20354 -- declaration shall define a definite subtype.
20356 elsif not Has_Unknown_Discriminants (Priv_T)
20357 and then not Has_Discriminants (Priv_T)
20358 and then not Is_Constrained (Full_T)
20359 then
20360 Error_Msg_N
20361 ("full view must define a constrained type if partial view "
20362 & "has no discriminants", Full_T);
20363 end if;
20365 -- ??????? Do we implement the following properly ?????
20366 -- If the ancestor subtype of a private extension has constrained
20367 -- discriminants, then the parent subtype of the full view shall
20368 -- impose a statically matching constraint on those discriminants
20369 -- [7.3(13)].
20370 end if;
20372 else
20373 -- For untagged types, verify that a type without discriminants is
20374 -- not completed with an unconstrained type. A separate error message
20375 -- is produced if the full type has defaulted discriminants.
20377 if Is_Definite_Subtype (Priv_T)
20378 and then not Is_Definite_Subtype (Full_T)
20379 then
20380 Error_Msg_Sloc := Sloc (Parent (Priv_T));
20381 Error_Msg_NE
20382 ("full view of& not compatible with declaration#",
20383 Full_T, Priv_T);
20385 if not Is_Tagged_Type (Full_T) then
20386 Error_Msg_N
20387 ("\one is constrained, the other unconstrained", Full_T);
20388 end if;
20389 end if;
20390 end if;
20392 -- AI-419: verify that the use of "limited" is consistent
20394 declare
20395 Orig_Decl : constant Node_Id := Original_Node (N);
20397 begin
20398 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20399 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
20400 and then Nkind
20401 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
20402 then
20403 if not Limited_Present (Parent (Priv_T))
20404 and then not Synchronized_Present (Parent (Priv_T))
20405 and then Limited_Present (Type_Definition (Orig_Decl))
20406 then
20407 Error_Msg_N
20408 ("full view of non-limited extension cannot be limited", N);
20410 -- Conversely, if the partial view carries the limited keyword,
20411 -- the full view must as well, even if it may be redundant.
20413 elsif Limited_Present (Parent (Priv_T))
20414 and then not Limited_Present (Type_Definition (Orig_Decl))
20415 then
20416 Error_Msg_N
20417 ("full view of limited extension must be explicitly limited",
20419 end if;
20420 end if;
20421 end;
20423 -- Ada 2005 (AI-443): A synchronized private extension must be
20424 -- completed by a task or protected type.
20426 if Ada_Version >= Ada_2005
20427 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20428 and then Synchronized_Present (Parent (Priv_T))
20429 and then not Is_Concurrent_Type (Full_T)
20430 then
20431 Error_Msg_N ("full view of synchronized extension must " &
20432 "be synchronized type", N);
20433 end if;
20435 -- Ada 2005 AI-363: if the full view has discriminants with
20436 -- defaults, it is illegal to declare constrained access subtypes
20437 -- whose designated type is the current type. This allows objects
20438 -- of the type that are declared in the heap to be unconstrained.
20440 if not Has_Unknown_Discriminants (Priv_T)
20441 and then not Has_Discriminants (Priv_T)
20442 and then Has_Discriminants (Full_T)
20443 and then
20444 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
20445 then
20446 Set_Has_Constrained_Partial_View (Full_T);
20447 Set_Has_Constrained_Partial_View (Priv_T);
20448 end if;
20450 -- Create a full declaration for all its subtypes recorded in
20451 -- Private_Dependents and swap them similarly to the base type. These
20452 -- are subtypes that have been define before the full declaration of
20453 -- the private type. We also swap the entry in Private_Dependents list
20454 -- so we can properly restore the private view on exit from the scope.
20456 declare
20457 Priv_Elmt : Elmt_Id;
20458 Priv_Scop : Entity_Id;
20459 Priv : Entity_Id;
20460 Full : Entity_Id;
20462 begin
20463 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
20464 while Present (Priv_Elmt) loop
20465 Priv := Node (Priv_Elmt);
20466 Priv_Scop := Scope (Priv);
20468 if Ekind_In (Priv, E_Private_Subtype,
20469 E_Limited_Private_Subtype,
20470 E_Record_Subtype_With_Private)
20471 then
20472 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
20473 Set_Is_Itype (Full);
20474 Set_Parent (Full, Parent (Priv));
20475 Set_Associated_Node_For_Itype (Full, N);
20477 -- Now we need to complete the private subtype, but since the
20478 -- base type has already been swapped, we must also swap the
20479 -- subtypes (and thus, reverse the arguments in the call to
20480 -- Complete_Private_Subtype). Also note that we may need to
20481 -- re-establish the scope of the private subtype.
20483 Copy_And_Swap (Priv, Full);
20485 if not In_Open_Scopes (Priv_Scop) then
20486 Push_Scope (Priv_Scop);
20488 else
20489 -- Reset Priv_Scop to Empty to indicate no scope was pushed
20491 Priv_Scop := Empty;
20492 end if;
20494 Complete_Private_Subtype (Full, Priv, Full_T, N);
20496 if Present (Priv_Scop) then
20497 Pop_Scope;
20498 end if;
20500 Replace_Elmt (Priv_Elmt, Full);
20501 end if;
20503 Next_Elmt (Priv_Elmt);
20504 end loop;
20505 end;
20507 -- If the private view was tagged, copy the new primitive operations
20508 -- from the private view to the full view.
20510 if Is_Tagged_Type (Full_T) then
20511 declare
20512 Disp_Typ : Entity_Id;
20513 Full_List : Elist_Id;
20514 Prim : Entity_Id;
20515 Prim_Elmt : Elmt_Id;
20516 Priv_List : Elist_Id;
20518 function Contains
20519 (E : Entity_Id;
20520 L : Elist_Id) return Boolean;
20521 -- Determine whether list L contains element E
20523 --------------
20524 -- Contains --
20525 --------------
20527 function Contains
20528 (E : Entity_Id;
20529 L : Elist_Id) return Boolean
20531 List_Elmt : Elmt_Id;
20533 begin
20534 List_Elmt := First_Elmt (L);
20535 while Present (List_Elmt) loop
20536 if Node (List_Elmt) = E then
20537 return True;
20538 end if;
20540 Next_Elmt (List_Elmt);
20541 end loop;
20543 return False;
20544 end Contains;
20546 -- Start of processing
20548 begin
20549 if Is_Tagged_Type (Priv_T) then
20550 Priv_List := Primitive_Operations (Priv_T);
20551 Prim_Elmt := First_Elmt (Priv_List);
20553 -- In the case of a concurrent type completing a private tagged
20554 -- type, primitives may have been declared in between the two
20555 -- views. These subprograms need to be wrapped the same way
20556 -- entries and protected procedures are handled because they
20557 -- cannot be directly shared by the two views.
20559 if Is_Concurrent_Type (Full_T) then
20560 declare
20561 Conc_Typ : constant Entity_Id :=
20562 Corresponding_Record_Type (Full_T);
20563 Curr_Nod : Node_Id := Parent (Conc_Typ);
20564 Wrap_Spec : Node_Id;
20566 begin
20567 while Present (Prim_Elmt) loop
20568 Prim := Node (Prim_Elmt);
20570 if Comes_From_Source (Prim)
20571 and then not Is_Abstract_Subprogram (Prim)
20572 then
20573 Wrap_Spec :=
20574 Make_Subprogram_Declaration (Sloc (Prim),
20575 Specification =>
20576 Build_Wrapper_Spec
20577 (Subp_Id => Prim,
20578 Obj_Typ => Conc_Typ,
20579 Formals =>
20580 Parameter_Specifications
20581 (Parent (Prim))));
20583 Insert_After (Curr_Nod, Wrap_Spec);
20584 Curr_Nod := Wrap_Spec;
20586 Analyze (Wrap_Spec);
20588 -- Remove the wrapper from visibility to avoid
20589 -- spurious conflict with the wrapped entity.
20591 Set_Is_Immediately_Visible
20592 (Defining_Entity (Specification (Wrap_Spec)),
20593 False);
20594 end if;
20596 Next_Elmt (Prim_Elmt);
20597 end loop;
20599 goto Leave;
20600 end;
20602 -- For non-concurrent types, transfer explicit primitives, but
20603 -- omit those inherited from the parent of the private view
20604 -- since they will be re-inherited later on.
20606 else
20607 Full_List := Primitive_Operations (Full_T);
20609 while Present (Prim_Elmt) loop
20610 Prim := Node (Prim_Elmt);
20612 if Comes_From_Source (Prim)
20613 and then not Contains (Prim, Full_List)
20614 then
20615 Append_Elmt (Prim, Full_List);
20616 end if;
20618 Next_Elmt (Prim_Elmt);
20619 end loop;
20620 end if;
20622 -- Untagged private view
20624 else
20625 Full_List := Primitive_Operations (Full_T);
20627 -- In this case the partial view is untagged, so here we locate
20628 -- all of the earlier primitives that need to be treated as
20629 -- dispatching (those that appear between the two views). Note
20630 -- that these additional operations must all be new operations
20631 -- (any earlier operations that override inherited operations
20632 -- of the full view will already have been inserted in the
20633 -- primitives list, marked by Check_Operation_From_Private_View
20634 -- as dispatching. Note that implicit "/=" operators are
20635 -- excluded from being added to the primitives list since they
20636 -- shouldn't be treated as dispatching (tagged "/=" is handled
20637 -- specially).
20639 Prim := Next_Entity (Full_T);
20640 while Present (Prim) and then Prim /= Priv_T loop
20641 if Ekind_In (Prim, E_Procedure, E_Function) then
20642 Disp_Typ := Find_Dispatching_Type (Prim);
20644 if Disp_Typ = Full_T
20645 and then (Chars (Prim) /= Name_Op_Ne
20646 or else Comes_From_Source (Prim))
20647 then
20648 Check_Controlling_Formals (Full_T, Prim);
20650 if not Is_Dispatching_Operation (Prim) then
20651 Append_Elmt (Prim, Full_List);
20652 Set_Is_Dispatching_Operation (Prim, True);
20653 Set_DT_Position_Value (Prim, No_Uint);
20654 end if;
20656 elsif Is_Dispatching_Operation (Prim)
20657 and then Disp_Typ /= Full_T
20658 then
20660 -- Verify that it is not otherwise controlled by a
20661 -- formal or a return value of type T.
20663 Check_Controlling_Formals (Disp_Typ, Prim);
20664 end if;
20665 end if;
20667 Next_Entity (Prim);
20668 end loop;
20669 end if;
20671 -- For the tagged case, the two views can share the same primitive
20672 -- operations list and the same class-wide type. Update attributes
20673 -- of the class-wide type which depend on the full declaration.
20675 if Is_Tagged_Type (Priv_T) then
20676 Set_Direct_Primitive_Operations (Priv_T, Full_List);
20677 Set_Class_Wide_Type
20678 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
20680 Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T);
20681 end if;
20682 end;
20683 end if;
20685 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20687 if Known_To_Have_Preelab_Init (Priv_T) then
20689 -- Case where there is a pragma Preelaborable_Initialization. We
20690 -- always allow this in predefined units, which is cheating a bit,
20691 -- but it means we don't have to struggle to meet the requirements in
20692 -- the RM for having Preelaborable Initialization. Otherwise we
20693 -- require that the type meets the RM rules. But we can't check that
20694 -- yet, because of the rule about overriding Initialize, so we simply
20695 -- set a flag that will be checked at freeze time.
20697 if not In_Predefined_Unit (Full_T) then
20698 Set_Must_Have_Preelab_Init (Full_T);
20699 end if;
20700 end if;
20702 -- If pragma CPP_Class was applied to the private type declaration,
20703 -- propagate it now to the full type declaration.
20705 if Is_CPP_Class (Priv_T) then
20706 Set_Is_CPP_Class (Full_T);
20707 Set_Convention (Full_T, Convention_CPP);
20709 -- Check that components of imported CPP types do not have default
20710 -- expressions.
20712 Check_CPP_Type_Has_No_Defaults (Full_T);
20713 end if;
20715 -- If the private view has user specified stream attributes, then so has
20716 -- the full view.
20718 -- Why the test, how could these flags be already set in Full_T ???
20720 if Has_Specified_Stream_Read (Priv_T) then
20721 Set_Has_Specified_Stream_Read (Full_T);
20722 end if;
20724 if Has_Specified_Stream_Write (Priv_T) then
20725 Set_Has_Specified_Stream_Write (Full_T);
20726 end if;
20728 if Has_Specified_Stream_Input (Priv_T) then
20729 Set_Has_Specified_Stream_Input (Full_T);
20730 end if;
20732 if Has_Specified_Stream_Output (Priv_T) then
20733 Set_Has_Specified_Stream_Output (Full_T);
20734 end if;
20736 -- Propagate Default_Initial_Condition-related attributes from the
20737 -- partial view to the full view and its base type.
20739 Propagate_DIC_Attributes (Full_T, From_Typ => Priv_T);
20740 Propagate_DIC_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20742 -- Propagate invariant-related attributes from the partial view to the
20743 -- full view and its base type.
20745 Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T);
20746 Propagate_Invariant_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20748 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20749 -- in the full view without advertising the inheritance in the partial
20750 -- view. This can only occur when the partial view has no parent type
20751 -- and the full view has an interface as a parent. Any other scenarios
20752 -- are illegal because implemented interfaces must match between the
20753 -- two views.
20755 if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then
20756 declare
20757 Full_Par : constant Entity_Id := Etype (Full_T);
20758 Priv_Par : constant Entity_Id := Etype (Priv_T);
20760 begin
20761 if not Is_Interface (Priv_Par)
20762 and then Is_Interface (Full_Par)
20763 and then Has_Inheritable_Invariants (Full_Par)
20764 then
20765 Error_Msg_N
20766 ("hidden inheritance of class-wide type invariants not "
20767 & "allowed", N);
20768 end if;
20769 end;
20770 end if;
20772 -- Propagate predicates to full type, and predicate function if already
20773 -- defined. It is not clear that this can actually happen? the partial
20774 -- view cannot be frozen yet, and the predicate function has not been
20775 -- built. Still it is a cheap check and seems safer to make it.
20777 if Has_Predicates (Priv_T) then
20778 Set_Has_Predicates (Full_T);
20780 if Present (Predicate_Function (Priv_T)) then
20781 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20782 end if;
20783 end if;
20785 <<Leave>>
20786 Restore_Ghost_Mode (Saved_GM);
20787 end Process_Full_View;
20789 -----------------------------------
20790 -- Process_Incomplete_Dependents --
20791 -----------------------------------
20793 procedure Process_Incomplete_Dependents
20794 (N : Node_Id;
20795 Full_T : Entity_Id;
20796 Inc_T : Entity_Id)
20798 Inc_Elmt : Elmt_Id;
20799 Priv_Dep : Entity_Id;
20800 New_Subt : Entity_Id;
20802 Disc_Constraint : Elist_Id;
20804 begin
20805 if No (Private_Dependents (Inc_T)) then
20806 return;
20807 end if;
20809 -- Itypes that may be generated by the completion of an incomplete
20810 -- subtype are not used by the back-end and not attached to the tree.
20811 -- They are created only for constraint-checking purposes.
20813 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20814 while Present (Inc_Elmt) loop
20815 Priv_Dep := Node (Inc_Elmt);
20817 if Ekind (Priv_Dep) = E_Subprogram_Type then
20819 -- An Access_To_Subprogram type may have a return type or a
20820 -- parameter type that is incomplete. Replace with the full view.
20822 if Etype (Priv_Dep) = Inc_T then
20823 Set_Etype (Priv_Dep, Full_T);
20824 end if;
20826 declare
20827 Formal : Entity_Id;
20829 begin
20830 Formal := First_Formal (Priv_Dep);
20831 while Present (Formal) loop
20832 if Etype (Formal) = Inc_T then
20833 Set_Etype (Formal, Full_T);
20834 end if;
20836 Next_Formal (Formal);
20837 end loop;
20838 end;
20840 elsif Is_Overloadable (Priv_Dep) then
20842 -- If a subprogram in the incomplete dependents list is primitive
20843 -- for a tagged full type then mark it as a dispatching operation,
20844 -- check whether it overrides an inherited subprogram, and check
20845 -- restrictions on its controlling formals. Note that a protected
20846 -- operation is never dispatching: only its wrapper operation
20847 -- (which has convention Ada) is.
20849 if Is_Tagged_Type (Full_T)
20850 and then Is_Primitive (Priv_Dep)
20851 and then Convention (Priv_Dep) /= Convention_Protected
20852 then
20853 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
20854 Set_Is_Dispatching_Operation (Priv_Dep);
20855 Check_Controlling_Formals (Full_T, Priv_Dep);
20856 end if;
20858 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
20860 -- Can happen during processing of a body before the completion
20861 -- of a TA type. Ignore, because spec is also on dependent list.
20863 return;
20865 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20866 -- corresponding subtype of the full view.
20868 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype
20869 and then Comes_From_Source (Priv_Dep)
20870 then
20871 Set_Subtype_Indication
20872 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
20873 Set_Etype (Priv_Dep, Full_T);
20874 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
20875 Set_Analyzed (Parent (Priv_Dep), False);
20877 -- Reanalyze the declaration, suppressing the call to Enter_Name
20878 -- to avoid duplicate names.
20880 Analyze_Subtype_Declaration
20881 (N => Parent (Priv_Dep),
20882 Skip => True);
20884 -- Dependent is a subtype
20886 else
20887 -- We build a new subtype indication using the full view of the
20888 -- incomplete parent. The discriminant constraints have been
20889 -- elaborated already at the point of the subtype declaration.
20891 New_Subt := Create_Itype (E_Void, N);
20893 if Has_Discriminants (Full_T) then
20894 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
20895 else
20896 Disc_Constraint := No_Elist;
20897 end if;
20899 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
20900 Set_Full_View (Priv_Dep, New_Subt);
20901 end if;
20903 Next_Elmt (Inc_Elmt);
20904 end loop;
20905 end Process_Incomplete_Dependents;
20907 --------------------------------
20908 -- Process_Range_Expr_In_Decl --
20909 --------------------------------
20911 procedure Process_Range_Expr_In_Decl
20912 (R : Node_Id;
20913 T : Entity_Id;
20914 Subtyp : Entity_Id := Empty;
20915 Check_List : List_Id := Empty_List;
20916 R_Check_Off : Boolean := False;
20917 In_Iter_Schm : Boolean := False)
20919 Lo, Hi : Node_Id;
20920 R_Checks : Check_Result;
20921 Insert_Node : Node_Id;
20922 Def_Id : Entity_Id;
20924 begin
20925 Analyze_And_Resolve (R, Base_Type (T));
20927 if Nkind (R) = N_Range then
20929 -- In SPARK, all ranges should be static, with the exception of the
20930 -- discrete type definition of a loop parameter specification.
20932 if not In_Iter_Schm
20933 and then not Is_OK_Static_Range (R)
20934 then
20935 Check_SPARK_05_Restriction ("range should be static", R);
20936 end if;
20938 Lo := Low_Bound (R);
20939 Hi := High_Bound (R);
20941 -- Validity checks on the range of a quantified expression are
20942 -- delayed until the construct is transformed into a loop.
20944 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
20945 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
20946 then
20947 null;
20949 -- We need to ensure validity of the bounds here, because if we
20950 -- go ahead and do the expansion, then the expanded code will get
20951 -- analyzed with range checks suppressed and we miss the check.
20953 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20954 -- the temporaries generated by routine Remove_Side_Effects by means
20955 -- of validity checks must use the same names. When a range appears
20956 -- in the parent of a generic, the range is processed with checks
20957 -- disabled as part of the generic context and with checks enabled
20958 -- for code generation purposes. This leads to link issues as the
20959 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20960 -- template sees the temporaries generated by Remove_Side_Effects.
20962 else
20963 Validity_Check_Range (R, Subtyp);
20964 end if;
20966 -- If there were errors in the declaration, try and patch up some
20967 -- common mistakes in the bounds. The cases handled are literals
20968 -- which are Integer where the expected type is Real and vice versa.
20969 -- These corrections allow the compilation process to proceed further
20970 -- along since some basic assumptions of the format of the bounds
20971 -- are guaranteed.
20973 if Etype (R) = Any_Type then
20974 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
20975 Rewrite (Lo,
20976 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
20978 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
20979 Rewrite (Hi,
20980 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
20982 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
20983 Rewrite (Lo,
20984 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
20986 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
20987 Rewrite (Hi,
20988 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
20989 end if;
20991 Set_Etype (Lo, T);
20992 Set_Etype (Hi, T);
20993 end if;
20995 -- If the bounds of the range have been mistakenly given as string
20996 -- literals (perhaps in place of character literals), then an error
20997 -- has already been reported, but we rewrite the string literal as a
20998 -- bound of the range's type to avoid blowups in later processing
20999 -- that looks at static values.
21001 if Nkind (Lo) = N_String_Literal then
21002 Rewrite (Lo,
21003 Make_Attribute_Reference (Sloc (Lo),
21004 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
21005 Attribute_Name => Name_First));
21006 Analyze_And_Resolve (Lo);
21007 end if;
21009 if Nkind (Hi) = N_String_Literal then
21010 Rewrite (Hi,
21011 Make_Attribute_Reference (Sloc (Hi),
21012 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
21013 Attribute_Name => Name_First));
21014 Analyze_And_Resolve (Hi);
21015 end if;
21017 -- If bounds aren't scalar at this point then exit, avoiding
21018 -- problems with further processing of the range in this procedure.
21020 if not Is_Scalar_Type (Etype (Lo)) then
21021 return;
21022 end if;
21024 -- Resolve (actually Sem_Eval) has checked that the bounds are in
21025 -- then range of the base type. Here we check whether the bounds
21026 -- are in the range of the subtype itself. Note that if the bounds
21027 -- represent the null range the Constraint_Error exception should
21028 -- not be raised.
21030 -- ??? The following code should be cleaned up as follows
21032 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
21033 -- is done in the call to Range_Check (R, T); below
21035 -- 2. The use of R_Check_Off should be investigated and possibly
21036 -- removed, this would clean up things a bit.
21038 if Is_Null_Range (Lo, Hi) then
21039 null;
21041 else
21042 -- Capture values of bounds and generate temporaries for them
21043 -- if needed, before applying checks, since checks may cause
21044 -- duplication of the expression without forcing evaluation.
21046 -- The forced evaluation removes side effects from expressions,
21047 -- which should occur also in GNATprove mode. Otherwise, we end up
21048 -- with unexpected insertions of actions at places where this is
21049 -- not supposed to occur, e.g. on default parameters of a call.
21051 if Expander_Active or GNATprove_Mode then
21053 -- Call Force_Evaluation to create declarations as needed to
21054 -- deal with side effects, and also create typ_FIRST/LAST
21055 -- entities for bounds if we have a subtype name.
21057 -- Note: we do this transformation even if expansion is not
21058 -- active if we are in GNATprove_Mode since the transformation
21059 -- is in general required to ensure that the resulting tree has
21060 -- proper Ada semantics.
21062 Force_Evaluation
21063 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
21064 Force_Evaluation
21065 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
21066 end if;
21068 -- We use a flag here instead of suppressing checks on the type
21069 -- because the type we check against isn't necessarily the place
21070 -- where we put the check.
21072 if not R_Check_Off then
21073 R_Checks := Get_Range_Checks (R, T);
21075 -- Look up tree to find an appropriate insertion point. We
21076 -- can't just use insert_actions because later processing
21077 -- depends on the insertion node. Prior to Ada 2012 the
21078 -- insertion point could only be a declaration or a loop, but
21079 -- quantified expressions can appear within any context in an
21080 -- expression, and the insertion point can be any statement,
21081 -- pragma, or declaration.
21083 Insert_Node := Parent (R);
21084 while Present (Insert_Node) loop
21085 exit when
21086 Nkind (Insert_Node) in N_Declaration
21087 and then
21088 not Nkind_In
21089 (Insert_Node, N_Component_Declaration,
21090 N_Loop_Parameter_Specification,
21091 N_Function_Specification,
21092 N_Procedure_Specification);
21094 exit when Nkind (Insert_Node) in N_Later_Decl_Item
21095 or else Nkind (Insert_Node) in
21096 N_Statement_Other_Than_Procedure_Call
21097 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
21098 N_Pragma);
21100 Insert_Node := Parent (Insert_Node);
21101 end loop;
21103 -- Why would Type_Decl not be present??? Without this test,
21104 -- short regression tests fail.
21106 if Present (Insert_Node) then
21108 -- Case of loop statement. Verify that the range is part
21109 -- of the subtype indication of the iteration scheme.
21111 if Nkind (Insert_Node) = N_Loop_Statement then
21112 declare
21113 Indic : Node_Id;
21115 begin
21116 Indic := Parent (R);
21117 while Present (Indic)
21118 and then Nkind (Indic) /= N_Subtype_Indication
21119 loop
21120 Indic := Parent (Indic);
21121 end loop;
21123 if Present (Indic) then
21124 Def_Id := Etype (Subtype_Mark (Indic));
21126 Insert_Range_Checks
21127 (R_Checks,
21128 Insert_Node,
21129 Def_Id,
21130 Sloc (Insert_Node),
21132 Do_Before => True);
21133 end if;
21134 end;
21136 -- Insertion before a declaration. If the declaration
21137 -- includes discriminants, the list of applicable checks
21138 -- is given by the caller.
21140 elsif Nkind (Insert_Node) in N_Declaration then
21141 Def_Id := Defining_Identifier (Insert_Node);
21143 if (Ekind (Def_Id) = E_Record_Type
21144 and then Depends_On_Discriminant (R))
21145 or else
21146 (Ekind (Def_Id) = E_Protected_Type
21147 and then Has_Discriminants (Def_Id))
21148 then
21149 Append_Range_Checks
21150 (R_Checks,
21151 Check_List, Def_Id, Sloc (Insert_Node), R);
21153 else
21154 Insert_Range_Checks
21155 (R_Checks,
21156 Insert_Node, Def_Id, Sloc (Insert_Node), R);
21158 end if;
21160 -- Insertion before a statement. Range appears in the
21161 -- context of a quantified expression. Insertion will
21162 -- take place when expression is expanded.
21164 else
21165 null;
21166 end if;
21167 end if;
21168 end if;
21169 end if;
21171 -- Case of other than an explicit N_Range node
21173 -- The forced evaluation removes side effects from expressions, which
21174 -- should occur also in GNATprove mode. Otherwise, we end up with
21175 -- unexpected insertions of actions at places where this is not
21176 -- supposed to occur, e.g. on default parameters of a call.
21178 elsif Expander_Active or GNATprove_Mode then
21179 Get_Index_Bounds (R, Lo, Hi);
21180 Force_Evaluation (Lo);
21181 Force_Evaluation (Hi);
21182 end if;
21183 end Process_Range_Expr_In_Decl;
21185 --------------------------------------
21186 -- Process_Real_Range_Specification --
21187 --------------------------------------
21189 procedure Process_Real_Range_Specification (Def : Node_Id) is
21190 Spec : constant Node_Id := Real_Range_Specification (Def);
21191 Lo : Node_Id;
21192 Hi : Node_Id;
21193 Err : Boolean := False;
21195 procedure Analyze_Bound (N : Node_Id);
21196 -- Analyze and check one bound
21198 -------------------
21199 -- Analyze_Bound --
21200 -------------------
21202 procedure Analyze_Bound (N : Node_Id) is
21203 begin
21204 Analyze_And_Resolve (N, Any_Real);
21206 if not Is_OK_Static_Expression (N) then
21207 Flag_Non_Static_Expr
21208 ("bound in real type definition is not static!", N);
21209 Err := True;
21210 end if;
21211 end Analyze_Bound;
21213 -- Start of processing for Process_Real_Range_Specification
21215 begin
21216 if Present (Spec) then
21217 Lo := Low_Bound (Spec);
21218 Hi := High_Bound (Spec);
21219 Analyze_Bound (Lo);
21220 Analyze_Bound (Hi);
21222 -- If error, clear away junk range specification
21224 if Err then
21225 Set_Real_Range_Specification (Def, Empty);
21226 end if;
21227 end if;
21228 end Process_Real_Range_Specification;
21230 ---------------------
21231 -- Process_Subtype --
21232 ---------------------
21234 function Process_Subtype
21235 (S : Node_Id;
21236 Related_Nod : Node_Id;
21237 Related_Id : Entity_Id := Empty;
21238 Suffix : Character := ' ') return Entity_Id
21240 P : Node_Id;
21241 Def_Id : Entity_Id;
21242 Error_Node : Node_Id;
21243 Full_View_Id : Entity_Id;
21244 Subtype_Mark_Id : Entity_Id;
21246 May_Have_Null_Exclusion : Boolean;
21248 procedure Check_Incomplete (T : Node_Id);
21249 -- Called to verify that an incomplete type is not used prematurely
21251 ----------------------
21252 -- Check_Incomplete --
21253 ----------------------
21255 procedure Check_Incomplete (T : Node_Id) is
21256 begin
21257 -- Ada 2005 (AI-412): Incomplete subtypes are legal
21259 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
21260 and then
21261 not (Ada_Version >= Ada_2005
21262 and then
21263 (Nkind (Parent (T)) = N_Subtype_Declaration
21264 or else (Nkind (Parent (T)) = N_Subtype_Indication
21265 and then Nkind (Parent (Parent (T))) =
21266 N_Subtype_Declaration)))
21267 then
21268 Error_Msg_N ("invalid use of type before its full declaration", T);
21269 end if;
21270 end Check_Incomplete;
21272 -- Start of processing for Process_Subtype
21274 begin
21275 -- Case of no constraints present
21277 if Nkind (S) /= N_Subtype_Indication then
21278 Find_Type (S);
21279 Check_Incomplete (S);
21280 P := Parent (S);
21282 -- Ada 2005 (AI-231): Static check
21284 if Ada_Version >= Ada_2005
21285 and then Present (P)
21286 and then Null_Exclusion_Present (P)
21287 and then Nkind (P) /= N_Access_To_Object_Definition
21288 and then not Is_Access_Type (Entity (S))
21289 then
21290 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
21291 end if;
21293 -- The following is ugly, can't we have a range or even a flag???
21295 May_Have_Null_Exclusion :=
21296 Nkind_In (P, N_Access_Definition,
21297 N_Access_Function_Definition,
21298 N_Access_Procedure_Definition,
21299 N_Access_To_Object_Definition,
21300 N_Allocator,
21301 N_Component_Definition)
21302 or else
21303 Nkind_In (P, N_Derived_Type_Definition,
21304 N_Discriminant_Specification,
21305 N_Formal_Object_Declaration,
21306 N_Object_Declaration,
21307 N_Object_Renaming_Declaration,
21308 N_Parameter_Specification,
21309 N_Subtype_Declaration);
21311 -- Create an Itype that is a duplicate of Entity (S) but with the
21312 -- null-exclusion attribute.
21314 if May_Have_Null_Exclusion
21315 and then Is_Access_Type (Entity (S))
21316 and then Null_Exclusion_Present (P)
21318 -- No need to check the case of an access to object definition.
21319 -- It is correct to define double not-null pointers.
21321 -- Example:
21322 -- type Not_Null_Int_Ptr is not null access Integer;
21323 -- type Acc is not null access Not_Null_Int_Ptr;
21325 and then Nkind (P) /= N_Access_To_Object_Definition
21326 then
21327 if Can_Never_Be_Null (Entity (S)) then
21328 case Nkind (Related_Nod) is
21329 when N_Full_Type_Declaration =>
21330 if Nkind (Type_Definition (Related_Nod))
21331 in N_Array_Type_Definition
21332 then
21333 Error_Node :=
21334 Subtype_Indication
21335 (Component_Definition
21336 (Type_Definition (Related_Nod)));
21337 else
21338 Error_Node :=
21339 Subtype_Indication (Type_Definition (Related_Nod));
21340 end if;
21342 when N_Subtype_Declaration =>
21343 Error_Node := Subtype_Indication (Related_Nod);
21345 when N_Object_Declaration =>
21346 Error_Node := Object_Definition (Related_Nod);
21348 when N_Component_Declaration =>
21349 Error_Node :=
21350 Subtype_Indication (Component_Definition (Related_Nod));
21352 when N_Allocator =>
21353 Error_Node := Expression (Related_Nod);
21355 when others =>
21356 pragma Assert (False);
21357 Error_Node := Related_Nod;
21358 end case;
21360 Error_Msg_NE
21361 ("`NOT NULL` not allowed (& already excludes null)",
21362 Error_Node,
21363 Entity (S));
21364 end if;
21366 Set_Etype (S,
21367 Create_Null_Excluding_Itype
21368 (T => Entity (S),
21369 Related_Nod => P));
21370 Set_Entity (S, Etype (S));
21371 end if;
21373 return Entity (S);
21375 -- Case of constraint present, so that we have an N_Subtype_Indication
21376 -- node (this node is created only if constraints are present).
21378 else
21379 Find_Type (Subtype_Mark (S));
21381 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
21382 and then not
21383 (Nkind (Parent (S)) = N_Subtype_Declaration
21384 and then Is_Itype (Defining_Identifier (Parent (S))))
21385 then
21386 Check_Incomplete (Subtype_Mark (S));
21387 end if;
21389 P := Parent (S);
21390 Subtype_Mark_Id := Entity (Subtype_Mark (S));
21392 -- Explicit subtype declaration case
21394 if Nkind (P) = N_Subtype_Declaration then
21395 Def_Id := Defining_Identifier (P);
21397 -- Explicit derived type definition case
21399 elsif Nkind (P) = N_Derived_Type_Definition then
21400 Def_Id := Defining_Identifier (Parent (P));
21402 -- Implicit case, the Def_Id must be created as an implicit type.
21403 -- The one exception arises in the case of concurrent types, array
21404 -- and access types, where other subsidiary implicit types may be
21405 -- created and must appear before the main implicit type. In these
21406 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
21407 -- has not yet been called to create Def_Id.
21409 else
21410 if Is_Array_Type (Subtype_Mark_Id)
21411 or else Is_Concurrent_Type (Subtype_Mark_Id)
21412 or else Is_Access_Type (Subtype_Mark_Id)
21413 then
21414 Def_Id := Empty;
21416 -- For the other cases, we create a new unattached Itype,
21417 -- and set the indication to ensure it gets attached later.
21419 else
21420 Def_Id :=
21421 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21422 end if;
21423 end if;
21425 -- If the kind of constraint is invalid for this kind of type,
21426 -- then give an error, and then pretend no constraint was given.
21428 if not Is_Valid_Constraint_Kind
21429 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
21430 then
21431 Error_Msg_N
21432 ("incorrect constraint for this kind of type", Constraint (S));
21434 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
21436 -- Set Ekind of orphan itype, to prevent cascaded errors
21438 if Present (Def_Id) then
21439 Set_Ekind (Def_Id, Ekind (Any_Type));
21440 end if;
21442 -- Make recursive call, having got rid of the bogus constraint
21444 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
21445 end if;
21447 -- Remaining processing depends on type. Select on Base_Type kind to
21448 -- ensure getting to the concrete type kind in the case of a private
21449 -- subtype (needed when only doing semantic analysis).
21451 case Ekind (Base_Type (Subtype_Mark_Id)) is
21452 when Access_Kind =>
21454 -- If this is a constraint on a class-wide type, discard it.
21455 -- There is currently no way to express a partial discriminant
21456 -- constraint on a type with unknown discriminants. This is
21457 -- a pathology that the ACATS wisely decides not to test.
21459 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
21460 if Comes_From_Source (S) then
21461 Error_Msg_N
21462 ("constraint on class-wide type ignored??",
21463 Constraint (S));
21464 end if;
21466 if Nkind (P) = N_Subtype_Declaration then
21467 Set_Subtype_Indication (P,
21468 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
21469 end if;
21471 return Subtype_Mark_Id;
21472 end if;
21474 Constrain_Access (Def_Id, S, Related_Nod);
21476 if Expander_Active
21477 and then Is_Itype (Designated_Type (Def_Id))
21478 and then Nkind (Related_Nod) = N_Subtype_Declaration
21479 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
21480 then
21481 Build_Itype_Reference
21482 (Designated_Type (Def_Id), Related_Nod);
21483 end if;
21485 when Array_Kind =>
21486 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21488 when Decimal_Fixed_Point_Kind =>
21489 Constrain_Decimal (Def_Id, S);
21491 when Enumeration_Kind =>
21492 Constrain_Enumeration (Def_Id, S);
21493 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21495 when Ordinary_Fixed_Point_Kind =>
21496 Constrain_Ordinary_Fixed (Def_Id, S);
21498 when Float_Kind =>
21499 Constrain_Float (Def_Id, S);
21501 when Integer_Kind =>
21502 Constrain_Integer (Def_Id, S);
21503 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21505 when Class_Wide_Kind
21506 | E_Incomplete_Type
21507 | E_Record_Subtype
21508 | E_Record_Type
21510 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21512 if Ekind (Def_Id) = E_Incomplete_Type then
21513 Set_Private_Dependents (Def_Id, New_Elmt_List);
21514 end if;
21516 when Private_Kind =>
21517 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21519 -- The base type may be private but Def_Id may be a full view
21520 -- in an instance.
21522 if Is_Private_Type (Def_Id) then
21523 Set_Private_Dependents (Def_Id, New_Elmt_List);
21524 end if;
21526 -- In case of an invalid constraint prevent further processing
21527 -- since the type constructed is missing expected fields.
21529 if Etype (Def_Id) = Any_Type then
21530 return Def_Id;
21531 end if;
21533 -- If the full view is that of a task with discriminants,
21534 -- we must constrain both the concurrent type and its
21535 -- corresponding record type. Otherwise we will just propagate
21536 -- the constraint to the full view, if available.
21538 if Present (Full_View (Subtype_Mark_Id))
21539 and then Has_Discriminants (Subtype_Mark_Id)
21540 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
21541 then
21542 Full_View_Id :=
21543 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21545 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
21546 Constrain_Concurrent (Full_View_Id, S,
21547 Related_Nod, Related_Id, Suffix);
21548 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
21549 Set_Full_View (Def_Id, Full_View_Id);
21551 -- Introduce an explicit reference to the private subtype,
21552 -- to prevent scope anomalies in gigi if first use appears
21553 -- in a nested context, e.g. a later function body.
21554 -- Should this be generated in other contexts than a full
21555 -- type declaration?
21557 if Is_Itype (Def_Id)
21558 and then
21559 Nkind (Parent (P)) = N_Full_Type_Declaration
21560 then
21561 Build_Itype_Reference (Def_Id, Parent (P));
21562 end if;
21564 else
21565 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
21566 end if;
21568 when Concurrent_Kind =>
21569 Constrain_Concurrent (Def_Id, S,
21570 Related_Nod, Related_Id, Suffix);
21572 when others =>
21573 Error_Msg_N ("invalid subtype mark in subtype indication", S);
21574 end case;
21576 -- Size, Alignment, Representation aspects and Convention are always
21577 -- inherited from the base type.
21579 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
21580 Set_Rep_Info (Def_Id, (Subtype_Mark_Id));
21581 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
21583 return Def_Id;
21584 end if;
21585 end Process_Subtype;
21587 -----------------------------
21588 -- Record_Type_Declaration --
21589 -----------------------------
21591 procedure Record_Type_Declaration
21592 (T : Entity_Id;
21593 N : Node_Id;
21594 Prev : Entity_Id)
21596 Def : constant Node_Id := Type_Definition (N);
21597 Is_Tagged : Boolean;
21598 Tag_Comp : Entity_Id;
21600 begin
21601 -- These flags must be initialized before calling Process_Discriminants
21602 -- because this routine makes use of them.
21604 Set_Ekind (T, E_Record_Type);
21605 Set_Etype (T, T);
21606 Init_Size_Align (T);
21607 Set_Interfaces (T, No_Elist);
21608 Set_Stored_Constraint (T, No_Elist);
21609 Set_Default_SSO (T);
21610 Set_No_Reordering (T, No_Component_Reordering);
21612 -- Normal case
21614 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
21615 if Limited_Present (Def) then
21616 Check_SPARK_05_Restriction ("limited is not allowed", N);
21617 end if;
21619 if Abstract_Present (Def) then
21620 Check_SPARK_05_Restriction ("abstract is not allowed", N);
21621 end if;
21623 -- The flag Is_Tagged_Type might have already been set by
21624 -- Find_Type_Name if it detected an error for declaration T. This
21625 -- arises in the case of private tagged types where the full view
21626 -- omits the word tagged.
21628 Is_Tagged :=
21629 Tagged_Present (Def)
21630 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
21632 Set_Is_Limited_Record (T, Limited_Present (Def));
21634 if Is_Tagged then
21635 Set_Is_Tagged_Type (T, True);
21636 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
21637 end if;
21639 -- Type is abstract if full declaration carries keyword, or if
21640 -- previous partial view did.
21642 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
21643 or else Abstract_Present (Def));
21645 else
21646 Check_SPARK_05_Restriction ("interface is not allowed", N);
21648 Is_Tagged := True;
21649 Analyze_Interface_Declaration (T, Def);
21651 if Present (Discriminant_Specifications (N)) then
21652 Error_Msg_N
21653 ("interface types cannot have discriminants",
21654 Defining_Identifier
21655 (First (Discriminant_Specifications (N))));
21656 end if;
21657 end if;
21659 -- First pass: if there are self-referential access components,
21660 -- create the required anonymous access type declarations, and if
21661 -- need be an incomplete type declaration for T itself.
21663 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21665 if Ada_Version >= Ada_2005
21666 and then Present (Interface_List (Def))
21667 then
21668 Check_Interfaces (N, Def);
21670 declare
21671 Ifaces_List : Elist_Id;
21673 begin
21674 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21675 -- already in the parents.
21677 Collect_Interfaces
21678 (T => T,
21679 Ifaces_List => Ifaces_List,
21680 Exclude_Parents => True);
21682 Set_Interfaces (T, Ifaces_List);
21683 end;
21684 end if;
21686 -- Records constitute a scope for the component declarations within.
21687 -- The scope is created prior to the processing of these declarations.
21688 -- Discriminants are processed first, so that they are visible when
21689 -- processing the other components. The Ekind of the record type itself
21690 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21692 -- Enter record scope
21694 Push_Scope (T);
21696 -- If an incomplete or private type declaration was already given for
21697 -- the type, then this scope already exists, and the discriminants have
21698 -- been declared within. We must verify that the full declaration
21699 -- matches the incomplete one.
21701 Check_Or_Process_Discriminants (N, T, Prev);
21703 Set_Is_Constrained (T, not Has_Discriminants (T));
21704 Set_Has_Delayed_Freeze (T, True);
21706 -- For tagged types add a manually analyzed component corresponding
21707 -- to the component _tag, the corresponding piece of tree will be
21708 -- expanded as part of the freezing actions if it is not a CPP_Class.
21710 if Is_Tagged then
21712 -- Do not add the tag unless we are in expansion mode
21714 if Expander_Active then
21715 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21716 Enter_Name (Tag_Comp);
21718 Set_Ekind (Tag_Comp, E_Component);
21719 Set_Is_Tag (Tag_Comp);
21720 Set_Is_Aliased (Tag_Comp);
21721 Set_Etype (Tag_Comp, RTE (RE_Tag));
21722 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21723 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21724 Init_Component_Location (Tag_Comp);
21726 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21727 -- implemented interfaces.
21729 if Has_Interfaces (T) then
21730 Add_Interface_Tag_Components (N, T);
21731 end if;
21732 end if;
21734 Make_Class_Wide_Type (T);
21735 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21736 end if;
21738 -- We must suppress range checks when processing record components in
21739 -- the presence of discriminants, since we don't want spurious checks to
21740 -- be generated during their analysis, but Suppress_Range_Checks flags
21741 -- must be reset the after processing the record definition.
21743 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21744 -- couldn't we just use the normal range check suppression method here.
21745 -- That would seem cleaner ???
21747 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21748 Set_Kill_Range_Checks (T, True);
21749 Record_Type_Definition (Def, Prev);
21750 Set_Kill_Range_Checks (T, False);
21751 else
21752 Record_Type_Definition (Def, Prev);
21753 end if;
21755 -- Exit from record scope
21757 End_Scope;
21759 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21760 -- the implemented interfaces and associate them an aliased entity.
21762 if Is_Tagged
21763 and then not Is_Empty_List (Interface_List (Def))
21764 then
21765 Derive_Progenitor_Subprograms (T, T);
21766 end if;
21768 Check_Function_Writable_Actuals (N);
21769 end Record_Type_Declaration;
21771 ----------------------------
21772 -- Record_Type_Definition --
21773 ----------------------------
21775 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21776 Component : Entity_Id;
21777 Ctrl_Components : Boolean := False;
21778 Final_Storage_Only : Boolean;
21779 T : Entity_Id;
21781 begin
21782 if Ekind (Prev_T) = E_Incomplete_Type then
21783 T := Full_View (Prev_T);
21784 else
21785 T := Prev_T;
21786 end if;
21788 -- In SPARK, tagged types and type extensions may only be declared in
21789 -- the specification of library unit packages.
21791 if Present (Def) and then Is_Tagged_Type (T) then
21792 declare
21793 Typ : Node_Id;
21794 Ctxt : Node_Id;
21796 begin
21797 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21798 Typ := Parent (Def);
21799 else
21800 pragma Assert
21801 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21802 Typ := Parent (Parent (Def));
21803 end if;
21805 Ctxt := Parent (Typ);
21807 if Nkind (Ctxt) = N_Package_Body
21808 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21809 then
21810 Check_SPARK_05_Restriction
21811 ("type should be defined in package specification", Typ);
21813 elsif Nkind (Ctxt) /= N_Package_Specification
21814 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21815 then
21816 Check_SPARK_05_Restriction
21817 ("type should be defined in library unit package", Typ);
21818 end if;
21819 end;
21820 end if;
21822 Final_Storage_Only := not Is_Controlled (T);
21824 -- Ada 2005: Check whether an explicit Limited is present in a derived
21825 -- type declaration.
21827 if Nkind (Parent (Def)) = N_Derived_Type_Definition
21828 and then Limited_Present (Parent (Def))
21829 then
21830 Set_Is_Limited_Record (T);
21831 end if;
21833 -- If the component list of a record type is defined by the reserved
21834 -- word null and there is no discriminant part, then the record type has
21835 -- no components and all records of the type are null records (RM 3.7)
21836 -- This procedure is also called to process the extension part of a
21837 -- record extension, in which case the current scope may have inherited
21838 -- components.
21840 if No (Def)
21841 or else No (Component_List (Def))
21842 or else Null_Present (Component_List (Def))
21843 then
21844 if not Is_Tagged_Type (T) then
21845 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21846 end if;
21848 else
21849 Analyze_Declarations (Component_Items (Component_List (Def)));
21851 if Present (Variant_Part (Component_List (Def))) then
21852 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21853 Analyze (Variant_Part (Component_List (Def)));
21854 end if;
21855 end if;
21857 -- After completing the semantic analysis of the record definition,
21858 -- record components, both new and inherited, are accessible. Set their
21859 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21860 -- whose Ekind may be void.
21862 Component := First_Entity (Current_Scope);
21863 while Present (Component) loop
21864 if Ekind (Component) = E_Void
21865 and then not Is_Itype (Component)
21866 then
21867 Set_Ekind (Component, E_Component);
21868 Init_Component_Location (Component);
21869 end if;
21871 Propagate_Concurrent_Flags (T, Etype (Component));
21873 if Ekind (Component) /= E_Component then
21874 null;
21876 -- Do not set Has_Controlled_Component on a class-wide equivalent
21877 -- type. See Make_CW_Equivalent_Type.
21879 elsif not Is_Class_Wide_Equivalent_Type (T)
21880 and then (Has_Controlled_Component (Etype (Component))
21881 or else (Chars (Component) /= Name_uParent
21882 and then Is_Controlled (Etype (Component))))
21883 then
21884 Set_Has_Controlled_Component (T, True);
21885 Final_Storage_Only :=
21886 Final_Storage_Only
21887 and then Finalize_Storage_Only (Etype (Component));
21888 Ctrl_Components := True;
21889 end if;
21891 Next_Entity (Component);
21892 end loop;
21894 -- A Type is Finalize_Storage_Only only if all its controlled components
21895 -- are also.
21897 if Ctrl_Components then
21898 Set_Finalize_Storage_Only (T, Final_Storage_Only);
21899 end if;
21901 -- Place reference to end record on the proper entity, which may
21902 -- be a partial view.
21904 if Present (Def) then
21905 Process_End_Label (Def, 'e', Prev_T);
21906 end if;
21907 end Record_Type_Definition;
21909 ------------------------
21910 -- Replace_Components --
21911 ------------------------
21913 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21914 function Process (N : Node_Id) return Traverse_Result;
21916 -------------
21917 -- Process --
21918 -------------
21920 function Process (N : Node_Id) return Traverse_Result is
21921 Comp : Entity_Id;
21923 begin
21924 if Nkind (N) = N_Discriminant_Specification then
21925 Comp := First_Discriminant (Typ);
21926 while Present (Comp) loop
21927 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21928 Set_Defining_Identifier (N, Comp);
21929 exit;
21930 end if;
21932 Next_Discriminant (Comp);
21933 end loop;
21935 elsif Nkind (N) = N_Variant_Part then
21936 Comp := First_Discriminant (Typ);
21937 while Present (Comp) loop
21938 if Chars (Comp) = Chars (Name (N)) then
21939 Set_Entity (Name (N), Comp);
21940 exit;
21941 end if;
21943 Next_Component (Comp);
21944 end loop;
21946 elsif Nkind (N) = N_Component_Declaration then
21947 Comp := First_Component (Typ);
21948 while Present (Comp) loop
21949 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21950 Set_Defining_Identifier (N, Comp);
21951 exit;
21952 end if;
21954 Next_Component (Comp);
21955 end loop;
21956 end if;
21958 return OK;
21959 end Process;
21961 procedure Replace is new Traverse_Proc (Process);
21963 -- Start of processing for Replace_Components
21965 begin
21966 Replace (Decl);
21967 end Replace_Components;
21969 -------------------------------
21970 -- Set_Completion_Referenced --
21971 -------------------------------
21973 procedure Set_Completion_Referenced (E : Entity_Id) is
21974 begin
21975 -- If in main unit, mark entity that is a completion as referenced,
21976 -- warnings go on the partial view when needed.
21978 if In_Extended_Main_Source_Unit (E) then
21979 Set_Referenced (E);
21980 end if;
21981 end Set_Completion_Referenced;
21983 ---------------------
21984 -- Set_Default_SSO --
21985 ---------------------
21987 procedure Set_Default_SSO (T : Entity_Id) is
21988 begin
21989 case Opt.Default_SSO is
21990 when ' ' =>
21991 null;
21992 when 'L' =>
21993 Set_SSO_Set_Low_By_Default (T, True);
21994 when 'H' =>
21995 Set_SSO_Set_High_By_Default (T, True);
21996 when others =>
21997 raise Program_Error;
21998 end case;
21999 end Set_Default_SSO;
22001 ---------------------
22002 -- Set_Fixed_Range --
22003 ---------------------
22005 -- The range for fixed-point types is complicated by the fact that we
22006 -- do not know the exact end points at the time of the declaration. This
22007 -- is true for three reasons:
22009 -- A size clause may affect the fudging of the end-points.
22010 -- A small clause may affect the values of the end-points.
22011 -- We try to include the end-points if it does not affect the size.
22013 -- This means that the actual end-points must be established at the
22014 -- point when the type is frozen. Meanwhile, we first narrow the range
22015 -- as permitted (so that it will fit if necessary in a small specified
22016 -- size), and then build a range subtree with these narrowed bounds.
22017 -- Set_Fixed_Range constructs the range from real literal values, and
22018 -- sets the range as the Scalar_Range of the given fixed-point type entity.
22020 -- The parent of this range is set to point to the entity so that it is
22021 -- properly hooked into the tree (unlike normal Scalar_Range entries for
22022 -- other scalar types, which are just pointers to the range in the
22023 -- original tree, this would otherwise be an orphan).
22025 -- The tree is left unanalyzed. When the type is frozen, the processing
22026 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
22027 -- analyzed, and uses this as an indication that it should complete
22028 -- work on the range (it will know the final small and size values).
22030 procedure Set_Fixed_Range
22031 (E : Entity_Id;
22032 Loc : Source_Ptr;
22033 Lo : Ureal;
22034 Hi : Ureal)
22036 S : constant Node_Id :=
22037 Make_Range (Loc,
22038 Low_Bound => Make_Real_Literal (Loc, Lo),
22039 High_Bound => Make_Real_Literal (Loc, Hi));
22040 begin
22041 Set_Scalar_Range (E, S);
22042 Set_Parent (S, E);
22044 -- Before the freeze point, the bounds of a fixed point are universal
22045 -- and carry the corresponding type.
22047 Set_Etype (Low_Bound (S), Universal_Real);
22048 Set_Etype (High_Bound (S), Universal_Real);
22049 end Set_Fixed_Range;
22051 ----------------------------------
22052 -- Set_Scalar_Range_For_Subtype --
22053 ----------------------------------
22055 procedure Set_Scalar_Range_For_Subtype
22056 (Def_Id : Entity_Id;
22057 R : Node_Id;
22058 Subt : Entity_Id)
22060 Kind : constant Entity_Kind := Ekind (Def_Id);
22062 begin
22063 -- Defend against previous error
22065 if Nkind (R) = N_Error then
22066 return;
22067 end if;
22069 Set_Scalar_Range (Def_Id, R);
22071 -- We need to link the range into the tree before resolving it so
22072 -- that types that are referenced, including importantly the subtype
22073 -- itself, are properly frozen (Freeze_Expression requires that the
22074 -- expression be properly linked into the tree). Of course if it is
22075 -- already linked in, then we do not disturb the current link.
22077 if No (Parent (R)) then
22078 Set_Parent (R, Def_Id);
22079 end if;
22081 -- Reset the kind of the subtype during analysis of the range, to
22082 -- catch possible premature use in the bounds themselves.
22084 Set_Ekind (Def_Id, E_Void);
22085 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
22086 Set_Ekind (Def_Id, Kind);
22087 end Set_Scalar_Range_For_Subtype;
22089 --------------------------------------------------------
22090 -- Set_Stored_Constraint_From_Discriminant_Constraint --
22091 --------------------------------------------------------
22093 procedure Set_Stored_Constraint_From_Discriminant_Constraint
22094 (E : Entity_Id)
22096 begin
22097 -- Make sure set if encountered during Expand_To_Stored_Constraint
22099 Set_Stored_Constraint (E, No_Elist);
22101 -- Give it the right value
22103 if Is_Constrained (E) and then Has_Discriminants (E) then
22104 Set_Stored_Constraint (E,
22105 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
22106 end if;
22107 end Set_Stored_Constraint_From_Discriminant_Constraint;
22109 -------------------------------------
22110 -- Signed_Integer_Type_Declaration --
22111 -------------------------------------
22113 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
22114 Implicit_Base : Entity_Id;
22115 Base_Typ : Entity_Id;
22116 Lo_Val : Uint;
22117 Hi_Val : Uint;
22118 Errs : Boolean := False;
22119 Lo : Node_Id;
22120 Hi : Node_Id;
22122 function Can_Derive_From (E : Entity_Id) return Boolean;
22123 -- Determine whether given bounds allow derivation from specified type
22125 procedure Check_Bound (Expr : Node_Id);
22126 -- Check bound to make sure it is integral and static. If not, post
22127 -- appropriate error message and set Errs flag
22129 ---------------------
22130 -- Can_Derive_From --
22131 ---------------------
22133 -- Note we check both bounds against both end values, to deal with
22134 -- strange types like ones with a range of 0 .. -12341234.
22136 function Can_Derive_From (E : Entity_Id) return Boolean is
22137 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
22138 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
22139 begin
22140 return Lo <= Lo_Val and then Lo_Val <= Hi
22141 and then
22142 Lo <= Hi_Val and then Hi_Val <= Hi;
22143 end Can_Derive_From;
22145 -----------------
22146 -- Check_Bound --
22147 -----------------
22149 procedure Check_Bound (Expr : Node_Id) is
22150 begin
22151 -- If a range constraint is used as an integer type definition, each
22152 -- bound of the range must be defined by a static expression of some
22153 -- integer type, but the two bounds need not have the same integer
22154 -- type (Negative bounds are allowed.) (RM 3.5.4)
22156 if not Is_Integer_Type (Etype (Expr)) then
22157 Error_Msg_N
22158 ("integer type definition bounds must be of integer type", Expr);
22159 Errs := True;
22161 elsif not Is_OK_Static_Expression (Expr) then
22162 Flag_Non_Static_Expr
22163 ("non-static expression used for integer type bound!", Expr);
22164 Errs := True;
22166 -- The bounds are folded into literals, and we set their type to be
22167 -- universal, to avoid typing difficulties: we cannot set the type
22168 -- of the literal to the new type, because this would be a forward
22169 -- reference for the back end, and if the original type is user-
22170 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
22172 else
22173 if Is_Entity_Name (Expr) then
22174 Fold_Uint (Expr, Expr_Value (Expr), True);
22175 end if;
22177 Set_Etype (Expr, Universal_Integer);
22178 end if;
22179 end Check_Bound;
22181 -- Start of processing for Signed_Integer_Type_Declaration
22183 begin
22184 -- Create an anonymous base type
22186 Implicit_Base :=
22187 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
22189 -- Analyze and check the bounds, they can be of any integer type
22191 Lo := Low_Bound (Def);
22192 Hi := High_Bound (Def);
22194 -- Arbitrarily use Integer as the type if either bound had an error
22196 if Hi = Error or else Lo = Error then
22197 Base_Typ := Any_Integer;
22198 Set_Error_Posted (T, True);
22200 -- Here both bounds are OK expressions
22202 else
22203 Analyze_And_Resolve (Lo, Any_Integer);
22204 Analyze_And_Resolve (Hi, Any_Integer);
22206 Check_Bound (Lo);
22207 Check_Bound (Hi);
22209 if Errs then
22210 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22211 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22212 end if;
22214 -- Find type to derive from
22216 Lo_Val := Expr_Value (Lo);
22217 Hi_Val := Expr_Value (Hi);
22219 if Can_Derive_From (Standard_Short_Short_Integer) then
22220 Base_Typ := Base_Type (Standard_Short_Short_Integer);
22222 elsif Can_Derive_From (Standard_Short_Integer) then
22223 Base_Typ := Base_Type (Standard_Short_Integer);
22225 elsif Can_Derive_From (Standard_Integer) then
22226 Base_Typ := Base_Type (Standard_Integer);
22228 elsif Can_Derive_From (Standard_Long_Integer) then
22229 Base_Typ := Base_Type (Standard_Long_Integer);
22231 elsif Can_Derive_From (Standard_Long_Long_Integer) then
22232 Check_Restriction (No_Long_Long_Integers, Def);
22233 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22235 else
22236 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22237 Error_Msg_N ("integer type definition bounds out of range", Def);
22238 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22239 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22240 end if;
22241 end if;
22243 -- Complete both implicit base and declared first subtype entities. The
22244 -- inheritance of the rep item chain ensures that SPARK-related pragmas
22245 -- are not clobbered when the signed integer type acts as a full view of
22246 -- a private type.
22248 Set_Etype (Implicit_Base, Base_Typ);
22249 Set_Size_Info (Implicit_Base, Base_Typ);
22250 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
22251 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
22252 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
22254 Set_Ekind (T, E_Signed_Integer_Subtype);
22255 Set_Etype (T, Implicit_Base);
22256 Set_Size_Info (T, Implicit_Base);
22257 Inherit_Rep_Item_Chain (T, Implicit_Base);
22258 Set_Scalar_Range (T, Def);
22259 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
22260 Set_Is_Constrained (T);
22261 end Signed_Integer_Type_Declaration;
22263 end Sem_Ch3;