2011-08-15 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / tree-predcom.c
blobac2314778a809b686bdcb923e7e5046724905699
1 /* Predictive commoning.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file implements the predictive commoning optimization. Predictive
22 commoning can be viewed as CSE around a loop, and with some improvements,
23 as generalized strength reduction-- i.e., reusing values computed in
24 earlier iterations of a loop in the later ones. So far, the pass only
25 handles the most useful case, that is, reusing values of memory references.
26 If you think this is all just a special case of PRE, you are sort of right;
27 however, concentrating on loops is simpler, and makes it possible to
28 incorporate data dependence analysis to detect the opportunities, perform
29 loop unrolling to avoid copies together with renaming immediately,
30 and if needed, we could also take register pressure into account.
32 Let us demonstrate what is done on an example:
34 for (i = 0; i < 100; i++)
36 a[i+2] = a[i] + a[i+1];
37 b[10] = b[10] + i;
38 c[i] = c[99 - i];
39 d[i] = d[i + 1];
42 1) We find data references in the loop, and split them to mutually
43 independent groups (i.e., we find components of a data dependence
44 graph). We ignore read-read dependences whose distance is not constant.
45 (TODO -- we could also ignore antidependences). In this example, we
46 find the following groups:
48 a[i]{read}, a[i+1]{read}, a[i+2]{write}
49 b[10]{read}, b[10]{write}
50 c[99 - i]{read}, c[i]{write}
51 d[i + 1]{read}, d[i]{write}
53 2) Inside each of the group, we verify several conditions:
54 a) all the references must differ in indices only, and the indices
55 must all have the same step
56 b) the references must dominate loop latch (and thus, they must be
57 ordered by dominance relation).
58 c) the distance of the indices must be a small multiple of the step
59 We are then able to compute the difference of the references (# of
60 iterations before they point to the same place as the first of them).
61 Also, in case there are writes in the loop, we split the groups into
62 chains whose head is the write whose values are used by the reads in
63 the same chain. The chains are then processed independently,
64 making the further transformations simpler. Also, the shorter chains
65 need the same number of registers, but may require lower unrolling
66 factor in order to get rid of the copies on the loop latch.
68 In our example, we get the following chains (the chain for c is invalid).
70 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
71 b[10]{read,+0}, b[10]{write,+0}
72 d[i + 1]{read,+0}, d[i]{write,+1}
74 3) For each read, we determine the read or write whose value it reuses,
75 together with the distance of this reuse. I.e. we take the last
76 reference before it with distance 0, or the last of the references
77 with the smallest positive distance to the read. Then, we remove
78 the references that are not used in any of these chains, discard the
79 empty groups, and propagate all the links so that they point to the
80 single root reference of the chain (adjusting their distance
81 appropriately). Some extra care needs to be taken for references with
82 step 0. In our example (the numbers indicate the distance of the
83 reuse),
85 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
86 b[10] --> (*) 1, b[10] (*)
88 4) The chains are combined together if possible. If the corresponding
89 elements of two chains are always combined together with the same
90 operator, we remember just the result of this combination, instead
91 of remembering the values separately. We may need to perform
92 reassociation to enable combining, for example
94 e[i] + f[i+1] + e[i+1] + f[i]
96 can be reassociated as
98 (e[i] + f[i]) + (e[i+1] + f[i+1])
100 and we can combine the chains for e and f into one chain.
102 5) For each root reference (end of the chain) R, let N be maximum distance
103 of a reference reusing its value. Variables R0 upto RN are created,
104 together with phi nodes that transfer values from R1 .. RN to
105 R0 .. R(N-1).
106 Initial values are loaded to R0..R(N-1) (in case not all references
107 must necessarily be accessed and they may trap, we may fail here;
108 TODO sometimes, the loads could be guarded by a check for the number
109 of iterations). Values loaded/stored in roots are also copied to
110 RN. Other reads are replaced with the appropriate variable Ri.
111 Everything is put to SSA form.
113 As a small improvement, if R0 is dead after the root (i.e., all uses of
114 the value with the maximum distance dominate the root), we can avoid
115 creating RN and use R0 instead of it.
117 In our example, we get (only the parts concerning a and b are shown):
118 for (i = 0; i < 100; i++)
120 f = phi (a[0], s);
121 s = phi (a[1], f);
122 x = phi (b[10], x);
124 f = f + s;
125 a[i+2] = f;
126 x = x + i;
127 b[10] = x;
130 6) Factor F for unrolling is determined as the smallest common multiple of
131 (N + 1) for each root reference (N for references for that we avoided
132 creating RN). If F and the loop is small enough, loop is unrolled F
133 times. The stores to RN (R0) in the copies of the loop body are
134 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
135 be coalesced and the copies can be eliminated.
137 TODO -- copy propagation and other optimizations may change the live
138 ranges of the temporary registers and prevent them from being coalesced;
139 this may increase the register pressure.
141 In our case, F = 2 and the (main loop of the) result is
143 for (i = 0; i < ...; i += 2)
145 f = phi (a[0], f);
146 s = phi (a[1], s);
147 x = phi (b[10], x);
149 f = f + s;
150 a[i+2] = f;
151 x = x + i;
152 b[10] = x;
154 s = s + f;
155 a[i+3] = s;
156 x = x + i;
157 b[10] = x;
160 TODO -- stores killing other stores can be taken into account, e.g.,
161 for (i = 0; i < n; i++)
163 a[i] = 1;
164 a[i+2] = 2;
167 can be replaced with
169 t0 = a[0];
170 t1 = a[1];
171 for (i = 0; i < n; i++)
173 a[i] = 1;
174 t2 = 2;
175 t0 = t1;
176 t1 = t2;
178 a[n] = t0;
179 a[n+1] = t1;
181 The interesting part is that this would generalize store motion; still, since
182 sm is performed elsewhere, it does not seem that important.
184 Predictive commoning can be generalized for arbitrary computations (not
185 just memory loads), and also nontrivial transfer functions (e.g., replacing
186 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "tree.h"
193 #include "tm_p.h"
194 #include "cfgloop.h"
195 #include "tree-flow.h"
196 #include "ggc.h"
197 #include "tree-data-ref.h"
198 #include "tree-scalar-evolution.h"
199 #include "tree-chrec.h"
200 #include "params.h"
201 #include "tree-pretty-print.h"
202 #include "gimple-pretty-print.h"
203 #include "tree-pass.h"
204 #include "tree-affine.h"
205 #include "tree-inline.h"
207 /* The maximum number of iterations between the considered memory
208 references. */
210 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
212 /* Data references (or phi nodes that carry data reference values across
213 loop iterations). */
215 typedef struct dref_d
217 /* The reference itself. */
218 struct data_reference *ref;
220 /* The statement in that the reference appears. */
221 gimple stmt;
223 /* In case that STMT is a phi node, this field is set to the SSA name
224 defined by it in replace_phis_by_defined_names (in order to avoid
225 pointing to phi node that got reallocated in the meantime). */
226 tree name_defined_by_phi;
228 /* Distance of the reference from the root of the chain (in number of
229 iterations of the loop). */
230 unsigned distance;
232 /* Number of iterations offset from the first reference in the component. */
233 double_int offset;
235 /* Number of the reference in a component, in dominance ordering. */
236 unsigned pos;
238 /* True if the memory reference is always accessed when the loop is
239 entered. */
240 unsigned always_accessed : 1;
241 } *dref;
243 DEF_VEC_P (dref);
244 DEF_VEC_ALLOC_P (dref, heap);
246 /* Type of the chain of the references. */
248 enum chain_type
250 /* The addresses of the references in the chain are constant. */
251 CT_INVARIANT,
253 /* There are only loads in the chain. */
254 CT_LOAD,
256 /* Root of the chain is store, the rest are loads. */
257 CT_STORE_LOAD,
259 /* A combination of two chains. */
260 CT_COMBINATION
263 /* Chains of data references. */
265 typedef struct chain
267 /* Type of the chain. */
268 enum chain_type type;
270 /* For combination chains, the operator and the two chains that are
271 combined, and the type of the result. */
272 enum tree_code op;
273 tree rslt_type;
274 struct chain *ch1, *ch2;
276 /* The references in the chain. */
277 VEC(dref,heap) *refs;
279 /* The maximum distance of the reference in the chain from the root. */
280 unsigned length;
282 /* The variables used to copy the value throughout iterations. */
283 VEC(tree,heap) *vars;
285 /* Initializers for the variables. */
286 VEC(tree,heap) *inits;
288 /* True if there is a use of a variable with the maximal distance
289 that comes after the root in the loop. */
290 unsigned has_max_use_after : 1;
292 /* True if all the memory references in the chain are always accessed. */
293 unsigned all_always_accessed : 1;
295 /* True if this chain was combined together with some other chain. */
296 unsigned combined : 1;
297 } *chain_p;
299 DEF_VEC_P (chain_p);
300 DEF_VEC_ALLOC_P (chain_p, heap);
302 /* Describes the knowledge about the step of the memory references in
303 the component. */
305 enum ref_step_type
307 /* The step is zero. */
308 RS_INVARIANT,
310 /* The step is nonzero. */
311 RS_NONZERO,
313 /* The step may or may not be nonzero. */
314 RS_ANY
317 /* Components of the data dependence graph. */
319 struct component
321 /* The references in the component. */
322 VEC(dref,heap) *refs;
324 /* What we know about the step of the references in the component. */
325 enum ref_step_type comp_step;
327 /* Next component in the list. */
328 struct component *next;
331 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
333 static bitmap looparound_phis;
335 /* Cache used by tree_to_aff_combination_expand. */
337 static struct pointer_map_t *name_expansions;
339 /* Dumps data reference REF to FILE. */
341 extern void dump_dref (FILE *, dref);
342 void
343 dump_dref (FILE *file, dref ref)
345 if (ref->ref)
347 fprintf (file, " ");
348 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
349 fprintf (file, " (id %u%s)\n", ref->pos,
350 DR_IS_READ (ref->ref) ? "" : ", write");
352 fprintf (file, " offset ");
353 dump_double_int (file, ref->offset, false);
354 fprintf (file, "\n");
356 fprintf (file, " distance %u\n", ref->distance);
358 else
360 if (gimple_code (ref->stmt) == GIMPLE_PHI)
361 fprintf (file, " looparound ref\n");
362 else
363 fprintf (file, " combination ref\n");
364 fprintf (file, " in statement ");
365 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
366 fprintf (file, "\n");
367 fprintf (file, " distance %u\n", ref->distance);
372 /* Dumps CHAIN to FILE. */
374 extern void dump_chain (FILE *, chain_p);
375 void
376 dump_chain (FILE *file, chain_p chain)
378 dref a;
379 const char *chain_type;
380 unsigned i;
381 tree var;
383 switch (chain->type)
385 case CT_INVARIANT:
386 chain_type = "Load motion";
387 break;
389 case CT_LOAD:
390 chain_type = "Loads-only";
391 break;
393 case CT_STORE_LOAD:
394 chain_type = "Store-loads";
395 break;
397 case CT_COMBINATION:
398 chain_type = "Combination";
399 break;
401 default:
402 gcc_unreachable ();
405 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
406 chain->combined ? " (combined)" : "");
407 if (chain->type != CT_INVARIANT)
408 fprintf (file, " max distance %u%s\n", chain->length,
409 chain->has_max_use_after ? "" : ", may reuse first");
411 if (chain->type == CT_COMBINATION)
413 fprintf (file, " equal to %p %s %p in type ",
414 (void *) chain->ch1, op_symbol_code (chain->op),
415 (void *) chain->ch2);
416 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
417 fprintf (file, "\n");
420 if (chain->vars)
422 fprintf (file, " vars");
423 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
425 fprintf (file, " ");
426 print_generic_expr (file, var, TDF_SLIM);
428 fprintf (file, "\n");
431 if (chain->inits)
433 fprintf (file, " inits");
434 FOR_EACH_VEC_ELT (tree, chain->inits, i, var)
436 fprintf (file, " ");
437 print_generic_expr (file, var, TDF_SLIM);
439 fprintf (file, "\n");
442 fprintf (file, " references:\n");
443 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
444 dump_dref (file, a);
446 fprintf (file, "\n");
449 /* Dumps CHAINS to FILE. */
451 extern void dump_chains (FILE *, VEC (chain_p, heap) *);
452 void
453 dump_chains (FILE *file, VEC (chain_p, heap) *chains)
455 chain_p chain;
456 unsigned i;
458 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
459 dump_chain (file, chain);
462 /* Dumps COMP to FILE. */
464 extern void dump_component (FILE *, struct component *);
465 void
466 dump_component (FILE *file, struct component *comp)
468 dref a;
469 unsigned i;
471 fprintf (file, "Component%s:\n",
472 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
473 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
474 dump_dref (file, a);
475 fprintf (file, "\n");
478 /* Dumps COMPS to FILE. */
480 extern void dump_components (FILE *, struct component *);
481 void
482 dump_components (FILE *file, struct component *comps)
484 struct component *comp;
486 for (comp = comps; comp; comp = comp->next)
487 dump_component (file, comp);
490 /* Frees a chain CHAIN. */
492 static void
493 release_chain (chain_p chain)
495 dref ref;
496 unsigned i;
498 if (chain == NULL)
499 return;
501 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
502 free (ref);
504 VEC_free (dref, heap, chain->refs);
505 VEC_free (tree, heap, chain->vars);
506 VEC_free (tree, heap, chain->inits);
508 free (chain);
511 /* Frees CHAINS. */
513 static void
514 release_chains (VEC (chain_p, heap) *chains)
516 unsigned i;
517 chain_p chain;
519 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
520 release_chain (chain);
521 VEC_free (chain_p, heap, chains);
524 /* Frees a component COMP. */
526 static void
527 release_component (struct component *comp)
529 VEC_free (dref, heap, comp->refs);
530 free (comp);
533 /* Frees list of components COMPS. */
535 static void
536 release_components (struct component *comps)
538 struct component *act, *next;
540 for (act = comps; act; act = next)
542 next = act->next;
543 release_component (act);
547 /* Finds a root of tree given by FATHERS containing A, and performs path
548 shortening. */
550 static unsigned
551 component_of (unsigned fathers[], unsigned a)
553 unsigned root, n;
555 for (root = a; root != fathers[root]; root = fathers[root])
556 continue;
558 for (; a != root; a = n)
560 n = fathers[a];
561 fathers[a] = root;
564 return root;
567 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
568 components, A and B are components to merge. */
570 static void
571 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
573 unsigned ca = component_of (fathers, a);
574 unsigned cb = component_of (fathers, b);
576 if (ca == cb)
577 return;
579 if (sizes[ca] < sizes[cb])
581 sizes[cb] += sizes[ca];
582 fathers[ca] = cb;
584 else
586 sizes[ca] += sizes[cb];
587 fathers[cb] = ca;
591 /* Returns true if A is a reference that is suitable for predictive commoning
592 in the innermost loop that contains it. REF_STEP is set according to the
593 step of the reference A. */
595 static bool
596 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
598 tree ref = DR_REF (a), step = DR_STEP (a);
600 if (!step
601 || TREE_THIS_VOLATILE (ref)
602 || !is_gimple_reg_type (TREE_TYPE (ref))
603 || tree_could_throw_p (ref))
604 return false;
606 if (integer_zerop (step))
607 *ref_step = RS_INVARIANT;
608 else if (integer_nonzerop (step))
609 *ref_step = RS_NONZERO;
610 else
611 *ref_step = RS_ANY;
613 return true;
616 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
618 static void
619 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
621 aff_tree delta;
623 tree_to_aff_combination_expand (DR_OFFSET (dr), sizetype, offset,
624 &name_expansions);
625 aff_combination_const (&delta, sizetype, tree_to_double_int (DR_INIT (dr)));
626 aff_combination_add (offset, &delta);
629 /* Determines number of iterations of the innermost enclosing loop before B
630 refers to exactly the same location as A and stores it to OFF. If A and
631 B do not have the same step, they never meet, or anything else fails,
632 returns false, otherwise returns true. Both A and B are assumed to
633 satisfy suitable_reference_p. */
635 static bool
636 determine_offset (struct data_reference *a, struct data_reference *b,
637 double_int *off)
639 aff_tree diff, baseb, step;
640 tree typea, typeb;
642 /* Check that both the references access the location in the same type. */
643 typea = TREE_TYPE (DR_REF (a));
644 typeb = TREE_TYPE (DR_REF (b));
645 if (!useless_type_conversion_p (typeb, typea))
646 return false;
648 /* Check whether the base address and the step of both references is the
649 same. */
650 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
651 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
652 return false;
654 if (integer_zerop (DR_STEP (a)))
656 /* If the references have loop invariant address, check that they access
657 exactly the same location. */
658 *off = double_int_zero;
659 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
660 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
663 /* Compare the offsets of the addresses, and check whether the difference
664 is a multiple of step. */
665 aff_combination_dr_offset (a, &diff);
666 aff_combination_dr_offset (b, &baseb);
667 aff_combination_scale (&baseb, double_int_minus_one);
668 aff_combination_add (&diff, &baseb);
670 tree_to_aff_combination_expand (DR_STEP (a), sizetype,
671 &step, &name_expansions);
672 return aff_combination_constant_multiple_p (&diff, &step, off);
675 /* Returns the last basic block in LOOP for that we are sure that
676 it is executed whenever the loop is entered. */
678 static basic_block
679 last_always_executed_block (struct loop *loop)
681 unsigned i;
682 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
683 edge ex;
684 basic_block last = loop->latch;
686 FOR_EACH_VEC_ELT (edge, exits, i, ex)
687 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
688 VEC_free (edge, heap, exits);
690 return last;
693 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
695 static struct component *
696 split_data_refs_to_components (struct loop *loop,
697 VEC (data_reference_p, heap) *datarefs,
698 VEC (ddr_p, heap) *depends)
700 unsigned i, n = VEC_length (data_reference_p, datarefs);
701 unsigned ca, ia, ib, bad;
702 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
703 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
704 struct component **comps;
705 struct data_reference *dr, *dra, *drb;
706 struct data_dependence_relation *ddr;
707 struct component *comp_list = NULL, *comp;
708 dref dataref;
709 basic_block last_always_executed = last_always_executed_block (loop);
711 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
713 if (!DR_REF (dr))
715 /* A fake reference for call or asm_expr that may clobber memory;
716 just fail. */
717 goto end;
719 dr->aux = (void *) (size_t) i;
720 comp_father[i] = i;
721 comp_size[i] = 1;
724 /* A component reserved for the "bad" data references. */
725 comp_father[n] = n;
726 comp_size[n] = 1;
728 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
730 enum ref_step_type dummy;
732 if (!suitable_reference_p (dr, &dummy))
734 ia = (unsigned) (size_t) dr->aux;
735 merge_comps (comp_father, comp_size, n, ia);
739 FOR_EACH_VEC_ELT (ddr_p, depends, i, ddr)
741 double_int dummy_off;
743 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
744 continue;
746 dra = DDR_A (ddr);
747 drb = DDR_B (ddr);
748 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
749 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
750 if (ia == ib)
751 continue;
753 bad = component_of (comp_father, n);
755 /* If both A and B are reads, we may ignore unsuitable dependences. */
756 if (DR_IS_READ (dra) && DR_IS_READ (drb)
757 && (ia == bad || ib == bad
758 || !determine_offset (dra, drb, &dummy_off)))
759 continue;
761 merge_comps (comp_father, comp_size, ia, ib);
764 comps = XCNEWVEC (struct component *, n);
765 bad = component_of (comp_father, n);
766 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
768 ia = (unsigned) (size_t) dr->aux;
769 ca = component_of (comp_father, ia);
770 if (ca == bad)
771 continue;
773 comp = comps[ca];
774 if (!comp)
776 comp = XCNEW (struct component);
777 comp->refs = VEC_alloc (dref, heap, comp_size[ca]);
778 comps[ca] = comp;
781 dataref = XCNEW (struct dref_d);
782 dataref->ref = dr;
783 dataref->stmt = DR_STMT (dr);
784 dataref->offset = double_int_zero;
785 dataref->distance = 0;
787 dataref->always_accessed
788 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
789 gimple_bb (dataref->stmt));
790 dataref->pos = VEC_length (dref, comp->refs);
791 VEC_quick_push (dref, comp->refs, dataref);
794 for (i = 0; i < n; i++)
796 comp = comps[i];
797 if (comp)
799 comp->next = comp_list;
800 comp_list = comp;
803 free (comps);
805 end:
806 free (comp_father);
807 free (comp_size);
808 return comp_list;
811 /* Returns true if the component COMP satisfies the conditions
812 described in 2) at the beginning of this file. LOOP is the current
813 loop. */
815 static bool
816 suitable_component_p (struct loop *loop, struct component *comp)
818 unsigned i;
819 dref a, first;
820 basic_block ba, bp = loop->header;
821 bool ok, has_write = false;
823 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
825 ba = gimple_bb (a->stmt);
827 if (!just_once_each_iteration_p (loop, ba))
828 return false;
830 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
831 bp = ba;
833 if (DR_IS_WRITE (a->ref))
834 has_write = true;
837 first = VEC_index (dref, comp->refs, 0);
838 ok = suitable_reference_p (first->ref, &comp->comp_step);
839 gcc_assert (ok);
840 first->offset = double_int_zero;
842 for (i = 1; VEC_iterate (dref, comp->refs, i, a); i++)
844 if (!determine_offset (first->ref, a->ref, &a->offset))
845 return false;
847 #ifdef ENABLE_CHECKING
849 enum ref_step_type a_step;
850 ok = suitable_reference_p (a->ref, &a_step);
851 gcc_assert (ok && a_step == comp->comp_step);
853 #endif
856 /* If there is a write inside the component, we must know whether the
857 step is nonzero or not -- we would not otherwise be able to recognize
858 whether the value accessed by reads comes from the OFFSET-th iteration
859 or the previous one. */
860 if (has_write && comp->comp_step == RS_ANY)
861 return false;
863 return true;
866 /* Check the conditions on references inside each of components COMPS,
867 and remove the unsuitable components from the list. The new list
868 of components is returned. The conditions are described in 2) at
869 the beginning of this file. LOOP is the current loop. */
871 static struct component *
872 filter_suitable_components (struct loop *loop, struct component *comps)
874 struct component **comp, *act;
876 for (comp = &comps; *comp; )
878 act = *comp;
879 if (suitable_component_p (loop, act))
880 comp = &act->next;
881 else
883 dref ref;
884 unsigned i;
886 *comp = act->next;
887 FOR_EACH_VEC_ELT (dref, act->refs, i, ref)
888 free (ref);
889 release_component (act);
893 return comps;
896 /* Compares two drefs A and B by their offset and position. Callback for
897 qsort. */
899 static int
900 order_drefs (const void *a, const void *b)
902 const dref *const da = (const dref *) a;
903 const dref *const db = (const dref *) b;
904 int offcmp = double_int_scmp ((*da)->offset, (*db)->offset);
906 if (offcmp != 0)
907 return offcmp;
909 return (*da)->pos - (*db)->pos;
912 /* Returns root of the CHAIN. */
914 static inline dref
915 get_chain_root (chain_p chain)
917 return VEC_index (dref, chain->refs, 0);
920 /* Adds REF to the chain CHAIN. */
922 static void
923 add_ref_to_chain (chain_p chain, dref ref)
925 dref root = get_chain_root (chain);
926 double_int dist;
928 gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0);
929 dist = double_int_sub (ref->offset, root->offset);
930 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0)
932 free (ref);
933 return;
935 gcc_assert (double_int_fits_in_uhwi_p (dist));
937 VEC_safe_push (dref, heap, chain->refs, ref);
939 ref->distance = double_int_to_uhwi (dist);
941 if (ref->distance >= chain->length)
943 chain->length = ref->distance;
944 chain->has_max_use_after = false;
947 if (ref->distance == chain->length
948 && ref->pos > root->pos)
949 chain->has_max_use_after = true;
951 chain->all_always_accessed &= ref->always_accessed;
954 /* Returns the chain for invariant component COMP. */
956 static chain_p
957 make_invariant_chain (struct component *comp)
959 chain_p chain = XCNEW (struct chain);
960 unsigned i;
961 dref ref;
963 chain->type = CT_INVARIANT;
965 chain->all_always_accessed = true;
967 FOR_EACH_VEC_ELT (dref, comp->refs, i, ref)
969 VEC_safe_push (dref, heap, chain->refs, ref);
970 chain->all_always_accessed &= ref->always_accessed;
973 return chain;
976 /* Make a new chain rooted at REF. */
978 static chain_p
979 make_rooted_chain (dref ref)
981 chain_p chain = XCNEW (struct chain);
983 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
985 VEC_safe_push (dref, heap, chain->refs, ref);
986 chain->all_always_accessed = ref->always_accessed;
988 ref->distance = 0;
990 return chain;
993 /* Returns true if CHAIN is not trivial. */
995 static bool
996 nontrivial_chain_p (chain_p chain)
998 return chain != NULL && VEC_length (dref, chain->refs) > 1;
1001 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1002 is no such name. */
1004 static tree
1005 name_for_ref (dref ref)
1007 tree name;
1009 if (is_gimple_assign (ref->stmt))
1011 if (!ref->ref || DR_IS_READ (ref->ref))
1012 name = gimple_assign_lhs (ref->stmt);
1013 else
1014 name = gimple_assign_rhs1 (ref->stmt);
1016 else
1017 name = PHI_RESULT (ref->stmt);
1019 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1022 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1023 iterations of the innermost enclosing loop). */
1025 static bool
1026 valid_initializer_p (struct data_reference *ref,
1027 unsigned distance, struct data_reference *root)
1029 aff_tree diff, base, step;
1030 double_int off;
1032 /* Both REF and ROOT must be accessing the same object. */
1033 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1034 return false;
1036 /* The initializer is defined outside of loop, hence its address must be
1037 invariant inside the loop. */
1038 gcc_assert (integer_zerop (DR_STEP (ref)));
1040 /* If the address of the reference is invariant, initializer must access
1041 exactly the same location. */
1042 if (integer_zerop (DR_STEP (root)))
1043 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1044 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1046 /* Verify that this index of REF is equal to the root's index at
1047 -DISTANCE-th iteration. */
1048 aff_combination_dr_offset (root, &diff);
1049 aff_combination_dr_offset (ref, &base);
1050 aff_combination_scale (&base, double_int_minus_one);
1051 aff_combination_add (&diff, &base);
1053 tree_to_aff_combination_expand (DR_STEP (root), sizetype, &step,
1054 &name_expansions);
1055 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1056 return false;
1058 if (!double_int_equal_p (off, uhwi_to_double_int (distance)))
1059 return false;
1061 return true;
1064 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1065 initial value is correct (equal to initial value of REF shifted by one
1066 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1067 is the root of the current chain. */
1069 static gimple
1070 find_looparound_phi (struct loop *loop, dref ref, dref root)
1072 tree name, init, init_ref;
1073 gimple phi = NULL, init_stmt;
1074 edge latch = loop_latch_edge (loop);
1075 struct data_reference init_dr;
1076 gimple_stmt_iterator psi;
1078 if (is_gimple_assign (ref->stmt))
1080 if (DR_IS_READ (ref->ref))
1081 name = gimple_assign_lhs (ref->stmt);
1082 else
1083 name = gimple_assign_rhs1 (ref->stmt);
1085 else
1086 name = PHI_RESULT (ref->stmt);
1087 if (!name)
1088 return NULL;
1090 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1092 phi = gsi_stmt (psi);
1093 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1094 break;
1097 if (gsi_end_p (psi))
1098 return NULL;
1100 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1101 if (TREE_CODE (init) != SSA_NAME)
1102 return NULL;
1103 init_stmt = SSA_NAME_DEF_STMT (init);
1104 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1105 return NULL;
1106 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1108 init_ref = gimple_assign_rhs1 (init_stmt);
1109 if (!REFERENCE_CLASS_P (init_ref)
1110 && !DECL_P (init_ref))
1111 return NULL;
1113 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1114 loop enclosing PHI). */
1115 memset (&init_dr, 0, sizeof (struct data_reference));
1116 DR_REF (&init_dr) = init_ref;
1117 DR_STMT (&init_dr) = phi;
1118 if (!dr_analyze_innermost (&init_dr))
1119 return NULL;
1121 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1122 return NULL;
1124 return phi;
1127 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1129 static void
1130 insert_looparound_copy (chain_p chain, dref ref, gimple phi)
1132 dref nw = XCNEW (struct dref_d), aref;
1133 unsigned i;
1135 nw->stmt = phi;
1136 nw->distance = ref->distance + 1;
1137 nw->always_accessed = 1;
1139 FOR_EACH_VEC_ELT (dref, chain->refs, i, aref)
1140 if (aref->distance >= nw->distance)
1141 break;
1142 VEC_safe_insert (dref, heap, chain->refs, i, nw);
1144 if (nw->distance > chain->length)
1146 chain->length = nw->distance;
1147 chain->has_max_use_after = false;
1151 /* For references in CHAIN that are copied around the LOOP (created previously
1152 by PRE, or by user), add the results of such copies to the chain. This
1153 enables us to remove the copies by unrolling, and may need less registers
1154 (also, it may allow us to combine chains together). */
1156 static void
1157 add_looparound_copies (struct loop *loop, chain_p chain)
1159 unsigned i;
1160 dref ref, root = get_chain_root (chain);
1161 gimple phi;
1163 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
1165 phi = find_looparound_phi (loop, ref, root);
1166 if (!phi)
1167 continue;
1169 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1170 insert_looparound_copy (chain, ref, phi);
1174 /* Find roots of the values and determine distances in the component COMP.
1175 The references are redistributed into CHAINS. LOOP is the current
1176 loop. */
1178 static void
1179 determine_roots_comp (struct loop *loop,
1180 struct component *comp,
1181 VEC (chain_p, heap) **chains)
1183 unsigned i;
1184 dref a;
1185 chain_p chain = NULL;
1186 double_int last_ofs = double_int_zero;
1188 /* Invariants are handled specially. */
1189 if (comp->comp_step == RS_INVARIANT)
1191 chain = make_invariant_chain (comp);
1192 VEC_safe_push (chain_p, heap, *chains, chain);
1193 return;
1196 VEC_qsort (dref, comp->refs, order_drefs);
1198 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
1200 if (!chain || DR_IS_WRITE (a->ref)
1201 || double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE),
1202 double_int_sub (a->offset, last_ofs)) <= 0)
1204 if (nontrivial_chain_p (chain))
1206 add_looparound_copies (loop, chain);
1207 VEC_safe_push (chain_p, heap, *chains, chain);
1209 else
1210 release_chain (chain);
1211 chain = make_rooted_chain (a);
1212 last_ofs = a->offset;
1213 continue;
1216 add_ref_to_chain (chain, a);
1219 if (nontrivial_chain_p (chain))
1221 add_looparound_copies (loop, chain);
1222 VEC_safe_push (chain_p, heap, *chains, chain);
1224 else
1225 release_chain (chain);
1228 /* Find roots of the values and determine distances in components COMPS, and
1229 separates the references to CHAINS. LOOP is the current loop. */
1231 static void
1232 determine_roots (struct loop *loop,
1233 struct component *comps, VEC (chain_p, heap) **chains)
1235 struct component *comp;
1237 for (comp = comps; comp; comp = comp->next)
1238 determine_roots_comp (loop, comp, chains);
1241 /* Replace the reference in statement STMT with temporary variable
1242 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1243 the reference in the statement. IN_LHS is true if the reference
1244 is in the lhs of STMT, false if it is in rhs. */
1246 static void
1247 replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
1249 tree val;
1250 gimple new_stmt;
1251 gimple_stmt_iterator bsi, psi;
1253 if (gimple_code (stmt) == GIMPLE_PHI)
1255 gcc_assert (!in_lhs && !set);
1257 val = PHI_RESULT (stmt);
1258 bsi = gsi_after_labels (gimple_bb (stmt));
1259 psi = gsi_for_stmt (stmt);
1260 remove_phi_node (&psi, false);
1262 /* Turn the phi node into GIMPLE_ASSIGN. */
1263 new_stmt = gimple_build_assign (val, new_tree);
1264 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1265 return;
1268 /* Since the reference is of gimple_reg type, it should only
1269 appear as lhs or rhs of modify statement. */
1270 gcc_assert (is_gimple_assign (stmt));
1272 bsi = gsi_for_stmt (stmt);
1274 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1275 if (!set)
1277 gcc_assert (!in_lhs);
1278 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1279 stmt = gsi_stmt (bsi);
1280 update_stmt (stmt);
1281 return;
1284 if (in_lhs)
1286 /* We have statement
1288 OLD = VAL
1290 If OLD is a memory reference, then VAL is gimple_val, and we transform
1291 this to
1293 OLD = VAL
1294 NEW = VAL
1296 Otherwise, we are replacing a combination chain,
1297 VAL is the expression that performs the combination, and OLD is an
1298 SSA name. In this case, we transform the assignment to
1300 OLD = VAL
1301 NEW = OLD
1305 val = gimple_assign_lhs (stmt);
1306 if (TREE_CODE (val) != SSA_NAME)
1308 gcc_assert (gimple_assign_copy_p (stmt));
1309 val = gimple_assign_rhs1 (stmt);
1312 else
1314 /* VAL = OLD
1316 is transformed to
1318 VAL = OLD
1319 NEW = VAL */
1321 val = gimple_assign_lhs (stmt);
1324 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1325 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1328 /* Returns the reference to the address of REF in the ITER-th iteration of
1329 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1330 try to preserve the original shape of the reference (not rewrite it
1331 as an indirect ref to the address), to make tree_could_trap_p in
1332 prepare_initializers_chain return false more often. */
1334 static tree
1335 ref_at_iteration (struct loop *loop, tree ref, int iter)
1337 tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
1338 affine_iv iv;
1339 bool ok;
1341 if (handled_component_p (ref))
1343 op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
1344 if (!op0)
1345 return NULL_TREE;
1347 else if (!INDIRECT_REF_P (ref)
1348 && TREE_CODE (ref) != MEM_REF)
1349 return unshare_expr (ref);
1351 if (TREE_CODE (ref) == MEM_REF)
1353 ret = unshare_expr (ref);
1354 idx = TREE_OPERAND (ref, 0);
1355 idx_p = &TREE_OPERAND (ret, 0);
1357 else if (TREE_CODE (ref) == COMPONENT_REF)
1359 /* Check that the offset is loop invariant. */
1360 if (TREE_OPERAND (ref, 2)
1361 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1362 return NULL_TREE;
1364 return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
1365 unshare_expr (TREE_OPERAND (ref, 1)),
1366 unshare_expr (TREE_OPERAND (ref, 2)));
1368 else if (TREE_CODE (ref) == ARRAY_REF)
1370 /* Check that the lower bound and the step are loop invariant. */
1371 if (TREE_OPERAND (ref, 2)
1372 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1373 return NULL_TREE;
1374 if (TREE_OPERAND (ref, 3)
1375 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
1376 return NULL_TREE;
1378 ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
1379 unshare_expr (TREE_OPERAND (ref, 2)),
1380 unshare_expr (TREE_OPERAND (ref, 3)));
1381 idx = TREE_OPERAND (ref, 1);
1382 idx_p = &TREE_OPERAND (ret, 1);
1384 else
1385 return NULL_TREE;
1387 ok = simple_iv (loop, loop, idx, &iv, true);
1388 if (!ok)
1389 return NULL_TREE;
1390 iv.base = expand_simple_operations (iv.base);
1391 if (integer_zerop (iv.step))
1392 *idx_p = unshare_expr (iv.base);
1393 else
1395 type = TREE_TYPE (iv.base);
1396 if (POINTER_TYPE_P (type))
1398 val = fold_build2 (MULT_EXPR, sizetype, iv.step,
1399 size_int (iter));
1400 val = fold_build_pointer_plus (iv.base, val);
1402 else
1404 val = fold_build2 (MULT_EXPR, type, iv.step,
1405 build_int_cst_type (type, iter));
1406 val = fold_build2 (PLUS_EXPR, type, iv.base, val);
1408 *idx_p = unshare_expr (val);
1411 return ret;
1414 /* Get the initialization expression for the INDEX-th temporary variable
1415 of CHAIN. */
1417 static tree
1418 get_init_expr (chain_p chain, unsigned index)
1420 if (chain->type == CT_COMBINATION)
1422 tree e1 = get_init_expr (chain->ch1, index);
1423 tree e2 = get_init_expr (chain->ch2, index);
1425 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1427 else
1428 return VEC_index (tree, chain->inits, index);
1431 /* Marks all virtual operands of statement STMT for renaming. */
1433 void
1434 mark_virtual_ops_for_renaming (gimple stmt)
1436 tree var;
1438 if (gimple_code (stmt) == GIMPLE_PHI)
1440 var = PHI_RESULT (stmt);
1441 if (is_gimple_reg (var))
1442 return;
1444 if (TREE_CODE (var) == SSA_NAME)
1445 var = SSA_NAME_VAR (var);
1446 mark_sym_for_renaming (var);
1447 return;
1450 update_stmt (stmt);
1451 if (gimple_vuse (stmt))
1452 mark_sym_for_renaming (gimple_vop (cfun));
1455 /* Returns a new temporary variable used for the I-th variable carrying
1456 value of REF. The variable's uid is marked in TMP_VARS. */
1458 static tree
1459 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1461 tree type = TREE_TYPE (ref);
1462 /* We never access the components of the temporary variable in predictive
1463 commoning. */
1464 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1466 add_referenced_var (var);
1467 bitmap_set_bit (tmp_vars, DECL_UID (var));
1468 return var;
1471 /* Creates the variables for CHAIN, as well as phi nodes for them and
1472 initialization on entry to LOOP. Uids of the newly created
1473 temporary variables are marked in TMP_VARS. */
1475 static void
1476 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1478 unsigned i;
1479 unsigned n = chain->length;
1480 dref root = get_chain_root (chain);
1481 bool reuse_first = !chain->has_max_use_after;
1482 tree ref, init, var, next;
1483 gimple phi;
1484 gimple_seq stmts;
1485 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1487 /* If N == 0, then all the references are within the single iteration. And
1488 since this is an nonempty chain, reuse_first cannot be true. */
1489 gcc_assert (n > 0 || !reuse_first);
1491 chain->vars = VEC_alloc (tree, heap, n + 1);
1493 if (chain->type == CT_COMBINATION)
1494 ref = gimple_assign_lhs (root->stmt);
1495 else
1496 ref = DR_REF (root->ref);
1498 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1500 var = predcom_tmp_var (ref, i, tmp_vars);
1501 VEC_quick_push (tree, chain->vars, var);
1503 if (reuse_first)
1504 VEC_quick_push (tree, chain->vars, VEC_index (tree, chain->vars, 0));
1506 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
1507 VEC_replace (tree, chain->vars, i, make_ssa_name (var, NULL));
1509 for (i = 0; i < n; i++)
1511 var = VEC_index (tree, chain->vars, i);
1512 next = VEC_index (tree, chain->vars, i + 1);
1513 init = get_init_expr (chain, i);
1515 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1516 if (stmts)
1517 gsi_insert_seq_on_edge_immediate (entry, stmts);
1519 phi = create_phi_node (var, loop->header);
1520 SSA_NAME_DEF_STMT (var) = phi;
1521 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1522 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1526 /* Create the variables and initialization statement for root of chain
1527 CHAIN. Uids of the newly created temporary variables are marked
1528 in TMP_VARS. */
1530 static void
1531 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1533 dref root = get_chain_root (chain);
1534 bool in_lhs = (chain->type == CT_STORE_LOAD
1535 || chain->type == CT_COMBINATION);
1537 initialize_root_vars (loop, chain, tmp_vars);
1538 replace_ref_with (root->stmt,
1539 VEC_index (tree, chain->vars, chain->length),
1540 true, in_lhs);
1543 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1544 initialization on entry to LOOP if necessary. The ssa name for the variable
1545 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1546 around the loop is created. Uid of the newly created temporary variable
1547 is marked in TMP_VARS. INITS is the list containing the (single)
1548 initializer. */
1550 static void
1551 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1552 VEC(tree, heap) **vars, VEC(tree, heap) *inits,
1553 bitmap tmp_vars)
1555 unsigned i;
1556 tree ref = DR_REF (root->ref), init, var, next;
1557 gimple_seq stmts;
1558 gimple phi;
1559 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1561 /* Find the initializer for the variable, and check that it cannot
1562 trap. */
1563 init = VEC_index (tree, inits, 0);
1565 *vars = VEC_alloc (tree, heap, written ? 2 : 1);
1566 var = predcom_tmp_var (ref, 0, tmp_vars);
1567 VEC_quick_push (tree, *vars, var);
1568 if (written)
1569 VEC_quick_push (tree, *vars, VEC_index (tree, *vars, 0));
1571 FOR_EACH_VEC_ELT (tree, *vars, i, var)
1572 VEC_replace (tree, *vars, i, make_ssa_name (var, NULL));
1574 var = VEC_index (tree, *vars, 0);
1576 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1577 if (stmts)
1578 gsi_insert_seq_on_edge_immediate (entry, stmts);
1580 if (written)
1582 next = VEC_index (tree, *vars, 1);
1583 phi = create_phi_node (var, loop->header);
1584 SSA_NAME_DEF_STMT (var) = phi;
1585 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1586 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1588 else
1590 gimple init_stmt = gimple_build_assign (var, init);
1591 mark_virtual_ops_for_renaming (init_stmt);
1592 gsi_insert_on_edge_immediate (entry, init_stmt);
1597 /* Execute load motion for references in chain CHAIN. Uids of the newly
1598 created temporary variables are marked in TMP_VARS. */
1600 static void
1601 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1603 VEC (tree, heap) *vars;
1604 dref a;
1605 unsigned n_writes = 0, ridx, i;
1606 tree var;
1608 gcc_assert (chain->type == CT_INVARIANT);
1609 gcc_assert (!chain->combined);
1610 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
1611 if (DR_IS_WRITE (a->ref))
1612 n_writes++;
1614 /* If there are no reads in the loop, there is nothing to do. */
1615 if (n_writes == VEC_length (dref, chain->refs))
1616 return;
1618 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1619 &vars, chain->inits, tmp_vars);
1621 ridx = 0;
1622 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
1624 bool is_read = DR_IS_READ (a->ref);
1625 mark_virtual_ops_for_renaming (a->stmt);
1627 if (DR_IS_WRITE (a->ref))
1629 n_writes--;
1630 if (n_writes)
1632 var = VEC_index (tree, vars, 0);
1633 var = make_ssa_name (SSA_NAME_VAR (var), NULL);
1634 VEC_replace (tree, vars, 0, var);
1636 else
1637 ridx = 1;
1640 replace_ref_with (a->stmt, VEC_index (tree, vars, ridx),
1641 !is_read, !is_read);
1644 VEC_free (tree, heap, vars);
1647 /* Returns the single statement in that NAME is used, excepting
1648 the looparound phi nodes contained in one of the chains. If there is no
1649 such statement, or more statements, NULL is returned. */
1651 static gimple
1652 single_nonlooparound_use (tree name)
1654 use_operand_p use;
1655 imm_use_iterator it;
1656 gimple stmt, ret = NULL;
1658 FOR_EACH_IMM_USE_FAST (use, it, name)
1660 stmt = USE_STMT (use);
1662 if (gimple_code (stmt) == GIMPLE_PHI)
1664 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1665 could not be processed anyway, so just fail for them. */
1666 if (bitmap_bit_p (looparound_phis,
1667 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1668 continue;
1670 return NULL;
1672 else if (is_gimple_debug (stmt))
1673 continue;
1674 else if (ret != NULL)
1675 return NULL;
1676 else
1677 ret = stmt;
1680 return ret;
1683 /* Remove statement STMT, as well as the chain of assignments in that it is
1684 used. */
1686 static void
1687 remove_stmt (gimple stmt)
1689 tree name;
1690 gimple next;
1691 gimple_stmt_iterator psi;
1693 if (gimple_code (stmt) == GIMPLE_PHI)
1695 name = PHI_RESULT (stmt);
1696 next = single_nonlooparound_use (name);
1697 psi = gsi_for_stmt (stmt);
1698 remove_phi_node (&psi, true);
1700 if (!next
1701 || !gimple_assign_ssa_name_copy_p (next)
1702 || gimple_assign_rhs1 (next) != name)
1703 return;
1705 stmt = next;
1708 while (1)
1710 gimple_stmt_iterator bsi;
1712 bsi = gsi_for_stmt (stmt);
1714 name = gimple_assign_lhs (stmt);
1715 gcc_assert (TREE_CODE (name) == SSA_NAME);
1717 next = single_nonlooparound_use (name);
1719 mark_virtual_ops_for_renaming (stmt);
1720 gsi_remove (&bsi, true);
1721 release_defs (stmt);
1723 if (!next
1724 || !gimple_assign_ssa_name_copy_p (next)
1725 || gimple_assign_rhs1 (next) != name)
1726 return;
1728 stmt = next;
1732 /* Perform the predictive commoning optimization for a chain CHAIN.
1733 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1735 static void
1736 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1737 bitmap tmp_vars)
1739 unsigned i;
1740 dref a, root;
1741 tree var;
1743 if (chain->combined)
1745 /* For combined chains, just remove the statements that are used to
1746 compute the values of the expression (except for the root one). */
1747 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1748 remove_stmt (a->stmt);
1750 else
1752 /* For non-combined chains, set up the variables that hold its value,
1753 and replace the uses of the original references by these
1754 variables. */
1755 root = get_chain_root (chain);
1756 mark_virtual_ops_for_renaming (root->stmt);
1758 initialize_root (loop, chain, tmp_vars);
1759 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1761 mark_virtual_ops_for_renaming (a->stmt);
1762 var = VEC_index (tree, chain->vars, chain->length - a->distance);
1763 replace_ref_with (a->stmt, var, false, false);
1768 /* Determines the unroll factor necessary to remove as many temporary variable
1769 copies as possible. CHAINS is the list of chains that will be
1770 optimized. */
1772 static unsigned
1773 determine_unroll_factor (VEC (chain_p, heap) *chains)
1775 chain_p chain;
1776 unsigned factor = 1, af, nfactor, i;
1777 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1779 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1781 if (chain->type == CT_INVARIANT || chain->combined)
1782 continue;
1784 /* The best unroll factor for this chain is equal to the number of
1785 temporary variables that we create for it. */
1786 af = chain->length;
1787 if (chain->has_max_use_after)
1788 af++;
1790 nfactor = factor * af / gcd (factor, af);
1791 if (nfactor <= max)
1792 factor = nfactor;
1795 return factor;
1798 /* Perform the predictive commoning optimization for CHAINS.
1799 Uids of the newly created temporary variables are marked in TMP_VARS. */
1801 static void
1802 execute_pred_commoning (struct loop *loop, VEC (chain_p, heap) *chains,
1803 bitmap tmp_vars)
1805 chain_p chain;
1806 unsigned i;
1808 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1810 if (chain->type == CT_INVARIANT)
1811 execute_load_motion (loop, chain, tmp_vars);
1812 else
1813 execute_pred_commoning_chain (loop, chain, tmp_vars);
1816 update_ssa (TODO_update_ssa_only_virtuals);
1819 /* For each reference in CHAINS, if its defining statement is
1820 phi node, record the ssa name that is defined by it. */
1822 static void
1823 replace_phis_by_defined_names (VEC (chain_p, heap) *chains)
1825 chain_p chain;
1826 dref a;
1827 unsigned i, j;
1829 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1830 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
1832 if (gimple_code (a->stmt) == GIMPLE_PHI)
1834 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1835 a->stmt = NULL;
1840 /* For each reference in CHAINS, if name_defined_by_phi is not
1841 NULL, use it to set the stmt field. */
1843 static void
1844 replace_names_by_phis (VEC (chain_p, heap) *chains)
1846 chain_p chain;
1847 dref a;
1848 unsigned i, j;
1850 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1851 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
1852 if (a->stmt == NULL)
1854 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1855 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1856 a->name_defined_by_phi = NULL_TREE;
1860 /* Wrapper over execute_pred_commoning, to pass it as a callback
1861 to tree_transform_and_unroll_loop. */
1863 struct epcc_data
1865 VEC (chain_p, heap) *chains;
1866 bitmap tmp_vars;
1869 static void
1870 execute_pred_commoning_cbck (struct loop *loop, void *data)
1872 struct epcc_data *const dta = (struct epcc_data *) data;
1874 /* Restore phi nodes that were replaced by ssa names before
1875 tree_transform_and_unroll_loop (see detailed description in
1876 tree_predictive_commoning_loop). */
1877 replace_names_by_phis (dta->chains);
1878 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1881 /* Base NAME and all the names in the chain of phi nodes that use it
1882 on variable VAR. The phi nodes are recognized by being in the copies of
1883 the header of the LOOP. */
1885 static void
1886 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1888 gimple stmt, phi;
1889 imm_use_iterator iter;
1891 SSA_NAME_VAR (name) = var;
1893 while (1)
1895 phi = NULL;
1896 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1898 if (gimple_code (stmt) == GIMPLE_PHI
1899 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1901 phi = stmt;
1902 BREAK_FROM_IMM_USE_STMT (iter);
1905 if (!phi)
1906 return;
1908 name = PHI_RESULT (phi);
1909 SSA_NAME_VAR (name) = var;
1913 /* Given an unrolled LOOP after predictive commoning, remove the
1914 register copies arising from phi nodes by changing the base
1915 variables of SSA names. TMP_VARS is the set of the temporary variables
1916 for those we want to perform this. */
1918 static void
1919 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1921 edge e;
1922 gimple phi, stmt;
1923 tree name, use, var;
1924 gimple_stmt_iterator psi;
1926 e = loop_latch_edge (loop);
1927 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1929 phi = gsi_stmt (psi);
1930 name = PHI_RESULT (phi);
1931 var = SSA_NAME_VAR (name);
1932 if (!bitmap_bit_p (tmp_vars, DECL_UID (var)))
1933 continue;
1934 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1935 gcc_assert (TREE_CODE (use) == SSA_NAME);
1937 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1938 stmt = SSA_NAME_DEF_STMT (use);
1939 while (gimple_code (stmt) == GIMPLE_PHI
1940 /* In case we could not unroll the loop enough to eliminate
1941 all copies, we may reach the loop header before the defining
1942 statement (in that case, some register copies will be present
1943 in loop latch in the final code, corresponding to the newly
1944 created looparound phi nodes). */
1945 && gimple_bb (stmt) != loop->header)
1947 gcc_assert (single_pred_p (gimple_bb (stmt)));
1948 use = PHI_ARG_DEF (stmt, 0);
1949 stmt = SSA_NAME_DEF_STMT (use);
1952 base_names_in_chain_on (loop, use, var);
1956 /* Returns true if CHAIN is suitable to be combined. */
1958 static bool
1959 chain_can_be_combined_p (chain_p chain)
1961 return (!chain->combined
1962 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1965 /* Returns the modify statement that uses NAME. Skips over assignment
1966 statements, NAME is replaced with the actual name used in the returned
1967 statement. */
1969 static gimple
1970 find_use_stmt (tree *name)
1972 gimple stmt;
1973 tree rhs, lhs;
1975 /* Skip over assignments. */
1976 while (1)
1978 stmt = single_nonlooparound_use (*name);
1979 if (!stmt)
1980 return NULL;
1982 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1983 return NULL;
1985 lhs = gimple_assign_lhs (stmt);
1986 if (TREE_CODE (lhs) != SSA_NAME)
1987 return NULL;
1989 if (gimple_assign_copy_p (stmt))
1991 rhs = gimple_assign_rhs1 (stmt);
1992 if (rhs != *name)
1993 return NULL;
1995 *name = lhs;
1997 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1998 == GIMPLE_BINARY_RHS)
1999 return stmt;
2000 else
2001 return NULL;
2005 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2007 static bool
2008 may_reassociate_p (tree type, enum tree_code code)
2010 if (FLOAT_TYPE_P (type)
2011 && !flag_unsafe_math_optimizations)
2012 return false;
2014 return (commutative_tree_code (code)
2015 && associative_tree_code (code));
2018 /* If the operation used in STMT is associative and commutative, go through the
2019 tree of the same operations and returns its root. Distance to the root
2020 is stored in DISTANCE. */
2022 static gimple
2023 find_associative_operation_root (gimple stmt, unsigned *distance)
2025 tree lhs;
2026 gimple next;
2027 enum tree_code code = gimple_assign_rhs_code (stmt);
2028 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2029 unsigned dist = 0;
2031 if (!may_reassociate_p (type, code))
2032 return NULL;
2034 while (1)
2036 lhs = gimple_assign_lhs (stmt);
2037 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2039 next = find_use_stmt (&lhs);
2040 if (!next
2041 || gimple_assign_rhs_code (next) != code)
2042 break;
2044 stmt = next;
2045 dist++;
2048 if (distance)
2049 *distance = dist;
2050 return stmt;
2053 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2054 is no such statement, returns NULL_TREE. In case the operation used on
2055 NAME1 and NAME2 is associative and commutative, returns the root of the
2056 tree formed by this operation instead of the statement that uses NAME1 or
2057 NAME2. */
2059 static gimple
2060 find_common_use_stmt (tree *name1, tree *name2)
2062 gimple stmt1, stmt2;
2064 stmt1 = find_use_stmt (name1);
2065 if (!stmt1)
2066 return NULL;
2068 stmt2 = find_use_stmt (name2);
2069 if (!stmt2)
2070 return NULL;
2072 if (stmt1 == stmt2)
2073 return stmt1;
2075 stmt1 = find_associative_operation_root (stmt1, NULL);
2076 if (!stmt1)
2077 return NULL;
2078 stmt2 = find_associative_operation_root (stmt2, NULL);
2079 if (!stmt2)
2080 return NULL;
2082 return (stmt1 == stmt2 ? stmt1 : NULL);
2085 /* Checks whether R1 and R2 are combined together using CODE, with the result
2086 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2087 if it is true. If CODE is ERROR_MARK, set these values instead. */
2089 static bool
2090 combinable_refs_p (dref r1, dref r2,
2091 enum tree_code *code, bool *swap, tree *rslt_type)
2093 enum tree_code acode;
2094 bool aswap;
2095 tree atype;
2096 tree name1, name2;
2097 gimple stmt;
2099 name1 = name_for_ref (r1);
2100 name2 = name_for_ref (r2);
2101 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2103 stmt = find_common_use_stmt (&name1, &name2);
2105 if (!stmt)
2106 return false;
2108 acode = gimple_assign_rhs_code (stmt);
2109 aswap = (!commutative_tree_code (acode)
2110 && gimple_assign_rhs1 (stmt) != name1);
2111 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2113 if (*code == ERROR_MARK)
2115 *code = acode;
2116 *swap = aswap;
2117 *rslt_type = atype;
2118 return true;
2121 return (*code == acode
2122 && *swap == aswap
2123 && *rslt_type == atype);
2126 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2127 an assignment of the remaining operand. */
2129 static void
2130 remove_name_from_operation (gimple stmt, tree op)
2132 tree other_op;
2133 gimple_stmt_iterator si;
2135 gcc_assert (is_gimple_assign (stmt));
2137 if (gimple_assign_rhs1 (stmt) == op)
2138 other_op = gimple_assign_rhs2 (stmt);
2139 else
2140 other_op = gimple_assign_rhs1 (stmt);
2142 si = gsi_for_stmt (stmt);
2143 gimple_assign_set_rhs_from_tree (&si, other_op);
2145 /* We should not have reallocated STMT. */
2146 gcc_assert (gsi_stmt (si) == stmt);
2148 update_stmt (stmt);
2151 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2152 are combined in a single statement, and returns this statement. */
2154 static gimple
2155 reassociate_to_the_same_stmt (tree name1, tree name2)
2157 gimple stmt1, stmt2, root1, root2, s1, s2;
2158 gimple new_stmt, tmp_stmt;
2159 tree new_name, tmp_name, var, r1, r2;
2160 unsigned dist1, dist2;
2161 enum tree_code code;
2162 tree type = TREE_TYPE (name1);
2163 gimple_stmt_iterator bsi;
2165 stmt1 = find_use_stmt (&name1);
2166 stmt2 = find_use_stmt (&name2);
2167 root1 = find_associative_operation_root (stmt1, &dist1);
2168 root2 = find_associative_operation_root (stmt2, &dist2);
2169 code = gimple_assign_rhs_code (stmt1);
2171 gcc_assert (root1 && root2 && root1 == root2
2172 && code == gimple_assign_rhs_code (stmt2));
2174 /* Find the root of the nearest expression in that both NAME1 and NAME2
2175 are used. */
2176 r1 = name1;
2177 s1 = stmt1;
2178 r2 = name2;
2179 s2 = stmt2;
2181 while (dist1 > dist2)
2183 s1 = find_use_stmt (&r1);
2184 r1 = gimple_assign_lhs (s1);
2185 dist1--;
2187 while (dist2 > dist1)
2189 s2 = find_use_stmt (&r2);
2190 r2 = gimple_assign_lhs (s2);
2191 dist2--;
2194 while (s1 != s2)
2196 s1 = find_use_stmt (&r1);
2197 r1 = gimple_assign_lhs (s1);
2198 s2 = find_use_stmt (&r2);
2199 r2 = gimple_assign_lhs (s2);
2202 /* Remove NAME1 and NAME2 from the statements in that they are used
2203 currently. */
2204 remove_name_from_operation (stmt1, name1);
2205 remove_name_from_operation (stmt2, name2);
2207 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2208 combine it with the rhs of S1. */
2209 var = create_tmp_reg (type, "predreastmp");
2210 add_referenced_var (var);
2211 new_name = make_ssa_name (var, NULL);
2212 new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
2214 var = create_tmp_reg (type, "predreastmp");
2215 add_referenced_var (var);
2216 tmp_name = make_ssa_name (var, NULL);
2218 /* Rhs of S1 may now be either a binary expression with operation
2219 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2220 so that name1 or name2 was removed from it). */
2221 tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2222 tmp_name,
2223 gimple_assign_rhs1 (s1),
2224 gimple_assign_rhs2 (s1));
2226 bsi = gsi_for_stmt (s1);
2227 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2228 s1 = gsi_stmt (bsi);
2229 update_stmt (s1);
2231 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2232 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2234 return new_stmt;
2237 /* Returns the statement that combines references R1 and R2. In case R1
2238 and R2 are not used in the same statement, but they are used with an
2239 associative and commutative operation in the same expression, reassociate
2240 the expression so that they are used in the same statement. */
2242 static gimple
2243 stmt_combining_refs (dref r1, dref r2)
2245 gimple stmt1, stmt2;
2246 tree name1 = name_for_ref (r1);
2247 tree name2 = name_for_ref (r2);
2249 stmt1 = find_use_stmt (&name1);
2250 stmt2 = find_use_stmt (&name2);
2251 if (stmt1 == stmt2)
2252 return stmt1;
2254 return reassociate_to_the_same_stmt (name1, name2);
2257 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2258 description of the new chain is returned, otherwise we return NULL. */
2260 static chain_p
2261 combine_chains (chain_p ch1, chain_p ch2)
2263 dref r1, r2, nw;
2264 enum tree_code op = ERROR_MARK;
2265 bool swap = false;
2266 chain_p new_chain;
2267 unsigned i;
2268 gimple root_stmt;
2269 tree rslt_type = NULL_TREE;
2271 if (ch1 == ch2)
2272 return NULL;
2273 if (ch1->length != ch2->length)
2274 return NULL;
2276 if (VEC_length (dref, ch1->refs) != VEC_length (dref, ch2->refs))
2277 return NULL;
2279 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2280 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2282 if (r1->distance != r2->distance)
2283 return NULL;
2285 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2286 return NULL;
2289 if (swap)
2291 chain_p tmp = ch1;
2292 ch1 = ch2;
2293 ch2 = tmp;
2296 new_chain = XCNEW (struct chain);
2297 new_chain->type = CT_COMBINATION;
2298 new_chain->op = op;
2299 new_chain->ch1 = ch1;
2300 new_chain->ch2 = ch2;
2301 new_chain->rslt_type = rslt_type;
2302 new_chain->length = ch1->length;
2304 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2305 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2307 nw = XCNEW (struct dref_d);
2308 nw->stmt = stmt_combining_refs (r1, r2);
2309 nw->distance = r1->distance;
2311 VEC_safe_push (dref, heap, new_chain->refs, nw);
2314 new_chain->has_max_use_after = false;
2315 root_stmt = get_chain_root (new_chain)->stmt;
2316 for (i = 1; VEC_iterate (dref, new_chain->refs, i, nw); i++)
2318 if (nw->distance == new_chain->length
2319 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2321 new_chain->has_max_use_after = true;
2322 break;
2326 ch1->combined = true;
2327 ch2->combined = true;
2328 return new_chain;
2331 /* Try to combine the CHAINS. */
2333 static void
2334 try_combine_chains (VEC (chain_p, heap) **chains)
2336 unsigned i, j;
2337 chain_p ch1, ch2, cch;
2338 VEC (chain_p, heap) *worklist = NULL;
2340 FOR_EACH_VEC_ELT (chain_p, *chains, i, ch1)
2341 if (chain_can_be_combined_p (ch1))
2342 VEC_safe_push (chain_p, heap, worklist, ch1);
2344 while (!VEC_empty (chain_p, worklist))
2346 ch1 = VEC_pop (chain_p, worklist);
2347 if (!chain_can_be_combined_p (ch1))
2348 continue;
2350 FOR_EACH_VEC_ELT (chain_p, *chains, j, ch2)
2352 if (!chain_can_be_combined_p (ch2))
2353 continue;
2355 cch = combine_chains (ch1, ch2);
2356 if (cch)
2358 VEC_safe_push (chain_p, heap, worklist, cch);
2359 VEC_safe_push (chain_p, heap, *chains, cch);
2360 break;
2366 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2367 impossible because one of these initializers may trap, true otherwise. */
2369 static bool
2370 prepare_initializers_chain (struct loop *loop, chain_p chain)
2372 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2373 struct data_reference *dr = get_chain_root (chain)->ref;
2374 tree init;
2375 gimple_seq stmts;
2376 dref laref;
2377 edge entry = loop_preheader_edge (loop);
2379 /* Find the initializers for the variables, and check that they cannot
2380 trap. */
2381 chain->inits = VEC_alloc (tree, heap, n);
2382 for (i = 0; i < n; i++)
2383 VEC_quick_push (tree, chain->inits, NULL_TREE);
2385 /* If we have replaced some looparound phi nodes, use their initializers
2386 instead of creating our own. */
2387 FOR_EACH_VEC_ELT (dref, chain->refs, i, laref)
2389 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2390 continue;
2392 gcc_assert (laref->distance > 0);
2393 VEC_replace (tree, chain->inits, n - laref->distance,
2394 PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry));
2397 for (i = 0; i < n; i++)
2399 if (VEC_index (tree, chain->inits, i) != NULL_TREE)
2400 continue;
2402 init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
2403 if (!init)
2404 return false;
2406 if (!chain->all_always_accessed && tree_could_trap_p (init))
2407 return false;
2409 init = force_gimple_operand (init, &stmts, false, NULL_TREE);
2410 if (stmts)
2411 gsi_insert_seq_on_edge_immediate (entry, stmts);
2413 VEC_replace (tree, chain->inits, i, init);
2416 return true;
2419 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2420 be used because the initializers might trap. */
2422 static void
2423 prepare_initializers (struct loop *loop, VEC (chain_p, heap) *chains)
2425 chain_p chain;
2426 unsigned i;
2428 for (i = 0; i < VEC_length (chain_p, chains); )
2430 chain = VEC_index (chain_p, chains, i);
2431 if (prepare_initializers_chain (loop, chain))
2432 i++;
2433 else
2435 release_chain (chain);
2436 VEC_unordered_remove (chain_p, chains, i);
2441 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2442 unrolled. */
2444 static bool
2445 tree_predictive_commoning_loop (struct loop *loop)
2447 VEC (loop_p, heap) *loop_nest;
2448 VEC (data_reference_p, heap) *datarefs;
2449 VEC (ddr_p, heap) *dependences;
2450 struct component *components;
2451 VEC (chain_p, heap) *chains = NULL;
2452 unsigned unroll_factor;
2453 struct tree_niter_desc desc;
2454 bool unroll = false;
2455 edge exit;
2456 bitmap tmp_vars;
2458 if (dump_file && (dump_flags & TDF_DETAILS))
2459 fprintf (dump_file, "Processing loop %d\n", loop->num);
2461 /* Find the data references and split them into components according to their
2462 dependence relations. */
2463 datarefs = VEC_alloc (data_reference_p, heap, 10);
2464 dependences = VEC_alloc (ddr_p, heap, 10);
2465 loop_nest = VEC_alloc (loop_p, heap, 3);
2466 compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
2467 &dependences);
2468 if (dump_file && (dump_flags & TDF_DETAILS))
2469 dump_data_dependence_relations (dump_file, dependences);
2471 components = split_data_refs_to_components (loop, datarefs, dependences);
2472 VEC_free (loop_p, heap, loop_nest);
2473 free_dependence_relations (dependences);
2474 if (!components)
2476 free_data_refs (datarefs);
2477 return false;
2480 if (dump_file && (dump_flags & TDF_DETAILS))
2482 fprintf (dump_file, "Initial state:\n\n");
2483 dump_components (dump_file, components);
2486 /* Find the suitable components and split them into chains. */
2487 components = filter_suitable_components (loop, components);
2489 tmp_vars = BITMAP_ALLOC (NULL);
2490 looparound_phis = BITMAP_ALLOC (NULL);
2491 determine_roots (loop, components, &chains);
2492 release_components (components);
2494 if (!chains)
2496 if (dump_file && (dump_flags & TDF_DETAILS))
2497 fprintf (dump_file,
2498 "Predictive commoning failed: no suitable chains\n");
2499 goto end;
2501 prepare_initializers (loop, chains);
2503 /* Try to combine the chains that are always worked with together. */
2504 try_combine_chains (&chains);
2506 if (dump_file && (dump_flags & TDF_DETAILS))
2508 fprintf (dump_file, "Before commoning:\n\n");
2509 dump_chains (dump_file, chains);
2512 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2513 that its number of iterations is divisible by the factor. */
2514 unroll_factor = determine_unroll_factor (chains);
2515 scev_reset ();
2516 unroll = (unroll_factor > 1
2517 && can_unroll_loop_p (loop, unroll_factor, &desc));
2518 exit = single_dom_exit (loop);
2520 /* Execute the predictive commoning transformations, and possibly unroll the
2521 loop. */
2522 if (unroll)
2524 struct epcc_data dta;
2526 if (dump_file && (dump_flags & TDF_DETAILS))
2527 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2529 dta.chains = chains;
2530 dta.tmp_vars = tmp_vars;
2532 update_ssa (TODO_update_ssa_only_virtuals);
2534 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2535 execute_pred_commoning_cbck is called may cause phi nodes to be
2536 reallocated, which is a problem since CHAINS may point to these
2537 statements. To fix this, we store the ssa names defined by the
2538 phi nodes here instead of the phi nodes themselves, and restore
2539 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2540 replace_phis_by_defined_names (chains);
2542 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2543 execute_pred_commoning_cbck, &dta);
2544 eliminate_temp_copies (loop, tmp_vars);
2546 else
2548 if (dump_file && (dump_flags & TDF_DETAILS))
2549 fprintf (dump_file,
2550 "Executing predictive commoning without unrolling.\n");
2551 execute_pred_commoning (loop, chains, tmp_vars);
2554 end: ;
2555 release_chains (chains);
2556 free_data_refs (datarefs);
2557 BITMAP_FREE (tmp_vars);
2558 BITMAP_FREE (looparound_phis);
2560 free_affine_expand_cache (&name_expansions);
2562 return unroll;
2565 /* Runs predictive commoning. */
2567 unsigned
2568 tree_predictive_commoning (void)
2570 bool unrolled = false;
2571 struct loop *loop;
2572 loop_iterator li;
2573 unsigned ret = 0;
2575 initialize_original_copy_tables ();
2576 FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
2577 if (optimize_loop_for_speed_p (loop))
2579 unrolled |= tree_predictive_commoning_loop (loop);
2582 if (unrolled)
2584 scev_reset ();
2585 ret = TODO_cleanup_cfg;
2587 free_original_copy_tables ();
2589 return ret;