2011-08-15 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / jump.c
blob8dc78f2aceba6b463a2e21c033e45f096973c37d
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This is the pathetic reminder of old fame of the jump-optimization pass
23 of the compiler. Now it contains basically a set of utility functions to
24 operate with jumps.
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
32 at by later passes.
34 The subroutines redirect_jump and invert_jump are used
35 from other passes as well. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tm_p.h"
43 #include "flags.h"
44 #include "hard-reg-set.h"
45 #include "regs.h"
46 #include "insn-config.h"
47 #include "insn-attr.h"
48 #include "recog.h"
49 #include "function.h"
50 #include "basic-block.h"
51 #include "expr.h"
52 #include "except.h"
53 #include "diagnostic-core.h"
54 #include "reload.h"
55 #include "predict.h"
56 #include "timevar.h"
57 #include "tree-pass.h"
58 #include "target.h"
60 /* Optimize jump y; x: ... y: jumpif... x?
61 Don't know if it is worth bothering with. */
62 /* Optimize two cases of conditional jump to conditional jump?
63 This can never delete any instruction or make anything dead,
64 or even change what is live at any point.
65 So perhaps let combiner do it. */
67 static void init_label_info (rtx);
68 static void mark_all_labels (rtx);
69 static void mark_jump_label_1 (rtx, rtx, bool, bool);
70 static void mark_jump_label_asm (rtx, rtx);
71 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
72 static int invert_exp_1 (rtx, rtx);
73 static int returnjump_p_1 (rtx *, void *);
75 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
76 static void
77 rebuild_jump_labels_1 (rtx f, bool count_forced)
79 rtx insn;
81 timevar_push (TV_REBUILD_JUMP);
82 init_label_info (f);
83 mark_all_labels (f);
85 /* Keep track of labels used from static data; we don't track them
86 closely enough to delete them here, so make sure their reference
87 count doesn't drop to zero. */
89 if (count_forced)
90 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
91 if (LABEL_P (XEXP (insn, 0)))
92 LABEL_NUSES (XEXP (insn, 0))++;
93 timevar_pop (TV_REBUILD_JUMP);
96 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
97 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
98 instructions and jumping insns that have labels as operands
99 (e.g. cbranchsi4). */
100 void
101 rebuild_jump_labels (rtx f)
103 rebuild_jump_labels_1 (f, true);
106 /* This function is like rebuild_jump_labels, but doesn't run over
107 forced_labels. It can be used on insn chains that aren't the
108 main function chain. */
109 void
110 rebuild_jump_labels_chain (rtx chain)
112 rebuild_jump_labels_1 (chain, false);
115 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
116 non-fallthru insn. This is not generally true, as multiple barriers
117 may have crept in, or the BARRIER may be separated from the last
118 real insn by one or more NOTEs.
120 This simple pass moves barriers and removes duplicates so that the
121 old code is happy.
123 unsigned int
124 cleanup_barriers (void)
126 rtx insn, next, prev;
127 for (insn = get_insns (); insn; insn = next)
129 next = NEXT_INSN (insn);
130 if (BARRIER_P (insn))
132 prev = prev_nonnote_insn (insn);
133 if (!prev)
134 continue;
135 if (BARRIER_P (prev))
136 delete_insn (insn);
137 else if (prev != PREV_INSN (insn))
138 reorder_insns (insn, insn, prev);
141 return 0;
144 struct rtl_opt_pass pass_cleanup_barriers =
147 RTL_PASS,
148 "barriers", /* name */
149 NULL, /* gate */
150 cleanup_barriers, /* execute */
151 NULL, /* sub */
152 NULL, /* next */
153 0, /* static_pass_number */
154 TV_NONE, /* tv_id */
155 0, /* properties_required */
156 0, /* properties_provided */
157 0, /* properties_destroyed */
158 0, /* todo_flags_start */
159 0 /* todo_flags_finish */
164 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
165 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
166 notes whose labels don't occur in the insn any more. */
168 static void
169 init_label_info (rtx f)
171 rtx insn;
173 for (insn = f; insn; insn = NEXT_INSN (insn))
175 if (LABEL_P (insn))
176 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
178 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
179 sticky and not reset here; that way we won't lose association
180 with a label when e.g. the source for a target register
181 disappears out of reach for targets that may use jump-target
182 registers. Jump transformations are supposed to transform
183 any REG_LABEL_TARGET notes. The target label reference in a
184 branch may disappear from the branch (and from the
185 instruction before it) for other reasons, like register
186 allocation. */
188 if (INSN_P (insn))
190 rtx note, next;
192 for (note = REG_NOTES (insn); note; note = next)
194 next = XEXP (note, 1);
195 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
196 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
197 remove_note (insn, note);
203 /* A subroutine of mark_all_labels. Trivially propagate a simple label
204 load into a jump_insn that uses it. */
206 static void
207 maybe_propagate_label_ref (rtx jump_insn, rtx prev_nonjump_insn)
209 rtx label_note, pc, pc_src;
211 pc = pc_set (jump_insn);
212 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
213 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
215 /* If the previous non-jump insn sets something to a label,
216 something that this jump insn uses, make that label the primary
217 target of this insn if we don't yet have any. That previous
218 insn must be a single_set and not refer to more than one label.
219 The jump insn must not refer to other labels as jump targets
220 and must be a plain (set (pc) ...), maybe in a parallel, and
221 may refer to the item being set only directly or as one of the
222 arms in an IF_THEN_ELSE. */
224 if (label_note != NULL && pc_src != NULL)
226 rtx label_set = single_set (prev_nonjump_insn);
227 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
229 if (label_set != NULL
230 /* The source must be the direct LABEL_REF, not a
231 PLUS, UNSPEC, IF_THEN_ELSE etc. */
232 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
233 && (rtx_equal_p (label_dest, pc_src)
234 || (GET_CODE (pc_src) == IF_THEN_ELSE
235 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
236 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
238 /* The CODE_LABEL referred to in the note must be the
239 CODE_LABEL in the LABEL_REF of the "set". We can
240 conveniently use it for the marker function, which
241 requires a LABEL_REF wrapping. */
242 gcc_assert (XEXP (label_note, 0) == XEXP (SET_SRC (label_set), 0));
244 mark_jump_label_1 (label_set, jump_insn, false, true);
246 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
251 /* Mark the label each jump jumps to.
252 Combine consecutive labels, and count uses of labels. */
254 static void
255 mark_all_labels (rtx f)
257 rtx insn;
259 if (current_ir_type () == IR_RTL_CFGLAYOUT)
261 basic_block bb;
262 FOR_EACH_BB (bb)
264 /* In cfglayout mode, we don't bother with trivial next-insn
265 propagation of LABEL_REFs into JUMP_LABEL. This will be
266 handled by other optimizers using better algorithms. */
267 FOR_BB_INSNS (bb, insn)
269 gcc_assert (! INSN_DELETED_P (insn));
270 if (NONDEBUG_INSN_P (insn))
271 mark_jump_label (PATTERN (insn), insn, 0);
274 /* In cfglayout mode, there may be non-insns between the
275 basic blocks. If those non-insns represent tablejump data,
276 they contain label references that we must record. */
277 for (insn = bb->il.rtl->header; insn; insn = NEXT_INSN (insn))
278 if (INSN_P (insn))
280 gcc_assert (JUMP_TABLE_DATA_P (insn));
281 mark_jump_label (PATTERN (insn), insn, 0);
283 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
284 if (INSN_P (insn))
286 gcc_assert (JUMP_TABLE_DATA_P (insn));
287 mark_jump_label (PATTERN (insn), insn, 0);
291 else
293 rtx prev_nonjump_insn = NULL;
294 for (insn = f; insn; insn = NEXT_INSN (insn))
296 if (INSN_DELETED_P (insn))
298 else if (LABEL_P (insn))
299 prev_nonjump_insn = NULL;
300 else if (NONDEBUG_INSN_P (insn))
302 mark_jump_label (PATTERN (insn), insn, 0);
303 if (JUMP_P (insn))
305 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
306 maybe_propagate_label_ref (insn, prev_nonjump_insn);
308 else
309 prev_nonjump_insn = insn;
315 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
316 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
317 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
318 know whether it's source is floating point or integer comparison. Machine
319 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
320 to help this function avoid overhead in these cases. */
321 enum rtx_code
322 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
323 const_rtx arg1, const_rtx insn)
325 enum machine_mode mode;
327 /* If this is not actually a comparison, we can't reverse it. */
328 if (GET_RTX_CLASS (code) != RTX_COMPARE
329 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
330 return UNKNOWN;
332 mode = GET_MODE (arg0);
333 if (mode == VOIDmode)
334 mode = GET_MODE (arg1);
336 /* First see if machine description supplies us way to reverse the
337 comparison. Give it priority over everything else to allow
338 machine description to do tricks. */
339 if (GET_MODE_CLASS (mode) == MODE_CC
340 && REVERSIBLE_CC_MODE (mode))
342 #ifdef REVERSE_CONDITION
343 return REVERSE_CONDITION (code, mode);
344 #else
345 return reverse_condition (code);
346 #endif
349 /* Try a few special cases based on the comparison code. */
350 switch (code)
352 case GEU:
353 case GTU:
354 case LEU:
355 case LTU:
356 case NE:
357 case EQ:
358 /* It is always safe to reverse EQ and NE, even for the floating
359 point. Similarly the unsigned comparisons are never used for
360 floating point so we can reverse them in the default way. */
361 return reverse_condition (code);
362 case ORDERED:
363 case UNORDERED:
364 case LTGT:
365 case UNEQ:
366 /* In case we already see unordered comparison, we can be sure to
367 be dealing with floating point so we don't need any more tests. */
368 return reverse_condition_maybe_unordered (code);
369 case UNLT:
370 case UNLE:
371 case UNGT:
372 case UNGE:
373 /* We don't have safe way to reverse these yet. */
374 return UNKNOWN;
375 default:
376 break;
379 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
381 const_rtx prev;
382 /* Try to search for the comparison to determine the real mode.
383 This code is expensive, but with sane machine description it
384 will be never used, since REVERSIBLE_CC_MODE will return true
385 in all cases. */
386 if (! insn)
387 return UNKNOWN;
389 /* These CONST_CAST's are okay because prev_nonnote_insn just
390 returns its argument and we assign it to a const_rtx
391 variable. */
392 for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
393 prev != 0 && !LABEL_P (prev);
394 prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
396 const_rtx set = set_of (arg0, prev);
397 if (set && GET_CODE (set) == SET
398 && rtx_equal_p (SET_DEST (set), arg0))
400 rtx src = SET_SRC (set);
402 if (GET_CODE (src) == COMPARE)
404 rtx comparison = src;
405 arg0 = XEXP (src, 0);
406 mode = GET_MODE (arg0);
407 if (mode == VOIDmode)
408 mode = GET_MODE (XEXP (comparison, 1));
409 break;
411 /* We can get past reg-reg moves. This may be useful for model
412 of i387 comparisons that first move flag registers around. */
413 if (REG_P (src))
415 arg0 = src;
416 continue;
419 /* If register is clobbered in some ununderstandable way,
420 give up. */
421 if (set)
422 return UNKNOWN;
426 /* Test for an integer condition, or a floating-point comparison
427 in which NaNs can be ignored. */
428 if (CONST_INT_P (arg0)
429 || (GET_MODE (arg0) != VOIDmode
430 && GET_MODE_CLASS (mode) != MODE_CC
431 && !HONOR_NANS (mode)))
432 return reverse_condition (code);
434 return UNKNOWN;
437 /* A wrapper around the previous function to take COMPARISON as rtx
438 expression. This simplifies many callers. */
439 enum rtx_code
440 reversed_comparison_code (const_rtx comparison, const_rtx insn)
442 if (!COMPARISON_P (comparison))
443 return UNKNOWN;
444 return reversed_comparison_code_parts (GET_CODE (comparison),
445 XEXP (comparison, 0),
446 XEXP (comparison, 1), insn);
449 /* Return comparison with reversed code of EXP.
450 Return NULL_RTX in case we fail to do the reversal. */
452 reversed_comparison (const_rtx exp, enum machine_mode mode)
454 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
455 if (reversed_code == UNKNOWN)
456 return NULL_RTX;
457 else
458 return simplify_gen_relational (reversed_code, mode, VOIDmode,
459 XEXP (exp, 0), XEXP (exp, 1));
463 /* Given an rtx-code for a comparison, return the code for the negated
464 comparison. If no such code exists, return UNKNOWN.
466 WATCH OUT! reverse_condition is not safe to use on a jump that might
467 be acting on the results of an IEEE floating point comparison, because
468 of the special treatment of non-signaling nans in comparisons.
469 Use reversed_comparison_code instead. */
471 enum rtx_code
472 reverse_condition (enum rtx_code code)
474 switch (code)
476 case EQ:
477 return NE;
478 case NE:
479 return EQ;
480 case GT:
481 return LE;
482 case GE:
483 return LT;
484 case LT:
485 return GE;
486 case LE:
487 return GT;
488 case GTU:
489 return LEU;
490 case GEU:
491 return LTU;
492 case LTU:
493 return GEU;
494 case LEU:
495 return GTU;
496 case UNORDERED:
497 return ORDERED;
498 case ORDERED:
499 return UNORDERED;
501 case UNLT:
502 case UNLE:
503 case UNGT:
504 case UNGE:
505 case UNEQ:
506 case LTGT:
507 return UNKNOWN;
509 default:
510 gcc_unreachable ();
514 /* Similar, but we're allowed to generate unordered comparisons, which
515 makes it safe for IEEE floating-point. Of course, we have to recognize
516 that the target will support them too... */
518 enum rtx_code
519 reverse_condition_maybe_unordered (enum rtx_code code)
521 switch (code)
523 case EQ:
524 return NE;
525 case NE:
526 return EQ;
527 case GT:
528 return UNLE;
529 case GE:
530 return UNLT;
531 case LT:
532 return UNGE;
533 case LE:
534 return UNGT;
535 case LTGT:
536 return UNEQ;
537 case UNORDERED:
538 return ORDERED;
539 case ORDERED:
540 return UNORDERED;
541 case UNLT:
542 return GE;
543 case UNLE:
544 return GT;
545 case UNGT:
546 return LE;
547 case UNGE:
548 return LT;
549 case UNEQ:
550 return LTGT;
552 default:
553 gcc_unreachable ();
557 /* Similar, but return the code when two operands of a comparison are swapped.
558 This IS safe for IEEE floating-point. */
560 enum rtx_code
561 swap_condition (enum rtx_code code)
563 switch (code)
565 case EQ:
566 case NE:
567 case UNORDERED:
568 case ORDERED:
569 case UNEQ:
570 case LTGT:
571 return code;
573 case GT:
574 return LT;
575 case GE:
576 return LE;
577 case LT:
578 return GT;
579 case LE:
580 return GE;
581 case GTU:
582 return LTU;
583 case GEU:
584 return LEU;
585 case LTU:
586 return GTU;
587 case LEU:
588 return GEU;
589 case UNLT:
590 return UNGT;
591 case UNLE:
592 return UNGE;
593 case UNGT:
594 return UNLT;
595 case UNGE:
596 return UNLE;
598 default:
599 gcc_unreachable ();
603 /* Given a comparison CODE, return the corresponding unsigned comparison.
604 If CODE is an equality comparison or already an unsigned comparison,
605 CODE is returned. */
607 enum rtx_code
608 unsigned_condition (enum rtx_code code)
610 switch (code)
612 case EQ:
613 case NE:
614 case GTU:
615 case GEU:
616 case LTU:
617 case LEU:
618 return code;
620 case GT:
621 return GTU;
622 case GE:
623 return GEU;
624 case LT:
625 return LTU;
626 case LE:
627 return LEU;
629 default:
630 gcc_unreachable ();
634 /* Similarly, return the signed version of a comparison. */
636 enum rtx_code
637 signed_condition (enum rtx_code code)
639 switch (code)
641 case EQ:
642 case NE:
643 case GT:
644 case GE:
645 case LT:
646 case LE:
647 return code;
649 case GTU:
650 return GT;
651 case GEU:
652 return GE;
653 case LTU:
654 return LT;
655 case LEU:
656 return LE;
658 default:
659 gcc_unreachable ();
663 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
664 truth of CODE1 implies the truth of CODE2. */
667 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
669 /* UNKNOWN comparison codes can happen as a result of trying to revert
670 comparison codes.
671 They can't match anything, so we have to reject them here. */
672 if (code1 == UNKNOWN || code2 == UNKNOWN)
673 return 0;
675 if (code1 == code2)
676 return 1;
678 switch (code1)
680 case UNEQ:
681 if (code2 == UNLE || code2 == UNGE)
682 return 1;
683 break;
685 case EQ:
686 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
687 || code2 == ORDERED)
688 return 1;
689 break;
691 case UNLT:
692 if (code2 == UNLE || code2 == NE)
693 return 1;
694 break;
696 case LT:
697 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
698 return 1;
699 break;
701 case UNGT:
702 if (code2 == UNGE || code2 == NE)
703 return 1;
704 break;
706 case GT:
707 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
708 return 1;
709 break;
711 case GE:
712 case LE:
713 if (code2 == ORDERED)
714 return 1;
715 break;
717 case LTGT:
718 if (code2 == NE || code2 == ORDERED)
719 return 1;
720 break;
722 case LTU:
723 if (code2 == LEU || code2 == NE)
724 return 1;
725 break;
727 case GTU:
728 if (code2 == GEU || code2 == NE)
729 return 1;
730 break;
732 case UNORDERED:
733 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
734 || code2 == UNGE || code2 == UNGT)
735 return 1;
736 break;
738 default:
739 break;
742 return 0;
745 /* Return 1 if INSN is an unconditional jump and nothing else. */
748 simplejump_p (const_rtx insn)
750 return (JUMP_P (insn)
751 && GET_CODE (PATTERN (insn)) == SET
752 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
753 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
756 /* Return nonzero if INSN is a (possibly) conditional jump
757 and nothing more.
759 Use of this function is deprecated, since we need to support combined
760 branch and compare insns. Use any_condjump_p instead whenever possible. */
763 condjump_p (const_rtx insn)
765 const_rtx x = PATTERN (insn);
767 if (GET_CODE (x) != SET
768 || GET_CODE (SET_DEST (x)) != PC)
769 return 0;
771 x = SET_SRC (x);
772 if (GET_CODE (x) == LABEL_REF)
773 return 1;
774 else
775 return (GET_CODE (x) == IF_THEN_ELSE
776 && ((GET_CODE (XEXP (x, 2)) == PC
777 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
778 || GET_CODE (XEXP (x, 1)) == RETURN))
779 || (GET_CODE (XEXP (x, 1)) == PC
780 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
781 || GET_CODE (XEXP (x, 2)) == RETURN))));
784 /* Return nonzero if INSN is a (possibly) conditional jump inside a
785 PARALLEL.
787 Use this function is deprecated, since we need to support combined
788 branch and compare insns. Use any_condjump_p instead whenever possible. */
791 condjump_in_parallel_p (const_rtx insn)
793 const_rtx x = PATTERN (insn);
795 if (GET_CODE (x) != PARALLEL)
796 return 0;
797 else
798 x = XVECEXP (x, 0, 0);
800 if (GET_CODE (x) != SET)
801 return 0;
802 if (GET_CODE (SET_DEST (x)) != PC)
803 return 0;
804 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
805 return 1;
806 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
807 return 0;
808 if (XEXP (SET_SRC (x), 2) == pc_rtx
809 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
810 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
811 return 1;
812 if (XEXP (SET_SRC (x), 1) == pc_rtx
813 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
814 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
815 return 1;
816 return 0;
819 /* Return set of PC, otherwise NULL. */
822 pc_set (const_rtx insn)
824 rtx pat;
825 if (!JUMP_P (insn))
826 return NULL_RTX;
827 pat = PATTERN (insn);
829 /* The set is allowed to appear either as the insn pattern or
830 the first set in a PARALLEL. */
831 if (GET_CODE (pat) == PARALLEL)
832 pat = XVECEXP (pat, 0, 0);
833 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
834 return pat;
836 return NULL_RTX;
839 /* Return true when insn is an unconditional direct jump,
840 possibly bundled inside a PARALLEL. */
843 any_uncondjump_p (const_rtx insn)
845 const_rtx x = pc_set (insn);
846 if (!x)
847 return 0;
848 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
849 return 0;
850 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
851 return 0;
852 return 1;
855 /* Return true when insn is a conditional jump. This function works for
856 instructions containing PC sets in PARALLELs. The instruction may have
857 various other effects so before removing the jump you must verify
858 onlyjump_p.
860 Note that unlike condjump_p it returns false for unconditional jumps. */
863 any_condjump_p (const_rtx insn)
865 const_rtx x = pc_set (insn);
866 enum rtx_code a, b;
868 if (!x)
869 return 0;
870 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
871 return 0;
873 a = GET_CODE (XEXP (SET_SRC (x), 1));
874 b = GET_CODE (XEXP (SET_SRC (x), 2));
876 return ((b == PC && (a == LABEL_REF || a == RETURN))
877 || (a == PC && (b == LABEL_REF || b == RETURN)));
880 /* Return the label of a conditional jump. */
883 condjump_label (const_rtx insn)
885 rtx x = pc_set (insn);
887 if (!x)
888 return NULL_RTX;
889 x = SET_SRC (x);
890 if (GET_CODE (x) == LABEL_REF)
891 return x;
892 if (GET_CODE (x) != IF_THEN_ELSE)
893 return NULL_RTX;
894 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
895 return XEXP (x, 1);
896 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
897 return XEXP (x, 2);
898 return NULL_RTX;
901 /* Return true if INSN is a (possibly conditional) return insn. */
903 static int
904 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
906 rtx x = *loc;
908 if (x == NULL)
909 return false;
911 switch (GET_CODE (x))
913 case RETURN:
914 case EH_RETURN:
915 return true;
917 case SET:
918 return SET_IS_RETURN_P (x);
920 default:
921 return false;
925 /* Return TRUE if INSN is a return jump. */
928 returnjump_p (rtx insn)
930 if (!JUMP_P (insn))
931 return 0;
932 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
935 /* Return true if INSN is a (possibly conditional) return insn. */
937 static int
938 eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
940 return *loc && GET_CODE (*loc) == EH_RETURN;
944 eh_returnjump_p (rtx insn)
946 if (!JUMP_P (insn))
947 return 0;
948 return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
951 /* Return true if INSN is a jump that only transfers control and
952 nothing more. */
955 onlyjump_p (const_rtx insn)
957 rtx set;
959 if (!JUMP_P (insn))
960 return 0;
962 set = single_set (insn);
963 if (set == NULL)
964 return 0;
965 if (GET_CODE (SET_DEST (set)) != PC)
966 return 0;
967 if (side_effects_p (SET_SRC (set)))
968 return 0;
970 return 1;
973 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
974 NULL or a return. */
975 bool
976 jump_to_label_p (rtx insn)
978 return (JUMP_P (insn)
979 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
982 #ifdef HAVE_cc0
984 /* Return nonzero if X is an RTX that only sets the condition codes
985 and has no side effects. */
988 only_sets_cc0_p (const_rtx x)
990 if (! x)
991 return 0;
993 if (INSN_P (x))
994 x = PATTERN (x);
996 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
999 /* Return 1 if X is an RTX that does nothing but set the condition codes
1000 and CLOBBER or USE registers.
1001 Return -1 if X does explicitly set the condition codes,
1002 but also does other things. */
1005 sets_cc0_p (const_rtx x)
1007 if (! x)
1008 return 0;
1010 if (INSN_P (x))
1011 x = PATTERN (x);
1013 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1014 return 1;
1015 if (GET_CODE (x) == PARALLEL)
1017 int i;
1018 int sets_cc0 = 0;
1019 int other_things = 0;
1020 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1022 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1023 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1024 sets_cc0 = 1;
1025 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1026 other_things = 1;
1028 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1030 return 0;
1032 #endif
1034 /* Find all CODE_LABELs referred to in X, and increment their use
1035 counts. If INSN is a JUMP_INSN and there is at least one
1036 CODE_LABEL referenced in INSN as a jump target, then store the last
1037 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1038 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1039 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1040 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1041 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1042 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1044 Note that two labels separated by a loop-beginning note
1045 must be kept distinct if we have not yet done loop-optimization,
1046 because the gap between them is where loop-optimize
1047 will want to move invariant code to. CROSS_JUMP tells us
1048 that loop-optimization is done with. */
1050 void
1051 mark_jump_label (rtx x, rtx insn, int in_mem)
1053 rtx asmop = extract_asm_operands (x);
1054 if (asmop)
1055 mark_jump_label_asm (asmop, insn);
1056 else
1057 mark_jump_label_1 (x, insn, in_mem != 0,
1058 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1061 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1062 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1063 jump-target; when the JUMP_LABEL field of INSN should be set or a
1064 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1065 note. */
1067 static void
1068 mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
1070 RTX_CODE code = GET_CODE (x);
1071 int i;
1072 const char *fmt;
1074 switch (code)
1076 case PC:
1077 case CC0:
1078 case REG:
1079 case CONST_INT:
1080 case CONST_DOUBLE:
1081 case CLOBBER:
1082 case CALL:
1083 return;
1085 case RETURN:
1086 if (is_target)
1088 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1089 JUMP_LABEL (insn) = x;
1091 return;
1093 case MEM:
1094 in_mem = true;
1095 break;
1097 case SEQUENCE:
1098 for (i = 0; i < XVECLEN (x, 0); i++)
1099 mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
1100 XVECEXP (x, 0, i), 0);
1101 return;
1103 case SYMBOL_REF:
1104 if (!in_mem)
1105 return;
1107 /* If this is a constant-pool reference, see if it is a label. */
1108 if (CONSTANT_POOL_ADDRESS_P (x))
1109 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1110 break;
1112 /* Handle operands in the condition of an if-then-else as for a
1113 non-jump insn. */
1114 case IF_THEN_ELSE:
1115 if (!is_target)
1116 break;
1117 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1118 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1119 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1120 return;
1122 case LABEL_REF:
1124 rtx label = XEXP (x, 0);
1126 /* Ignore remaining references to unreachable labels that
1127 have been deleted. */
1128 if (NOTE_P (label)
1129 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1130 break;
1132 gcc_assert (LABEL_P (label));
1134 /* Ignore references to labels of containing functions. */
1135 if (LABEL_REF_NONLOCAL_P (x))
1136 break;
1138 XEXP (x, 0) = label;
1139 if (! insn || ! INSN_DELETED_P (insn))
1140 ++LABEL_NUSES (label);
1142 if (insn)
1144 if (is_target
1145 /* Do not change a previous setting of JUMP_LABEL. If the
1146 JUMP_LABEL slot is occupied by a different label,
1147 create a note for this label. */
1148 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1149 JUMP_LABEL (insn) = label;
1150 else
1152 enum reg_note kind
1153 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1155 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1156 for LABEL unless there already is one. All uses of
1157 a label, except for the primary target of a jump,
1158 must have such a note. */
1159 if (! find_reg_note (insn, kind, label))
1160 add_reg_note (insn, kind, label);
1163 return;
1166 /* Do walk the labels in a vector, but not the first operand of an
1167 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1168 case ADDR_VEC:
1169 case ADDR_DIFF_VEC:
1170 if (! INSN_DELETED_P (insn))
1172 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1174 for (i = 0; i < XVECLEN (x, eltnum); i++)
1175 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1176 is_target);
1178 return;
1180 default:
1181 break;
1184 fmt = GET_RTX_FORMAT (code);
1186 /* The primary target of a tablejump is the label of the ADDR_VEC,
1187 which is canonically mentioned *last* in the insn. To get it
1188 marked as JUMP_LABEL, we iterate over items in reverse order. */
1189 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1191 if (fmt[i] == 'e')
1192 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1193 else if (fmt[i] == 'E')
1195 int j;
1197 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1198 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1199 is_target);
1204 /* Worker function for mark_jump_label. Handle asm insns specially.
1205 In particular, output operands need not be considered so we can
1206 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1207 need to be considered targets. */
1209 static void
1210 mark_jump_label_asm (rtx asmop, rtx insn)
1212 int i;
1214 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1215 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1217 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1218 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1221 /* Delete insn INSN from the chain of insns and update label ref counts
1222 and delete insns now unreachable.
1224 Returns the first insn after INSN that was not deleted.
1226 Usage of this instruction is deprecated. Use delete_insn instead and
1227 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1230 delete_related_insns (rtx insn)
1232 int was_code_label = (LABEL_P (insn));
1233 rtx note;
1234 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1236 while (next && INSN_DELETED_P (next))
1237 next = NEXT_INSN (next);
1239 /* This insn is already deleted => return first following nondeleted. */
1240 if (INSN_DELETED_P (insn))
1241 return next;
1243 delete_insn (insn);
1245 /* If instruction is followed by a barrier,
1246 delete the barrier too. */
1248 if (next != 0 && BARRIER_P (next))
1249 delete_insn (next);
1251 /* If deleting a jump, decrement the count of the label,
1252 and delete the label if it is now unused. */
1254 if (jump_to_label_p (insn))
1256 rtx lab = JUMP_LABEL (insn), lab_next;
1258 if (LABEL_NUSES (lab) == 0)
1259 /* This can delete NEXT or PREV,
1260 either directly if NEXT is JUMP_LABEL (INSN),
1261 or indirectly through more levels of jumps. */
1262 delete_related_insns (lab);
1263 else if (tablejump_p (insn, NULL, &lab_next))
1265 /* If we're deleting the tablejump, delete the dispatch table.
1266 We may not be able to kill the label immediately preceding
1267 just yet, as it might be referenced in code leading up to
1268 the tablejump. */
1269 delete_related_insns (lab_next);
1273 /* Likewise if we're deleting a dispatch table. */
1275 if (JUMP_TABLE_DATA_P (insn))
1277 rtx pat = PATTERN (insn);
1278 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1279 int len = XVECLEN (pat, diff_vec_p);
1281 for (i = 0; i < len; i++)
1282 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1283 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1284 while (next && INSN_DELETED_P (next))
1285 next = NEXT_INSN (next);
1286 return next;
1289 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1290 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1291 if (INSN_P (insn))
1292 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1293 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1294 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1295 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1296 && LABEL_P (XEXP (note, 0)))
1297 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1298 delete_related_insns (XEXP (note, 0));
1300 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1301 prev = PREV_INSN (prev);
1303 /* If INSN was a label and a dispatch table follows it,
1304 delete the dispatch table. The tablejump must have gone already.
1305 It isn't useful to fall through into a table. */
1307 if (was_code_label
1308 && NEXT_INSN (insn) != 0
1309 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1310 next = delete_related_insns (NEXT_INSN (insn));
1312 /* If INSN was a label, delete insns following it if now unreachable. */
1314 if (was_code_label && prev && BARRIER_P (prev))
1316 enum rtx_code code;
1317 while (next)
1319 code = GET_CODE (next);
1320 if (code == NOTE)
1321 next = NEXT_INSN (next);
1322 /* Keep going past other deleted labels to delete what follows. */
1323 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1324 next = NEXT_INSN (next);
1325 else if (code == BARRIER || INSN_P (next))
1326 /* Note: if this deletes a jump, it can cause more
1327 deletion of unreachable code, after a different label.
1328 As long as the value from this recursive call is correct,
1329 this invocation functions correctly. */
1330 next = delete_related_insns (next);
1331 else
1332 break;
1336 /* I feel a little doubtful about this loop,
1337 but I see no clean and sure alternative way
1338 to find the first insn after INSN that is not now deleted.
1339 I hope this works. */
1340 while (next && INSN_DELETED_P (next))
1341 next = NEXT_INSN (next);
1342 return next;
1345 /* Delete a range of insns from FROM to TO, inclusive.
1346 This is for the sake of peephole optimization, so assume
1347 that whatever these insns do will still be done by a new
1348 peephole insn that will replace them. */
1350 void
1351 delete_for_peephole (rtx from, rtx to)
1353 rtx insn = from;
1355 while (1)
1357 rtx next = NEXT_INSN (insn);
1358 rtx prev = PREV_INSN (insn);
1360 if (!NOTE_P (insn))
1362 INSN_DELETED_P (insn) = 1;
1364 /* Patch this insn out of the chain. */
1365 /* We don't do this all at once, because we
1366 must preserve all NOTEs. */
1367 if (prev)
1368 NEXT_INSN (prev) = next;
1370 if (next)
1371 PREV_INSN (next) = prev;
1374 if (insn == to)
1375 break;
1376 insn = next;
1379 /* Note that if TO is an unconditional jump
1380 we *do not* delete the BARRIER that follows,
1381 since the peephole that replaces this sequence
1382 is also an unconditional jump in that case. */
1385 /* A helper function for redirect_exp_1; examines its input X and returns
1386 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1387 static rtx
1388 redirect_target (rtx x)
1390 if (x == NULL_RTX)
1391 return ret_rtx;
1392 if (!ANY_RETURN_P (x))
1393 return gen_rtx_LABEL_REF (Pmode, x);
1394 return x;
1397 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1398 NLABEL as a return. Accrue modifications into the change group. */
1400 static void
1401 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1403 rtx x = *loc;
1404 RTX_CODE code = GET_CODE (x);
1405 int i;
1406 const char *fmt;
1408 if ((code == LABEL_REF && XEXP (x, 0) == olabel)
1409 || x == olabel)
1411 x = redirect_target (nlabel);
1412 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1413 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1414 validate_change (insn, loc, x, 1);
1415 return;
1418 if (code == SET && SET_DEST (x) == pc_rtx
1419 && ANY_RETURN_P (nlabel)
1420 && GET_CODE (SET_SRC (x)) == LABEL_REF
1421 && XEXP (SET_SRC (x), 0) == olabel)
1423 validate_change (insn, loc, nlabel, 1);
1424 return;
1427 if (code == IF_THEN_ELSE)
1429 /* Skip the condition of an IF_THEN_ELSE. We only want to
1430 change jump destinations, not eventual label comparisons. */
1431 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1432 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1433 return;
1436 fmt = GET_RTX_FORMAT (code);
1437 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1439 if (fmt[i] == 'e')
1440 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1441 else if (fmt[i] == 'E')
1443 int j;
1444 for (j = 0; j < XVECLEN (x, i); j++)
1445 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1450 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1451 the modifications into the change group. Return false if we did
1452 not see how to do that. */
1455 redirect_jump_1 (rtx jump, rtx nlabel)
1457 int ochanges = num_validated_changes ();
1458 rtx *loc, asmop;
1460 gcc_assert (nlabel != NULL_RTX);
1461 asmop = extract_asm_operands (PATTERN (jump));
1462 if (asmop)
1464 if (nlabel == NULL)
1465 return 0;
1466 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1467 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1469 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1470 loc = &XVECEXP (PATTERN (jump), 0, 0);
1471 else
1472 loc = &PATTERN (jump);
1474 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1475 return num_validated_changes () > ochanges;
1478 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1479 jump target label is unused as a result, it and the code following
1480 it may be deleted.
1482 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1483 in that case we are to turn the jump into a (possibly conditional)
1484 return insn.
1486 The return value will be 1 if the change was made, 0 if it wasn't
1487 (this can only occur when trying to produce return insns). */
1490 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1492 rtx olabel = JUMP_LABEL (jump);
1494 gcc_assert (nlabel != NULL_RTX);
1496 if (nlabel == olabel)
1497 return 1;
1499 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1500 return 0;
1502 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1503 return 1;
1506 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1507 NLABEL in JUMP.
1508 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1509 count has dropped to zero. */
1510 void
1511 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1512 int invert)
1514 rtx note;
1516 gcc_assert (JUMP_LABEL (jump) == olabel);
1518 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1519 moving FUNCTION_END note. Just sanity check that no user still worry
1520 about this. */
1521 gcc_assert (delete_unused >= 0);
1522 JUMP_LABEL (jump) = nlabel;
1523 if (!ANY_RETURN_P (nlabel))
1524 ++LABEL_NUSES (nlabel);
1526 /* Update labels in any REG_EQUAL note. */
1527 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1529 if (ANY_RETURN_P (nlabel)
1530 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1531 remove_note (jump, note);
1532 else
1534 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1535 confirm_change_group ();
1539 if (!ANY_RETURN_P (olabel)
1540 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1541 /* Undefined labels will remain outside the insn stream. */
1542 && INSN_UID (olabel))
1543 delete_related_insns (olabel);
1544 if (invert)
1545 invert_br_probabilities (jump);
1548 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1549 modifications into the change group. Return nonzero for success. */
1550 static int
1551 invert_exp_1 (rtx x, rtx insn)
1553 RTX_CODE code = GET_CODE (x);
1555 if (code == IF_THEN_ELSE)
1557 rtx comp = XEXP (x, 0);
1558 rtx tem;
1559 enum rtx_code reversed_code;
1561 /* We can do this in two ways: The preferable way, which can only
1562 be done if this is not an integer comparison, is to reverse
1563 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1564 of the IF_THEN_ELSE. If we can't do either, fail. */
1566 reversed_code = reversed_comparison_code (comp, insn);
1568 if (reversed_code != UNKNOWN)
1570 validate_change (insn, &XEXP (x, 0),
1571 gen_rtx_fmt_ee (reversed_code,
1572 GET_MODE (comp), XEXP (comp, 0),
1573 XEXP (comp, 1)),
1575 return 1;
1578 tem = XEXP (x, 1);
1579 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1580 validate_change (insn, &XEXP (x, 2), tem, 1);
1581 return 1;
1583 else
1584 return 0;
1587 /* Invert the condition of the jump JUMP, and make it jump to label
1588 NLABEL instead of where it jumps now. Accrue changes into the
1589 change group. Return false if we didn't see how to perform the
1590 inversion and redirection. */
1593 invert_jump_1 (rtx jump, rtx nlabel)
1595 rtx x = pc_set (jump);
1596 int ochanges;
1597 int ok;
1599 ochanges = num_validated_changes ();
1600 if (x == NULL)
1601 return 0;
1602 ok = invert_exp_1 (SET_SRC (x), jump);
1603 gcc_assert (ok);
1605 if (num_validated_changes () == ochanges)
1606 return 0;
1608 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1609 in Pmode, so checking this is not merely an optimization. */
1610 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1613 /* Invert the condition of the jump JUMP, and make it jump to label
1614 NLABEL instead of where it jumps now. Return true if successful. */
1617 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1619 rtx olabel = JUMP_LABEL (jump);
1621 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1623 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1624 return 1;
1626 cancel_changes (0);
1627 return 0;
1631 /* Like rtx_equal_p except that it considers two REGs as equal
1632 if they renumber to the same value and considers two commutative
1633 operations to be the same if the order of the operands has been
1634 reversed. */
1637 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1639 int i;
1640 const enum rtx_code code = GET_CODE (x);
1641 const char *fmt;
1643 if (x == y)
1644 return 1;
1646 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1647 && (REG_P (y) || (GET_CODE (y) == SUBREG
1648 && REG_P (SUBREG_REG (y)))))
1650 int reg_x = -1, reg_y = -1;
1651 int byte_x = 0, byte_y = 0;
1652 struct subreg_info info;
1654 if (GET_MODE (x) != GET_MODE (y))
1655 return 0;
1657 /* If we haven't done any renumbering, don't
1658 make any assumptions. */
1659 if (reg_renumber == 0)
1660 return rtx_equal_p (x, y);
1662 if (code == SUBREG)
1664 reg_x = REGNO (SUBREG_REG (x));
1665 byte_x = SUBREG_BYTE (x);
1667 if (reg_renumber[reg_x] >= 0)
1669 subreg_get_info (reg_renumber[reg_x],
1670 GET_MODE (SUBREG_REG (x)), byte_x,
1671 GET_MODE (x), &info);
1672 if (!info.representable_p)
1673 return 0;
1674 reg_x = info.offset;
1675 byte_x = 0;
1678 else
1680 reg_x = REGNO (x);
1681 if (reg_renumber[reg_x] >= 0)
1682 reg_x = reg_renumber[reg_x];
1685 if (GET_CODE (y) == SUBREG)
1687 reg_y = REGNO (SUBREG_REG (y));
1688 byte_y = SUBREG_BYTE (y);
1690 if (reg_renumber[reg_y] >= 0)
1692 subreg_get_info (reg_renumber[reg_y],
1693 GET_MODE (SUBREG_REG (y)), byte_y,
1694 GET_MODE (y), &info);
1695 if (!info.representable_p)
1696 return 0;
1697 reg_y = info.offset;
1698 byte_y = 0;
1701 else
1703 reg_y = REGNO (y);
1704 if (reg_renumber[reg_y] >= 0)
1705 reg_y = reg_renumber[reg_y];
1708 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1711 /* Now we have disposed of all the cases
1712 in which different rtx codes can match. */
1713 if (code != GET_CODE (y))
1714 return 0;
1716 switch (code)
1718 case PC:
1719 case CC0:
1720 case ADDR_VEC:
1721 case ADDR_DIFF_VEC:
1722 case CONST_INT:
1723 case CONST_DOUBLE:
1724 return 0;
1726 case LABEL_REF:
1727 /* We can't assume nonlocal labels have their following insns yet. */
1728 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1729 return XEXP (x, 0) == XEXP (y, 0);
1731 /* Two label-refs are equivalent if they point at labels
1732 in the same position in the instruction stream. */
1733 return (next_real_insn (XEXP (x, 0))
1734 == next_real_insn (XEXP (y, 0)));
1736 case SYMBOL_REF:
1737 return XSTR (x, 0) == XSTR (y, 0);
1739 case CODE_LABEL:
1740 /* If we didn't match EQ equality above, they aren't the same. */
1741 return 0;
1743 default:
1744 break;
1747 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1749 if (GET_MODE (x) != GET_MODE (y))
1750 return 0;
1752 /* MEMs refering to different address space are not equivalent. */
1753 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1754 return 0;
1756 /* For commutative operations, the RTX match if the operand match in any
1757 order. Also handle the simple binary and unary cases without a loop. */
1758 if (targetm.commutative_p (x, UNKNOWN))
1759 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1760 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1761 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1762 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1763 else if (NON_COMMUTATIVE_P (x))
1764 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1765 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1766 else if (UNARY_P (x))
1767 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1769 /* Compare the elements. If any pair of corresponding elements
1770 fail to match, return 0 for the whole things. */
1772 fmt = GET_RTX_FORMAT (code);
1773 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1775 int j;
1776 switch (fmt[i])
1778 case 'w':
1779 if (XWINT (x, i) != XWINT (y, i))
1780 return 0;
1781 break;
1783 case 'i':
1784 if (XINT (x, i) != XINT (y, i))
1786 if (((code == ASM_OPERANDS && i == 6)
1787 || (code == ASM_INPUT && i == 1))
1788 && locator_eq (XINT (x, i), XINT (y, i)))
1789 break;
1790 return 0;
1792 break;
1794 case 't':
1795 if (XTREE (x, i) != XTREE (y, i))
1796 return 0;
1797 break;
1799 case 's':
1800 if (strcmp (XSTR (x, i), XSTR (y, i)))
1801 return 0;
1802 break;
1804 case 'e':
1805 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1806 return 0;
1807 break;
1809 case 'u':
1810 if (XEXP (x, i) != XEXP (y, i))
1811 return 0;
1812 /* Fall through. */
1813 case '0':
1814 break;
1816 case 'E':
1817 if (XVECLEN (x, i) != XVECLEN (y, i))
1818 return 0;
1819 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1820 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1821 return 0;
1822 break;
1824 default:
1825 gcc_unreachable ();
1828 return 1;
1831 /* If X is a hard register or equivalent to one or a subregister of one,
1832 return the hard register number. If X is a pseudo register that was not
1833 assigned a hard register, return the pseudo register number. Otherwise,
1834 return -1. Any rtx is valid for X. */
1837 true_regnum (const_rtx x)
1839 if (REG_P (x))
1841 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
1842 return reg_renumber[REGNO (x)];
1843 return REGNO (x);
1845 if (GET_CODE (x) == SUBREG)
1847 int base = true_regnum (SUBREG_REG (x));
1848 if (base >= 0
1849 && base < FIRST_PSEUDO_REGISTER)
1851 struct subreg_info info;
1853 subreg_get_info (REGNO (SUBREG_REG (x)),
1854 GET_MODE (SUBREG_REG (x)),
1855 SUBREG_BYTE (x), GET_MODE (x), &info);
1857 if (info.representable_p)
1858 return base + info.offset;
1861 return -1;
1864 /* Return regno of the register REG and handle subregs too. */
1865 unsigned int
1866 reg_or_subregno (const_rtx reg)
1868 if (GET_CODE (reg) == SUBREG)
1869 reg = SUBREG_REG (reg);
1870 gcc_assert (REG_P (reg));
1871 return REGNO (reg);