2011-08-15 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / ipa-inline.c
blobc10a61822837c00d45fce13afe68f5a73094e1e5
1 /* Inlining decision heuristics.
2 Copyright (C) 2003, 2004, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Inlining decision heuristics
24 The implementation of inliner is organized as follows:
26 inlining heuristics limits
28 can_inline_edge_p allow to check that particular inlining is allowed
29 by the limits specified by user (allowed function growth, growth and so
30 on).
32 Functions are inlined when it is obvious the result is profitable (such
33 as functions called once or when inlining reduce code size).
34 In addition to that we perform inlining of small functions and recursive
35 inlining.
37 inlining heuristics
39 The inliner itself is split into two passes:
41 pass_early_inlining
43 Simple local inlining pass inlining callees into current function.
44 This pass makes no use of whole unit analysis and thus it can do only
45 very simple decisions based on local properties.
47 The strength of the pass is that it is run in topological order
48 (reverse postorder) on the callgraph. Functions are converted into SSA
49 form just before this pass and optimized subsequently. As a result, the
50 callees of the function seen by the early inliner was already optimized
51 and results of early inlining adds a lot of optimization opportunities
52 for the local optimization.
54 The pass handle the obvious inlining decisions within the compilation
55 unit - inlining auto inline functions, inlining for size and
56 flattening.
58 main strength of the pass is the ability to eliminate abstraction
59 penalty in C++ code (via combination of inlining and early
60 optimization) and thus improve quality of analysis done by real IPA
61 optimizers.
63 Because of lack of whole unit knowledge, the pass can not really make
64 good code size/performance tradeoffs. It however does very simple
65 speculative inlining allowing code size to grow by
66 EARLY_INLINING_INSNS when callee is leaf function. In this case the
67 optimizations performed later are very likely to eliminate the cost.
69 pass_ipa_inline
71 This is the real inliner able to handle inlining with whole program
72 knowledge. It performs following steps:
74 1) inlining of small functions. This is implemented by greedy
75 algorithm ordering all inlinable cgraph edges by their badness and
76 inlining them in this order as long as inline limits allows doing so.
78 This heuristics is not very good on inlining recursive calls. Recursive
79 calls can be inlined with results similar to loop unrolling. To do so,
80 special purpose recursive inliner is executed on function when
81 recursive edge is met as viable candidate.
83 2) Unreachable functions are removed from callgraph. Inlining leads
84 to devirtualization and other modification of callgraph so functions
85 may become unreachable during the process. Also functions declared as
86 extern inline or virtual functions are removed, since after inlining
87 we no longer need the offline bodies.
89 3) Functions called once and not exported from the unit are inlined.
90 This should almost always lead to reduction of code size by eliminating
91 the need for offline copy of the function. */
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "tree.h"
98 #include "tree-inline.h"
99 #include "langhooks.h"
100 #include "flags.h"
101 #include "cgraph.h"
102 #include "diagnostic.h"
103 #include "gimple-pretty-print.h"
104 #include "timevar.h"
105 #include "params.h"
106 #include "fibheap.h"
107 #include "intl.h"
108 #include "tree-pass.h"
109 #include "coverage.h"
110 #include "ggc.h"
111 #include "rtl.h"
112 #include "tree-flow.h"
113 #include "ipa-prop.h"
114 #include "except.h"
115 #include "target.h"
116 #include "ipa-inline.h"
117 #include "ipa-utils.h"
119 /* Statistics we collect about inlining algorithm. */
120 static int overall_size;
121 static gcov_type max_count;
123 /* Return false when inlining edge E would lead to violating
124 limits on function unit growth or stack usage growth.
126 The relative function body growth limit is present generally
127 to avoid problems with non-linear behavior of the compiler.
128 To allow inlining huge functions into tiny wrapper, the limit
129 is always based on the bigger of the two functions considered.
131 For stack growth limits we always base the growth in stack usage
132 of the callers. We want to prevent applications from segfaulting
133 on stack overflow when functions with huge stack frames gets
134 inlined. */
136 static bool
137 caller_growth_limits (struct cgraph_edge *e)
139 struct cgraph_node *to = e->caller;
140 struct cgraph_node *what = cgraph_function_or_thunk_node (e->callee, NULL);
141 int newsize;
142 int limit = 0;
143 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
144 struct inline_summary *info, *what_info, *outer_info = inline_summary (to);
146 /* Look for function e->caller is inlined to. While doing
147 so work out the largest function body on the way. As
148 described above, we want to base our function growth
149 limits based on that. Not on the self size of the
150 outer function, not on the self size of inline code
151 we immediately inline to. This is the most relaxed
152 interpretation of the rule "do not grow large functions
153 too much in order to prevent compiler from exploding". */
154 while (true)
156 info = inline_summary (to);
157 if (limit < info->self_size)
158 limit = info->self_size;
159 if (stack_size_limit < info->estimated_self_stack_size)
160 stack_size_limit = info->estimated_self_stack_size;
161 if (to->global.inlined_to)
162 to = to->callers->caller;
163 else
164 break;
167 what_info = inline_summary (what);
169 if (limit < what_info->self_size)
170 limit = what_info->self_size;
172 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
174 /* Check the size after inlining against the function limits. But allow
175 the function to shrink if it went over the limits by forced inlining. */
176 newsize = estimate_size_after_inlining (to, e);
177 if (newsize >= info->size
178 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
179 && newsize > limit)
181 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
182 return false;
185 if (!what_info->estimated_stack_size)
186 return true;
188 /* FIXME: Stack size limit often prevents inlining in Fortran programs
189 due to large i/o datastructures used by the Fortran front-end.
190 We ought to ignore this limit when we know that the edge is executed
191 on every invocation of the caller (i.e. its call statement dominates
192 exit block). We do not track this information, yet. */
193 stack_size_limit += ((gcov_type)stack_size_limit
194 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
196 inlined_stack = (outer_info->stack_frame_offset
197 + outer_info->estimated_self_stack_size
198 + what_info->estimated_stack_size);
199 /* Check new stack consumption with stack consumption at the place
200 stack is used. */
201 if (inlined_stack > stack_size_limit
202 /* If function already has large stack usage from sibling
203 inline call, we can inline, too.
204 This bit overoptimistically assume that we are good at stack
205 packing. */
206 && inlined_stack > info->estimated_stack_size
207 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
209 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
210 return false;
212 return true;
215 /* Dump info about why inlining has failed. */
217 static void
218 report_inline_failed_reason (struct cgraph_edge *e)
220 if (dump_file)
222 fprintf (dump_file, " not inlinable: %s/%i -> %s/%i, %s\n",
223 cgraph_node_name (e->caller), e->caller->uid,
224 cgraph_node_name (e->callee), e->callee->uid,
225 cgraph_inline_failed_string (e->inline_failed));
229 /* Decide if we can inline the edge and possibly update
230 inline_failed reason.
231 We check whether inlining is possible at all and whether
232 caller growth limits allow doing so.
234 if REPORT is true, output reason to the dump file. */
236 static bool
237 can_inline_edge_p (struct cgraph_edge *e, bool report)
239 bool inlinable = true;
240 enum availability avail;
241 struct cgraph_node *callee
242 = cgraph_function_or_thunk_node (e->callee, &avail);
243 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (e->caller->decl);
244 tree callee_tree
245 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->decl) : NULL;
246 struct function *caller_cfun = DECL_STRUCT_FUNCTION (e->caller->decl);
247 struct function *callee_cfun
248 = callee ? DECL_STRUCT_FUNCTION (callee->decl) : NULL;
250 if (!caller_cfun && e->caller->clone_of)
251 caller_cfun = DECL_STRUCT_FUNCTION (e->caller->clone_of->decl);
253 if (!callee_cfun && callee && callee->clone_of)
254 callee_cfun = DECL_STRUCT_FUNCTION (callee->clone_of->decl);
256 gcc_assert (e->inline_failed);
258 if (!callee || !callee->analyzed)
260 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
261 inlinable = false;
263 else if (!inline_summary (callee)->inlinable)
265 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
266 inlinable = false;
268 else if (avail <= AVAIL_OVERWRITABLE)
270 e->inline_failed = CIF_OVERWRITABLE;
271 return false;
273 else if (e->call_stmt_cannot_inline_p)
275 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
276 inlinable = false;
278 /* Don't inline if the functions have different EH personalities. */
279 else if (DECL_FUNCTION_PERSONALITY (e->caller->decl)
280 && DECL_FUNCTION_PERSONALITY (callee->decl)
281 && (DECL_FUNCTION_PERSONALITY (e->caller->decl)
282 != DECL_FUNCTION_PERSONALITY (callee->decl)))
284 e->inline_failed = CIF_EH_PERSONALITY;
285 inlinable = false;
287 /* Don't inline if the callee can throw non-call exceptions but the
288 caller cannot.
289 FIXME: this is obviously wrong for LTO where STRUCT_FUNCTION is missing.
290 Move the flag into cgraph node or mirror it in the inline summary. */
291 else if (callee_cfun && callee_cfun->can_throw_non_call_exceptions
292 && !(caller_cfun && caller_cfun->can_throw_non_call_exceptions))
294 e->inline_failed = CIF_NON_CALL_EXCEPTIONS;
295 inlinable = false;
297 /* Check compatibility of target optimization options. */
298 else if (!targetm.target_option.can_inline_p (e->caller->decl,
299 callee->decl))
301 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
302 inlinable = false;
304 /* Check if caller growth allows the inlining. */
305 else if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
306 && !lookup_attribute ("flatten",
307 DECL_ATTRIBUTES
308 (e->caller->global.inlined_to
309 ? e->caller->global.inlined_to->decl
310 : e->caller->decl))
311 && !caller_growth_limits (e))
312 inlinable = false;
313 /* Don't inline a function with a higher optimization level than the
314 caller. FIXME: this is really just tip of iceberg of handling
315 optimization attribute. */
316 else if (caller_tree != callee_tree)
318 struct cl_optimization *caller_opt
319 = TREE_OPTIMIZATION ((caller_tree)
320 ? caller_tree
321 : optimization_default_node);
323 struct cl_optimization *callee_opt
324 = TREE_OPTIMIZATION ((callee_tree)
325 ? callee_tree
326 : optimization_default_node);
328 if (((caller_opt->x_optimize > callee_opt->x_optimize)
329 || (caller_opt->x_optimize_size != callee_opt->x_optimize_size))
330 /* gcc.dg/pr43564.c. Look at forced inline even in -O0. */
331 && !DECL_DISREGARD_INLINE_LIMITS (e->callee->decl))
333 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
334 inlinable = false;
338 /* Be sure that the cannot_inline_p flag is up to date. */
339 gcc_checking_assert (!e->call_stmt
340 || (gimple_call_cannot_inline_p (e->call_stmt)
341 == e->call_stmt_cannot_inline_p)
342 /* In -flto-partition=none mode we really keep things out of
343 sync because call_stmt_cannot_inline_p is set at cgraph
344 merging when function bodies are not there yet. */
345 || (in_lto_p && !gimple_call_cannot_inline_p (e->call_stmt)));
346 if (!inlinable && report)
347 report_inline_failed_reason (e);
348 return inlinable;
352 /* Return true if the edge E is inlinable during early inlining. */
354 static bool
355 can_early_inline_edge_p (struct cgraph_edge *e)
357 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee,
358 NULL);
359 /* Early inliner might get called at WPA stage when IPA pass adds new
360 function. In this case we can not really do any of early inlining
361 because function bodies are missing. */
362 if (!gimple_has_body_p (callee->decl))
364 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
365 return false;
367 /* In early inliner some of callees may not be in SSA form yet
368 (i.e. the callgraph is cyclic and we did not process
369 the callee by early inliner, yet). We don't have CIF code for this
370 case; later we will re-do the decision in the real inliner. */
371 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->decl))
372 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
374 if (dump_file)
375 fprintf (dump_file, " edge not inlinable: not in SSA form\n");
376 return false;
378 if (!can_inline_edge_p (e, true))
379 return false;
380 return true;
384 /* Return true when N is leaf function. Accept cheap builtins
385 in leaf functions. */
387 static bool
388 leaf_node_p (struct cgraph_node *n)
390 struct cgraph_edge *e;
391 for (e = n->callees; e; e = e->next_callee)
392 if (!is_inexpensive_builtin (e->callee->decl))
393 return false;
394 return true;
398 /* Return true if we are interested in inlining small function. */
400 static bool
401 want_early_inline_function_p (struct cgraph_edge *e)
403 bool want_inline = true;
404 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
406 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
408 else if (!DECL_DECLARED_INLINE_P (callee->decl)
409 && !flag_inline_small_functions)
411 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
412 report_inline_failed_reason (e);
413 want_inline = false;
415 else
417 int growth = estimate_edge_growth (e);
418 if (growth <= 0)
420 else if (!cgraph_maybe_hot_edge_p (e)
421 && growth > 0)
423 if (dump_file)
424 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
425 "call is cold and code would grow by %i\n",
426 cgraph_node_name (e->caller), e->caller->uid,
427 cgraph_node_name (callee), callee->uid,
428 growth);
429 want_inline = false;
431 else if (!leaf_node_p (callee)
432 && growth > 0)
434 if (dump_file)
435 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
436 "callee is not leaf and code would grow by %i\n",
437 cgraph_node_name (e->caller), e->caller->uid,
438 cgraph_node_name (callee), callee->uid,
439 growth);
440 want_inline = false;
442 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
444 if (dump_file)
445 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
446 "growth %i exceeds --param early-inlining-insns\n",
447 cgraph_node_name (e->caller), e->caller->uid,
448 cgraph_node_name (callee), callee->uid,
449 growth);
450 want_inline = false;
453 return want_inline;
456 /* Return true if we are interested in inlining small function.
457 When REPORT is true, report reason to dump file. */
459 static bool
460 want_inline_small_function_p (struct cgraph_edge *e, bool report)
462 bool want_inline = true;
463 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
465 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
467 else if (!DECL_DECLARED_INLINE_P (callee->decl)
468 && !flag_inline_small_functions)
470 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
471 want_inline = false;
473 else
475 int growth = estimate_edge_growth (e);
477 if (growth <= 0)
479 else if (DECL_DECLARED_INLINE_P (callee->decl)
480 && growth >= MAX_INLINE_INSNS_SINGLE)
482 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
483 want_inline = false;
485 else if (!DECL_DECLARED_INLINE_P (callee->decl)
486 && !flag_inline_functions)
488 e->inline_failed = CIF_NOT_DECLARED_INLINED;
489 want_inline = false;
491 else if (!DECL_DECLARED_INLINE_P (callee->decl)
492 && growth >= MAX_INLINE_INSNS_AUTO)
494 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
495 want_inline = false;
497 /* If call is cold, do not inline when function body would grow.
498 Still inline when the overall unit size will shrink because the offline
499 copy of function being eliminated.
501 This is slightly wrong on aggressive side: it is entirely possible
502 that function is called many times with a context where inlining
503 reduces code size and few times with a context where inlining increase
504 code size. Resoluting growth estimate will be negative even if it
505 would make more sense to keep offline copy and do not inline into the
506 call sites that makes the code size grow.
508 When badness orders the calls in a way that code reducing calls come
509 first, this situation is not a problem at all: after inlining all
510 "good" calls, we will realize that keeping the function around is
511 better. */
512 else if (!cgraph_maybe_hot_edge_p (e)
513 && (DECL_EXTERNAL (callee->decl)
515 /* Unlike for functions called once, we play unsafe with
516 COMDATs. We can allow that since we know functions
517 in consideration are small (and thus risk is small) and
518 moreover grow estimates already accounts that COMDAT
519 functions may or may not disappear when eliminated from
520 current unit. With good probability making aggressive
521 choice in all units is going to make overall program
522 smaller.
524 Consequently we ask cgraph_can_remove_if_no_direct_calls_p
525 instead of
526 cgraph_will_be_removed_from_program_if_no_direct_calls */
528 || !cgraph_can_remove_if_no_direct_calls_p (callee)
529 || estimate_growth (callee) > 0))
531 e->inline_failed = CIF_UNLIKELY_CALL;
532 want_inline = false;
535 if (!want_inline && report)
536 report_inline_failed_reason (e);
537 return want_inline;
540 /* EDGE is self recursive edge.
541 We hand two cases - when function A is inlining into itself
542 or when function A is being inlined into another inliner copy of function
543 A within function B.
545 In first case OUTER_NODE points to the toplevel copy of A, while
546 in the second case OUTER_NODE points to the outermost copy of A in B.
548 In both cases we want to be extra selective since
549 inlining the call will just introduce new recursive calls to appear. */
551 static bool
552 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
553 struct cgraph_node *outer_node,
554 bool peeling,
555 int depth)
557 char const *reason = NULL;
558 bool want_inline = true;
559 int caller_freq = CGRAPH_FREQ_BASE;
560 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
562 if (DECL_DECLARED_INLINE_P (edge->caller->decl))
563 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
565 if (!cgraph_maybe_hot_edge_p (edge))
567 reason = "recursive call is cold";
568 want_inline = false;
570 else if (max_count && !outer_node->count)
572 reason = "not executed in profile";
573 want_inline = false;
575 else if (depth > max_depth)
577 reason = "--param max-inline-recursive-depth exceeded.";
578 want_inline = false;
581 if (outer_node->global.inlined_to)
582 caller_freq = outer_node->callers->frequency;
584 if (!want_inline)
586 /* Inlining of self recursive function into copy of itself within other function
587 is transformation similar to loop peeling.
589 Peeling is profitable if we can inline enough copies to make probability
590 of actual call to the self recursive function very small. Be sure that
591 the probability of recursion is small.
593 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
594 This way the expected number of recision is at most max_depth. */
595 else if (peeling)
597 int max_prob = CGRAPH_FREQ_BASE - ((CGRAPH_FREQ_BASE + max_depth - 1)
598 / max_depth);
599 int i;
600 for (i = 1; i < depth; i++)
601 max_prob = max_prob * max_prob / CGRAPH_FREQ_BASE;
602 if (max_count
603 && (edge->count * CGRAPH_FREQ_BASE / outer_node->count
604 >= max_prob))
606 reason = "profile of recursive call is too large";
607 want_inline = false;
609 if (!max_count
610 && (edge->frequency * CGRAPH_FREQ_BASE / caller_freq
611 >= max_prob))
613 reason = "frequency of recursive call is too large";
614 want_inline = false;
617 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
618 depth is large. We reduce function call overhead and increase chances that
619 things fit in hardware return predictor.
621 Recursive inlining might however increase cost of stack frame setup
622 actually slowing down functions whose recursion tree is wide rather than
623 deep.
625 Deciding reliably on when to do recursive inlining without profile feedback
626 is tricky. For now we disable recursive inlining when probability of self
627 recursion is low.
629 Recursive inlining of self recursive call within loop also results in large loop
630 depths that generally optimize badly. We may want to throttle down inlining
631 in those cases. In particular this seems to happen in one of libstdc++ rb tree
632 methods. */
633 else
635 if (max_count
636 && (edge->count * 100 / outer_node->count
637 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
639 reason = "profile of recursive call is too small";
640 want_inline = false;
642 else if (!max_count
643 && (edge->frequency * 100 / caller_freq
644 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
646 reason = "frequency of recursive call is too small";
647 want_inline = false;
650 if (!want_inline && dump_file)
651 fprintf (dump_file, " not inlining recursively: %s\n", reason);
652 return want_inline;
655 /* Return true when NODE has caller other than EDGE.
656 Worker for cgraph_for_node_and_aliases. */
658 static bool
659 check_caller_edge (struct cgraph_node *node, void *edge)
661 return (node->callers
662 && node->callers != edge);
666 /* Decide if NODE is called once inlining it would eliminate need
667 for the offline copy of function. */
669 static bool
670 want_inline_function_called_once_p (struct cgraph_node *node)
672 struct cgraph_node *function = cgraph_function_or_thunk_node (node, NULL);
673 /* Already inlined? */
674 if (function->global.inlined_to)
675 return false;
676 /* Zero or more then one callers? */
677 if (!node->callers
678 || node->callers->next_caller)
679 return false;
680 /* Maybe other aliases has more direct calls. */
681 if (cgraph_for_node_and_aliases (node, check_caller_edge, node->callers, true))
682 return false;
683 /* Recursive call makes no sense to inline. */
684 if (cgraph_edge_recursive_p (node->callers))
685 return false;
686 /* External functions are not really in the unit, so inlining
687 them when called once would just increase the program size. */
688 if (DECL_EXTERNAL (function->decl))
689 return false;
690 /* Offline body must be optimized out. */
691 if (!cgraph_will_be_removed_from_program_if_no_direct_calls (function))
692 return false;
693 if (!can_inline_edge_p (node->callers, true))
694 return false;
695 return true;
699 /* Return relative time improvement for inlining EDGE in range
700 1...2^9. */
702 static inline int
703 relative_time_benefit (struct inline_summary *callee_info,
704 struct cgraph_edge *edge,
705 int time_growth)
707 int relbenefit;
708 gcov_type uninlined_call_time;
710 uninlined_call_time =
711 ((gcov_type)
712 (callee_info->time
713 + inline_edge_summary (edge)->call_stmt_time
714 + CGRAPH_FREQ_BASE / 2) * edge->frequency
715 / CGRAPH_FREQ_BASE);
716 /* Compute relative time benefit, i.e. how much the call becomes faster.
717 ??? perhaps computing how much the caller+calle together become faster
718 would lead to more realistic results. */
719 if (!uninlined_call_time)
720 uninlined_call_time = 1;
721 relbenefit =
722 (uninlined_call_time - time_growth) * 256 / (uninlined_call_time);
723 relbenefit = MIN (relbenefit, 512);
724 relbenefit = MAX (relbenefit, 1);
725 return relbenefit;
729 /* A cost model driving the inlining heuristics in a way so the edges with
730 smallest badness are inlined first. After each inlining is performed
731 the costs of all caller edges of nodes affected are recomputed so the
732 metrics may accurately depend on values such as number of inlinable callers
733 of the function or function body size. */
735 static int
736 edge_badness (struct cgraph_edge *edge, bool dump)
738 gcov_type badness;
739 int growth, time_growth;
740 struct cgraph_node *callee = cgraph_function_or_thunk_node (edge->callee,
741 NULL);
742 struct inline_summary *callee_info = inline_summary (callee);
744 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
745 return INT_MIN;
747 growth = estimate_edge_growth (edge);
748 time_growth = estimate_edge_time (edge);
750 if (dump)
752 fprintf (dump_file, " Badness calculation for %s -> %s\n",
753 cgraph_node_name (edge->caller),
754 cgraph_node_name (callee));
755 fprintf (dump_file, " size growth %i, time growth %i\n",
756 growth,
757 time_growth);
760 /* Always prefer inlining saving code size. */
761 if (growth <= 0)
763 badness = INT_MIN / 2 + growth;
764 if (dump)
765 fprintf (dump_file, " %i: Growth %i <= 0\n", (int) badness,
766 growth);
769 /* When profiling is available, compute badness as:
771 relative_edge_count * relative_time_benefit
772 goodness = -------------------------------------------
773 edge_growth
774 badness = -goodness
776 The fraction is upside down, becuase on edge counts and time beneits
777 the bounds are known. Edge growth is essentially unlimited. */
779 else if (max_count)
781 int relbenefit = relative_time_benefit (callee_info, edge, time_growth);
782 badness =
783 ((int)
784 ((double) edge->count * INT_MIN / 2 / max_count / 512) *
785 relative_time_benefit (callee_info, edge, time_growth)) / growth;
787 /* Be sure that insanity of the profile won't lead to increasing counts
788 in the scalling and thus to overflow in the computation above. */
789 gcc_assert (max_count >= edge->count);
790 if (dump)
792 fprintf (dump_file,
793 " %i (relative %f): profile info. Relative count %f"
794 " * Relative benefit %f\n",
795 (int) badness, (double) badness / INT_MIN,
796 (double) edge->count / max_count,
797 relbenefit * 100 / 256.0);
801 /* When function local profile is available. Compute badness as:
804 growth_of_callee
805 badness = -------------------------------------- + growth_for-all
806 relative_time_benefit * edge_frequency
809 else if (flag_guess_branch_prob)
811 int div = edge->frequency * (1<<10) / CGRAPH_FREQ_MAX;
812 int growth_for_all;
814 div = MAX (div, 1);
815 gcc_checking_assert (edge->frequency <= CGRAPH_FREQ_MAX);
816 div *= relative_time_benefit (callee_info, edge, time_growth);
818 /* frequency is normalized in range 1...2^10.
819 relbenefit in range 1...2^9
820 DIV should be in range 1....2^19. */
821 gcc_checking_assert (div >= 1 && div <= (1<<19));
823 /* Result must be integer in range 0...INT_MAX.
824 Set the base of fixed point calculation so we don't lose much of
825 precision for small bandesses (those are interesting) yet we don't
826 overflow for growths that are still in interesting range. */
827 badness = ((gcov_type)growth) * (1<<18);
828 badness = (badness + div / 2) / div;
830 /* Overall growth of inlining all calls of function matters: we want to
831 inline so offline copy of function is no longer needed.
833 Additionally functions that can be fully inlined without much of
834 effort are better inline candidates than functions that can be fully
835 inlined only after noticeable overall unit growths. The latter
836 are better in a sense compressing of code size by factoring out common
837 code into separate function shared by multiple code paths.
839 We might mix the valud into the fraction by taking into account
840 relative growth of the unit, but for now just add the number
841 into resulting fraction. */
842 growth_for_all = estimate_growth (callee);
843 badness += growth_for_all;
844 if (badness > INT_MAX - 1)
845 badness = INT_MAX - 1;
846 if (dump)
848 fprintf (dump_file,
849 " %i: guessed profile. frequency %f, overall growth %i,"
850 " benefit %f%%, divisor %i\n",
851 (int) badness, (double)edge->frequency / CGRAPH_FREQ_BASE, growth_for_all,
852 relative_time_benefit (callee_info, edge, time_growth) * 100 / 256.0, div);
855 /* When function local profile is not available or it does not give
856 useful information (ie frequency is zero), base the cost on
857 loop nest and overall size growth, so we optimize for overall number
858 of functions fully inlined in program. */
859 else
861 int nest = MIN (inline_edge_summary (edge)->loop_depth, 8);
862 badness = estimate_growth (callee) * 256;
864 /* Decrease badness if call is nested. */
865 if (badness > 0)
866 badness >>= nest;
867 else
869 badness <<= nest;
871 if (dump)
872 fprintf (dump_file, " %i: no profile. nest %i\n", (int) badness,
873 nest);
876 /* Ensure that we did not overflow in all the fixed point math above. */
877 gcc_assert (badness >= INT_MIN);
878 gcc_assert (badness <= INT_MAX - 1);
879 /* Make recursive inlining happen always after other inlining is done. */
880 if (cgraph_edge_recursive_p (edge))
881 return badness + 1;
882 else
883 return badness;
886 /* Recompute badness of EDGE and update its key in HEAP if needed. */
887 static inline void
888 update_edge_key (fibheap_t heap, struct cgraph_edge *edge)
890 int badness = edge_badness (edge, false);
891 if (edge->aux)
893 fibnode_t n = (fibnode_t) edge->aux;
894 gcc_checking_assert (n->data == edge);
896 /* fibheap_replace_key only decrease the keys.
897 When we increase the key we do not update heap
898 and instead re-insert the element once it becomes
899 a minimum of heap. */
900 if (badness < n->key)
902 if (dump_file && (dump_flags & TDF_DETAILS))
904 fprintf (dump_file,
905 " decreasing badness %s/%i -> %s/%i, %i to %i\n",
906 cgraph_node_name (edge->caller), edge->caller->uid,
907 cgraph_node_name (edge->callee), edge->callee->uid,
908 (int)n->key,
909 badness);
911 fibheap_replace_key (heap, n, badness);
912 gcc_checking_assert (n->key == badness);
915 else
917 if (dump_file && (dump_flags & TDF_DETAILS))
919 fprintf (dump_file,
920 " enqueuing call %s/%i -> %s/%i, badness %i\n",
921 cgraph_node_name (edge->caller), edge->caller->uid,
922 cgraph_node_name (edge->callee), edge->callee->uid,
923 badness);
925 edge->aux = fibheap_insert (heap, badness, edge);
930 /* NODE was inlined.
931 All caller edges needs to be resetted because
932 size estimates change. Similarly callees needs reset
933 because better context may be known. */
935 static void
936 reset_edge_caches (struct cgraph_node *node)
938 struct cgraph_edge *edge;
939 struct cgraph_edge *e = node->callees;
940 struct cgraph_node *where = node;
941 int i;
942 struct ipa_ref *ref;
944 if (where->global.inlined_to)
945 where = where->global.inlined_to;
947 /* WHERE body size has changed, the cached growth is invalid. */
948 reset_node_growth_cache (where);
950 for (edge = where->callers; edge; edge = edge->next_caller)
951 if (edge->inline_failed)
952 reset_edge_growth_cache (edge);
953 for (i = 0; ipa_ref_list_refering_iterate (&where->ref_list, i, ref); i++)
954 if (ref->use == IPA_REF_ALIAS)
955 reset_edge_caches (ipa_ref_refering_node (ref));
957 if (!e)
958 return;
960 while (true)
961 if (!e->inline_failed && e->callee->callees)
962 e = e->callee->callees;
963 else
965 if (e->inline_failed)
966 reset_edge_growth_cache (e);
967 if (e->next_callee)
968 e = e->next_callee;
969 else
973 if (e->caller == node)
974 return;
975 e = e->caller->callers;
977 while (!e->next_callee);
978 e = e->next_callee;
983 /* Recompute HEAP nodes for each of caller of NODE.
984 UPDATED_NODES track nodes we already visited, to avoid redundant work.
985 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
986 it is inlinable. Otherwise check all edges. */
988 static void
989 update_caller_keys (fibheap_t heap, struct cgraph_node *node,
990 bitmap updated_nodes,
991 struct cgraph_edge *check_inlinablity_for)
993 struct cgraph_edge *edge;
994 int i;
995 struct ipa_ref *ref;
997 if ((!node->alias && !inline_summary (node)->inlinable)
998 || cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE
999 || node->global.inlined_to)
1000 return;
1001 if (!bitmap_set_bit (updated_nodes, node->uid))
1002 return;
1004 for (i = 0; ipa_ref_list_refering_iterate (&node->ref_list, i, ref); i++)
1005 if (ref->use == IPA_REF_ALIAS)
1007 struct cgraph_node *alias = ipa_ref_refering_node (ref);
1008 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1011 for (edge = node->callers; edge; edge = edge->next_caller)
1012 if (edge->inline_failed)
1014 if (!check_inlinablity_for
1015 || check_inlinablity_for == edge)
1017 if (can_inline_edge_p (edge, false)
1018 && want_inline_small_function_p (edge, false))
1019 update_edge_key (heap, edge);
1020 else if (edge->aux)
1022 report_inline_failed_reason (edge);
1023 fibheap_delete_node (heap, (fibnode_t) edge->aux);
1024 edge->aux = NULL;
1027 else if (edge->aux)
1028 update_edge_key (heap, edge);
1032 /* Recompute HEAP nodes for each uninlined call in NODE.
1033 This is used when we know that edge badnesses are going only to increase
1034 (we introduced new call site) and thus all we need is to insert newly
1035 created edges into heap. */
1037 static void
1038 update_callee_keys (fibheap_t heap, struct cgraph_node *node,
1039 bitmap updated_nodes)
1041 struct cgraph_edge *e = node->callees;
1043 if (!e)
1044 return;
1045 while (true)
1046 if (!e->inline_failed && e->callee->callees)
1047 e = e->callee->callees;
1048 else
1050 enum availability avail;
1051 struct cgraph_node *callee;
1052 /* We do not reset callee growth cache here. Since we added a new call,
1053 growth chould have just increased and consequentely badness metric
1054 don't need updating. */
1055 if (e->inline_failed
1056 && (callee = cgraph_function_or_thunk_node (e->callee, &avail))
1057 && inline_summary (callee)->inlinable
1058 && cgraph_function_body_availability (callee) >= AVAIL_AVAILABLE
1059 && !bitmap_bit_p (updated_nodes, callee->uid))
1061 if (can_inline_edge_p (e, false)
1062 && want_inline_small_function_p (e, false))
1063 update_edge_key (heap, e);
1064 else if (e->aux)
1066 report_inline_failed_reason (e);
1067 fibheap_delete_node (heap, (fibnode_t) e->aux);
1068 e->aux = NULL;
1071 if (e->next_callee)
1072 e = e->next_callee;
1073 else
1077 if (e->caller == node)
1078 return;
1079 e = e->caller->callers;
1081 while (!e->next_callee);
1082 e = e->next_callee;
1087 /* Recompute heap nodes for each of caller edges of each of callees.
1088 Walk recursively into all inline clones. */
1090 static void
1091 update_all_callee_keys (fibheap_t heap, struct cgraph_node *node,
1092 bitmap updated_nodes)
1094 struct cgraph_edge *e = node->callees;
1095 if (!e)
1096 return;
1097 while (true)
1098 if (!e->inline_failed && e->callee->callees)
1099 e = e->callee->callees;
1100 else
1102 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee,
1103 NULL);
1105 /* We inlined and thus callees might have different number of calls.
1106 Reset their caches */
1107 reset_node_growth_cache (callee);
1108 if (e->inline_failed)
1109 update_caller_keys (heap, callee, updated_nodes, e);
1110 if (e->next_callee)
1111 e = e->next_callee;
1112 else
1116 if (e->caller == node)
1117 return;
1118 e = e->caller->callers;
1120 while (!e->next_callee);
1121 e = e->next_callee;
1126 /* Enqueue all recursive calls from NODE into priority queue depending on
1127 how likely we want to recursively inline the call. */
1129 static void
1130 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1131 fibheap_t heap)
1133 struct cgraph_edge *e;
1134 enum availability avail;
1136 for (e = where->callees; e; e = e->next_callee)
1137 if (e->callee == node
1138 || (cgraph_function_or_thunk_node (e->callee, &avail) == node
1139 && avail > AVAIL_OVERWRITABLE))
1141 /* When profile feedback is available, prioritize by expected number
1142 of calls. */
1143 fibheap_insert (heap,
1144 !max_count ? -e->frequency
1145 : -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
1148 for (e = where->callees; e; e = e->next_callee)
1149 if (!e->inline_failed)
1150 lookup_recursive_calls (node, e->callee, heap);
1153 /* Decide on recursive inlining: in the case function has recursive calls,
1154 inline until body size reaches given argument. If any new indirect edges
1155 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1156 is NULL. */
1158 static bool
1159 recursive_inlining (struct cgraph_edge *edge,
1160 VEC (cgraph_edge_p, heap) **new_edges)
1162 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1163 fibheap_t heap;
1164 struct cgraph_node *node;
1165 struct cgraph_edge *e;
1166 struct cgraph_node *master_clone = NULL, *next;
1167 int depth = 0;
1168 int n = 0;
1170 node = edge->caller;
1171 if (node->global.inlined_to)
1172 node = node->global.inlined_to;
1174 if (DECL_DECLARED_INLINE_P (node->decl))
1175 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1177 /* Make sure that function is small enough to be considered for inlining. */
1178 if (estimate_size_after_inlining (node, edge) >= limit)
1179 return false;
1180 heap = fibheap_new ();
1181 lookup_recursive_calls (node, node, heap);
1182 if (fibheap_empty (heap))
1184 fibheap_delete (heap);
1185 return false;
1188 if (dump_file)
1189 fprintf (dump_file,
1190 " Performing recursive inlining on %s\n",
1191 cgraph_node_name (node));
1193 /* Do the inlining and update list of recursive call during process. */
1194 while (!fibheap_empty (heap))
1196 struct cgraph_edge *curr
1197 = (struct cgraph_edge *) fibheap_extract_min (heap);
1198 struct cgraph_node *cnode;
1200 if (estimate_size_after_inlining (node, curr) > limit)
1201 break;
1203 if (!can_inline_edge_p (curr, true))
1204 continue;
1206 depth = 1;
1207 for (cnode = curr->caller;
1208 cnode->global.inlined_to; cnode = cnode->callers->caller)
1209 if (node->decl
1210 == cgraph_function_or_thunk_node (curr->callee, NULL)->decl)
1211 depth++;
1213 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1214 continue;
1216 if (dump_file)
1218 fprintf (dump_file,
1219 " Inlining call of depth %i", depth);
1220 if (node->count)
1222 fprintf (dump_file, " called approx. %.2f times per call",
1223 (double)curr->count / node->count);
1225 fprintf (dump_file, "\n");
1227 if (!master_clone)
1229 /* We need original clone to copy around. */
1230 master_clone = cgraph_clone_node (node, node->decl,
1231 node->count, CGRAPH_FREQ_BASE,
1232 false, NULL, true);
1233 for (e = master_clone->callees; e; e = e->next_callee)
1234 if (!e->inline_failed)
1235 clone_inlined_nodes (e, true, false, NULL);
1238 cgraph_redirect_edge_callee (curr, master_clone);
1239 inline_call (curr, false, new_edges, &overall_size);
1240 lookup_recursive_calls (node, curr->callee, heap);
1241 n++;
1244 if (!fibheap_empty (heap) && dump_file)
1245 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1246 fibheap_delete (heap);
1248 if (!master_clone)
1249 return false;
1251 if (dump_file)
1252 fprintf (dump_file,
1253 "\n Inlined %i times, "
1254 "body grown from size %i to %i, time %i to %i\n", n,
1255 inline_summary (master_clone)->size, inline_summary (node)->size,
1256 inline_summary (master_clone)->time, inline_summary (node)->time);
1258 /* Remove master clone we used for inlining. We rely that clones inlined
1259 into master clone gets queued just before master clone so we don't
1260 need recursion. */
1261 for (node = cgraph_nodes; node != master_clone;
1262 node = next)
1264 next = node->next;
1265 if (node->global.inlined_to == master_clone)
1266 cgraph_remove_node (node);
1268 cgraph_remove_node (master_clone);
1269 return true;
1273 /* Given whole compilation unit estimate of INSNS, compute how large we can
1274 allow the unit to grow. */
1276 static int
1277 compute_max_insns (int insns)
1279 int max_insns = insns;
1280 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1281 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1283 return ((HOST_WIDEST_INT) max_insns
1284 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1288 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1290 static void
1291 add_new_edges_to_heap (fibheap_t heap, VEC (cgraph_edge_p, heap) *new_edges)
1293 while (VEC_length (cgraph_edge_p, new_edges) > 0)
1295 struct cgraph_edge *edge = VEC_pop (cgraph_edge_p, new_edges);
1297 gcc_assert (!edge->aux);
1298 if (edge->inline_failed
1299 && can_inline_edge_p (edge, true)
1300 && want_inline_small_function_p (edge, true))
1301 edge->aux = fibheap_insert (heap, edge_badness (edge, false), edge);
1306 /* We use greedy algorithm for inlining of small functions:
1307 All inline candidates are put into prioritized heap ordered in
1308 increasing badness.
1310 The inlining of small functions is bounded by unit growth parameters. */
1312 static void
1313 inline_small_functions (void)
1315 struct cgraph_node *node;
1316 struct cgraph_edge *edge;
1317 fibheap_t heap = fibheap_new ();
1318 bitmap updated_nodes = BITMAP_ALLOC (NULL);
1319 int min_size, max_size;
1320 VEC (cgraph_edge_p, heap) *new_indirect_edges = NULL;
1321 int initial_size = 0;
1323 if (flag_indirect_inlining)
1324 new_indirect_edges = VEC_alloc (cgraph_edge_p, heap, 8);
1326 if (dump_file)
1327 fprintf (dump_file,
1328 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1329 initial_size);
1331 /* Compute overall unit size and other global parameters used by badness
1332 metrics. */
1334 max_count = 0;
1335 initialize_growth_caches ();
1337 FOR_EACH_DEFINED_FUNCTION (node)
1338 if (!node->global.inlined_to)
1340 if (cgraph_function_with_gimple_body_p (node)
1341 || node->thunk.thunk_p)
1343 struct inline_summary *info = inline_summary (node);
1345 if (!DECL_EXTERNAL (node->decl))
1346 initial_size += info->size;
1349 for (edge = node->callers; edge; edge = edge->next_caller)
1350 if (max_count < edge->count)
1351 max_count = edge->count;
1354 overall_size = initial_size;
1355 max_size = compute_max_insns (overall_size);
1356 min_size = overall_size;
1358 /* Populate the heeap with all edges we might inline. */
1360 FOR_EACH_DEFINED_FUNCTION (node)
1361 if (!node->global.inlined_to)
1363 if (dump_file)
1364 fprintf (dump_file, "Enqueueing calls of %s/%i.\n",
1365 cgraph_node_name (node), node->uid);
1367 for (edge = node->callers; edge; edge = edge->next_caller)
1368 if (edge->inline_failed
1369 && can_inline_edge_p (edge, true)
1370 && want_inline_small_function_p (edge, true)
1371 && edge->inline_failed)
1373 gcc_assert (!edge->aux);
1374 update_edge_key (heap, edge);
1378 gcc_assert (in_lto_p
1379 || !max_count
1380 || (profile_info && flag_branch_probabilities));
1382 while (!fibheap_empty (heap))
1384 int old_size = overall_size;
1385 struct cgraph_node *where, *callee;
1386 int badness = fibheap_min_key (heap);
1387 int current_badness;
1388 int growth;
1390 edge = (struct cgraph_edge *) fibheap_extract_min (heap);
1391 gcc_assert (edge->aux);
1392 edge->aux = NULL;
1393 if (!edge->inline_failed)
1394 continue;
1396 /* Be sure that caches are maintained consistent. */
1397 #ifdef ENABLE_CHECKING
1398 reset_edge_growth_cache (edge);
1399 reset_node_growth_cache (edge->callee);
1400 #endif
1402 /* When updating the edge costs, we only decrease badness in the keys.
1403 Increases of badness are handled lazilly; when we see key with out
1404 of date value on it, we re-insert it now. */
1405 current_badness = edge_badness (edge, false);
1406 gcc_assert (current_badness >= badness);
1407 if (current_badness != badness)
1409 edge->aux = fibheap_insert (heap, current_badness, edge);
1410 continue;
1413 if (!can_inline_edge_p (edge, true))
1414 continue;
1416 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
1417 growth = estimate_edge_growth (edge);
1418 if (dump_file)
1420 fprintf (dump_file,
1421 "\nConsidering %s with %i size\n",
1422 cgraph_node_name (callee),
1423 inline_summary (callee)->size);
1424 fprintf (dump_file,
1425 " to be inlined into %s in %s:%i\n"
1426 " Estimated growth after inlined into all is %+i insns.\n"
1427 " Estimated badness is %i, frequency %.2f.\n",
1428 cgraph_node_name (edge->caller),
1429 flag_wpa ? "unknown"
1430 : gimple_filename ((const_gimple) edge->call_stmt),
1431 flag_wpa ? -1
1432 : gimple_lineno ((const_gimple) edge->call_stmt),
1433 estimate_growth (callee),
1434 badness,
1435 edge->frequency / (double)CGRAPH_FREQ_BASE);
1436 if (edge->count)
1437 fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n",
1438 edge->count);
1439 if (dump_flags & TDF_DETAILS)
1440 edge_badness (edge, true);
1443 if (overall_size + growth > max_size
1444 && !DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1446 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
1447 report_inline_failed_reason (edge);
1448 continue;
1451 if (!want_inline_small_function_p (edge, true))
1452 continue;
1454 /* Heuristics for inlining small functions works poorly for
1455 recursive calls where we do efect similar to loop unrolling.
1456 When inliing such edge seems profitable, leave decision on
1457 specific inliner. */
1458 if (cgraph_edge_recursive_p (edge))
1460 where = edge->caller;
1461 if (where->global.inlined_to)
1462 where = where->global.inlined_to;
1463 if (!recursive_inlining (edge,
1464 flag_indirect_inlining
1465 ? &new_indirect_edges : NULL))
1467 edge->inline_failed = CIF_RECURSIVE_INLINING;
1468 continue;
1470 reset_edge_caches (where);
1471 /* Recursive inliner inlines all recursive calls of the function
1472 at once. Consequently we need to update all callee keys. */
1473 if (flag_indirect_inlining)
1474 add_new_edges_to_heap (heap, new_indirect_edges);
1475 update_all_callee_keys (heap, where, updated_nodes);
1477 else
1479 struct cgraph_node *outer_node = NULL;
1480 int depth = 0;
1482 /* Consider the case where self recursive function A is inlined into B.
1483 This is desired optimization in some cases, since it leads to effect
1484 similar of loop peeling and we might completely optimize out the
1485 recursive call. However we must be extra selective. */
1487 where = edge->caller;
1488 while (where->global.inlined_to)
1490 if (where->decl == callee->decl)
1491 outer_node = where, depth++;
1492 where = where->callers->caller;
1494 if (outer_node
1495 && !want_inline_self_recursive_call_p (edge, outer_node,
1496 true, depth))
1498 edge->inline_failed
1499 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->decl)
1500 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
1501 continue;
1503 else if (depth && dump_file)
1504 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
1506 gcc_checking_assert (!callee->global.inlined_to);
1507 inline_call (edge, true, &new_indirect_edges, &overall_size);
1508 if (flag_indirect_inlining)
1509 add_new_edges_to_heap (heap, new_indirect_edges);
1511 reset_edge_caches (edge->callee);
1512 reset_node_growth_cache (callee);
1514 /* We inlined last offline copy to the body. This might lead
1515 to callees of function having fewer call sites and thus they
1516 may need updating. */
1517 if (callee->global.inlined_to)
1518 update_all_callee_keys (heap, callee, updated_nodes);
1519 else
1520 update_callee_keys (heap, edge->callee, updated_nodes);
1522 where = edge->caller;
1523 if (where->global.inlined_to)
1524 where = where->global.inlined_to;
1526 /* Our profitability metric can depend on local properties
1527 such as number of inlinable calls and size of the function body.
1528 After inlining these properties might change for the function we
1529 inlined into (since it's body size changed) and for the functions
1530 called by function we inlined (since number of it inlinable callers
1531 might change). */
1532 update_caller_keys (heap, where, updated_nodes, NULL);
1534 /* We removed one call of the function we just inlined. If offline
1535 copy is still needed, be sure to update the keys. */
1536 if (callee != where && !callee->global.inlined_to)
1537 update_caller_keys (heap, callee, updated_nodes, NULL);
1538 bitmap_clear (updated_nodes);
1540 if (dump_file)
1542 fprintf (dump_file,
1543 " Inlined into %s which now has time %i and size %i,"
1544 "net change of %+i.\n",
1545 cgraph_node_name (edge->caller),
1546 inline_summary (edge->caller)->time,
1547 inline_summary (edge->caller)->size,
1548 overall_size - old_size);
1550 if (min_size > overall_size)
1552 min_size = overall_size;
1553 max_size = compute_max_insns (min_size);
1555 if (dump_file)
1556 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
1560 free_growth_caches ();
1561 if (new_indirect_edges)
1562 VEC_free (cgraph_edge_p, heap, new_indirect_edges);
1563 fibheap_delete (heap);
1564 if (dump_file)
1565 fprintf (dump_file,
1566 "Unit growth for small function inlining: %i->%i (%i%%)\n",
1567 initial_size, overall_size,
1568 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
1569 BITMAP_FREE (updated_nodes);
1572 /* Flatten NODE. Performed both during early inlining and
1573 at IPA inlining time. */
1575 static void
1576 flatten_function (struct cgraph_node *node, bool early)
1578 struct cgraph_edge *e;
1580 /* We shouldn't be called recursively when we are being processed. */
1581 gcc_assert (node->aux == NULL);
1583 node->aux = (void *) node;
1585 for (e = node->callees; e; e = e->next_callee)
1587 struct cgraph_node *orig_callee;
1588 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1590 /* We've hit cycle? It is time to give up. */
1591 if (callee->aux)
1593 if (dump_file)
1594 fprintf (dump_file,
1595 "Not inlining %s into %s to avoid cycle.\n",
1596 cgraph_node_name (callee),
1597 cgraph_node_name (e->caller));
1598 e->inline_failed = CIF_RECURSIVE_INLINING;
1599 continue;
1602 /* When the edge is already inlined, we just need to recurse into
1603 it in order to fully flatten the leaves. */
1604 if (!e->inline_failed)
1606 flatten_function (callee, early);
1607 continue;
1610 /* Flatten attribute needs to be processed during late inlining. For
1611 extra code quality we however do flattening during early optimization,
1612 too. */
1613 if (!early
1614 ? !can_inline_edge_p (e, true)
1615 : !can_early_inline_edge_p (e))
1616 continue;
1618 if (cgraph_edge_recursive_p (e))
1620 if (dump_file)
1621 fprintf (dump_file, "Not inlining: recursive call.\n");
1622 continue;
1625 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
1626 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
1628 if (dump_file)
1629 fprintf (dump_file, "Not inlining: SSA form does not match.\n");
1630 continue;
1633 /* Inline the edge and flatten the inline clone. Avoid
1634 recursing through the original node if the node was cloned. */
1635 if (dump_file)
1636 fprintf (dump_file, " Inlining %s into %s.\n",
1637 cgraph_node_name (callee),
1638 cgraph_node_name (e->caller));
1639 orig_callee = callee;
1640 inline_call (e, true, NULL, NULL);
1641 if (e->callee != orig_callee)
1642 orig_callee->aux = (void *) node;
1643 flatten_function (e->callee, early);
1644 if (e->callee != orig_callee)
1645 orig_callee->aux = NULL;
1648 node->aux = NULL;
1651 /* Decide on the inlining. We do so in the topological order to avoid
1652 expenses on updating data structures. */
1654 static unsigned int
1655 ipa_inline (void)
1657 struct cgraph_node *node;
1658 int nnodes;
1659 struct cgraph_node **order =
1660 XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
1661 int i;
1663 if (in_lto_p && flag_indirect_inlining)
1664 ipa_update_after_lto_read ();
1665 if (flag_indirect_inlining)
1666 ipa_create_all_structures_for_iinln ();
1668 if (dump_file)
1669 dump_inline_summaries (dump_file);
1671 nnodes = ipa_reverse_postorder (order);
1673 for (node = cgraph_nodes; node; node = node->next)
1674 node->aux = 0;
1676 if (dump_file)
1677 fprintf (dump_file, "\nFlattening functions:\n");
1679 /* In the first pass handle functions to be flattened. Do this with
1680 a priority so none of our later choices will make this impossible. */
1681 for (i = nnodes - 1; i >= 0; i--)
1683 node = order[i];
1685 /* Handle nodes to be flattened.
1686 Ideally when processing callees we stop inlining at the
1687 entry of cycles, possibly cloning that entry point and
1688 try to flatten itself turning it into a self-recursive
1689 function. */
1690 if (lookup_attribute ("flatten",
1691 DECL_ATTRIBUTES (node->decl)) != NULL)
1693 if (dump_file)
1694 fprintf (dump_file,
1695 "Flattening %s\n", cgraph_node_name (node));
1696 flatten_function (node, false);
1700 inline_small_functions ();
1701 cgraph_remove_unreachable_nodes (true, dump_file);
1702 free (order);
1704 /* We already perform some inlining of functions called once during
1705 inlining small functions above. After unreachable nodes are removed,
1706 we still might do a quick check that nothing new is found. */
1707 if (flag_inline_functions_called_once)
1709 int cold;
1710 if (dump_file)
1711 fprintf (dump_file, "\nDeciding on functions called once:\n");
1713 /* Inlining one function called once has good chance of preventing
1714 inlining other function into the same callee. Ideally we should
1715 work in priority order, but probably inlining hot functions first
1716 is good cut without the extra pain of maintaining the queue.
1718 ??? this is not really fitting the bill perfectly: inlining function
1719 into callee often leads to better optimization of callee due to
1720 increased context for optimization.
1721 For example if main() function calls a function that outputs help
1722 and then function that does the main optmization, we should inline
1723 the second with priority even if both calls are cold by themselves.
1725 We probably want to implement new predicate replacing our use of
1726 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
1727 to be hot. */
1728 for (cold = 0; cold <= 1; cold ++)
1730 for (node = cgraph_nodes; node; node = node->next)
1732 if (want_inline_function_called_once_p (node)
1733 && (cold
1734 || cgraph_maybe_hot_edge_p (node->callers)))
1736 struct cgraph_node *caller = node->callers->caller;
1738 if (dump_file)
1740 fprintf (dump_file,
1741 "\nInlining %s size %i.\n",
1742 cgraph_node_name (node), inline_summary (node)->size);
1743 fprintf (dump_file,
1744 " Called once from %s %i insns.\n",
1745 cgraph_node_name (node->callers->caller),
1746 inline_summary (node->callers->caller)->size);
1749 inline_call (node->callers, true, NULL, NULL);
1750 if (dump_file)
1751 fprintf (dump_file,
1752 " Inlined into %s which now has %i size\n",
1753 cgraph_node_name (caller),
1754 inline_summary (caller)->size);
1760 /* Free ipa-prop structures if they are no longer needed. */
1761 if (flag_indirect_inlining)
1762 ipa_free_all_structures_after_iinln ();
1764 if (dump_file)
1765 fprintf (dump_file,
1766 "\nInlined %i calls, eliminated %i functions\n\n",
1767 ncalls_inlined, nfunctions_inlined);
1769 if (dump_file)
1770 dump_inline_summaries (dump_file);
1771 /* In WPA we use inline summaries for partitioning process. */
1772 if (!flag_wpa)
1773 inline_free_summary ();
1774 return 0;
1777 /* Inline always-inline function calls in NODE. */
1779 static bool
1780 inline_always_inline_functions (struct cgraph_node *node)
1782 struct cgraph_edge *e;
1783 bool inlined = false;
1785 for (e = node->callees; e; e = e->next_callee)
1787 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1788 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1789 continue;
1791 if (cgraph_edge_recursive_p (e))
1793 if (dump_file)
1794 fprintf (dump_file, " Not inlining recursive call to %s.\n",
1795 cgraph_node_name (e->callee));
1796 e->inline_failed = CIF_RECURSIVE_INLINING;
1797 continue;
1800 if (!can_early_inline_edge_p (e))
1801 continue;
1803 if (dump_file)
1804 fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
1805 cgraph_node_name (e->callee),
1806 cgraph_node_name (e->caller));
1807 inline_call (e, true, NULL, NULL);
1808 inlined = true;
1811 return inlined;
1814 /* Decide on the inlining. We do so in the topological order to avoid
1815 expenses on updating data structures. */
1817 static bool
1818 early_inline_small_functions (struct cgraph_node *node)
1820 struct cgraph_edge *e;
1821 bool inlined = false;
1823 for (e = node->callees; e; e = e->next_callee)
1825 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1826 if (!inline_summary (callee)->inlinable
1827 || !e->inline_failed)
1828 continue;
1830 /* Do not consider functions not declared inline. */
1831 if (!DECL_DECLARED_INLINE_P (callee->decl)
1832 && !flag_inline_small_functions
1833 && !flag_inline_functions)
1834 continue;
1836 if (dump_file)
1837 fprintf (dump_file, "Considering inline candidate %s.\n",
1838 cgraph_node_name (callee));
1840 if (!can_early_inline_edge_p (e))
1841 continue;
1843 if (cgraph_edge_recursive_p (e))
1845 if (dump_file)
1846 fprintf (dump_file, " Not inlining: recursive call.\n");
1847 continue;
1850 if (!want_early_inline_function_p (e))
1851 continue;
1853 if (dump_file)
1854 fprintf (dump_file, " Inlining %s into %s.\n",
1855 cgraph_node_name (callee),
1856 cgraph_node_name (e->caller));
1857 inline_call (e, true, NULL, NULL);
1858 inlined = true;
1861 return inlined;
1864 /* Do inlining of small functions. Doing so early helps profiling and other
1865 passes to be somewhat more effective and avoids some code duplication in
1866 later real inlining pass for testcases with very many function calls. */
1867 static unsigned int
1868 early_inliner (void)
1870 struct cgraph_node *node = cgraph_get_node (current_function_decl);
1871 struct cgraph_edge *edge;
1872 unsigned int todo = 0;
1873 int iterations = 0;
1874 bool inlined = false;
1876 if (seen_error ())
1877 return 0;
1879 /* Do nothing if datastructures for ipa-inliner are already computed. This
1880 happens when some pass decides to construct new function and
1881 cgraph_add_new_function calls lowering passes and early optimization on
1882 it. This may confuse ourself when early inliner decide to inline call to
1883 function clone, because function clones don't have parameter list in
1884 ipa-prop matching their signature. */
1885 if (ipa_node_params_vector)
1886 return 0;
1888 #ifdef ENABLE_CHECKING
1889 verify_cgraph_node (node);
1890 #endif
1892 /* Even when not optimizing or not inlining inline always-inline
1893 functions. */
1894 inlined = inline_always_inline_functions (node);
1896 if (!optimize
1897 || flag_no_inline
1898 || !flag_early_inlining
1899 /* Never inline regular functions into always-inline functions
1900 during incremental inlining. This sucks as functions calling
1901 always inline functions will get less optimized, but at the
1902 same time inlining of functions calling always inline
1903 function into an always inline function might introduce
1904 cycles of edges to be always inlined in the callgraph.
1906 We might want to be smarter and just avoid this type of inlining. */
1907 || DECL_DISREGARD_INLINE_LIMITS (node->decl))
1909 else if (lookup_attribute ("flatten",
1910 DECL_ATTRIBUTES (node->decl)) != NULL)
1912 /* When the function is marked to be flattened, recursively inline
1913 all calls in it. */
1914 if (dump_file)
1915 fprintf (dump_file,
1916 "Flattening %s\n", cgraph_node_name (node));
1917 flatten_function (node, true);
1918 inlined = true;
1920 else
1922 /* We iterate incremental inlining to get trivial cases of indirect
1923 inlining. */
1924 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
1925 && early_inline_small_functions (node))
1927 timevar_push (TV_INTEGRATION);
1928 todo |= optimize_inline_calls (current_function_decl);
1930 /* Technically we ought to recompute inline parameters so the new
1931 iteration of early inliner works as expected. We however have
1932 values approximately right and thus we only need to update edge
1933 info that might be cleared out for newly discovered edges. */
1934 for (edge = node->callees; edge; edge = edge->next_callee)
1936 struct inline_edge_summary *es = inline_edge_summary (edge);
1937 es->call_stmt_size
1938 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
1939 es->call_stmt_time
1940 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
1942 timevar_pop (TV_INTEGRATION);
1943 iterations++;
1944 inlined = false;
1946 if (dump_file)
1947 fprintf (dump_file, "Iterations: %i\n", iterations);
1950 if (inlined)
1952 timevar_push (TV_INTEGRATION);
1953 todo |= optimize_inline_calls (current_function_decl);
1954 timevar_pop (TV_INTEGRATION);
1957 cfun->always_inline_functions_inlined = true;
1959 return todo;
1962 struct gimple_opt_pass pass_early_inline =
1965 GIMPLE_PASS,
1966 "einline", /* name */
1967 NULL, /* gate */
1968 early_inliner, /* execute */
1969 NULL, /* sub */
1970 NULL, /* next */
1971 0, /* static_pass_number */
1972 TV_INLINE_HEURISTICS, /* tv_id */
1973 PROP_ssa, /* properties_required */
1974 0, /* properties_provided */
1975 0, /* properties_destroyed */
1976 0, /* todo_flags_start */
1977 0 /* todo_flags_finish */
1982 /* When to run IPA inlining. Inlining of always-inline functions
1983 happens during early inlining.
1985 Enable inlining unconditoinally at -flto. We need size estimates to
1986 drive partitioning. */
1988 static bool
1989 gate_ipa_inline (void)
1991 return optimize || flag_lto || flag_wpa;
1994 struct ipa_opt_pass_d pass_ipa_inline =
1997 IPA_PASS,
1998 "inline", /* name */
1999 gate_ipa_inline, /* gate */
2000 ipa_inline, /* execute */
2001 NULL, /* sub */
2002 NULL, /* next */
2003 0, /* static_pass_number */
2004 TV_INLINE_HEURISTICS, /* tv_id */
2005 0, /* properties_required */
2006 0, /* properties_provided */
2007 0, /* properties_destroyed */
2008 TODO_remove_functions, /* todo_flags_finish */
2009 TODO_dump_cgraph
2010 | TODO_remove_functions | TODO_ggc_collect /* todo_flags_finish */
2012 inline_generate_summary, /* generate_summary */
2013 inline_write_summary, /* write_summary */
2014 inline_read_summary, /* read_summary */
2015 NULL, /* write_optimization_summary */
2016 NULL, /* read_optimization_summary */
2017 NULL, /* stmt_fixup */
2018 0, /* TODOs */
2019 inline_transform, /* function_transform */
2020 NULL, /* variable_transform */