* gcc.dg/cpp/sysmac1.c,sysmac2.c: Return to original file.
[official-gcc.git] / gcc / ssa.c
blob7927274046c98394202cee10cd74873b8b5be920
1 /* Static Single Assignment conversion routines for the GNU compiler.
2 Copyright (C) 2000 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
11 GNU CC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 /* References:
23 Building an Optimizing Compiler
24 Robert Morgan
25 Butterworth-Heinemann, 1998
27 Static Single Assignment Construction
28 Preston Briggs, Tim Harvey, Taylor Simpson
29 Technical Report, Rice University, 1995
30 ftp://ftp.cs.rice.edu/public/preston/optimizer/SSA.ps.gz. */
32 #include "config.h"
33 #include "system.h"
35 #include "rtl.h"
36 #include "expr.h"
37 #include "varray.h"
38 #include "partition.h"
39 #include "sbitmap.h"
40 #include "hashtab.h"
41 #include "regs.h"
42 #include "hard-reg-set.h"
43 #include "flags.h"
44 #include "function.h"
45 #include "real.h"
46 #include "insn-config.h"
47 #include "recog.h"
48 #include "basic-block.h"
49 #include "output.h"
50 #include "ssa.h"
52 /* TODO:
54 Handle subregs better, maybe. For now, if a reg that's set in a
55 subreg expression is duplicated going into SSA form, an extra copy
56 is inserted first that copies the entire reg into the duplicate, so
57 that the other bits are preserved. This isn't strictly SSA, since
58 at least part of the reg is assigned in more than one place (though
59 they are adjacent).
61 ??? What to do about strict_low_part. Probably I'll have to split
62 them out of their current instructions first thing.
64 Actually the best solution may be to have a kind of "mid-level rtl"
65 in which the RTL encodes exactly what we want, without exposing a
66 lot of niggling processor details. At some later point we lower
67 the representation, calling back into optabs to finish any necessary
68 expansion. */
70 /* All pseudo-registers and select hard registers are converted to SSA
71 form. When converting out of SSA, these select hard registers are
72 guaranteed to be mapped to their original register number. Each
73 machine's .h file should define CONVERT_HARD_REGISTER_TO_SSA_P
74 indicating which hard registers should be converted.
76 When converting out of SSA, temporaries for all registers are
77 partitioned. The partition is checked to ensure that all uses of
78 the same hard register in the same machine mode are in the same
79 class. */
81 /* If conservative_reg_partition is non-zero, use a conservative
82 register partitioning algorithm (which leaves more regs after
83 emerging from SSA) instead of the coalescing one. This is being
84 left in for a limited time only, as a debugging tool until the
85 coalescing algorithm is validated. */
87 static int conservative_reg_partition;
89 /* This flag is set when the CFG is in SSA form. */
90 int in_ssa_form = 0;
92 /* Element I is the single instruction that sets register I. */
93 varray_type ssa_definition;
95 /* Element I is an INSN_LIST of instructions that use register I. */
96 varray_type ssa_uses;
98 /* Element I-PSEUDO is the normal register that originated the ssa
99 register in question. */
100 varray_type ssa_rename_from;
102 /* Element I is the normal register that originated the ssa
103 register in question.
105 A hash table stores the (register, rtl) pairs. These are each
106 xmalloc'ed and deleted when the hash table is destroyed. */
107 htab_t ssa_rename_from_ht;
109 /* The running target ssa register for a given pseudo register.
110 (Pseudo registers appear in only one mode.) */
111 static rtx *ssa_rename_to_pseudo;
112 /* Similar, but for hard registers. A hard register can appear in
113 many modes, so we store an equivalent pseudo for each of the
114 modes. */
115 static rtx ssa_rename_to_hard[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
117 /* ssa_rename_from maps pseudo registers to the original corresponding
118 RTL. It is implemented as using a hash table. */
120 typedef struct {
121 unsigned int reg;
122 rtx original;
123 } ssa_rename_from_pair;
125 struct ssa_rename_from_hash_table_data {
126 sbitmap canonical_elements;
127 partition reg_partition;
130 static void ssa_rename_from_initialize
131 PARAMS ((void));
132 static rtx ssa_rename_from_lookup
133 PARAMS ((int reg));
134 static unsigned int original_register
135 PARAMS ((unsigned int regno));
136 static void ssa_rename_from_insert
137 PARAMS ((unsigned int reg, rtx r));
138 static void ssa_rename_from_free
139 PARAMS ((void));
140 typedef int (*srf_trav) PARAMS ((int regno, rtx r, sbitmap canonical_elements, partition reg_partition));
141 static void ssa_rename_from_traverse
142 PARAMS ((htab_trav callback_function, sbitmap canonical_elements, partition reg_partition));
143 /*static Avoid warnign message. */ void ssa_rename_from_print
144 PARAMS ((void));
145 static int ssa_rename_from_print_1
146 PARAMS ((void **slot, void *data));
147 static hashval_t ssa_rename_from_hash_function
148 PARAMS ((const void * srfp));
149 static int ssa_rename_from_equal
150 PARAMS ((const void *srfp1, const void *srfp2));
151 static void ssa_rename_from_delete
152 PARAMS ((void *srfp));
154 static rtx ssa_rename_to_lookup
155 PARAMS ((rtx reg));
156 static void ssa_rename_to_insert
157 PARAMS ((rtx reg, rtx r));
159 /* The number of registers that were live on entry to the SSA routines. */
160 static unsigned int ssa_max_reg_num;
162 /* Local function prototypes. */
164 struct rename_context;
166 static inline rtx * phi_alternative
167 PARAMS ((rtx, int));
168 static rtx first_insn_after_basic_block_note
169 PARAMS ((basic_block));
170 static int remove_phi_alternative
171 PARAMS ((rtx, int));
172 static void compute_dominance_frontiers_1
173 PARAMS ((sbitmap *frontiers, int *idom, int bb, sbitmap done));
174 static void compute_dominance_frontiers
175 PARAMS ((sbitmap *frontiers, int *idom));
176 static void find_evaluations_1
177 PARAMS ((rtx dest, rtx set, void *data));
178 static void find_evaluations
179 PARAMS ((sbitmap *evals, int nregs));
180 static void compute_iterated_dominance_frontiers
181 PARAMS ((sbitmap *idfs, sbitmap *frontiers, sbitmap *evals, int nregs));
182 static void insert_phi_node
183 PARAMS ((int regno, int b));
184 static void insert_phi_nodes
185 PARAMS ((sbitmap *idfs, sbitmap *evals, int nregs));
186 static void create_delayed_rename
187 PARAMS ((struct rename_context *, rtx *));
188 static void apply_delayed_renames
189 PARAMS ((struct rename_context *));
190 static int rename_insn_1
191 PARAMS ((rtx *ptr, void *data));
192 static void rename_block
193 PARAMS ((int b, int *idom));
194 static void rename_registers
195 PARAMS ((int nregs, int *idom));
197 static inline int ephi_add_node
198 PARAMS ((rtx reg, rtx *nodes, int *n_nodes));
199 static int * ephi_forward
200 PARAMS ((int t, sbitmap visited, sbitmap *succ, int *tstack));
201 static void ephi_backward
202 PARAMS ((int t, sbitmap visited, sbitmap *pred, rtx *nodes));
203 static void ephi_create
204 PARAMS ((int t, sbitmap visited, sbitmap *pred, sbitmap *succ, rtx *nodes));
205 static void eliminate_phi
206 PARAMS ((edge e, partition reg_partition));
207 static int make_regs_equivalent_over_bad_edges
208 PARAMS ((int bb, partition reg_partition));
210 /* These are used only in the conservative register partitioning
211 algorithms. */
212 static int make_equivalent_phi_alternatives_equivalent
213 PARAMS ((int bb, partition reg_partition));
214 static partition compute_conservative_reg_partition
215 PARAMS ((void));
216 static int record_canonical_element_1
217 PARAMS ((void **srfp, void *data));
218 static int check_hard_regs_in_partition
219 PARAMS ((partition reg_partition));
220 static int rename_equivalent_regs_in_insn
221 PARAMS ((rtx *ptr, void *data));
223 /* These are used in the register coalescing algorithm. */
224 static int coalesce_if_unconflicting
225 PARAMS ((partition p, conflict_graph conflicts, int reg1, int reg2));
226 static int coalesce_regs_in_copies
227 PARAMS ((basic_block bb, partition p, conflict_graph conflicts));
228 static int coalesce_reg_in_phi
229 PARAMS ((rtx, int dest_regno, int src_regno, void *data));
230 static int coalesce_regs_in_successor_phi_nodes
231 PARAMS ((basic_block bb, partition p, conflict_graph conflicts));
232 static partition compute_coalesced_reg_partition
233 PARAMS ((void));
234 static int mark_reg_in_phi
235 PARAMS ((rtx *ptr, void *data));
236 static void mark_phi_and_copy_regs
237 PARAMS ((regset phi_set));
239 static int rename_equivalent_regs_in_insn
240 PARAMS ((rtx *ptr, void *data));
241 static void rename_equivalent_regs
242 PARAMS ((partition reg_partition));
244 /* Deal with hard registers. */
245 static int conflicting_hard_regs_p
246 PARAMS ((int reg1, int reg2));
248 /* ssa_rename_to maps registers and machine modes to SSA pseudo registers. */
250 /* Find the register associated with REG in the indicated mode. */
252 static rtx
253 ssa_rename_to_lookup (reg)
254 rtx reg;
256 if (!HARD_REGISTER_P (reg))
257 return ssa_rename_to_pseudo[REGNO (reg) - FIRST_PSEUDO_REGISTER];
258 else
259 return ssa_rename_to_hard[REGNO (reg)][GET_MODE (reg)];
262 /* Store a new value mapping REG to R in ssa_rename_to. */
264 static void
265 ssa_rename_to_insert(reg, r)
266 rtx reg;
267 rtx r;
269 if (!HARD_REGISTER_P (reg))
270 ssa_rename_to_pseudo[REGNO (reg) - FIRST_PSEUDO_REGISTER] = r;
271 else
272 ssa_rename_to_hard[REGNO (reg)][GET_MODE (reg)] = r;
275 /* Prepare ssa_rename_from for use. */
277 static void
278 ssa_rename_from_initialize ()
280 /* We use an arbitrary initial hash table size of 64. */
281 ssa_rename_from_ht = htab_create (64,
282 &ssa_rename_from_hash_function,
283 &ssa_rename_from_equal,
284 &ssa_rename_from_delete);
287 /* Find the REG entry in ssa_rename_from. Return NULL_RTX if no entry is
288 found. */
290 static rtx
291 ssa_rename_from_lookup (reg)
292 int reg;
294 ssa_rename_from_pair srfp;
295 ssa_rename_from_pair *answer;
296 srfp.reg = reg;
297 srfp.original = NULL_RTX;
298 answer = (ssa_rename_from_pair *)
299 htab_find_with_hash (ssa_rename_from_ht, (void *) &srfp, reg);
300 return (answer == 0 ? NULL_RTX : answer->original);
303 /* Find the number of the original register specified by REGNO. If
304 the register is a pseudo, return the original register's number.
305 Otherwise, return this register number REGNO. */
307 static unsigned int
308 original_register (regno)
309 unsigned int regno;
311 rtx original_rtx = ssa_rename_from_lookup (regno);
312 return original_rtx != NULL_RTX ? REGNO (original_rtx) : regno;
315 /* Add mapping from R to REG to ssa_rename_from even if already present. */
317 static void
318 ssa_rename_from_insert (reg, r)
319 unsigned int reg;
320 rtx r;
322 void **slot;
323 ssa_rename_from_pair *srfp = xmalloc (sizeof (ssa_rename_from_pair));
324 srfp->reg = reg;
325 srfp->original = r;
326 slot = htab_find_slot_with_hash (ssa_rename_from_ht, (const void *) srfp,
327 reg, INSERT);
328 if (*slot != 0)
329 free ((void *) *slot);
330 *slot = srfp;
333 /* Apply the CALLBACK_FUNCTION to each element in ssa_rename_from.
334 CANONICAL_ELEMENTS and REG_PARTITION pass data needed by the only
335 current use of this function. */
337 static void
338 ssa_rename_from_traverse (callback_function,
339 canonical_elements, reg_partition)
340 htab_trav callback_function;
341 sbitmap canonical_elements;
342 partition reg_partition;
344 struct ssa_rename_from_hash_table_data srfhd;
345 srfhd.canonical_elements = canonical_elements;
346 srfhd.reg_partition = reg_partition;
347 htab_traverse (ssa_rename_from_ht, callback_function, (void *) &srfhd);
350 /* Destroy ssa_rename_from. */
352 static void
353 ssa_rename_from_free ()
355 htab_delete (ssa_rename_from_ht);
358 /* Print the contents of ssa_rename_from. */
360 /* static Avoid erroneous error message. */
361 void
362 ssa_rename_from_print ()
364 printf ("ssa_rename_from's hash table contents:\n");
365 htab_traverse (ssa_rename_from_ht, &ssa_rename_from_print_1, NULL);
368 /* Print the contents of the hash table entry SLOT, passing the unused
369 sttribute DATA. Used as a callback function with htab_traverse (). */
371 static int
372 ssa_rename_from_print_1 (slot, data)
373 void **slot;
374 void *data ATTRIBUTE_UNUSED;
376 ssa_rename_from_pair * p = *slot;
377 printf ("ssa_rename_from maps pseudo %i to original %i.\n",
378 p->reg, REGNO (p->original));
379 return 1;
382 /* Given a hash entry SRFP, yield a hash value. */
384 static hashval_t
385 ssa_rename_from_hash_function (srfp)
386 const void *srfp;
388 return ((const ssa_rename_from_pair *) srfp)->reg;
391 /* Test whether two hash table entries SRFP1 and SRFP2 are equal. */
393 static int
394 ssa_rename_from_equal (srfp1, srfp2)
395 const void *srfp1;
396 const void *srfp2;
398 return ssa_rename_from_hash_function (srfp1) ==
399 ssa_rename_from_hash_function (srfp2);
402 /* Delete the hash table entry SRFP. */
404 static void
405 ssa_rename_from_delete (srfp)
406 void *srfp;
408 free (srfp);
411 /* Given the SET of a PHI node, return the address of the alternative
412 for predecessor block C. */
414 static inline rtx *
415 phi_alternative (set, c)
416 rtx set;
417 int c;
419 rtvec phi_vec = XVEC (SET_SRC (set), 0);
420 int v;
422 for (v = GET_NUM_ELEM (phi_vec) - 2; v >= 0; v -= 2)
423 if (INTVAL (RTVEC_ELT (phi_vec, v + 1)) == c)
424 return &RTVEC_ELT (phi_vec, v);
426 return NULL;
429 /* Given the SET of a phi node, remove the alternative for predecessor
430 block C. Return non-zero on success, or zero if no alternative is
431 found for C. */
433 static int
434 remove_phi_alternative (set, c)
435 rtx set;
436 int c;
438 rtvec phi_vec = XVEC (SET_SRC (set), 0);
439 int num_elem = GET_NUM_ELEM (phi_vec);
440 int v;
442 for (v = num_elem - 2; v >= 0; v -= 2)
443 if (INTVAL (RTVEC_ELT (phi_vec, v + 1)) == c)
445 if (v < num_elem - 2)
447 RTVEC_ELT (phi_vec, v) = RTVEC_ELT (phi_vec, num_elem - 2);
448 RTVEC_ELT (phi_vec, v + 1) = RTVEC_ELT (phi_vec, num_elem - 1);
450 PUT_NUM_ELEM (phi_vec, num_elem - 2);
451 return 1;
454 return 0;
457 /* For all registers, find all blocks in which they are set.
459 This is the transform of what would be local kill information that
460 we ought to be getting from flow. */
462 static sbitmap *fe_evals;
463 static int fe_current_bb;
465 static void
466 find_evaluations_1 (dest, set, data)
467 rtx dest;
468 rtx set ATTRIBUTE_UNUSED;
469 void *data ATTRIBUTE_UNUSED;
471 if (GET_CODE (dest) == REG
472 && CONVERT_REGISTER_TO_SSA_P (REGNO (dest)))
473 SET_BIT (fe_evals[REGNO (dest)], fe_current_bb);
476 static void
477 find_evaluations (evals, nregs)
478 sbitmap *evals;
479 int nregs;
481 int bb;
483 sbitmap_vector_zero (evals, nregs);
484 fe_evals = evals;
486 for (bb = n_basic_blocks; --bb >= 0; )
488 rtx p, last;
490 fe_current_bb = bb;
491 p = BLOCK_HEAD (bb);
492 last = BLOCK_END (bb);
493 while (1)
495 if (INSN_P (p))
496 note_stores (PATTERN (p), find_evaluations_1, NULL);
498 if (p == last)
499 break;
500 p = NEXT_INSN (p);
505 /* Computing the Dominance Frontier:
507 As decribed in Morgan, section 3.5, this may be done simply by
508 walking the dominator tree bottom-up, computing the frontier for
509 the children before the parent. When considering a block B,
510 there are two cases:
512 (1) A flow graph edge leaving B that does not lead to a child
513 of B in the dominator tree must be a block that is either equal
514 to B or not dominated by B. Such blocks belong in the frontier
515 of B.
517 (2) Consider a block X in the frontier of one of the children C
518 of B. If X is not equal to B and is not dominated by B, it
519 is in the frontier of B.
522 static void
523 compute_dominance_frontiers_1 (frontiers, idom, bb, done)
524 sbitmap *frontiers;
525 int *idom;
526 int bb;
527 sbitmap done;
529 basic_block b = BASIC_BLOCK (bb);
530 edge e;
531 int c;
533 SET_BIT (done, bb);
534 sbitmap_zero (frontiers[bb]);
536 /* Do the frontier of the children first. Not all children in the
537 dominator tree (blocks dominated by this one) are children in the
538 CFG, so check all blocks. */
539 for (c = 0; c < n_basic_blocks; ++c)
540 if (idom[c] == bb && ! TEST_BIT (done, c))
541 compute_dominance_frontiers_1 (frontiers, idom, c, done);
543 /* Find blocks conforming to rule (1) above. */
544 for (e = b->succ; e; e = e->succ_next)
546 if (e->dest == EXIT_BLOCK_PTR)
547 continue;
548 if (idom[e->dest->index] != bb)
549 SET_BIT (frontiers[bb], e->dest->index);
552 /* Find blocks conforming to rule (2). */
553 for (c = 0; c < n_basic_blocks; ++c)
554 if (idom[c] == bb)
556 int x;
557 EXECUTE_IF_SET_IN_SBITMAP (frontiers[c], 0, x,
559 if (idom[x] != bb)
560 SET_BIT (frontiers[bb], x);
565 static void
566 compute_dominance_frontiers (frontiers, idom)
567 sbitmap *frontiers;
568 int *idom;
570 sbitmap done = sbitmap_alloc (n_basic_blocks);
571 sbitmap_zero (done);
573 compute_dominance_frontiers_1 (frontiers, idom, 0, done);
575 sbitmap_free (done);
578 /* Computing the Iterated Dominance Frontier:
580 This is the set of merge points for a given register.
582 This is not particularly intuitive. See section 7.1 of Morgan, in
583 particular figures 7.3 and 7.4 and the immediately surrounding text.
586 static void
587 compute_iterated_dominance_frontiers (idfs, frontiers, evals, nregs)
588 sbitmap *idfs;
589 sbitmap *frontiers;
590 sbitmap *evals;
591 int nregs;
593 sbitmap worklist;
594 int reg, passes = 0;
596 worklist = sbitmap_alloc (n_basic_blocks);
598 for (reg = 0; reg < nregs; ++reg)
600 sbitmap idf = idfs[reg];
601 int b, changed;
603 /* Start the iterative process by considering those blocks that
604 evaluate REG. We'll add their dominance frontiers to the
605 IDF, and then consider the blocks we just added. */
606 sbitmap_copy (worklist, evals[reg]);
608 /* Morgan's algorithm is incorrect here. Blocks that evaluate
609 REG aren't necessarily in REG's IDF. Start with an empty IDF. */
610 sbitmap_zero (idf);
612 /* Iterate until the worklist is empty. */
615 changed = 0;
616 passes++;
617 EXECUTE_IF_SET_IN_SBITMAP (worklist, 0, b,
619 RESET_BIT (worklist, b);
620 /* For each block on the worklist, add to the IDF all
621 blocks on its dominance frontier that aren't already
622 on the IDF. Every block that's added is also added
623 to the worklist. */
624 sbitmap_union_of_diff (worklist, worklist, frontiers[b], idf);
625 sbitmap_a_or_b (idf, idf, frontiers[b]);
626 changed = 1;
629 while (changed);
632 sbitmap_free (worklist);
634 if (rtl_dump_file)
636 fprintf(rtl_dump_file,
637 "Iterated dominance frontier: %d passes on %d regs.\n",
638 passes, nregs);
642 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
643 note associated with the BLOCK. */
645 static rtx
646 first_insn_after_basic_block_note (block)
647 basic_block block;
649 rtx insn;
651 /* Get the first instruction in the block. */
652 insn = block->head;
654 if (insn == NULL_RTX)
655 return NULL_RTX;
656 if (GET_CODE (insn) == CODE_LABEL)
657 insn = NEXT_INSN (insn);
658 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
659 abort ();
661 return NEXT_INSN (insn);
664 /* Insert the phi nodes. */
666 static void
667 insert_phi_node (regno, bb)
668 int regno, bb;
670 basic_block b = BASIC_BLOCK (bb);
671 edge e;
672 int npred, i;
673 rtvec vec;
674 rtx phi, reg;
675 rtx insn;
676 int end_p;
678 /* Find out how many predecessors there are. */
679 for (e = b->pred, npred = 0; e; e = e->pred_next)
680 if (e->src != ENTRY_BLOCK_PTR)
681 npred++;
683 /* If this block has no "interesting" preds, then there is nothing to
684 do. Consider a block that only has the entry block as a pred. */
685 if (npred == 0)
686 return;
688 /* This is the register to which the phi function will be assigned. */
689 reg = regno_reg_rtx[regno];
691 /* Construct the arguments to the PHI node. The use of pc_rtx is just
692 a placeholder; we'll insert the proper value in rename_registers. */
693 vec = rtvec_alloc (npred * 2);
694 for (e = b->pred, i = 0; e ; e = e->pred_next, i += 2)
695 if (e->src != ENTRY_BLOCK_PTR)
697 RTVEC_ELT (vec, i + 0) = pc_rtx;
698 RTVEC_ELT (vec, i + 1) = GEN_INT (e->src->index);
701 phi = gen_rtx_PHI (VOIDmode, vec);
702 phi = gen_rtx_SET (VOIDmode, reg, phi);
704 insn = first_insn_after_basic_block_note (b);
705 end_p = PREV_INSN (insn) == b->end;
706 emit_insn_before (phi, insn);
707 if (end_p)
708 b->end = PREV_INSN (insn);
711 static void
712 insert_phi_nodes (idfs, evals, nregs)
713 sbitmap *idfs;
714 sbitmap *evals ATTRIBUTE_UNUSED;
715 int nregs;
717 int reg;
719 for (reg = 0; reg < nregs; ++reg)
720 if (CONVERT_REGISTER_TO_SSA_P (reg))
722 int b;
723 EXECUTE_IF_SET_IN_SBITMAP (idfs[reg], 0, b,
725 if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, reg))
726 insert_phi_node (reg, b);
731 /* Rename the registers to conform to SSA.
733 This is essentially the algorithm presented in Figure 7.8 of Morgan,
734 with a few changes to reduce pattern search time in favour of a bit
735 more memory usage. */
737 /* One of these is created for each set. It will live in a list local
738 to its basic block for the duration of that block's processing. */
739 struct rename_set_data
741 struct rename_set_data *next;
742 /* This is the SET_DEST of the (first) SET that sets the REG. */
743 rtx *reg_loc;
744 /* This is what used to be at *REG_LOC. */
745 rtx old_reg;
746 /* This is the REG that will replace OLD_REG. It's set only
747 when the rename data is moved onto the DONE_RENAMES queue. */
748 rtx new_reg;
749 /* This is what to restore ssa_rename_to_lookup (old_reg) to. It is
750 usually the previous contents of ssa_rename_to_lookup (old_reg). */
751 rtx prev_reg;
752 /* This is the insn that contains all the SETs of the REG. */
753 rtx set_insn;
756 /* This struct is used to pass information to callback functions while
757 renaming registers. */
758 struct rename_context
760 struct rename_set_data *new_renames;
761 struct rename_set_data *done_renames;
762 rtx current_insn;
765 /* Queue the rename of *REG_LOC. */
766 static void
767 create_delayed_rename (c, reg_loc)
768 struct rename_context *c;
769 rtx *reg_loc;
771 struct rename_set_data *r;
772 r = (struct rename_set_data *) xmalloc (sizeof(*r));
774 if (GET_CODE (*reg_loc) != REG
775 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*reg_loc)))
776 abort();
778 r->reg_loc = reg_loc;
779 r->old_reg = *reg_loc;
780 r->prev_reg = ssa_rename_to_lookup(r->old_reg);
781 r->set_insn = c->current_insn;
782 r->next = c->new_renames;
783 c->new_renames = r;
786 /* This is part of a rather ugly hack to allow the pre-ssa regno to be
787 reused. If, during processing, a register has not yet been touched,
788 ssa_rename_to[regno][machno] will be NULL. Now, in the course of pushing
789 and popping values from ssa_rename_to, when we would ordinarily
790 pop NULL back in, we pop RENAME_NO_RTX. We treat this exactly the
791 same as NULL, except that it signals that the original regno has
792 already been reused. */
793 #define RENAME_NO_RTX pc_rtx
795 /* Move all the entries from NEW_RENAMES onto DONE_RENAMES by
796 applying all the renames on NEW_RENAMES. */
798 static void
799 apply_delayed_renames (c)
800 struct rename_context *c;
802 struct rename_set_data *r;
803 struct rename_set_data *last_r = NULL;
805 for (r = c->new_renames; r != NULL; r = r->next)
807 int new_regno;
809 /* Failure here means that someone has a PARALLEL that sets
810 a register twice (bad!). */
811 if (ssa_rename_to_lookup (r->old_reg) != r->prev_reg)
812 abort();
813 /* Failure here means we have changed REG_LOC before applying
814 the rename. */
815 /* For the first set we come across, reuse the original regno. */
816 if (r->prev_reg == NULL_RTX && !HARD_REGISTER_P (r->old_reg))
818 r->new_reg = r->old_reg;
819 /* We want to restore RENAME_NO_RTX rather than NULL_RTX. */
820 r->prev_reg = RENAME_NO_RTX;
822 else
823 r->new_reg = gen_reg_rtx (GET_MODE (r->old_reg));
824 new_regno = REGNO (r->new_reg);
825 ssa_rename_to_insert (r->old_reg, r->new_reg);
827 if (new_regno >= (int) ssa_definition->num_elements)
829 int new_limit = new_regno * 5 / 4;
830 VARRAY_GROW (ssa_definition, new_limit);
831 VARRAY_GROW (ssa_uses, new_limit);
834 VARRAY_RTX (ssa_definition, new_regno) = r->set_insn;
835 ssa_rename_from_insert (new_regno, r->old_reg);
836 last_r = r;
838 if (last_r != NULL)
840 last_r->next = c->done_renames;
841 c->done_renames = c->new_renames;
842 c->new_renames = NULL;
846 /* Part one of the first step of rename_block, called through for_each_rtx.
847 Mark pseudos that are set for later update. Transform uses of pseudos. */
849 static int
850 rename_insn_1 (ptr, data)
851 rtx *ptr;
852 void *data;
854 rtx x = *ptr;
855 struct rename_context *context = data;
857 if (x == NULL_RTX)
858 return 0;
860 switch (GET_CODE (x))
862 case SET:
864 rtx *destp = &SET_DEST (x);
865 rtx dest = SET_DEST (x);
867 /* Some SETs also use the REG specified in their LHS.
868 These can be detected by the presence of
869 STRICT_LOW_PART, SUBREG, SIGN_EXTRACT, and ZERO_EXTRACT
870 in the LHS. Handle these by changing
871 (set (subreg (reg foo)) ...)
872 into
873 (sequence [(set (reg foo_1) (reg foo))
874 (set (subreg (reg foo_1)) ...)])
876 FIXME: Much of the time this is too much. For many libcalls,
877 paradoxical SUBREGs, etc., the input register is dead. We should
878 recognise this in rename_block or here and not make a false
879 dependency. */
881 if (GET_CODE (dest) == STRICT_LOW_PART
882 || GET_CODE (dest) == SUBREG
883 || GET_CODE (dest) == SIGN_EXTRACT
884 || GET_CODE (dest) == ZERO_EXTRACT)
886 rtx i, reg;
887 reg = dest;
889 while (GET_CODE (reg) == STRICT_LOW_PART
890 || GET_CODE (reg) == SUBREG
891 || GET_CODE (reg) == SIGN_EXTRACT
892 || GET_CODE (reg) == ZERO_EXTRACT)
893 reg = XEXP (reg, 0);
895 if (GET_CODE (reg) == REG
896 && CONVERT_REGISTER_TO_SSA_P (REGNO (reg)))
898 /* Generate (set reg reg), and do renaming on it so
899 that it becomes (set reg_1 reg_0), and we will
900 replace reg with reg_1 in the SUBREG. */
902 struct rename_set_data *saved_new_renames;
903 saved_new_renames = context->new_renames;
904 context->new_renames = NULL;
905 i = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
906 for_each_rtx (&i, rename_insn_1, data);
907 apply_delayed_renames (context);
908 context->new_renames = saved_new_renames;
911 else if (GET_CODE (dest) == REG &&
912 CONVERT_REGISTER_TO_SSA_P (REGNO (dest)))
914 /* We found a genuine set of an interesting register. Tag
915 it so that we can create a new name for it after we finish
916 processing this insn. */
918 create_delayed_rename (context, destp);
920 /* Since we do not wish to (directly) traverse the
921 SET_DEST, recurse through for_each_rtx for the SET_SRC
922 and return. */
923 if (GET_CODE (x) == SET)
924 for_each_rtx (&SET_SRC (x), rename_insn_1, data);
925 return -1;
928 /* Otherwise, this was not an interesting destination. Continue
929 on, marking uses as normal. */
930 return 0;
933 case REG:
934 if (CONVERT_REGISTER_TO_SSA_P (REGNO (x)) &&
935 REGNO (x) < ssa_max_reg_num)
937 rtx new_reg = ssa_rename_to_lookup (x);
939 if (new_reg != NULL_RTX && new_reg != RENAME_NO_RTX)
941 if (GET_MODE (x) != GET_MODE (new_reg))
942 abort ();
943 *ptr = new_reg;
945 /* Else this is a use before a set. Warn? */
947 return -1;
949 case CLOBBER:
950 /* There is considerable debate on how CLOBBERs ought to be
951 handled in SSA. For now, we're keeping the CLOBBERs, which
952 means that we don't really have SSA form. There are a couple
953 of proposals for how to fix this problem, but neither is
954 implemented yet. */
956 rtx dest = XCEXP (x, 0, CLOBBER);
957 if (REG_P (dest))
959 if (CONVERT_REGISTER_TO_SSA_P (REGNO (dest))
960 && REGNO (dest) < ssa_max_reg_num)
962 rtx new_reg = ssa_rename_to_lookup (dest);
963 if (new_reg != NULL_RTX && new_reg != RENAME_NO_RTX)
964 XCEXP (x, 0, CLOBBER) = new_reg;
966 /* Stop traversing. */
967 return -1;
969 else
970 /* Continue traversing. */
971 return 0;
974 case PHI:
975 /* Never muck with the phi. We do that elsewhere, special-like. */
976 return -1;
978 default:
979 /* Anything else, continue traversing. */
980 return 0;
984 static void
985 rename_block (bb, idom)
986 int bb;
987 int *idom;
989 basic_block b = BASIC_BLOCK (bb);
990 edge e;
991 rtx insn, next, last;
992 struct rename_set_data *set_data = NULL;
993 int c;
995 /* Step One: Walk the basic block, adding new names for sets and
996 replacing uses. */
998 next = b->head;
999 last = b->end;
1002 insn = next;
1003 if (INSN_P (insn))
1005 struct rename_context context;
1006 context.done_renames = set_data;
1007 context.new_renames = NULL;
1008 context.current_insn = insn;
1010 start_sequence ();
1011 for_each_rtx (&PATTERN (insn), rename_insn_1, &context);
1012 for_each_rtx (&REG_NOTES (insn), rename_insn_1, &context);
1014 /* Sometimes, we end up with a sequence of insns that
1015 SSA needs to treat as a single insn. Wrap these in a
1016 SEQUENCE. (Any notes now get attached to the SEQUENCE,
1017 not to the old version inner insn.) */
1018 if (get_insns () != NULL_RTX)
1020 rtx seq;
1021 int i;
1023 emit (PATTERN (insn));
1024 seq = gen_sequence ();
1025 /* We really want a SEQUENCE of SETs, not a SEQUENCE
1026 of INSNs. */
1027 for (i = 0; i < XVECLEN (seq, 0); i++)
1028 XVECEXP (seq, 0, i) = PATTERN (XVECEXP (seq, 0, i));
1029 PATTERN (insn) = seq;
1031 end_sequence ();
1033 apply_delayed_renames (&context);
1034 set_data = context.done_renames;
1037 next = NEXT_INSN (insn);
1039 while (insn != last);
1041 /* Step Two: Update the phi nodes of this block's successors. */
1043 for (e = b->succ; e; e = e->succ_next)
1045 if (e->dest == EXIT_BLOCK_PTR)
1046 continue;
1048 insn = first_insn_after_basic_block_note (e->dest);
1050 while (PHI_NODE_P (insn))
1052 rtx phi = PATTERN (insn);
1053 rtx reg;
1055 /* Find out which of our outgoing registers this node is
1056 intended to replace. Note that if this is not the first PHI
1057 node to have been created for this register, we have to
1058 jump through rename links to figure out which register
1059 we're talking about. This can easily be recognized by
1060 noting that the regno is new to this pass. */
1061 reg = SET_DEST (phi);
1062 if (REGNO (reg) >= ssa_max_reg_num)
1063 reg = ssa_rename_from_lookup (REGNO (reg));
1064 if (reg == NULL_RTX)
1065 abort ();
1066 reg = ssa_rename_to_lookup (reg);
1068 /* It is possible for the variable to be uninitialized on
1069 edges in. Reduce the arity of the PHI so that we don't
1070 consider those edges. */
1071 if (reg == NULL || reg == RENAME_NO_RTX)
1073 if (! remove_phi_alternative (phi, bb))
1074 abort ();
1076 else
1078 /* When we created the PHI nodes, we did not know what mode
1079 the register should be. Now that we've found an original,
1080 we can fill that in. */
1081 if (GET_MODE (SET_DEST (phi)) == VOIDmode)
1082 PUT_MODE (SET_DEST (phi), GET_MODE (reg));
1083 else if (GET_MODE (SET_DEST (phi)) != GET_MODE (reg))
1084 abort();
1086 *phi_alternative (phi, bb) = reg;
1087 /* ??? Mark for a new ssa_uses entry. */
1090 insn = NEXT_INSN (insn);
1094 /* Step Three: Do the same to the children of this block in
1095 dominator order. */
1097 for (c = 0; c < n_basic_blocks; ++c)
1098 if (idom[c] == bb)
1099 rename_block (c, idom);
1101 /* Step Four: Update the sets to refer to their new register,
1102 and restore ssa_rename_to to its previous state. */
1104 while (set_data)
1106 struct rename_set_data *next;
1107 rtx old_reg = *set_data->reg_loc;
1109 if (*set_data->reg_loc != set_data->old_reg)
1110 abort();
1111 *set_data->reg_loc = set_data->new_reg;
1113 ssa_rename_to_insert (old_reg, set_data->prev_reg);
1115 next = set_data->next;
1116 free (set_data);
1117 set_data = next;
1121 static void
1122 rename_registers (nregs, idom)
1123 int nregs;
1124 int *idom;
1126 VARRAY_RTX_INIT (ssa_definition, nregs * 3, "ssa_definition");
1127 VARRAY_RTX_INIT (ssa_uses, nregs * 3, "ssa_uses");
1128 ssa_rename_from_initialize ();
1130 ssa_rename_to_pseudo = (rtx *) alloca (nregs * sizeof(rtx));
1131 memset ((char *) ssa_rename_to_pseudo, 0, nregs * sizeof(rtx));
1132 memset ((char *) ssa_rename_to_hard, 0,
1133 FIRST_PSEUDO_REGISTER * NUM_MACHINE_MODES * sizeof (rtx));
1135 rename_block (0, idom);
1137 /* ??? Update basic_block_live_at_start, and other flow info
1138 as needed. */
1140 ssa_rename_to_pseudo = NULL;
1143 /* The main entry point for moving to SSA. */
1145 void
1146 convert_to_ssa ()
1148 /* Element I is the set of blocks that set register I. */
1149 sbitmap *evals;
1151 /* Dominator bitmaps. */
1152 sbitmap *dfs;
1153 sbitmap *idfs;
1155 /* Element I is the immediate dominator of block I. */
1156 int *idom;
1158 int nregs;
1160 /* Don't do it twice. */
1161 if (in_ssa_form)
1162 abort ();
1164 /* Need global_live_at_{start,end} up to date. */
1165 life_analysis (get_insns (), NULL, PROP_KILL_DEAD_CODE | PROP_SCAN_DEAD_CODE);
1167 idom = (int *) alloca (n_basic_blocks * sizeof (int));
1168 memset ((void *)idom, -1, (size_t)n_basic_blocks * sizeof (int));
1169 calculate_dominance_info (idom, NULL, CDI_DOMINATORS);
1171 if (rtl_dump_file)
1173 int i;
1174 fputs (";; Immediate Dominators:\n", rtl_dump_file);
1175 for (i = 0; i < n_basic_blocks; ++i)
1176 fprintf (rtl_dump_file, ";\t%3d = %3d\n", i, idom[i]);
1177 fflush (rtl_dump_file);
1180 /* Compute dominance frontiers. */
1182 dfs = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
1183 compute_dominance_frontiers (dfs, idom);
1185 if (rtl_dump_file)
1187 dump_sbitmap_vector (rtl_dump_file, ";; Dominance Frontiers:",
1188 "; Basic Block", dfs, n_basic_blocks);
1189 fflush (rtl_dump_file);
1192 /* Compute register evaluations. */
1194 ssa_max_reg_num = max_reg_num();
1195 nregs = ssa_max_reg_num;
1196 evals = sbitmap_vector_alloc (nregs, n_basic_blocks);
1197 find_evaluations (evals, nregs);
1199 /* Compute the iterated dominance frontier for each register. */
1201 idfs = sbitmap_vector_alloc (nregs, n_basic_blocks);
1202 compute_iterated_dominance_frontiers (idfs, dfs, evals, nregs);
1204 if (rtl_dump_file)
1206 dump_sbitmap_vector (rtl_dump_file, ";; Iterated Dominance Frontiers:",
1207 "; Register", idfs, nregs);
1208 fflush (rtl_dump_file);
1211 /* Insert the phi nodes. */
1213 insert_phi_nodes (idfs, evals, nregs);
1215 /* Rename the registers to satisfy SSA. */
1217 rename_registers (nregs, idom);
1219 /* All done! Clean up and go home. */
1221 sbitmap_vector_free (dfs);
1222 sbitmap_vector_free (evals);
1223 sbitmap_vector_free (idfs);
1224 in_ssa_form = 1;
1226 reg_scan (get_insns (), max_reg_num (), 1);
1229 /* REG is the representative temporary of its partition. Add it to the
1230 set of nodes to be processed, if it hasn't been already. Return the
1231 index of this register in the node set. */
1233 static inline int
1234 ephi_add_node (reg, nodes, n_nodes)
1235 rtx reg, *nodes;
1236 int *n_nodes;
1238 int i;
1239 for (i = *n_nodes - 1; i >= 0; --i)
1240 if (REGNO (reg) == REGNO (nodes[i]))
1241 return i;
1243 nodes[i = (*n_nodes)++] = reg;
1244 return i;
1247 /* Part one of the topological sort. This is a forward (downward) search
1248 through the graph collecting a stack of nodes to process. Assuming no
1249 cycles, the nodes at top of the stack when we are finished will have
1250 no other dependancies. */
1252 static int *
1253 ephi_forward (t, visited, succ, tstack)
1254 int t;
1255 sbitmap visited;
1256 sbitmap *succ;
1257 int *tstack;
1259 int s;
1261 SET_BIT (visited, t);
1263 EXECUTE_IF_SET_IN_SBITMAP (succ[t], 0, s,
1265 if (! TEST_BIT (visited, s))
1266 tstack = ephi_forward (s, visited, succ, tstack);
1269 *tstack++ = t;
1270 return tstack;
1273 /* Part two of the topological sort. The is a backward search through
1274 a cycle in the graph, copying the data forward as we go. */
1276 static void
1277 ephi_backward (t, visited, pred, nodes)
1278 int t;
1279 sbitmap visited, *pred;
1280 rtx *nodes;
1282 int p;
1284 SET_BIT (visited, t);
1286 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1288 if (! TEST_BIT (visited, p))
1290 ephi_backward (p, visited, pred, nodes);
1291 emit_move_insn (nodes[p], nodes[t]);
1296 /* Part two of the topological sort. Create the copy for a register
1297 and any cycle of which it is a member. */
1299 static void
1300 ephi_create (t, visited, pred, succ, nodes)
1301 int t;
1302 sbitmap visited, *pred, *succ;
1303 rtx *nodes;
1305 rtx reg_u = NULL_RTX;
1306 int unvisited_predecessors = 0;
1307 int p;
1309 /* Iterate through the predecessor list looking for unvisited nodes.
1310 If there are any, we have a cycle, and must deal with that. At
1311 the same time, look for a visited predecessor. If there is one,
1312 we won't need to create a temporary. */
1314 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1316 if (! TEST_BIT (visited, p))
1317 unvisited_predecessors = 1;
1318 else if (!reg_u)
1319 reg_u = nodes[p];
1322 if (unvisited_predecessors)
1324 /* We found a cycle. Copy out one element of the ring (if necessary),
1325 then traverse the ring copying as we go. */
1327 if (!reg_u)
1329 reg_u = gen_reg_rtx (GET_MODE (nodes[t]));
1330 emit_move_insn (reg_u, nodes[t]);
1333 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1335 if (! TEST_BIT (visited, p))
1337 ephi_backward (p, visited, pred, nodes);
1338 emit_move_insn (nodes[p], reg_u);
1342 else
1344 /* No cycle. Just copy the value from a successor. */
1346 int s;
1347 EXECUTE_IF_SET_IN_SBITMAP (succ[t], 0, s,
1349 SET_BIT (visited, t);
1350 emit_move_insn (nodes[t], nodes[s]);
1351 return;
1356 /* Convert the edge to normal form. */
1358 static void
1359 eliminate_phi (e, reg_partition)
1360 edge e;
1361 partition reg_partition;
1363 int n_nodes;
1364 sbitmap *pred, *succ;
1365 sbitmap visited;
1366 rtx *nodes;
1367 int *stack, *tstack;
1368 rtx insn;
1369 int i;
1371 /* Collect an upper bound on the number of registers needing processing. */
1373 insn = first_insn_after_basic_block_note (e->dest);
1375 n_nodes = 0;
1376 while (PHI_NODE_P (insn))
1378 insn = next_nonnote_insn (insn);
1379 n_nodes += 2;
1382 if (n_nodes == 0)
1383 return;
1385 /* Build the auxilliary graph R(B).
1387 The nodes of the graph are the members of the register partition
1388 present in Phi(B). There is an edge from FIND(T0)->FIND(T1) for
1389 each T0 = PHI(...,T1,...), where T1 is for the edge from block C. */
1391 nodes = (rtx *) alloca (n_nodes * sizeof(rtx));
1392 pred = sbitmap_vector_alloc (n_nodes, n_nodes);
1393 succ = sbitmap_vector_alloc (n_nodes, n_nodes);
1394 sbitmap_vector_zero (pred, n_nodes);
1395 sbitmap_vector_zero (succ, n_nodes);
1397 insn = first_insn_after_basic_block_note (e->dest);
1399 n_nodes = 0;
1400 for (; PHI_NODE_P (insn); insn = next_nonnote_insn (insn))
1402 rtx* preg = phi_alternative (PATTERN (insn), e->src->index);
1403 rtx tgt = SET_DEST (PATTERN (insn));
1404 rtx reg;
1406 /* There may be no phi alternative corresponding to this edge.
1407 This indicates that the phi variable is undefined along this
1408 edge. */
1409 if (preg == NULL)
1410 continue;
1411 reg = *preg;
1413 if (GET_CODE (reg) != REG || GET_CODE (tgt) != REG)
1414 abort();
1416 reg = regno_reg_rtx[partition_find (reg_partition, REGNO (reg))];
1417 tgt = regno_reg_rtx[partition_find (reg_partition, REGNO (tgt))];
1418 /* If the two registers are already in the same partition,
1419 nothing will need to be done. */
1420 if (reg != tgt)
1422 int ireg, itgt;
1424 ireg = ephi_add_node (reg, nodes, &n_nodes);
1425 itgt = ephi_add_node (tgt, nodes, &n_nodes);
1427 SET_BIT (pred[ireg], itgt);
1428 SET_BIT (succ[itgt], ireg);
1432 if (n_nodes == 0)
1433 goto out;
1435 /* Begin a topological sort of the graph. */
1437 visited = sbitmap_alloc (n_nodes);
1438 sbitmap_zero (visited);
1440 tstack = stack = (int *) alloca (n_nodes * sizeof (int));
1442 for (i = 0; i < n_nodes; ++i)
1443 if (! TEST_BIT (visited, i))
1444 tstack = ephi_forward (i, visited, succ, tstack);
1446 sbitmap_zero (visited);
1448 /* As we find a solution to the tsort, collect the implementation
1449 insns in a sequence. */
1450 start_sequence ();
1452 while (tstack != stack)
1454 i = *--tstack;
1455 if (! TEST_BIT (visited, i))
1456 ephi_create (i, visited, pred, succ, nodes);
1459 insn = gen_sequence ();
1460 end_sequence ();
1461 insert_insn_on_edge (insn, e);
1462 if (rtl_dump_file)
1463 fprintf (rtl_dump_file, "Emitting copy on edge (%d,%d)\n",
1464 e->src->index, e->dest->index);
1466 sbitmap_free (visited);
1467 out:
1468 sbitmap_vector_free (pred);
1469 sbitmap_vector_free (succ);
1472 /* For basic block B, consider all phi insns which provide an
1473 alternative corresponding to an incoming abnormal critical edge.
1474 Place the phi alternative corresponding to that abnormal critical
1475 edge in the same register class as the destination of the set.
1477 From Morgan, p. 178:
1479 For each abnormal critical edge (C, B),
1480 if T0 = phi (T1, ..., Ti, ..., Tm) is a phi node in B,
1481 and C is the ith predecessor of B,
1482 then T0 and Ti must be equivalent.
1484 Return non-zero iff any such cases were found for which the two
1485 regs were not already in the same class. */
1487 static int
1488 make_regs_equivalent_over_bad_edges (bb, reg_partition)
1489 int bb;
1490 partition reg_partition;
1492 int changed = 0;
1493 basic_block b = BASIC_BLOCK (bb);
1494 rtx phi;
1496 /* Advance to the first phi node. */
1497 phi = first_insn_after_basic_block_note (b);
1499 /* Scan all the phi nodes. */
1500 for (;
1501 PHI_NODE_P (phi);
1502 phi = next_nonnote_insn (phi))
1504 edge e;
1505 int tgt_regno;
1506 rtx set = PATTERN (phi);
1507 rtx tgt = SET_DEST (set);
1509 /* The set target is expected to be an SSA register. */
1510 if (GET_CODE (tgt) != REG
1511 || !CONVERT_REGISTER_TO_SSA_P (REGNO (tgt)))
1512 abort ();
1513 tgt_regno = REGNO (tgt);
1515 /* Scan incoming abnormal critical edges. */
1516 for (e = b->pred; e; e = e->pred_next)
1517 if ((e->flags & (EDGE_ABNORMAL | EDGE_CRITICAL))
1518 == (EDGE_ABNORMAL | EDGE_CRITICAL))
1520 rtx *alt = phi_alternative (set, e->src->index);
1521 int alt_regno;
1523 /* If there is no alternative corresponding to this edge,
1524 the value is undefined along the edge, so just go on. */
1525 if (alt == 0)
1526 continue;
1528 /* The phi alternative is expected to be an SSA register. */
1529 if (GET_CODE (*alt) != REG
1530 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt)))
1531 abort ();
1532 alt_regno = REGNO (*alt);
1534 /* If the set destination and the phi alternative aren't
1535 already in the same class... */
1536 if (partition_find (reg_partition, tgt_regno)
1537 != partition_find (reg_partition, alt_regno))
1539 /* ... make them such. */
1540 if (conflicting_hard_regs_p (tgt_regno, alt_regno))
1541 /* It is illegal to unify a hard register with a
1542 different register. */
1543 abort ();
1545 partition_union (reg_partition,
1546 tgt_regno, alt_regno);
1547 ++changed;
1552 return changed;
1555 /* Consider phi insns in basic block BB pairwise. If the set target
1556 of both isns are equivalent pseudos, make the corresponding phi
1557 alternatives in each phi corresponding equivalent.
1559 Return nonzero if any new register classes were unioned. */
1561 static int
1562 make_equivalent_phi_alternatives_equivalent (bb, reg_partition)
1563 int bb;
1564 partition reg_partition;
1566 int changed = 0;
1567 basic_block b = BASIC_BLOCK (bb);
1568 rtx phi;
1570 /* Advance to the first phi node. */
1571 phi = first_insn_after_basic_block_note (b);
1573 /* Scan all the phi nodes. */
1574 for (;
1575 PHI_NODE_P (phi);
1576 phi = next_nonnote_insn (phi))
1578 rtx set = PATTERN (phi);
1579 /* The regno of the destination of the set. */
1580 int tgt_regno = REGNO (SET_DEST (PATTERN (phi)));
1582 rtx phi2 = next_nonnote_insn (phi);
1584 /* Scan all phi nodes following this one. */
1585 for (;
1586 PHI_NODE_P (phi2);
1587 phi2 = next_nonnote_insn (phi2))
1589 rtx set2 = PATTERN (phi2);
1590 /* The regno of the destination of the set. */
1591 int tgt2_regno = REGNO (SET_DEST (set2));
1593 /* Are the set destinations equivalent regs? */
1594 if (partition_find (reg_partition, tgt_regno) ==
1595 partition_find (reg_partition, tgt2_regno))
1597 edge e;
1598 /* Scan over edges. */
1599 for (e = b->pred; e; e = e->pred_next)
1601 int pred_block = e->src->index;
1602 /* Identify the phi alternatives from both phi
1603 nodes corresponding to this edge. */
1604 rtx *alt = phi_alternative (set, pred_block);
1605 rtx *alt2 = phi_alternative (set2, pred_block);
1607 /* If one of the phi nodes doesn't have a
1608 corresponding alternative, just skip it. */
1609 if (alt == 0 || alt2 == 0)
1610 continue;
1612 /* Both alternatives should be SSA registers. */
1613 if (GET_CODE (*alt) != REG
1614 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt)))
1615 abort ();
1616 if (GET_CODE (*alt2) != REG
1617 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt2)))
1618 abort ();
1620 /* If the alternatives aren't already in the same
1621 class ... */
1622 if (partition_find (reg_partition, REGNO (*alt))
1623 != partition_find (reg_partition, REGNO (*alt2)))
1625 /* ... make them so. */
1626 if (conflicting_hard_regs_p (REGNO (*alt), REGNO (*alt2)))
1627 /* It is illegal to unify a hard register with
1628 a different register. */
1629 abort ();
1631 partition_union (reg_partition,
1632 REGNO (*alt), REGNO (*alt2));
1633 ++changed;
1640 return changed;
1643 /* Compute a conservative partition of outstanding pseudo registers.
1644 See Morgan 7.3.1. */
1646 static partition
1647 compute_conservative_reg_partition ()
1649 int bb;
1650 int changed = 0;
1652 /* We don't actually work with hard registers, but it's easier to
1653 carry them around anyway rather than constantly doing register
1654 number arithmetic. */
1655 partition p =
1656 partition_new (ssa_definition->num_elements);
1658 /* The first priority is to make sure registers that might have to
1659 be copied on abnormal critical edges are placed in the same
1660 partition. This saves us from having to split abnormal critical
1661 edges. */
1662 for (bb = n_basic_blocks; --bb >= 0; )
1663 changed += make_regs_equivalent_over_bad_edges (bb, p);
1665 /* Now we have to insure that corresponding arguments of phi nodes
1666 assigning to corresponding regs are equivalent. Iterate until
1667 nothing changes. */
1668 while (changed > 0)
1670 changed = 0;
1671 for (bb = n_basic_blocks; --bb >= 0; )
1672 changed += make_equivalent_phi_alternatives_equivalent (bb, p);
1675 return p;
1678 /* The following functions compute a register partition that attempts
1679 to eliminate as many reg copies and phi node copies as possible by
1680 coalescing registers. This is the strategy:
1682 1. As in the conservative case, the top priority is to coalesce
1683 registers that otherwise would cause copies to be placed on
1684 abnormal critical edges (which isn't possible).
1686 2. Figure out which regs are involved (in the LHS or RHS) of
1687 copies and phi nodes. Compute conflicts among these regs.
1689 3. Walk around the instruction stream, placing two regs in the
1690 same class of the partition if one appears on the LHS and the
1691 other on the RHS of a copy or phi node and the two regs don't
1692 conflict. The conflict information of course needs to be
1693 updated.
1695 4. If anything has changed, there may be new opportunities to
1696 coalesce regs, so go back to 2.
1699 /* If REG1 and REG2 don't conflict in CONFLICTS, place them in the
1700 same class of partition P, if they aren't already. Update
1701 CONFLICTS appropriately.
1703 Returns one if REG1 and REG2 were placed in the same class but were
1704 not previously; zero otherwise.
1706 See Morgan figure 11.15. */
1708 static int
1709 coalesce_if_unconflicting (p, conflicts, reg1, reg2)
1710 partition p;
1711 conflict_graph conflicts;
1712 int reg1;
1713 int reg2;
1715 int reg;
1717 /* Work only on SSA registers. */
1718 if (!CONVERT_REGISTER_TO_SSA_P (reg1) || !CONVERT_REGISTER_TO_SSA_P (reg2))
1719 return 0;
1721 /* Find the canonical regs for the classes containing REG1 and
1722 REG2. */
1723 reg1 = partition_find (p, reg1);
1724 reg2 = partition_find (p, reg2);
1726 /* If they're already in the same class, there's nothing to do. */
1727 if (reg1 == reg2)
1728 return 0;
1730 /* If the regs conflict, our hands are tied. */
1731 if (conflicting_hard_regs_p (reg1, reg2) ||
1732 conflict_graph_conflict_p (conflicts, reg1, reg2))
1733 return 0;
1735 /* We're good to go. Put the regs in the same partition. */
1736 partition_union (p, reg1, reg2);
1738 /* Find the new canonical reg for the merged class. */
1739 reg = partition_find (p, reg1);
1741 /* Merge conflicts from the two previous classes. */
1742 conflict_graph_merge_regs (conflicts, reg, reg1);
1743 conflict_graph_merge_regs (conflicts, reg, reg2);
1745 return 1;
1748 /* For each register copy insn in basic block BB, place the LHS and
1749 RHS regs in the same class in partition P if they do not conflict
1750 according to CONFLICTS.
1752 Returns the number of changes that were made to P.
1754 See Morgan figure 11.14. */
1756 static int
1757 coalesce_regs_in_copies (bb, p, conflicts)
1758 basic_block bb;
1759 partition p;
1760 conflict_graph conflicts;
1762 int changed = 0;
1763 rtx insn;
1764 rtx end = bb->end;
1766 /* Scan the instruction stream of the block. */
1767 for (insn = bb->head; insn != end; insn = NEXT_INSN (insn))
1769 rtx pattern;
1770 rtx src;
1771 rtx dest;
1773 /* If this isn't a set insn, go to the next insn. */
1774 if (GET_CODE (insn) != INSN)
1775 continue;
1776 pattern = PATTERN (insn);
1777 if (GET_CODE (pattern) != SET)
1778 continue;
1780 src = SET_SRC (pattern);
1781 dest = SET_DEST (pattern);
1783 /* We're only looking for copies. */
1784 if (GET_CODE (src) != REG || GET_CODE (dest) != REG)
1785 continue;
1787 /* Coalesce only if the reg modes are the same. As long as
1788 each reg's rtx is unique, it can have only one mode, so two
1789 pseudos of different modes can't be coalesced into one.
1791 FIXME: We can probably get around this by inserting SUBREGs
1792 where appropriate, but for now we don't bother. */
1793 if (GET_MODE (src) != GET_MODE (dest))
1794 continue;
1796 /* Found a copy; see if we can use the same reg for both the
1797 source and destination (and thus eliminate the copy,
1798 ultimately). */
1799 changed += coalesce_if_unconflicting (p, conflicts,
1800 REGNO (src), REGNO (dest));
1803 return changed;
1806 struct phi_coalesce_context
1808 partition p;
1809 conflict_graph conflicts;
1810 int changed;
1813 /* Callback function for for_each_successor_phi. If the set
1814 destination and the phi alternative regs do not conflict, place
1815 them in the same paritition class. DATA is a pointer to a
1816 phi_coalesce_context struct. */
1818 static int
1819 coalesce_reg_in_phi (insn, dest_regno, src_regno, data)
1820 rtx insn ATTRIBUTE_UNUSED;
1821 int dest_regno;
1822 int src_regno;
1823 void *data;
1825 struct phi_coalesce_context *context =
1826 (struct phi_coalesce_context *) data;
1828 /* Attempt to use the same reg, if they don't conflict. */
1829 context->changed
1830 += coalesce_if_unconflicting (context->p, context->conflicts,
1831 dest_regno, src_regno);
1832 return 0;
1835 /* For each alternative in a phi function corresponding to basic block
1836 BB (in phi nodes in successor block to BB), place the reg in the
1837 phi alternative and the reg to which the phi value is set into the
1838 same class in partition P, if allowed by CONFLICTS.
1840 Return the number of changes that were made to P.
1842 See Morgan figure 11.14. */
1844 static int
1845 coalesce_regs_in_successor_phi_nodes (bb, p, conflicts)
1846 basic_block bb;
1847 partition p;
1848 conflict_graph conflicts;
1850 struct phi_coalesce_context context;
1851 context.p = p;
1852 context.conflicts = conflicts;
1853 context.changed = 0;
1855 for_each_successor_phi (bb, &coalesce_reg_in_phi, &context);
1857 return context.changed;
1860 /* Compute and return a partition of pseudos. Where possible,
1861 non-conflicting pseudos are placed in the same class.
1863 The caller is responsible for deallocating the returned partition. */
1865 static partition
1866 compute_coalesced_reg_partition ()
1868 int bb;
1869 int changed = 0;
1871 partition p =
1872 partition_new (ssa_definition->num_elements);
1874 /* The first priority is to make sure registers that might have to
1875 be copied on abnormal critical edges are placed in the same
1876 partition. This saves us from having to split abnormal critical
1877 edges (which can't be done). */
1878 for (bb = n_basic_blocks; --bb >= 0; )
1879 make_regs_equivalent_over_bad_edges (bb, p);
1883 regset_head phi_set;
1884 conflict_graph conflicts;
1886 changed = 0;
1888 /* Build the set of registers involved in phi nodes, either as
1889 arguments to the phi function or as the target of a set. */
1890 INITIALIZE_REG_SET (phi_set);
1891 mark_phi_and_copy_regs (&phi_set);
1893 /* Compute conflicts. */
1894 conflicts = conflict_graph_compute (&phi_set, p);
1896 /* FIXME: Better would be to process most frequently executed
1897 blocks first, so that most frequently executed copies would
1898 be more likely to be removed by register coalescing. But any
1899 order will generate correct, if non-optimal, results. */
1900 for (bb = n_basic_blocks; --bb >= 0; )
1902 basic_block block = BASIC_BLOCK (bb);
1903 changed += coalesce_regs_in_copies (block, p, conflicts);
1904 changed +=
1905 coalesce_regs_in_successor_phi_nodes (block, p, conflicts);
1908 conflict_graph_delete (conflicts);
1910 while (changed > 0);
1912 return p;
1915 /* Mark the regs in a phi node. PTR is a phi expression or one of its
1916 components (a REG or a CONST_INT). DATA is a reg set in which to
1917 set all regs. Called from for_each_rtx. */
1919 static int
1920 mark_reg_in_phi (ptr, data)
1921 rtx *ptr;
1922 void *data;
1924 rtx expr = *ptr;
1925 regset set = (regset) data;
1927 switch (GET_CODE (expr))
1929 case REG:
1930 SET_REGNO_REG_SET (set, REGNO (expr));
1931 /* Fall through. */
1932 case CONST_INT:
1933 case PHI:
1934 return 0;
1935 default:
1936 abort ();
1940 /* Mark in PHI_SET all pseudos that are used in a phi node -- either
1941 set from a phi expression, or used as an argument in one. Also
1942 mark regs that are the source or target of a reg copy. Uses
1943 ssa_definition. */
1945 static void
1946 mark_phi_and_copy_regs (phi_set)
1947 regset phi_set;
1949 unsigned int reg;
1951 /* Scan the definitions of all regs. */
1952 for (reg = 0; reg < VARRAY_SIZE (ssa_definition); ++reg)
1953 if (CONVERT_REGISTER_TO_SSA_P (reg))
1955 rtx insn = VARRAY_RTX (ssa_definition, reg);
1956 rtx pattern;
1957 rtx src;
1959 if (insn == NULL)
1960 continue;
1961 pattern = PATTERN (insn);
1962 /* Sometimes we get PARALLEL insns. These aren't phi nodes or
1963 copies. */
1964 if (GET_CODE (pattern) != SET)
1965 continue;
1966 src = SET_SRC (pattern);
1968 if (GET_CODE (src) == REG)
1970 /* It's a reg copy. */
1971 SET_REGNO_REG_SET (phi_set, reg);
1972 SET_REGNO_REG_SET (phi_set, REGNO (src));
1974 else if (GET_CODE (src) == PHI)
1976 /* It's a phi node. Mark the reg being set. */
1977 SET_REGNO_REG_SET (phi_set, reg);
1978 /* Mark the regs used in the phi function. */
1979 for_each_rtx (&src, mark_reg_in_phi, phi_set);
1981 /* ... else nothing to do. */
1985 /* Rename regs in insn PTR that are equivalent. DATA is the register
1986 partition which specifies equivalences. */
1988 static int
1989 rename_equivalent_regs_in_insn (ptr, data)
1990 rtx *ptr;
1991 void* data;
1993 rtx x = *ptr;
1994 partition reg_partition = (partition) data;
1996 if (x == NULL_RTX)
1997 return 0;
1999 switch (GET_CODE (x))
2001 case REG:
2002 if (CONVERT_REGISTER_TO_SSA_P (REGNO (x)))
2004 unsigned int regno = REGNO (x);
2005 unsigned int new_regno = partition_find (reg_partition, regno);
2006 rtx canonical_element_rtx = ssa_rename_from_lookup (new_regno);
2008 if (canonical_element_rtx != NULL_RTX &&
2009 HARD_REGISTER_P (canonical_element_rtx))
2011 if (REGNO (canonical_element_rtx) != regno)
2012 *ptr = canonical_element_rtx;
2014 else if (regno != new_regno)
2016 rtx new_reg = regno_reg_rtx[new_regno];
2017 if (GET_MODE (x) != GET_MODE (new_reg))
2018 abort ();
2019 *ptr = new_reg;
2022 return -1;
2024 case PHI:
2025 /* No need to rename the phi nodes. We'll check equivalence
2026 when inserting copies. */
2027 return -1;
2029 default:
2030 /* Anything else, continue traversing. */
2031 return 0;
2035 /* Record the register's canonical element stored in SRFP in the
2036 canonical_elements sbitmap packaged in DATA. This function is used
2037 as a callback function for traversing ssa_rename_from. */
2039 static int
2040 record_canonical_element_1 (srfp, data)
2041 void **srfp;
2042 void *data;
2044 unsigned int reg = ((ssa_rename_from_pair *) *srfp)->reg;
2045 sbitmap canonical_elements =
2046 ((struct ssa_rename_from_hash_table_data *) data)->canonical_elements;
2047 partition reg_partition =
2048 ((struct ssa_rename_from_hash_table_data *) data)->reg_partition;
2050 SET_BIT (canonical_elements, partition_find (reg_partition, reg));
2051 return 1;
2054 /* For each class in the REG_PARTITION corresponding to a particular
2055 hard register and machine mode, check that there are no other
2056 classes with the same hard register and machine mode. Returns
2057 nonzero if this is the case, i.e., the partition is acceptable. */
2059 static int
2060 check_hard_regs_in_partition (reg_partition)
2061 partition reg_partition;
2063 /* CANONICAL_ELEMENTS has a nonzero bit if a class with the given register
2064 number and machine mode has already been seen. This is a
2065 problem with the partition. */
2066 sbitmap canonical_elements;
2067 int element_index;
2068 int already_seen[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
2069 int reg;
2070 int mach_mode;
2072 /* Collect a list of canonical elements. */
2073 canonical_elements = sbitmap_alloc (max_reg_num ());
2074 sbitmap_zero (canonical_elements);
2075 ssa_rename_from_traverse (&record_canonical_element_1,
2076 canonical_elements, reg_partition);
2078 /* We have not seen any hard register uses. */
2079 for (reg = 0; reg < FIRST_PSEUDO_REGISTER; ++reg)
2080 for (mach_mode = 0; mach_mode < NUM_MACHINE_MODES; ++mach_mode)
2081 already_seen[reg][mach_mode] = 0;
2083 /* Check for classes with the same hard register and machine mode. */
2084 EXECUTE_IF_SET_IN_SBITMAP (canonical_elements, 0, element_index,
2086 rtx hard_reg_rtx = ssa_rename_from_lookup (element_index);
2087 if (hard_reg_rtx != NULL_RTX &&
2088 HARD_REGISTER_P (hard_reg_rtx) &&
2089 already_seen[REGNO (hard_reg_rtx)][GET_MODE (hard_reg_rtx)] != 0)
2090 /* Two distinct partition classes should be mapped to the same
2091 hard register. */
2092 return 0;
2095 sbitmap_free (canonical_elements);
2097 return 1;
2100 /* Rename regs that are equivalent in REG_PARTITION. Also collapse
2101 any SEQUENCE insns. */
2103 static void
2104 rename_equivalent_regs (reg_partition)
2105 partition reg_partition;
2107 int bb;
2109 for (bb = n_basic_blocks; --bb >= 0; )
2111 basic_block b = BASIC_BLOCK (bb);
2112 rtx next = b->head;
2113 rtx last = b->end;
2114 rtx insn;
2118 insn = next;
2119 if (INSN_P (insn))
2121 for_each_rtx (&PATTERN (insn),
2122 rename_equivalent_regs_in_insn,
2123 reg_partition);
2124 for_each_rtx (&REG_NOTES (insn),
2125 rename_equivalent_regs_in_insn,
2126 reg_partition);
2128 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
2130 rtx s = PATTERN (insn);
2131 int slen = XVECLEN (s, 0);
2132 int i;
2134 if (slen <= 1)
2135 abort();
2137 PATTERN (insn) = XVECEXP (s, 0, slen-1);
2138 for (i = 0; i < slen - 1; i++)
2139 emit_block_insn_before (XVECEXP (s, 0, i), insn, b);
2143 next = NEXT_INSN (insn);
2145 while (insn != last);
2149 /* The main entry point for moving from SSA. */
2151 void
2152 convert_from_ssa()
2154 int bb;
2155 partition reg_partition;
2156 rtx insns = get_insns ();
2158 /* Need global_live_at_{start,end} up to date. */
2159 life_analysis (insns, NULL,
2160 PROP_KILL_DEAD_CODE | PROP_SCAN_DEAD_CODE | PROP_DEATH_NOTES);
2162 /* Figure out which regs in copies and phi nodes don't conflict and
2163 therefore can be coalesced. */
2164 if (conservative_reg_partition)
2165 reg_partition = compute_conservative_reg_partition ();
2166 else
2167 reg_partition = compute_coalesced_reg_partition ();
2169 if (!check_hard_regs_in_partition (reg_partition))
2170 /* Two separate partitions should correspond to the same hard
2171 register but do not. */
2172 abort ();
2174 rename_equivalent_regs (reg_partition);
2176 /* Eliminate the PHI nodes. */
2177 for (bb = n_basic_blocks; --bb >= 0; )
2179 basic_block b = BASIC_BLOCK (bb);
2180 edge e;
2182 for (e = b->pred; e; e = e->pred_next)
2183 if (e->src != ENTRY_BLOCK_PTR)
2184 eliminate_phi (e, reg_partition);
2187 partition_delete (reg_partition);
2189 /* Actually delete the PHI nodes. */
2190 for (bb = n_basic_blocks; --bb >= 0; )
2192 rtx insn = BLOCK_HEAD (bb);
2194 while (1)
2196 /* If this is a PHI node delete it. */
2197 if (PHI_NODE_P (insn))
2199 if (insn == BLOCK_END (bb))
2200 BLOCK_END (bb) = PREV_INSN (insn);
2201 insn = delete_insn (insn);
2203 /* Since all the phi nodes come at the beginning of the
2204 block, if we find an ordinary insn, we can stop looking
2205 for more phi nodes. */
2206 else if (INSN_P (insn))
2207 break;
2208 /* If we've reached the end of the block, stop. */
2209 else if (insn == BLOCK_END (bb))
2210 break;
2211 else
2212 insn = NEXT_INSN (insn);
2216 /* Commit all the copy nodes needed to convert out of SSA form. */
2217 commit_edge_insertions ();
2219 in_ssa_form = 0;
2221 count_or_remove_death_notes (NULL, 1);
2223 /* Deallocate the data structures. */
2224 VARRAY_FREE (ssa_definition);
2225 VARRAY_FREE (ssa_uses);
2226 ssa_rename_from_free ();
2229 /* Scan phi nodes in successors to BB. For each such phi node that
2230 has a phi alternative value corresponding to BB, invoke FN. FN
2231 is passed the entire phi node insn, the regno of the set
2232 destination, the regno of the phi argument corresponding to BB,
2233 and DATA.
2235 If FN ever returns non-zero, stops immediately and returns this
2236 value. Otherwise, returns zero. */
2239 for_each_successor_phi (bb, fn, data)
2240 basic_block bb;
2241 successor_phi_fn fn;
2242 void *data;
2244 edge e;
2246 if (bb == EXIT_BLOCK_PTR)
2247 return 0;
2249 /* Scan outgoing edges. */
2250 for (e = bb->succ; e != NULL; e = e->succ_next)
2252 rtx insn;
2254 basic_block successor = e->dest;
2255 if (successor == ENTRY_BLOCK_PTR
2256 || successor == EXIT_BLOCK_PTR)
2257 continue;
2259 /* Advance to the first non-label insn of the successor block. */
2260 insn = first_insn_after_basic_block_note (successor);
2262 if (insn == NULL)
2263 continue;
2265 /* Scan phi nodes in the successor. */
2266 for ( ; PHI_NODE_P (insn); insn = NEXT_INSN (insn))
2268 int result;
2269 rtx phi_set = PATTERN (insn);
2270 rtx *alternative = phi_alternative (phi_set, bb->index);
2271 rtx phi_src;
2273 /* This phi function may not have an alternative
2274 corresponding to the incoming edge, indicating the
2275 assigned variable is not defined along the edge. */
2276 if (alternative == NULL)
2277 continue;
2278 phi_src = *alternative;
2280 /* Invoke the callback. */
2281 result = (*fn) (insn, REGNO (SET_DEST (phi_set)),
2282 REGNO (phi_src), data);
2284 /* Terminate if requested. */
2285 if (result != 0)
2286 return result;
2290 return 0;
2293 /* Assuming the ssa_rename_from mapping has been established, yields
2294 nonzero if 1) only one SSA register of REG1 and REG2 comes from a
2295 hard register or 2) both SSA registers REG1 and REG2 come from
2296 different hard registers. */
2298 static int
2299 conflicting_hard_regs_p (reg1, reg2)
2300 int reg1;
2301 int reg2;
2303 int orig_reg1 = original_register (reg1);
2304 int orig_reg2 = original_register (reg2);
2305 if (HARD_REGISTER_NUM_P (orig_reg1) && HARD_REGISTER_NUM_P (orig_reg2)
2306 && orig_reg1 != orig_reg2)
2307 return 1;
2308 if (HARD_REGISTER_NUM_P (orig_reg1) && !HARD_REGISTER_NUM_P (orig_reg2))
2309 return 1;
2310 if (!HARD_REGISTER_NUM_P (orig_reg1) && HARD_REGISTER_NUM_P (orig_reg2))
2311 return 1;
2313 return 0;