* gcc.dg/cpp/sysmac1.c,sysmac2.c: Return to original file.
[official-gcc.git] / gcc / flow.c
blob96d2ad040a4fef2895d42d3550778ca1017470a2
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "tree.h"
124 #include "rtl.h"
125 #include "tm_p.h"
126 #include "hard-reg-set.h"
127 #include "basic-block.h"
128 #include "insn-config.h"
129 #include "regs.h"
130 #include "flags.h"
131 #include "output.h"
132 #include "function.h"
133 #include "except.h"
134 #include "toplev.h"
135 #include "recog.h"
136 #include "expr.h"
137 #include "ssa.h"
139 #include "obstack.h"
140 #include "splay-tree.h"
142 #define obstack_chunk_alloc xmalloc
143 #define obstack_chunk_free free
145 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
146 the stack pointer does not matter. The value is tested only in
147 functions that have frame pointers.
148 No definition is equivalent to always zero. */
149 #ifndef EXIT_IGNORE_STACK
150 #define EXIT_IGNORE_STACK 0
151 #endif
153 #ifndef HAVE_epilogue
154 #define HAVE_epilogue 0
155 #endif
156 #ifndef HAVE_prologue
157 #define HAVE_prologue 0
158 #endif
159 #ifndef HAVE_sibcall_epilogue
160 #define HAVE_sibcall_epilogue 0
161 #endif
163 #ifndef LOCAL_REGNO
164 #define LOCAL_REGNO(REGNO) 0
165 #endif
166 #ifndef EPILOGUE_USES
167 #define EPILOGUE_USES(REGNO) 0
168 #endif
170 #ifdef HAVE_conditional_execution
171 #ifndef REVERSE_CONDEXEC_PREDICATES_P
172 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
173 #endif
174 #endif
176 /* The obstack on which the flow graph components are allocated. */
178 struct obstack flow_obstack;
179 static char *flow_firstobj;
181 /* Number of basic blocks in the current function. */
183 int n_basic_blocks;
185 /* Number of edges in the current function. */
187 int n_edges;
189 /* The basic block array. */
191 varray_type basic_block_info;
193 /* The special entry and exit blocks. */
195 struct basic_block_def entry_exit_blocks[2]
196 = {{NULL, /* head */
197 NULL, /* end */
198 NULL, /* pred */
199 NULL, /* succ */
200 NULL, /* local_set */
201 NULL, /* cond_local_set */
202 NULL, /* global_live_at_start */
203 NULL, /* global_live_at_end */
204 NULL, /* aux */
205 ENTRY_BLOCK, /* index */
206 0, /* loop_depth */
207 0 /* count */
210 NULL, /* head */
211 NULL, /* end */
212 NULL, /* pred */
213 NULL, /* succ */
214 NULL, /* local_set */
215 NULL, /* cond_local_set */
216 NULL, /* global_live_at_start */
217 NULL, /* global_live_at_end */
218 NULL, /* aux */
219 EXIT_BLOCK, /* index */
220 0, /* loop_depth */
221 0 /* count */
225 /* Nonzero if the second flow pass has completed. */
226 int flow2_completed;
228 /* Maximum register number used in this function, plus one. */
230 int max_regno;
232 /* Indexed by n, giving various register information */
234 varray_type reg_n_info;
236 /* Size of a regset for the current function,
237 in (1) bytes and (2) elements. */
239 int regset_bytes;
240 int regset_size;
242 /* Regset of regs live when calls to `setjmp'-like functions happen. */
243 /* ??? Does this exist only for the setjmp-clobbered warning message? */
245 regset regs_live_at_setjmp;
247 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
248 that have to go in the same hard reg.
249 The first two regs in the list are a pair, and the next two
250 are another pair, etc. */
251 rtx regs_may_share;
253 /* Callback that determines if it's ok for a function to have no
254 noreturn attribute. */
255 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
257 /* Set of registers that may be eliminable. These are handled specially
258 in updating regs_ever_live. */
260 static HARD_REG_SET elim_reg_set;
262 /* The basic block structure for every insn, indexed by uid. */
264 varray_type basic_block_for_insn;
266 /* The labels mentioned in non-jump rtl. Valid during find_basic_blocks. */
267 /* ??? Should probably be using LABEL_NUSES instead. It would take a
268 bit of surgery to be able to use or co-opt the routines in jump. */
270 static rtx label_value_list;
271 static rtx tail_recursion_label_list;
273 /* Holds information for tracking conditional register life information. */
274 struct reg_cond_life_info
276 /* A boolean expression of conditions under which a register is dead. */
277 rtx condition;
278 /* Conditions under which a register is dead at the basic block end. */
279 rtx orig_condition;
281 /* A boolean expression of conditions under which a register has been
282 stored into. */
283 rtx stores;
285 /* ??? Could store mask of bytes that are dead, so that we could finally
286 track lifetimes of multi-word registers accessed via subregs. */
289 /* For use in communicating between propagate_block and its subroutines.
290 Holds all information needed to compute life and def-use information. */
292 struct propagate_block_info
294 /* The basic block we're considering. */
295 basic_block bb;
297 /* Bit N is set if register N is conditionally or unconditionally live. */
298 regset reg_live;
300 /* Bit N is set if register N is set this insn. */
301 regset new_set;
303 /* Element N is the next insn that uses (hard or pseudo) register N
304 within the current basic block; or zero, if there is no such insn. */
305 rtx *reg_next_use;
307 /* Contains a list of all the MEMs we are tracking for dead store
308 elimination. */
309 rtx mem_set_list;
311 /* If non-null, record the set of registers set unconditionally in the
312 basic block. */
313 regset local_set;
315 /* If non-null, record the set of registers set conditionally in the
316 basic block. */
317 regset cond_local_set;
319 #ifdef HAVE_conditional_execution
320 /* Indexed by register number, holds a reg_cond_life_info for each
321 register that is not unconditionally live or dead. */
322 splay_tree reg_cond_dead;
324 /* Bit N is set if register N is in an expression in reg_cond_dead. */
325 regset reg_cond_reg;
326 #endif
328 /* The length of mem_set_list. */
329 int mem_set_list_len;
331 /* Non-zero if the value of CC0 is live. */
332 int cc0_live;
334 /* Flags controling the set of information propagate_block collects. */
335 int flags;
338 /* Maximum length of pbi->mem_set_list before we start dropping
339 new elements on the floor. */
340 #define MAX_MEM_SET_LIST_LEN 100
342 /* Store the data structures necessary for depth-first search. */
343 struct depth_first_search_dsS {
344 /* stack for backtracking during the algorithm */
345 basic_block *stack;
347 /* number of edges in the stack. That is, positions 0, ..., sp-1
348 have edges. */
349 unsigned int sp;
351 /* record of basic blocks already seen by depth-first search */
352 sbitmap visited_blocks;
354 typedef struct depth_first_search_dsS *depth_first_search_ds;
356 /* Have print_rtl_and_abort give the same information that fancy_abort
357 does. */
358 #define print_rtl_and_abort() \
359 print_rtl_and_abort_fcn (__FILE__, __LINE__, __FUNCTION__)
361 /* Forward declarations */
362 static int count_basic_blocks PARAMS ((rtx));
363 static void find_basic_blocks_1 PARAMS ((rtx));
364 static rtx find_label_refs PARAMS ((rtx, rtx));
365 static void clear_edges PARAMS ((void));
366 static void make_edges PARAMS ((rtx));
367 static void make_label_edge PARAMS ((sbitmap *, basic_block,
368 rtx, int));
369 static void make_eh_edge PARAMS ((sbitmap *, basic_block, rtx));
370 static void mark_critical_edges PARAMS ((void));
372 static void commit_one_edge_insertion PARAMS ((edge));
374 static void delete_unreachable_blocks PARAMS ((void));
375 static int can_delete_note_p PARAMS ((rtx));
376 static void expunge_block PARAMS ((basic_block));
377 static int can_delete_label_p PARAMS ((rtx));
378 static int tail_recursion_label_p PARAMS ((rtx));
379 static int merge_blocks_move_predecessor_nojumps PARAMS ((basic_block,
380 basic_block));
381 static int merge_blocks_move_successor_nojumps PARAMS ((basic_block,
382 basic_block));
383 static int merge_blocks PARAMS ((edge,basic_block,basic_block));
384 static void try_merge_blocks PARAMS ((void));
385 static void tidy_fallthru_edges PARAMS ((void));
386 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
387 static void verify_wide_reg PARAMS ((int, rtx, rtx));
388 static void verify_local_live_at_start PARAMS ((regset, basic_block));
389 static int noop_move_p PARAMS ((rtx));
390 static void delete_noop_moves PARAMS ((rtx));
391 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
392 static void notice_stack_pointer_modification PARAMS ((rtx));
393 static void mark_reg PARAMS ((rtx, void *));
394 static void mark_regs_live_at_end PARAMS ((regset));
395 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
396 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
397 static void propagate_block_delete_insn PARAMS ((basic_block, rtx));
398 static rtx propagate_block_delete_libcall PARAMS ((basic_block, rtx, rtx));
399 static int insn_dead_p PARAMS ((struct propagate_block_info *,
400 rtx, int, rtx));
401 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
402 rtx, rtx));
403 static void mark_set_regs PARAMS ((struct propagate_block_info *,
404 rtx, rtx));
405 static void mark_set_1 PARAMS ((struct propagate_block_info *,
406 enum rtx_code, rtx, rtx,
407 rtx, int));
408 #ifdef HAVE_conditional_execution
409 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
410 int, rtx));
411 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
412 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
413 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
414 int));
415 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
416 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
417 static rtx not_reg_cond PARAMS ((rtx));
418 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
419 #endif
420 #ifdef AUTO_INC_DEC
421 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
422 rtx, rtx, rtx, rtx, rtx));
423 static void find_auto_inc PARAMS ((struct propagate_block_info *,
424 rtx, rtx));
425 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
426 rtx));
427 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
428 #endif
429 static void mark_used_reg PARAMS ((struct propagate_block_info *,
430 rtx, rtx, rtx));
431 static void mark_used_regs PARAMS ((struct propagate_block_info *,
432 rtx, rtx, rtx));
433 void dump_flow_info PARAMS ((FILE *));
434 void debug_flow_info PARAMS ((void));
435 static void dump_edge_info PARAMS ((FILE *, edge, int));
436 static void print_rtl_and_abort_fcn PARAMS ((const char *, int,
437 const char *))
438 ATTRIBUTE_NORETURN;
440 static void invalidate_mems_from_autoinc PARAMS ((struct propagate_block_info *,
441 rtx));
442 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
443 rtx));
444 static void remove_fake_successors PARAMS ((basic_block));
445 static void flow_nodes_print PARAMS ((const char *, const sbitmap,
446 FILE *));
447 static void flow_edge_list_print PARAMS ((const char *, const edge *,
448 int, FILE *));
449 static void flow_loops_cfg_dump PARAMS ((const struct loops *,
450 FILE *));
451 static int flow_loop_nested_p PARAMS ((struct loop *,
452 struct loop *));
453 static int flow_loop_entry_edges_find PARAMS ((basic_block, const sbitmap,
454 edge **));
455 static int flow_loop_exit_edges_find PARAMS ((const sbitmap, edge **));
456 static int flow_loop_nodes_find PARAMS ((basic_block, basic_block, sbitmap));
457 static int flow_depth_first_order_compute PARAMS ((int *, int *));
458 static void flow_dfs_compute_reverse_init
459 PARAMS ((depth_first_search_ds));
460 static void flow_dfs_compute_reverse_add_bb
461 PARAMS ((depth_first_search_ds, basic_block));
462 static basic_block flow_dfs_compute_reverse_execute
463 PARAMS ((depth_first_search_ds));
464 static void flow_dfs_compute_reverse_finish
465 PARAMS ((depth_first_search_ds));
466 static void flow_loop_pre_header_scan PARAMS ((struct loop *));
467 static basic_block flow_loop_pre_header_find PARAMS ((basic_block,
468 const sbitmap *));
469 static void flow_loop_tree_node_add PARAMS ((struct loop *, struct loop *));
470 static void flow_loops_tree_build PARAMS ((struct loops *));
471 static int flow_loop_level_compute PARAMS ((struct loop *, int));
472 static int flow_loops_level_compute PARAMS ((struct loops *));
473 static void allocate_bb_life_data PARAMS ((void));
474 static void find_sub_basic_blocks PARAMS ((basic_block));
476 /* Find basic blocks of the current function.
477 F is the first insn of the function and NREGS the number of register
478 numbers in use. */
480 void
481 find_basic_blocks (f, nregs, file)
482 rtx f;
483 int nregs ATTRIBUTE_UNUSED;
484 FILE *file ATTRIBUTE_UNUSED;
486 int max_uid;
488 /* Flush out existing data. */
489 if (basic_block_info != NULL)
491 int i;
493 clear_edges ();
495 /* Clear bb->aux on all extant basic blocks. We'll use this as a
496 tag for reuse during create_basic_block, just in case some pass
497 copies around basic block notes improperly. */
498 for (i = 0; i < n_basic_blocks; ++i)
499 BASIC_BLOCK (i)->aux = NULL;
501 VARRAY_FREE (basic_block_info);
504 n_basic_blocks = count_basic_blocks (f);
506 /* Size the basic block table. The actual structures will be allocated
507 by find_basic_blocks_1, since we want to keep the structure pointers
508 stable across calls to find_basic_blocks. */
509 /* ??? This whole issue would be much simpler if we called find_basic_blocks
510 exactly once, and thereafter we don't have a single long chain of
511 instructions at all until close to the end of compilation when we
512 actually lay them out. */
514 VARRAY_BB_INIT (basic_block_info, n_basic_blocks, "basic_block_info");
516 find_basic_blocks_1 (f);
518 /* Record the block to which an insn belongs. */
519 /* ??? This should be done another way, by which (perhaps) a label is
520 tagged directly with the basic block that it starts. It is used for
521 more than that currently, but IMO that is the only valid use. */
523 max_uid = get_max_uid ();
524 #ifdef AUTO_INC_DEC
525 /* Leave space for insns life_analysis makes in some cases for auto-inc.
526 These cases are rare, so we don't need too much space. */
527 max_uid += max_uid / 10;
528 #endif
530 compute_bb_for_insn (max_uid);
532 /* Discover the edges of our cfg. */
533 make_edges (label_value_list);
535 /* Do very simple cleanup now, for the benefit of code that runs between
536 here and cleanup_cfg, e.g. thread_prologue_and_epilogue_insns. */
537 tidy_fallthru_edges ();
539 mark_critical_edges ();
541 #ifdef ENABLE_CHECKING
542 verify_flow_info ();
543 #endif
546 void
547 check_function_return_warnings ()
549 if (warn_missing_noreturn
550 && !TREE_THIS_VOLATILE (cfun->decl)
551 && EXIT_BLOCK_PTR->pred == NULL
552 && (lang_missing_noreturn_ok_p
553 && !lang_missing_noreturn_ok_p (cfun->decl)))
554 warning ("function might be possible candidate for attribute `noreturn'");
556 /* If we have a path to EXIT, then we do return. */
557 if (TREE_THIS_VOLATILE (cfun->decl)
558 && EXIT_BLOCK_PTR->pred != NULL)
559 warning ("`noreturn' function does return");
561 /* If the clobber_return_insn appears in some basic block, then we
562 do reach the end without returning a value. */
563 else if (warn_return_type
564 && cfun->x_clobber_return_insn != NULL
565 && EXIT_BLOCK_PTR->pred != NULL)
567 int max_uid = get_max_uid ();
569 /* If clobber_return_insn was excised by jump1, then renumber_insns
570 can make max_uid smaller than the number still recorded in our rtx.
571 That's fine, since this is a quick way of verifying that the insn
572 is no longer in the chain. */
573 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
575 /* Recompute insn->block mapping, since the initial mapping is
576 set before we delete unreachable blocks. */
577 compute_bb_for_insn (max_uid);
579 if (BLOCK_FOR_INSN (cfun->x_clobber_return_insn) != NULL)
580 warning ("control reaches end of non-void function");
585 /* Count the basic blocks of the function. */
587 static int
588 count_basic_blocks (f)
589 rtx f;
591 register rtx insn;
592 register RTX_CODE prev_code;
593 register int count = 0;
594 int saw_abnormal_edge = 0;
596 prev_code = JUMP_INSN;
597 for (insn = f; insn; insn = NEXT_INSN (insn))
599 enum rtx_code code = GET_CODE (insn);
601 if (code == CODE_LABEL
602 || (GET_RTX_CLASS (code) == 'i'
603 && (prev_code == JUMP_INSN
604 || prev_code == BARRIER
605 || saw_abnormal_edge)))
607 saw_abnormal_edge = 0;
608 count++;
611 /* Record whether this insn created an edge. */
612 if (code == CALL_INSN)
614 rtx note;
616 /* If there is a nonlocal goto label and the specified
617 region number isn't -1, we have an edge. */
618 if (nonlocal_goto_handler_labels
619 && ((note = find_reg_note (insn, REG_EH_REGION, NULL_RTX)) == 0
620 || INTVAL (XEXP (note, 0)) >= 0))
621 saw_abnormal_edge = 1;
623 else if (can_throw_internal (insn))
624 saw_abnormal_edge = 1;
626 else if (flag_non_call_exceptions
627 && code == INSN
628 && can_throw_internal (insn))
629 saw_abnormal_edge = 1;
631 if (code != NOTE)
632 prev_code = code;
635 /* The rest of the compiler works a bit smoother when we don't have to
636 check for the edge case of do-nothing functions with no basic blocks. */
637 if (count == 0)
639 emit_insn (gen_rtx_USE (VOIDmode, const0_rtx));
640 count = 1;
643 return count;
646 /* Scan a list of insns for labels referred to other than by jumps.
647 This is used to scan the alternatives of a call placeholder. */
648 static rtx
649 find_label_refs (f, lvl)
650 rtx f;
651 rtx lvl;
653 rtx insn;
655 for (insn = f; insn; insn = NEXT_INSN (insn))
656 if (INSN_P (insn) && GET_CODE (insn) != JUMP_INSN)
658 rtx note;
660 /* Make a list of all labels referred to other than by jumps
661 (which just don't have the REG_LABEL notes).
663 Make a special exception for labels followed by an ADDR*VEC,
664 as this would be a part of the tablejump setup code.
666 Make a special exception to registers loaded with label
667 values just before jump insns that use them. */
669 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
670 if (REG_NOTE_KIND (note) == REG_LABEL)
672 rtx lab = XEXP (note, 0), next;
674 if ((next = next_nonnote_insn (lab)) != NULL
675 && GET_CODE (next) == JUMP_INSN
676 && (GET_CODE (PATTERN (next)) == ADDR_VEC
677 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
679 else if (GET_CODE (lab) == NOTE)
681 else if (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
682 && find_reg_note (NEXT_INSN (insn), REG_LABEL, lab))
684 else
685 lvl = alloc_EXPR_LIST (0, XEXP (note, 0), lvl);
689 return lvl;
692 /* Assume that someone emitted code with control flow instructions to the
693 basic block. Update the data structure. */
694 static void
695 find_sub_basic_blocks (bb)
696 basic_block bb;
698 rtx first_insn = bb->head, insn;
699 rtx end = bb->end;
700 edge succ_list = bb->succ;
701 rtx jump_insn = NULL_RTX;
702 int created = 0;
703 int barrier = 0;
704 edge falltru = 0;
705 basic_block first_bb = bb, last_bb;
706 int i;
708 if (GET_CODE (first_insn) == LABEL_REF)
709 first_insn = NEXT_INSN (first_insn);
710 first_insn = NEXT_INSN (first_insn);
711 bb->succ = NULL;
713 insn = first_insn;
714 /* Scan insn chain and try to find new basic block boundaries. */
715 while (insn != end)
717 enum rtx_code code = GET_CODE (insn);
718 switch (code)
720 case JUMP_INSN:
721 /* We need some special care for those expressions. */
722 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
723 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
724 abort();
725 jump_insn = insn;
726 break;
727 case BARRIER:
728 if (!jump_insn)
729 abort ();
730 barrier = 1;
731 break;
732 /* On code label, split current basic block. */
733 case CODE_LABEL:
734 falltru = split_block (bb, PREV_INSN (insn));
735 if (jump_insn)
736 bb->end = jump_insn;
737 bb = falltru->dest;
738 if (barrier)
739 remove_edge (falltru);
740 barrier = 0;
741 jump_insn = 0;
742 created = 1;
743 if (LABEL_ALTERNATE_NAME (insn))
744 make_edge (NULL, ENTRY_BLOCK_PTR, bb, 0);
745 break;
746 case INSN:
747 /* In case we've previously split insn on the JUMP_INSN, move the
748 block header to proper place. */
749 if (jump_insn)
751 falltru = split_block (bb, PREV_INSN (insn));
752 bb->end = jump_insn;
753 bb = falltru->dest;
754 if (barrier)
755 abort ();
756 jump_insn = 0;
758 default:
759 break;
761 insn = NEXT_INSN (insn);
763 /* Last basic block must end in the original BB end. */
764 if (jump_insn)
765 abort ();
767 /* Wire in the original edges for last basic block. */
768 if (created)
770 bb->succ = succ_list;
771 while (succ_list)
772 succ_list->src = bb, succ_list = succ_list->succ_next;
774 else
775 bb->succ = succ_list;
777 /* Now re-scan and wire in all edges. This expect simple (conditional)
778 jumps at the end of each new basic blocks. */
779 last_bb = bb;
780 for (i = first_bb->index; i < last_bb->index; i++)
782 bb = BASIC_BLOCK (i);
783 if (GET_CODE (bb->end) == JUMP_INSN)
785 mark_jump_label (PATTERN (bb->end), bb->end, 0, 0);
786 make_label_edge (NULL, bb, JUMP_LABEL (bb->end), 0);
788 insn = NEXT_INSN (insn);
792 /* Find all basic blocks of the function whose first insn is F.
794 Collect and return a list of labels whose addresses are taken. This
795 will be used in make_edges for use with computed gotos. */
797 static void
798 find_basic_blocks_1 (f)
799 rtx f;
801 register rtx insn, next;
802 int i = 0;
803 rtx bb_note = NULL_RTX;
804 rtx lvl = NULL_RTX;
805 rtx trll = NULL_RTX;
806 rtx head = NULL_RTX;
807 rtx end = NULL_RTX;
809 /* We process the instructions in a slightly different way than we did
810 previously. This is so that we see a NOTE_BASIC_BLOCK after we have
811 closed out the previous block, so that it gets attached at the proper
812 place. Since this form should be equivalent to the previous,
813 count_basic_blocks continues to use the old form as a check. */
815 for (insn = f; insn; insn = next)
817 enum rtx_code code = GET_CODE (insn);
819 next = NEXT_INSN (insn);
821 switch (code)
823 case NOTE:
825 int kind = NOTE_LINE_NUMBER (insn);
827 /* Look for basic block notes with which to keep the
828 basic_block_info pointers stable. Unthread the note now;
829 we'll put it back at the right place in create_basic_block.
830 Or not at all if we've already found a note in this block. */
831 if (kind == NOTE_INSN_BASIC_BLOCK)
833 if (bb_note == NULL_RTX)
834 bb_note = insn;
835 else
836 next = flow_delete_insn (insn);
838 break;
841 case CODE_LABEL:
842 /* A basic block starts at a label. If we've closed one off due
843 to a barrier or some such, no need to do it again. */
844 if (head != NULL_RTX)
846 /* While we now have edge lists with which other portions of
847 the compiler might determine a call ending a basic block
848 does not imply an abnormal edge, it will be a bit before
849 everything can be updated. So continue to emit a noop at
850 the end of such a block. */
851 if (GET_CODE (end) == CALL_INSN && ! SIBLING_CALL_P (end))
853 rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
854 end = emit_insn_after (nop, end);
857 create_basic_block (i++, head, end, bb_note);
858 bb_note = NULL_RTX;
861 head = end = insn;
862 break;
864 case JUMP_INSN:
865 /* A basic block ends at a jump. */
866 if (head == NULL_RTX)
867 head = insn;
868 else
870 /* ??? Make a special check for table jumps. The way this
871 happens is truly and amazingly gross. We are about to
872 create a basic block that contains just a code label and
873 an addr*vec jump insn. Worse, an addr_diff_vec creates
874 its own natural loop.
876 Prevent this bit of brain damage, pasting things together
877 correctly in make_edges.
879 The correct solution involves emitting the table directly
880 on the tablejump instruction as a note, or JUMP_LABEL. */
882 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
883 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
885 head = end = NULL;
886 n_basic_blocks--;
887 break;
890 end = insn;
891 goto new_bb_inclusive;
893 case BARRIER:
894 /* A basic block ends at a barrier. It may be that an unconditional
895 jump already closed the basic block -- no need to do it again. */
896 if (head == NULL_RTX)
897 break;
899 /* While we now have edge lists with which other portions of the
900 compiler might determine a call ending a basic block does not
901 imply an abnormal edge, it will be a bit before everything can
902 be updated. So continue to emit a noop at the end of such a
903 block. */
904 if (GET_CODE (end) == CALL_INSN && ! SIBLING_CALL_P (end))
906 rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
907 end = emit_insn_after (nop, end);
909 goto new_bb_exclusive;
911 case CALL_INSN:
913 /* Record whether this call created an edge. */
914 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
915 int region = (note ? INTVAL (XEXP (note, 0)) : 0);
917 if (GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
919 /* Scan each of the alternatives for label refs. */
920 lvl = find_label_refs (XEXP (PATTERN (insn), 0), lvl);
921 lvl = find_label_refs (XEXP (PATTERN (insn), 1), lvl);
922 lvl = find_label_refs (XEXP (PATTERN (insn), 2), lvl);
923 /* Record its tail recursion label, if any. */
924 if (XEXP (PATTERN (insn), 3) != NULL_RTX)
925 trll = alloc_EXPR_LIST (0, XEXP (PATTERN (insn), 3), trll);
928 /* A basic block ends at a call that can either throw or
929 do a non-local goto. */
930 if ((nonlocal_goto_handler_labels && region >= 0)
931 || can_throw_internal (insn))
933 new_bb_inclusive:
934 if (head == NULL_RTX)
935 head = insn;
936 end = insn;
938 new_bb_exclusive:
939 create_basic_block (i++, head, end, bb_note);
940 head = end = NULL_RTX;
941 bb_note = NULL_RTX;
942 break;
945 /* Fall through. */
947 case INSN:
948 /* Non-call exceptions generate new blocks just like calls. */
949 if (flag_non_call_exceptions && can_throw_internal (insn))
950 goto new_bb_inclusive;
952 if (head == NULL_RTX)
953 head = insn;
954 end = insn;
955 break;
957 default:
958 abort ();
961 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
963 rtx note;
965 /* Make a list of all labels referred to other than by jumps.
967 Make a special exception for labels followed by an ADDR*VEC,
968 as this would be a part of the tablejump setup code.
970 Make a special exception to registers loaded with label
971 values just before jump insns that use them. */
973 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
974 if (REG_NOTE_KIND (note) == REG_LABEL)
976 rtx lab = XEXP (note, 0), next;
978 if ((next = next_nonnote_insn (lab)) != NULL
979 && GET_CODE (next) == JUMP_INSN
980 && (GET_CODE (PATTERN (next)) == ADDR_VEC
981 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
983 else if (GET_CODE (lab) == NOTE)
985 else if (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
986 && find_reg_note (NEXT_INSN (insn), REG_LABEL, lab))
988 else
989 lvl = alloc_EXPR_LIST (0, XEXP (note, 0), lvl);
994 if (head != NULL_RTX)
995 create_basic_block (i++, head, end, bb_note);
996 else if (bb_note)
997 flow_delete_insn (bb_note);
999 if (i != n_basic_blocks)
1000 abort ();
1002 label_value_list = lvl;
1003 tail_recursion_label_list = trll;
1006 /* Tidy the CFG by deleting unreachable code and whatnot. */
1008 void
1009 cleanup_cfg ()
1011 delete_unreachable_blocks ();
1012 try_merge_blocks ();
1013 mark_critical_edges ();
1015 /* Kill the data we won't maintain. */
1016 free_EXPR_LIST_list (&label_value_list);
1017 free_EXPR_LIST_list (&tail_recursion_label_list);
1020 /* Create a new basic block consisting of the instructions between
1021 HEAD and END inclusive. Reuses the note and basic block struct
1022 in BB_NOTE, if any. */
1024 void
1025 create_basic_block (index, head, end, bb_note)
1026 int index;
1027 rtx head, end, bb_note;
1029 basic_block bb;
1031 if (bb_note
1032 && ! RTX_INTEGRATED_P (bb_note)
1033 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
1034 && bb->aux == NULL)
1036 /* If we found an existing note, thread it back onto the chain. */
1038 rtx after;
1040 if (GET_CODE (head) == CODE_LABEL)
1041 after = head;
1042 else
1044 after = PREV_INSN (head);
1045 head = bb_note;
1048 if (after != bb_note && NEXT_INSN (after) != bb_note)
1049 reorder_insns (bb_note, bb_note, after);
1051 else
1053 /* Otherwise we must create a note and a basic block structure.
1054 Since we allow basic block structs in rtl, give the struct
1055 the same lifetime by allocating it off the function obstack
1056 rather than using malloc. */
1058 bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*bb));
1059 memset (bb, 0, sizeof (*bb));
1061 if (GET_CODE (head) == CODE_LABEL)
1062 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
1063 else
1065 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
1066 head = bb_note;
1068 NOTE_BASIC_BLOCK (bb_note) = bb;
1071 /* Always include the bb note in the block. */
1072 if (NEXT_INSN (end) == bb_note)
1073 end = bb_note;
1075 bb->head = head;
1076 bb->end = end;
1077 bb->index = index;
1078 BASIC_BLOCK (index) = bb;
1080 /* Tag the block so that we know it has been used when considering
1081 other basic block notes. */
1082 bb->aux = bb;
1085 /* Records the basic block struct in BB_FOR_INSN, for every instruction
1086 indexed by INSN_UID. MAX is the size of the array. */
1088 void
1089 compute_bb_for_insn (max)
1090 int max;
1092 int i;
1094 if (basic_block_for_insn)
1095 VARRAY_FREE (basic_block_for_insn);
1096 VARRAY_BB_INIT (basic_block_for_insn, max, "basic_block_for_insn");
1098 for (i = 0; i < n_basic_blocks; ++i)
1100 basic_block bb = BASIC_BLOCK (i);
1101 rtx insn, end;
1103 end = bb->end;
1104 insn = bb->head;
1105 while (1)
1107 int uid = INSN_UID (insn);
1108 if (uid < max)
1109 VARRAY_BB (basic_block_for_insn, uid) = bb;
1110 if (insn == end)
1111 break;
1112 insn = NEXT_INSN (insn);
1117 /* Free the memory associated with the edge structures. */
1119 static void
1120 clear_edges ()
1122 int i;
1123 edge n, e;
1125 for (i = 0; i < n_basic_blocks; ++i)
1127 basic_block bb = BASIC_BLOCK (i);
1129 for (e = bb->succ; e; e = n)
1131 n = e->succ_next;
1132 free (e);
1135 bb->succ = 0;
1136 bb->pred = 0;
1139 for (e = ENTRY_BLOCK_PTR->succ; e; e = n)
1141 n = e->succ_next;
1142 free (e);
1145 ENTRY_BLOCK_PTR->succ = 0;
1146 EXIT_BLOCK_PTR->pred = 0;
1148 n_edges = 0;
1151 /* Identify the edges between basic blocks.
1153 NONLOCAL_LABEL_LIST is a list of non-local labels in the function. Blocks
1154 that are otherwise unreachable may be reachable with a non-local goto.
1156 BB_EH_END is an array indexed by basic block number in which we record
1157 the list of exception regions active at the end of the basic block. */
1159 static void
1160 make_edges (label_value_list)
1161 rtx label_value_list;
1163 int i;
1164 sbitmap *edge_cache = NULL;
1166 /* Assume no computed jump; revise as we create edges. */
1167 current_function_has_computed_jump = 0;
1169 /* Heavy use of computed goto in machine-generated code can lead to
1170 nearly fully-connected CFGs. In that case we spend a significant
1171 amount of time searching the edge lists for duplicates. */
1172 if (forced_labels || label_value_list)
1174 edge_cache = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
1175 sbitmap_vector_zero (edge_cache, n_basic_blocks);
1178 /* By nature of the way these get numbered, block 0 is always the entry. */
1179 make_edge (edge_cache, ENTRY_BLOCK_PTR, BASIC_BLOCK (0), EDGE_FALLTHRU);
1181 for (i = 0; i < n_basic_blocks; ++i)
1183 basic_block bb = BASIC_BLOCK (i);
1184 rtx insn, x;
1185 enum rtx_code code;
1186 int force_fallthru = 0;
1188 if (GET_CODE (bb->head) == CODE_LABEL
1189 && LABEL_ALTERNATE_NAME (bb->head))
1190 make_edge (NULL, ENTRY_BLOCK_PTR, bb, 0);
1192 /* Examine the last instruction of the block, and discover the
1193 ways we can leave the block. */
1195 insn = bb->end;
1196 code = GET_CODE (insn);
1198 /* A branch. */
1199 if (code == JUMP_INSN)
1201 rtx tmp;
1203 /* Recognize exception handling placeholders. */
1204 if (GET_CODE (PATTERN (insn)) == RESX)
1205 make_eh_edge (edge_cache, bb, insn);
1207 /* Recognize a non-local goto as a branch outside the
1208 current function. */
1209 else if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
1212 /* ??? Recognize a tablejump and do the right thing. */
1213 else if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
1214 && (tmp = NEXT_INSN (tmp)) != NULL_RTX
1215 && GET_CODE (tmp) == JUMP_INSN
1216 && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
1217 || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
1219 rtvec vec;
1220 int j;
1222 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
1223 vec = XVEC (PATTERN (tmp), 0);
1224 else
1225 vec = XVEC (PATTERN (tmp), 1);
1227 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1228 make_label_edge (edge_cache, bb,
1229 XEXP (RTVEC_ELT (vec, j), 0), 0);
1231 /* Some targets (eg, ARM) emit a conditional jump that also
1232 contains the out-of-range target. Scan for these and
1233 add an edge if necessary. */
1234 if ((tmp = single_set (insn)) != NULL
1235 && SET_DEST (tmp) == pc_rtx
1236 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1237 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
1238 make_label_edge (edge_cache, bb,
1239 XEXP (XEXP (SET_SRC (tmp), 2), 0), 0);
1241 #ifdef CASE_DROPS_THROUGH
1242 /* Silly VAXen. The ADDR_VEC is going to be in the way of
1243 us naturally detecting fallthru into the next block. */
1244 force_fallthru = 1;
1245 #endif
1248 /* If this is a computed jump, then mark it as reaching
1249 everything on the label_value_list and forced_labels list. */
1250 else if (computed_jump_p (insn))
1252 current_function_has_computed_jump = 1;
1254 for (x = label_value_list; x; x = XEXP (x, 1))
1255 make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL);
1257 for (x = forced_labels; x; x = XEXP (x, 1))
1258 make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL);
1261 /* Returns create an exit out. */
1262 else if (returnjump_p (insn))
1263 make_edge (edge_cache, bb, EXIT_BLOCK_PTR, 0);
1265 /* Otherwise, we have a plain conditional or unconditional jump. */
1266 else
1268 if (! JUMP_LABEL (insn))
1269 abort ();
1270 make_label_edge (edge_cache, bb, JUMP_LABEL (insn), 0);
1274 /* If this is a sibling call insn, then this is in effect a
1275 combined call and return, and so we need an edge to the
1276 exit block. No need to worry about EH edges, since we
1277 wouldn't have created the sibling call in the first place. */
1279 if (code == CALL_INSN && SIBLING_CALL_P (insn))
1280 make_edge (edge_cache, bb, EXIT_BLOCK_PTR,
1281 EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
1283 /* If this is a CALL_INSN, then mark it as reaching the active EH
1284 handler for this CALL_INSN. If we're handling non-call
1285 exceptions then any insn can reach any of the active handlers.
1287 Also mark the CALL_INSN as reaching any nonlocal goto handler. */
1289 else if (code == CALL_INSN || flag_non_call_exceptions)
1291 /* Add any appropriate EH edges. */
1292 make_eh_edge (edge_cache, bb, insn);
1294 if (code == CALL_INSN && nonlocal_goto_handler_labels)
1296 /* ??? This could be made smarter: in some cases it's possible
1297 to tell that certain calls will not do a nonlocal goto.
1299 For example, if the nested functions that do the nonlocal
1300 gotos do not have their addresses taken, then only calls to
1301 those functions or to other nested functions that use them
1302 could possibly do nonlocal gotos. */
1303 /* We do know that a REG_EH_REGION note with a value less
1304 than 0 is guaranteed not to perform a non-local goto. */
1305 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1306 if (!note || INTVAL (XEXP (note, 0)) >= 0)
1307 for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
1308 make_label_edge (edge_cache, bb, XEXP (x, 0),
1309 EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
1313 /* Find out if we can drop through to the next block. */
1314 insn = next_nonnote_insn (insn);
1315 if (!insn || (i + 1 == n_basic_blocks && force_fallthru))
1316 make_edge (edge_cache, bb, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
1317 else if (i + 1 < n_basic_blocks)
1319 rtx tmp = BLOCK_HEAD (i + 1);
1320 if (GET_CODE (tmp) == NOTE)
1321 tmp = next_nonnote_insn (tmp);
1322 if (force_fallthru || insn == tmp)
1323 make_edge (edge_cache, bb, BASIC_BLOCK (i + 1), EDGE_FALLTHRU);
1327 if (edge_cache)
1328 sbitmap_vector_free (edge_cache);
1331 /* Create an edge between two basic blocks. FLAGS are auxiliary information
1332 about the edge that is accumulated between calls. */
1334 void
1335 make_edge (edge_cache, src, dst, flags)
1336 sbitmap *edge_cache;
1337 basic_block src, dst;
1338 int flags;
1340 int use_edge_cache;
1341 edge e;
1343 /* Don't bother with edge cache for ENTRY or EXIT; there aren't that
1344 many edges to them, and we didn't allocate memory for it. */
1345 use_edge_cache = (edge_cache
1346 && src != ENTRY_BLOCK_PTR
1347 && dst != EXIT_BLOCK_PTR);
1349 /* Make sure we don't add duplicate edges. */
1350 switch (use_edge_cache)
1352 default:
1353 /* Quick test for non-existance of the edge. */
1354 if (! TEST_BIT (edge_cache[src->index], dst->index))
1355 break;
1357 /* The edge exists; early exit if no work to do. */
1358 if (flags == 0)
1359 return;
1361 /* FALLTHRU */
1362 case 0:
1363 for (e = src->succ; e; e = e->succ_next)
1364 if (e->dest == dst)
1366 e->flags |= flags;
1367 return;
1369 break;
1372 e = (edge) xcalloc (1, sizeof (*e));
1373 n_edges++;
1375 e->succ_next = src->succ;
1376 e->pred_next = dst->pred;
1377 e->src = src;
1378 e->dest = dst;
1379 e->flags = flags;
1381 src->succ = e;
1382 dst->pred = e;
1384 if (use_edge_cache)
1385 SET_BIT (edge_cache[src->index], dst->index);
1388 /* Create an edge from a basic block to a label. */
1390 static void
1391 make_label_edge (edge_cache, src, label, flags)
1392 sbitmap *edge_cache;
1393 basic_block src;
1394 rtx label;
1395 int flags;
1397 if (GET_CODE (label) != CODE_LABEL)
1398 abort ();
1400 /* If the label was never emitted, this insn is junk, but avoid a
1401 crash trying to refer to BLOCK_FOR_INSN (label). This can happen
1402 as a result of a syntax error and a diagnostic has already been
1403 printed. */
1405 if (INSN_UID (label) == 0)
1406 return;
1408 make_edge (edge_cache, src, BLOCK_FOR_INSN (label), flags);
1411 /* Create the edges generated by INSN in REGION. */
1413 static void
1414 make_eh_edge (edge_cache, src, insn)
1415 sbitmap *edge_cache;
1416 basic_block src;
1417 rtx insn;
1419 int is_call = (GET_CODE (insn) == CALL_INSN ? EDGE_ABNORMAL_CALL : 0);
1420 rtx handlers, i;
1422 handlers = reachable_handlers (insn);
1424 for (i = handlers; i; i = XEXP (i, 1))
1425 make_label_edge (edge_cache, src, XEXP (i, 0),
1426 EDGE_ABNORMAL | EDGE_EH | is_call);
1428 free_INSN_LIST_list (&handlers);
1431 /* Identify critical edges and set the bits appropriately. */
1433 static void
1434 mark_critical_edges ()
1436 int i, n = n_basic_blocks;
1437 basic_block bb;
1439 /* We begin with the entry block. This is not terribly important now,
1440 but could be if a front end (Fortran) implemented alternate entry
1441 points. */
1442 bb = ENTRY_BLOCK_PTR;
1443 i = -1;
1445 while (1)
1447 edge e;
1449 /* (1) Critical edges must have a source with multiple successors. */
1450 if (bb->succ && bb->succ->succ_next)
1452 for (e = bb->succ; e; e = e->succ_next)
1454 /* (2) Critical edges must have a destination with multiple
1455 predecessors. Note that we know there is at least one
1456 predecessor -- the edge we followed to get here. */
1457 if (e->dest->pred->pred_next)
1458 e->flags |= EDGE_CRITICAL;
1459 else
1460 e->flags &= ~EDGE_CRITICAL;
1463 else
1465 for (e = bb->succ; e; e = e->succ_next)
1466 e->flags &= ~EDGE_CRITICAL;
1469 if (++i >= n)
1470 break;
1471 bb = BASIC_BLOCK (i);
1475 /* Split a block BB after insn INSN creating a new fallthru edge.
1476 Return the new edge. Note that to keep other parts of the compiler happy,
1477 this function renumbers all the basic blocks so that the new
1478 one has a number one greater than the block split. */
1480 edge
1481 split_block (bb, insn)
1482 basic_block bb;
1483 rtx insn;
1485 basic_block new_bb;
1486 edge new_edge;
1487 edge e;
1488 rtx bb_note;
1489 int i, j;
1491 /* There is no point splitting the block after its end. */
1492 if (bb->end == insn)
1493 return 0;
1495 /* Create the new structures. */
1496 new_bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*new_bb));
1497 new_edge = (edge) xcalloc (1, sizeof (*new_edge));
1498 n_edges++;
1500 memset (new_bb, 0, sizeof (*new_bb));
1502 new_bb->head = NEXT_INSN (insn);
1503 new_bb->end = bb->end;
1504 bb->end = insn;
1506 new_bb->succ = bb->succ;
1507 bb->succ = new_edge;
1508 new_bb->pred = new_edge;
1509 new_bb->count = bb->count;
1510 new_bb->loop_depth = bb->loop_depth;
1512 new_edge->src = bb;
1513 new_edge->dest = new_bb;
1514 new_edge->flags = EDGE_FALLTHRU;
1515 new_edge->probability = REG_BR_PROB_BASE;
1516 new_edge->count = bb->count;
1518 /* Redirect the src of the successor edges of bb to point to new_bb. */
1519 for (e = new_bb->succ; e; e = e->succ_next)
1520 e->src = new_bb;
1522 /* Place the new block just after the block being split. */
1523 VARRAY_GROW (basic_block_info, ++n_basic_blocks);
1525 /* Some parts of the compiler expect blocks to be number in
1526 sequential order so insert the new block immediately after the
1527 block being split.. */
1528 j = bb->index;
1529 for (i = n_basic_blocks - 1; i > j + 1; --i)
1531 basic_block tmp = BASIC_BLOCK (i - 1);
1532 BASIC_BLOCK (i) = tmp;
1533 tmp->index = i;
1536 BASIC_BLOCK (i) = new_bb;
1537 new_bb->index = i;
1539 if (GET_CODE (new_bb->head) == CODE_LABEL)
1541 /* Create the basic block note. */
1542 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK,
1543 new_bb->head);
1544 NOTE_BASIC_BLOCK (bb_note) = new_bb;
1546 else
1548 /* Create the basic block note. */
1549 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK,
1550 new_bb->head);
1551 NOTE_BASIC_BLOCK (bb_note) = new_bb;
1552 new_bb->head = bb_note;
1555 update_bb_for_insn (new_bb);
1557 if (bb->global_live_at_start)
1559 new_bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1560 new_bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1561 COPY_REG_SET (new_bb->global_live_at_end, bb->global_live_at_end);
1563 /* We now have to calculate which registers are live at the end
1564 of the split basic block and at the start of the new basic
1565 block. Start with those registers that are known to be live
1566 at the end of the original basic block and get
1567 propagate_block to determine which registers are live. */
1568 COPY_REG_SET (new_bb->global_live_at_start, bb->global_live_at_end);
1569 propagate_block (new_bb, new_bb->global_live_at_start, NULL, NULL, 0);
1570 COPY_REG_SET (bb->global_live_at_end,
1571 new_bb->global_live_at_start);
1574 return new_edge;
1578 /* Split a (typically critical) edge. Return the new block.
1579 Abort on abnormal edges.
1581 ??? The code generally expects to be called on critical edges.
1582 The case of a block ending in an unconditional jump to a
1583 block with multiple predecessors is not handled optimally. */
1585 basic_block
1586 split_edge (edge_in)
1587 edge edge_in;
1589 basic_block old_pred, bb, old_succ;
1590 edge edge_out;
1591 rtx bb_note;
1592 int i, j;
1594 /* Abnormal edges cannot be split. */
1595 if ((edge_in->flags & EDGE_ABNORMAL) != 0)
1596 abort ();
1598 old_pred = edge_in->src;
1599 old_succ = edge_in->dest;
1601 /* Remove the existing edge from the destination's pred list. */
1603 edge *pp;
1604 for (pp = &old_succ->pred; *pp != edge_in; pp = &(*pp)->pred_next)
1605 continue;
1606 *pp = edge_in->pred_next;
1607 edge_in->pred_next = NULL;
1610 /* Create the new structures. */
1611 bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*bb));
1612 edge_out = (edge) xcalloc (1, sizeof (*edge_out));
1613 n_edges++;
1615 memset (bb, 0, sizeof (*bb));
1617 /* ??? This info is likely going to be out of date very soon. */
1618 if (old_succ->global_live_at_start)
1620 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1621 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1622 COPY_REG_SET (bb->global_live_at_start, old_succ->global_live_at_start);
1623 COPY_REG_SET (bb->global_live_at_end, old_succ->global_live_at_start);
1626 /* Wire them up. */
1627 bb->pred = edge_in;
1628 bb->succ = edge_out;
1629 bb->count = edge_in->count;
1631 edge_in->dest = bb;
1632 edge_in->flags &= ~EDGE_CRITICAL;
1634 edge_out->pred_next = old_succ->pred;
1635 edge_out->succ_next = NULL;
1636 edge_out->src = bb;
1637 edge_out->dest = old_succ;
1638 edge_out->flags = EDGE_FALLTHRU;
1639 edge_out->probability = REG_BR_PROB_BASE;
1640 edge_out->count = edge_in->count;
1642 old_succ->pred = edge_out;
1644 /* Tricky case -- if there existed a fallthru into the successor
1645 (and we're not it) we must add a new unconditional jump around
1646 the new block we're actually interested in.
1648 Further, if that edge is critical, this means a second new basic
1649 block must be created to hold it. In order to simplify correct
1650 insn placement, do this before we touch the existing basic block
1651 ordering for the block we were really wanting. */
1652 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1654 edge e;
1655 for (e = edge_out->pred_next; e; e = e->pred_next)
1656 if (e->flags & EDGE_FALLTHRU)
1657 break;
1659 if (e)
1661 basic_block jump_block;
1662 rtx pos;
1664 if ((e->flags & EDGE_CRITICAL) == 0
1665 && e->src != ENTRY_BLOCK_PTR)
1667 /* Non critical -- we can simply add a jump to the end
1668 of the existing predecessor. */
1669 jump_block = e->src;
1671 else
1673 /* We need a new block to hold the jump. The simplest
1674 way to do the bulk of the work here is to recursively
1675 call ourselves. */
1676 jump_block = split_edge (e);
1677 e = jump_block->succ;
1680 /* Now add the jump insn ... */
1681 pos = emit_jump_insn_after (gen_jump (old_succ->head),
1682 jump_block->end);
1683 jump_block->end = pos;
1684 if (basic_block_for_insn)
1685 set_block_for_insn (pos, jump_block);
1686 emit_barrier_after (pos);
1688 /* ... let jump know that label is in use, ... */
1689 JUMP_LABEL (pos) = old_succ->head;
1690 ++LABEL_NUSES (old_succ->head);
1692 /* ... and clear fallthru on the outgoing edge. */
1693 e->flags &= ~EDGE_FALLTHRU;
1695 /* Continue splitting the interesting edge. */
1699 /* Place the new block just in front of the successor. */
1700 VARRAY_GROW (basic_block_info, ++n_basic_blocks);
1701 if (old_succ == EXIT_BLOCK_PTR)
1702 j = n_basic_blocks - 1;
1703 else
1704 j = old_succ->index;
1705 for (i = n_basic_blocks - 1; i > j; --i)
1707 basic_block tmp = BASIC_BLOCK (i - 1);
1708 BASIC_BLOCK (i) = tmp;
1709 tmp->index = i;
1711 BASIC_BLOCK (i) = bb;
1712 bb->index = i;
1714 /* Create the basic block note.
1716 Where we place the note can have a noticable impact on the generated
1717 code. Consider this cfg:
1723 +->1-->2--->E
1725 +--+
1727 If we need to insert an insn on the edge from block 0 to block 1,
1728 we want to ensure the instructions we insert are outside of any
1729 loop notes that physically sit between block 0 and block 1. Otherwise
1730 we confuse the loop optimizer into thinking the loop is a phony. */
1731 if (old_succ != EXIT_BLOCK_PTR
1732 && PREV_INSN (old_succ->head)
1733 && GET_CODE (PREV_INSN (old_succ->head)) == NOTE
1734 && NOTE_LINE_NUMBER (PREV_INSN (old_succ->head)) == NOTE_INSN_LOOP_BEG)
1735 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK,
1736 PREV_INSN (old_succ->head));
1737 else if (old_succ != EXIT_BLOCK_PTR)
1738 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, old_succ->head);
1739 else
1740 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
1741 NOTE_BASIC_BLOCK (bb_note) = bb;
1742 bb->head = bb->end = bb_note;
1744 /* Not quite simple -- for non-fallthru edges, we must adjust the
1745 predecessor's jump instruction to target our new block. */
1746 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1748 rtx tmp, insn = old_pred->end;
1749 rtx old_label = old_succ->head;
1750 rtx new_label = gen_label_rtx ();
1752 if (GET_CODE (insn) != JUMP_INSN)
1753 abort ();
1755 /* ??? Recognize a tablejump and adjust all matching cases. */
1756 if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
1757 && (tmp = NEXT_INSN (tmp)) != NULL_RTX
1758 && GET_CODE (tmp) == JUMP_INSN
1759 && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
1760 || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
1762 rtvec vec;
1763 int j;
1765 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
1766 vec = XVEC (PATTERN (tmp), 0);
1767 else
1768 vec = XVEC (PATTERN (tmp), 1);
1770 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1771 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
1773 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (VOIDmode, new_label);
1774 --LABEL_NUSES (old_label);
1775 ++LABEL_NUSES (new_label);
1778 /* Handle casesi dispatch insns */
1779 if ((tmp = single_set (insn)) != NULL
1780 && SET_DEST (tmp) == pc_rtx
1781 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1782 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
1783 && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
1785 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (VOIDmode,
1786 new_label);
1787 --LABEL_NUSES (old_label);
1788 ++LABEL_NUSES (new_label);
1791 else
1793 /* This would have indicated an abnormal edge. */
1794 if (computed_jump_p (insn))
1795 abort ();
1797 /* A return instruction can't be redirected. */
1798 if (returnjump_p (insn))
1799 abort ();
1801 /* If the insn doesn't go where we think, we're confused. */
1802 if (JUMP_LABEL (insn) != old_label)
1803 abort ();
1805 redirect_jump (insn, new_label, 0);
1808 emit_label_before (new_label, bb_note);
1809 bb->head = new_label;
1812 return bb;
1815 /* Queue instructions for insertion on an edge between two basic blocks.
1816 The new instructions and basic blocks (if any) will not appear in the
1817 CFG until commit_edge_insertions is called. */
1819 void
1820 insert_insn_on_edge (pattern, e)
1821 rtx pattern;
1822 edge e;
1824 /* We cannot insert instructions on an abnormal critical edge.
1825 It will be easier to find the culprit if we die now. */
1826 if ((e->flags & (EDGE_ABNORMAL|EDGE_CRITICAL))
1827 == (EDGE_ABNORMAL|EDGE_CRITICAL))
1828 abort ();
1830 if (e->insns == NULL_RTX)
1831 start_sequence ();
1832 else
1833 push_to_sequence (e->insns);
1835 emit_insn (pattern);
1837 e->insns = get_insns ();
1838 end_sequence ();
1841 /* Update the CFG for the instructions queued on edge E. */
1843 static void
1844 commit_one_edge_insertion (e)
1845 edge e;
1847 rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
1848 basic_block bb;
1850 /* Pull the insns off the edge now since the edge might go away. */
1851 insns = e->insns;
1852 e->insns = NULL_RTX;
1854 /* Figure out where to put these things. If the destination has
1855 one predecessor, insert there. Except for the exit block. */
1856 if (e->dest->pred->pred_next == NULL
1857 && e->dest != EXIT_BLOCK_PTR)
1859 bb = e->dest;
1861 /* Get the location correct wrt a code label, and "nice" wrt
1862 a basic block note, and before everything else. */
1863 tmp = bb->head;
1864 if (GET_CODE (tmp) == CODE_LABEL)
1865 tmp = NEXT_INSN (tmp);
1866 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1867 tmp = NEXT_INSN (tmp);
1868 if (tmp == bb->head)
1869 before = tmp;
1870 else
1871 after = PREV_INSN (tmp);
1874 /* If the source has one successor and the edge is not abnormal,
1875 insert there. Except for the entry block. */
1876 else if ((e->flags & EDGE_ABNORMAL) == 0
1877 && e->src->succ->succ_next == NULL
1878 && e->src != ENTRY_BLOCK_PTR)
1880 bb = e->src;
1881 /* It is possible to have a non-simple jump here. Consider a target
1882 where some forms of unconditional jumps clobber a register. This
1883 happens on the fr30 for example.
1885 We know this block has a single successor, so we can just emit
1886 the queued insns before the jump. */
1887 if (GET_CODE (bb->end) == JUMP_INSN)
1889 before = bb->end;
1891 else
1893 /* We'd better be fallthru, or we've lost track of what's what. */
1894 if ((e->flags & EDGE_FALLTHRU) == 0)
1895 abort ();
1897 after = bb->end;
1901 /* Otherwise we must split the edge. */
1902 else
1904 bb = split_edge (e);
1905 after = bb->end;
1908 /* Now that we've found the spot, do the insertion. */
1910 /* Set the new block number for these insns, if structure is allocated. */
1911 if (basic_block_for_insn)
1913 rtx i;
1914 for (i = insns; i != NULL_RTX; i = NEXT_INSN (i))
1915 set_block_for_insn (i, bb);
1918 if (before)
1920 emit_insns_before (insns, before);
1921 if (before == bb->head)
1922 bb->head = insns;
1924 last = prev_nonnote_insn (before);
1926 else
1928 last = emit_insns_after (insns, after);
1929 if (after == bb->end)
1930 bb->end = last;
1933 if (returnjump_p (last))
1935 /* ??? Remove all outgoing edges from BB and add one for EXIT.
1936 This is not currently a problem because this only happens
1937 for the (single) epilogue, which already has a fallthru edge
1938 to EXIT. */
1940 e = bb->succ;
1941 if (e->dest != EXIT_BLOCK_PTR
1942 || e->succ_next != NULL
1943 || (e->flags & EDGE_FALLTHRU) == 0)
1944 abort ();
1945 e->flags &= ~EDGE_FALLTHRU;
1947 emit_barrier_after (last);
1948 bb->end = last;
1950 if (before)
1951 flow_delete_insn (before);
1953 else if (GET_CODE (last) == JUMP_INSN)
1954 abort ();
1955 find_sub_basic_blocks (bb);
1958 /* Update the CFG for all queued instructions. */
1960 void
1961 commit_edge_insertions ()
1963 int i;
1964 basic_block bb;
1966 #ifdef ENABLE_CHECKING
1967 verify_flow_info ();
1968 #endif
1970 i = -1;
1971 bb = ENTRY_BLOCK_PTR;
1972 while (1)
1974 edge e, next;
1976 for (e = bb->succ; e; e = next)
1978 next = e->succ_next;
1979 if (e->insns)
1980 commit_one_edge_insertion (e);
1983 if (++i >= n_basic_blocks)
1984 break;
1985 bb = BASIC_BLOCK (i);
1989 /* Add fake edges to the function exit for any non constant calls in
1990 the bitmap of blocks specified by BLOCKS or to the whole CFG if
1991 BLOCKS is zero. Return the nuber of blocks that were split. */
1994 flow_call_edges_add (blocks)
1995 sbitmap blocks;
1997 int i;
1998 int blocks_split = 0;
1999 int bb_num = 0;
2000 basic_block *bbs;
2002 /* Map bb indicies into basic block pointers since split_block
2003 will renumber the basic blocks. */
2005 bbs = xmalloc (n_basic_blocks * sizeof (*bbs));
2007 if (! blocks)
2009 for (i = 0; i < n_basic_blocks; i++)
2010 bbs[bb_num++] = BASIC_BLOCK (i);
2012 else
2014 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
2016 bbs[bb_num++] = BASIC_BLOCK (i);
2021 /* Now add fake edges to the function exit for any non constant
2022 calls since there is no way that we can determine if they will
2023 return or not... */
2025 for (i = 0; i < bb_num; i++)
2027 basic_block bb = bbs[i];
2028 rtx insn;
2029 rtx prev_insn;
2031 for (insn = bb->end; ; insn = prev_insn)
2033 prev_insn = PREV_INSN (insn);
2034 if (GET_CODE (insn) == CALL_INSN && ! CONST_CALL_P (insn))
2036 edge e;
2038 /* Note that the following may create a new basic block
2039 and renumber the existing basic blocks. */
2040 e = split_block (bb, insn);
2041 if (e)
2042 blocks_split++;
2044 make_edge (NULL, bb, EXIT_BLOCK_PTR, EDGE_FAKE);
2046 if (insn == bb->head)
2047 break;
2051 if (blocks_split)
2052 verify_flow_info ();
2054 free (bbs);
2055 return blocks_split;
2058 /* Delete all unreachable basic blocks. */
2060 static void
2061 delete_unreachable_blocks ()
2063 basic_block *worklist, *tos;
2064 edge e;
2065 int i, n;
2067 n = n_basic_blocks;
2068 tos = worklist = (basic_block *) xmalloc (sizeof (basic_block) * n);
2070 /* Use basic_block->aux as a marker. Clear them all. */
2072 for (i = 0; i < n; ++i)
2073 BASIC_BLOCK (i)->aux = NULL;
2075 /* Add our starting points to the worklist. Almost always there will
2076 be only one. It isn't inconcievable that we might one day directly
2077 support Fortran alternate entry points. */
2079 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
2081 *tos++ = e->dest;
2083 /* Mark the block with a handy non-null value. */
2084 e->dest->aux = e;
2087 /* Iterate: find everything reachable from what we've already seen. */
2089 while (tos != worklist)
2091 basic_block b = *--tos;
2093 for (e = b->succ; e; e = e->succ_next)
2094 if (!e->dest->aux)
2096 *tos++ = e->dest;
2097 e->dest->aux = e;
2101 /* Delete all unreachable basic blocks. Count down so that we
2102 don't interfere with the block renumbering that happens in
2103 flow_delete_block. */
2105 for (i = n - 1; i >= 0; --i)
2107 basic_block b = BASIC_BLOCK (i);
2109 if (b->aux != NULL)
2110 /* This block was found. Tidy up the mark. */
2111 b->aux = NULL;
2112 else
2113 flow_delete_block (b);
2116 tidy_fallthru_edges ();
2118 free (worklist);
2121 /* Return true if NOTE is not one of the ones that must be kept paired,
2122 so that we may simply delete them. */
2124 static int
2125 can_delete_note_p (note)
2126 rtx note;
2128 return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
2129 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK);
2132 /* Unlink a chain of insns between START and FINISH, leaving notes
2133 that must be paired. */
2135 void
2136 flow_delete_insn_chain (start, finish)
2137 rtx start, finish;
2139 /* Unchain the insns one by one. It would be quicker to delete all
2140 of these with a single unchaining, rather than one at a time, but
2141 we need to keep the NOTE's. */
2143 rtx next;
2145 while (1)
2147 next = NEXT_INSN (start);
2148 if (GET_CODE (start) == NOTE && !can_delete_note_p (start))
2150 else if (GET_CODE (start) == CODE_LABEL
2151 && ! can_delete_label_p (start))
2153 const char *name = LABEL_NAME (start);
2154 PUT_CODE (start, NOTE);
2155 NOTE_LINE_NUMBER (start) = NOTE_INSN_DELETED_LABEL;
2156 NOTE_SOURCE_FILE (start) = name;
2158 else
2159 next = flow_delete_insn (start);
2161 if (start == finish)
2162 break;
2163 start = next;
2167 /* Delete the insns in a (non-live) block. We physically delete every
2168 non-deleted-note insn, and update the flow graph appropriately.
2170 Return nonzero if we deleted an exception handler. */
2172 /* ??? Preserving all such notes strikes me as wrong. It would be nice
2173 to post-process the stream to remove empty blocks, loops, ranges, etc. */
2176 flow_delete_block (b)
2177 basic_block b;
2179 int deleted_handler = 0;
2180 rtx insn, end, tmp;
2182 /* If the head of this block is a CODE_LABEL, then it might be the
2183 label for an exception handler which can't be reached.
2185 We need to remove the label from the exception_handler_label list
2186 and remove the associated NOTE_INSN_EH_REGION_BEG and
2187 NOTE_INSN_EH_REGION_END notes. */
2189 insn = b->head;
2191 never_reached_warning (insn);
2193 if (GET_CODE (insn) == CODE_LABEL)
2194 maybe_remove_eh_handler (insn);
2196 /* Include any jump table following the basic block. */
2197 end = b->end;
2198 if (GET_CODE (end) == JUMP_INSN
2199 && (tmp = JUMP_LABEL (end)) != NULL_RTX
2200 && (tmp = NEXT_INSN (tmp)) != NULL_RTX
2201 && GET_CODE (tmp) == JUMP_INSN
2202 && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
2203 || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
2204 end = tmp;
2206 /* Include any barrier that may follow the basic block. */
2207 tmp = next_nonnote_insn (end);
2208 if (tmp && GET_CODE (tmp) == BARRIER)
2209 end = tmp;
2211 /* Selectively delete the entire chain. */
2212 flow_delete_insn_chain (insn, end);
2214 /* Remove the edges into and out of this block. Note that there may
2215 indeed be edges in, if we are removing an unreachable loop. */
2217 edge e, next, *q;
2219 for (e = b->pred; e; e = next)
2221 for (q = &e->src->succ; *q != e; q = &(*q)->succ_next)
2222 continue;
2223 *q = e->succ_next;
2224 next = e->pred_next;
2225 n_edges--;
2226 free (e);
2228 for (e = b->succ; e; e = next)
2230 for (q = &e->dest->pred; *q != e; q = &(*q)->pred_next)
2231 continue;
2232 *q = e->pred_next;
2233 next = e->succ_next;
2234 n_edges--;
2235 free (e);
2238 b->pred = NULL;
2239 b->succ = NULL;
2242 /* Remove the basic block from the array, and compact behind it. */
2243 expunge_block (b);
2245 return deleted_handler;
2248 /* Remove block B from the basic block array and compact behind it. */
2250 static void
2251 expunge_block (b)
2252 basic_block b;
2254 int i, n = n_basic_blocks;
2256 for (i = b->index; i + 1 < n; ++i)
2258 basic_block x = BASIC_BLOCK (i + 1);
2259 BASIC_BLOCK (i) = x;
2260 x->index = i;
2263 basic_block_info->num_elements--;
2264 n_basic_blocks--;
2267 /* Delete INSN by patching it out. Return the next insn. */
2270 flow_delete_insn (insn)
2271 rtx insn;
2273 rtx prev = PREV_INSN (insn);
2274 rtx next = NEXT_INSN (insn);
2275 rtx note;
2277 PREV_INSN (insn) = NULL_RTX;
2278 NEXT_INSN (insn) = NULL_RTX;
2279 INSN_DELETED_P (insn) = 1;
2281 if (prev)
2282 NEXT_INSN (prev) = next;
2283 if (next)
2284 PREV_INSN (next) = prev;
2285 else
2286 set_last_insn (prev);
2288 if (GET_CODE (insn) == CODE_LABEL)
2289 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
2291 /* If deleting a jump, decrement the use count of the label. Deleting
2292 the label itself should happen in the normal course of block merging. */
2293 if (GET_CODE (insn) == JUMP_INSN
2294 && JUMP_LABEL (insn)
2295 && GET_CODE (JUMP_LABEL (insn)) == CODE_LABEL)
2296 LABEL_NUSES (JUMP_LABEL (insn))--;
2298 /* Also if deleting an insn that references a label. */
2299 else if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != NULL_RTX
2300 && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
2301 LABEL_NUSES (XEXP (note, 0))--;
2303 return next;
2306 /* True if a given label can be deleted. */
2308 static int
2309 can_delete_label_p (label)
2310 rtx label;
2312 rtx x;
2314 if (LABEL_PRESERVE_P (label))
2315 return 0;
2317 for (x = forced_labels; x; x = XEXP (x, 1))
2318 if (label == XEXP (x, 0))
2319 return 0;
2320 for (x = label_value_list; x; x = XEXP (x, 1))
2321 if (label == XEXP (x, 0))
2322 return 0;
2323 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2324 if (label == XEXP (x, 0))
2325 return 0;
2327 /* User declared labels must be preserved. */
2328 if (LABEL_NAME (label) != 0)
2329 return 0;
2331 return 1;
2334 static int
2335 tail_recursion_label_p (label)
2336 rtx label;
2338 rtx x;
2340 for (x = tail_recursion_label_list; x; x = XEXP (x, 1))
2341 if (label == XEXP (x, 0))
2342 return 1;
2344 return 0;
2347 /* Blocks A and B are to be merged into a single block A. The insns
2348 are already contiguous, hence `nomove'. */
2350 void
2351 merge_blocks_nomove (a, b)
2352 basic_block a, b;
2354 edge e;
2355 rtx b_head, b_end, a_end;
2356 rtx del_first = NULL_RTX, del_last = NULL_RTX;
2357 int b_empty = 0;
2359 /* If there was a CODE_LABEL beginning B, delete it. */
2360 b_head = b->head;
2361 b_end = b->end;
2362 if (GET_CODE (b_head) == CODE_LABEL)
2364 /* Detect basic blocks with nothing but a label. This can happen
2365 in particular at the end of a function. */
2366 if (b_head == b_end)
2367 b_empty = 1;
2368 del_first = del_last = b_head;
2369 b_head = NEXT_INSN (b_head);
2372 /* Delete the basic block note. */
2373 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
2375 if (b_head == b_end)
2376 b_empty = 1;
2377 if (! del_last)
2378 del_first = b_head;
2379 del_last = b_head;
2380 b_head = NEXT_INSN (b_head);
2383 /* If there was a jump out of A, delete it. */
2384 a_end = a->end;
2385 if (GET_CODE (a_end) == JUMP_INSN)
2387 rtx prev;
2389 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
2390 if (GET_CODE (prev) != NOTE
2391 || NOTE_LINE_NUMBER (prev) == NOTE_INSN_BASIC_BLOCK
2392 || prev == a->head)
2393 break;
2395 del_first = a_end;
2397 #ifdef HAVE_cc0
2398 /* If this was a conditional jump, we need to also delete
2399 the insn that set cc0. */
2400 if (prev && sets_cc0_p (prev))
2402 rtx tmp = prev;
2403 prev = prev_nonnote_insn (prev);
2404 if (!prev)
2405 prev = a->head;
2406 del_first = tmp;
2408 #endif
2410 a_end = prev;
2412 else if (GET_CODE (NEXT_INSN (a_end)) == BARRIER)
2413 del_first = NEXT_INSN (a_end);
2415 /* Delete everything marked above as well as crap that might be
2416 hanging out between the two blocks. */
2417 flow_delete_insn_chain (del_first, del_last);
2419 /* Normally there should only be one successor of A and that is B, but
2420 partway though the merge of blocks for conditional_execution we'll
2421 be merging a TEST block with THEN and ELSE successors. Free the
2422 whole lot of them and hope the caller knows what they're doing. */
2423 while (a->succ)
2424 remove_edge (a->succ);
2426 /* Adjust the edges out of B for the new owner. */
2427 for (e = b->succ; e; e = e->succ_next)
2428 e->src = a;
2429 a->succ = b->succ;
2431 /* B hasn't quite yet ceased to exist. Attempt to prevent mishap. */
2432 b->pred = b->succ = NULL;
2434 /* Reassociate the insns of B with A. */
2435 if (!b_empty)
2437 if (basic_block_for_insn)
2439 BLOCK_FOR_INSN (b_head) = a;
2440 while (b_head != b_end)
2442 b_head = NEXT_INSN (b_head);
2443 BLOCK_FOR_INSN (b_head) = a;
2446 a_end = b_end;
2448 a->end = a_end;
2450 expunge_block (b);
2453 /* Blocks A and B are to be merged into a single block. A has no incoming
2454 fallthru edge, so it can be moved before B without adding or modifying
2455 any jumps (aside from the jump from A to B). */
2457 static int
2458 merge_blocks_move_predecessor_nojumps (a, b)
2459 basic_block a, b;
2461 rtx start, end, barrier;
2462 int index;
2464 start = a->head;
2465 end = a->end;
2467 barrier = next_nonnote_insn (end);
2468 if (GET_CODE (barrier) != BARRIER)
2469 abort ();
2470 flow_delete_insn (barrier);
2472 /* Move block and loop notes out of the chain so that we do not
2473 disturb their order.
2475 ??? A better solution would be to squeeze out all the non-nested notes
2476 and adjust the block trees appropriately. Even better would be to have
2477 a tighter connection between block trees and rtl so that this is not
2478 necessary. */
2479 start = squeeze_notes (start, end);
2481 /* Scramble the insn chain. */
2482 if (end != PREV_INSN (b->head))
2483 reorder_insns (start, end, PREV_INSN (b->head));
2485 if (rtl_dump_file)
2487 fprintf (rtl_dump_file, "Moved block %d before %d and merged.\n",
2488 a->index, b->index);
2491 /* Swap the records for the two blocks around. Although we are deleting B,
2492 A is now where B was and we want to compact the BB array from where
2493 A used to be. */
2494 BASIC_BLOCK (a->index) = b;
2495 BASIC_BLOCK (b->index) = a;
2496 index = a->index;
2497 a->index = b->index;
2498 b->index = index;
2500 /* Now blocks A and B are contiguous. Merge them. */
2501 merge_blocks_nomove (a, b);
2503 return 1;
2506 /* Blocks A and B are to be merged into a single block. B has no outgoing
2507 fallthru edge, so it can be moved after A without adding or modifying
2508 any jumps (aside from the jump from A to B). */
2510 static int
2511 merge_blocks_move_successor_nojumps (a, b)
2512 basic_block a, b;
2514 rtx start, end, barrier;
2516 start = b->head;
2517 end = b->end;
2518 barrier = NEXT_INSN (end);
2520 /* Recognize a jump table following block B. */
2521 if (GET_CODE (barrier) == CODE_LABEL
2522 && NEXT_INSN (barrier)
2523 && GET_CODE (NEXT_INSN (barrier)) == JUMP_INSN
2524 && (GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_VEC
2525 || GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_DIFF_VEC))
2527 end = NEXT_INSN (barrier);
2528 barrier = NEXT_INSN (end);
2531 /* There had better have been a barrier there. Delete it. */
2532 if (GET_CODE (barrier) != BARRIER)
2533 abort ();
2534 flow_delete_insn (barrier);
2536 /* Move block and loop notes out of the chain so that we do not
2537 disturb their order.
2539 ??? A better solution would be to squeeze out all the non-nested notes
2540 and adjust the block trees appropriately. Even better would be to have
2541 a tighter connection between block trees and rtl so that this is not
2542 necessary. */
2543 start = squeeze_notes (start, end);
2545 /* Scramble the insn chain. */
2546 reorder_insns (start, end, a->end);
2548 /* Now blocks A and B are contiguous. Merge them. */
2549 merge_blocks_nomove (a, b);
2551 if (rtl_dump_file)
2553 fprintf (rtl_dump_file, "Moved block %d after %d and merged.\n",
2554 b->index, a->index);
2557 return 1;
2560 /* Attempt to merge basic blocks that are potentially non-adjacent.
2561 Return true iff the attempt succeeded. */
2563 static int
2564 merge_blocks (e, b, c)
2565 edge e;
2566 basic_block b, c;
2568 /* If C has a tail recursion label, do not merge. There is no
2569 edge recorded from the call_placeholder back to this label, as
2570 that would make optimize_sibling_and_tail_recursive_calls more
2571 complex for no gain. */
2572 if (GET_CODE (c->head) == CODE_LABEL
2573 && tail_recursion_label_p (c->head))
2574 return 0;
2576 /* If B has a fallthru edge to C, no need to move anything. */
2577 if (e->flags & EDGE_FALLTHRU)
2579 merge_blocks_nomove (b, c);
2581 if (rtl_dump_file)
2583 fprintf (rtl_dump_file, "Merged %d and %d without moving.\n",
2584 b->index, c->index);
2587 return 1;
2589 else
2591 edge tmp_edge;
2592 int c_has_outgoing_fallthru;
2593 int b_has_incoming_fallthru;
2595 /* We must make sure to not munge nesting of exception regions,
2596 lexical blocks, and loop notes.
2598 The first is taken care of by requiring that the active eh
2599 region at the end of one block always matches the active eh
2600 region at the beginning of the next block.
2602 The later two are taken care of by squeezing out all the notes. */
2604 /* ??? A throw/catch edge (or any abnormal edge) should be rarely
2605 executed and we may want to treat blocks which have two out
2606 edges, one normal, one abnormal as only having one edge for
2607 block merging purposes. */
2609 for (tmp_edge = c->succ; tmp_edge; tmp_edge = tmp_edge->succ_next)
2610 if (tmp_edge->flags & EDGE_FALLTHRU)
2611 break;
2612 c_has_outgoing_fallthru = (tmp_edge != NULL);
2614 for (tmp_edge = b->pred; tmp_edge; tmp_edge = tmp_edge->pred_next)
2615 if (tmp_edge->flags & EDGE_FALLTHRU)
2616 break;
2617 b_has_incoming_fallthru = (tmp_edge != NULL);
2619 /* If B does not have an incoming fallthru, then it can be moved
2620 immediately before C without introducing or modifying jumps.
2621 C cannot be the first block, so we do not have to worry about
2622 accessing a non-existent block. */
2623 if (! b_has_incoming_fallthru)
2624 return merge_blocks_move_predecessor_nojumps (b, c);
2626 /* Otherwise, we're going to try to move C after B. If C does
2627 not have an outgoing fallthru, then it can be moved
2628 immediately after B without introducing or modifying jumps. */
2629 if (! c_has_outgoing_fallthru)
2630 return merge_blocks_move_successor_nojumps (b, c);
2632 /* Otherwise, we'll need to insert an extra jump, and possibly
2633 a new block to contain it. */
2634 /* ??? Not implemented yet. */
2636 return 0;
2640 /* Top level driver for merge_blocks. */
2642 static void
2643 try_merge_blocks ()
2645 int i;
2647 /* Attempt to merge blocks as made possible by edge removal. If a block
2648 has only one successor, and the successor has only one predecessor,
2649 they may be combined. */
2651 for (i = 0; i < n_basic_blocks;)
2653 basic_block c, b = BASIC_BLOCK (i);
2654 edge s;
2656 /* A loop because chains of blocks might be combineable. */
2657 while ((s = b->succ) != NULL
2658 && s->succ_next == NULL
2659 && (s->flags & EDGE_EH) == 0
2660 && (c = s->dest) != EXIT_BLOCK_PTR
2661 && c->pred->pred_next == NULL
2662 /* If the jump insn has side effects, we can't kill the edge. */
2663 && (GET_CODE (b->end) != JUMP_INSN
2664 || onlyjump_p (b->end))
2665 && merge_blocks (s, b, c))
2666 continue;
2668 /* Don't get confused by the index shift caused by deleting blocks. */
2669 i = b->index + 1;
2673 /* The given edge should potentially be a fallthru edge. If that is in
2674 fact true, delete the jump and barriers that are in the way. */
2676 void
2677 tidy_fallthru_edge (e, b, c)
2678 edge e;
2679 basic_block b, c;
2681 rtx q;
2683 /* ??? In a late-running flow pass, other folks may have deleted basic
2684 blocks by nopping out blocks, leaving multiple BARRIERs between here
2685 and the target label. They ought to be chastized and fixed.
2687 We can also wind up with a sequence of undeletable labels between
2688 one block and the next.
2690 So search through a sequence of barriers, labels, and notes for
2691 the head of block C and assert that we really do fall through. */
2693 if (next_real_insn (b->end) != next_real_insn (PREV_INSN (c->head)))
2694 return;
2696 /* Remove what will soon cease being the jump insn from the source block.
2697 If block B consisted only of this single jump, turn it into a deleted
2698 note. */
2699 q = b->end;
2700 if (GET_CODE (q) == JUMP_INSN
2701 && onlyjump_p (q)
2702 && (any_uncondjump_p (q)
2703 || (b->succ == e && e->succ_next == NULL)))
2705 #ifdef HAVE_cc0
2706 /* If this was a conditional jump, we need to also delete
2707 the insn that set cc0. */
2708 if (any_condjump_p (q) && sets_cc0_p (PREV_INSN (q)))
2709 q = PREV_INSN (q);
2710 #endif
2712 if (b->head == q)
2714 PUT_CODE (q, NOTE);
2715 NOTE_LINE_NUMBER (q) = NOTE_INSN_DELETED;
2716 NOTE_SOURCE_FILE (q) = 0;
2718 else
2720 q = PREV_INSN (q);
2722 /* We don't want a block to end on a line-number note since that has
2723 the potential of changing the code between -g and not -g. */
2724 while (GET_CODE (q) == NOTE && NOTE_LINE_NUMBER (q) >= 0)
2725 q = PREV_INSN (q);
2728 b->end = q;
2731 /* Selectively unlink the sequence. */
2732 if (q != PREV_INSN (c->head))
2733 flow_delete_insn_chain (NEXT_INSN (q), PREV_INSN (c->head));
2735 e->flags |= EDGE_FALLTHRU;
2738 /* Fix up edges that now fall through, or rather should now fall through
2739 but previously required a jump around now deleted blocks. Simplify
2740 the search by only examining blocks numerically adjacent, since this
2741 is how find_basic_blocks created them. */
2743 static void
2744 tidy_fallthru_edges ()
2746 int i;
2748 for (i = 1; i < n_basic_blocks; ++i)
2750 basic_block b = BASIC_BLOCK (i - 1);
2751 basic_block c = BASIC_BLOCK (i);
2752 edge s;
2754 /* We care about simple conditional or unconditional jumps with
2755 a single successor.
2757 If we had a conditional branch to the next instruction when
2758 find_basic_blocks was called, then there will only be one
2759 out edge for the block which ended with the conditional
2760 branch (since we do not create duplicate edges).
2762 Furthermore, the edge will be marked as a fallthru because we
2763 merge the flags for the duplicate edges. So we do not want to
2764 check that the edge is not a FALLTHRU edge. */
2765 if ((s = b->succ) != NULL
2766 && ! (s->flags & EDGE_COMPLEX)
2767 && s->succ_next == NULL
2768 && s->dest == c
2769 /* If the jump insn has side effects, we can't tidy the edge. */
2770 && (GET_CODE (b->end) != JUMP_INSN
2771 || onlyjump_p (b->end)))
2772 tidy_fallthru_edge (s, b, c);
2776 /* Perform data flow analysis.
2777 F is the first insn of the function; FLAGS is a set of PROP_* flags
2778 to be used in accumulating flow info. */
2780 void
2781 life_analysis (f, file, flags)
2782 rtx f;
2783 FILE *file;
2784 int flags;
2786 #ifdef ELIMINABLE_REGS
2787 register int i;
2788 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
2789 #endif
2791 /* Record which registers will be eliminated. We use this in
2792 mark_used_regs. */
2794 CLEAR_HARD_REG_SET (elim_reg_set);
2796 #ifdef ELIMINABLE_REGS
2797 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2798 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
2799 #else
2800 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
2801 #endif
2803 if (! optimize)
2804 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC);
2806 /* The post-reload life analysis have (on a global basis) the same
2807 registers live as was computed by reload itself. elimination
2808 Otherwise offsets and such may be incorrect.
2810 Reload will make some registers as live even though they do not
2811 appear in the rtl.
2813 We don't want to create new auto-incs after reload, since they
2814 are unlikely to be useful and can cause problems with shared
2815 stack slots. */
2816 if (reload_completed)
2817 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
2819 /* We want alias analysis information for local dead store elimination. */
2820 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
2821 init_alias_analysis ();
2823 /* Always remove no-op moves. Do this before other processing so
2824 that we don't have to keep re-scanning them. */
2825 delete_noop_moves (f);
2827 /* Some targets can emit simpler epilogues if they know that sp was
2828 not ever modified during the function. After reload, of course,
2829 we've already emitted the epilogue so there's no sense searching. */
2830 if (! reload_completed)
2831 notice_stack_pointer_modification (f);
2833 /* Allocate and zero out data structures that will record the
2834 data from lifetime analysis. */
2835 allocate_reg_life_data ();
2836 allocate_bb_life_data ();
2838 /* Find the set of registers live on function exit. */
2839 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
2841 /* "Update" life info from zero. It'd be nice to begin the
2842 relaxation with just the exit and noreturn blocks, but that set
2843 is not immediately handy. */
2845 if (flags & PROP_REG_INFO)
2846 memset (regs_ever_live, 0, sizeof (regs_ever_live));
2847 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
2849 /* Clean up. */
2850 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
2851 end_alias_analysis ();
2853 if (file)
2854 dump_flow_info (file);
2856 free_basic_block_vars (1);
2859 /* A subroutine of verify_wide_reg, called through for_each_rtx.
2860 Search for REGNO. If found, abort if it is not wider than word_mode. */
2862 static int
2863 verify_wide_reg_1 (px, pregno)
2864 rtx *px;
2865 void *pregno;
2867 rtx x = *px;
2868 unsigned int regno = *(int *) pregno;
2870 if (GET_CODE (x) == REG && REGNO (x) == regno)
2872 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
2873 abort ();
2874 return 1;
2876 return 0;
2879 /* A subroutine of verify_local_live_at_start. Search through insns
2880 between HEAD and END looking for register REGNO. */
2882 static void
2883 verify_wide_reg (regno, head, end)
2884 int regno;
2885 rtx head, end;
2887 while (1)
2889 if (INSN_P (head)
2890 && for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno))
2891 return;
2892 if (head == end)
2893 break;
2894 head = NEXT_INSN (head);
2897 /* We didn't find the register at all. Something's way screwy. */
2898 if (rtl_dump_file)
2899 fprintf (rtl_dump_file, "Aborting in verify_wide_reg; reg %d\n", regno);
2900 print_rtl_and_abort ();
2903 /* A subroutine of update_life_info. Verify that there are no untoward
2904 changes in live_at_start during a local update. */
2906 static void
2907 verify_local_live_at_start (new_live_at_start, bb)
2908 regset new_live_at_start;
2909 basic_block bb;
2911 if (reload_completed)
2913 /* After reload, there are no pseudos, nor subregs of multi-word
2914 registers. The regsets should exactly match. */
2915 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
2917 if (rtl_dump_file)
2919 fprintf (rtl_dump_file,
2920 "live_at_start mismatch in bb %d, aborting\n",
2921 bb->index);
2922 debug_bitmap_file (rtl_dump_file, bb->global_live_at_start);
2923 debug_bitmap_file (rtl_dump_file, new_live_at_start);
2925 print_rtl_and_abort ();
2928 else
2930 int i;
2932 /* Find the set of changed registers. */
2933 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
2935 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
2937 /* No registers should die. */
2938 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
2940 if (rtl_dump_file)
2941 fprintf (rtl_dump_file,
2942 "Register %d died unexpectedly in block %d\n", i,
2943 bb->index);
2944 print_rtl_and_abort ();
2947 /* Verify that the now-live register is wider than word_mode. */
2948 verify_wide_reg (i, bb->head, bb->end);
2953 /* Updates life information starting with the basic blocks set in BLOCKS.
2954 If BLOCKS is null, consider it to be the universal set.
2956 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
2957 we are only expecting local modifications to basic blocks. If we find
2958 extra registers live at the beginning of a block, then we either killed
2959 useful data, or we have a broken split that wants data not provided.
2960 If we find registers removed from live_at_start, that means we have
2961 a broken peephole that is killing a register it shouldn't.
2963 ??? This is not true in one situation -- when a pre-reload splitter
2964 generates subregs of a multi-word pseudo, current life analysis will
2965 lose the kill. So we _can_ have a pseudo go live. How irritating.
2967 Including PROP_REG_INFO does not properly refresh regs_ever_live
2968 unless the caller resets it to zero. */
2970 void
2971 update_life_info (blocks, extent, prop_flags)
2972 sbitmap blocks;
2973 enum update_life_extent extent;
2974 int prop_flags;
2976 regset tmp;
2977 regset_head tmp_head;
2978 int i;
2980 tmp = INITIALIZE_REG_SET (tmp_head);
2982 /* For a global update, we go through the relaxation process again. */
2983 if (extent != UPDATE_LIFE_LOCAL)
2985 calculate_global_regs_live (blocks, blocks,
2986 prop_flags & PROP_SCAN_DEAD_CODE);
2988 /* If asked, remove notes from the blocks we'll update. */
2989 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
2990 count_or_remove_death_notes (blocks, 1);
2993 if (blocks)
2995 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
2997 basic_block bb = BASIC_BLOCK (i);
2999 COPY_REG_SET (tmp, bb->global_live_at_end);
3000 propagate_block (bb, tmp, NULL, NULL, prop_flags);
3002 if (extent == UPDATE_LIFE_LOCAL)
3003 verify_local_live_at_start (tmp, bb);
3006 else
3008 for (i = n_basic_blocks - 1; i >= 0; --i)
3010 basic_block bb = BASIC_BLOCK (i);
3012 COPY_REG_SET (tmp, bb->global_live_at_end);
3013 propagate_block (bb, tmp, NULL, NULL, prop_flags);
3015 if (extent == UPDATE_LIFE_LOCAL)
3016 verify_local_live_at_start (tmp, bb);
3020 FREE_REG_SET (tmp);
3022 if (prop_flags & PROP_REG_INFO)
3024 /* The only pseudos that are live at the beginning of the function
3025 are those that were not set anywhere in the function. local-alloc
3026 doesn't know how to handle these correctly, so mark them as not
3027 local to any one basic block. */
3028 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
3029 FIRST_PSEUDO_REGISTER, i,
3030 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
3032 /* We have a problem with any pseudoreg that lives across the setjmp.
3033 ANSI says that if a user variable does not change in value between
3034 the setjmp and the longjmp, then the longjmp preserves it. This
3035 includes longjmp from a place where the pseudo appears dead.
3036 (In principle, the value still exists if it is in scope.)
3037 If the pseudo goes in a hard reg, some other value may occupy
3038 that hard reg where this pseudo is dead, thus clobbering the pseudo.
3039 Conclusion: such a pseudo must not go in a hard reg. */
3040 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
3041 FIRST_PSEUDO_REGISTER, i,
3043 if (regno_reg_rtx[i] != 0)
3045 REG_LIVE_LENGTH (i) = -1;
3046 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
3052 /* Free the variables allocated by find_basic_blocks.
3054 KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
3056 void
3057 free_basic_block_vars (keep_head_end_p)
3058 int keep_head_end_p;
3060 if (basic_block_for_insn)
3062 VARRAY_FREE (basic_block_for_insn);
3063 basic_block_for_insn = NULL;
3066 if (! keep_head_end_p)
3068 clear_edges ();
3069 VARRAY_FREE (basic_block_info);
3070 n_basic_blocks = 0;
3072 ENTRY_BLOCK_PTR->aux = NULL;
3073 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
3074 EXIT_BLOCK_PTR->aux = NULL;
3075 EXIT_BLOCK_PTR->global_live_at_start = NULL;
3079 /* Return nonzero if an insn consists only of SETs, each of which only sets a
3080 value to itself. */
3082 static int
3083 noop_move_p (insn)
3084 rtx insn;
3086 rtx pat = PATTERN (insn);
3088 /* Insns carrying these notes are useful later on. */
3089 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
3090 return 0;
3092 if (GET_CODE (pat) == SET && set_noop_p (pat))
3093 return 1;
3095 if (GET_CODE (pat) == PARALLEL)
3097 int i;
3098 /* If nothing but SETs of registers to themselves,
3099 this insn can also be deleted. */
3100 for (i = 0; i < XVECLEN (pat, 0); i++)
3102 rtx tem = XVECEXP (pat, 0, i);
3104 if (GET_CODE (tem) == USE
3105 || GET_CODE (tem) == CLOBBER)
3106 continue;
3108 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
3109 return 0;
3112 return 1;
3114 return 0;
3117 /* Delete any insns that copy a register to itself. */
3119 static void
3120 delete_noop_moves (f)
3121 rtx f;
3123 rtx insn;
3124 for (insn = f; insn; insn = NEXT_INSN (insn))
3126 if (GET_CODE (insn) == INSN && noop_move_p (insn))
3128 PUT_CODE (insn, NOTE);
3129 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
3130 NOTE_SOURCE_FILE (insn) = 0;
3135 /* Determine if the stack pointer is constant over the life of the function.
3136 Only useful before prologues have been emitted. */
3138 static void
3139 notice_stack_pointer_modification_1 (x, pat, data)
3140 rtx x;
3141 rtx pat ATTRIBUTE_UNUSED;
3142 void *data ATTRIBUTE_UNUSED;
3144 if (x == stack_pointer_rtx
3145 /* The stack pointer is only modified indirectly as the result
3146 of a push until later in flow. See the comments in rtl.texi
3147 regarding Embedded Side-Effects on Addresses. */
3148 || (GET_CODE (x) == MEM
3149 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
3150 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
3151 current_function_sp_is_unchanging = 0;
3154 static void
3155 notice_stack_pointer_modification (f)
3156 rtx f;
3158 rtx insn;
3160 /* Assume that the stack pointer is unchanging if alloca hasn't
3161 been used. */
3162 current_function_sp_is_unchanging = !current_function_calls_alloca;
3163 if (! current_function_sp_is_unchanging)
3164 return;
3166 for (insn = f; insn; insn = NEXT_INSN (insn))
3168 if (INSN_P (insn))
3170 /* Check if insn modifies the stack pointer. */
3171 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
3172 NULL);
3173 if (! current_function_sp_is_unchanging)
3174 return;
3179 /* Mark a register in SET. Hard registers in large modes get all
3180 of their component registers set as well. */
3182 static void
3183 mark_reg (reg, xset)
3184 rtx reg;
3185 void *xset;
3187 regset set = (regset) xset;
3188 int regno = REGNO (reg);
3190 if (GET_MODE (reg) == BLKmode)
3191 abort ();
3193 SET_REGNO_REG_SET (set, regno);
3194 if (regno < FIRST_PSEUDO_REGISTER)
3196 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
3197 while (--n > 0)
3198 SET_REGNO_REG_SET (set, regno + n);
3202 /* Mark those regs which are needed at the end of the function as live
3203 at the end of the last basic block. */
3205 static void
3206 mark_regs_live_at_end (set)
3207 regset set;
3209 int i;
3211 /* If exiting needs the right stack value, consider the stack pointer
3212 live at the end of the function. */
3213 if ((HAVE_epilogue && reload_completed)
3214 || ! EXIT_IGNORE_STACK
3215 || (! FRAME_POINTER_REQUIRED
3216 && ! current_function_calls_alloca
3217 && flag_omit_frame_pointer)
3218 || current_function_sp_is_unchanging)
3220 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
3223 /* Mark the frame pointer if needed at the end of the function. If
3224 we end up eliminating it, it will be removed from the live list
3225 of each basic block by reload. */
3227 if (! reload_completed || frame_pointer_needed)
3229 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
3230 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3231 /* If they are different, also mark the hard frame pointer as live. */
3232 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
3233 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
3234 #endif
3237 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
3238 /* Many architectures have a GP register even without flag_pic.
3239 Assume the pic register is not in use, or will be handled by
3240 other means, if it is not fixed. */
3241 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
3242 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
3243 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
3244 #endif
3246 /* Mark all global registers, and all registers used by the epilogue
3247 as being live at the end of the function since they may be
3248 referenced by our caller. */
3249 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3250 if (global_regs[i] || EPILOGUE_USES (i))
3251 SET_REGNO_REG_SET (set, i);
3253 if (HAVE_epilogue && reload_completed)
3255 /* Mark all call-saved registers that we actually used. */
3256 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3257 if (regs_ever_live[i] && ! call_used_regs[i] && ! LOCAL_REGNO (i))
3258 SET_REGNO_REG_SET (set, i);
3261 #ifdef EH_RETURN_DATA_REGNO
3262 /* Mark the registers that will contain data for the handler. */
3263 if (reload_completed && current_function_calls_eh_return)
3264 for (i = 0; ; ++i)
3266 unsigned regno = EH_RETURN_DATA_REGNO(i);
3267 if (regno == INVALID_REGNUM)
3268 break;
3269 SET_REGNO_REG_SET (set, regno);
3271 #endif
3272 #ifdef EH_RETURN_STACKADJ_RTX
3273 if ((! HAVE_epilogue || ! reload_completed)
3274 && current_function_calls_eh_return)
3276 rtx tmp = EH_RETURN_STACKADJ_RTX;
3277 if (tmp && REG_P (tmp))
3278 mark_reg (tmp, set);
3280 #endif
3281 #ifdef EH_RETURN_HANDLER_RTX
3282 if ((! HAVE_epilogue || ! reload_completed)
3283 && current_function_calls_eh_return)
3285 rtx tmp = EH_RETURN_HANDLER_RTX;
3286 if (tmp && REG_P (tmp))
3287 mark_reg (tmp, set);
3289 #endif
3291 /* Mark function return value. */
3292 diddle_return_value (mark_reg, set);
3295 /* Callback function for for_each_successor_phi. DATA is a regset.
3296 Sets the SRC_REGNO, the regno of the phi alternative for phi node
3297 INSN, in the regset. */
3299 static int
3300 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
3301 rtx insn ATTRIBUTE_UNUSED;
3302 int dest_regno ATTRIBUTE_UNUSED;
3303 int src_regno;
3304 void *data;
3306 regset live = (regset) data;
3307 SET_REGNO_REG_SET (live, src_regno);
3308 return 0;
3311 /* Propagate global life info around the graph of basic blocks. Begin
3312 considering blocks with their corresponding bit set in BLOCKS_IN.
3313 If BLOCKS_IN is null, consider it the universal set.
3315 BLOCKS_OUT is set for every block that was changed. */
3317 static void
3318 calculate_global_regs_live (blocks_in, blocks_out, flags)
3319 sbitmap blocks_in, blocks_out;
3320 int flags;
3322 basic_block *queue, *qhead, *qtail, *qend;
3323 regset tmp, new_live_at_end, call_used;
3324 regset_head tmp_head, call_used_head;
3325 regset_head new_live_at_end_head;
3326 int i;
3328 tmp = INITIALIZE_REG_SET (tmp_head);
3329 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
3330 call_used = INITIALIZE_REG_SET (call_used_head);
3332 /* Inconveniently, this is only redily available in hard reg set form. */
3333 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
3334 if (call_used_regs[i])
3335 SET_REGNO_REG_SET (call_used, i);
3337 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
3338 because the `head == tail' style test for an empty queue doesn't
3339 work with a full queue. */
3340 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
3341 qtail = queue;
3342 qhead = qend = queue + n_basic_blocks + 2;
3344 /* Queue the blocks set in the initial mask. Do this in reverse block
3345 number order so that we are more likely for the first round to do
3346 useful work. We use AUX non-null to flag that the block is queued. */
3347 if (blocks_in)
3349 /* Clear out the garbage that might be hanging out in bb->aux. */
3350 for (i = n_basic_blocks - 1; i >= 0; --i)
3351 BASIC_BLOCK (i)->aux = NULL;
3353 EXECUTE_IF_SET_IN_SBITMAP (blocks_in, 0, i,
3355 basic_block bb = BASIC_BLOCK (i);
3356 *--qhead = bb;
3357 bb->aux = bb;
3360 else
3362 for (i = 0; i < n_basic_blocks; ++i)
3364 basic_block bb = BASIC_BLOCK (i);
3365 *--qhead = bb;
3366 bb->aux = bb;
3370 if (blocks_out)
3371 sbitmap_zero (blocks_out);
3373 while (qhead != qtail)
3375 int rescan, changed;
3376 basic_block bb;
3377 edge e;
3379 bb = *qhead++;
3380 if (qhead == qend)
3381 qhead = queue;
3382 bb->aux = NULL;
3384 /* Begin by propogating live_at_start from the successor blocks. */
3385 CLEAR_REG_SET (new_live_at_end);
3386 for (e = bb->succ; e; e = e->succ_next)
3388 basic_block sb = e->dest;
3390 /* Call-clobbered registers die across exception and call edges. */
3391 /* ??? Abnormal call edges ignored for the moment, as this gets
3392 confused by sibling call edges, which crashes reg-stack. */
3393 if (e->flags & EDGE_EH)
3395 bitmap_operation (tmp, sb->global_live_at_start,
3396 call_used, BITMAP_AND_COMPL);
3397 IOR_REG_SET (new_live_at_end, tmp);
3399 else
3400 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
3403 /* The all-important stack pointer must always be live. */
3404 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
3406 /* Before reload, there are a few registers that must be forced
3407 live everywhere -- which might not already be the case for
3408 blocks within infinite loops. */
3409 if (! reload_completed)
3411 /* Any reference to any pseudo before reload is a potential
3412 reference of the frame pointer. */
3413 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
3415 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3416 /* Pseudos with argument area equivalences may require
3417 reloading via the argument pointer. */
3418 if (fixed_regs[ARG_POINTER_REGNUM])
3419 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
3420 #endif
3422 /* Any constant, or pseudo with constant equivalences, may
3423 require reloading from memory using the pic register. */
3424 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
3425 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
3426 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
3429 /* Regs used in phi nodes are not included in
3430 global_live_at_start, since they are live only along a
3431 particular edge. Set those regs that are live because of a
3432 phi node alternative corresponding to this particular block. */
3433 if (in_ssa_form)
3434 for_each_successor_phi (bb, &set_phi_alternative_reg,
3435 new_live_at_end);
3437 if (bb == ENTRY_BLOCK_PTR)
3439 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
3440 continue;
3443 /* On our first pass through this block, we'll go ahead and continue.
3444 Recognize first pass by local_set NULL. On subsequent passes, we
3445 get to skip out early if live_at_end wouldn't have changed. */
3447 if (bb->local_set == NULL)
3449 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3450 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3451 rescan = 1;
3453 else
3455 /* If any bits were removed from live_at_end, we'll have to
3456 rescan the block. This wouldn't be necessary if we had
3457 precalculated local_live, however with PROP_SCAN_DEAD_CODE
3458 local_live is really dependent on live_at_end. */
3459 CLEAR_REG_SET (tmp);
3460 rescan = bitmap_operation (tmp, bb->global_live_at_end,
3461 new_live_at_end, BITMAP_AND_COMPL);
3463 if (! rescan)
3465 /* If any of the registers in the new live_at_end set are
3466 conditionally set in this basic block, we must rescan.
3467 This is because conditional lifetimes at the end of the
3468 block do not just take the live_at_end set into account,
3469 but also the liveness at the start of each successor
3470 block. We can miss changes in those sets if we only
3471 compare the new live_at_end against the previous one. */
3472 CLEAR_REG_SET (tmp);
3473 rescan = bitmap_operation (tmp, new_live_at_end,
3474 bb->cond_local_set, BITMAP_AND);
3477 if (! rescan)
3479 /* Find the set of changed bits. Take this opportunity
3480 to notice that this set is empty and early out. */
3481 CLEAR_REG_SET (tmp);
3482 changed = bitmap_operation (tmp, bb->global_live_at_end,
3483 new_live_at_end, BITMAP_XOR);
3484 if (! changed)
3485 continue;
3487 /* If any of the changed bits overlap with local_set,
3488 we'll have to rescan the block. Detect overlap by
3489 the AND with ~local_set turning off bits. */
3490 rescan = bitmap_operation (tmp, tmp, bb->local_set,
3491 BITMAP_AND_COMPL);
3495 /* Let our caller know that BB changed enough to require its
3496 death notes updated. */
3497 if (blocks_out)
3498 SET_BIT (blocks_out, bb->index);
3500 if (! rescan)
3502 /* Add to live_at_start the set of all registers in
3503 new_live_at_end that aren't in the old live_at_end. */
3505 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
3506 BITMAP_AND_COMPL);
3507 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
3509 changed = bitmap_operation (bb->global_live_at_start,
3510 bb->global_live_at_start,
3511 tmp, BITMAP_IOR);
3512 if (! changed)
3513 continue;
3515 else
3517 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
3519 /* Rescan the block insn by insn to turn (a copy of) live_at_end
3520 into live_at_start. */
3521 propagate_block (bb, new_live_at_end, bb->local_set,
3522 bb->cond_local_set, flags);
3524 /* If live_at start didn't change, no need to go farther. */
3525 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
3526 continue;
3528 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
3531 /* Queue all predecessors of BB so that we may re-examine
3532 their live_at_end. */
3533 for (e = bb->pred; e; e = e->pred_next)
3535 basic_block pb = e->src;
3536 if (pb->aux == NULL)
3538 *qtail++ = pb;
3539 if (qtail == qend)
3540 qtail = queue;
3541 pb->aux = pb;
3546 FREE_REG_SET (tmp);
3547 FREE_REG_SET (new_live_at_end);
3548 FREE_REG_SET (call_used);
3550 if (blocks_out)
3552 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
3554 basic_block bb = BASIC_BLOCK (i);
3555 FREE_REG_SET (bb->local_set);
3556 FREE_REG_SET (bb->cond_local_set);
3559 else
3561 for (i = n_basic_blocks - 1; i >= 0; --i)
3563 basic_block bb = BASIC_BLOCK (i);
3564 FREE_REG_SET (bb->local_set);
3565 FREE_REG_SET (bb->cond_local_set);
3569 free (queue);
3572 /* Subroutines of life analysis. */
3574 /* Allocate the permanent data structures that represent the results
3575 of life analysis. Not static since used also for stupid life analysis. */
3577 static void
3578 allocate_bb_life_data ()
3580 register int i;
3582 for (i = 0; i < n_basic_blocks; i++)
3584 basic_block bb = BASIC_BLOCK (i);
3586 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3587 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3590 ENTRY_BLOCK_PTR->global_live_at_end
3591 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3592 EXIT_BLOCK_PTR->global_live_at_start
3593 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3595 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3598 void
3599 allocate_reg_life_data ()
3601 int i;
3603 max_regno = max_reg_num ();
3605 /* Recalculate the register space, in case it has grown. Old style
3606 vector oriented regsets would set regset_{size,bytes} here also. */
3607 allocate_reg_info (max_regno, FALSE, FALSE);
3609 /* Reset all the data we'll collect in propagate_block and its
3610 subroutines. */
3611 for (i = 0; i < max_regno; i++)
3613 REG_N_SETS (i) = 0;
3614 REG_N_REFS (i) = 0;
3615 REG_N_DEATHS (i) = 0;
3616 REG_N_CALLS_CROSSED (i) = 0;
3617 REG_LIVE_LENGTH (i) = 0;
3618 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
3622 /* Delete dead instructions for propagate_block. */
3624 static void
3625 propagate_block_delete_insn (bb, insn)
3626 basic_block bb;
3627 rtx insn;
3629 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
3631 /* If the insn referred to a label, and that label was attached to
3632 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
3633 pretty much mandatory to delete it, because the ADDR_VEC may be
3634 referencing labels that no longer exist. */
3636 if (inote)
3638 rtx label = XEXP (inote, 0);
3639 rtx next;
3641 /* The label may be forced if it has been put in the constant
3642 pool. If that is the only use we must discard the table
3643 jump following it, but not the label itself. */
3644 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
3645 && (next = next_nonnote_insn (label)) != NULL
3646 && GET_CODE (next) == JUMP_INSN
3647 && (GET_CODE (PATTERN (next)) == ADDR_VEC
3648 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
3650 rtx pat = PATTERN (next);
3651 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
3652 int len = XVECLEN (pat, diff_vec_p);
3653 int i;
3655 for (i = 0; i < len; i++)
3656 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
3658 flow_delete_insn (next);
3662 if (bb->end == insn)
3663 bb->end = PREV_INSN (insn);
3664 flow_delete_insn (insn);
3667 /* Delete dead libcalls for propagate_block. Return the insn
3668 before the libcall. */
3670 static rtx
3671 propagate_block_delete_libcall (bb, insn, note)
3672 basic_block bb;
3673 rtx insn, note;
3675 rtx first = XEXP (note, 0);
3676 rtx before = PREV_INSN (first);
3678 if (insn == bb->end)
3679 bb->end = before;
3681 flow_delete_insn_chain (first, insn);
3682 return before;
3685 /* Update the life-status of regs for one insn. Return the previous insn. */
3688 propagate_one_insn (pbi, insn)
3689 struct propagate_block_info *pbi;
3690 rtx insn;
3692 rtx prev = PREV_INSN (insn);
3693 int flags = pbi->flags;
3694 int insn_is_dead = 0;
3695 int libcall_is_dead = 0;
3696 rtx note;
3697 int i;
3699 if (! INSN_P (insn))
3700 return prev;
3702 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3703 if (flags & PROP_SCAN_DEAD_CODE)
3705 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
3706 libcall_is_dead = (insn_is_dead && note != 0
3707 && libcall_dead_p (pbi, note, insn));
3710 /* If an instruction consists of just dead store(s) on final pass,
3711 delete it. */
3712 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
3714 /* If we're trying to delete a prologue or epilogue instruction
3715 that isn't flagged as possibly being dead, something is wrong.
3716 But if we are keeping the stack pointer depressed, we might well
3717 be deleting insns that are used to compute the amount to update
3718 it by, so they are fine. */
3719 if (reload_completed
3720 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
3721 && (TYPE_RETURNS_STACK_DEPRESSED
3722 (TREE_TYPE (current_function_decl))))
3723 && (((HAVE_epilogue || HAVE_prologue)
3724 && prologue_epilogue_contains (insn))
3725 || (HAVE_sibcall_epilogue
3726 && sibcall_epilogue_contains (insn)))
3727 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
3728 abort ();
3730 /* Record sets. Do this even for dead instructions, since they
3731 would have killed the values if they hadn't been deleted. */
3732 mark_set_regs (pbi, PATTERN (insn), insn);
3734 /* CC0 is now known to be dead. Either this insn used it,
3735 in which case it doesn't anymore, or clobbered it,
3736 so the next insn can't use it. */
3737 pbi->cc0_live = 0;
3739 if (libcall_is_dead)
3740 prev = propagate_block_delete_libcall (pbi->bb, insn, note);
3741 else
3742 propagate_block_delete_insn (pbi->bb, insn);
3744 return prev;
3747 /* See if this is an increment or decrement that can be merged into
3748 a following memory address. */
3749 #ifdef AUTO_INC_DEC
3751 register rtx x = single_set (insn);
3753 /* Does this instruction increment or decrement a register? */
3754 if ((flags & PROP_AUTOINC)
3755 && x != 0
3756 && GET_CODE (SET_DEST (x)) == REG
3757 && (GET_CODE (SET_SRC (x)) == PLUS
3758 || GET_CODE (SET_SRC (x)) == MINUS)
3759 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
3760 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3761 /* Ok, look for a following memory ref we can combine with.
3762 If one is found, change the memory ref to a PRE_INC
3763 or PRE_DEC, cancel this insn, and return 1.
3764 Return 0 if nothing has been done. */
3765 && try_pre_increment_1 (pbi, insn))
3766 return prev;
3768 #endif /* AUTO_INC_DEC */
3770 CLEAR_REG_SET (pbi->new_set);
3772 /* If this is not the final pass, and this insn is copying the value of
3773 a library call and it's dead, don't scan the insns that perform the
3774 library call, so that the call's arguments are not marked live. */
3775 if (libcall_is_dead)
3777 /* Record the death of the dest reg. */
3778 mark_set_regs (pbi, PATTERN (insn), insn);
3780 insn = XEXP (note, 0);
3781 return PREV_INSN (insn);
3783 else if (GET_CODE (PATTERN (insn)) == SET
3784 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
3785 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
3786 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
3787 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
3788 /* We have an insn to pop a constant amount off the stack.
3789 (Such insns use PLUS regardless of the direction of the stack,
3790 and any insn to adjust the stack by a constant is always a pop.)
3791 These insns, if not dead stores, have no effect on life. */
3793 else
3795 /* Any regs live at the time of a call instruction must not go
3796 in a register clobbered by calls. Find all regs now live and
3797 record this for them. */
3799 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
3800 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
3801 { REG_N_CALLS_CROSSED (i)++; });
3803 /* Record sets. Do this even for dead instructions, since they
3804 would have killed the values if they hadn't been deleted. */
3805 mark_set_regs (pbi, PATTERN (insn), insn);
3807 if (GET_CODE (insn) == CALL_INSN)
3809 register int i;
3810 rtx note, cond;
3812 cond = NULL_RTX;
3813 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
3814 cond = COND_EXEC_TEST (PATTERN (insn));
3816 /* Non-constant calls clobber memory. */
3817 if (! CONST_CALL_P (insn))
3819 free_EXPR_LIST_list (&pbi->mem_set_list);
3820 pbi->mem_set_list_len = 0;
3823 /* There may be extra registers to be clobbered. */
3824 for (note = CALL_INSN_FUNCTION_USAGE (insn);
3825 note;
3826 note = XEXP (note, 1))
3827 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
3828 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
3829 cond, insn, pbi->flags);
3831 /* Calls change all call-used and global registers. */
3832 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3833 if (call_used_regs[i] && ! global_regs[i]
3834 && ! fixed_regs[i])
3836 /* We do not want REG_UNUSED notes for these registers. */
3837 mark_set_1 (pbi, CLOBBER, gen_rtx_REG (reg_raw_mode[i], i),
3838 cond, insn,
3839 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
3843 /* If an insn doesn't use CC0, it becomes dead since we assume
3844 that every insn clobbers it. So show it dead here;
3845 mark_used_regs will set it live if it is referenced. */
3846 pbi->cc0_live = 0;
3848 /* Record uses. */
3849 if (! insn_is_dead)
3850 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
3852 /* Sometimes we may have inserted something before INSN (such as a move)
3853 when we make an auto-inc. So ensure we will scan those insns. */
3854 #ifdef AUTO_INC_DEC
3855 prev = PREV_INSN (insn);
3856 #endif
3858 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
3860 register int i;
3861 rtx note, cond;
3863 cond = NULL_RTX;
3864 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
3865 cond = COND_EXEC_TEST (PATTERN (insn));
3867 /* Calls use their arguments. */
3868 for (note = CALL_INSN_FUNCTION_USAGE (insn);
3869 note;
3870 note = XEXP (note, 1))
3871 if (GET_CODE (XEXP (note, 0)) == USE)
3872 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
3873 cond, insn);
3875 /* The stack ptr is used (honorarily) by a CALL insn. */
3876 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
3878 /* Calls may also reference any of the global registers,
3879 so they are made live. */
3880 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3881 if (global_regs[i])
3882 mark_used_reg (pbi, gen_rtx_REG (reg_raw_mode[i], i),
3883 cond, insn);
3887 /* On final pass, update counts of how many insns in which each reg
3888 is live. */
3889 if (flags & PROP_REG_INFO)
3890 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
3891 { REG_LIVE_LENGTH (i)++; });
3893 return prev;
3896 /* Initialize a propagate_block_info struct for public consumption.
3897 Note that the structure itself is opaque to this file, but that
3898 the user can use the regsets provided here. */
3900 struct propagate_block_info *
3901 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
3902 basic_block bb;
3903 regset live, local_set, cond_local_set;
3904 int flags;
3906 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
3908 pbi->bb = bb;
3909 pbi->reg_live = live;
3910 pbi->mem_set_list = NULL_RTX;
3911 pbi->mem_set_list_len = 0;
3912 pbi->local_set = local_set;
3913 pbi->cond_local_set = cond_local_set;
3914 pbi->cc0_live = 0;
3915 pbi->flags = flags;
3917 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3918 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
3919 else
3920 pbi->reg_next_use = NULL;
3922 pbi->new_set = BITMAP_XMALLOC ();
3924 #ifdef HAVE_conditional_execution
3925 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
3926 free_reg_cond_life_info);
3927 pbi->reg_cond_reg = BITMAP_XMALLOC ();
3929 /* If this block ends in a conditional branch, for each register live
3930 from one side of the branch and not the other, record the register
3931 as conditionally dead. */
3932 if (GET_CODE (bb->end) == JUMP_INSN
3933 && any_condjump_p (bb->end))
3935 regset_head diff_head;
3936 regset diff = INITIALIZE_REG_SET (diff_head);
3937 basic_block bb_true, bb_false;
3938 rtx cond_true, cond_false, set_src;
3939 int i;
3941 /* Identify the successor blocks. */
3942 bb_true = bb->succ->dest;
3943 if (bb->succ->succ_next != NULL)
3945 bb_false = bb->succ->succ_next->dest;
3947 if (bb->succ->flags & EDGE_FALLTHRU)
3949 basic_block t = bb_false;
3950 bb_false = bb_true;
3951 bb_true = t;
3953 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
3954 abort ();
3956 else
3958 /* This can happen with a conditional jump to the next insn. */
3959 if (JUMP_LABEL (bb->end) != bb_true->head)
3960 abort ();
3962 /* Simplest way to do nothing. */
3963 bb_false = bb_true;
3966 /* Extract the condition from the branch. */
3967 set_src = SET_SRC (pc_set (bb->end));
3968 cond_true = XEXP (set_src, 0);
3969 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
3970 GET_MODE (cond_true), XEXP (cond_true, 0),
3971 XEXP (cond_true, 1));
3972 if (GET_CODE (XEXP (set_src, 1)) == PC)
3974 rtx t = cond_false;
3975 cond_false = cond_true;
3976 cond_true = t;
3979 /* Compute which register lead different lives in the successors. */
3980 if (bitmap_operation (diff, bb_true->global_live_at_start,
3981 bb_false->global_live_at_start, BITMAP_XOR))
3983 rtx reg = XEXP (cond_true, 0);
3985 if (GET_CODE (reg) == SUBREG)
3986 reg = SUBREG_REG (reg);
3988 if (GET_CODE (reg) != REG)
3989 abort ();
3991 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
3993 /* For each such register, mark it conditionally dead. */
3994 EXECUTE_IF_SET_IN_REG_SET
3995 (diff, 0, i,
3997 struct reg_cond_life_info *rcli;
3998 rtx cond;
4000 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
4002 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
4003 cond = cond_false;
4004 else
4005 cond = cond_true;
4006 rcli->condition = cond;
4007 rcli->stores = const0_rtx;
4008 rcli->orig_condition = cond;
4010 splay_tree_insert (pbi->reg_cond_dead, i,
4011 (splay_tree_value) rcli);
4015 FREE_REG_SET (diff);
4017 #endif
4019 /* If this block has no successors, any stores to the frame that aren't
4020 used later in the block are dead. So make a pass over the block
4021 recording any such that are made and show them dead at the end. We do
4022 a very conservative and simple job here. */
4023 if (optimize
4024 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
4025 && (TYPE_RETURNS_STACK_DEPRESSED
4026 (TREE_TYPE (current_function_decl))))
4027 && (flags & PROP_SCAN_DEAD_CODE)
4028 && (bb->succ == NULL
4029 || (bb->succ->succ_next == NULL
4030 && bb->succ->dest == EXIT_BLOCK_PTR
4031 && ! current_function_calls_eh_return)))
4033 rtx insn, set;
4034 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
4035 if (GET_CODE (insn) == INSN
4036 && (set = single_set (insn))
4037 && GET_CODE (SET_DEST (set)) == MEM)
4039 rtx mem = SET_DEST (set);
4040 rtx canon_mem = canon_rtx (mem);
4042 /* This optimization is performed by faking a store to the
4043 memory at the end of the block. This doesn't work for
4044 unchanging memories because multiple stores to unchanging
4045 memory is illegal and alias analysis doesn't consider it. */
4046 if (RTX_UNCHANGING_P (canon_mem))
4047 continue;
4049 if (XEXP (canon_mem, 0) == frame_pointer_rtx
4050 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
4051 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
4052 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
4054 #ifdef AUTO_INC_DEC
4055 /* Store a copy of mem, otherwise the address may be scrogged
4056 by find_auto_inc. This matters because insn_dead_p uses
4057 an rtx_equal_p check to determine if two addresses are
4058 the same. This works before find_auto_inc, but fails
4059 after find_auto_inc, causing discrepencies between the
4060 set of live registers calculated during the
4061 calculate_global_regs_live phase and what actually exists
4062 after flow completes, leading to aborts. */
4063 if (flags & PROP_AUTOINC)
4064 mem = shallow_copy_rtx (mem);
4065 #endif
4066 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
4067 if (++pbi->mem_set_list_len >= MAX_MEM_SET_LIST_LEN)
4068 break;
4073 return pbi;
4076 /* Release a propagate_block_info struct. */
4078 void
4079 free_propagate_block_info (pbi)
4080 struct propagate_block_info *pbi;
4082 free_EXPR_LIST_list (&pbi->mem_set_list);
4084 BITMAP_XFREE (pbi->new_set);
4086 #ifdef HAVE_conditional_execution
4087 splay_tree_delete (pbi->reg_cond_dead);
4088 BITMAP_XFREE (pbi->reg_cond_reg);
4089 #endif
4091 if (pbi->reg_next_use)
4092 free (pbi->reg_next_use);
4094 free (pbi);
4097 /* Compute the registers live at the beginning of a basic block BB from
4098 those live at the end.
4100 When called, REG_LIVE contains those live at the end. On return, it
4101 contains those live at the beginning.
4103 LOCAL_SET, if non-null, will be set with all registers killed
4104 unconditionally by this basic block.
4105 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
4106 killed conditionally by this basic block. If there is any unconditional
4107 set of a register, then the corresponding bit will be set in LOCAL_SET
4108 and cleared in COND_LOCAL_SET.
4109 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
4110 case, the resulting set will be equal to the union of the two sets that
4111 would otherwise be computed. */
4113 void
4114 propagate_block (bb, live, local_set, cond_local_set, flags)
4115 basic_block bb;
4116 regset live;
4117 regset local_set;
4118 regset cond_local_set;
4119 int flags;
4121 struct propagate_block_info *pbi;
4122 rtx insn, prev;
4124 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
4126 if (flags & PROP_REG_INFO)
4128 register int i;
4130 /* Process the regs live at the end of the block.
4131 Mark them as not local to any one basic block. */
4132 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
4133 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
4136 /* Scan the block an insn at a time from end to beginning. */
4138 for (insn = bb->end;; insn = prev)
4140 /* If this is a call to `setjmp' et al, warn if any
4141 non-volatile datum is live. */
4142 if ((flags & PROP_REG_INFO)
4143 && GET_CODE (insn) == NOTE
4144 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
4145 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
4147 prev = propagate_one_insn (pbi, insn);
4149 if (insn == bb->head)
4150 break;
4153 free_propagate_block_info (pbi);
4156 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
4157 (SET expressions whose destinations are registers dead after the insn).
4158 NEEDED is the regset that says which regs are alive after the insn.
4160 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
4162 If X is the entire body of an insn, NOTES contains the reg notes
4163 pertaining to the insn. */
4165 static int
4166 insn_dead_p (pbi, x, call_ok, notes)
4167 struct propagate_block_info *pbi;
4168 rtx x;
4169 int call_ok;
4170 rtx notes ATTRIBUTE_UNUSED;
4172 enum rtx_code code = GET_CODE (x);
4174 #ifdef AUTO_INC_DEC
4175 /* If flow is invoked after reload, we must take existing AUTO_INC
4176 expresions into account. */
4177 if (reload_completed)
4179 for (; notes; notes = XEXP (notes, 1))
4181 if (REG_NOTE_KIND (notes) == REG_INC)
4183 int regno = REGNO (XEXP (notes, 0));
4185 /* Don't delete insns to set global regs. */
4186 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
4187 || REGNO_REG_SET_P (pbi->reg_live, regno))
4188 return 0;
4192 #endif
4194 /* If setting something that's a reg or part of one,
4195 see if that register's altered value will be live. */
4197 if (code == SET)
4199 rtx r = SET_DEST (x);
4201 #ifdef HAVE_cc0
4202 if (GET_CODE (r) == CC0)
4203 return ! pbi->cc0_live;
4204 #endif
4206 /* A SET that is a subroutine call cannot be dead. */
4207 if (GET_CODE (SET_SRC (x)) == CALL)
4209 if (! call_ok)
4210 return 0;
4213 /* Don't eliminate loads from volatile memory or volatile asms. */
4214 else if (volatile_refs_p (SET_SRC (x)))
4215 return 0;
4217 if (GET_CODE (r) == MEM)
4219 rtx temp;
4221 if (MEM_VOLATILE_P (r))
4222 return 0;
4224 /* Walk the set of memory locations we are currently tracking
4225 and see if one is an identical match to this memory location.
4226 If so, this memory write is dead (remember, we're walking
4227 backwards from the end of the block to the start). Since
4228 rtx_equal_p does not check the alias set or flags, we also
4229 must have the potential for them to conflict (anti_dependence). */
4230 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
4231 if (anti_dependence (r, XEXP (temp, 0)))
4233 rtx mem = XEXP (temp, 0);
4235 if (rtx_equal_p (mem, r))
4236 return 1;
4237 #ifdef AUTO_INC_DEC
4238 /* Check if memory reference matches an auto increment. Only
4239 post increment/decrement or modify are valid. */
4240 if (GET_MODE (mem) == GET_MODE (r)
4241 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
4242 || GET_CODE (XEXP (mem, 0)) == POST_INC
4243 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
4244 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
4245 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
4246 return 1;
4247 #endif
4250 else
4252 while (GET_CODE (r) == SUBREG
4253 || GET_CODE (r) == STRICT_LOW_PART
4254 || GET_CODE (r) == ZERO_EXTRACT)
4255 r = XEXP (r, 0);
4257 if (GET_CODE (r) == REG)
4259 int regno = REGNO (r);
4261 /* Obvious. */
4262 if (REGNO_REG_SET_P (pbi->reg_live, regno))
4263 return 0;
4265 /* If this is a hard register, verify that subsequent
4266 words are not needed. */
4267 if (regno < FIRST_PSEUDO_REGISTER)
4269 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
4271 while (--n > 0)
4272 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
4273 return 0;
4276 /* Don't delete insns to set global regs. */
4277 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
4278 return 0;
4280 /* Make sure insns to set the stack pointer aren't deleted. */
4281 if (regno == STACK_POINTER_REGNUM)
4282 return 0;
4284 /* ??? These bits might be redundant with the force live bits
4285 in calculate_global_regs_live. We would delete from
4286 sequential sets; whether this actually affects real code
4287 for anything but the stack pointer I don't know. */
4288 /* Make sure insns to set the frame pointer aren't deleted. */
4289 if (regno == FRAME_POINTER_REGNUM
4290 && (! reload_completed || frame_pointer_needed))
4291 return 0;
4292 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4293 if (regno == HARD_FRAME_POINTER_REGNUM
4294 && (! reload_completed || frame_pointer_needed))
4295 return 0;
4296 #endif
4298 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4299 /* Make sure insns to set arg pointer are never deleted
4300 (if the arg pointer isn't fixed, there will be a USE
4301 for it, so we can treat it normally). */
4302 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
4303 return 0;
4304 #endif
4306 /* Otherwise, the set is dead. */
4307 return 1;
4312 /* If performing several activities, insn is dead if each activity
4313 is individually dead. Also, CLOBBERs and USEs can be ignored; a
4314 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
4315 worth keeping. */
4316 else if (code == PARALLEL)
4318 int i = XVECLEN (x, 0);
4320 for (i--; i >= 0; i--)
4321 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
4322 && GET_CODE (XVECEXP (x, 0, i)) != USE
4323 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
4324 return 0;
4326 return 1;
4329 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
4330 is not necessarily true for hard registers. */
4331 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
4332 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
4333 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
4334 return 1;
4336 /* We do not check other CLOBBER or USE here. An insn consisting of just
4337 a CLOBBER or just a USE should not be deleted. */
4338 return 0;
4341 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
4342 return 1 if the entire library call is dead.
4343 This is true if INSN copies a register (hard or pseudo)
4344 and if the hard return reg of the call insn is dead.
4345 (The caller should have tested the destination of the SET inside
4346 INSN already for death.)
4348 If this insn doesn't just copy a register, then we don't
4349 have an ordinary libcall. In that case, cse could not have
4350 managed to substitute the source for the dest later on,
4351 so we can assume the libcall is dead.
4353 PBI is the block info giving pseudoregs live before this insn.
4354 NOTE is the REG_RETVAL note of the insn. */
4356 static int
4357 libcall_dead_p (pbi, note, insn)
4358 struct propagate_block_info *pbi;
4359 rtx note;
4360 rtx insn;
4362 rtx x = single_set (insn);
4364 if (x)
4366 register rtx r = SET_SRC (x);
4367 if (GET_CODE (r) == REG)
4369 rtx call = XEXP (note, 0);
4370 rtx call_pat;
4371 register int i;
4373 /* Find the call insn. */
4374 while (call != insn && GET_CODE (call) != CALL_INSN)
4375 call = NEXT_INSN (call);
4377 /* If there is none, do nothing special,
4378 since ordinary death handling can understand these insns. */
4379 if (call == insn)
4380 return 0;
4382 /* See if the hard reg holding the value is dead.
4383 If this is a PARALLEL, find the call within it. */
4384 call_pat = PATTERN (call);
4385 if (GET_CODE (call_pat) == PARALLEL)
4387 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
4388 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
4389 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
4390 break;
4392 /* This may be a library call that is returning a value
4393 via invisible pointer. Do nothing special, since
4394 ordinary death handling can understand these insns. */
4395 if (i < 0)
4396 return 0;
4398 call_pat = XVECEXP (call_pat, 0, i);
4401 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
4404 return 1;
4407 /* Return 1 if register REGNO was used before it was set, i.e. if it is
4408 live at function entry. Don't count global register variables, variables
4409 in registers that can be used for function arg passing, or variables in
4410 fixed hard registers. */
4413 regno_uninitialized (regno)
4414 int regno;
4416 if (n_basic_blocks == 0
4417 || (regno < FIRST_PSEUDO_REGISTER
4418 && (global_regs[regno]
4419 || fixed_regs[regno]
4420 || FUNCTION_ARG_REGNO_P (regno))))
4421 return 0;
4423 return REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno);
4426 /* 1 if register REGNO was alive at a place where `setjmp' was called
4427 and was set more than once or is an argument.
4428 Such regs may be clobbered by `longjmp'. */
4431 regno_clobbered_at_setjmp (regno)
4432 int regno;
4434 if (n_basic_blocks == 0)
4435 return 0;
4437 return ((REG_N_SETS (regno) > 1
4438 || REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno))
4439 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
4442 /* INSN references memory, possibly using autoincrement addressing modes.
4443 Find any entries on the mem_set_list that need to be invalidated due
4444 to an address change. */
4446 static void
4447 invalidate_mems_from_autoinc (pbi, insn)
4448 struct propagate_block_info *pbi;
4449 rtx insn;
4451 rtx note = REG_NOTES (insn);
4452 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
4454 if (REG_NOTE_KIND (note) == REG_INC)
4456 rtx temp = pbi->mem_set_list;
4457 rtx prev = NULL_RTX;
4458 rtx next;
4460 while (temp)
4462 next = XEXP (temp, 1);
4463 if (reg_overlap_mentioned_p (XEXP (note, 0), XEXP (temp, 0)))
4465 /* Splice temp out of list. */
4466 if (prev)
4467 XEXP (prev, 1) = next;
4468 else
4469 pbi->mem_set_list = next;
4470 free_EXPR_LIST_node (temp);
4471 pbi->mem_set_list_len--;
4473 else
4474 prev = temp;
4475 temp = next;
4481 /* EXP is either a MEM or a REG. Remove any dependant entries
4482 from pbi->mem_set_list. */
4484 static void
4485 invalidate_mems_from_set (pbi, exp)
4486 struct propagate_block_info *pbi;
4487 rtx exp;
4489 rtx temp = pbi->mem_set_list;
4490 rtx prev = NULL_RTX;
4491 rtx next;
4493 while (temp)
4495 next = XEXP (temp, 1);
4496 if ((GET_CODE (exp) == MEM
4497 && output_dependence (XEXP (temp, 0), exp))
4498 || (GET_CODE (exp) == REG
4499 && reg_overlap_mentioned_p (exp, XEXP (temp, 0))))
4501 /* Splice this entry out of the list. */
4502 if (prev)
4503 XEXP (prev, 1) = next;
4504 else
4505 pbi->mem_set_list = next;
4506 free_EXPR_LIST_node (temp);
4507 pbi->mem_set_list_len--;
4509 else
4510 prev = temp;
4511 temp = next;
4515 /* Process the registers that are set within X. Their bits are set to
4516 1 in the regset DEAD, because they are dead prior to this insn.
4518 If INSN is nonzero, it is the insn being processed.
4520 FLAGS is the set of operations to perform. */
4522 static void
4523 mark_set_regs (pbi, x, insn)
4524 struct propagate_block_info *pbi;
4525 rtx x, insn;
4527 rtx cond = NULL_RTX;
4528 rtx link;
4529 enum rtx_code code;
4531 if (insn)
4532 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
4534 if (REG_NOTE_KIND (link) == REG_INC)
4535 mark_set_1 (pbi, SET, XEXP (link, 0),
4536 (GET_CODE (x) == COND_EXEC
4537 ? COND_EXEC_TEST (x) : NULL_RTX),
4538 insn, pbi->flags);
4540 retry:
4541 switch (code = GET_CODE (x))
4543 case SET:
4544 case CLOBBER:
4545 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
4546 return;
4548 case COND_EXEC:
4549 cond = COND_EXEC_TEST (x);
4550 x = COND_EXEC_CODE (x);
4551 goto retry;
4553 case PARALLEL:
4555 register int i;
4556 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4558 rtx sub = XVECEXP (x, 0, i);
4559 switch (code = GET_CODE (sub))
4561 case COND_EXEC:
4562 if (cond != NULL_RTX)
4563 abort ();
4565 cond = COND_EXEC_TEST (sub);
4566 sub = COND_EXEC_CODE (sub);
4567 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
4568 break;
4569 /* Fall through. */
4571 case SET:
4572 case CLOBBER:
4573 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
4574 break;
4576 default:
4577 break;
4580 break;
4583 default:
4584 break;
4588 /* Process a single SET rtx, X. */
4590 static void
4591 mark_set_1 (pbi, code, reg, cond, insn, flags)
4592 struct propagate_block_info *pbi;
4593 enum rtx_code code;
4594 rtx reg, cond, insn;
4595 int flags;
4597 int regno_first = -1, regno_last = -1;
4598 unsigned long not_dead = 0;
4599 int i;
4601 /* Modifying just one hardware register of a multi-reg value or just a
4602 byte field of a register does not mean the value from before this insn
4603 is now dead. Of course, if it was dead after it's unused now. */
4605 switch (GET_CODE (reg))
4607 case PARALLEL:
4608 /* Some targets place small structures in registers for return values of
4609 functions. We have to detect this case specially here to get correct
4610 flow information. */
4611 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
4612 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
4613 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
4614 flags);
4615 return;
4617 case ZERO_EXTRACT:
4618 case SIGN_EXTRACT:
4619 case STRICT_LOW_PART:
4620 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
4622 reg = XEXP (reg, 0);
4623 while (GET_CODE (reg) == SUBREG
4624 || GET_CODE (reg) == ZERO_EXTRACT
4625 || GET_CODE (reg) == SIGN_EXTRACT
4626 || GET_CODE (reg) == STRICT_LOW_PART);
4627 if (GET_CODE (reg) == MEM)
4628 break;
4629 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
4630 /* Fall through. */
4632 case REG:
4633 regno_last = regno_first = REGNO (reg);
4634 if (regno_first < FIRST_PSEUDO_REGISTER)
4635 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
4636 break;
4638 case SUBREG:
4639 if (GET_CODE (SUBREG_REG (reg)) == REG)
4641 enum machine_mode outer_mode = GET_MODE (reg);
4642 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
4644 /* Identify the range of registers affected. This is moderately
4645 tricky for hard registers. See alter_subreg. */
4647 regno_last = regno_first = REGNO (SUBREG_REG (reg));
4648 if (regno_first < FIRST_PSEUDO_REGISTER)
4650 regno_first += subreg_regno_offset (regno_first, inner_mode,
4651 SUBREG_BYTE (reg),
4652 outer_mode);
4653 regno_last = (regno_first
4654 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
4656 /* Since we've just adjusted the register number ranges, make
4657 sure REG matches. Otherwise some_was_live will be clear
4658 when it shouldn't have been, and we'll create incorrect
4659 REG_UNUSED notes. */
4660 reg = gen_rtx_REG (outer_mode, regno_first);
4662 else
4664 /* If the number of words in the subreg is less than the number
4665 of words in the full register, we have a well-defined partial
4666 set. Otherwise the high bits are undefined.
4668 This is only really applicable to pseudos, since we just took
4669 care of multi-word hard registers. */
4670 if (((GET_MODE_SIZE (outer_mode)
4671 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
4672 < ((GET_MODE_SIZE (inner_mode)
4673 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
4674 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
4675 regno_first);
4677 reg = SUBREG_REG (reg);
4680 else
4681 reg = SUBREG_REG (reg);
4682 break;
4684 default:
4685 break;
4688 /* If this set is a MEM, then it kills any aliased writes.
4689 If this set is a REG, then it kills any MEMs which use the reg. */
4690 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
4692 if (GET_CODE (reg) == MEM || GET_CODE (reg) == REG)
4693 invalidate_mems_from_set (pbi, reg);
4695 /* If the memory reference had embedded side effects (autoincrement
4696 address modes. Then we may need to kill some entries on the
4697 memory set list. */
4698 if (insn && GET_CODE (reg) == MEM)
4699 invalidate_mems_from_autoinc (pbi, insn);
4701 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN
4702 && GET_CODE (reg) == MEM && ! side_effects_p (reg)
4703 /* ??? With more effort we could track conditional memory life. */
4704 && ! cond
4705 /* We do not know the size of a BLKmode store, so we do not track
4706 them for redundant store elimination. */
4707 && GET_MODE (reg) != BLKmode
4708 /* There are no REG_INC notes for SP, so we can't assume we'll see
4709 everything that invalidates it. To be safe, don't eliminate any
4710 stores though SP; none of them should be redundant anyway. */
4711 && ! reg_mentioned_p (stack_pointer_rtx, reg))
4713 #ifdef AUTO_INC_DEC
4714 /* Store a copy of mem, otherwise the address may be
4715 scrogged by find_auto_inc. */
4716 if (flags & PROP_AUTOINC)
4717 reg = shallow_copy_rtx (reg);
4718 #endif
4719 pbi->mem_set_list = alloc_EXPR_LIST (0, reg, pbi->mem_set_list);
4720 pbi->mem_set_list_len++;
4724 if (GET_CODE (reg) == REG
4725 && ! (regno_first == FRAME_POINTER_REGNUM
4726 && (! reload_completed || frame_pointer_needed))
4727 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4728 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
4729 && (! reload_completed || frame_pointer_needed))
4730 #endif
4731 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4732 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
4733 #endif
4736 int some_was_live = 0, some_was_dead = 0;
4738 for (i = regno_first; i <= regno_last; ++i)
4740 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
4741 if (pbi->local_set)
4743 /* Order of the set operation matters here since both
4744 sets may be the same. */
4745 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
4746 if (cond != NULL_RTX
4747 && ! REGNO_REG_SET_P (pbi->local_set, i))
4748 SET_REGNO_REG_SET (pbi->cond_local_set, i);
4749 else
4750 SET_REGNO_REG_SET (pbi->local_set, i);
4752 if (code != CLOBBER)
4753 SET_REGNO_REG_SET (pbi->new_set, i);
4755 some_was_live |= needed_regno;
4756 some_was_dead |= ! needed_regno;
4759 #ifdef HAVE_conditional_execution
4760 /* Consider conditional death in deciding that the register needs
4761 a death note. */
4762 if (some_was_live && ! not_dead
4763 /* The stack pointer is never dead. Well, not strictly true,
4764 but it's very difficult to tell from here. Hopefully
4765 combine_stack_adjustments will fix up the most egregious
4766 errors. */
4767 && regno_first != STACK_POINTER_REGNUM)
4769 for (i = regno_first; i <= regno_last; ++i)
4770 if (! mark_regno_cond_dead (pbi, i, cond))
4771 not_dead |= ((unsigned long) 1) << (i - regno_first);
4773 #endif
4775 /* Additional data to record if this is the final pass. */
4776 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
4777 | PROP_DEATH_NOTES | PROP_AUTOINC))
4779 register rtx y;
4780 register int blocknum = pbi->bb->index;
4782 y = NULL_RTX;
4783 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
4785 y = pbi->reg_next_use[regno_first];
4787 /* The next use is no longer next, since a store intervenes. */
4788 for (i = regno_first; i <= regno_last; ++i)
4789 pbi->reg_next_use[i] = 0;
4792 if (flags & PROP_REG_INFO)
4794 for (i = regno_first; i <= regno_last; ++i)
4796 /* Count (weighted) references, stores, etc. This counts a
4797 register twice if it is modified, but that is correct. */
4798 REG_N_SETS (i) += 1;
4799 REG_N_REFS (i) += (optimize_size ? 1
4800 : pbi->bb->loop_depth + 1);
4802 /* The insns where a reg is live are normally counted
4803 elsewhere, but we want the count to include the insn
4804 where the reg is set, and the normal counting mechanism
4805 would not count it. */
4806 REG_LIVE_LENGTH (i) += 1;
4809 /* If this is a hard reg, record this function uses the reg. */
4810 if (regno_first < FIRST_PSEUDO_REGISTER)
4812 for (i = regno_first; i <= regno_last; i++)
4813 regs_ever_live[i] = 1;
4815 else
4817 /* Keep track of which basic blocks each reg appears in. */
4818 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
4819 REG_BASIC_BLOCK (regno_first) = blocknum;
4820 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
4821 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
4825 if (! some_was_dead)
4827 if (flags & PROP_LOG_LINKS)
4829 /* Make a logical link from the next following insn
4830 that uses this register, back to this insn.
4831 The following insns have already been processed.
4833 We don't build a LOG_LINK for hard registers containing
4834 in ASM_OPERANDs. If these registers get replaced,
4835 we might wind up changing the semantics of the insn,
4836 even if reload can make what appear to be valid
4837 assignments later. */
4838 if (y && (BLOCK_NUM (y) == blocknum)
4839 && (regno_first >= FIRST_PSEUDO_REGISTER
4840 || asm_noperands (PATTERN (y)) < 0))
4841 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
4844 else if (not_dead)
4846 else if (! some_was_live)
4848 if (flags & PROP_REG_INFO)
4849 REG_N_DEATHS (regno_first) += 1;
4851 if (flags & PROP_DEATH_NOTES)
4853 /* Note that dead stores have already been deleted
4854 when possible. If we get here, we have found a
4855 dead store that cannot be eliminated (because the
4856 same insn does something useful). Indicate this
4857 by marking the reg being set as dying here. */
4858 REG_NOTES (insn)
4859 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
4862 else
4864 if (flags & PROP_DEATH_NOTES)
4866 /* This is a case where we have a multi-word hard register
4867 and some, but not all, of the words of the register are
4868 needed in subsequent insns. Write REG_UNUSED notes
4869 for those parts that were not needed. This case should
4870 be rare. */
4872 for (i = regno_first; i <= regno_last; ++i)
4873 if (! REGNO_REG_SET_P (pbi->reg_live, i))
4874 REG_NOTES (insn)
4875 = alloc_EXPR_LIST (REG_UNUSED,
4876 gen_rtx_REG (reg_raw_mode[i], i),
4877 REG_NOTES (insn));
4882 /* Mark the register as being dead. */
4883 if (some_was_live
4884 /* The stack pointer is never dead. Well, not strictly true,
4885 but it's very difficult to tell from here. Hopefully
4886 combine_stack_adjustments will fix up the most egregious
4887 errors. */
4888 && regno_first != STACK_POINTER_REGNUM)
4890 for (i = regno_first; i <= regno_last; ++i)
4891 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
4892 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
4895 else if (GET_CODE (reg) == REG)
4897 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
4898 pbi->reg_next_use[regno_first] = 0;
4901 /* If this is the last pass and this is a SCRATCH, show it will be dying
4902 here and count it. */
4903 else if (GET_CODE (reg) == SCRATCH)
4905 if (flags & PROP_DEATH_NOTES)
4906 REG_NOTES (insn)
4907 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
4911 #ifdef HAVE_conditional_execution
4912 /* Mark REGNO conditionally dead.
4913 Return true if the register is now unconditionally dead. */
4915 static int
4916 mark_regno_cond_dead (pbi, regno, cond)
4917 struct propagate_block_info *pbi;
4918 int regno;
4919 rtx cond;
4921 /* If this is a store to a predicate register, the value of the
4922 predicate is changing, we don't know that the predicate as seen
4923 before is the same as that seen after. Flush all dependent
4924 conditions from reg_cond_dead. This will make all such
4925 conditionally live registers unconditionally live. */
4926 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
4927 flush_reg_cond_reg (pbi, regno);
4929 /* If this is an unconditional store, remove any conditional
4930 life that may have existed. */
4931 if (cond == NULL_RTX)
4932 splay_tree_remove (pbi->reg_cond_dead, regno);
4933 else
4935 splay_tree_node node;
4936 struct reg_cond_life_info *rcli;
4937 rtx ncond;
4939 /* Otherwise this is a conditional set. Record that fact.
4940 It may have been conditionally used, or there may be a
4941 subsequent set with a complimentary condition. */
4943 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
4944 if (node == NULL)
4946 /* The register was unconditionally live previously.
4947 Record the current condition as the condition under
4948 which it is dead. */
4949 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
4950 rcli->condition = cond;
4951 rcli->stores = cond;
4952 rcli->orig_condition = const0_rtx;
4953 splay_tree_insert (pbi->reg_cond_dead, regno,
4954 (splay_tree_value) rcli);
4956 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
4958 /* Not unconditionaly dead. */
4959 return 0;
4961 else
4963 /* The register was conditionally live previously.
4964 Add the new condition to the old. */
4965 rcli = (struct reg_cond_life_info *) node->value;
4966 ncond = rcli->condition;
4967 ncond = ior_reg_cond (ncond, cond, 1);
4968 if (rcli->stores == const0_rtx)
4969 rcli->stores = cond;
4970 else if (rcli->stores != const1_rtx)
4971 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
4973 /* If the register is now unconditionally dead, remove the entry
4974 in the splay_tree. A register is unconditionally dead if the
4975 dead condition ncond is true. A register is also unconditionally
4976 dead if the sum of all conditional stores is an unconditional
4977 store (stores is true), and the dead condition is identically the
4978 same as the original dead condition initialized at the end of
4979 the block. This is a pointer compare, not an rtx_equal_p
4980 compare. */
4981 if (ncond == const1_rtx
4982 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
4983 splay_tree_remove (pbi->reg_cond_dead, regno);
4984 else
4986 rcli->condition = ncond;
4988 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
4990 /* Not unconditionaly dead. */
4991 return 0;
4996 return 1;
4999 /* Called from splay_tree_delete for pbi->reg_cond_life. */
5001 static void
5002 free_reg_cond_life_info (value)
5003 splay_tree_value value;
5005 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
5006 free (rcli);
5009 /* Helper function for flush_reg_cond_reg. */
5011 static int
5012 flush_reg_cond_reg_1 (node, data)
5013 splay_tree_node node;
5014 void *data;
5016 struct reg_cond_life_info *rcli;
5017 int *xdata = (int *) data;
5018 unsigned int regno = xdata[0];
5020 /* Don't need to search if last flushed value was farther on in
5021 the in-order traversal. */
5022 if (xdata[1] >= (int) node->key)
5023 return 0;
5025 /* Splice out portions of the expression that refer to regno. */
5026 rcli = (struct reg_cond_life_info *) node->value;
5027 rcli->condition = elim_reg_cond (rcli->condition, regno);
5028 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
5029 rcli->stores = elim_reg_cond (rcli->stores, regno);
5031 /* If the entire condition is now false, signal the node to be removed. */
5032 if (rcli->condition == const0_rtx)
5034 xdata[1] = node->key;
5035 return -1;
5037 else if (rcli->condition == const1_rtx)
5038 abort ();
5040 return 0;
5043 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
5045 static void
5046 flush_reg_cond_reg (pbi, regno)
5047 struct propagate_block_info *pbi;
5048 int regno;
5050 int pair[2];
5052 pair[0] = regno;
5053 pair[1] = -1;
5054 while (splay_tree_foreach (pbi->reg_cond_dead,
5055 flush_reg_cond_reg_1, pair) == -1)
5056 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
5058 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
5061 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
5062 For ior/and, the ADD flag determines whether we want to add the new
5063 condition X to the old one unconditionally. If it is zero, we will
5064 only return a new expression if X allows us to simplify part of
5065 OLD, otherwise we return OLD unchanged to the caller.
5066 If ADD is nonzero, we will return a new condition in all cases. The
5067 toplevel caller of one of these functions should always pass 1 for
5068 ADD. */
5070 static rtx
5071 ior_reg_cond (old, x, add)
5072 rtx old, x;
5073 int add;
5075 rtx op0, op1;
5077 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
5079 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
5080 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
5081 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
5082 return const1_rtx;
5083 if (GET_CODE (x) == GET_CODE (old)
5084 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
5085 return old;
5086 if (! add)
5087 return old;
5088 return gen_rtx_IOR (0, old, x);
5091 switch (GET_CODE (old))
5093 case IOR:
5094 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
5095 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
5096 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
5098 if (op0 == const0_rtx)
5099 return op1;
5100 if (op1 == const0_rtx)
5101 return op0;
5102 if (op0 == const1_rtx || op1 == const1_rtx)
5103 return const1_rtx;
5104 if (op0 == XEXP (old, 0))
5105 op0 = gen_rtx_IOR (0, op0, x);
5106 else
5107 op1 = gen_rtx_IOR (0, op1, x);
5108 return gen_rtx_IOR (0, op0, op1);
5110 if (! add)
5111 return old;
5112 return gen_rtx_IOR (0, old, x);
5114 case AND:
5115 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
5116 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
5117 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
5119 if (op0 == const1_rtx)
5120 return op1;
5121 if (op1 == const1_rtx)
5122 return op0;
5123 if (op0 == const0_rtx || op1 == const0_rtx)
5124 return const0_rtx;
5125 if (op0 == XEXP (old, 0))
5126 op0 = gen_rtx_IOR (0, op0, x);
5127 else
5128 op1 = gen_rtx_IOR (0, op1, x);
5129 return gen_rtx_AND (0, op0, op1);
5131 if (! add)
5132 return old;
5133 return gen_rtx_IOR (0, old, x);
5135 case NOT:
5136 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
5137 if (op0 != XEXP (old, 0))
5138 return not_reg_cond (op0);
5139 if (! add)
5140 return old;
5141 return gen_rtx_IOR (0, old, x);
5143 default:
5144 abort ();
5148 static rtx
5149 not_reg_cond (x)
5150 rtx x;
5152 enum rtx_code x_code;
5154 if (x == const0_rtx)
5155 return const1_rtx;
5156 else if (x == const1_rtx)
5157 return const0_rtx;
5158 x_code = GET_CODE (x);
5159 if (x_code == NOT)
5160 return XEXP (x, 0);
5161 if (GET_RTX_CLASS (x_code) == '<'
5162 && GET_CODE (XEXP (x, 0)) == REG)
5164 if (XEXP (x, 1) != const0_rtx)
5165 abort ();
5167 return gen_rtx_fmt_ee (reverse_condition (x_code),
5168 VOIDmode, XEXP (x, 0), const0_rtx);
5170 return gen_rtx_NOT (0, x);
5173 static rtx
5174 and_reg_cond (old, x, add)
5175 rtx old, x;
5176 int add;
5178 rtx op0, op1;
5180 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
5182 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
5183 && GET_CODE (x) == reverse_condition (GET_CODE (old))
5184 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
5185 return const0_rtx;
5186 if (GET_CODE (x) == GET_CODE (old)
5187 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
5188 return old;
5189 if (! add)
5190 return old;
5191 return gen_rtx_AND (0, old, x);
5194 switch (GET_CODE (old))
5196 case IOR:
5197 op0 = and_reg_cond (XEXP (old, 0), x, 0);
5198 op1 = and_reg_cond (XEXP (old, 1), x, 0);
5199 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
5201 if (op0 == const0_rtx)
5202 return op1;
5203 if (op1 == const0_rtx)
5204 return op0;
5205 if (op0 == const1_rtx || op1 == const1_rtx)
5206 return const1_rtx;
5207 if (op0 == XEXP (old, 0))
5208 op0 = gen_rtx_AND (0, op0, x);
5209 else
5210 op1 = gen_rtx_AND (0, op1, x);
5211 return gen_rtx_IOR (0, op0, op1);
5213 if (! add)
5214 return old;
5215 return gen_rtx_AND (0, old, x);
5217 case AND:
5218 op0 = and_reg_cond (XEXP (old, 0), x, 0);
5219 op1 = and_reg_cond (XEXP (old, 1), x, 0);
5220 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
5222 if (op0 == const1_rtx)
5223 return op1;
5224 if (op1 == const1_rtx)
5225 return op0;
5226 if (op0 == const0_rtx || op1 == const0_rtx)
5227 return const0_rtx;
5228 if (op0 == XEXP (old, 0))
5229 op0 = gen_rtx_AND (0, op0, x);
5230 else
5231 op1 = gen_rtx_AND (0, op1, x);
5232 return gen_rtx_AND (0, op0, op1);
5234 if (! add)
5235 return old;
5237 /* If X is identical to one of the existing terms of the AND,
5238 then just return what we already have. */
5239 /* ??? There really should be some sort of recursive check here in
5240 case there are nested ANDs. */
5241 if ((GET_CODE (XEXP (old, 0)) == GET_CODE (x)
5242 && REGNO (XEXP (XEXP (old, 0), 0)) == REGNO (XEXP (x, 0)))
5243 || (GET_CODE (XEXP (old, 1)) == GET_CODE (x)
5244 && REGNO (XEXP (XEXP (old, 1), 0)) == REGNO (XEXP (x, 0))))
5245 return old;
5247 return gen_rtx_AND (0, old, x);
5249 case NOT:
5250 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
5251 if (op0 != XEXP (old, 0))
5252 return not_reg_cond (op0);
5253 if (! add)
5254 return old;
5255 return gen_rtx_AND (0, old, x);
5257 default:
5258 abort ();
5262 /* Given a condition X, remove references to reg REGNO and return the
5263 new condition. The removal will be done so that all conditions
5264 involving REGNO are considered to evaluate to false. This function
5265 is used when the value of REGNO changes. */
5267 static rtx
5268 elim_reg_cond (x, regno)
5269 rtx x;
5270 unsigned int regno;
5272 rtx op0, op1;
5274 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
5276 if (REGNO (XEXP (x, 0)) == regno)
5277 return const0_rtx;
5278 return x;
5281 switch (GET_CODE (x))
5283 case AND:
5284 op0 = elim_reg_cond (XEXP (x, 0), regno);
5285 op1 = elim_reg_cond (XEXP (x, 1), regno);
5286 if (op0 == const0_rtx || op1 == const0_rtx)
5287 return const0_rtx;
5288 if (op0 == const1_rtx)
5289 return op1;
5290 if (op1 == const1_rtx)
5291 return op0;
5292 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
5293 return x;
5294 return gen_rtx_AND (0, op0, op1);
5296 case IOR:
5297 op0 = elim_reg_cond (XEXP (x, 0), regno);
5298 op1 = elim_reg_cond (XEXP (x, 1), regno);
5299 if (op0 == const1_rtx || op1 == const1_rtx)
5300 return const1_rtx;
5301 if (op0 == const0_rtx)
5302 return op1;
5303 if (op1 == const0_rtx)
5304 return op0;
5305 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
5306 return x;
5307 return gen_rtx_IOR (0, op0, op1);
5309 case NOT:
5310 op0 = elim_reg_cond (XEXP (x, 0), regno);
5311 if (op0 == const0_rtx)
5312 return const1_rtx;
5313 if (op0 == const1_rtx)
5314 return const0_rtx;
5315 if (op0 != XEXP (x, 0))
5316 return not_reg_cond (op0);
5317 return x;
5319 default:
5320 abort ();
5323 #endif /* HAVE_conditional_execution */
5325 #ifdef AUTO_INC_DEC
5327 /* Try to substitute the auto-inc expression INC as the address inside
5328 MEM which occurs in INSN. Currently, the address of MEM is an expression
5329 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
5330 that has a single set whose source is a PLUS of INCR_REG and something
5331 else. */
5333 static void
5334 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
5335 struct propagate_block_info *pbi;
5336 rtx inc, insn, mem, incr, incr_reg;
5338 int regno = REGNO (incr_reg);
5339 rtx set = single_set (incr);
5340 rtx q = SET_DEST (set);
5341 rtx y = SET_SRC (set);
5342 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
5344 /* Make sure this reg appears only once in this insn. */
5345 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
5346 return;
5348 if (dead_or_set_p (incr, incr_reg)
5349 /* Mustn't autoinc an eliminable register. */
5350 && (regno >= FIRST_PSEUDO_REGISTER
5351 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
5353 /* This is the simple case. Try to make the auto-inc. If
5354 we can't, we are done. Otherwise, we will do any
5355 needed updates below. */
5356 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
5357 return;
5359 else if (GET_CODE (q) == REG
5360 /* PREV_INSN used here to check the semi-open interval
5361 [insn,incr). */
5362 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
5363 /* We must also check for sets of q as q may be
5364 a call clobbered hard register and there may
5365 be a call between PREV_INSN (insn) and incr. */
5366 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
5368 /* We have *p followed sometime later by q = p+size.
5369 Both p and q must be live afterward,
5370 and q is not used between INSN and its assignment.
5371 Change it to q = p, ...*q..., q = q+size.
5372 Then fall into the usual case. */
5373 rtx insns, temp;
5375 start_sequence ();
5376 emit_move_insn (q, incr_reg);
5377 insns = get_insns ();
5378 end_sequence ();
5380 if (basic_block_for_insn)
5381 for (temp = insns; temp; temp = NEXT_INSN (temp))
5382 set_block_for_insn (temp, pbi->bb);
5384 /* If we can't make the auto-inc, or can't make the
5385 replacement into Y, exit. There's no point in making
5386 the change below if we can't do the auto-inc and doing
5387 so is not correct in the pre-inc case. */
5389 XEXP (inc, 0) = q;
5390 validate_change (insn, &XEXP (mem, 0), inc, 1);
5391 validate_change (incr, &XEXP (y, opnum), q, 1);
5392 if (! apply_change_group ())
5393 return;
5395 /* We now know we'll be doing this change, so emit the
5396 new insn(s) and do the updates. */
5397 emit_insns_before (insns, insn);
5399 if (pbi->bb->head == insn)
5400 pbi->bb->head = insns;
5402 /* INCR will become a NOTE and INSN won't contain a
5403 use of INCR_REG. If a use of INCR_REG was just placed in
5404 the insn before INSN, make that the next use.
5405 Otherwise, invalidate it. */
5406 if (GET_CODE (PREV_INSN (insn)) == INSN
5407 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
5408 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
5409 pbi->reg_next_use[regno] = PREV_INSN (insn);
5410 else
5411 pbi->reg_next_use[regno] = 0;
5413 incr_reg = q;
5414 regno = REGNO (q);
5416 /* REGNO is now used in INCR which is below INSN, but
5417 it previously wasn't live here. If we don't mark
5418 it as live, we'll put a REG_DEAD note for it
5419 on this insn, which is incorrect. */
5420 SET_REGNO_REG_SET (pbi->reg_live, regno);
5422 /* If there are any calls between INSN and INCR, show
5423 that REGNO now crosses them. */
5424 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
5425 if (GET_CODE (temp) == CALL_INSN)
5426 REG_N_CALLS_CROSSED (regno)++;
5428 else
5429 return;
5431 /* If we haven't returned, it means we were able to make the
5432 auto-inc, so update the status. First, record that this insn
5433 has an implicit side effect. */
5435 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
5437 /* Modify the old increment-insn to simply copy
5438 the already-incremented value of our register. */
5439 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
5440 abort ();
5442 /* If that makes it a no-op (copying the register into itself) delete
5443 it so it won't appear to be a "use" and a "set" of this
5444 register. */
5445 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
5447 /* If the original source was dead, it's dead now. */
5448 rtx note;
5450 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
5452 remove_note (incr, note);
5453 if (XEXP (note, 0) != incr_reg)
5454 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
5457 PUT_CODE (incr, NOTE);
5458 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
5459 NOTE_SOURCE_FILE (incr) = 0;
5462 if (regno >= FIRST_PSEUDO_REGISTER)
5464 /* Count an extra reference to the reg. When a reg is
5465 incremented, spilling it is worse, so we want to make
5466 that less likely. */
5467 REG_N_REFS (regno) += (optimize_size ? 1 : pbi->bb->loop_depth + 1);
5469 /* Count the increment as a setting of the register,
5470 even though it isn't a SET in rtl. */
5471 REG_N_SETS (regno)++;
5475 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
5476 reference. */
5478 static void
5479 find_auto_inc (pbi, x, insn)
5480 struct propagate_block_info *pbi;
5481 rtx x;
5482 rtx insn;
5484 rtx addr = XEXP (x, 0);
5485 HOST_WIDE_INT offset = 0;
5486 rtx set, y, incr, inc_val;
5487 int regno;
5488 int size = GET_MODE_SIZE (GET_MODE (x));
5490 if (GET_CODE (insn) == JUMP_INSN)
5491 return;
5493 /* Here we detect use of an index register which might be good for
5494 postincrement, postdecrement, preincrement, or predecrement. */
5496 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5497 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
5499 if (GET_CODE (addr) != REG)
5500 return;
5502 regno = REGNO (addr);
5504 /* Is the next use an increment that might make auto-increment? */
5505 incr = pbi->reg_next_use[regno];
5506 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
5507 return;
5508 set = single_set (incr);
5509 if (set == 0 || GET_CODE (set) != SET)
5510 return;
5511 y = SET_SRC (set);
5513 if (GET_CODE (y) != PLUS)
5514 return;
5516 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
5517 inc_val = XEXP (y, 1);
5518 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
5519 inc_val = XEXP (y, 0);
5520 else
5521 return;
5523 if (GET_CODE (inc_val) == CONST_INT)
5525 if (HAVE_POST_INCREMENT
5526 && (INTVAL (inc_val) == size && offset == 0))
5527 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
5528 incr, addr);
5529 else if (HAVE_POST_DECREMENT
5530 && (INTVAL (inc_val) == -size && offset == 0))
5531 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
5532 incr, addr);
5533 else if (HAVE_PRE_INCREMENT
5534 && (INTVAL (inc_val) == size && offset == size))
5535 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
5536 incr, addr);
5537 else if (HAVE_PRE_DECREMENT
5538 && (INTVAL (inc_val) == -size && offset == -size))
5539 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
5540 incr, addr);
5541 else if (HAVE_POST_MODIFY_DISP && offset == 0)
5542 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
5543 gen_rtx_PLUS (Pmode,
5544 addr,
5545 inc_val)),
5546 insn, x, incr, addr);
5548 else if (GET_CODE (inc_val) == REG
5549 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
5550 NEXT_INSN (incr)))
5553 if (HAVE_POST_MODIFY_REG && offset == 0)
5554 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
5555 gen_rtx_PLUS (Pmode,
5556 addr,
5557 inc_val)),
5558 insn, x, incr, addr);
5562 #endif /* AUTO_INC_DEC */
5564 static void
5565 mark_used_reg (pbi, reg, cond, insn)
5566 struct propagate_block_info *pbi;
5567 rtx reg;
5568 rtx cond ATTRIBUTE_UNUSED;
5569 rtx insn;
5571 int regno = REGNO (reg);
5572 int some_was_live = REGNO_REG_SET_P (pbi->reg_live, regno);
5573 int some_was_dead = ! some_was_live;
5574 int some_not_set;
5575 int n;
5577 /* A hard reg in a wide mode may really be multiple registers.
5578 If so, mark all of them just like the first. */
5579 if (regno < FIRST_PSEUDO_REGISTER)
5581 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
5582 while (--n > 0)
5584 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, regno + n);
5585 some_was_live |= needed_regno;
5586 some_was_dead |= ! needed_regno;
5590 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
5592 /* Record where each reg is used, so when the reg is set we know
5593 the next insn that uses it. */
5594 pbi->reg_next_use[regno] = insn;
5597 if (pbi->flags & PROP_REG_INFO)
5599 if (regno < FIRST_PSEUDO_REGISTER)
5601 /* If this is a register we are going to try to eliminate,
5602 don't mark it live here. If we are successful in
5603 eliminating it, it need not be live unless it is used for
5604 pseudos, in which case it will have been set live when it
5605 was allocated to the pseudos. If the register will not
5606 be eliminated, reload will set it live at that point.
5608 Otherwise, record that this function uses this register. */
5609 /* ??? The PPC backend tries to "eliminate" on the pic
5610 register to itself. This should be fixed. In the mean
5611 time, hack around it. */
5613 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno)
5614 && (regno == FRAME_POINTER_REGNUM
5615 || regno == ARG_POINTER_REGNUM)))
5617 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
5619 regs_ever_live[regno + --n] = 1;
5620 while (n > 0);
5623 else
5625 /* Keep track of which basic block each reg appears in. */
5627 register int blocknum = pbi->bb->index;
5628 if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN)
5629 REG_BASIC_BLOCK (regno) = blocknum;
5630 else if (REG_BASIC_BLOCK (regno) != blocknum)
5631 REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL;
5633 /* Count (weighted) number of uses of each reg. */
5634 REG_N_REFS (regno) += (optimize_size ? 1
5635 : pbi->bb->loop_depth + 1);
5639 /* Find out if any of the register was set this insn. */
5640 some_not_set = ! REGNO_REG_SET_P (pbi->new_set, regno);
5641 if (regno < FIRST_PSEUDO_REGISTER)
5643 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
5644 while (--n > 0)
5645 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, regno + n);
5648 /* Record and count the insns in which a reg dies. If it is used in
5649 this insn and was dead below the insn then it dies in this insn.
5650 If it was set in this insn, we do not make a REG_DEAD note;
5651 likewise if we already made such a note. */
5652 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
5653 && some_was_dead
5654 && some_not_set)
5656 /* Check for the case where the register dying partially
5657 overlaps the register set by this insn. */
5658 if (regno < FIRST_PSEUDO_REGISTER
5659 && HARD_REGNO_NREGS (regno, GET_MODE (reg)) > 1)
5661 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
5662 while (--n >= 0)
5663 some_was_live |= REGNO_REG_SET_P (pbi->new_set, regno + n);
5666 /* If none of the words in X is needed, make a REG_DEAD note.
5667 Otherwise, we must make partial REG_DEAD notes. */
5668 if (! some_was_live)
5670 if ((pbi->flags & PROP_DEATH_NOTES)
5671 && ! find_regno_note (insn, REG_DEAD, regno))
5672 REG_NOTES (insn)
5673 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
5675 if (pbi->flags & PROP_REG_INFO)
5676 REG_N_DEATHS (regno)++;
5678 else
5680 /* Don't make a REG_DEAD note for a part of a register
5681 that is set in the insn. */
5683 n = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
5684 for (; n >= regno; n--)
5685 if (! REGNO_REG_SET_P (pbi->reg_live, n)
5686 && ! dead_or_set_regno_p (insn, n))
5687 REG_NOTES (insn)
5688 = alloc_EXPR_LIST (REG_DEAD,
5689 gen_rtx_REG (reg_raw_mode[n], n),
5690 REG_NOTES (insn));
5694 SET_REGNO_REG_SET (pbi->reg_live, regno);
5695 if (regno < FIRST_PSEUDO_REGISTER)
5697 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
5698 while (--n > 0)
5699 SET_REGNO_REG_SET (pbi->reg_live, regno + n);
5702 #ifdef HAVE_conditional_execution
5703 /* If this is a conditional use, record that fact. If it is later
5704 conditionally set, we'll know to kill the register. */
5705 if (cond != NULL_RTX)
5707 splay_tree_node node;
5708 struct reg_cond_life_info *rcli;
5709 rtx ncond;
5711 if (some_was_live)
5713 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
5714 if (node == NULL)
5716 /* The register was unconditionally live previously.
5717 No need to do anything. */
5719 else
5721 /* The register was conditionally live previously.
5722 Subtract the new life cond from the old death cond. */
5723 rcli = (struct reg_cond_life_info *) node->value;
5724 ncond = rcli->condition;
5725 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
5727 /* If the register is now unconditionally live, remove the
5728 entry in the splay_tree. */
5729 if (ncond == const0_rtx)
5730 splay_tree_remove (pbi->reg_cond_dead, regno);
5731 else
5733 rcli->condition = ncond;
5734 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
5738 else
5740 /* The register was not previously live at all. Record
5741 the condition under which it is still dead. */
5742 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
5743 rcli->condition = not_reg_cond (cond);
5744 rcli->stores = const0_rtx;
5745 rcli->orig_condition = const0_rtx;
5746 splay_tree_insert (pbi->reg_cond_dead, regno,
5747 (splay_tree_value) rcli);
5749 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
5752 else if (some_was_live)
5754 splay_tree_node node;
5756 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
5757 if (node != NULL)
5759 /* The register was conditionally live previously, but is now
5760 unconditionally so. Remove it from the conditionally dead
5761 list, so that a conditional set won't cause us to think
5762 it dead. */
5763 splay_tree_remove (pbi->reg_cond_dead, regno);
5767 #endif
5770 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
5771 This is done assuming the registers needed from X are those that
5772 have 1-bits in PBI->REG_LIVE.
5774 INSN is the containing instruction. If INSN is dead, this function
5775 is not called. */
5777 static void
5778 mark_used_regs (pbi, x, cond, insn)
5779 struct propagate_block_info *pbi;
5780 rtx x, cond, insn;
5782 register RTX_CODE code;
5783 register int regno;
5784 int flags = pbi->flags;
5786 retry:
5787 code = GET_CODE (x);
5788 switch (code)
5790 case LABEL_REF:
5791 case SYMBOL_REF:
5792 case CONST_INT:
5793 case CONST:
5794 case CONST_DOUBLE:
5795 case PC:
5796 case ADDR_VEC:
5797 case ADDR_DIFF_VEC:
5798 return;
5800 #ifdef HAVE_cc0
5801 case CC0:
5802 pbi->cc0_live = 1;
5803 return;
5804 #endif
5806 case CLOBBER:
5807 /* If we are clobbering a MEM, mark any registers inside the address
5808 as being used. */
5809 if (GET_CODE (XEXP (x, 0)) == MEM)
5810 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
5811 return;
5813 case MEM:
5814 /* Don't bother watching stores to mems if this is not the
5815 final pass. We'll not be deleting dead stores this round. */
5816 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
5818 /* Invalidate the data for the last MEM stored, but only if MEM is
5819 something that can be stored into. */
5820 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
5821 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
5822 /* Needn't clear the memory set list. */
5824 else
5826 rtx temp = pbi->mem_set_list;
5827 rtx prev = NULL_RTX;
5828 rtx next;
5830 while (temp)
5832 next = XEXP (temp, 1);
5833 if (anti_dependence (XEXP (temp, 0), x))
5835 /* Splice temp out of the list. */
5836 if (prev)
5837 XEXP (prev, 1) = next;
5838 else
5839 pbi->mem_set_list = next;
5840 free_EXPR_LIST_node (temp);
5841 pbi->mem_set_list_len--;
5843 else
5844 prev = temp;
5845 temp = next;
5849 /* If the memory reference had embedded side effects (autoincrement
5850 address modes. Then we may need to kill some entries on the
5851 memory set list. */
5852 if (insn)
5853 invalidate_mems_from_autoinc (pbi, insn);
5856 #ifdef AUTO_INC_DEC
5857 if (flags & PROP_AUTOINC)
5858 find_auto_inc (pbi, x, insn);
5859 #endif
5860 break;
5862 case SUBREG:
5863 #ifdef CLASS_CANNOT_CHANGE_MODE
5864 if (GET_CODE (SUBREG_REG (x)) == REG
5865 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
5866 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
5867 GET_MODE (SUBREG_REG (x))))
5868 REG_CHANGES_MODE (REGNO (SUBREG_REG (x))) = 1;
5869 #endif
5871 /* While we're here, optimize this case. */
5872 x = SUBREG_REG (x);
5873 if (GET_CODE (x) != REG)
5874 goto retry;
5875 /* Fall through. */
5877 case REG:
5878 /* See a register other than being set => mark it as needed. */
5879 mark_used_reg (pbi, x, cond, insn);
5880 return;
5882 case SET:
5884 register rtx testreg = SET_DEST (x);
5885 int mark_dest = 0;
5887 /* If storing into MEM, don't show it as being used. But do
5888 show the address as being used. */
5889 if (GET_CODE (testreg) == MEM)
5891 #ifdef AUTO_INC_DEC
5892 if (flags & PROP_AUTOINC)
5893 find_auto_inc (pbi, testreg, insn);
5894 #endif
5895 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
5896 mark_used_regs (pbi, SET_SRC (x), cond, insn);
5897 return;
5900 /* Storing in STRICT_LOW_PART is like storing in a reg
5901 in that this SET might be dead, so ignore it in TESTREG.
5902 but in some other ways it is like using the reg.
5904 Storing in a SUBREG or a bit field is like storing the entire
5905 register in that if the register's value is not used
5906 then this SET is not needed. */
5907 while (GET_CODE (testreg) == STRICT_LOW_PART
5908 || GET_CODE (testreg) == ZERO_EXTRACT
5909 || GET_CODE (testreg) == SIGN_EXTRACT
5910 || GET_CODE (testreg) == SUBREG)
5912 #ifdef CLASS_CANNOT_CHANGE_MODE
5913 if (GET_CODE (testreg) == SUBREG
5914 && GET_CODE (SUBREG_REG (testreg)) == REG
5915 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
5916 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg)),
5917 GET_MODE (testreg)))
5918 REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg))) = 1;
5919 #endif
5921 /* Modifying a single register in an alternate mode
5922 does not use any of the old value. But these other
5923 ways of storing in a register do use the old value. */
5924 if (GET_CODE (testreg) == SUBREG
5925 && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
5927 else
5928 mark_dest = 1;
5930 testreg = XEXP (testreg, 0);
5933 /* If this is a store into a register or group of registers,
5934 recursively scan the value being stored. */
5936 if ((GET_CODE (testreg) == PARALLEL
5937 && GET_MODE (testreg) == BLKmode)
5938 || (GET_CODE (testreg) == REG
5939 && (regno = REGNO (testreg),
5940 ! (regno == FRAME_POINTER_REGNUM
5941 && (! reload_completed || frame_pointer_needed)))
5942 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5943 && ! (regno == HARD_FRAME_POINTER_REGNUM
5944 && (! reload_completed || frame_pointer_needed))
5945 #endif
5946 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5947 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
5948 #endif
5951 if (mark_dest)
5952 mark_used_regs (pbi, SET_DEST (x), cond, insn);
5953 mark_used_regs (pbi, SET_SRC (x), cond, insn);
5954 return;
5957 break;
5959 case ASM_OPERANDS:
5960 case UNSPEC_VOLATILE:
5961 case TRAP_IF:
5962 case ASM_INPUT:
5964 /* Traditional and volatile asm instructions must be considered to use
5965 and clobber all hard registers, all pseudo-registers and all of
5966 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
5968 Consider for instance a volatile asm that changes the fpu rounding
5969 mode. An insn should not be moved across this even if it only uses
5970 pseudo-regs because it might give an incorrectly rounded result.
5972 ?!? Unfortunately, marking all hard registers as live causes massive
5973 problems for the register allocator and marking all pseudos as live
5974 creates mountains of uninitialized variable warnings.
5976 So for now, just clear the memory set list and mark any regs
5977 we can find in ASM_OPERANDS as used. */
5978 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
5980 free_EXPR_LIST_list (&pbi->mem_set_list);
5981 pbi->mem_set_list_len = 0;
5984 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
5985 We can not just fall through here since then we would be confused
5986 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
5987 traditional asms unlike their normal usage. */
5988 if (code == ASM_OPERANDS)
5990 int j;
5992 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
5993 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
5995 break;
5998 case COND_EXEC:
5999 if (cond != NULL_RTX)
6000 abort ();
6002 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
6004 cond = COND_EXEC_TEST (x);
6005 x = COND_EXEC_CODE (x);
6006 goto retry;
6008 case PHI:
6009 /* We _do_not_ want to scan operands of phi nodes. Operands of
6010 a phi function are evaluated only when control reaches this
6011 block along a particular edge. Therefore, regs that appear
6012 as arguments to phi should not be added to the global live at
6013 start. */
6014 return;
6016 default:
6017 break;
6020 /* Recursively scan the operands of this expression. */
6023 register const char *fmt = GET_RTX_FORMAT (code);
6024 register int i;
6026 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6028 if (fmt[i] == 'e')
6030 /* Tail recursive case: save a function call level. */
6031 if (i == 0)
6033 x = XEXP (x, 0);
6034 goto retry;
6036 mark_used_regs (pbi, XEXP (x, i), cond, insn);
6038 else if (fmt[i] == 'E')
6040 register int j;
6041 for (j = 0; j < XVECLEN (x, i); j++)
6042 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
6048 #ifdef AUTO_INC_DEC
6050 static int
6051 try_pre_increment_1 (pbi, insn)
6052 struct propagate_block_info *pbi;
6053 rtx insn;
6055 /* Find the next use of this reg. If in same basic block,
6056 make it do pre-increment or pre-decrement if appropriate. */
6057 rtx x = single_set (insn);
6058 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
6059 * INTVAL (XEXP (SET_SRC (x), 1)));
6060 int regno = REGNO (SET_DEST (x));
6061 rtx y = pbi->reg_next_use[regno];
6062 if (y != 0
6063 && SET_DEST (x) != stack_pointer_rtx
6064 && BLOCK_NUM (y) == BLOCK_NUM (insn)
6065 /* Don't do this if the reg dies, or gets set in y; a standard addressing
6066 mode would be better. */
6067 && ! dead_or_set_p (y, SET_DEST (x))
6068 && try_pre_increment (y, SET_DEST (x), amount))
6070 /* We have found a suitable auto-increment and already changed
6071 insn Y to do it. So flush this increment instruction. */
6072 propagate_block_delete_insn (pbi->bb, insn);
6074 /* Count a reference to this reg for the increment insn we are
6075 deleting. When a reg is incremented, spilling it is worse,
6076 so we want to make that less likely. */
6077 if (regno >= FIRST_PSEUDO_REGISTER)
6079 REG_N_REFS (regno) += (optimize_size ? 1
6080 : pbi->bb->loop_depth + 1);
6081 REG_N_SETS (regno)++;
6084 /* Flush any remembered memories depending on the value of
6085 the incremented register. */
6086 invalidate_mems_from_set (pbi, SET_DEST (x));
6088 return 1;
6090 return 0;
6093 /* Try to change INSN so that it does pre-increment or pre-decrement
6094 addressing on register REG in order to add AMOUNT to REG.
6095 AMOUNT is negative for pre-decrement.
6096 Returns 1 if the change could be made.
6097 This checks all about the validity of the result of modifying INSN. */
6099 static int
6100 try_pre_increment (insn, reg, amount)
6101 rtx insn, reg;
6102 HOST_WIDE_INT amount;
6104 register rtx use;
6106 /* Nonzero if we can try to make a pre-increment or pre-decrement.
6107 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
6108 int pre_ok = 0;
6109 /* Nonzero if we can try to make a post-increment or post-decrement.
6110 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
6111 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
6112 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
6113 int post_ok = 0;
6115 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
6116 int do_post = 0;
6118 /* From the sign of increment, see which possibilities are conceivable
6119 on this target machine. */
6120 if (HAVE_PRE_INCREMENT && amount > 0)
6121 pre_ok = 1;
6122 if (HAVE_POST_INCREMENT && amount > 0)
6123 post_ok = 1;
6125 if (HAVE_PRE_DECREMENT && amount < 0)
6126 pre_ok = 1;
6127 if (HAVE_POST_DECREMENT && amount < 0)
6128 post_ok = 1;
6130 if (! (pre_ok || post_ok))
6131 return 0;
6133 /* It is not safe to add a side effect to a jump insn
6134 because if the incremented register is spilled and must be reloaded
6135 there would be no way to store the incremented value back in memory. */
6137 if (GET_CODE (insn) == JUMP_INSN)
6138 return 0;
6140 use = 0;
6141 if (pre_ok)
6142 use = find_use_as_address (PATTERN (insn), reg, 0);
6143 if (post_ok && (use == 0 || use == (rtx) 1))
6145 use = find_use_as_address (PATTERN (insn), reg, -amount);
6146 do_post = 1;
6149 if (use == 0 || use == (rtx) 1)
6150 return 0;
6152 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
6153 return 0;
6155 /* See if this combination of instruction and addressing mode exists. */
6156 if (! validate_change (insn, &XEXP (use, 0),
6157 gen_rtx_fmt_e (amount > 0
6158 ? (do_post ? POST_INC : PRE_INC)
6159 : (do_post ? POST_DEC : PRE_DEC),
6160 Pmode, reg), 0))
6161 return 0;
6163 /* Record that this insn now has an implicit side effect on X. */
6164 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
6165 return 1;
6168 #endif /* AUTO_INC_DEC */
6170 /* Find the place in the rtx X where REG is used as a memory address.
6171 Return the MEM rtx that so uses it.
6172 If PLUSCONST is nonzero, search instead for a memory address equivalent to
6173 (plus REG (const_int PLUSCONST)).
6175 If such an address does not appear, return 0.
6176 If REG appears more than once, or is used other than in such an address,
6177 return (rtx)1. */
6180 find_use_as_address (x, reg, plusconst)
6181 register rtx x;
6182 rtx reg;
6183 HOST_WIDE_INT plusconst;
6185 enum rtx_code code = GET_CODE (x);
6186 const char *fmt = GET_RTX_FORMAT (code);
6187 register int i;
6188 register rtx value = 0;
6189 register rtx tem;
6191 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
6192 return x;
6194 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
6195 && XEXP (XEXP (x, 0), 0) == reg
6196 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6197 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
6198 return x;
6200 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
6202 /* If REG occurs inside a MEM used in a bit-field reference,
6203 that is unacceptable. */
6204 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
6205 return (rtx) (HOST_WIDE_INT) 1;
6208 if (x == reg)
6209 return (rtx) (HOST_WIDE_INT) 1;
6211 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6213 if (fmt[i] == 'e')
6215 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
6216 if (value == 0)
6217 value = tem;
6218 else if (tem != 0)
6219 return (rtx) (HOST_WIDE_INT) 1;
6221 else if (fmt[i] == 'E')
6223 register int j;
6224 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6226 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
6227 if (value == 0)
6228 value = tem;
6229 else if (tem != 0)
6230 return (rtx) (HOST_WIDE_INT) 1;
6235 return value;
6238 /* Write information about registers and basic blocks into FILE.
6239 This is part of making a debugging dump. */
6241 void
6242 dump_regset (r, outf)
6243 regset r;
6244 FILE *outf;
6246 int i;
6247 if (r == NULL)
6249 fputs (" (nil)", outf);
6250 return;
6253 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
6255 fprintf (outf, " %d", i);
6256 if (i < FIRST_PSEUDO_REGISTER)
6257 fprintf (outf, " [%s]",
6258 reg_names[i]);
6262 void
6263 debug_regset (r)
6264 regset r;
6266 dump_regset (r, stderr);
6267 putc ('\n', stderr);
6270 void
6271 dump_flow_info (file)
6272 FILE *file;
6274 register int i;
6275 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6277 fprintf (file, "%d registers.\n", max_regno);
6278 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
6279 if (REG_N_REFS (i))
6281 enum reg_class class, altclass;
6282 fprintf (file, "\nRegister %d used %d times across %d insns",
6283 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
6284 if (REG_BASIC_BLOCK (i) >= 0)
6285 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
6286 if (REG_N_SETS (i))
6287 fprintf (file, "; set %d time%s", REG_N_SETS (i),
6288 (REG_N_SETS (i) == 1) ? "" : "s");
6289 if (REG_USERVAR_P (regno_reg_rtx[i]))
6290 fprintf (file, "; user var");
6291 if (REG_N_DEATHS (i) != 1)
6292 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
6293 if (REG_N_CALLS_CROSSED (i) == 1)
6294 fprintf (file, "; crosses 1 call");
6295 else if (REG_N_CALLS_CROSSED (i))
6296 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
6297 if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
6298 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
6299 class = reg_preferred_class (i);
6300 altclass = reg_alternate_class (i);
6301 if (class != GENERAL_REGS || altclass != ALL_REGS)
6303 if (altclass == ALL_REGS || class == ALL_REGS)
6304 fprintf (file, "; pref %s", reg_class_names[(int) class]);
6305 else if (altclass == NO_REGS)
6306 fprintf (file, "; %s or none", reg_class_names[(int) class]);
6307 else
6308 fprintf (file, "; pref %s, else %s",
6309 reg_class_names[(int) class],
6310 reg_class_names[(int) altclass]);
6312 if (REG_POINTER (regno_reg_rtx[i]))
6313 fprintf (file, "; pointer");
6314 fprintf (file, ".\n");
6317 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
6318 for (i = 0; i < n_basic_blocks; i++)
6320 register basic_block bb = BASIC_BLOCK (i);
6321 register edge e;
6323 fprintf (file, "\nBasic block %d: first insn %d, last %d, loop_depth %d, count %d.\n",
6324 i, INSN_UID (bb->head), INSN_UID (bb->end), bb->loop_depth, bb->count);
6326 fprintf (file, "Predecessors: ");
6327 for (e = bb->pred; e; e = e->pred_next)
6328 dump_edge_info (file, e, 0);
6330 fprintf (file, "\nSuccessors: ");
6331 for (e = bb->succ; e; e = e->succ_next)
6332 dump_edge_info (file, e, 1);
6334 fprintf (file, "\nRegisters live at start:");
6335 dump_regset (bb->global_live_at_start, file);
6337 fprintf (file, "\nRegisters live at end:");
6338 dump_regset (bb->global_live_at_end, file);
6340 putc ('\n', file);
6343 putc ('\n', file);
6346 void
6347 debug_flow_info ()
6349 dump_flow_info (stderr);
6352 static void
6353 dump_edge_info (file, e, do_succ)
6354 FILE *file;
6355 edge e;
6356 int do_succ;
6358 basic_block side = (do_succ ? e->dest : e->src);
6360 if (side == ENTRY_BLOCK_PTR)
6361 fputs (" ENTRY", file);
6362 else if (side == EXIT_BLOCK_PTR)
6363 fputs (" EXIT", file);
6364 else
6365 fprintf (file, " %d", side->index);
6367 if (e->count)
6368 fprintf (file, " count:%d", e->count);
6370 if (e->flags)
6372 static const char * const bitnames[] = {
6373 "fallthru", "crit", "ab", "abcall", "eh", "fake"
6375 int comma = 0;
6376 int i, flags = e->flags;
6378 fputc (' ', file);
6379 fputc ('(', file);
6380 for (i = 0; flags; i++)
6381 if (flags & (1 << i))
6383 flags &= ~(1 << i);
6385 if (comma)
6386 fputc (',', file);
6387 if (i < (int) ARRAY_SIZE (bitnames))
6388 fputs (bitnames[i], file);
6389 else
6390 fprintf (file, "%d", i);
6391 comma = 1;
6393 fputc (')', file);
6397 /* Print out one basic block with live information at start and end. */
6399 void
6400 dump_bb (bb, outf)
6401 basic_block bb;
6402 FILE *outf;
6404 rtx insn;
6405 rtx last;
6406 edge e;
6408 fprintf (outf, ";; Basic block %d, loop depth %d, count %d",
6409 bb->index, bb->loop_depth, bb->count);
6410 putc ('\n', outf);
6412 fputs (";; Predecessors: ", outf);
6413 for (e = bb->pred; e; e = e->pred_next)
6414 dump_edge_info (outf, e, 0);
6415 putc ('\n', outf);
6417 fputs (";; Registers live at start:", outf);
6418 dump_regset (bb->global_live_at_start, outf);
6419 putc ('\n', outf);
6421 for (insn = bb->head, last = NEXT_INSN (bb->end);
6422 insn != last;
6423 insn = NEXT_INSN (insn))
6424 print_rtl_single (outf, insn);
6426 fputs (";; Registers live at end:", outf);
6427 dump_regset (bb->global_live_at_end, outf);
6428 putc ('\n', outf);
6430 fputs (";; Successors: ", outf);
6431 for (e = bb->succ; e; e = e->succ_next)
6432 dump_edge_info (outf, e, 1);
6433 putc ('\n', outf);
6436 void
6437 debug_bb (bb)
6438 basic_block bb;
6440 dump_bb (bb, stderr);
6443 void
6444 debug_bb_n (n)
6445 int n;
6447 dump_bb (BASIC_BLOCK (n), stderr);
6450 /* Like print_rtl, but also print out live information for the start of each
6451 basic block. */
6453 void
6454 print_rtl_with_bb (outf, rtx_first)
6455 FILE *outf;
6456 rtx rtx_first;
6458 register rtx tmp_rtx;
6460 if (rtx_first == 0)
6461 fprintf (outf, "(nil)\n");
6462 else
6464 int i;
6465 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
6466 int max_uid = get_max_uid ();
6467 basic_block *start = (basic_block *)
6468 xcalloc (max_uid, sizeof (basic_block));
6469 basic_block *end = (basic_block *)
6470 xcalloc (max_uid, sizeof (basic_block));
6471 enum bb_state *in_bb_p = (enum bb_state *)
6472 xcalloc (max_uid, sizeof (enum bb_state));
6474 for (i = n_basic_blocks - 1; i >= 0; i--)
6476 basic_block bb = BASIC_BLOCK (i);
6477 rtx x;
6479 start[INSN_UID (bb->head)] = bb;
6480 end[INSN_UID (bb->end)] = bb;
6481 for (x = bb->head; x != NULL_RTX; x = NEXT_INSN (x))
6483 enum bb_state state = IN_MULTIPLE_BB;
6484 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
6485 state = IN_ONE_BB;
6486 in_bb_p[INSN_UID (x)] = state;
6488 if (x == bb->end)
6489 break;
6493 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
6495 int did_output;
6496 basic_block bb;
6498 if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
6500 fprintf (outf, ";; Start of basic block %d, registers live:",
6501 bb->index);
6502 dump_regset (bb->global_live_at_start, outf);
6503 putc ('\n', outf);
6506 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
6507 && GET_CODE (tmp_rtx) != NOTE
6508 && GET_CODE (tmp_rtx) != BARRIER)
6509 fprintf (outf, ";; Insn is not within a basic block\n");
6510 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
6511 fprintf (outf, ";; Insn is in multiple basic blocks\n");
6513 did_output = print_rtl_single (outf, tmp_rtx);
6515 if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
6517 fprintf (outf, ";; End of basic block %d, registers live:\n",
6518 bb->index);
6519 dump_regset (bb->global_live_at_end, outf);
6520 putc ('\n', outf);
6523 if (did_output)
6524 putc ('\n', outf);
6527 free (start);
6528 free (end);
6529 free (in_bb_p);
6532 if (current_function_epilogue_delay_list != 0)
6534 fprintf (outf, "\n;; Insns in epilogue delay list:\n\n");
6535 for (tmp_rtx = current_function_epilogue_delay_list; tmp_rtx != 0;
6536 tmp_rtx = XEXP (tmp_rtx, 1))
6537 print_rtl_single (outf, XEXP (tmp_rtx, 0));
6541 /* Dump the rtl into the current debugging dump file, then abort. */
6543 static void
6544 print_rtl_and_abort_fcn (file, line, function)
6545 const char *file;
6546 int line;
6547 const char *function;
6549 if (rtl_dump_file)
6551 print_rtl_with_bb (rtl_dump_file, get_insns ());
6552 fclose (rtl_dump_file);
6555 fancy_abort (file, line, function);
6558 /* Recompute register set/reference counts immediately prior to register
6559 allocation.
6561 This avoids problems with set/reference counts changing to/from values
6562 which have special meanings to the register allocators.
6564 Additionally, the reference counts are the primary component used by the
6565 register allocators to prioritize pseudos for allocation to hard regs.
6566 More accurate reference counts generally lead to better register allocation.
6568 F is the first insn to be scanned.
6570 LOOP_STEP denotes how much loop_depth should be incremented per
6571 loop nesting level in order to increase the ref count more for
6572 references in a loop.
6574 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
6575 possibly other information which is used by the register allocators. */
6577 void
6578 recompute_reg_usage (f, loop_step)
6579 rtx f ATTRIBUTE_UNUSED;
6580 int loop_step ATTRIBUTE_UNUSED;
6582 allocate_reg_life_data ();
6583 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
6586 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
6587 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
6588 of the number of registers that died. */
6591 count_or_remove_death_notes (blocks, kill)
6592 sbitmap blocks;
6593 int kill;
6595 int i, count = 0;
6597 for (i = n_basic_blocks - 1; i >= 0; --i)
6599 basic_block bb;
6600 rtx insn;
6602 if (blocks && ! TEST_BIT (blocks, i))
6603 continue;
6605 bb = BASIC_BLOCK (i);
6607 for (insn = bb->head;; insn = NEXT_INSN (insn))
6609 if (INSN_P (insn))
6611 rtx *pprev = &REG_NOTES (insn);
6612 rtx link = *pprev;
6614 while (link)
6616 switch (REG_NOTE_KIND (link))
6618 case REG_DEAD:
6619 if (GET_CODE (XEXP (link, 0)) == REG)
6621 rtx reg = XEXP (link, 0);
6622 int n;
6624 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
6625 n = 1;
6626 else
6627 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
6628 count += n;
6630 /* Fall through. */
6632 case REG_UNUSED:
6633 if (kill)
6635 rtx next = XEXP (link, 1);
6636 free_EXPR_LIST_node (link);
6637 *pprev = link = next;
6638 break;
6640 /* Fall through. */
6642 default:
6643 pprev = &XEXP (link, 1);
6644 link = *pprev;
6645 break;
6650 if (insn == bb->end)
6651 break;
6655 return count;
6659 /* Update insns block within BB. */
6661 void
6662 update_bb_for_insn (bb)
6663 basic_block bb;
6665 rtx insn;
6667 if (! basic_block_for_insn)
6668 return;
6670 for (insn = bb->head; ; insn = NEXT_INSN (insn))
6672 set_block_for_insn (insn, bb);
6674 if (insn == bb->end)
6675 break;
6680 /* Record INSN's block as BB. */
6682 void
6683 set_block_for_insn (insn, bb)
6684 rtx insn;
6685 basic_block bb;
6687 size_t uid = INSN_UID (insn);
6688 if (uid >= basic_block_for_insn->num_elements)
6690 int new_size;
6692 /* Add one-eighth the size so we don't keep calling xrealloc. */
6693 new_size = uid + (uid + 7) / 8;
6695 VARRAY_GROW (basic_block_for_insn, new_size);
6697 VARRAY_BB (basic_block_for_insn, uid) = bb;
6700 /* When a new insn has been inserted into an existing block, it will
6701 sometimes emit more than a single insn. This routine will set the
6702 block number for the specified insn, and look backwards in the insn
6703 chain to see if there are any other uninitialized insns immediately
6704 previous to this one, and set the block number for them too. */
6706 void
6707 set_block_for_new_insns (insn, bb)
6708 rtx insn;
6709 basic_block bb;
6711 set_block_for_insn (insn, bb);
6713 /* We dont scan to set the block to 0 since this is the default value.
6714 If we did, we'd end up scanning/setting the entire prologue block
6715 everytime we insert an insn into it. */
6716 if (bb->index == 0)
6717 return;
6719 /* Scan the previous instructions setting the block number until we find
6720 an instruction that has the block number set, or we find a note
6721 of any kind. */
6722 for (insn = PREV_INSN (insn); insn != NULL_RTX; insn = PREV_INSN (insn))
6724 if (GET_CODE (insn) == NOTE)
6725 break;
6726 if (INSN_UID (insn) >= basic_block_for_insn->num_elements
6727 || BLOCK_FOR_INSN (insn) == 0)
6728 set_block_for_insn (insn, bb);
6729 else
6730 break;
6734 /* Verify the CFG consistency. This function check some CFG invariants and
6735 aborts when something is wrong. Hope that this function will help to
6736 convert many optimization passes to preserve CFG consistent.
6738 Currently it does following checks:
6740 - test head/end pointers
6741 - overlapping of basic blocks
6742 - edge list corectness
6743 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
6744 - tails of basic blocks (ensure that boundary is necesary)
6745 - scans body of the basic block for JUMP_INSN, CODE_LABEL
6746 and NOTE_INSN_BASIC_BLOCK
6747 - check that all insns are in the basic blocks
6748 (except the switch handling code, barriers and notes)
6749 - check that all returns are followed by barriers
6751 In future it can be extended check a lot of other stuff as well
6752 (reachability of basic blocks, life information, etc. etc.). */
6754 void
6755 verify_flow_info ()
6757 const int max_uid = get_max_uid ();
6758 const rtx rtx_first = get_insns ();
6759 rtx last_head = get_last_insn ();
6760 basic_block *bb_info;
6761 rtx x;
6762 int i, last_bb_num_seen, num_bb_notes, err = 0;
6764 bb_info = (basic_block *) xcalloc (max_uid, sizeof (basic_block));
6766 for (i = n_basic_blocks - 1; i >= 0; i--)
6768 basic_block bb = BASIC_BLOCK (i);
6769 rtx head = bb->head;
6770 rtx end = bb->end;
6772 /* Verify the end of the basic block is in the INSN chain. */
6773 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
6774 if (x == end)
6775 break;
6776 if (!x)
6778 error ("End insn %d for block %d not found in the insn stream.",
6779 INSN_UID (end), bb->index);
6780 err = 1;
6783 /* Work backwards from the end to the head of the basic block
6784 to verify the head is in the RTL chain. */
6785 for (; x != NULL_RTX; x = PREV_INSN (x))
6787 /* While walking over the insn chain, verify insns appear
6788 in only one basic block and initialize the BB_INFO array
6789 used by other passes. */
6790 if (bb_info[INSN_UID (x)] != NULL)
6792 error ("Insn %d is in multiple basic blocks (%d and %d)",
6793 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
6794 err = 1;
6796 bb_info[INSN_UID (x)] = bb;
6798 if (x == head)
6799 break;
6801 if (!x)
6803 error ("Head insn %d for block %d not found in the insn stream.",
6804 INSN_UID (head), bb->index);
6805 err = 1;
6808 last_head = x;
6811 /* Now check the basic blocks (boundaries etc.) */
6812 for (i = n_basic_blocks - 1; i >= 0; i--)
6814 basic_block bb = BASIC_BLOCK (i);
6815 /* Check corectness of edge lists */
6816 edge e;
6818 e = bb->succ;
6819 while (e)
6821 if (e->src != bb)
6823 fprintf (stderr,
6824 "verify_flow_info: Basic block %d succ edge is corrupted\n",
6825 bb->index);
6826 fprintf (stderr, "Predecessor: ");
6827 dump_edge_info (stderr, e, 0);
6828 fprintf (stderr, "\nSuccessor: ");
6829 dump_edge_info (stderr, e, 1);
6830 fflush (stderr);
6831 err = 1;
6833 if (e->dest != EXIT_BLOCK_PTR)
6835 edge e2 = e->dest->pred;
6836 while (e2 && e2 != e)
6837 e2 = e2->pred_next;
6838 if (!e2)
6840 error ("Basic block %i edge lists are corrupted", bb->index);
6841 err = 1;
6844 e = e->succ_next;
6847 e = bb->pred;
6848 while (e)
6850 if (e->dest != bb)
6852 error ("Basic block %d pred edge is corrupted", bb->index);
6853 fputs ("Predecessor: ", stderr);
6854 dump_edge_info (stderr, e, 0);
6855 fputs ("\nSuccessor: ", stderr);
6856 dump_edge_info (stderr, e, 1);
6857 fputc ('\n', stderr);
6858 err = 1;
6860 if (e->src != ENTRY_BLOCK_PTR)
6862 edge e2 = e->src->succ;
6863 while (e2 && e2 != e)
6864 e2 = e2->succ_next;
6865 if (!e2)
6867 error ("Basic block %i edge lists are corrupted", bb->index);
6868 err = 1;
6871 e = e->pred_next;
6874 /* OK pointers are correct. Now check the header of basic
6875 block. It ought to contain optional CODE_LABEL followed
6876 by NOTE_BASIC_BLOCK. */
6877 x = bb->head;
6878 if (GET_CODE (x) == CODE_LABEL)
6880 if (bb->end == x)
6882 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
6883 bb->index);
6884 err = 1;
6886 x = NEXT_INSN (x);
6888 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
6890 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d\n",
6891 bb->index);
6892 err = 1;
6895 if (bb->end == x)
6897 /* Do checks for empty blocks here */
6899 else
6901 x = NEXT_INSN (x);
6902 while (x)
6904 if (NOTE_INSN_BASIC_BLOCK_P (x))
6906 error ("NOTE_INSN_BASIC_BLOCK %d in the middle of basic block %d",
6907 INSN_UID (x), bb->index);
6908 err = 1;
6911 if (x == bb->end)
6912 break;
6914 if (GET_CODE (x) == JUMP_INSN
6915 || GET_CODE (x) == CODE_LABEL
6916 || GET_CODE (x) == BARRIER)
6918 error ("In basic block %d:", bb->index);
6919 fatal_insn ("Flow control insn inside a basic block", x);
6922 x = NEXT_INSN (x);
6927 last_bb_num_seen = -1;
6928 num_bb_notes = 0;
6929 x = rtx_first;
6930 while (x)
6932 if (NOTE_INSN_BASIC_BLOCK_P (x))
6934 basic_block bb = NOTE_BASIC_BLOCK (x);
6935 num_bb_notes++;
6936 if (bb->index != last_bb_num_seen + 1)
6937 /* Basic blocks not numbered consecutively. */
6938 abort ();
6940 last_bb_num_seen = bb->index;
6943 if (!bb_info[INSN_UID (x)])
6945 switch (GET_CODE (x))
6947 case BARRIER:
6948 case NOTE:
6949 break;
6951 case CODE_LABEL:
6952 /* An addr_vec is placed outside any block block. */
6953 if (NEXT_INSN (x)
6954 && GET_CODE (NEXT_INSN (x)) == JUMP_INSN
6955 && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
6956 || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
6958 x = NEXT_INSN (x);
6961 /* But in any case, non-deletable labels can appear anywhere. */
6962 break;
6964 default:
6965 fatal_insn ("Insn outside basic block", x);
6969 if (INSN_P (x)
6970 && GET_CODE (x) == JUMP_INSN
6971 && returnjump_p (x) && ! condjump_p (x)
6972 && ! (NEXT_INSN (x) && GET_CODE (NEXT_INSN (x)) == BARRIER))
6973 fatal_insn ("Return not followed by barrier", x);
6975 x = NEXT_INSN (x);
6978 if (num_bb_notes != n_basic_blocks)
6979 internal_error
6980 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
6981 num_bb_notes, n_basic_blocks);
6983 if (err)
6984 abort ();
6986 /* Clean up. */
6987 free (bb_info);
6990 /* Functions to access an edge list with a vector representation.
6991 Enough data is kept such that given an index number, the
6992 pred and succ that edge represents can be determined, or
6993 given a pred and a succ, its index number can be returned.
6994 This allows algorithms which consume a lot of memory to
6995 represent the normally full matrix of edge (pred,succ) with a
6996 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
6997 wasted space in the client code due to sparse flow graphs. */
6999 /* This functions initializes the edge list. Basically the entire
7000 flowgraph is processed, and all edges are assigned a number,
7001 and the data structure is filled in. */
7003 struct edge_list *
7004 create_edge_list ()
7006 struct edge_list *elist;
7007 edge e;
7008 int num_edges;
7009 int x;
7010 int block_count;
7012 block_count = n_basic_blocks + 2; /* Include the entry and exit blocks. */
7014 num_edges = 0;
7016 /* Determine the number of edges in the flow graph by counting successor
7017 edges on each basic block. */
7018 for (x = 0; x < n_basic_blocks; x++)
7020 basic_block bb = BASIC_BLOCK (x);
7022 for (e = bb->succ; e; e = e->succ_next)
7023 num_edges++;
7025 /* Don't forget successors of the entry block. */
7026 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
7027 num_edges++;
7029 elist = (struct edge_list *) xmalloc (sizeof (struct edge_list));
7030 elist->num_blocks = block_count;
7031 elist->num_edges = num_edges;
7032 elist->index_to_edge = (edge *) xmalloc (sizeof (edge) * num_edges);
7034 num_edges = 0;
7036 /* Follow successors of the entry block, and register these edges. */
7037 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
7039 elist->index_to_edge[num_edges] = e;
7040 num_edges++;
7043 for (x = 0; x < n_basic_blocks; x++)
7045 basic_block bb = BASIC_BLOCK (x);
7047 /* Follow all successors of blocks, and register these edges. */
7048 for (e = bb->succ; e; e = e->succ_next)
7050 elist->index_to_edge[num_edges] = e;
7051 num_edges++;
7054 return elist;
7057 /* This function free's memory associated with an edge list. */
7059 void
7060 free_edge_list (elist)
7061 struct edge_list *elist;
7063 if (elist)
7065 free (elist->index_to_edge);
7066 free (elist);
7070 /* This function provides debug output showing an edge list. */
7072 void
7073 print_edge_list (f, elist)
7074 FILE *f;
7075 struct edge_list *elist;
7077 int x;
7078 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
7079 elist->num_blocks - 2, elist->num_edges);
7081 for (x = 0; x < elist->num_edges; x++)
7083 fprintf (f, " %-4d - edge(", x);
7084 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
7085 fprintf (f, "entry,");
7086 else
7087 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
7089 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
7090 fprintf (f, "exit)\n");
7091 else
7092 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
7096 /* This function provides an internal consistency check of an edge list,
7097 verifying that all edges are present, and that there are no
7098 extra edges. */
7100 void
7101 verify_edge_list (f, elist)
7102 FILE *f;
7103 struct edge_list *elist;
7105 int x, pred, succ, index;
7106 edge e;
7108 for (x = 0; x < n_basic_blocks; x++)
7110 basic_block bb = BASIC_BLOCK (x);
7112 for (e = bb->succ; e; e = e->succ_next)
7114 pred = e->src->index;
7115 succ = e->dest->index;
7116 index = EDGE_INDEX (elist, e->src, e->dest);
7117 if (index == EDGE_INDEX_NO_EDGE)
7119 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
7120 continue;
7122 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
7123 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
7124 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
7125 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
7126 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
7127 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
7130 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
7132 pred = e->src->index;
7133 succ = e->dest->index;
7134 index = EDGE_INDEX (elist, e->src, e->dest);
7135 if (index == EDGE_INDEX_NO_EDGE)
7137 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
7138 continue;
7140 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
7141 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
7142 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
7143 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
7144 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
7145 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
7147 /* We've verified that all the edges are in the list, no lets make sure
7148 there are no spurious edges in the list. */
7150 for (pred = 0; pred < n_basic_blocks; pred++)
7151 for (succ = 0; succ < n_basic_blocks; succ++)
7153 basic_block p = BASIC_BLOCK (pred);
7154 basic_block s = BASIC_BLOCK (succ);
7156 int found_edge = 0;
7158 for (e = p->succ; e; e = e->succ_next)
7159 if (e->dest == s)
7161 found_edge = 1;
7162 break;
7164 for (e = s->pred; e; e = e->pred_next)
7165 if (e->src == p)
7167 found_edge = 1;
7168 break;
7170 if (EDGE_INDEX (elist, BASIC_BLOCK (pred), BASIC_BLOCK (succ))
7171 == EDGE_INDEX_NO_EDGE && found_edge != 0)
7172 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
7173 pred, succ);
7174 if (EDGE_INDEX (elist, BASIC_BLOCK (pred), BASIC_BLOCK (succ))
7175 != EDGE_INDEX_NO_EDGE && found_edge == 0)
7176 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
7177 pred, succ, EDGE_INDEX (elist, BASIC_BLOCK (pred),
7178 BASIC_BLOCK (succ)));
7180 for (succ = 0; succ < n_basic_blocks; succ++)
7182 basic_block p = ENTRY_BLOCK_PTR;
7183 basic_block s = BASIC_BLOCK (succ);
7185 int found_edge = 0;
7187 for (e = p->succ; e; e = e->succ_next)
7188 if (e->dest == s)
7190 found_edge = 1;
7191 break;
7193 for (e = s->pred; e; e = e->pred_next)
7194 if (e->src == p)
7196 found_edge = 1;
7197 break;
7199 if (EDGE_INDEX (elist, ENTRY_BLOCK_PTR, BASIC_BLOCK (succ))
7200 == EDGE_INDEX_NO_EDGE && found_edge != 0)
7201 fprintf (f, "*** Edge (entry, %d) appears to not have an index\n",
7202 succ);
7203 if (EDGE_INDEX (elist, ENTRY_BLOCK_PTR, BASIC_BLOCK (succ))
7204 != EDGE_INDEX_NO_EDGE && found_edge == 0)
7205 fprintf (f, "*** Edge (entry, %d) has index %d, but no edge exists\n",
7206 succ, EDGE_INDEX (elist, ENTRY_BLOCK_PTR,
7207 BASIC_BLOCK (succ)));
7209 for (pred = 0; pred < n_basic_blocks; pred++)
7211 basic_block p = BASIC_BLOCK (pred);
7212 basic_block s = EXIT_BLOCK_PTR;
7214 int found_edge = 0;
7216 for (e = p->succ; e; e = e->succ_next)
7217 if (e->dest == s)
7219 found_edge = 1;
7220 break;
7222 for (e = s->pred; e; e = e->pred_next)
7223 if (e->src == p)
7225 found_edge = 1;
7226 break;
7228 if (EDGE_INDEX (elist, BASIC_BLOCK (pred), EXIT_BLOCK_PTR)
7229 == EDGE_INDEX_NO_EDGE && found_edge != 0)
7230 fprintf (f, "*** Edge (%d, exit) appears to not have an index\n",
7231 pred);
7232 if (EDGE_INDEX (elist, BASIC_BLOCK (pred), EXIT_BLOCK_PTR)
7233 != EDGE_INDEX_NO_EDGE && found_edge == 0)
7234 fprintf (f, "*** Edge (%d, exit) has index %d, but no edge exists\n",
7235 pred, EDGE_INDEX (elist, BASIC_BLOCK (pred),
7236 EXIT_BLOCK_PTR));
7240 /* This routine will determine what, if any, edge there is between
7241 a specified predecessor and successor. */
7244 find_edge_index (edge_list, pred, succ)
7245 struct edge_list *edge_list;
7246 basic_block pred, succ;
7248 int x;
7249 for (x = 0; x < NUM_EDGES (edge_list); x++)
7251 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
7252 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
7253 return x;
7255 return (EDGE_INDEX_NO_EDGE);
7258 /* This function will remove an edge from the flow graph. */
7260 void
7261 remove_edge (e)
7262 edge e;
7264 edge last_pred = NULL;
7265 edge last_succ = NULL;
7266 edge tmp;
7267 basic_block src, dest;
7268 src = e->src;
7269 dest = e->dest;
7270 for (tmp = src->succ; tmp && tmp != e; tmp = tmp->succ_next)
7271 last_succ = tmp;
7273 if (!tmp)
7274 abort ();
7275 if (last_succ)
7276 last_succ->succ_next = e->succ_next;
7277 else
7278 src->succ = e->succ_next;
7280 for (tmp = dest->pred; tmp && tmp != e; tmp = tmp->pred_next)
7281 last_pred = tmp;
7283 if (!tmp)
7284 abort ();
7285 if (last_pred)
7286 last_pred->pred_next = e->pred_next;
7287 else
7288 dest->pred = e->pred_next;
7290 n_edges--;
7291 free (e);
7294 /* This routine will remove any fake successor edges for a basic block.
7295 When the edge is removed, it is also removed from whatever predecessor
7296 list it is in. */
7298 static void
7299 remove_fake_successors (bb)
7300 basic_block bb;
7302 edge e;
7303 for (e = bb->succ; e;)
7305 edge tmp = e;
7306 e = e->succ_next;
7307 if ((tmp->flags & EDGE_FAKE) == EDGE_FAKE)
7308 remove_edge (tmp);
7312 /* This routine will remove all fake edges from the flow graph. If
7313 we remove all fake successors, it will automatically remove all
7314 fake predecessors. */
7316 void
7317 remove_fake_edges ()
7319 int x;
7321 for (x = 0; x < n_basic_blocks; x++)
7322 remove_fake_successors (BASIC_BLOCK (x));
7324 /* We've handled all successors except the entry block's. */
7325 remove_fake_successors (ENTRY_BLOCK_PTR);
7328 /* This function will add a fake edge between any block which has no
7329 successors, and the exit block. Some data flow equations require these
7330 edges to exist. */
7332 void
7333 add_noreturn_fake_exit_edges ()
7335 int x;
7337 for (x = 0; x < n_basic_blocks; x++)
7338 if (BASIC_BLOCK (x)->succ == NULL)
7339 make_edge (NULL, BASIC_BLOCK (x), EXIT_BLOCK_PTR, EDGE_FAKE);
7342 /* This function adds a fake edge between any infinite loops to the
7343 exit block. Some optimizations require a path from each node to
7344 the exit node.
7346 See also Morgan, Figure 3.10, pp. 82-83.
7348 The current implementation is ugly, not attempting to minimize the
7349 number of inserted fake edges. To reduce the number of fake edges
7350 to insert, add fake edges from _innermost_ loops containing only
7351 nodes not reachable from the exit block. */
7353 void
7354 connect_infinite_loops_to_exit ()
7356 basic_block unvisited_block;
7358 /* Perform depth-first search in the reverse graph to find nodes
7359 reachable from the exit block. */
7360 struct depth_first_search_dsS dfs_ds;
7362 flow_dfs_compute_reverse_init (&dfs_ds);
7363 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
7365 /* Repeatedly add fake edges, updating the unreachable nodes. */
7366 while (1)
7368 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds);
7369 if (!unvisited_block)
7370 break;
7371 make_edge (NULL, unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
7372 flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
7375 flow_dfs_compute_reverse_finish (&dfs_ds);
7377 return;
7380 /* Redirect an edge's successor from one block to another. */
7382 void
7383 redirect_edge_succ (e, new_succ)
7384 edge e;
7385 basic_block new_succ;
7387 edge *pe;
7389 /* Disconnect the edge from the old successor block. */
7390 for (pe = &e->dest->pred; *pe != e; pe = &(*pe)->pred_next)
7391 continue;
7392 *pe = (*pe)->pred_next;
7394 /* Reconnect the edge to the new successor block. */
7395 e->pred_next = new_succ->pred;
7396 new_succ->pred = e;
7397 e->dest = new_succ;
7400 /* Redirect an edge's predecessor from one block to another. */
7402 void
7403 redirect_edge_pred (e, new_pred)
7404 edge e;
7405 basic_block new_pred;
7407 edge *pe;
7409 /* Disconnect the edge from the old predecessor block. */
7410 for (pe = &e->src->succ; *pe != e; pe = &(*pe)->succ_next)
7411 continue;
7412 *pe = (*pe)->succ_next;
7414 /* Reconnect the edge to the new predecessor block. */
7415 e->succ_next = new_pred->succ;
7416 new_pred->succ = e;
7417 e->src = new_pred;
7420 /* Dump the list of basic blocks in the bitmap NODES. */
7422 static void
7423 flow_nodes_print (str, nodes, file)
7424 const char *str;
7425 const sbitmap nodes;
7426 FILE *file;
7428 int node;
7430 if (! nodes)
7431 return;
7433 fprintf (file, "%s { ", str);
7434 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {fprintf (file, "%d ", node);});
7435 fputs ("}\n", file);
7439 /* Dump the list of edges in the array EDGE_LIST. */
7441 static void
7442 flow_edge_list_print (str, edge_list, num_edges, file)
7443 const char *str;
7444 const edge *edge_list;
7445 int num_edges;
7446 FILE *file;
7448 int i;
7450 if (! edge_list)
7451 return;
7453 fprintf (file, "%s { ", str);
7454 for (i = 0; i < num_edges; i++)
7455 fprintf (file, "%d->%d ", edge_list[i]->src->index,
7456 edge_list[i]->dest->index);
7457 fputs ("}\n", file);
7461 /* Dump loop related CFG information. */
7463 static void
7464 flow_loops_cfg_dump (loops, file)
7465 const struct loops *loops;
7466 FILE *file;
7468 int i;
7470 if (! loops->num || ! file || ! loops->cfg.dom)
7471 return;
7473 for (i = 0; i < n_basic_blocks; i++)
7475 edge succ;
7477 fprintf (file, ";; %d succs { ", i);
7478 for (succ = BASIC_BLOCK (i)->succ; succ; succ = succ->succ_next)
7479 fprintf (file, "%d ", succ->dest->index);
7480 flow_nodes_print ("} dom", loops->cfg.dom[i], file);
7483 /* Dump the DFS node order. */
7484 if (loops->cfg.dfs_order)
7486 fputs (";; DFS order: ", file);
7487 for (i = 0; i < n_basic_blocks; i++)
7488 fprintf (file, "%d ", loops->cfg.dfs_order[i]);
7489 fputs ("\n", file);
7491 /* Dump the reverse completion node order. */
7492 if (loops->cfg.rc_order)
7494 fputs (";; RC order: ", file);
7495 for (i = 0; i < n_basic_blocks; i++)
7496 fprintf (file, "%d ", loops->cfg.rc_order[i]);
7497 fputs ("\n", file);
7501 /* Return non-zero if the nodes of LOOP are a subset of OUTER. */
7503 static int
7504 flow_loop_nested_p (outer, loop)
7505 struct loop *outer;
7506 struct loop *loop;
7508 return sbitmap_a_subset_b_p (loop->nodes, outer->nodes);
7512 /* Dump the loop information specified by LOOP to the stream FILE
7513 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
7514 void
7515 flow_loop_dump (loop, file, loop_dump_aux, verbose)
7516 const struct loop *loop;
7517 FILE *file;
7518 void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
7519 int verbose;
7521 if (! loop || ! loop->header)
7522 return;
7524 fprintf (file, ";;\n;; Loop %d (%d to %d):%s%s\n",
7525 loop->num, INSN_UID (loop->first->head),
7526 INSN_UID (loop->last->end),
7527 loop->shared ? " shared" : "",
7528 loop->invalid ? " invalid" : "");
7529 fprintf (file, ";; header %d, latch %d, pre-header %d, first %d, last %d\n",
7530 loop->header->index, loop->latch->index,
7531 loop->pre_header ? loop->pre_header->index : -1,
7532 loop->first->index, loop->last->index);
7533 fprintf (file, ";; depth %d, level %d, outer %ld\n",
7534 loop->depth, loop->level,
7535 (long) (loop->outer ? loop->outer->num : -1));
7537 if (loop->pre_header_edges)
7538 flow_edge_list_print (";; pre-header edges", loop->pre_header_edges,
7539 loop->num_pre_header_edges, file);
7540 flow_edge_list_print (";; entry edges", loop->entry_edges,
7541 loop->num_entries, file);
7542 fprintf (file, ";; %d", loop->num_nodes);
7543 flow_nodes_print (" nodes", loop->nodes, file);
7544 flow_edge_list_print (";; exit edges", loop->exit_edges,
7545 loop->num_exits, file);
7546 if (loop->exits_doms)
7547 flow_nodes_print (";; exit doms", loop->exits_doms, file);
7548 if (loop_dump_aux)
7549 loop_dump_aux (loop, file, verbose);
7553 /* Dump the loop information specified by LOOPS to the stream FILE,
7554 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
7555 void
7556 flow_loops_dump (loops, file, loop_dump_aux, verbose)
7557 const struct loops *loops;
7558 FILE *file;
7559 void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
7560 int verbose;
7562 int i;
7563 int num_loops;
7565 num_loops = loops->num;
7566 if (! num_loops || ! file)
7567 return;
7569 fprintf (file, ";; %d loops found, %d levels\n",
7570 num_loops, loops->levels);
7572 for (i = 0; i < num_loops; i++)
7574 struct loop *loop = &loops->array[i];
7576 flow_loop_dump (loop, file, loop_dump_aux, verbose);
7578 if (loop->shared)
7580 int j;
7582 for (j = 0; j < i; j++)
7584 struct loop *oloop = &loops->array[j];
7586 if (loop->header == oloop->header)
7588 int disjoint;
7589 int smaller;
7591 smaller = loop->num_nodes < oloop->num_nodes;
7593 /* If the union of LOOP and OLOOP is different than
7594 the larger of LOOP and OLOOP then LOOP and OLOOP
7595 must be disjoint. */
7596 disjoint = ! flow_loop_nested_p (smaller ? loop : oloop,
7597 smaller ? oloop : loop);
7598 fprintf (file,
7599 ";; loop header %d shared by loops %d, %d %s\n",
7600 loop->header->index, i, j,
7601 disjoint ? "disjoint" : "nested");
7607 if (verbose)
7608 flow_loops_cfg_dump (loops, file);
7612 /* Free all the memory allocated for LOOPS. */
7614 void
7615 flow_loops_free (loops)
7616 struct loops *loops;
7618 if (loops->array)
7620 int i;
7622 if (! loops->num)
7623 abort ();
7625 /* Free the loop descriptors. */
7626 for (i = 0; i < loops->num; i++)
7628 struct loop *loop = &loops->array[i];
7630 if (loop->pre_header_edges)
7631 free (loop->pre_header_edges);
7632 if (loop->nodes)
7633 sbitmap_free (loop->nodes);
7634 if (loop->entry_edges)
7635 free (loop->entry_edges);
7636 if (loop->exit_edges)
7637 free (loop->exit_edges);
7638 if (loop->exits_doms)
7639 sbitmap_free (loop->exits_doms);
7641 free (loops->array);
7642 loops->array = NULL;
7644 if (loops->cfg.dom)
7645 sbitmap_vector_free (loops->cfg.dom);
7646 if (loops->cfg.dfs_order)
7647 free (loops->cfg.dfs_order);
7649 if (loops->shared_headers)
7650 sbitmap_free (loops->shared_headers);
7655 /* Find the entry edges into the loop with header HEADER and nodes
7656 NODES and store in ENTRY_EDGES array. Return the number of entry
7657 edges from the loop. */
7659 static int
7660 flow_loop_entry_edges_find (header, nodes, entry_edges)
7661 basic_block header;
7662 const sbitmap nodes;
7663 edge **entry_edges;
7665 edge e;
7666 int num_entries;
7668 *entry_edges = NULL;
7670 num_entries = 0;
7671 for (e = header->pred; e; e = e->pred_next)
7673 basic_block src = e->src;
7675 if (src == ENTRY_BLOCK_PTR || ! TEST_BIT (nodes, src->index))
7676 num_entries++;
7679 if (! num_entries)
7680 abort ();
7682 *entry_edges = (edge *) xmalloc (num_entries * sizeof (edge *));
7684 num_entries = 0;
7685 for (e = header->pred; e; e = e->pred_next)
7687 basic_block src = e->src;
7689 if (src == ENTRY_BLOCK_PTR || ! TEST_BIT (nodes, src->index))
7690 (*entry_edges)[num_entries++] = e;
7693 return num_entries;
7697 /* Find the exit edges from the loop using the bitmap of loop nodes
7698 NODES and store in EXIT_EDGES array. Return the number of
7699 exit edges from the loop. */
7701 static int
7702 flow_loop_exit_edges_find (nodes, exit_edges)
7703 const sbitmap nodes;
7704 edge **exit_edges;
7706 edge e;
7707 int node;
7708 int num_exits;
7710 *exit_edges = NULL;
7712 /* Check all nodes within the loop to see if there are any
7713 successors not in the loop. Note that a node may have multiple
7714 exiting edges ????? A node can have one jumping edge and one fallthru
7715 edge so only one of these can exit the loop. */
7716 num_exits = 0;
7717 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {
7718 for (e = BASIC_BLOCK (node)->succ; e; e = e->succ_next)
7720 basic_block dest = e->dest;
7722 if (dest == EXIT_BLOCK_PTR || ! TEST_BIT (nodes, dest->index))
7723 num_exits++;
7727 if (! num_exits)
7728 return 0;
7730 *exit_edges = (edge *) xmalloc (num_exits * sizeof (edge *));
7732 /* Store all exiting edges into an array. */
7733 num_exits = 0;
7734 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {
7735 for (e = BASIC_BLOCK (node)->succ; e; e = e->succ_next)
7737 basic_block dest = e->dest;
7739 if (dest == EXIT_BLOCK_PTR || ! TEST_BIT (nodes, dest->index))
7740 (*exit_edges)[num_exits++] = e;
7744 return num_exits;
7748 /* Find the nodes contained within the loop with header HEADER and
7749 latch LATCH and store in NODES. Return the number of nodes within
7750 the loop. */
7752 static int
7753 flow_loop_nodes_find (header, latch, nodes)
7754 basic_block header;
7755 basic_block latch;
7756 sbitmap nodes;
7758 basic_block *stack;
7759 int sp;
7760 int num_nodes = 0;
7762 stack = (basic_block *) xmalloc (n_basic_blocks * sizeof (basic_block));
7763 sp = 0;
7765 /* Start with only the loop header in the set of loop nodes. */
7766 sbitmap_zero (nodes);
7767 SET_BIT (nodes, header->index);
7768 num_nodes++;
7769 header->loop_depth++;
7771 /* Push the loop latch on to the stack. */
7772 if (! TEST_BIT (nodes, latch->index))
7774 SET_BIT (nodes, latch->index);
7775 latch->loop_depth++;
7776 num_nodes++;
7777 stack[sp++] = latch;
7780 while (sp)
7782 basic_block node;
7783 edge e;
7785 node = stack[--sp];
7786 for (e = node->pred; e; e = e->pred_next)
7788 basic_block ancestor = e->src;
7790 /* If each ancestor not marked as part of loop, add to set of
7791 loop nodes and push on to stack. */
7792 if (ancestor != ENTRY_BLOCK_PTR
7793 && ! TEST_BIT (nodes, ancestor->index))
7795 SET_BIT (nodes, ancestor->index);
7796 ancestor->loop_depth++;
7797 num_nodes++;
7798 stack[sp++] = ancestor;
7802 free (stack);
7803 return num_nodes;
7806 /* Compute the depth first search order and store in the array
7807 DFS_ORDER if non-zero, marking the nodes visited in VISITED. If
7808 RC_ORDER is non-zero, return the reverse completion number for each
7809 node. Returns the number of nodes visited. A depth first search
7810 tries to get as far away from the starting point as quickly as
7811 possible. */
7813 static int
7814 flow_depth_first_order_compute (dfs_order, rc_order)
7815 int *dfs_order;
7816 int *rc_order;
7818 edge *stack;
7819 int sp;
7820 int dfsnum = 0;
7821 int rcnum = n_basic_blocks - 1;
7822 sbitmap visited;
7824 /* Allocate stack for back-tracking up CFG. */
7825 stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
7826 sp = 0;
7828 /* Allocate bitmap to track nodes that have been visited. */
7829 visited = sbitmap_alloc (n_basic_blocks);
7831 /* None of the nodes in the CFG have been visited yet. */
7832 sbitmap_zero (visited);
7834 /* Push the first edge on to the stack. */
7835 stack[sp++] = ENTRY_BLOCK_PTR->succ;
7837 while (sp)
7839 edge e;
7840 basic_block src;
7841 basic_block dest;
7843 /* Look at the edge on the top of the stack. */
7844 e = stack[sp - 1];
7845 src = e->src;
7846 dest = e->dest;
7848 /* Check if the edge destination has been visited yet. */
7849 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
7851 /* Mark that we have visited the destination. */
7852 SET_BIT (visited, dest->index);
7854 if (dfs_order)
7855 dfs_order[dfsnum++] = dest->index;
7857 if (dest->succ)
7859 /* Since the DEST node has been visited for the first
7860 time, check its successors. */
7861 stack[sp++] = dest->succ;
7863 else
7865 /* There are no successors for the DEST node so assign
7866 its reverse completion number. */
7867 if (rc_order)
7868 rc_order[rcnum--] = dest->index;
7871 else
7873 if (! e->succ_next && src != ENTRY_BLOCK_PTR)
7875 /* There are no more successors for the SRC node
7876 so assign its reverse completion number. */
7877 if (rc_order)
7878 rc_order[rcnum--] = src->index;
7881 if (e->succ_next)
7882 stack[sp - 1] = e->succ_next;
7883 else
7884 sp--;
7888 free (stack);
7889 sbitmap_free (visited);
7891 /* The number of nodes visited should not be greater than
7892 n_basic_blocks. */
7893 if (dfsnum > n_basic_blocks)
7894 abort ();
7896 /* There are some nodes left in the CFG that are unreachable. */
7897 if (dfsnum < n_basic_blocks)
7898 abort ();
7899 return dfsnum;
7902 /* Compute the depth first search order on the _reverse_ graph and
7903 store in the array DFS_ORDER, marking the nodes visited in VISITED.
7904 Returns the number of nodes visited.
7906 The computation is split into three pieces:
7908 flow_dfs_compute_reverse_init () creates the necessary data
7909 structures.
7911 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
7912 structures. The block will start the search.
7914 flow_dfs_compute_reverse_execute () continues (or starts) the
7915 search using the block on the top of the stack, stopping when the
7916 stack is empty.
7918 flow_dfs_compute_reverse_finish () destroys the necessary data
7919 structures.
7921 Thus, the user will probably call ..._init(), call ..._add_bb() to
7922 add a beginning basic block to the stack, call ..._execute(),
7923 possibly add another bb to the stack and again call ..._execute(),
7924 ..., and finally call _finish(). */
7926 /* Initialize the data structures used for depth-first search on the
7927 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
7928 added to the basic block stack. DATA is the current depth-first
7929 search context. If INITIALIZE_STACK is non-zero, there is an
7930 element on the stack. */
7932 static void
7933 flow_dfs_compute_reverse_init (data)
7934 depth_first_search_ds data;
7936 /* Allocate stack for back-tracking up CFG. */
7937 data->stack =
7938 (basic_block *) xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1))
7939 * sizeof (basic_block));
7940 data->sp = 0;
7942 /* Allocate bitmap to track nodes that have been visited. */
7943 data->visited_blocks = sbitmap_alloc (n_basic_blocks - (INVALID_BLOCK + 1));
7945 /* None of the nodes in the CFG have been visited yet. */
7946 sbitmap_zero (data->visited_blocks);
7948 return;
7951 /* Add the specified basic block to the top of the dfs data
7952 structures. When the search continues, it will start at the
7953 block. */
7955 static void
7956 flow_dfs_compute_reverse_add_bb (data, bb)
7957 depth_first_search_ds data;
7958 basic_block bb;
7960 data->stack[data->sp++] = bb;
7961 return;
7964 /* Continue the depth-first search through the reverse graph starting
7965 with the block at the stack's top and ending when the stack is
7966 empty. Visited nodes are marked. Returns an unvisited basic
7967 block, or NULL if there is none available. */
7969 static basic_block
7970 flow_dfs_compute_reverse_execute (data)
7971 depth_first_search_ds data;
7973 basic_block bb;
7974 edge e;
7975 int i;
7977 while (data->sp > 0)
7979 bb = data->stack[--data->sp];
7981 /* Mark that we have visited this node. */
7982 if (!TEST_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1)))
7984 SET_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1));
7986 /* Perform depth-first search on adjacent vertices. */
7987 for (e = bb->pred; e; e = e->pred_next)
7988 flow_dfs_compute_reverse_add_bb (data, e->src);
7992 /* Determine if there are unvisited basic blocks. */
7993 for (i = n_basic_blocks - (INVALID_BLOCK + 1); --i >= 0;)
7994 if (!TEST_BIT (data->visited_blocks, i))
7995 return BASIC_BLOCK (i + (INVALID_BLOCK + 1));
7996 return NULL;
7999 /* Destroy the data structures needed for depth-first search on the
8000 reverse graph. */
8002 static void
8003 flow_dfs_compute_reverse_finish (data)
8004 depth_first_search_ds data;
8006 free (data->stack);
8007 sbitmap_free (data->visited_blocks);
8008 return;
8012 /* Find the root node of the loop pre-header extended basic block and
8013 the edges along the trace from the root node to the loop header. */
8015 static void
8016 flow_loop_pre_header_scan (loop)
8017 struct loop *loop;
8019 int num = 0;
8020 basic_block ebb;
8022 loop->num_pre_header_edges = 0;
8024 if (loop->num_entries != 1)
8025 return;
8027 ebb = loop->entry_edges[0]->src;
8029 if (ebb != ENTRY_BLOCK_PTR)
8031 edge e;
8033 /* Count number of edges along trace from loop header to
8034 root of pre-header extended basic block. Usually this is
8035 only one or two edges. */
8036 num++;
8037 while (ebb->pred->src != ENTRY_BLOCK_PTR && ! ebb->pred->pred_next)
8039 ebb = ebb->pred->src;
8040 num++;
8043 loop->pre_header_edges = (edge *) xmalloc (num * sizeof (edge *));
8044 loop->num_pre_header_edges = num;
8046 /* Store edges in order that they are followed. The source
8047 of the first edge is the root node of the pre-header extended
8048 basic block and the destination of the last last edge is
8049 the loop header. */
8050 for (e = loop->entry_edges[0]; num; e = e->src->pred)
8052 loop->pre_header_edges[--num] = e;
8058 /* Return the block for the pre-header of the loop with header
8059 HEADER where DOM specifies the dominator information. Return NULL if
8060 there is no pre-header. */
8062 static basic_block
8063 flow_loop_pre_header_find (header, dom)
8064 basic_block header;
8065 const sbitmap *dom;
8067 basic_block pre_header;
8068 edge e;
8070 /* If block p is a predecessor of the header and is the only block
8071 that the header does not dominate, then it is the pre-header. */
8072 pre_header = NULL;
8073 for (e = header->pred; e; e = e->pred_next)
8075 basic_block node = e->src;
8077 if (node != ENTRY_BLOCK_PTR
8078 && ! TEST_BIT (dom[node->index], header->index))
8080 if (pre_header == NULL)
8081 pre_header = node;
8082 else
8084 /* There are multiple edges into the header from outside
8085 the loop so there is no pre-header block. */
8086 pre_header = NULL;
8087 break;
8091 return pre_header;
8094 /* Add LOOP to the loop hierarchy tree where PREVLOOP was the loop
8095 previously added. The insertion algorithm assumes that the loops
8096 are added in the order found by a depth first search of the CFG. */
8098 static void
8099 flow_loop_tree_node_add (prevloop, loop)
8100 struct loop *prevloop;
8101 struct loop *loop;
8104 if (flow_loop_nested_p (prevloop, loop))
8106 prevloop->inner = loop;
8107 loop->outer = prevloop;
8108 return;
8111 while (prevloop->outer)
8113 if (flow_loop_nested_p (prevloop->outer, loop))
8115 prevloop->next = loop;
8116 loop->outer = prevloop->outer;
8117 return;
8119 prevloop = prevloop->outer;
8122 prevloop->next = loop;
8123 loop->outer = NULL;
8126 /* Build the loop hierarchy tree for LOOPS. */
8128 static void
8129 flow_loops_tree_build (loops)
8130 struct loops *loops;
8132 int i;
8133 int num_loops;
8135 num_loops = loops->num;
8136 if (! num_loops)
8137 return;
8139 /* Root the loop hierarchy tree with the first loop found.
8140 Since we used a depth first search this should be the
8141 outermost loop. */
8142 loops->tree = &loops->array[0];
8143 loops->tree->outer = loops->tree->inner = loops->tree->next = NULL;
8145 /* Add the remaining loops to the tree. */
8146 for (i = 1; i < num_loops; i++)
8147 flow_loop_tree_node_add (&loops->array[i - 1], &loops->array[i]);
8150 /* Helper function to compute loop nesting depth and enclosed loop level
8151 for the natural loop specified by LOOP at the loop depth DEPTH.
8152 Returns the loop level. */
8154 static int
8155 flow_loop_level_compute (loop, depth)
8156 struct loop *loop;
8157 int depth;
8159 struct loop *inner;
8160 int level = 1;
8162 if (! loop)
8163 return 0;
8165 /* Traverse loop tree assigning depth and computing level as the
8166 maximum level of all the inner loops of this loop. The loop
8167 level is equivalent to the height of the loop in the loop tree
8168 and corresponds to the number of enclosed loop levels (including
8169 itself). */
8170 for (inner = loop->inner; inner; inner = inner->next)
8172 int ilevel;
8174 ilevel = flow_loop_level_compute (inner, depth + 1) + 1;
8176 if (ilevel > level)
8177 level = ilevel;
8179 loop->level = level;
8180 loop->depth = depth;
8181 return level;
8184 /* Compute the loop nesting depth and enclosed loop level for the loop
8185 hierarchy tree specfied by LOOPS. Return the maximum enclosed loop
8186 level. */
8188 static int
8189 flow_loops_level_compute (loops)
8190 struct loops *loops;
8192 struct loop *loop;
8193 int level;
8194 int levels = 0;
8196 /* Traverse all the outer level loops. */
8197 for (loop = loops->tree; loop; loop = loop->next)
8199 level = flow_loop_level_compute (loop, 1);
8200 if (level > levels)
8201 levels = level;
8203 return levels;
8207 /* Scan a single natural loop specified by LOOP collecting information
8208 about it specified by FLAGS. */
8211 flow_loop_scan (loops, loop, flags)
8212 struct loops *loops;
8213 struct loop *loop;
8214 int flags;
8216 /* Determine prerequisites. */
8217 if ((flags & LOOP_EXITS_DOMS) && ! loop->exit_edges)
8218 flags |= LOOP_EXIT_EDGES;
8220 if (flags & LOOP_ENTRY_EDGES)
8222 /* Find edges which enter the loop header.
8223 Note that the entry edges should only
8224 enter the header of a natural loop. */
8225 loop->num_entries
8226 = flow_loop_entry_edges_find (loop->header,
8227 loop->nodes,
8228 &loop->entry_edges);
8231 if (flags & LOOP_EXIT_EDGES)
8233 /* Find edges which exit the loop. */
8234 loop->num_exits
8235 = flow_loop_exit_edges_find (loop->nodes,
8236 &loop->exit_edges);
8239 if (flags & LOOP_EXITS_DOMS)
8241 int j;
8243 /* Determine which loop nodes dominate all the exits
8244 of the loop. */
8245 loop->exits_doms = sbitmap_alloc (n_basic_blocks);
8246 sbitmap_copy (loop->exits_doms, loop->nodes);
8247 for (j = 0; j < loop->num_exits; j++)
8248 sbitmap_a_and_b (loop->exits_doms, loop->exits_doms,
8249 loops->cfg.dom[loop->exit_edges[j]->src->index]);
8251 /* The header of a natural loop must dominate
8252 all exits. */
8253 if (! TEST_BIT (loop->exits_doms, loop->header->index))
8254 abort ();
8257 if (flags & LOOP_PRE_HEADER)
8259 /* Look to see if the loop has a pre-header node. */
8260 loop->pre_header
8261 = flow_loop_pre_header_find (loop->header, loops->cfg.dom);
8263 /* Find the blocks within the extended basic block of
8264 the loop pre-header. */
8265 flow_loop_pre_header_scan (loop);
8267 return 1;
8271 /* Find all the natural loops in the function and save in LOOPS structure
8272 and recalculate loop_depth information in basic block structures.
8273 FLAGS controls which loop information is collected.
8274 Return the number of natural loops found. */
8277 flow_loops_find (loops, flags)
8278 struct loops *loops;
8279 int flags;
8281 int i;
8282 int b;
8283 int num_loops;
8284 edge e;
8285 sbitmap headers;
8286 sbitmap *dom;
8287 int *dfs_order;
8288 int *rc_order;
8290 /* This function cannot be repeatedly called with different
8291 flags to build up the loop information. The loop tree
8292 must always be built if this function is called. */
8293 if (! (flags & LOOP_TREE))
8294 abort ();
8296 memset (loops, 0, sizeof (*loops));
8298 /* Taking care of this degenerate case makes the rest of
8299 this code simpler. */
8300 if (n_basic_blocks == 0)
8301 return 0;
8303 dfs_order = NULL;
8304 rc_order = NULL;
8306 /* Compute the dominators. */
8307 dom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
8308 calculate_dominance_info (NULL, dom, CDI_DOMINATORS);
8310 /* Count the number of loop edges (back edges). This should be the
8311 same as the number of natural loops. */
8313 num_loops = 0;
8314 for (b = 0; b < n_basic_blocks; b++)
8316 basic_block header;
8318 header = BASIC_BLOCK (b);
8319 header->loop_depth = 0;
8321 for (e = header->pred; e; e = e->pred_next)
8323 basic_block latch = e->src;
8325 /* Look for back edges where a predecessor is dominated
8326 by this block. A natural loop has a single entry
8327 node (header) that dominates all the nodes in the
8328 loop. It also has single back edge to the header
8329 from a latch node. Note that multiple natural loops
8330 may share the same header. */
8331 if (b != header->index)
8332 abort ();
8334 if (latch != ENTRY_BLOCK_PTR && TEST_BIT (dom[latch->index], b))
8335 num_loops++;
8339 if (num_loops)
8341 /* Compute depth first search order of the CFG so that outer
8342 natural loops will be found before inner natural loops. */
8343 dfs_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
8344 rc_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
8345 flow_depth_first_order_compute (dfs_order, rc_order);
8347 /* Save CFG derived information to avoid recomputing it. */
8348 loops->cfg.dom = dom;
8349 loops->cfg.dfs_order = dfs_order;
8350 loops->cfg.rc_order = rc_order;
8352 /* Allocate loop structures. */
8353 loops->array
8354 = (struct loop *) xcalloc (num_loops, sizeof (struct loop));
8356 headers = sbitmap_alloc (n_basic_blocks);
8357 sbitmap_zero (headers);
8359 loops->shared_headers = sbitmap_alloc (n_basic_blocks);
8360 sbitmap_zero (loops->shared_headers);
8362 /* Find and record information about all the natural loops
8363 in the CFG. */
8364 num_loops = 0;
8365 for (b = 0; b < n_basic_blocks; b++)
8367 basic_block header;
8369 /* Search the nodes of the CFG in reverse completion order
8370 so that we can find outer loops first. */
8371 header = BASIC_BLOCK (rc_order[b]);
8373 /* Look for all the possible latch blocks for this header. */
8374 for (e = header->pred; e; e = e->pred_next)
8376 basic_block latch = e->src;
8378 /* Look for back edges where a predecessor is dominated
8379 by this block. A natural loop has a single entry
8380 node (header) that dominates all the nodes in the
8381 loop. It also has single back edge to the header
8382 from a latch node. Note that multiple natural loops
8383 may share the same header. */
8384 if (latch != ENTRY_BLOCK_PTR
8385 && TEST_BIT (dom[latch->index], header->index))
8387 struct loop *loop;
8389 loop = loops->array + num_loops;
8391 loop->header = header;
8392 loop->latch = latch;
8393 loop->num = num_loops;
8395 num_loops++;
8400 for (i = 0; i < num_loops; i++)
8402 struct loop *loop = &loops->array[i];
8404 /* Keep track of blocks that are loop headers so
8405 that we can tell which loops should be merged. */
8406 if (TEST_BIT (headers, loop->header->index))
8407 SET_BIT (loops->shared_headers, loop->header->index);
8408 SET_BIT (headers, loop->header->index);
8410 /* Find nodes contained within the loop. */
8411 loop->nodes = sbitmap_alloc (n_basic_blocks);
8412 loop->num_nodes
8413 = flow_loop_nodes_find (loop->header, loop->latch, loop->nodes);
8415 /* Compute first and last blocks within the loop.
8416 These are often the same as the loop header and
8417 loop latch respectively, but this is not always
8418 the case. */
8419 loop->first
8420 = BASIC_BLOCK (sbitmap_first_set_bit (loop->nodes));
8421 loop->last
8422 = BASIC_BLOCK (sbitmap_last_set_bit (loop->nodes));
8424 flow_loop_scan (loops, loop, flags);
8427 /* Natural loops with shared headers may either be disjoint or
8428 nested. Disjoint loops with shared headers cannot be inner
8429 loops and should be merged. For now just mark loops that share
8430 headers. */
8431 for (i = 0; i < num_loops; i++)
8432 if (TEST_BIT (loops->shared_headers, loops->array[i].header->index))
8433 loops->array[i].shared = 1;
8435 sbitmap_free (headers);
8438 loops->num = num_loops;
8440 /* Build the loop hierarchy tree. */
8441 flow_loops_tree_build (loops);
8443 /* Assign the loop nesting depth and enclosed loop level for each
8444 loop. */
8445 loops->levels = flow_loops_level_compute (loops);
8447 return num_loops;
8451 /* Update the information regarding the loops in the CFG
8452 specified by LOOPS. */
8454 flow_loops_update (loops, flags)
8455 struct loops *loops;
8456 int flags;
8458 /* One day we may want to update the current loop data. For now
8459 throw away the old stuff and rebuild what we need. */
8460 if (loops->array)
8461 flow_loops_free (loops);
8463 return flow_loops_find (loops, flags);
8467 /* Return non-zero if edge E enters header of LOOP from outside of LOOP. */
8470 flow_loop_outside_edge_p (loop, e)
8471 const struct loop *loop;
8472 edge e;
8474 if (e->dest != loop->header)
8475 abort ();
8476 return (e->src == ENTRY_BLOCK_PTR)
8477 || ! TEST_BIT (loop->nodes, e->src->index);
8480 /* Clear LOG_LINKS fields of insns in a chain.
8481 Also clear the global_live_at_{start,end} fields of the basic block
8482 structures. */
8484 void
8485 clear_log_links (insns)
8486 rtx insns;
8488 rtx i;
8489 int b;
8491 for (i = insns; i; i = NEXT_INSN (i))
8492 if (INSN_P (i))
8493 LOG_LINKS (i) = 0;
8495 for (b = 0; b < n_basic_blocks; b++)
8497 basic_block bb = BASIC_BLOCK (b);
8499 bb->global_live_at_start = NULL;
8500 bb->global_live_at_end = NULL;
8503 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
8504 EXIT_BLOCK_PTR->global_live_at_start = NULL;
8507 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
8508 correspond to the hard registers, if any, set in that map. This
8509 could be done far more efficiently by having all sorts of special-cases
8510 with moving single words, but probably isn't worth the trouble. */
8512 void
8513 reg_set_to_hard_reg_set (to, from)
8514 HARD_REG_SET *to;
8515 bitmap from;
8517 int i;
8519 EXECUTE_IF_SET_IN_BITMAP
8520 (from, 0, i,
8522 if (i >= FIRST_PSEUDO_REGISTER)
8523 return;
8524 SET_HARD_REG_BIT (*to, i);
8528 /* Called once at intialization time. */
8530 void
8531 init_flow ()
8533 static int initialized;
8535 if (!initialized)
8537 gcc_obstack_init (&flow_obstack);
8538 flow_firstobj = (char *) obstack_alloc (&flow_obstack, 0);
8539 initialized = 1;
8541 else
8543 obstack_free (&flow_obstack, flow_firstobj);
8544 flow_firstobj = (char *) obstack_alloc (&flow_obstack, 0);