poly_int: MEM_OFFSET and MEM_SIZE
[official-gcc.git] / gcc / var-tracking.c
blob1a4caaa09b4678877028393ee5c6e694e954ea43
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "target.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "cfghooks.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "memmodel.h"
99 #include "tm_p.h"
100 #include "insn-config.h"
101 #include "regs.h"
102 #include "emit-rtl.h"
103 #include "recog.h"
104 #include "diagnostic.h"
105 #include "varasm.h"
106 #include "stor-layout.h"
107 #include "cfgrtl.h"
108 #include "cfganal.h"
109 #include "reload.h"
110 #include "calls.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "params.h"
115 #include "tree-pretty-print.h"
116 #include "rtl-iter.h"
117 #include "fibonacci_heap.h"
119 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
120 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
129 /* Type of micro operation. */
130 enum micro_operation_type
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
171 /* Structure holding information about micro operation. */
172 struct micro_operation
174 /* Type of micro operation. */
175 enum micro_operation_type type;
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx_insn *insn;
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
214 return dv && !dv_is_decl_p (dv);
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
237 return dv;
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 struct attrs
247 /* Pointer to next member of the list. */
248 attrs *next;
250 /* The rtx of register. */
251 rtx loc;
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
260 /* Structure for chaining the locations. */
261 struct location_chain
263 /* Next element in the chain. */
264 location_chain *next;
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
269 /* The "value" stored in this location. */
270 rtx set_src;
272 /* Initialized? */
273 enum var_init_status init;
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 struct loc_exp_dep
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep **pprev;
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 struct expand_depth
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
309 struct onepart_aux
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep *backlinks;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
323 rtx from;
324 /* The depth of the cur_loc expression. */
325 expand_depth depth;
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec<loc_exp_dep, va_heap, vl_embed> deps;
330 /* Structure describing one part of variable. */
331 struct variable_part
333 /* Chain of locations of the part. */
334 location_chain *loc_chain;
336 /* Location which was last emitted to location list. */
337 rtx cur_loc;
339 union variable_aux
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset;
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux *onepaux;
346 } aux;
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
352 /* Enumeration type used to discriminate various types of one-part
353 variables. */
354 enum onepart_enum
356 /* Not a one-part variable. */
357 NOT_ONEPART = 0,
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
359 ONEPART_VDECL = 1,
360 /* A DEBUG_EXPR_DECL. */
361 ONEPART_DEXPR = 2,
362 /* A VALUE. */
363 ONEPART_VALUE = 3
366 /* Structure describing where the variable is located. */
367 struct variable
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
371 decl_or_value dv;
373 /* Reference count. */
374 int refcount;
376 /* Number of variable parts. */
377 char n_var_parts;
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables;
386 /* The variable parts. */
387 variable_part var_part[1];
390 /* Pointer to the BB's information specific to variable tracking pass. */
391 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
393 /* Return MEM_OFFSET (MEM) as a HOST_WIDE_INT, or 0 if we can't. */
395 static inline HOST_WIDE_INT
396 int_mem_offset (const_rtx mem)
398 HOST_WIDE_INT offset;
399 if (MEM_OFFSET_KNOWN_P (mem) && MEM_OFFSET (mem).is_constant (&offset))
400 return offset;
401 return 0;
404 #if CHECKING_P && (GCC_VERSION >= 2007)
406 /* Access VAR's Ith part's offset, checking that it's not a one-part
407 variable. */
408 #define VAR_PART_OFFSET(var, i) __extension__ \
409 (*({ variable *const __v = (var); \
410 gcc_checking_assert (!__v->onepart); \
411 &__v->var_part[(i)].aux.offset; }))
413 /* Access VAR's one-part auxiliary data, checking that it is a
414 one-part variable. */
415 #define VAR_LOC_1PAUX(var) __extension__ \
416 (*({ variable *const __v = (var); \
417 gcc_checking_assert (__v->onepart); \
418 &__v->var_part[0].aux.onepaux; }))
420 #else
421 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
422 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
423 #endif
425 /* These are accessor macros for the one-part auxiliary data. When
426 convenient for users, they're guarded by tests that the data was
427 allocated. */
428 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
429 ? VAR_LOC_1PAUX (var)->backlinks \
430 : NULL)
431 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
432 ? &VAR_LOC_1PAUX (var)->backlinks \
433 : NULL)
434 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
435 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
436 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
437 ? &VAR_LOC_1PAUX (var)->deps \
438 : NULL)
442 typedef unsigned int dvuid;
444 /* Return the uid of DV. */
446 static inline dvuid
447 dv_uid (decl_or_value dv)
449 if (dv_is_value_p (dv))
450 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
451 else
452 return DECL_UID (dv_as_decl (dv));
455 /* Compute the hash from the uid. */
457 static inline hashval_t
458 dv_uid2hash (dvuid uid)
460 return uid;
463 /* The hash function for a mask table in a shared_htab chain. */
465 static inline hashval_t
466 dv_htab_hash (decl_or_value dv)
468 return dv_uid2hash (dv_uid (dv));
471 static void variable_htab_free (void *);
473 /* Variable hashtable helpers. */
475 struct variable_hasher : pointer_hash <variable>
477 typedef void *compare_type;
478 static inline hashval_t hash (const variable *);
479 static inline bool equal (const variable *, const void *);
480 static inline void remove (variable *);
483 /* The hash function for variable_htab, computes the hash value
484 from the declaration of variable X. */
486 inline hashval_t
487 variable_hasher::hash (const variable *v)
489 return dv_htab_hash (v->dv);
492 /* Compare the declaration of variable X with declaration Y. */
494 inline bool
495 variable_hasher::equal (const variable *v, const void *y)
497 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
499 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
502 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
504 inline void
505 variable_hasher::remove (variable *var)
507 variable_htab_free (var);
510 typedef hash_table<variable_hasher> variable_table_type;
511 typedef variable_table_type::iterator variable_iterator_type;
513 /* Structure for passing some other parameters to function
514 emit_note_insn_var_location. */
515 struct emit_note_data
517 /* The instruction which the note will be emitted before/after. */
518 rtx_insn *insn;
520 /* Where the note will be emitted (before/after insn)? */
521 enum emit_note_where where;
523 /* The variables and values active at this point. */
524 variable_table_type *vars;
527 /* Structure holding a refcounted hash table. If refcount > 1,
528 it must be first unshared before modified. */
529 struct shared_hash
531 /* Reference count. */
532 int refcount;
534 /* Actual hash table. */
535 variable_table_type *htab;
538 /* Structure holding the IN or OUT set for a basic block. */
539 struct dataflow_set
541 /* Adjustment of stack offset. */
542 HOST_WIDE_INT stack_adjust;
544 /* Attributes for registers (lists of attrs). */
545 attrs *regs[FIRST_PSEUDO_REGISTER];
547 /* Variable locations. */
548 shared_hash *vars;
550 /* Vars that is being traversed. */
551 shared_hash *traversed_vars;
554 /* The structure (one for each basic block) containing the information
555 needed for variable tracking. */
556 struct variable_tracking_info
558 /* The vector of micro operations. */
559 vec<micro_operation> mos;
561 /* The IN and OUT set for dataflow analysis. */
562 dataflow_set in;
563 dataflow_set out;
565 /* The permanent-in dataflow set for this block. This is used to
566 hold values for which we had to compute entry values. ??? This
567 should probably be dynamically allocated, to avoid using more
568 memory in non-debug builds. */
569 dataflow_set *permp;
571 /* Has the block been visited in DFS? */
572 bool visited;
574 /* Has the block been flooded in VTA? */
575 bool flooded;
579 /* Alloc pool for struct attrs_def. */
580 object_allocator<attrs> attrs_pool ("attrs pool");
582 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
584 static pool_allocator var_pool
585 ("variable_def pool", sizeof (variable) +
586 (MAX_VAR_PARTS - 1) * sizeof (((variable *)NULL)->var_part[0]));
588 /* Alloc pool for struct variable_def with a single var_part entry. */
589 static pool_allocator valvar_pool
590 ("small variable_def pool", sizeof (variable));
592 /* Alloc pool for struct location_chain. */
593 static object_allocator<location_chain> location_chain_pool
594 ("location_chain pool");
596 /* Alloc pool for struct shared_hash. */
597 static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
599 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
600 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
602 /* Changed variables, notes will be emitted for them. */
603 static variable_table_type *changed_variables;
605 /* Shall notes be emitted? */
606 static bool emit_notes;
608 /* Values whose dynamic location lists have gone empty, but whose
609 cselib location lists are still usable. Use this to hold the
610 current location, the backlinks, etc, during emit_notes. */
611 static variable_table_type *dropped_values;
613 /* Empty shared hashtable. */
614 static shared_hash *empty_shared_hash;
616 /* Scratch register bitmap used by cselib_expand_value_rtx. */
617 static bitmap scratch_regs = NULL;
619 #ifdef HAVE_window_save
620 struct GTY(()) parm_reg {
621 rtx outgoing;
622 rtx incoming;
626 /* Vector of windowed parameter registers, if any. */
627 static vec<parm_reg, va_gc> *windowed_parm_regs = NULL;
628 #endif
630 /* Variable used to tell whether cselib_process_insn called our hook. */
631 static bool cselib_hook_called;
633 /* Local function prototypes. */
634 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
635 HOST_WIDE_INT *);
636 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
637 HOST_WIDE_INT *);
638 static bool vt_stack_adjustments (void);
640 static void init_attrs_list_set (attrs **);
641 static void attrs_list_clear (attrs **);
642 static attrs *attrs_list_member (attrs *, decl_or_value, HOST_WIDE_INT);
643 static void attrs_list_insert (attrs **, decl_or_value, HOST_WIDE_INT, rtx);
644 static void attrs_list_copy (attrs **, attrs *);
645 static void attrs_list_union (attrs **, attrs *);
647 static variable **unshare_variable (dataflow_set *set, variable **slot,
648 variable *var, enum var_init_status);
649 static void vars_copy (variable_table_type *, variable_table_type *);
650 static tree var_debug_decl (tree);
651 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
652 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
653 enum var_init_status, rtx);
654 static void var_reg_delete (dataflow_set *, rtx, bool);
655 static void var_regno_delete (dataflow_set *, int);
656 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
657 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
658 enum var_init_status, rtx);
659 static void var_mem_delete (dataflow_set *, rtx, bool);
661 static void dataflow_set_init (dataflow_set *);
662 static void dataflow_set_clear (dataflow_set *);
663 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
664 static int variable_union_info_cmp_pos (const void *, const void *);
665 static void dataflow_set_union (dataflow_set *, dataflow_set *);
666 static location_chain *find_loc_in_1pdv (rtx, variable *,
667 variable_table_type *);
668 static bool canon_value_cmp (rtx, rtx);
669 static int loc_cmp (rtx, rtx);
670 static bool variable_part_different_p (variable_part *, variable_part *);
671 static bool onepart_variable_different_p (variable *, variable *);
672 static bool variable_different_p (variable *, variable *);
673 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
674 static void dataflow_set_destroy (dataflow_set *);
676 static bool track_expr_p (tree, bool);
677 static void add_uses_1 (rtx *, void *);
678 static void add_stores (rtx, const_rtx, void *);
679 static bool compute_bb_dataflow (basic_block);
680 static bool vt_find_locations (void);
682 static void dump_attrs_list (attrs *);
683 static void dump_var (variable *);
684 static void dump_vars (variable_table_type *);
685 static void dump_dataflow_set (dataflow_set *);
686 static void dump_dataflow_sets (void);
688 static void set_dv_changed (decl_or_value, bool);
689 static void variable_was_changed (variable *, dataflow_set *);
690 static variable **set_slot_part (dataflow_set *, rtx, variable **,
691 decl_or_value, HOST_WIDE_INT,
692 enum var_init_status, rtx);
693 static void set_variable_part (dataflow_set *, rtx,
694 decl_or_value, HOST_WIDE_INT,
695 enum var_init_status, rtx, enum insert_option);
696 static variable **clobber_slot_part (dataflow_set *, rtx,
697 variable **, HOST_WIDE_INT, rtx);
698 static void clobber_variable_part (dataflow_set *, rtx,
699 decl_or_value, HOST_WIDE_INT, rtx);
700 static variable **delete_slot_part (dataflow_set *, rtx, variable **,
701 HOST_WIDE_INT);
702 static void delete_variable_part (dataflow_set *, rtx,
703 decl_or_value, HOST_WIDE_INT);
704 static void emit_notes_in_bb (basic_block, dataflow_set *);
705 static void vt_emit_notes (void);
707 static void vt_add_function_parameters (void);
708 static bool vt_initialize (void);
709 static void vt_finalize (void);
711 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
713 static int
714 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
715 void *arg)
717 if (dest != stack_pointer_rtx)
718 return 0;
720 switch (GET_CODE (op))
722 case PRE_INC:
723 case PRE_DEC:
724 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
725 return 0;
726 case POST_INC:
727 case POST_DEC:
728 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
729 return 0;
730 case PRE_MODIFY:
731 case POST_MODIFY:
732 /* We handle only adjustments by constant amount. */
733 gcc_assert (GET_CODE (src) == PLUS
734 && CONST_INT_P (XEXP (src, 1))
735 && XEXP (src, 0) == stack_pointer_rtx);
736 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
737 -= INTVAL (XEXP (src, 1));
738 return 0;
739 default:
740 gcc_unreachable ();
744 /* Given a SET, calculate the amount of stack adjustment it contains
745 PRE- and POST-modifying stack pointer.
746 This function is similar to stack_adjust_offset. */
748 static void
749 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
750 HOST_WIDE_INT *post)
752 rtx src = SET_SRC (pattern);
753 rtx dest = SET_DEST (pattern);
754 enum rtx_code code;
756 if (dest == stack_pointer_rtx)
758 /* (set (reg sp) (plus (reg sp) (const_int))) */
759 code = GET_CODE (src);
760 if (! (code == PLUS || code == MINUS)
761 || XEXP (src, 0) != stack_pointer_rtx
762 || !CONST_INT_P (XEXP (src, 1)))
763 return;
765 if (code == MINUS)
766 *post += INTVAL (XEXP (src, 1));
767 else
768 *post -= INTVAL (XEXP (src, 1));
769 return;
771 HOST_WIDE_INT res[2] = { 0, 0 };
772 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
773 *pre += res[0];
774 *post += res[1];
777 /* Given an INSN, calculate the amount of stack adjustment it contains
778 PRE- and POST-modifying stack pointer. */
780 static void
781 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
782 HOST_WIDE_INT *post)
784 rtx pattern;
786 *pre = 0;
787 *post = 0;
789 pattern = PATTERN (insn);
790 if (RTX_FRAME_RELATED_P (insn))
792 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
793 if (expr)
794 pattern = XEXP (expr, 0);
797 if (GET_CODE (pattern) == SET)
798 stack_adjust_offset_pre_post (pattern, pre, post);
799 else if (GET_CODE (pattern) == PARALLEL
800 || GET_CODE (pattern) == SEQUENCE)
802 int i;
804 /* There may be stack adjustments inside compound insns. Search
805 for them. */
806 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
807 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
808 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
812 /* Compute stack adjustments for all blocks by traversing DFS tree.
813 Return true when the adjustments on all incoming edges are consistent.
814 Heavily borrowed from pre_and_rev_post_order_compute. */
816 static bool
817 vt_stack_adjustments (void)
819 edge_iterator *stack;
820 int sp;
822 /* Initialize entry block. */
823 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
824 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
825 = INCOMING_FRAME_SP_OFFSET;
826 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
827 = INCOMING_FRAME_SP_OFFSET;
829 /* Allocate stack for back-tracking up CFG. */
830 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
831 sp = 0;
833 /* Push the first edge on to the stack. */
834 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
836 while (sp)
838 edge_iterator ei;
839 basic_block src;
840 basic_block dest;
842 /* Look at the edge on the top of the stack. */
843 ei = stack[sp - 1];
844 src = ei_edge (ei)->src;
845 dest = ei_edge (ei)->dest;
847 /* Check if the edge destination has been visited yet. */
848 if (!VTI (dest)->visited)
850 rtx_insn *insn;
851 HOST_WIDE_INT pre, post, offset;
852 VTI (dest)->visited = true;
853 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
855 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
856 for (insn = BB_HEAD (dest);
857 insn != NEXT_INSN (BB_END (dest));
858 insn = NEXT_INSN (insn))
859 if (INSN_P (insn))
861 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
862 offset += pre + post;
865 VTI (dest)->out.stack_adjust = offset;
867 if (EDGE_COUNT (dest->succs) > 0)
868 /* Since the DEST node has been visited for the first
869 time, check its successors. */
870 stack[sp++] = ei_start (dest->succs);
872 else
874 /* We can end up with different stack adjustments for the exit block
875 of a shrink-wrapped function if stack_adjust_offset_pre_post
876 doesn't understand the rtx pattern used to restore the stack
877 pointer in the epilogue. For example, on s390(x), the stack
878 pointer is often restored via a load-multiple instruction
879 and so no stack_adjust offset is recorded for it. This means
880 that the stack offset at the end of the epilogue block is the
881 same as the offset before the epilogue, whereas other paths
882 to the exit block will have the correct stack_adjust.
884 It is safe to ignore these differences because (a) we never
885 use the stack_adjust for the exit block in this pass and
886 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
887 function are correct.
889 We must check whether the adjustments on other edges are
890 the same though. */
891 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
892 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
894 free (stack);
895 return false;
898 if (! ei_one_before_end_p (ei))
899 /* Go to the next edge. */
900 ei_next (&stack[sp - 1]);
901 else
902 /* Return to previous level if there are no more edges. */
903 sp--;
907 free (stack);
908 return true;
911 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
912 hard_frame_pointer_rtx is being mapped to it and offset for it. */
913 static rtx cfa_base_rtx;
914 static HOST_WIDE_INT cfa_base_offset;
916 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
917 or hard_frame_pointer_rtx. */
919 static inline rtx
920 compute_cfa_pointer (HOST_WIDE_INT adjustment)
922 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
925 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
926 or -1 if the replacement shouldn't be done. */
927 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
929 /* Data for adjust_mems callback. */
931 struct adjust_mem_data
933 bool store;
934 machine_mode mem_mode;
935 HOST_WIDE_INT stack_adjust;
936 auto_vec<rtx> side_effects;
939 /* Helper for adjust_mems. Return true if X is suitable for
940 transformation of wider mode arithmetics to narrower mode. */
942 static bool
943 use_narrower_mode_test (rtx x, const_rtx subreg)
945 subrtx_var_iterator::array_type array;
946 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
948 rtx x = *iter;
949 if (CONSTANT_P (x))
950 iter.skip_subrtxes ();
951 else
952 switch (GET_CODE (x))
954 case REG:
955 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
956 return false;
957 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
958 subreg_lowpart_offset (GET_MODE (subreg),
959 GET_MODE (x))))
960 return false;
961 break;
962 case PLUS:
963 case MINUS:
964 case MULT:
965 break;
966 case ASHIFT:
967 iter.substitute (XEXP (x, 0));
968 break;
969 default:
970 return false;
973 return true;
976 /* Transform X into narrower mode MODE from wider mode WMODE. */
978 static rtx
979 use_narrower_mode (rtx x, scalar_int_mode mode, scalar_int_mode wmode)
981 rtx op0, op1;
982 if (CONSTANT_P (x))
983 return lowpart_subreg (mode, x, wmode);
984 switch (GET_CODE (x))
986 case REG:
987 return lowpart_subreg (mode, x, wmode);
988 case PLUS:
989 case MINUS:
990 case MULT:
991 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
992 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
993 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
994 case ASHIFT:
995 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
996 op1 = XEXP (x, 1);
997 /* Ensure shift amount is not wider than mode. */
998 if (GET_MODE (op1) == VOIDmode)
999 op1 = lowpart_subreg (mode, op1, wmode);
1000 else if (GET_MODE_PRECISION (mode)
1001 < GET_MODE_PRECISION (as_a <scalar_int_mode> (GET_MODE (op1))))
1002 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
1003 return simplify_gen_binary (ASHIFT, mode, op0, op1);
1004 default:
1005 gcc_unreachable ();
1009 /* Helper function for adjusting used MEMs. */
1011 static rtx
1012 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1014 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1015 rtx mem, addr = loc, tem;
1016 machine_mode mem_mode_save;
1017 bool store_save;
1018 scalar_int_mode tem_mode, tem_subreg_mode;
1019 switch (GET_CODE (loc))
1021 case REG:
1022 /* Don't do any sp or fp replacements outside of MEM addresses
1023 on the LHS. */
1024 if (amd->mem_mode == VOIDmode && amd->store)
1025 return loc;
1026 if (loc == stack_pointer_rtx
1027 && !frame_pointer_needed
1028 && cfa_base_rtx)
1029 return compute_cfa_pointer (amd->stack_adjust);
1030 else if (loc == hard_frame_pointer_rtx
1031 && frame_pointer_needed
1032 && hard_frame_pointer_adjustment != -1
1033 && cfa_base_rtx)
1034 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1035 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1036 return loc;
1037 case MEM:
1038 mem = loc;
1039 if (!amd->store)
1041 mem = targetm.delegitimize_address (mem);
1042 if (mem != loc && !MEM_P (mem))
1043 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1046 addr = XEXP (mem, 0);
1047 mem_mode_save = amd->mem_mode;
1048 amd->mem_mode = GET_MODE (mem);
1049 store_save = amd->store;
1050 amd->store = false;
1051 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1052 amd->store = store_save;
1053 amd->mem_mode = mem_mode_save;
1054 if (mem == loc)
1055 addr = targetm.delegitimize_address (addr);
1056 if (addr != XEXP (mem, 0))
1057 mem = replace_equiv_address_nv (mem, addr);
1058 if (!amd->store)
1059 mem = avoid_constant_pool_reference (mem);
1060 return mem;
1061 case PRE_INC:
1062 case PRE_DEC:
1063 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1064 gen_int_mode (GET_CODE (loc) == PRE_INC
1065 ? GET_MODE_SIZE (amd->mem_mode)
1066 : -GET_MODE_SIZE (amd->mem_mode),
1067 GET_MODE (loc)));
1068 /* FALLTHRU */
1069 case POST_INC:
1070 case POST_DEC:
1071 if (addr == loc)
1072 addr = XEXP (loc, 0);
1073 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1074 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1075 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1076 gen_int_mode ((GET_CODE (loc) == PRE_INC
1077 || GET_CODE (loc) == POST_INC)
1078 ? GET_MODE_SIZE (amd->mem_mode)
1079 : -GET_MODE_SIZE (amd->mem_mode),
1080 GET_MODE (loc)));
1081 store_save = amd->store;
1082 amd->store = false;
1083 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1084 amd->store = store_save;
1085 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1086 return addr;
1087 case PRE_MODIFY:
1088 addr = XEXP (loc, 1);
1089 /* FALLTHRU */
1090 case POST_MODIFY:
1091 if (addr == loc)
1092 addr = XEXP (loc, 0);
1093 gcc_assert (amd->mem_mode != VOIDmode);
1094 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1095 store_save = amd->store;
1096 amd->store = false;
1097 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1098 adjust_mems, data);
1099 amd->store = store_save;
1100 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1101 return addr;
1102 case SUBREG:
1103 /* First try without delegitimization of whole MEMs and
1104 avoid_constant_pool_reference, which is more likely to succeed. */
1105 store_save = amd->store;
1106 amd->store = true;
1107 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1108 data);
1109 amd->store = store_save;
1110 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1111 if (mem == SUBREG_REG (loc))
1113 tem = loc;
1114 goto finish_subreg;
1116 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1117 GET_MODE (SUBREG_REG (loc)),
1118 SUBREG_BYTE (loc));
1119 if (tem)
1120 goto finish_subreg;
1121 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1122 GET_MODE (SUBREG_REG (loc)),
1123 SUBREG_BYTE (loc));
1124 if (tem == NULL_RTX)
1125 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1126 finish_subreg:
1127 if (MAY_HAVE_DEBUG_BIND_INSNS
1128 && GET_CODE (tem) == SUBREG
1129 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1130 || GET_CODE (SUBREG_REG (tem)) == MINUS
1131 || GET_CODE (SUBREG_REG (tem)) == MULT
1132 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1133 && is_a <scalar_int_mode> (GET_MODE (tem), &tem_mode)
1134 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (tem)),
1135 &tem_subreg_mode)
1136 && (GET_MODE_PRECISION (tem_mode)
1137 < GET_MODE_PRECISION (tem_subreg_mode))
1138 && subreg_lowpart_p (tem)
1139 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1140 return use_narrower_mode (SUBREG_REG (tem), tem_mode, tem_subreg_mode);
1141 return tem;
1142 case ASM_OPERANDS:
1143 /* Don't do any replacements in second and following
1144 ASM_OPERANDS of inline-asm with multiple sets.
1145 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1146 and ASM_OPERANDS_LABEL_VEC need to be equal between
1147 all the ASM_OPERANDs in the insn and adjust_insn will
1148 fix this up. */
1149 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1150 return loc;
1151 break;
1152 default:
1153 break;
1155 return NULL_RTX;
1158 /* Helper function for replacement of uses. */
1160 static void
1161 adjust_mem_uses (rtx *x, void *data)
1163 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1164 if (new_x != *x)
1165 validate_change (NULL_RTX, x, new_x, true);
1168 /* Helper function for replacement of stores. */
1170 static void
1171 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1173 if (MEM_P (loc))
1175 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1176 adjust_mems, data);
1177 if (new_dest != SET_DEST (expr))
1179 rtx xexpr = CONST_CAST_RTX (expr);
1180 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1185 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1186 replace them with their value in the insn and add the side-effects
1187 as other sets to the insn. */
1189 static void
1190 adjust_insn (basic_block bb, rtx_insn *insn)
1192 rtx set;
1194 #ifdef HAVE_window_save
1195 /* If the target machine has an explicit window save instruction, the
1196 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1197 if (RTX_FRAME_RELATED_P (insn)
1198 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1200 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1201 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1202 parm_reg *p;
1204 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1206 XVECEXP (rtl, 0, i * 2)
1207 = gen_rtx_SET (p->incoming, p->outgoing);
1208 /* Do not clobber the attached DECL, but only the REG. */
1209 XVECEXP (rtl, 0, i * 2 + 1)
1210 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1211 gen_raw_REG (GET_MODE (p->outgoing),
1212 REGNO (p->outgoing)));
1215 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1216 return;
1218 #endif
1220 adjust_mem_data amd;
1221 amd.mem_mode = VOIDmode;
1222 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1224 amd.store = true;
1225 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1227 amd.store = false;
1228 if (GET_CODE (PATTERN (insn)) == PARALLEL
1229 && asm_noperands (PATTERN (insn)) > 0
1230 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1232 rtx body, set0;
1233 int i;
1235 /* inline-asm with multiple sets is tiny bit more complicated,
1236 because the 3 vectors in ASM_OPERANDS need to be shared between
1237 all ASM_OPERANDS in the instruction. adjust_mems will
1238 not touch ASM_OPERANDS other than the first one, asm_noperands
1239 test above needs to be called before that (otherwise it would fail)
1240 and afterwards this code fixes it up. */
1241 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1242 body = PATTERN (insn);
1243 set0 = XVECEXP (body, 0, 0);
1244 gcc_checking_assert (GET_CODE (set0) == SET
1245 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1246 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1247 for (i = 1; i < XVECLEN (body, 0); i++)
1248 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1249 break;
1250 else
1252 set = XVECEXP (body, 0, i);
1253 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1254 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1255 == i);
1256 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1257 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1258 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1259 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1260 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1261 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1263 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1264 ASM_OPERANDS_INPUT_VEC (newsrc)
1265 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1266 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1267 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1268 ASM_OPERANDS_LABEL_VEC (newsrc)
1269 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1270 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1274 else
1275 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1277 /* For read-only MEMs containing some constant, prefer those
1278 constants. */
1279 set = single_set (insn);
1280 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1282 rtx note = find_reg_equal_equiv_note (insn);
1284 if (note && CONSTANT_P (XEXP (note, 0)))
1285 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1288 if (!amd.side_effects.is_empty ())
1290 rtx *pat, new_pat;
1291 int i, oldn;
1293 pat = &PATTERN (insn);
1294 if (GET_CODE (*pat) == COND_EXEC)
1295 pat = &COND_EXEC_CODE (*pat);
1296 if (GET_CODE (*pat) == PARALLEL)
1297 oldn = XVECLEN (*pat, 0);
1298 else
1299 oldn = 1;
1300 unsigned int newn = amd.side_effects.length ();
1301 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1302 if (GET_CODE (*pat) == PARALLEL)
1303 for (i = 0; i < oldn; i++)
1304 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1305 else
1306 XVECEXP (new_pat, 0, 0) = *pat;
1308 rtx effect;
1309 unsigned int j;
1310 FOR_EACH_VEC_ELT_REVERSE (amd.side_effects, j, effect)
1311 XVECEXP (new_pat, 0, j + oldn) = effect;
1312 validate_change (NULL_RTX, pat, new_pat, true);
1316 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1317 static inline rtx
1318 dv_as_rtx (decl_or_value dv)
1320 tree decl;
1322 if (dv_is_value_p (dv))
1323 return dv_as_value (dv);
1325 decl = dv_as_decl (dv);
1327 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1328 return DECL_RTL_KNOWN_SET (decl);
1331 /* Return nonzero if a decl_or_value must not have more than one
1332 variable part. The returned value discriminates among various
1333 kinds of one-part DVs ccording to enum onepart_enum. */
1334 static inline onepart_enum
1335 dv_onepart_p (decl_or_value dv)
1337 tree decl;
1339 if (!MAY_HAVE_DEBUG_BIND_INSNS)
1340 return NOT_ONEPART;
1342 if (dv_is_value_p (dv))
1343 return ONEPART_VALUE;
1345 decl = dv_as_decl (dv);
1347 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1348 return ONEPART_DEXPR;
1350 if (target_for_debug_bind (decl) != NULL_TREE)
1351 return ONEPART_VDECL;
1353 return NOT_ONEPART;
1356 /* Return the variable pool to be used for a dv of type ONEPART. */
1357 static inline pool_allocator &
1358 onepart_pool (onepart_enum onepart)
1360 return onepart ? valvar_pool : var_pool;
1363 /* Allocate a variable_def from the corresponding variable pool. */
1364 static inline variable *
1365 onepart_pool_allocate (onepart_enum onepart)
1367 return (variable*) onepart_pool (onepart).allocate ();
1370 /* Build a decl_or_value out of a decl. */
1371 static inline decl_or_value
1372 dv_from_decl (tree decl)
1374 decl_or_value dv;
1375 dv = decl;
1376 gcc_checking_assert (dv_is_decl_p (dv));
1377 return dv;
1380 /* Build a decl_or_value out of a value. */
1381 static inline decl_or_value
1382 dv_from_value (rtx value)
1384 decl_or_value dv;
1385 dv = value;
1386 gcc_checking_assert (dv_is_value_p (dv));
1387 return dv;
1390 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1391 static inline decl_or_value
1392 dv_from_rtx (rtx x)
1394 decl_or_value dv;
1396 switch (GET_CODE (x))
1398 case DEBUG_EXPR:
1399 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1400 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1401 break;
1403 case VALUE:
1404 dv = dv_from_value (x);
1405 break;
1407 default:
1408 gcc_unreachable ();
1411 return dv;
1414 extern void debug_dv (decl_or_value dv);
1416 DEBUG_FUNCTION void
1417 debug_dv (decl_or_value dv)
1419 if (dv_is_value_p (dv))
1420 debug_rtx (dv_as_value (dv));
1421 else
1422 debug_generic_stmt (dv_as_decl (dv));
1425 static void loc_exp_dep_clear (variable *var);
1427 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1429 static void
1430 variable_htab_free (void *elem)
1432 int i;
1433 variable *var = (variable *) elem;
1434 location_chain *node, *next;
1436 gcc_checking_assert (var->refcount > 0);
1438 var->refcount--;
1439 if (var->refcount > 0)
1440 return;
1442 for (i = 0; i < var->n_var_parts; i++)
1444 for (node = var->var_part[i].loc_chain; node; node = next)
1446 next = node->next;
1447 delete node;
1449 var->var_part[i].loc_chain = NULL;
1451 if (var->onepart && VAR_LOC_1PAUX (var))
1453 loc_exp_dep_clear (var);
1454 if (VAR_LOC_DEP_LST (var))
1455 VAR_LOC_DEP_LST (var)->pprev = NULL;
1456 XDELETE (VAR_LOC_1PAUX (var));
1457 /* These may be reused across functions, so reset
1458 e.g. NO_LOC_P. */
1459 if (var->onepart == ONEPART_DEXPR)
1460 set_dv_changed (var->dv, true);
1462 onepart_pool (var->onepart).remove (var);
1465 /* Initialize the set (array) SET of attrs to empty lists. */
1467 static void
1468 init_attrs_list_set (attrs **set)
1470 int i;
1472 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1473 set[i] = NULL;
1476 /* Make the list *LISTP empty. */
1478 static void
1479 attrs_list_clear (attrs **listp)
1481 attrs *list, *next;
1483 for (list = *listp; list; list = next)
1485 next = list->next;
1486 delete list;
1488 *listp = NULL;
1491 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1493 static attrs *
1494 attrs_list_member (attrs *list, decl_or_value dv, HOST_WIDE_INT offset)
1496 for (; list; list = list->next)
1497 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1498 return list;
1499 return NULL;
1502 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1504 static void
1505 attrs_list_insert (attrs **listp, decl_or_value dv,
1506 HOST_WIDE_INT offset, rtx loc)
1508 attrs *list = new attrs;
1509 list->loc = loc;
1510 list->dv = dv;
1511 list->offset = offset;
1512 list->next = *listp;
1513 *listp = list;
1516 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1518 static void
1519 attrs_list_copy (attrs **dstp, attrs *src)
1521 attrs_list_clear (dstp);
1522 for (; src; src = src->next)
1524 attrs *n = new attrs;
1525 n->loc = src->loc;
1526 n->dv = src->dv;
1527 n->offset = src->offset;
1528 n->next = *dstp;
1529 *dstp = n;
1533 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1535 static void
1536 attrs_list_union (attrs **dstp, attrs *src)
1538 for (; src; src = src->next)
1540 if (!attrs_list_member (*dstp, src->dv, src->offset))
1541 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1545 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1546 *DSTP. */
1548 static void
1549 attrs_list_mpdv_union (attrs **dstp, attrs *src, attrs *src2)
1551 gcc_assert (!*dstp);
1552 for (; src; src = src->next)
1554 if (!dv_onepart_p (src->dv))
1555 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1557 for (src = src2; src; src = src->next)
1559 if (!dv_onepart_p (src->dv)
1560 && !attrs_list_member (*dstp, src->dv, src->offset))
1561 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1565 /* Shared hashtable support. */
1567 /* Return true if VARS is shared. */
1569 static inline bool
1570 shared_hash_shared (shared_hash *vars)
1572 return vars->refcount > 1;
1575 /* Return the hash table for VARS. */
1577 static inline variable_table_type *
1578 shared_hash_htab (shared_hash *vars)
1580 return vars->htab;
1583 /* Return true if VAR is shared, or maybe because VARS is shared. */
1585 static inline bool
1586 shared_var_p (variable *var, shared_hash *vars)
1588 /* Don't count an entry in the changed_variables table as a duplicate. */
1589 return ((var->refcount > 1 + (int) var->in_changed_variables)
1590 || shared_hash_shared (vars));
1593 /* Copy variables into a new hash table. */
1595 static shared_hash *
1596 shared_hash_unshare (shared_hash *vars)
1598 shared_hash *new_vars = new shared_hash;
1599 gcc_assert (vars->refcount > 1);
1600 new_vars->refcount = 1;
1601 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1602 vars_copy (new_vars->htab, vars->htab);
1603 vars->refcount--;
1604 return new_vars;
1607 /* Increment reference counter on VARS and return it. */
1609 static inline shared_hash *
1610 shared_hash_copy (shared_hash *vars)
1612 vars->refcount++;
1613 return vars;
1616 /* Decrement reference counter and destroy hash table if not shared
1617 anymore. */
1619 static void
1620 shared_hash_destroy (shared_hash *vars)
1622 gcc_checking_assert (vars->refcount > 0);
1623 if (--vars->refcount == 0)
1625 delete vars->htab;
1626 delete vars;
1630 /* Unshare *PVARS if shared and return slot for DV. If INS is
1631 INSERT, insert it if not already present. */
1633 static inline variable **
1634 shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
1635 hashval_t dvhash, enum insert_option ins)
1637 if (shared_hash_shared (*pvars))
1638 *pvars = shared_hash_unshare (*pvars);
1639 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1642 static inline variable **
1643 shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
1644 enum insert_option ins)
1646 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1649 /* Return slot for DV, if it is already present in the hash table.
1650 If it is not present, insert it only VARS is not shared, otherwise
1651 return NULL. */
1653 static inline variable **
1654 shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1656 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1657 shared_hash_shared (vars)
1658 ? NO_INSERT : INSERT);
1661 static inline variable **
1662 shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
1664 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1667 /* Return slot for DV only if it is already present in the hash table. */
1669 static inline variable **
1670 shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
1671 hashval_t dvhash)
1673 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1676 static inline variable **
1677 shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
1679 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1682 /* Return variable for DV or NULL if not already present in the hash
1683 table. */
1685 static inline variable *
1686 shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1688 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1691 static inline variable *
1692 shared_hash_find (shared_hash *vars, decl_or_value dv)
1694 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1697 /* Return true if TVAL is better than CVAL as a canonival value. We
1698 choose lowest-numbered VALUEs, using the RTX address as a
1699 tie-breaker. The idea is to arrange them into a star topology,
1700 such that all of them are at most one step away from the canonical
1701 value, and the canonical value has backlinks to all of them, in
1702 addition to all the actual locations. We don't enforce this
1703 topology throughout the entire dataflow analysis, though.
1706 static inline bool
1707 canon_value_cmp (rtx tval, rtx cval)
1709 return !cval
1710 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1713 static bool dst_can_be_shared;
1715 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1717 static variable **
1718 unshare_variable (dataflow_set *set, variable **slot, variable *var,
1719 enum var_init_status initialized)
1721 variable *new_var;
1722 int i;
1724 new_var = onepart_pool_allocate (var->onepart);
1725 new_var->dv = var->dv;
1726 new_var->refcount = 1;
1727 var->refcount--;
1728 new_var->n_var_parts = var->n_var_parts;
1729 new_var->onepart = var->onepart;
1730 new_var->in_changed_variables = false;
1732 if (! flag_var_tracking_uninit)
1733 initialized = VAR_INIT_STATUS_INITIALIZED;
1735 for (i = 0; i < var->n_var_parts; i++)
1737 location_chain *node;
1738 location_chain **nextp;
1740 if (i == 0 && var->onepart)
1742 /* One-part auxiliary data is only used while emitting
1743 notes, so propagate it to the new variable in the active
1744 dataflow set. If we're not emitting notes, this will be
1745 a no-op. */
1746 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1747 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1748 VAR_LOC_1PAUX (var) = NULL;
1750 else
1751 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1752 nextp = &new_var->var_part[i].loc_chain;
1753 for (node = var->var_part[i].loc_chain; node; node = node->next)
1755 location_chain *new_lc;
1757 new_lc = new location_chain;
1758 new_lc->next = NULL;
1759 if (node->init > initialized)
1760 new_lc->init = node->init;
1761 else
1762 new_lc->init = initialized;
1763 if (node->set_src && !(MEM_P (node->set_src)))
1764 new_lc->set_src = node->set_src;
1765 else
1766 new_lc->set_src = NULL;
1767 new_lc->loc = node->loc;
1769 *nextp = new_lc;
1770 nextp = &new_lc->next;
1773 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1776 dst_can_be_shared = false;
1777 if (shared_hash_shared (set->vars))
1778 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1779 else if (set->traversed_vars && set->vars != set->traversed_vars)
1780 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1781 *slot = new_var;
1782 if (var->in_changed_variables)
1784 variable **cslot
1785 = changed_variables->find_slot_with_hash (var->dv,
1786 dv_htab_hash (var->dv),
1787 NO_INSERT);
1788 gcc_assert (*cslot == (void *) var);
1789 var->in_changed_variables = false;
1790 variable_htab_free (var);
1791 *cslot = new_var;
1792 new_var->in_changed_variables = true;
1794 return slot;
1797 /* Copy all variables from hash table SRC to hash table DST. */
1799 static void
1800 vars_copy (variable_table_type *dst, variable_table_type *src)
1802 variable_iterator_type hi;
1803 variable *var;
1805 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1807 variable **dstp;
1808 var->refcount++;
1809 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1810 INSERT);
1811 *dstp = var;
1815 /* Map a decl to its main debug decl. */
1817 static inline tree
1818 var_debug_decl (tree decl)
1820 if (decl && VAR_P (decl) && DECL_HAS_DEBUG_EXPR_P (decl))
1822 tree debugdecl = DECL_DEBUG_EXPR (decl);
1823 if (DECL_P (debugdecl))
1824 decl = debugdecl;
1827 return decl;
1830 /* Set the register LOC to contain DV, OFFSET. */
1832 static void
1833 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1834 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1835 enum insert_option iopt)
1837 attrs *node;
1838 bool decl_p = dv_is_decl_p (dv);
1840 if (decl_p)
1841 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1843 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1844 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1845 && node->offset == offset)
1846 break;
1847 if (!node)
1848 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1849 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1852 /* Return true if we should track a location that is OFFSET bytes from
1853 a variable. Store the constant offset in *OFFSET_OUT if so. */
1855 static bool
1856 track_offset_p (poly_int64 offset, HOST_WIDE_INT *offset_out)
1858 HOST_WIDE_INT const_offset;
1859 if (!offset.is_constant (&const_offset)
1860 || !IN_RANGE (const_offset, 0, MAX_VAR_PARTS - 1))
1861 return false;
1862 *offset_out = const_offset;
1863 return true;
1866 /* Return the offset of a register that track_offset_p says we
1867 should track. */
1869 static HOST_WIDE_INT
1870 get_tracked_reg_offset (rtx loc)
1872 HOST_WIDE_INT offset;
1873 if (!track_offset_p (REG_OFFSET (loc), &offset))
1874 gcc_unreachable ();
1875 return offset;
1878 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1880 static void
1881 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1882 rtx set_src)
1884 tree decl = REG_EXPR (loc);
1885 HOST_WIDE_INT offset = get_tracked_reg_offset (loc);
1887 var_reg_decl_set (set, loc, initialized,
1888 dv_from_decl (decl), offset, set_src, INSERT);
1891 static enum var_init_status
1892 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1894 variable *var;
1895 int i;
1896 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1898 if (! flag_var_tracking_uninit)
1899 return VAR_INIT_STATUS_INITIALIZED;
1901 var = shared_hash_find (set->vars, dv);
1902 if (var)
1904 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1906 location_chain *nextp;
1907 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1908 if (rtx_equal_p (nextp->loc, loc))
1910 ret_val = nextp->init;
1911 break;
1916 return ret_val;
1919 /* Delete current content of register LOC in dataflow set SET and set
1920 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1921 MODIFY is true, any other live copies of the same variable part are
1922 also deleted from the dataflow set, otherwise the variable part is
1923 assumed to be copied from another location holding the same
1924 part. */
1926 static void
1927 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1928 enum var_init_status initialized, rtx set_src)
1930 tree decl = REG_EXPR (loc);
1931 HOST_WIDE_INT offset = get_tracked_reg_offset (loc);
1932 attrs *node, *next;
1933 attrs **nextp;
1935 decl = var_debug_decl (decl);
1937 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1938 initialized = get_init_value (set, loc, dv_from_decl (decl));
1940 nextp = &set->regs[REGNO (loc)];
1941 for (node = *nextp; node; node = next)
1943 next = node->next;
1944 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1946 delete_variable_part (set, node->loc, node->dv, node->offset);
1947 delete node;
1948 *nextp = next;
1950 else
1952 node->loc = loc;
1953 nextp = &node->next;
1956 if (modify)
1957 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1958 var_reg_set (set, loc, initialized, set_src);
1961 /* Delete the association of register LOC in dataflow set SET with any
1962 variables that aren't onepart. If CLOBBER is true, also delete any
1963 other live copies of the same variable part, and delete the
1964 association with onepart dvs too. */
1966 static void
1967 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1969 attrs **nextp = &set->regs[REGNO (loc)];
1970 attrs *node, *next;
1972 HOST_WIDE_INT offset;
1973 if (clobber && track_offset_p (REG_OFFSET (loc), &offset))
1975 tree decl = REG_EXPR (loc);
1977 decl = var_debug_decl (decl);
1979 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1982 for (node = *nextp; node; node = next)
1984 next = node->next;
1985 if (clobber || !dv_onepart_p (node->dv))
1987 delete_variable_part (set, node->loc, node->dv, node->offset);
1988 delete node;
1989 *nextp = next;
1991 else
1992 nextp = &node->next;
1996 /* Delete content of register with number REGNO in dataflow set SET. */
1998 static void
1999 var_regno_delete (dataflow_set *set, int regno)
2001 attrs **reg = &set->regs[regno];
2002 attrs *node, *next;
2004 for (node = *reg; node; node = next)
2006 next = node->next;
2007 delete_variable_part (set, node->loc, node->dv, node->offset);
2008 delete node;
2010 *reg = NULL;
2013 /* Return true if I is the negated value of a power of two. */
2014 static bool
2015 negative_power_of_two_p (HOST_WIDE_INT i)
2017 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
2018 return pow2_or_zerop (x);
2021 /* Strip constant offsets and alignments off of LOC. Return the base
2022 expression. */
2024 static rtx
2025 vt_get_canonicalize_base (rtx loc)
2027 while ((GET_CODE (loc) == PLUS
2028 || GET_CODE (loc) == AND)
2029 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2030 && (GET_CODE (loc) != AND
2031 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2032 loc = XEXP (loc, 0);
2034 return loc;
2037 /* This caches canonicalized addresses for VALUEs, computed using
2038 information in the global cselib table. */
2039 static hash_map<rtx, rtx> *global_get_addr_cache;
2041 /* This caches canonicalized addresses for VALUEs, computed using
2042 information from the global cache and information pertaining to a
2043 basic block being analyzed. */
2044 static hash_map<rtx, rtx> *local_get_addr_cache;
2046 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2048 /* Return the canonical address for LOC, that must be a VALUE, using a
2049 cached global equivalence or computing it and storing it in the
2050 global cache. */
2052 static rtx
2053 get_addr_from_global_cache (rtx const loc)
2055 rtx x;
2057 gcc_checking_assert (GET_CODE (loc) == VALUE);
2059 bool existed;
2060 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2061 if (existed)
2062 return *slot;
2064 x = canon_rtx (get_addr (loc));
2066 /* Tentative, avoiding infinite recursion. */
2067 *slot = x;
2069 if (x != loc)
2071 rtx nx = vt_canonicalize_addr (NULL, x);
2072 if (nx != x)
2074 /* The table may have moved during recursion, recompute
2075 SLOT. */
2076 *global_get_addr_cache->get (loc) = x = nx;
2080 return x;
2083 /* Return the canonical address for LOC, that must be a VALUE, using a
2084 cached local equivalence or computing it and storing it in the
2085 local cache. */
2087 static rtx
2088 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2090 rtx x;
2091 decl_or_value dv;
2092 variable *var;
2093 location_chain *l;
2095 gcc_checking_assert (GET_CODE (loc) == VALUE);
2097 bool existed;
2098 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2099 if (existed)
2100 return *slot;
2102 x = get_addr_from_global_cache (loc);
2104 /* Tentative, avoiding infinite recursion. */
2105 *slot = x;
2107 /* Recurse to cache local expansion of X, or if we need to search
2108 for a VALUE in the expansion. */
2109 if (x != loc)
2111 rtx nx = vt_canonicalize_addr (set, x);
2112 if (nx != x)
2114 slot = local_get_addr_cache->get (loc);
2115 *slot = x = nx;
2117 return x;
2120 dv = dv_from_rtx (x);
2121 var = shared_hash_find (set->vars, dv);
2122 if (!var)
2123 return x;
2125 /* Look for an improved equivalent expression. */
2126 for (l = var->var_part[0].loc_chain; l; l = l->next)
2128 rtx base = vt_get_canonicalize_base (l->loc);
2129 if (GET_CODE (base) == VALUE
2130 && canon_value_cmp (base, loc))
2132 rtx nx = vt_canonicalize_addr (set, l->loc);
2133 if (x != nx)
2135 slot = local_get_addr_cache->get (loc);
2136 *slot = x = nx;
2138 break;
2142 return x;
2145 /* Canonicalize LOC using equivalences from SET in addition to those
2146 in the cselib static table. It expects a VALUE-based expression,
2147 and it will only substitute VALUEs with other VALUEs or
2148 function-global equivalences, so that, if two addresses have base
2149 VALUEs that are locally or globally related in ways that
2150 memrefs_conflict_p cares about, they will both canonicalize to
2151 expressions that have the same base VALUE.
2153 The use of VALUEs as canonical base addresses enables the canonical
2154 RTXs to remain unchanged globally, if they resolve to a constant,
2155 or throughout a basic block otherwise, so that they can be cached
2156 and the cache needs not be invalidated when REGs, MEMs or such
2157 change. */
2159 static rtx
2160 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2162 HOST_WIDE_INT ofst = 0;
2163 machine_mode mode = GET_MODE (oloc);
2164 rtx loc = oloc;
2165 rtx x;
2166 bool retry = true;
2168 while (retry)
2170 while (GET_CODE (loc) == PLUS
2171 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2173 ofst += INTVAL (XEXP (loc, 1));
2174 loc = XEXP (loc, 0);
2177 /* Alignment operations can't normally be combined, so just
2178 canonicalize the base and we're done. We'll normally have
2179 only one stack alignment anyway. */
2180 if (GET_CODE (loc) == AND
2181 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2182 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2184 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2185 if (x != XEXP (loc, 0))
2186 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2187 retry = false;
2190 if (GET_CODE (loc) == VALUE)
2192 if (set)
2193 loc = get_addr_from_local_cache (set, loc);
2194 else
2195 loc = get_addr_from_global_cache (loc);
2197 /* Consolidate plus_constants. */
2198 while (ofst && GET_CODE (loc) == PLUS
2199 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2201 ofst += INTVAL (XEXP (loc, 1));
2202 loc = XEXP (loc, 0);
2205 retry = false;
2207 else
2209 x = canon_rtx (loc);
2210 if (retry)
2211 retry = (x != loc);
2212 loc = x;
2216 /* Add OFST back in. */
2217 if (ofst)
2219 /* Don't build new RTL if we can help it. */
2220 if (GET_CODE (oloc) == PLUS
2221 && XEXP (oloc, 0) == loc
2222 && INTVAL (XEXP (oloc, 1)) == ofst)
2223 return oloc;
2225 loc = plus_constant (mode, loc, ofst);
2228 return loc;
2231 /* Return true iff there's a true dependence between MLOC and LOC.
2232 MADDR must be a canonicalized version of MLOC's address. */
2234 static inline bool
2235 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2237 if (GET_CODE (loc) != MEM)
2238 return false;
2240 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2241 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2242 return false;
2244 return true;
2247 /* Hold parameters for the hashtab traversal function
2248 drop_overlapping_mem_locs, see below. */
2250 struct overlapping_mems
2252 dataflow_set *set;
2253 rtx loc, addr;
2256 /* Remove all MEMs that overlap with COMS->LOC from the location list
2257 of a hash table entry for a onepart variable. COMS->ADDR must be a
2258 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2259 canonicalized itself. */
2262 drop_overlapping_mem_locs (variable **slot, overlapping_mems *coms)
2264 dataflow_set *set = coms->set;
2265 rtx mloc = coms->loc, addr = coms->addr;
2266 variable *var = *slot;
2268 if (var->onepart != NOT_ONEPART)
2270 location_chain *loc, **locp;
2271 bool changed = false;
2272 rtx cur_loc;
2274 gcc_assert (var->n_var_parts == 1);
2276 if (shared_var_p (var, set->vars))
2278 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2279 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2280 break;
2282 if (!loc)
2283 return 1;
2285 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2286 var = *slot;
2287 gcc_assert (var->n_var_parts == 1);
2290 if (VAR_LOC_1PAUX (var))
2291 cur_loc = VAR_LOC_FROM (var);
2292 else
2293 cur_loc = var->var_part[0].cur_loc;
2295 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2296 loc; loc = *locp)
2298 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2300 locp = &loc->next;
2301 continue;
2304 *locp = loc->next;
2305 /* If we have deleted the location which was last emitted
2306 we have to emit new location so add the variable to set
2307 of changed variables. */
2308 if (cur_loc == loc->loc)
2310 changed = true;
2311 var->var_part[0].cur_loc = NULL;
2312 if (VAR_LOC_1PAUX (var))
2313 VAR_LOC_FROM (var) = NULL;
2315 delete loc;
2318 if (!var->var_part[0].loc_chain)
2320 var->n_var_parts--;
2321 changed = true;
2323 if (changed)
2324 variable_was_changed (var, set);
2327 return 1;
2330 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2332 static void
2333 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2335 struct overlapping_mems coms;
2337 gcc_checking_assert (GET_CODE (loc) == MEM);
2339 coms.set = set;
2340 coms.loc = canon_rtx (loc);
2341 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2343 set->traversed_vars = set->vars;
2344 shared_hash_htab (set->vars)
2345 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2346 set->traversed_vars = NULL;
2349 /* Set the location of DV, OFFSET as the MEM LOC. */
2351 static void
2352 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2353 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2354 enum insert_option iopt)
2356 if (dv_is_decl_p (dv))
2357 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2359 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2362 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2363 SET to LOC.
2364 Adjust the address first if it is stack pointer based. */
2366 static void
2367 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2368 rtx set_src)
2370 tree decl = MEM_EXPR (loc);
2371 HOST_WIDE_INT offset = int_mem_offset (loc);
2373 var_mem_decl_set (set, loc, initialized,
2374 dv_from_decl (decl), offset, set_src, INSERT);
2377 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2378 dataflow set SET to LOC. If MODIFY is true, any other live copies
2379 of the same variable part are also deleted from the dataflow set,
2380 otherwise the variable part is assumed to be copied from another
2381 location holding the same part.
2382 Adjust the address first if it is stack pointer based. */
2384 static void
2385 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2386 enum var_init_status initialized, rtx set_src)
2388 tree decl = MEM_EXPR (loc);
2389 HOST_WIDE_INT offset = int_mem_offset (loc);
2391 clobber_overlapping_mems (set, loc);
2392 decl = var_debug_decl (decl);
2394 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2395 initialized = get_init_value (set, loc, dv_from_decl (decl));
2397 if (modify)
2398 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2399 var_mem_set (set, loc, initialized, set_src);
2402 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2403 true, also delete any other live copies of the same variable part.
2404 Adjust the address first if it is stack pointer based. */
2406 static void
2407 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2409 tree decl = MEM_EXPR (loc);
2410 HOST_WIDE_INT offset = int_mem_offset (loc);
2412 clobber_overlapping_mems (set, loc);
2413 decl = var_debug_decl (decl);
2414 if (clobber)
2415 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2416 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2419 /* Return true if LOC should not be expanded for location expressions,
2420 or used in them. */
2422 static inline bool
2423 unsuitable_loc (rtx loc)
2425 switch (GET_CODE (loc))
2427 case PC:
2428 case SCRATCH:
2429 case CC0:
2430 case ASM_INPUT:
2431 case ASM_OPERANDS:
2432 return true;
2434 default:
2435 return false;
2439 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2440 bound to it. */
2442 static inline void
2443 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2445 if (REG_P (loc))
2447 if (modified)
2448 var_regno_delete (set, REGNO (loc));
2449 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2450 dv_from_value (val), 0, NULL_RTX, INSERT);
2452 else if (MEM_P (loc))
2454 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2456 if (modified)
2457 clobber_overlapping_mems (set, loc);
2459 if (l && GET_CODE (l->loc) == VALUE)
2460 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2462 /* If this MEM is a global constant, we don't need it in the
2463 dynamic tables. ??? We should test this before emitting the
2464 micro-op in the first place. */
2465 while (l)
2466 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2467 break;
2468 else
2469 l = l->next;
2471 if (!l)
2472 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2473 dv_from_value (val), 0, NULL_RTX, INSERT);
2475 else
2477 /* Other kinds of equivalences are necessarily static, at least
2478 so long as we do not perform substitutions while merging
2479 expressions. */
2480 gcc_unreachable ();
2481 set_variable_part (set, loc, dv_from_value (val), 0,
2482 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2486 /* Bind a value to a location it was just stored in. If MODIFIED
2487 holds, assume the location was modified, detaching it from any
2488 values bound to it. */
2490 static void
2491 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2492 bool modified)
2494 cselib_val *v = CSELIB_VAL_PTR (val);
2496 gcc_assert (cselib_preserved_value_p (v));
2498 if (dump_file)
2500 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2501 print_inline_rtx (dump_file, loc, 0);
2502 fprintf (dump_file, " evaluates to ");
2503 print_inline_rtx (dump_file, val, 0);
2504 if (v->locs)
2506 struct elt_loc_list *l;
2507 for (l = v->locs; l; l = l->next)
2509 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2510 print_inline_rtx (dump_file, l->loc, 0);
2513 fprintf (dump_file, "\n");
2516 gcc_checking_assert (!unsuitable_loc (loc));
2518 val_bind (set, val, loc, modified);
2521 /* Clear (canonical address) slots that reference X. */
2523 bool
2524 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2526 if (vt_get_canonicalize_base (*slot) == x)
2527 *slot = NULL;
2528 return true;
2531 /* Reset this node, detaching all its equivalences. Return the slot
2532 in the variable hash table that holds dv, if there is one. */
2534 static void
2535 val_reset (dataflow_set *set, decl_or_value dv)
2537 variable *var = shared_hash_find (set->vars, dv) ;
2538 location_chain *node;
2539 rtx cval;
2541 if (!var || !var->n_var_parts)
2542 return;
2544 gcc_assert (var->n_var_parts == 1);
2546 if (var->onepart == ONEPART_VALUE)
2548 rtx x = dv_as_value (dv);
2550 /* Relationships in the global cache don't change, so reset the
2551 local cache entry only. */
2552 rtx *slot = local_get_addr_cache->get (x);
2553 if (slot)
2555 /* If the value resolved back to itself, odds are that other
2556 values may have cached it too. These entries now refer
2557 to the old X, so detach them too. Entries that used the
2558 old X but resolved to something else remain ok as long as
2559 that something else isn't also reset. */
2560 if (*slot == x)
2561 local_get_addr_cache
2562 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2563 *slot = NULL;
2567 cval = NULL;
2568 for (node = var->var_part[0].loc_chain; node; node = node->next)
2569 if (GET_CODE (node->loc) == VALUE
2570 && canon_value_cmp (node->loc, cval))
2571 cval = node->loc;
2573 for (node = var->var_part[0].loc_chain; node; node = node->next)
2574 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2576 /* Redirect the equivalence link to the new canonical
2577 value, or simply remove it if it would point at
2578 itself. */
2579 if (cval)
2580 set_variable_part (set, cval, dv_from_value (node->loc),
2581 0, node->init, node->set_src, NO_INSERT);
2582 delete_variable_part (set, dv_as_value (dv),
2583 dv_from_value (node->loc), 0);
2586 if (cval)
2588 decl_or_value cdv = dv_from_value (cval);
2590 /* Keep the remaining values connected, accumulating links
2591 in the canonical value. */
2592 for (node = var->var_part[0].loc_chain; node; node = node->next)
2594 if (node->loc == cval)
2595 continue;
2596 else if (GET_CODE (node->loc) == REG)
2597 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2598 node->set_src, NO_INSERT);
2599 else if (GET_CODE (node->loc) == MEM)
2600 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2601 node->set_src, NO_INSERT);
2602 else
2603 set_variable_part (set, node->loc, cdv, 0,
2604 node->init, node->set_src, NO_INSERT);
2608 /* We remove this last, to make sure that the canonical value is not
2609 removed to the point of requiring reinsertion. */
2610 if (cval)
2611 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2613 clobber_variable_part (set, NULL, dv, 0, NULL);
2616 /* Find the values in a given location and map the val to another
2617 value, if it is unique, or add the location as one holding the
2618 value. */
2620 static void
2621 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2623 decl_or_value dv = dv_from_value (val);
2625 if (dump_file && (dump_flags & TDF_DETAILS))
2627 if (insn)
2628 fprintf (dump_file, "%i: ", INSN_UID (insn));
2629 else
2630 fprintf (dump_file, "head: ");
2631 print_inline_rtx (dump_file, val, 0);
2632 fputs (" is at ", dump_file);
2633 print_inline_rtx (dump_file, loc, 0);
2634 fputc ('\n', dump_file);
2637 val_reset (set, dv);
2639 gcc_checking_assert (!unsuitable_loc (loc));
2641 if (REG_P (loc))
2643 attrs *node, *found = NULL;
2645 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2646 if (dv_is_value_p (node->dv)
2647 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2649 found = node;
2651 /* Map incoming equivalences. ??? Wouldn't it be nice if
2652 we just started sharing the location lists? Maybe a
2653 circular list ending at the value itself or some
2654 such. */
2655 set_variable_part (set, dv_as_value (node->dv),
2656 dv_from_value (val), node->offset,
2657 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2658 set_variable_part (set, val, node->dv, node->offset,
2659 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2662 /* If we didn't find any equivalence, we need to remember that
2663 this value is held in the named register. */
2664 if (found)
2665 return;
2667 /* ??? Attempt to find and merge equivalent MEMs or other
2668 expressions too. */
2670 val_bind (set, val, loc, false);
2673 /* Initialize dataflow set SET to be empty.
2674 VARS_SIZE is the initial size of hash table VARS. */
2676 static void
2677 dataflow_set_init (dataflow_set *set)
2679 init_attrs_list_set (set->regs);
2680 set->vars = shared_hash_copy (empty_shared_hash);
2681 set->stack_adjust = 0;
2682 set->traversed_vars = NULL;
2685 /* Delete the contents of dataflow set SET. */
2687 static void
2688 dataflow_set_clear (dataflow_set *set)
2690 int i;
2692 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2693 attrs_list_clear (&set->regs[i]);
2695 shared_hash_destroy (set->vars);
2696 set->vars = shared_hash_copy (empty_shared_hash);
2699 /* Copy the contents of dataflow set SRC to DST. */
2701 static void
2702 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2704 int i;
2706 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2707 attrs_list_copy (&dst->regs[i], src->regs[i]);
2709 shared_hash_destroy (dst->vars);
2710 dst->vars = shared_hash_copy (src->vars);
2711 dst->stack_adjust = src->stack_adjust;
2714 /* Information for merging lists of locations for a given offset of variable.
2716 struct variable_union_info
2718 /* Node of the location chain. */
2719 location_chain *lc;
2721 /* The sum of positions in the input chains. */
2722 int pos;
2724 /* The position in the chain of DST dataflow set. */
2725 int pos_dst;
2728 /* Buffer for location list sorting and its allocated size. */
2729 static struct variable_union_info *vui_vec;
2730 static int vui_allocated;
2732 /* Compare function for qsort, order the structures by POS element. */
2734 static int
2735 variable_union_info_cmp_pos (const void *n1, const void *n2)
2737 const struct variable_union_info *const i1 =
2738 (const struct variable_union_info *) n1;
2739 const struct variable_union_info *const i2 =
2740 ( const struct variable_union_info *) n2;
2742 if (i1->pos != i2->pos)
2743 return i1->pos - i2->pos;
2745 return (i1->pos_dst - i2->pos_dst);
2748 /* Compute union of location parts of variable *SLOT and the same variable
2749 from hash table DATA. Compute "sorted" union of the location chains
2750 for common offsets, i.e. the locations of a variable part are sorted by
2751 a priority where the priority is the sum of the positions in the 2 chains
2752 (if a location is only in one list the position in the second list is
2753 defined to be larger than the length of the chains).
2754 When we are updating the location parts the newest location is in the
2755 beginning of the chain, so when we do the described "sorted" union
2756 we keep the newest locations in the beginning. */
2758 static int
2759 variable_union (variable *src, dataflow_set *set)
2761 variable *dst;
2762 variable **dstp;
2763 int i, j, k;
2765 dstp = shared_hash_find_slot (set->vars, src->dv);
2766 if (!dstp || !*dstp)
2768 src->refcount++;
2770 dst_can_be_shared = false;
2771 if (!dstp)
2772 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2774 *dstp = src;
2776 /* Continue traversing the hash table. */
2777 return 1;
2779 else
2780 dst = *dstp;
2782 gcc_assert (src->n_var_parts);
2783 gcc_checking_assert (src->onepart == dst->onepart);
2785 /* We can combine one-part variables very efficiently, because their
2786 entries are in canonical order. */
2787 if (src->onepart)
2789 location_chain **nodep, *dnode, *snode;
2791 gcc_assert (src->n_var_parts == 1
2792 && dst->n_var_parts == 1);
2794 snode = src->var_part[0].loc_chain;
2795 gcc_assert (snode);
2797 restart_onepart_unshared:
2798 nodep = &dst->var_part[0].loc_chain;
2799 dnode = *nodep;
2800 gcc_assert (dnode);
2802 while (snode)
2804 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2806 if (r > 0)
2808 location_chain *nnode;
2810 if (shared_var_p (dst, set->vars))
2812 dstp = unshare_variable (set, dstp, dst,
2813 VAR_INIT_STATUS_INITIALIZED);
2814 dst = *dstp;
2815 goto restart_onepart_unshared;
2818 *nodep = nnode = new location_chain;
2819 nnode->loc = snode->loc;
2820 nnode->init = snode->init;
2821 if (!snode->set_src || MEM_P (snode->set_src))
2822 nnode->set_src = NULL;
2823 else
2824 nnode->set_src = snode->set_src;
2825 nnode->next = dnode;
2826 dnode = nnode;
2828 else if (r == 0)
2829 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2831 if (r >= 0)
2832 snode = snode->next;
2834 nodep = &dnode->next;
2835 dnode = *nodep;
2838 return 1;
2841 gcc_checking_assert (!src->onepart);
2843 /* Count the number of location parts, result is K. */
2844 for (i = 0, j = 0, k = 0;
2845 i < src->n_var_parts && j < dst->n_var_parts; k++)
2847 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2849 i++;
2850 j++;
2852 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2853 i++;
2854 else
2855 j++;
2857 k += src->n_var_parts - i;
2858 k += dst->n_var_parts - j;
2860 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2861 thus there are at most MAX_VAR_PARTS different offsets. */
2862 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2864 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2866 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2867 dst = *dstp;
2870 i = src->n_var_parts - 1;
2871 j = dst->n_var_parts - 1;
2872 dst->n_var_parts = k;
2874 for (k--; k >= 0; k--)
2876 location_chain *node, *node2;
2878 if (i >= 0 && j >= 0
2879 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2881 /* Compute the "sorted" union of the chains, i.e. the locations which
2882 are in both chains go first, they are sorted by the sum of
2883 positions in the chains. */
2884 int dst_l, src_l;
2885 int ii, jj, n;
2886 struct variable_union_info *vui;
2888 /* If DST is shared compare the location chains.
2889 If they are different we will modify the chain in DST with
2890 high probability so make a copy of DST. */
2891 if (shared_var_p (dst, set->vars))
2893 for (node = src->var_part[i].loc_chain,
2894 node2 = dst->var_part[j].loc_chain; node && node2;
2895 node = node->next, node2 = node2->next)
2897 if (!((REG_P (node2->loc)
2898 && REG_P (node->loc)
2899 && REGNO (node2->loc) == REGNO (node->loc))
2900 || rtx_equal_p (node2->loc, node->loc)))
2902 if (node2->init < node->init)
2903 node2->init = node->init;
2904 break;
2907 if (node || node2)
2909 dstp = unshare_variable (set, dstp, dst,
2910 VAR_INIT_STATUS_UNKNOWN);
2911 dst = (variable *)*dstp;
2915 src_l = 0;
2916 for (node = src->var_part[i].loc_chain; node; node = node->next)
2917 src_l++;
2918 dst_l = 0;
2919 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2920 dst_l++;
2922 if (dst_l == 1)
2924 /* The most common case, much simpler, no qsort is needed. */
2925 location_chain *dstnode = dst->var_part[j].loc_chain;
2926 dst->var_part[k].loc_chain = dstnode;
2927 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2928 node2 = dstnode;
2929 for (node = src->var_part[i].loc_chain; node; node = node->next)
2930 if (!((REG_P (dstnode->loc)
2931 && REG_P (node->loc)
2932 && REGNO (dstnode->loc) == REGNO (node->loc))
2933 || rtx_equal_p (dstnode->loc, node->loc)))
2935 location_chain *new_node;
2937 /* Copy the location from SRC. */
2938 new_node = new location_chain;
2939 new_node->loc = node->loc;
2940 new_node->init = node->init;
2941 if (!node->set_src || MEM_P (node->set_src))
2942 new_node->set_src = NULL;
2943 else
2944 new_node->set_src = node->set_src;
2945 node2->next = new_node;
2946 node2 = new_node;
2948 node2->next = NULL;
2950 else
2952 if (src_l + dst_l > vui_allocated)
2954 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2955 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2956 vui_allocated);
2958 vui = vui_vec;
2960 /* Fill in the locations from DST. */
2961 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2962 node = node->next, jj++)
2964 vui[jj].lc = node;
2965 vui[jj].pos_dst = jj;
2967 /* Pos plus value larger than a sum of 2 valid positions. */
2968 vui[jj].pos = jj + src_l + dst_l;
2971 /* Fill in the locations from SRC. */
2972 n = dst_l;
2973 for (node = src->var_part[i].loc_chain, ii = 0; node;
2974 node = node->next, ii++)
2976 /* Find location from NODE. */
2977 for (jj = 0; jj < dst_l; jj++)
2979 if ((REG_P (vui[jj].lc->loc)
2980 && REG_P (node->loc)
2981 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2982 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2984 vui[jj].pos = jj + ii;
2985 break;
2988 if (jj >= dst_l) /* The location has not been found. */
2990 location_chain *new_node;
2992 /* Copy the location from SRC. */
2993 new_node = new location_chain;
2994 new_node->loc = node->loc;
2995 new_node->init = node->init;
2996 if (!node->set_src || MEM_P (node->set_src))
2997 new_node->set_src = NULL;
2998 else
2999 new_node->set_src = node->set_src;
3000 vui[n].lc = new_node;
3001 vui[n].pos_dst = src_l + dst_l;
3002 vui[n].pos = ii + src_l + dst_l;
3003 n++;
3007 if (dst_l == 2)
3009 /* Special case still very common case. For dst_l == 2
3010 all entries dst_l ... n-1 are sorted, with for i >= dst_l
3011 vui[i].pos == i + src_l + dst_l. */
3012 if (vui[0].pos > vui[1].pos)
3014 /* Order should be 1, 0, 2... */
3015 dst->var_part[k].loc_chain = vui[1].lc;
3016 vui[1].lc->next = vui[0].lc;
3017 if (n >= 3)
3019 vui[0].lc->next = vui[2].lc;
3020 vui[n - 1].lc->next = NULL;
3022 else
3023 vui[0].lc->next = NULL;
3024 ii = 3;
3026 else
3028 dst->var_part[k].loc_chain = vui[0].lc;
3029 if (n >= 3 && vui[2].pos < vui[1].pos)
3031 /* Order should be 0, 2, 1, 3... */
3032 vui[0].lc->next = vui[2].lc;
3033 vui[2].lc->next = vui[1].lc;
3034 if (n >= 4)
3036 vui[1].lc->next = vui[3].lc;
3037 vui[n - 1].lc->next = NULL;
3039 else
3040 vui[1].lc->next = NULL;
3041 ii = 4;
3043 else
3045 /* Order should be 0, 1, 2... */
3046 ii = 1;
3047 vui[n - 1].lc->next = NULL;
3050 for (; ii < n; ii++)
3051 vui[ii - 1].lc->next = vui[ii].lc;
3053 else
3055 qsort (vui, n, sizeof (struct variable_union_info),
3056 variable_union_info_cmp_pos);
3058 /* Reconnect the nodes in sorted order. */
3059 for (ii = 1; ii < n; ii++)
3060 vui[ii - 1].lc->next = vui[ii].lc;
3061 vui[n - 1].lc->next = NULL;
3062 dst->var_part[k].loc_chain = vui[0].lc;
3065 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3067 i--;
3068 j--;
3070 else if ((i >= 0 && j >= 0
3071 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3072 || i < 0)
3074 dst->var_part[k] = dst->var_part[j];
3075 j--;
3077 else if ((i >= 0 && j >= 0
3078 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3079 || j < 0)
3081 location_chain **nextp;
3083 /* Copy the chain from SRC. */
3084 nextp = &dst->var_part[k].loc_chain;
3085 for (node = src->var_part[i].loc_chain; node; node = node->next)
3087 location_chain *new_lc;
3089 new_lc = new location_chain;
3090 new_lc->next = NULL;
3091 new_lc->init = node->init;
3092 if (!node->set_src || MEM_P (node->set_src))
3093 new_lc->set_src = NULL;
3094 else
3095 new_lc->set_src = node->set_src;
3096 new_lc->loc = node->loc;
3098 *nextp = new_lc;
3099 nextp = &new_lc->next;
3102 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3103 i--;
3105 dst->var_part[k].cur_loc = NULL;
3108 if (flag_var_tracking_uninit)
3109 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3111 location_chain *node, *node2;
3112 for (node = src->var_part[i].loc_chain; node; node = node->next)
3113 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3114 if (rtx_equal_p (node->loc, node2->loc))
3116 if (node->init > node2->init)
3117 node2->init = node->init;
3121 /* Continue traversing the hash table. */
3122 return 1;
3125 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3127 static void
3128 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3130 int i;
3132 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3133 attrs_list_union (&dst->regs[i], src->regs[i]);
3135 if (dst->vars == empty_shared_hash)
3137 shared_hash_destroy (dst->vars);
3138 dst->vars = shared_hash_copy (src->vars);
3140 else
3142 variable_iterator_type hi;
3143 variable *var;
3145 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3146 var, variable, hi)
3147 variable_union (var, dst);
3151 /* Whether the value is currently being expanded. */
3152 #define VALUE_RECURSED_INTO(x) \
3153 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3155 /* Whether no expansion was found, saving useless lookups.
3156 It must only be set when VALUE_CHANGED is clear. */
3157 #define NO_LOC_P(x) \
3158 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3160 /* Whether cur_loc in the value needs to be (re)computed. */
3161 #define VALUE_CHANGED(x) \
3162 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3163 /* Whether cur_loc in the decl needs to be (re)computed. */
3164 #define DECL_CHANGED(x) TREE_VISITED (x)
3166 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3167 user DECLs, this means they're in changed_variables. Values and
3168 debug exprs may be left with this flag set if no user variable
3169 requires them to be evaluated. */
3171 static inline void
3172 set_dv_changed (decl_or_value dv, bool newv)
3174 switch (dv_onepart_p (dv))
3176 case ONEPART_VALUE:
3177 if (newv)
3178 NO_LOC_P (dv_as_value (dv)) = false;
3179 VALUE_CHANGED (dv_as_value (dv)) = newv;
3180 break;
3182 case ONEPART_DEXPR:
3183 if (newv)
3184 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3185 /* Fall through. */
3187 default:
3188 DECL_CHANGED (dv_as_decl (dv)) = newv;
3189 break;
3193 /* Return true if DV needs to have its cur_loc recomputed. */
3195 static inline bool
3196 dv_changed_p (decl_or_value dv)
3198 return (dv_is_value_p (dv)
3199 ? VALUE_CHANGED (dv_as_value (dv))
3200 : DECL_CHANGED (dv_as_decl (dv)));
3203 /* Return a location list node whose loc is rtx_equal to LOC, in the
3204 location list of a one-part variable or value VAR, or in that of
3205 any values recursively mentioned in the location lists. VARS must
3206 be in star-canonical form. */
3208 static location_chain *
3209 find_loc_in_1pdv (rtx loc, variable *var, variable_table_type *vars)
3211 location_chain *node;
3212 enum rtx_code loc_code;
3214 if (!var)
3215 return NULL;
3217 gcc_checking_assert (var->onepart);
3219 if (!var->n_var_parts)
3220 return NULL;
3222 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3224 loc_code = GET_CODE (loc);
3225 for (node = var->var_part[0].loc_chain; node; node = node->next)
3227 decl_or_value dv;
3228 variable *rvar;
3230 if (GET_CODE (node->loc) != loc_code)
3232 if (GET_CODE (node->loc) != VALUE)
3233 continue;
3235 else if (loc == node->loc)
3236 return node;
3237 else if (loc_code != VALUE)
3239 if (rtx_equal_p (loc, node->loc))
3240 return node;
3241 continue;
3244 /* Since we're in star-canonical form, we don't need to visit
3245 non-canonical nodes: one-part variables and non-canonical
3246 values would only point back to the canonical node. */
3247 if (dv_is_value_p (var->dv)
3248 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3250 /* Skip all subsequent VALUEs. */
3251 while (node->next && GET_CODE (node->next->loc) == VALUE)
3253 node = node->next;
3254 gcc_checking_assert (!canon_value_cmp (node->loc,
3255 dv_as_value (var->dv)));
3256 if (loc == node->loc)
3257 return node;
3259 continue;
3262 gcc_checking_assert (node == var->var_part[0].loc_chain);
3263 gcc_checking_assert (!node->next);
3265 dv = dv_from_value (node->loc);
3266 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3267 return find_loc_in_1pdv (loc, rvar, vars);
3270 /* ??? Gotta look in cselib_val locations too. */
3272 return NULL;
3275 /* Hash table iteration argument passed to variable_merge. */
3276 struct dfset_merge
3278 /* The set in which the merge is to be inserted. */
3279 dataflow_set *dst;
3280 /* The set that we're iterating in. */
3281 dataflow_set *cur;
3282 /* The set that may contain the other dv we are to merge with. */
3283 dataflow_set *src;
3284 /* Number of onepart dvs in src. */
3285 int src_onepart_cnt;
3288 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3289 loc_cmp order, and it is maintained as such. */
3291 static void
3292 insert_into_intersection (location_chain **nodep, rtx loc,
3293 enum var_init_status status)
3295 location_chain *node;
3296 int r;
3298 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3299 if ((r = loc_cmp (node->loc, loc)) == 0)
3301 node->init = MIN (node->init, status);
3302 return;
3304 else if (r > 0)
3305 break;
3307 node = new location_chain;
3309 node->loc = loc;
3310 node->set_src = NULL;
3311 node->init = status;
3312 node->next = *nodep;
3313 *nodep = node;
3316 /* Insert in DEST the intersection of the locations present in both
3317 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3318 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3319 DSM->dst. */
3321 static void
3322 intersect_loc_chains (rtx val, location_chain **dest, struct dfset_merge *dsm,
3323 location_chain *s1node, variable *s2var)
3325 dataflow_set *s1set = dsm->cur;
3326 dataflow_set *s2set = dsm->src;
3327 location_chain *found;
3329 if (s2var)
3331 location_chain *s2node;
3333 gcc_checking_assert (s2var->onepart);
3335 if (s2var->n_var_parts)
3337 s2node = s2var->var_part[0].loc_chain;
3339 for (; s1node && s2node;
3340 s1node = s1node->next, s2node = s2node->next)
3341 if (s1node->loc != s2node->loc)
3342 break;
3343 else if (s1node->loc == val)
3344 continue;
3345 else
3346 insert_into_intersection (dest, s1node->loc,
3347 MIN (s1node->init, s2node->init));
3351 for (; s1node; s1node = s1node->next)
3353 if (s1node->loc == val)
3354 continue;
3356 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3357 shared_hash_htab (s2set->vars))))
3359 insert_into_intersection (dest, s1node->loc,
3360 MIN (s1node->init, found->init));
3361 continue;
3364 if (GET_CODE (s1node->loc) == VALUE
3365 && !VALUE_RECURSED_INTO (s1node->loc))
3367 decl_or_value dv = dv_from_value (s1node->loc);
3368 variable *svar = shared_hash_find (s1set->vars, dv);
3369 if (svar)
3371 if (svar->n_var_parts == 1)
3373 VALUE_RECURSED_INTO (s1node->loc) = true;
3374 intersect_loc_chains (val, dest, dsm,
3375 svar->var_part[0].loc_chain,
3376 s2var);
3377 VALUE_RECURSED_INTO (s1node->loc) = false;
3382 /* ??? gotta look in cselib_val locations too. */
3384 /* ??? if the location is equivalent to any location in src,
3385 searched recursively
3387 add to dst the values needed to represent the equivalence
3389 telling whether locations S is equivalent to another dv's
3390 location list:
3392 for each location D in the list
3394 if S and D satisfy rtx_equal_p, then it is present
3396 else if D is a value, recurse without cycles
3398 else if S and D have the same CODE and MODE
3400 for each operand oS and the corresponding oD
3402 if oS and oD are not equivalent, then S an D are not equivalent
3404 else if they are RTX vectors
3406 if any vector oS element is not equivalent to its respective oD,
3407 then S and D are not equivalent
3415 /* Return -1 if X should be before Y in a location list for a 1-part
3416 variable, 1 if Y should be before X, and 0 if they're equivalent
3417 and should not appear in the list. */
3419 static int
3420 loc_cmp (rtx x, rtx y)
3422 int i, j, r;
3423 RTX_CODE code = GET_CODE (x);
3424 const char *fmt;
3426 if (x == y)
3427 return 0;
3429 if (REG_P (x))
3431 if (!REG_P (y))
3432 return -1;
3433 gcc_assert (GET_MODE (x) == GET_MODE (y));
3434 if (REGNO (x) == REGNO (y))
3435 return 0;
3436 else if (REGNO (x) < REGNO (y))
3437 return -1;
3438 else
3439 return 1;
3442 if (REG_P (y))
3443 return 1;
3445 if (MEM_P (x))
3447 if (!MEM_P (y))
3448 return -1;
3449 gcc_assert (GET_MODE (x) == GET_MODE (y));
3450 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3453 if (MEM_P (y))
3454 return 1;
3456 if (GET_CODE (x) == VALUE)
3458 if (GET_CODE (y) != VALUE)
3459 return -1;
3460 /* Don't assert the modes are the same, that is true only
3461 when not recursing. (subreg:QI (value:SI 1:1) 0)
3462 and (subreg:QI (value:DI 2:2) 0) can be compared,
3463 even when the modes are different. */
3464 if (canon_value_cmp (x, y))
3465 return -1;
3466 else
3467 return 1;
3470 if (GET_CODE (y) == VALUE)
3471 return 1;
3473 /* Entry value is the least preferable kind of expression. */
3474 if (GET_CODE (x) == ENTRY_VALUE)
3476 if (GET_CODE (y) != ENTRY_VALUE)
3477 return 1;
3478 gcc_assert (GET_MODE (x) == GET_MODE (y));
3479 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3482 if (GET_CODE (y) == ENTRY_VALUE)
3483 return -1;
3485 if (GET_CODE (x) == GET_CODE (y))
3486 /* Compare operands below. */;
3487 else if (GET_CODE (x) < GET_CODE (y))
3488 return -1;
3489 else
3490 return 1;
3492 gcc_assert (GET_MODE (x) == GET_MODE (y));
3494 if (GET_CODE (x) == DEBUG_EXPR)
3496 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3497 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3498 return -1;
3499 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3500 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3501 return 1;
3504 fmt = GET_RTX_FORMAT (code);
3505 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3506 switch (fmt[i])
3508 case 'w':
3509 if (XWINT (x, i) == XWINT (y, i))
3510 break;
3511 else if (XWINT (x, i) < XWINT (y, i))
3512 return -1;
3513 else
3514 return 1;
3516 case 'n':
3517 case 'i':
3518 if (XINT (x, i) == XINT (y, i))
3519 break;
3520 else if (XINT (x, i) < XINT (y, i))
3521 return -1;
3522 else
3523 return 1;
3525 case 'V':
3526 case 'E':
3527 /* Compare the vector length first. */
3528 if (XVECLEN (x, i) == XVECLEN (y, i))
3529 /* Compare the vectors elements. */;
3530 else if (XVECLEN (x, i) < XVECLEN (y, i))
3531 return -1;
3532 else
3533 return 1;
3535 for (j = 0; j < XVECLEN (x, i); j++)
3536 if ((r = loc_cmp (XVECEXP (x, i, j),
3537 XVECEXP (y, i, j))))
3538 return r;
3539 break;
3541 case 'e':
3542 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3543 return r;
3544 break;
3546 case 'S':
3547 case 's':
3548 if (XSTR (x, i) == XSTR (y, i))
3549 break;
3550 if (!XSTR (x, i))
3551 return -1;
3552 if (!XSTR (y, i))
3553 return 1;
3554 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3555 break;
3556 else if (r < 0)
3557 return -1;
3558 else
3559 return 1;
3561 case 'u':
3562 /* These are just backpointers, so they don't matter. */
3563 break;
3565 case '0':
3566 case 't':
3567 break;
3569 /* It is believed that rtx's at this level will never
3570 contain anything but integers and other rtx's,
3571 except for within LABEL_REFs and SYMBOL_REFs. */
3572 default:
3573 gcc_unreachable ();
3575 if (CONST_WIDE_INT_P (x))
3577 /* Compare the vector length first. */
3578 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3579 return 1;
3580 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3581 return -1;
3583 /* Compare the vectors elements. */;
3584 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3586 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3587 return -1;
3588 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3589 return 1;
3593 return 0;
3596 /* Check the order of entries in one-part variables. */
3599 canonicalize_loc_order_check (variable **slot,
3600 dataflow_set *data ATTRIBUTE_UNUSED)
3602 variable *var = *slot;
3603 location_chain *node, *next;
3605 #ifdef ENABLE_RTL_CHECKING
3606 int i;
3607 for (i = 0; i < var->n_var_parts; i++)
3608 gcc_assert (var->var_part[0].cur_loc == NULL);
3609 gcc_assert (!var->in_changed_variables);
3610 #endif
3612 if (!var->onepart)
3613 return 1;
3615 gcc_assert (var->n_var_parts == 1);
3616 node = var->var_part[0].loc_chain;
3617 gcc_assert (node);
3619 while ((next = node->next))
3621 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3622 node = next;
3625 return 1;
3628 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3629 more likely to be chosen as canonical for an equivalence set.
3630 Ensure less likely values can reach more likely neighbors, making
3631 the connections bidirectional. */
3634 canonicalize_values_mark (variable **slot, dataflow_set *set)
3636 variable *var = *slot;
3637 decl_or_value dv = var->dv;
3638 rtx val;
3639 location_chain *node;
3641 if (!dv_is_value_p (dv))
3642 return 1;
3644 gcc_checking_assert (var->n_var_parts == 1);
3646 val = dv_as_value (dv);
3648 for (node = var->var_part[0].loc_chain; node; node = node->next)
3649 if (GET_CODE (node->loc) == VALUE)
3651 if (canon_value_cmp (node->loc, val))
3652 VALUE_RECURSED_INTO (val) = true;
3653 else
3655 decl_or_value odv = dv_from_value (node->loc);
3656 variable **oslot;
3657 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3659 set_slot_part (set, val, oslot, odv, 0,
3660 node->init, NULL_RTX);
3662 VALUE_RECURSED_INTO (node->loc) = true;
3666 return 1;
3669 /* Remove redundant entries from equivalence lists in onepart
3670 variables, canonicalizing equivalence sets into star shapes. */
3673 canonicalize_values_star (variable **slot, dataflow_set *set)
3675 variable *var = *slot;
3676 decl_or_value dv = var->dv;
3677 location_chain *node;
3678 decl_or_value cdv;
3679 rtx val, cval;
3680 variable **cslot;
3681 bool has_value;
3682 bool has_marks;
3684 if (!var->onepart)
3685 return 1;
3687 gcc_checking_assert (var->n_var_parts == 1);
3689 if (dv_is_value_p (dv))
3691 cval = dv_as_value (dv);
3692 if (!VALUE_RECURSED_INTO (cval))
3693 return 1;
3694 VALUE_RECURSED_INTO (cval) = false;
3696 else
3697 cval = NULL_RTX;
3699 restart:
3700 val = cval;
3701 has_value = false;
3702 has_marks = false;
3704 gcc_assert (var->n_var_parts == 1);
3706 for (node = var->var_part[0].loc_chain; node; node = node->next)
3707 if (GET_CODE (node->loc) == VALUE)
3709 has_value = true;
3710 if (VALUE_RECURSED_INTO (node->loc))
3711 has_marks = true;
3712 if (canon_value_cmp (node->loc, cval))
3713 cval = node->loc;
3716 if (!has_value)
3717 return 1;
3719 if (cval == val)
3721 if (!has_marks || dv_is_decl_p (dv))
3722 return 1;
3724 /* Keep it marked so that we revisit it, either after visiting a
3725 child node, or after visiting a new parent that might be
3726 found out. */
3727 VALUE_RECURSED_INTO (val) = true;
3729 for (node = var->var_part[0].loc_chain; node; node = node->next)
3730 if (GET_CODE (node->loc) == VALUE
3731 && VALUE_RECURSED_INTO (node->loc))
3733 cval = node->loc;
3734 restart_with_cval:
3735 VALUE_RECURSED_INTO (cval) = false;
3736 dv = dv_from_value (cval);
3737 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3738 if (!slot)
3740 gcc_assert (dv_is_decl_p (var->dv));
3741 /* The canonical value was reset and dropped.
3742 Remove it. */
3743 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3744 return 1;
3746 var = *slot;
3747 gcc_assert (dv_is_value_p (var->dv));
3748 if (var->n_var_parts == 0)
3749 return 1;
3750 gcc_assert (var->n_var_parts == 1);
3751 goto restart;
3754 VALUE_RECURSED_INTO (val) = false;
3756 return 1;
3759 /* Push values to the canonical one. */
3760 cdv = dv_from_value (cval);
3761 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3763 for (node = var->var_part[0].loc_chain; node; node = node->next)
3764 if (node->loc != cval)
3766 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3767 node->init, NULL_RTX);
3768 if (GET_CODE (node->loc) == VALUE)
3770 decl_or_value ndv = dv_from_value (node->loc);
3772 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3773 NO_INSERT);
3775 if (canon_value_cmp (node->loc, val))
3777 /* If it could have been a local minimum, it's not any more,
3778 since it's now neighbor to cval, so it may have to push
3779 to it. Conversely, if it wouldn't have prevailed over
3780 val, then whatever mark it has is fine: if it was to
3781 push, it will now push to a more canonical node, but if
3782 it wasn't, then it has already pushed any values it might
3783 have to. */
3784 VALUE_RECURSED_INTO (node->loc) = true;
3785 /* Make sure we visit node->loc by ensuring we cval is
3786 visited too. */
3787 VALUE_RECURSED_INTO (cval) = true;
3789 else if (!VALUE_RECURSED_INTO (node->loc))
3790 /* If we have no need to "recurse" into this node, it's
3791 already "canonicalized", so drop the link to the old
3792 parent. */
3793 clobber_variable_part (set, cval, ndv, 0, NULL);
3795 else if (GET_CODE (node->loc) == REG)
3797 attrs *list = set->regs[REGNO (node->loc)], **listp;
3799 /* Change an existing attribute referring to dv so that it
3800 refers to cdv, removing any duplicate this might
3801 introduce, and checking that no previous duplicates
3802 existed, all in a single pass. */
3804 while (list)
3806 if (list->offset == 0
3807 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3808 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3809 break;
3811 list = list->next;
3814 gcc_assert (list);
3815 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3817 list->dv = cdv;
3818 for (listp = &list->next; (list = *listp); listp = &list->next)
3820 if (list->offset)
3821 continue;
3823 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3825 *listp = list->next;
3826 delete list;
3827 list = *listp;
3828 break;
3831 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3834 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3836 for (listp = &list->next; (list = *listp); listp = &list->next)
3838 if (list->offset)
3839 continue;
3841 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3843 *listp = list->next;
3844 delete list;
3845 list = *listp;
3846 break;
3849 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3852 else
3853 gcc_unreachable ();
3855 if (flag_checking)
3856 while (list)
3858 if (list->offset == 0
3859 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3860 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3861 gcc_unreachable ();
3863 list = list->next;
3868 if (val)
3869 set_slot_part (set, val, cslot, cdv, 0,
3870 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3872 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3874 /* Variable may have been unshared. */
3875 var = *slot;
3876 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3877 && var->var_part[0].loc_chain->next == NULL);
3879 if (VALUE_RECURSED_INTO (cval))
3880 goto restart_with_cval;
3882 return 1;
3885 /* Bind one-part variables to the canonical value in an equivalence
3886 set. Not doing this causes dataflow convergence failure in rare
3887 circumstances, see PR42873. Unfortunately we can't do this
3888 efficiently as part of canonicalize_values_star, since we may not
3889 have determined or even seen the canonical value of a set when we
3890 get to a variable that references another member of the set. */
3893 canonicalize_vars_star (variable **slot, dataflow_set *set)
3895 variable *var = *slot;
3896 decl_or_value dv = var->dv;
3897 location_chain *node;
3898 rtx cval;
3899 decl_or_value cdv;
3900 variable **cslot;
3901 variable *cvar;
3902 location_chain *cnode;
3904 if (!var->onepart || var->onepart == ONEPART_VALUE)
3905 return 1;
3907 gcc_assert (var->n_var_parts == 1);
3909 node = var->var_part[0].loc_chain;
3911 if (GET_CODE (node->loc) != VALUE)
3912 return 1;
3914 gcc_assert (!node->next);
3915 cval = node->loc;
3917 /* Push values to the canonical one. */
3918 cdv = dv_from_value (cval);
3919 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3920 if (!cslot)
3921 return 1;
3922 cvar = *cslot;
3923 gcc_assert (cvar->n_var_parts == 1);
3925 cnode = cvar->var_part[0].loc_chain;
3927 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3928 that are not “more canonical” than it. */
3929 if (GET_CODE (cnode->loc) != VALUE
3930 || !canon_value_cmp (cnode->loc, cval))
3931 return 1;
3933 /* CVAL was found to be non-canonical. Change the variable to point
3934 to the canonical VALUE. */
3935 gcc_assert (!cnode->next);
3936 cval = cnode->loc;
3938 slot = set_slot_part (set, cval, slot, dv, 0,
3939 node->init, node->set_src);
3940 clobber_slot_part (set, cval, slot, 0, node->set_src);
3942 return 1;
3945 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3946 corresponding entry in DSM->src. Multi-part variables are combined
3947 with variable_union, whereas onepart dvs are combined with
3948 intersection. */
3950 static int
3951 variable_merge_over_cur (variable *s1var, struct dfset_merge *dsm)
3953 dataflow_set *dst = dsm->dst;
3954 variable **dstslot;
3955 variable *s2var, *dvar = NULL;
3956 decl_or_value dv = s1var->dv;
3957 onepart_enum onepart = s1var->onepart;
3958 rtx val;
3959 hashval_t dvhash;
3960 location_chain *node, **nodep;
3962 /* If the incoming onepart variable has an empty location list, then
3963 the intersection will be just as empty. For other variables,
3964 it's always union. */
3965 gcc_checking_assert (s1var->n_var_parts
3966 && s1var->var_part[0].loc_chain);
3968 if (!onepart)
3969 return variable_union (s1var, dst);
3971 gcc_checking_assert (s1var->n_var_parts == 1);
3973 dvhash = dv_htab_hash (dv);
3974 if (dv_is_value_p (dv))
3975 val = dv_as_value (dv);
3976 else
3977 val = NULL;
3979 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3980 if (!s2var)
3982 dst_can_be_shared = false;
3983 return 1;
3986 dsm->src_onepart_cnt--;
3987 gcc_assert (s2var->var_part[0].loc_chain
3988 && s2var->onepart == onepart
3989 && s2var->n_var_parts == 1);
3991 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3992 if (dstslot)
3994 dvar = *dstslot;
3995 gcc_assert (dvar->refcount == 1
3996 && dvar->onepart == onepart
3997 && dvar->n_var_parts == 1);
3998 nodep = &dvar->var_part[0].loc_chain;
4000 else
4002 nodep = &node;
4003 node = NULL;
4006 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
4008 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
4009 dvhash, INSERT);
4010 *dstslot = dvar = s2var;
4011 dvar->refcount++;
4013 else
4015 dst_can_be_shared = false;
4017 intersect_loc_chains (val, nodep, dsm,
4018 s1var->var_part[0].loc_chain, s2var);
4020 if (!dstslot)
4022 if (node)
4024 dvar = onepart_pool_allocate (onepart);
4025 dvar->dv = dv;
4026 dvar->refcount = 1;
4027 dvar->n_var_parts = 1;
4028 dvar->onepart = onepart;
4029 dvar->in_changed_variables = false;
4030 dvar->var_part[0].loc_chain = node;
4031 dvar->var_part[0].cur_loc = NULL;
4032 if (onepart)
4033 VAR_LOC_1PAUX (dvar) = NULL;
4034 else
4035 VAR_PART_OFFSET (dvar, 0) = 0;
4037 dstslot
4038 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4039 INSERT);
4040 gcc_assert (!*dstslot);
4041 *dstslot = dvar;
4043 else
4044 return 1;
4048 nodep = &dvar->var_part[0].loc_chain;
4049 while ((node = *nodep))
4051 location_chain **nextp = &node->next;
4053 if (GET_CODE (node->loc) == REG)
4055 attrs *list;
4057 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4058 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4059 && dv_is_value_p (list->dv))
4060 break;
4062 if (!list)
4063 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4064 dv, 0, node->loc);
4065 /* If this value became canonical for another value that had
4066 this register, we want to leave it alone. */
4067 else if (dv_as_value (list->dv) != val)
4069 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4070 dstslot, dv, 0,
4071 node->init, NULL_RTX);
4072 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4074 /* Since nextp points into the removed node, we can't
4075 use it. The pointer to the next node moved to nodep.
4076 However, if the variable we're walking is unshared
4077 during our walk, we'll keep walking the location list
4078 of the previously-shared variable, in which case the
4079 node won't have been removed, and we'll want to skip
4080 it. That's why we test *nodep here. */
4081 if (*nodep != node)
4082 nextp = nodep;
4085 else
4086 /* Canonicalization puts registers first, so we don't have to
4087 walk it all. */
4088 break;
4089 nodep = nextp;
4092 if (dvar != *dstslot)
4093 dvar = *dstslot;
4094 nodep = &dvar->var_part[0].loc_chain;
4096 if (val)
4098 /* Mark all referenced nodes for canonicalization, and make sure
4099 we have mutual equivalence links. */
4100 VALUE_RECURSED_INTO (val) = true;
4101 for (node = *nodep; node; node = node->next)
4102 if (GET_CODE (node->loc) == VALUE)
4104 VALUE_RECURSED_INTO (node->loc) = true;
4105 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4106 node->init, NULL, INSERT);
4109 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4110 gcc_assert (*dstslot == dvar);
4111 canonicalize_values_star (dstslot, dst);
4112 gcc_checking_assert (dstslot
4113 == shared_hash_find_slot_noinsert_1 (dst->vars,
4114 dv, dvhash));
4115 dvar = *dstslot;
4117 else
4119 bool has_value = false, has_other = false;
4121 /* If we have one value and anything else, we're going to
4122 canonicalize this, so make sure all values have an entry in
4123 the table and are marked for canonicalization. */
4124 for (node = *nodep; node; node = node->next)
4126 if (GET_CODE (node->loc) == VALUE)
4128 /* If this was marked during register canonicalization,
4129 we know we have to canonicalize values. */
4130 if (has_value)
4131 has_other = true;
4132 has_value = true;
4133 if (has_other)
4134 break;
4136 else
4138 has_other = true;
4139 if (has_value)
4140 break;
4144 if (has_value && has_other)
4146 for (node = *nodep; node; node = node->next)
4148 if (GET_CODE (node->loc) == VALUE)
4150 decl_or_value dv = dv_from_value (node->loc);
4151 variable **slot = NULL;
4153 if (shared_hash_shared (dst->vars))
4154 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4155 if (!slot)
4156 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4157 INSERT);
4158 if (!*slot)
4160 variable *var = onepart_pool_allocate (ONEPART_VALUE);
4161 var->dv = dv;
4162 var->refcount = 1;
4163 var->n_var_parts = 1;
4164 var->onepart = ONEPART_VALUE;
4165 var->in_changed_variables = false;
4166 var->var_part[0].loc_chain = NULL;
4167 var->var_part[0].cur_loc = NULL;
4168 VAR_LOC_1PAUX (var) = NULL;
4169 *slot = var;
4172 VALUE_RECURSED_INTO (node->loc) = true;
4176 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4177 gcc_assert (*dstslot == dvar);
4178 canonicalize_values_star (dstslot, dst);
4179 gcc_checking_assert (dstslot
4180 == shared_hash_find_slot_noinsert_1 (dst->vars,
4181 dv, dvhash));
4182 dvar = *dstslot;
4186 if (!onepart_variable_different_p (dvar, s2var))
4188 variable_htab_free (dvar);
4189 *dstslot = dvar = s2var;
4190 dvar->refcount++;
4192 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4194 variable_htab_free (dvar);
4195 *dstslot = dvar = s1var;
4196 dvar->refcount++;
4197 dst_can_be_shared = false;
4199 else
4200 dst_can_be_shared = false;
4202 return 1;
4205 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4206 multi-part variable. Unions of multi-part variables and
4207 intersections of one-part ones will be handled in
4208 variable_merge_over_cur(). */
4210 static int
4211 variable_merge_over_src (variable *s2var, struct dfset_merge *dsm)
4213 dataflow_set *dst = dsm->dst;
4214 decl_or_value dv = s2var->dv;
4216 if (!s2var->onepart)
4218 variable **dstp = shared_hash_find_slot (dst->vars, dv);
4219 *dstp = s2var;
4220 s2var->refcount++;
4221 return 1;
4224 dsm->src_onepart_cnt++;
4225 return 1;
4228 /* Combine dataflow set information from SRC2 into DST, using PDST
4229 to carry over information across passes. */
4231 static void
4232 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4234 dataflow_set cur = *dst;
4235 dataflow_set *src1 = &cur;
4236 struct dfset_merge dsm;
4237 int i;
4238 size_t src1_elems, src2_elems;
4239 variable_iterator_type hi;
4240 variable *var;
4242 src1_elems = shared_hash_htab (src1->vars)->elements ();
4243 src2_elems = shared_hash_htab (src2->vars)->elements ();
4244 dataflow_set_init (dst);
4245 dst->stack_adjust = cur.stack_adjust;
4246 shared_hash_destroy (dst->vars);
4247 dst->vars = new shared_hash;
4248 dst->vars->refcount = 1;
4249 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4251 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4252 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4254 dsm.dst = dst;
4255 dsm.src = src2;
4256 dsm.cur = src1;
4257 dsm.src_onepart_cnt = 0;
4259 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4260 var, variable, hi)
4261 variable_merge_over_src (var, &dsm);
4262 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4263 var, variable, hi)
4264 variable_merge_over_cur (var, &dsm);
4266 if (dsm.src_onepart_cnt)
4267 dst_can_be_shared = false;
4269 dataflow_set_destroy (src1);
4272 /* Mark register equivalences. */
4274 static void
4275 dataflow_set_equiv_regs (dataflow_set *set)
4277 int i;
4278 attrs *list, **listp;
4280 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4282 rtx canon[NUM_MACHINE_MODES];
4284 /* If the list is empty or one entry, no need to canonicalize
4285 anything. */
4286 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4287 continue;
4289 memset (canon, 0, sizeof (canon));
4291 for (list = set->regs[i]; list; list = list->next)
4292 if (list->offset == 0 && dv_is_value_p (list->dv))
4294 rtx val = dv_as_value (list->dv);
4295 rtx *cvalp = &canon[(int)GET_MODE (val)];
4296 rtx cval = *cvalp;
4298 if (canon_value_cmp (val, cval))
4299 *cvalp = val;
4302 for (list = set->regs[i]; list; list = list->next)
4303 if (list->offset == 0 && dv_onepart_p (list->dv))
4305 rtx cval = canon[(int)GET_MODE (list->loc)];
4307 if (!cval)
4308 continue;
4310 if (dv_is_value_p (list->dv))
4312 rtx val = dv_as_value (list->dv);
4314 if (val == cval)
4315 continue;
4317 VALUE_RECURSED_INTO (val) = true;
4318 set_variable_part (set, val, dv_from_value (cval), 0,
4319 VAR_INIT_STATUS_INITIALIZED,
4320 NULL, NO_INSERT);
4323 VALUE_RECURSED_INTO (cval) = true;
4324 set_variable_part (set, cval, list->dv, 0,
4325 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4328 for (listp = &set->regs[i]; (list = *listp);
4329 listp = list ? &list->next : listp)
4330 if (list->offset == 0 && dv_onepart_p (list->dv))
4332 rtx cval = canon[(int)GET_MODE (list->loc)];
4333 variable **slot;
4335 if (!cval)
4336 continue;
4338 if (dv_is_value_p (list->dv))
4340 rtx val = dv_as_value (list->dv);
4341 if (!VALUE_RECURSED_INTO (val))
4342 continue;
4345 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4346 canonicalize_values_star (slot, set);
4347 if (*listp != list)
4348 list = NULL;
4353 /* Remove any redundant values in the location list of VAR, which must
4354 be unshared and 1-part. */
4356 static void
4357 remove_duplicate_values (variable *var)
4359 location_chain *node, **nodep;
4361 gcc_assert (var->onepart);
4362 gcc_assert (var->n_var_parts == 1);
4363 gcc_assert (var->refcount == 1);
4365 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4367 if (GET_CODE (node->loc) == VALUE)
4369 if (VALUE_RECURSED_INTO (node->loc))
4371 /* Remove duplicate value node. */
4372 *nodep = node->next;
4373 delete node;
4374 continue;
4376 else
4377 VALUE_RECURSED_INTO (node->loc) = true;
4379 nodep = &node->next;
4382 for (node = var->var_part[0].loc_chain; node; node = node->next)
4383 if (GET_CODE (node->loc) == VALUE)
4385 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4386 VALUE_RECURSED_INTO (node->loc) = false;
4391 /* Hash table iteration argument passed to variable_post_merge. */
4392 struct dfset_post_merge
4394 /* The new input set for the current block. */
4395 dataflow_set *set;
4396 /* Pointer to the permanent input set for the current block, or
4397 NULL. */
4398 dataflow_set **permp;
4401 /* Create values for incoming expressions associated with one-part
4402 variables that don't have value numbers for them. */
4405 variable_post_merge_new_vals (variable **slot, dfset_post_merge *dfpm)
4407 dataflow_set *set = dfpm->set;
4408 variable *var = *slot;
4409 location_chain *node;
4411 if (!var->onepart || !var->n_var_parts)
4412 return 1;
4414 gcc_assert (var->n_var_parts == 1);
4416 if (dv_is_decl_p (var->dv))
4418 bool check_dupes = false;
4420 restart:
4421 for (node = var->var_part[0].loc_chain; node; node = node->next)
4423 if (GET_CODE (node->loc) == VALUE)
4424 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4425 else if (GET_CODE (node->loc) == REG)
4427 attrs *att, **attp, **curp = NULL;
4429 if (var->refcount != 1)
4431 slot = unshare_variable (set, slot, var,
4432 VAR_INIT_STATUS_INITIALIZED);
4433 var = *slot;
4434 goto restart;
4437 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4438 attp = &att->next)
4439 if (att->offset == 0
4440 && GET_MODE (att->loc) == GET_MODE (node->loc))
4442 if (dv_is_value_p (att->dv))
4444 rtx cval = dv_as_value (att->dv);
4445 node->loc = cval;
4446 check_dupes = true;
4447 break;
4449 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4450 curp = attp;
4453 if (!curp)
4455 curp = attp;
4456 while (*curp)
4457 if ((*curp)->offset == 0
4458 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4459 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4460 break;
4461 else
4462 curp = &(*curp)->next;
4463 gcc_assert (*curp);
4466 if (!att)
4468 decl_or_value cdv;
4469 rtx cval;
4471 if (!*dfpm->permp)
4473 *dfpm->permp = XNEW (dataflow_set);
4474 dataflow_set_init (*dfpm->permp);
4477 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4478 att; att = att->next)
4479 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4481 gcc_assert (att->offset == 0
4482 && dv_is_value_p (att->dv));
4483 val_reset (set, att->dv);
4484 break;
4487 if (att)
4489 cdv = att->dv;
4490 cval = dv_as_value (cdv);
4492 else
4494 /* Create a unique value to hold this register,
4495 that ought to be found and reused in
4496 subsequent rounds. */
4497 cselib_val *v;
4498 gcc_assert (!cselib_lookup (node->loc,
4499 GET_MODE (node->loc), 0,
4500 VOIDmode));
4501 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4502 VOIDmode);
4503 cselib_preserve_value (v);
4504 cselib_invalidate_rtx (node->loc);
4505 cval = v->val_rtx;
4506 cdv = dv_from_value (cval);
4507 if (dump_file)
4508 fprintf (dump_file,
4509 "Created new value %u:%u for reg %i\n",
4510 v->uid, v->hash, REGNO (node->loc));
4513 var_reg_decl_set (*dfpm->permp, node->loc,
4514 VAR_INIT_STATUS_INITIALIZED,
4515 cdv, 0, NULL, INSERT);
4517 node->loc = cval;
4518 check_dupes = true;
4521 /* Remove attribute referring to the decl, which now
4522 uses the value for the register, already existing or
4523 to be added when we bring perm in. */
4524 att = *curp;
4525 *curp = att->next;
4526 delete att;
4530 if (check_dupes)
4531 remove_duplicate_values (var);
4534 return 1;
4537 /* Reset values in the permanent set that are not associated with the
4538 chosen expression. */
4541 variable_post_merge_perm_vals (variable **pslot, dfset_post_merge *dfpm)
4543 dataflow_set *set = dfpm->set;
4544 variable *pvar = *pslot, *var;
4545 location_chain *pnode;
4546 decl_or_value dv;
4547 attrs *att;
4549 gcc_assert (dv_is_value_p (pvar->dv)
4550 && pvar->n_var_parts == 1);
4551 pnode = pvar->var_part[0].loc_chain;
4552 gcc_assert (pnode
4553 && !pnode->next
4554 && REG_P (pnode->loc));
4556 dv = pvar->dv;
4558 var = shared_hash_find (set->vars, dv);
4559 if (var)
4561 /* Although variable_post_merge_new_vals may have made decls
4562 non-star-canonical, values that pre-existed in canonical form
4563 remain canonical, and newly-created values reference a single
4564 REG, so they are canonical as well. Since VAR has the
4565 location list for a VALUE, using find_loc_in_1pdv for it is
4566 fine, since VALUEs don't map back to DECLs. */
4567 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4568 return 1;
4569 val_reset (set, dv);
4572 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4573 if (att->offset == 0
4574 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4575 && dv_is_value_p (att->dv))
4576 break;
4578 /* If there is a value associated with this register already, create
4579 an equivalence. */
4580 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4582 rtx cval = dv_as_value (att->dv);
4583 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4584 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4585 NULL, INSERT);
4587 else if (!att)
4589 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4590 dv, 0, pnode->loc);
4591 variable_union (pvar, set);
4594 return 1;
4597 /* Just checking stuff and registering register attributes for
4598 now. */
4600 static void
4601 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4603 struct dfset_post_merge dfpm;
4605 dfpm.set = set;
4606 dfpm.permp = permp;
4608 shared_hash_htab (set->vars)
4609 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4610 if (*permp)
4611 shared_hash_htab ((*permp)->vars)
4612 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4613 shared_hash_htab (set->vars)
4614 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4615 shared_hash_htab (set->vars)
4616 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4619 /* Return a node whose loc is a MEM that refers to EXPR in the
4620 location list of a one-part variable or value VAR, or in that of
4621 any values recursively mentioned in the location lists. */
4623 static location_chain *
4624 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4626 location_chain *node;
4627 decl_or_value dv;
4628 variable *var;
4629 location_chain *where = NULL;
4631 if (!val)
4632 return NULL;
4634 gcc_assert (GET_CODE (val) == VALUE
4635 && !VALUE_RECURSED_INTO (val));
4637 dv = dv_from_value (val);
4638 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4640 if (!var)
4641 return NULL;
4643 gcc_assert (var->onepart);
4645 if (!var->n_var_parts)
4646 return NULL;
4648 VALUE_RECURSED_INTO (val) = true;
4650 for (node = var->var_part[0].loc_chain; node; node = node->next)
4651 if (MEM_P (node->loc)
4652 && MEM_EXPR (node->loc) == expr
4653 && int_mem_offset (node->loc) == 0)
4655 where = node;
4656 break;
4658 else if (GET_CODE (node->loc) == VALUE
4659 && !VALUE_RECURSED_INTO (node->loc)
4660 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4661 break;
4663 VALUE_RECURSED_INTO (val) = false;
4665 return where;
4668 /* Return TRUE if the value of MEM may vary across a call. */
4670 static bool
4671 mem_dies_at_call (rtx mem)
4673 tree expr = MEM_EXPR (mem);
4674 tree decl;
4676 if (!expr)
4677 return true;
4679 decl = get_base_address (expr);
4681 if (!decl)
4682 return true;
4684 if (!DECL_P (decl))
4685 return true;
4687 return (may_be_aliased (decl)
4688 || (!TREE_READONLY (decl) && is_global_var (decl)));
4691 /* Remove all MEMs from the location list of a hash table entry for a
4692 one-part variable, except those whose MEM attributes map back to
4693 the variable itself, directly or within a VALUE. */
4696 dataflow_set_preserve_mem_locs (variable **slot, dataflow_set *set)
4698 variable *var = *slot;
4700 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4702 tree decl = dv_as_decl (var->dv);
4703 location_chain *loc, **locp;
4704 bool changed = false;
4706 if (!var->n_var_parts)
4707 return 1;
4709 gcc_assert (var->n_var_parts == 1);
4711 if (shared_var_p (var, set->vars))
4713 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4715 /* We want to remove dying MEMs that don't refer to DECL. */
4716 if (GET_CODE (loc->loc) == MEM
4717 && (MEM_EXPR (loc->loc) != decl
4718 || int_mem_offset (loc->loc) != 0)
4719 && mem_dies_at_call (loc->loc))
4720 break;
4721 /* We want to move here MEMs that do refer to DECL. */
4722 else if (GET_CODE (loc->loc) == VALUE
4723 && find_mem_expr_in_1pdv (decl, loc->loc,
4724 shared_hash_htab (set->vars)))
4725 break;
4728 if (!loc)
4729 return 1;
4731 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4732 var = *slot;
4733 gcc_assert (var->n_var_parts == 1);
4736 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4737 loc; loc = *locp)
4739 rtx old_loc = loc->loc;
4740 if (GET_CODE (old_loc) == VALUE)
4742 location_chain *mem_node
4743 = find_mem_expr_in_1pdv (decl, loc->loc,
4744 shared_hash_htab (set->vars));
4746 /* ??? This picks up only one out of multiple MEMs that
4747 refer to the same variable. Do we ever need to be
4748 concerned about dealing with more than one, or, given
4749 that they should all map to the same variable
4750 location, their addresses will have been merged and
4751 they will be regarded as equivalent? */
4752 if (mem_node)
4754 loc->loc = mem_node->loc;
4755 loc->set_src = mem_node->set_src;
4756 loc->init = MIN (loc->init, mem_node->init);
4760 if (GET_CODE (loc->loc) != MEM
4761 || (MEM_EXPR (loc->loc) == decl
4762 && int_mem_offset (loc->loc) == 0)
4763 || !mem_dies_at_call (loc->loc))
4765 if (old_loc != loc->loc && emit_notes)
4767 if (old_loc == var->var_part[0].cur_loc)
4769 changed = true;
4770 var->var_part[0].cur_loc = NULL;
4773 locp = &loc->next;
4774 continue;
4777 if (emit_notes)
4779 if (old_loc == var->var_part[0].cur_loc)
4781 changed = true;
4782 var->var_part[0].cur_loc = NULL;
4785 *locp = loc->next;
4786 delete loc;
4789 if (!var->var_part[0].loc_chain)
4791 var->n_var_parts--;
4792 changed = true;
4794 if (changed)
4795 variable_was_changed (var, set);
4798 return 1;
4801 /* Remove all MEMs from the location list of a hash table entry for a
4802 onepart variable. */
4805 dataflow_set_remove_mem_locs (variable **slot, dataflow_set *set)
4807 variable *var = *slot;
4809 if (var->onepart != NOT_ONEPART)
4811 location_chain *loc, **locp;
4812 bool changed = false;
4813 rtx cur_loc;
4815 gcc_assert (var->n_var_parts == 1);
4817 if (shared_var_p (var, set->vars))
4819 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4820 if (GET_CODE (loc->loc) == MEM
4821 && mem_dies_at_call (loc->loc))
4822 break;
4824 if (!loc)
4825 return 1;
4827 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4828 var = *slot;
4829 gcc_assert (var->n_var_parts == 1);
4832 if (VAR_LOC_1PAUX (var))
4833 cur_loc = VAR_LOC_FROM (var);
4834 else
4835 cur_loc = var->var_part[0].cur_loc;
4837 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4838 loc; loc = *locp)
4840 if (GET_CODE (loc->loc) != MEM
4841 || !mem_dies_at_call (loc->loc))
4843 locp = &loc->next;
4844 continue;
4847 *locp = loc->next;
4848 /* If we have deleted the location which was last emitted
4849 we have to emit new location so add the variable to set
4850 of changed variables. */
4851 if (cur_loc == loc->loc)
4853 changed = true;
4854 var->var_part[0].cur_loc = NULL;
4855 if (VAR_LOC_1PAUX (var))
4856 VAR_LOC_FROM (var) = NULL;
4858 delete loc;
4861 if (!var->var_part[0].loc_chain)
4863 var->n_var_parts--;
4864 changed = true;
4866 if (changed)
4867 variable_was_changed (var, set);
4870 return 1;
4873 /* Remove all variable-location information about call-clobbered
4874 registers, as well as associations between MEMs and VALUEs. */
4876 static void
4877 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4879 unsigned int r;
4880 hard_reg_set_iterator hrsi;
4881 HARD_REG_SET invalidated_regs;
4883 get_call_reg_set_usage (call_insn, &invalidated_regs,
4884 regs_invalidated_by_call);
4886 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs, 0, r, hrsi)
4887 var_regno_delete (set, r);
4889 if (MAY_HAVE_DEBUG_BIND_INSNS)
4891 set->traversed_vars = set->vars;
4892 shared_hash_htab (set->vars)
4893 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4894 set->traversed_vars = set->vars;
4895 shared_hash_htab (set->vars)
4896 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4897 set->traversed_vars = NULL;
4901 static bool
4902 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4904 location_chain *lc1, *lc2;
4906 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4908 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4910 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4912 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4913 break;
4915 if (rtx_equal_p (lc1->loc, lc2->loc))
4916 break;
4918 if (!lc2)
4919 return true;
4921 return false;
4924 /* Return true if one-part variables VAR1 and VAR2 are different.
4925 They must be in canonical order. */
4927 static bool
4928 onepart_variable_different_p (variable *var1, variable *var2)
4930 location_chain *lc1, *lc2;
4932 if (var1 == var2)
4933 return false;
4935 gcc_assert (var1->n_var_parts == 1
4936 && var2->n_var_parts == 1);
4938 lc1 = var1->var_part[0].loc_chain;
4939 lc2 = var2->var_part[0].loc_chain;
4941 gcc_assert (lc1 && lc2);
4943 while (lc1 && lc2)
4945 if (loc_cmp (lc1->loc, lc2->loc))
4946 return true;
4947 lc1 = lc1->next;
4948 lc2 = lc2->next;
4951 return lc1 != lc2;
4954 /* Return true if one-part variables VAR1 and VAR2 are different.
4955 They must be in canonical order. */
4957 static void
4958 dump_onepart_variable_differences (variable *var1, variable *var2)
4960 location_chain *lc1, *lc2;
4962 gcc_assert (var1 != var2);
4963 gcc_assert (dump_file);
4964 gcc_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4965 gcc_assert (var1->n_var_parts == 1
4966 && var2->n_var_parts == 1);
4968 lc1 = var1->var_part[0].loc_chain;
4969 lc2 = var2->var_part[0].loc_chain;
4971 gcc_assert (lc1 && lc2);
4973 while (lc1 && lc2)
4975 switch (loc_cmp (lc1->loc, lc2->loc))
4977 case -1:
4978 fprintf (dump_file, "removed: ");
4979 print_rtl_single (dump_file, lc1->loc);
4980 lc1 = lc1->next;
4981 continue;
4982 case 0:
4983 break;
4984 case 1:
4985 fprintf (dump_file, "added: ");
4986 print_rtl_single (dump_file, lc2->loc);
4987 lc2 = lc2->next;
4988 continue;
4989 default:
4990 gcc_unreachable ();
4992 lc1 = lc1->next;
4993 lc2 = lc2->next;
4996 while (lc1)
4998 fprintf (dump_file, "removed: ");
4999 print_rtl_single (dump_file, lc1->loc);
5000 lc1 = lc1->next;
5003 while (lc2)
5005 fprintf (dump_file, "added: ");
5006 print_rtl_single (dump_file, lc2->loc);
5007 lc2 = lc2->next;
5011 /* Return true if variables VAR1 and VAR2 are different. */
5013 static bool
5014 variable_different_p (variable *var1, variable *var2)
5016 int i;
5018 if (var1 == var2)
5019 return false;
5021 if (var1->onepart != var2->onepart)
5022 return true;
5024 if (var1->n_var_parts != var2->n_var_parts)
5025 return true;
5027 if (var1->onepart && var1->n_var_parts)
5029 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
5030 && var1->n_var_parts == 1);
5031 /* One-part values have locations in a canonical order. */
5032 return onepart_variable_different_p (var1, var2);
5035 for (i = 0; i < var1->n_var_parts; i++)
5037 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
5038 return true;
5039 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
5040 return true;
5041 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
5042 return true;
5044 return false;
5047 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5049 static bool
5050 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
5052 variable_iterator_type hi;
5053 variable *var1;
5054 bool diffound = false;
5055 bool details = (dump_file && (dump_flags & TDF_DETAILS));
5057 #define RETRUE \
5058 do \
5060 if (!details) \
5061 return true; \
5062 else \
5063 diffound = true; \
5065 while (0)
5067 if (old_set->vars == new_set->vars)
5068 return false;
5070 if (shared_hash_htab (old_set->vars)->elements ()
5071 != shared_hash_htab (new_set->vars)->elements ())
5072 RETRUE;
5074 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
5075 var1, variable, hi)
5077 variable_table_type *htab = shared_hash_htab (new_set->vars);
5078 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5080 if (!var2)
5082 if (dump_file && (dump_flags & TDF_DETAILS))
5084 fprintf (dump_file, "dataflow difference found: removal of:\n");
5085 dump_var (var1);
5087 RETRUE;
5089 else if (variable_different_p (var1, var2))
5091 if (details)
5093 fprintf (dump_file, "dataflow difference found: "
5094 "old and new follow:\n");
5095 dump_var (var1);
5096 if (dv_onepart_p (var1->dv))
5097 dump_onepart_variable_differences (var1, var2);
5098 dump_var (var2);
5100 RETRUE;
5104 /* There's no need to traverse the second hashtab unless we want to
5105 print the details. If both have the same number of elements and
5106 the second one had all entries found in the first one, then the
5107 second can't have any extra entries. */
5108 if (!details)
5109 return diffound;
5111 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set->vars),
5112 var1, variable, hi)
5114 variable_table_type *htab = shared_hash_htab (old_set->vars);
5115 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5116 if (!var2)
5118 if (details)
5120 fprintf (dump_file, "dataflow difference found: addition of:\n");
5121 dump_var (var1);
5123 RETRUE;
5127 #undef RETRUE
5129 return diffound;
5132 /* Free the contents of dataflow set SET. */
5134 static void
5135 dataflow_set_destroy (dataflow_set *set)
5137 int i;
5139 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5140 attrs_list_clear (&set->regs[i]);
5142 shared_hash_destroy (set->vars);
5143 set->vars = NULL;
5146 /* Return true if T is a tracked parameter with non-degenerate record type. */
5148 static bool
5149 tracked_record_parameter_p (tree t)
5151 if (TREE_CODE (t) != PARM_DECL)
5152 return false;
5154 if (DECL_MODE (t) == BLKmode)
5155 return false;
5157 tree type = TREE_TYPE (t);
5158 if (TREE_CODE (type) != RECORD_TYPE)
5159 return false;
5161 if (TYPE_FIELDS (type) == NULL_TREE
5162 || DECL_CHAIN (TYPE_FIELDS (type)) == NULL_TREE)
5163 return false;
5165 return true;
5168 /* Shall EXPR be tracked? */
5170 static bool
5171 track_expr_p (tree expr, bool need_rtl)
5173 rtx decl_rtl;
5174 tree realdecl;
5176 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5177 return DECL_RTL_SET_P (expr);
5179 /* If EXPR is not a parameter or a variable do not track it. */
5180 if (!VAR_P (expr) && TREE_CODE (expr) != PARM_DECL)
5181 return 0;
5183 /* It also must have a name... */
5184 if (!DECL_NAME (expr) && need_rtl)
5185 return 0;
5187 /* ... and a RTL assigned to it. */
5188 decl_rtl = DECL_RTL_IF_SET (expr);
5189 if (!decl_rtl && need_rtl)
5190 return 0;
5192 /* If this expression is really a debug alias of some other declaration, we
5193 don't need to track this expression if the ultimate declaration is
5194 ignored. */
5195 realdecl = expr;
5196 if (VAR_P (realdecl) && DECL_HAS_DEBUG_EXPR_P (realdecl))
5198 realdecl = DECL_DEBUG_EXPR (realdecl);
5199 if (!DECL_P (realdecl))
5201 if (handled_component_p (realdecl)
5202 || (TREE_CODE (realdecl) == MEM_REF
5203 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5205 HOST_WIDE_INT bitsize, bitpos, maxsize;
5206 bool reverse;
5207 tree innerdecl
5208 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5209 &maxsize, &reverse);
5210 if (!DECL_P (innerdecl)
5211 || DECL_IGNORED_P (innerdecl)
5212 /* Do not track declarations for parts of tracked record
5213 parameters since we want to track them as a whole. */
5214 || tracked_record_parameter_p (innerdecl)
5215 || TREE_STATIC (innerdecl)
5216 || bitsize <= 0
5217 || bitpos + bitsize > 256
5218 || bitsize != maxsize)
5219 return 0;
5220 else
5221 realdecl = expr;
5223 else
5224 return 0;
5228 /* Do not track EXPR if REALDECL it should be ignored for debugging
5229 purposes. */
5230 if (DECL_IGNORED_P (realdecl))
5231 return 0;
5233 /* Do not track global variables until we are able to emit correct location
5234 list for them. */
5235 if (TREE_STATIC (realdecl))
5236 return 0;
5238 /* When the EXPR is a DECL for alias of some variable (see example)
5239 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5240 DECL_RTL contains SYMBOL_REF.
5242 Example:
5243 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5244 char **_dl_argv;
5246 if (decl_rtl && MEM_P (decl_rtl)
5247 && contains_symbol_ref_p (XEXP (decl_rtl, 0)))
5248 return 0;
5250 /* If RTX is a memory it should not be very large (because it would be
5251 an array or struct). */
5252 if (decl_rtl && MEM_P (decl_rtl))
5254 /* Do not track structures and arrays. */
5255 if ((GET_MODE (decl_rtl) == BLKmode
5256 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5257 && !tracked_record_parameter_p (realdecl))
5258 return 0;
5259 if (MEM_SIZE_KNOWN_P (decl_rtl)
5260 && maybe_gt (MEM_SIZE (decl_rtl), MAX_VAR_PARTS))
5261 return 0;
5264 DECL_CHANGED (expr) = 0;
5265 DECL_CHANGED (realdecl) = 0;
5266 return 1;
5269 /* Determine whether a given LOC refers to the same variable part as
5270 EXPR+OFFSET. */
5272 static bool
5273 same_variable_part_p (rtx loc, tree expr, poly_int64 offset)
5275 tree expr2;
5276 poly_int64 offset2;
5278 if (! DECL_P (expr))
5279 return false;
5281 if (REG_P (loc))
5283 expr2 = REG_EXPR (loc);
5284 offset2 = REG_OFFSET (loc);
5286 else if (MEM_P (loc))
5288 expr2 = MEM_EXPR (loc);
5289 offset2 = int_mem_offset (loc);
5291 else
5292 return false;
5294 if (! expr2 || ! DECL_P (expr2))
5295 return false;
5297 expr = var_debug_decl (expr);
5298 expr2 = var_debug_decl (expr2);
5300 return (expr == expr2 && known_eq (offset, offset2));
5303 /* LOC is a REG or MEM that we would like to track if possible.
5304 If EXPR is null, we don't know what expression LOC refers to,
5305 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5306 LOC is an lvalue register.
5308 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5309 is something we can track. When returning true, store the mode of
5310 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5311 from EXPR in *OFFSET_OUT (if nonnull). */
5313 static bool
5314 track_loc_p (rtx loc, tree expr, poly_int64 offset, bool store_reg_p,
5315 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5317 machine_mode mode;
5319 if (expr == NULL || !track_expr_p (expr, true))
5320 return false;
5322 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5323 whole subreg, but only the old inner part is really relevant. */
5324 mode = GET_MODE (loc);
5325 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5327 machine_mode pseudo_mode;
5329 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5330 if (paradoxical_subreg_p (mode, pseudo_mode))
5332 offset += byte_lowpart_offset (pseudo_mode, mode);
5333 mode = pseudo_mode;
5337 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5338 Do the same if we are storing to a register and EXPR occupies
5339 the whole of register LOC; in that case, the whole of EXPR is
5340 being changed. We exclude complex modes from the second case
5341 because the real and imaginary parts are represented as separate
5342 pseudo registers, even if the whole complex value fits into one
5343 hard register. */
5344 if ((paradoxical_subreg_p (mode, DECL_MODE (expr))
5345 || (store_reg_p
5346 && !COMPLEX_MODE_P (DECL_MODE (expr))
5347 && hard_regno_nregs (REGNO (loc), DECL_MODE (expr)) == 1))
5348 && known_eq (offset + byte_lowpart_offset (DECL_MODE (expr), mode), 0))
5350 mode = DECL_MODE (expr);
5351 offset = 0;
5354 HOST_WIDE_INT const_offset;
5355 if (!track_offset_p (offset, &const_offset))
5356 return false;
5358 if (mode_out)
5359 *mode_out = mode;
5360 if (offset_out)
5361 *offset_out = const_offset;
5362 return true;
5365 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5366 want to track. When returning nonnull, make sure that the attributes
5367 on the returned value are updated. */
5369 static rtx
5370 var_lowpart (machine_mode mode, rtx loc)
5372 unsigned int offset, reg_offset, regno;
5374 if (GET_MODE (loc) == mode)
5375 return loc;
5377 if (!REG_P (loc) && !MEM_P (loc))
5378 return NULL;
5380 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5382 if (MEM_P (loc))
5383 return adjust_address_nv (loc, mode, offset);
5385 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5386 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5387 reg_offset, mode);
5388 return gen_rtx_REG_offset (loc, mode, regno, offset);
5391 /* Carry information about uses and stores while walking rtx. */
5393 struct count_use_info
5395 /* The insn where the RTX is. */
5396 rtx_insn *insn;
5398 /* The basic block where insn is. */
5399 basic_block bb;
5401 /* The array of n_sets sets in the insn, as determined by cselib. */
5402 struct cselib_set *sets;
5403 int n_sets;
5405 /* True if we're counting stores, false otherwise. */
5406 bool store_p;
5409 /* Find a VALUE corresponding to X. */
5411 static inline cselib_val *
5412 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5414 int i;
5416 if (cui->sets)
5418 /* This is called after uses are set up and before stores are
5419 processed by cselib, so it's safe to look up srcs, but not
5420 dsts. So we look up expressions that appear in srcs or in
5421 dest expressions, but we search the sets array for dests of
5422 stores. */
5423 if (cui->store_p)
5425 /* Some targets represent memset and memcpy patterns
5426 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5427 (set (mem:BLK ...) (const_int ...)) or
5428 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5429 in that case, otherwise we end up with mode mismatches. */
5430 if (mode == BLKmode && MEM_P (x))
5431 return NULL;
5432 for (i = 0; i < cui->n_sets; i++)
5433 if (cui->sets[i].dest == x)
5434 return cui->sets[i].src_elt;
5436 else
5437 return cselib_lookup (x, mode, 0, VOIDmode);
5440 return NULL;
5443 /* Replace all registers and addresses in an expression with VALUE
5444 expressions that map back to them, unless the expression is a
5445 register. If no mapping is or can be performed, returns NULL. */
5447 static rtx
5448 replace_expr_with_values (rtx loc)
5450 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5451 return NULL;
5452 else if (MEM_P (loc))
5454 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5455 get_address_mode (loc), 0,
5456 GET_MODE (loc));
5457 if (addr)
5458 return replace_equiv_address_nv (loc, addr->val_rtx);
5459 else
5460 return NULL;
5462 else
5463 return cselib_subst_to_values (loc, VOIDmode);
5466 /* Return true if X contains a DEBUG_EXPR. */
5468 static bool
5469 rtx_debug_expr_p (const_rtx x)
5471 subrtx_iterator::array_type array;
5472 FOR_EACH_SUBRTX (iter, array, x, ALL)
5473 if (GET_CODE (*iter) == DEBUG_EXPR)
5474 return true;
5475 return false;
5478 /* Determine what kind of micro operation to choose for a USE. Return
5479 MO_CLOBBER if no micro operation is to be generated. */
5481 static enum micro_operation_type
5482 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5484 tree expr;
5486 if (cui && cui->sets)
5488 if (GET_CODE (loc) == VAR_LOCATION)
5490 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5492 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5493 if (! VAR_LOC_UNKNOWN_P (ploc))
5495 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5496 VOIDmode);
5498 /* ??? flag_float_store and volatile mems are never
5499 given values, but we could in theory use them for
5500 locations. */
5501 gcc_assert (val || 1);
5503 return MO_VAL_LOC;
5505 else
5506 return MO_CLOBBER;
5509 if (REG_P (loc) || MEM_P (loc))
5511 if (modep)
5512 *modep = GET_MODE (loc);
5513 if (cui->store_p)
5515 if (REG_P (loc)
5516 || (find_use_val (loc, GET_MODE (loc), cui)
5517 && cselib_lookup (XEXP (loc, 0),
5518 get_address_mode (loc), 0,
5519 GET_MODE (loc))))
5520 return MO_VAL_SET;
5522 else
5524 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5526 if (val && !cselib_preserved_value_p (val))
5527 return MO_VAL_USE;
5532 if (REG_P (loc))
5534 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5536 if (loc == cfa_base_rtx)
5537 return MO_CLOBBER;
5538 expr = REG_EXPR (loc);
5540 if (!expr)
5541 return MO_USE_NO_VAR;
5542 else if (target_for_debug_bind (var_debug_decl (expr)))
5543 return MO_CLOBBER;
5544 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5545 false, modep, NULL))
5546 return MO_USE;
5547 else
5548 return MO_USE_NO_VAR;
5550 else if (MEM_P (loc))
5552 expr = MEM_EXPR (loc);
5554 if (!expr)
5555 return MO_CLOBBER;
5556 else if (target_for_debug_bind (var_debug_decl (expr)))
5557 return MO_CLOBBER;
5558 else if (track_loc_p (loc, expr, int_mem_offset (loc),
5559 false, modep, NULL)
5560 /* Multi-part variables shouldn't refer to one-part
5561 variable names such as VALUEs (never happens) or
5562 DEBUG_EXPRs (only happens in the presence of debug
5563 insns). */
5564 && (!MAY_HAVE_DEBUG_BIND_INSNS
5565 || !rtx_debug_expr_p (XEXP (loc, 0))))
5566 return MO_USE;
5567 else
5568 return MO_CLOBBER;
5571 return MO_CLOBBER;
5574 /* Log to OUT information about micro-operation MOPT involving X in
5575 INSN of BB. */
5577 static inline void
5578 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5579 enum micro_operation_type mopt, FILE *out)
5581 fprintf (out, "bb %i op %i insn %i %s ",
5582 bb->index, VTI (bb)->mos.length (),
5583 INSN_UID (insn), micro_operation_type_name[mopt]);
5584 print_inline_rtx (out, x, 2);
5585 fputc ('\n', out);
5588 /* Tell whether the CONCAT used to holds a VALUE and its location
5589 needs value resolution, i.e., an attempt of mapping the location
5590 back to other incoming values. */
5591 #define VAL_NEEDS_RESOLUTION(x) \
5592 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5593 /* Whether the location in the CONCAT is a tracked expression, that
5594 should also be handled like a MO_USE. */
5595 #define VAL_HOLDS_TRACK_EXPR(x) \
5596 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5597 /* Whether the location in the CONCAT should be handled like a MO_COPY
5598 as well. */
5599 #define VAL_EXPR_IS_COPIED(x) \
5600 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5601 /* Whether the location in the CONCAT should be handled like a
5602 MO_CLOBBER as well. */
5603 #define VAL_EXPR_IS_CLOBBERED(x) \
5604 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5606 /* All preserved VALUEs. */
5607 static vec<rtx> preserved_values;
5609 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5611 static void
5612 preserve_value (cselib_val *val)
5614 cselib_preserve_value (val);
5615 preserved_values.safe_push (val->val_rtx);
5618 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5619 any rtxes not suitable for CONST use not replaced by VALUEs
5620 are discovered. */
5622 static bool
5623 non_suitable_const (const_rtx x)
5625 subrtx_iterator::array_type array;
5626 FOR_EACH_SUBRTX (iter, array, x, ALL)
5628 const_rtx x = *iter;
5629 switch (GET_CODE (x))
5631 case REG:
5632 case DEBUG_EXPR:
5633 case PC:
5634 case SCRATCH:
5635 case CC0:
5636 case ASM_INPUT:
5637 case ASM_OPERANDS:
5638 return true;
5639 case MEM:
5640 if (!MEM_READONLY_P (x))
5641 return true;
5642 break;
5643 default:
5644 break;
5647 return false;
5650 /* Add uses (register and memory references) LOC which will be tracked
5651 to VTI (bb)->mos. */
5653 static void
5654 add_uses (rtx loc, struct count_use_info *cui)
5656 machine_mode mode = VOIDmode;
5657 enum micro_operation_type type = use_type (loc, cui, &mode);
5659 if (type != MO_CLOBBER)
5661 basic_block bb = cui->bb;
5662 micro_operation mo;
5664 mo.type = type;
5665 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5666 mo.insn = cui->insn;
5668 if (type == MO_VAL_LOC)
5670 rtx oloc = loc;
5671 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5672 cselib_val *val;
5674 gcc_assert (cui->sets);
5676 if (MEM_P (vloc)
5677 && !REG_P (XEXP (vloc, 0))
5678 && !MEM_P (XEXP (vloc, 0)))
5680 rtx mloc = vloc;
5681 machine_mode address_mode = get_address_mode (mloc);
5682 cselib_val *val
5683 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5684 GET_MODE (mloc));
5686 if (val && !cselib_preserved_value_p (val))
5687 preserve_value (val);
5690 if (CONSTANT_P (vloc)
5691 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5692 /* For constants don't look up any value. */;
5693 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5694 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5696 machine_mode mode2;
5697 enum micro_operation_type type2;
5698 rtx nloc = NULL;
5699 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5701 if (resolvable)
5702 nloc = replace_expr_with_values (vloc);
5704 if (nloc)
5706 oloc = shallow_copy_rtx (oloc);
5707 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5710 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5712 type2 = use_type (vloc, 0, &mode2);
5714 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5715 || type2 == MO_CLOBBER);
5717 if (type2 == MO_CLOBBER
5718 && !cselib_preserved_value_p (val))
5720 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5721 preserve_value (val);
5724 else if (!VAR_LOC_UNKNOWN_P (vloc))
5726 oloc = shallow_copy_rtx (oloc);
5727 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5730 mo.u.loc = oloc;
5732 else if (type == MO_VAL_USE)
5734 machine_mode mode2 = VOIDmode;
5735 enum micro_operation_type type2;
5736 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5737 rtx vloc, oloc = loc, nloc;
5739 gcc_assert (cui->sets);
5741 if (MEM_P (oloc)
5742 && !REG_P (XEXP (oloc, 0))
5743 && !MEM_P (XEXP (oloc, 0)))
5745 rtx mloc = oloc;
5746 machine_mode address_mode = get_address_mode (mloc);
5747 cselib_val *val
5748 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5749 GET_MODE (mloc));
5751 if (val && !cselib_preserved_value_p (val))
5752 preserve_value (val);
5755 type2 = use_type (loc, 0, &mode2);
5757 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5758 || type2 == MO_CLOBBER);
5760 if (type2 == MO_USE)
5761 vloc = var_lowpart (mode2, loc);
5762 else
5763 vloc = oloc;
5765 /* The loc of a MO_VAL_USE may have two forms:
5767 (concat val src): val is at src, a value-based
5768 representation.
5770 (concat (concat val use) src): same as above, with use as
5771 the MO_USE tracked value, if it differs from src.
5775 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5776 nloc = replace_expr_with_values (loc);
5777 if (!nloc)
5778 nloc = oloc;
5780 if (vloc != nloc)
5781 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5782 else
5783 oloc = val->val_rtx;
5785 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5787 if (type2 == MO_USE)
5788 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5789 if (!cselib_preserved_value_p (val))
5791 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5792 preserve_value (val);
5795 else
5796 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5798 if (dump_file && (dump_flags & TDF_DETAILS))
5799 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5800 VTI (bb)->mos.safe_push (mo);
5804 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5806 static void
5807 add_uses_1 (rtx *x, void *cui)
5809 subrtx_var_iterator::array_type array;
5810 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5811 add_uses (*iter, (struct count_use_info *) cui);
5814 /* This is the value used during expansion of locations. We want it
5815 to be unbounded, so that variables expanded deep in a recursion
5816 nest are fully evaluated, so that their values are cached
5817 correctly. We avoid recursion cycles through other means, and we
5818 don't unshare RTL, so excess complexity is not a problem. */
5819 #define EXPR_DEPTH (INT_MAX)
5820 /* We use this to keep too-complex expressions from being emitted as
5821 location notes, and then to debug information. Users can trade
5822 compile time for ridiculously complex expressions, although they're
5823 seldom useful, and they may often have to be discarded as not
5824 representable anyway. */
5825 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5827 /* Attempt to reverse the EXPR operation in the debug info and record
5828 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5829 no longer live we can express its value as VAL - 6. */
5831 static void
5832 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5834 rtx src, arg, ret;
5835 cselib_val *v;
5836 struct elt_loc_list *l;
5837 enum rtx_code code;
5838 int count;
5840 if (GET_CODE (expr) != SET)
5841 return;
5843 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5844 return;
5846 src = SET_SRC (expr);
5847 switch (GET_CODE (src))
5849 case PLUS:
5850 case MINUS:
5851 case XOR:
5852 case NOT:
5853 case NEG:
5854 if (!REG_P (XEXP (src, 0)))
5855 return;
5856 break;
5857 case SIGN_EXTEND:
5858 case ZERO_EXTEND:
5859 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5860 return;
5861 break;
5862 default:
5863 return;
5866 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5867 return;
5869 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5870 if (!v || !cselib_preserved_value_p (v))
5871 return;
5873 /* Use canonical V to avoid creating multiple redundant expressions
5874 for different VALUES equivalent to V. */
5875 v = canonical_cselib_val (v);
5877 /* Adding a reverse op isn't useful if V already has an always valid
5878 location. Ignore ENTRY_VALUE, while it is always constant, we should
5879 prefer non-ENTRY_VALUE locations whenever possible. */
5880 for (l = v->locs, count = 0; l; l = l->next, count++)
5881 if (CONSTANT_P (l->loc)
5882 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5883 return;
5884 /* Avoid creating too large locs lists. */
5885 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5886 return;
5888 switch (GET_CODE (src))
5890 case NOT:
5891 case NEG:
5892 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5893 return;
5894 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5895 break;
5896 case SIGN_EXTEND:
5897 case ZERO_EXTEND:
5898 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5899 break;
5900 case XOR:
5901 code = XOR;
5902 goto binary;
5903 case PLUS:
5904 code = MINUS;
5905 goto binary;
5906 case MINUS:
5907 code = PLUS;
5908 goto binary;
5909 binary:
5910 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5911 return;
5912 arg = XEXP (src, 1);
5913 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5915 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5916 if (arg == NULL_RTX)
5917 return;
5918 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5919 return;
5921 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5922 break;
5923 default:
5924 gcc_unreachable ();
5927 cselib_add_permanent_equiv (v, ret, insn);
5930 /* Add stores (register and memory references) LOC which will be tracked
5931 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5932 CUIP->insn is instruction which the LOC is part of. */
5934 static void
5935 add_stores (rtx loc, const_rtx expr, void *cuip)
5937 machine_mode mode = VOIDmode, mode2;
5938 struct count_use_info *cui = (struct count_use_info *)cuip;
5939 basic_block bb = cui->bb;
5940 micro_operation mo;
5941 rtx oloc = loc, nloc, src = NULL;
5942 enum micro_operation_type type = use_type (loc, cui, &mode);
5943 bool track_p = false;
5944 cselib_val *v;
5945 bool resolve, preserve;
5947 if (type == MO_CLOBBER)
5948 return;
5950 mode2 = mode;
5952 if (REG_P (loc))
5954 gcc_assert (loc != cfa_base_rtx);
5955 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5956 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5957 || GET_CODE (expr) == CLOBBER)
5959 mo.type = MO_CLOBBER;
5960 mo.u.loc = loc;
5961 if (GET_CODE (expr) == SET
5962 && SET_DEST (expr) == loc
5963 && !unsuitable_loc (SET_SRC (expr))
5964 && find_use_val (loc, mode, cui))
5966 gcc_checking_assert (type == MO_VAL_SET);
5967 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5970 else
5972 if (GET_CODE (expr) == SET
5973 && SET_DEST (expr) == loc
5974 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5975 src = var_lowpart (mode2, SET_SRC (expr));
5976 loc = var_lowpart (mode2, loc);
5978 if (src == NULL)
5980 mo.type = MO_SET;
5981 mo.u.loc = loc;
5983 else
5985 rtx xexpr = gen_rtx_SET (loc, src);
5986 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5988 /* If this is an instruction copying (part of) a parameter
5989 passed by invisible reference to its register location,
5990 pretend it's a SET so that the initial memory location
5991 is discarded, as the parameter register can be reused
5992 for other purposes and we do not track locations based
5993 on generic registers. */
5994 if (MEM_P (src)
5995 && REG_EXPR (loc)
5996 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5997 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5998 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5999 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
6000 != arg_pointer_rtx)
6001 mo.type = MO_SET;
6002 else
6003 mo.type = MO_COPY;
6005 else
6006 mo.type = MO_SET;
6007 mo.u.loc = xexpr;
6010 mo.insn = cui->insn;
6012 else if (MEM_P (loc)
6013 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
6014 || cui->sets))
6016 if (MEM_P (loc) && type == MO_VAL_SET
6017 && !REG_P (XEXP (loc, 0))
6018 && !MEM_P (XEXP (loc, 0)))
6020 rtx mloc = loc;
6021 machine_mode address_mode = get_address_mode (mloc);
6022 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
6023 address_mode, 0,
6024 GET_MODE (mloc));
6026 if (val && !cselib_preserved_value_p (val))
6027 preserve_value (val);
6030 if (GET_CODE (expr) == CLOBBER || !track_p)
6032 mo.type = MO_CLOBBER;
6033 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
6035 else
6037 if (GET_CODE (expr) == SET
6038 && SET_DEST (expr) == loc
6039 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
6040 src = var_lowpart (mode2, SET_SRC (expr));
6041 loc = var_lowpart (mode2, loc);
6043 if (src == NULL)
6045 mo.type = MO_SET;
6046 mo.u.loc = loc;
6048 else
6050 rtx xexpr = gen_rtx_SET (loc, src);
6051 if (same_variable_part_p (SET_SRC (xexpr),
6052 MEM_EXPR (loc),
6053 int_mem_offset (loc)))
6054 mo.type = MO_COPY;
6055 else
6056 mo.type = MO_SET;
6057 mo.u.loc = xexpr;
6060 mo.insn = cui->insn;
6062 else
6063 return;
6065 if (type != MO_VAL_SET)
6066 goto log_and_return;
6068 v = find_use_val (oloc, mode, cui);
6070 if (!v)
6071 goto log_and_return;
6073 resolve = preserve = !cselib_preserved_value_p (v);
6075 /* We cannot track values for multiple-part variables, so we track only
6076 locations for tracked record parameters. */
6077 if (track_p
6078 && REG_P (loc)
6079 && REG_EXPR (loc)
6080 && tracked_record_parameter_p (REG_EXPR (loc)))
6082 /* Although we don't use the value here, it could be used later by the
6083 mere virtue of its existence as the operand of the reverse operation
6084 that gave rise to it (typically extension/truncation). Make sure it
6085 is preserved as required by vt_expand_var_loc_chain. */
6086 if (preserve)
6087 preserve_value (v);
6088 goto log_and_return;
6091 if (loc == stack_pointer_rtx
6092 && hard_frame_pointer_adjustment != -1
6093 && preserve)
6094 cselib_set_value_sp_based (v);
6096 nloc = replace_expr_with_values (oloc);
6097 if (nloc)
6098 oloc = nloc;
6100 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6102 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6104 if (oval == v)
6105 return;
6106 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6108 if (oval && !cselib_preserved_value_p (oval))
6110 micro_operation moa;
6112 preserve_value (oval);
6114 moa.type = MO_VAL_USE;
6115 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6116 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6117 moa.insn = cui->insn;
6119 if (dump_file && (dump_flags & TDF_DETAILS))
6120 log_op_type (moa.u.loc, cui->bb, cui->insn,
6121 moa.type, dump_file);
6122 VTI (bb)->mos.safe_push (moa);
6125 resolve = false;
6127 else if (resolve && GET_CODE (mo.u.loc) == SET)
6129 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6130 nloc = replace_expr_with_values (SET_SRC (expr));
6131 else
6132 nloc = NULL_RTX;
6134 /* Avoid the mode mismatch between oexpr and expr. */
6135 if (!nloc && mode != mode2)
6137 nloc = SET_SRC (expr);
6138 gcc_assert (oloc == SET_DEST (expr));
6141 if (nloc && nloc != SET_SRC (mo.u.loc))
6142 oloc = gen_rtx_SET (oloc, nloc);
6143 else
6145 if (oloc == SET_DEST (mo.u.loc))
6146 /* No point in duplicating. */
6147 oloc = mo.u.loc;
6148 if (!REG_P (SET_SRC (mo.u.loc)))
6149 resolve = false;
6152 else if (!resolve)
6154 if (GET_CODE (mo.u.loc) == SET
6155 && oloc == SET_DEST (mo.u.loc))
6156 /* No point in duplicating. */
6157 oloc = mo.u.loc;
6159 else
6160 resolve = false;
6162 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6164 if (mo.u.loc != oloc)
6165 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6167 /* The loc of a MO_VAL_SET may have various forms:
6169 (concat val dst): dst now holds val
6171 (concat val (set dst src)): dst now holds val, copied from src
6173 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6174 after replacing mems and non-top-level regs with values.
6176 (concat (concat val dstv) (set dst src)): dst now holds val,
6177 copied from src. dstv is a value-based representation of dst, if
6178 it differs from dst. If resolution is needed, src is a REG, and
6179 its mode is the same as that of val.
6181 (concat (concat val (set dstv srcv)) (set dst src)): src
6182 copied to dst, holding val. dstv and srcv are value-based
6183 representations of dst and src, respectively.
6187 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6188 reverse_op (v->val_rtx, expr, cui->insn);
6190 mo.u.loc = loc;
6192 if (track_p)
6193 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6194 if (preserve)
6196 VAL_NEEDS_RESOLUTION (loc) = resolve;
6197 preserve_value (v);
6199 if (mo.type == MO_CLOBBER)
6200 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6201 if (mo.type == MO_COPY)
6202 VAL_EXPR_IS_COPIED (loc) = 1;
6204 mo.type = MO_VAL_SET;
6206 log_and_return:
6207 if (dump_file && (dump_flags & TDF_DETAILS))
6208 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6209 VTI (bb)->mos.safe_push (mo);
6212 /* Arguments to the call. */
6213 static rtx call_arguments;
6215 /* Compute call_arguments. */
6217 static void
6218 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6220 rtx link, x, call;
6221 rtx prev, cur, next;
6222 rtx this_arg = NULL_RTX;
6223 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6224 tree obj_type_ref = NULL_TREE;
6225 CUMULATIVE_ARGS args_so_far_v;
6226 cumulative_args_t args_so_far;
6228 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6229 args_so_far = pack_cumulative_args (&args_so_far_v);
6230 call = get_call_rtx_from (insn);
6231 if (call)
6233 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6235 rtx symbol = XEXP (XEXP (call, 0), 0);
6236 if (SYMBOL_REF_DECL (symbol))
6237 fndecl = SYMBOL_REF_DECL (symbol);
6239 if (fndecl == NULL_TREE)
6240 fndecl = MEM_EXPR (XEXP (call, 0));
6241 if (fndecl
6242 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6243 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6244 fndecl = NULL_TREE;
6245 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6246 type = TREE_TYPE (fndecl);
6247 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6249 if (TREE_CODE (fndecl) == INDIRECT_REF
6250 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6251 obj_type_ref = TREE_OPERAND (fndecl, 0);
6252 fndecl = NULL_TREE;
6254 if (type)
6256 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6257 t = TREE_CHAIN (t))
6258 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6259 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6260 break;
6261 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6262 type = NULL;
6263 else
6265 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6266 link = CALL_INSN_FUNCTION_USAGE (insn);
6267 #ifndef PCC_STATIC_STRUCT_RETURN
6268 if (aggregate_value_p (TREE_TYPE (type), type)
6269 && targetm.calls.struct_value_rtx (type, 0) == 0)
6271 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6272 machine_mode mode = TYPE_MODE (struct_addr);
6273 rtx reg;
6274 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6275 nargs + 1);
6276 reg = targetm.calls.function_arg (args_so_far, mode,
6277 struct_addr, true);
6278 targetm.calls.function_arg_advance (args_so_far, mode,
6279 struct_addr, true);
6280 if (reg == NULL_RTX)
6282 for (; link; link = XEXP (link, 1))
6283 if (GET_CODE (XEXP (link, 0)) == USE
6284 && MEM_P (XEXP (XEXP (link, 0), 0)))
6286 link = XEXP (link, 1);
6287 break;
6291 else
6292 #endif
6293 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6294 nargs);
6295 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6297 machine_mode mode;
6298 t = TYPE_ARG_TYPES (type);
6299 mode = TYPE_MODE (TREE_VALUE (t));
6300 this_arg = targetm.calls.function_arg (args_so_far, mode,
6301 TREE_VALUE (t), true);
6302 if (this_arg && !REG_P (this_arg))
6303 this_arg = NULL_RTX;
6304 else if (this_arg == NULL_RTX)
6306 for (; link; link = XEXP (link, 1))
6307 if (GET_CODE (XEXP (link, 0)) == USE
6308 && MEM_P (XEXP (XEXP (link, 0), 0)))
6310 this_arg = XEXP (XEXP (link, 0), 0);
6311 break;
6318 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6320 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6321 if (GET_CODE (XEXP (link, 0)) == USE)
6323 rtx item = NULL_RTX;
6324 x = XEXP (XEXP (link, 0), 0);
6325 if (GET_MODE (link) == VOIDmode
6326 || GET_MODE (link) == BLKmode
6327 || (GET_MODE (link) != GET_MODE (x)
6328 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6329 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6330 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6331 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6332 /* Can't do anything for these, if the original type mode
6333 isn't known or can't be converted. */;
6334 else if (REG_P (x))
6336 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6337 scalar_int_mode mode;
6338 if (val && cselib_preserved_value_p (val))
6339 item = val->val_rtx;
6340 else if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
6342 opt_scalar_int_mode mode_iter;
6343 FOR_EACH_WIDER_MODE (mode_iter, mode)
6345 mode = mode_iter.require ();
6346 if (GET_MODE_BITSIZE (mode) > BITS_PER_WORD)
6347 break;
6349 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6350 if (reg == NULL_RTX || !REG_P (reg))
6351 continue;
6352 val = cselib_lookup (reg, mode, 0, VOIDmode);
6353 if (val && cselib_preserved_value_p (val))
6355 item = val->val_rtx;
6356 break;
6361 else if (MEM_P (x))
6363 rtx mem = x;
6364 cselib_val *val;
6366 if (!frame_pointer_needed)
6368 struct adjust_mem_data amd;
6369 amd.mem_mode = VOIDmode;
6370 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6371 amd.store = true;
6372 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6373 &amd);
6374 gcc_assert (amd.side_effects.is_empty ());
6376 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6377 if (val && cselib_preserved_value_p (val))
6378 item = val->val_rtx;
6379 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6380 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6382 /* For non-integer stack argument see also if they weren't
6383 initialized by integers. */
6384 scalar_int_mode imode;
6385 if (int_mode_for_mode (GET_MODE (mem)).exists (&imode)
6386 && imode != GET_MODE (mem))
6388 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6389 imode, 0, VOIDmode);
6390 if (val && cselib_preserved_value_p (val))
6391 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6392 imode);
6396 if (item)
6398 rtx x2 = x;
6399 if (GET_MODE (item) != GET_MODE (link))
6400 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6401 if (GET_MODE (x2) != GET_MODE (link))
6402 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6403 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6404 call_arguments
6405 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6407 if (t && t != void_list_node)
6409 tree argtype = TREE_VALUE (t);
6410 machine_mode mode = TYPE_MODE (argtype);
6411 rtx reg;
6412 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6414 argtype = build_pointer_type (argtype);
6415 mode = TYPE_MODE (argtype);
6417 reg = targetm.calls.function_arg (args_so_far, mode,
6418 argtype, true);
6419 if (TREE_CODE (argtype) == REFERENCE_TYPE
6420 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6421 && reg
6422 && REG_P (reg)
6423 && GET_MODE (reg) == mode
6424 && (GET_MODE_CLASS (mode) == MODE_INT
6425 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6426 && REG_P (x)
6427 && REGNO (x) == REGNO (reg)
6428 && GET_MODE (x) == mode
6429 && item)
6431 machine_mode indmode
6432 = TYPE_MODE (TREE_TYPE (argtype));
6433 rtx mem = gen_rtx_MEM (indmode, x);
6434 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6435 if (val && cselib_preserved_value_p (val))
6437 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6438 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6439 call_arguments);
6441 else
6443 struct elt_loc_list *l;
6444 tree initial;
6446 /* Try harder, when passing address of a constant
6447 pool integer it can be easily read back. */
6448 item = XEXP (item, 1);
6449 if (GET_CODE (item) == SUBREG)
6450 item = SUBREG_REG (item);
6451 gcc_assert (GET_CODE (item) == VALUE);
6452 val = CSELIB_VAL_PTR (item);
6453 for (l = val->locs; l; l = l->next)
6454 if (GET_CODE (l->loc) == SYMBOL_REF
6455 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6456 && SYMBOL_REF_DECL (l->loc)
6457 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6459 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6460 if (tree_fits_shwi_p (initial))
6462 item = GEN_INT (tree_to_shwi (initial));
6463 item = gen_rtx_CONCAT (indmode, mem, item);
6464 call_arguments
6465 = gen_rtx_EXPR_LIST (VOIDmode, item,
6466 call_arguments);
6468 break;
6472 targetm.calls.function_arg_advance (args_so_far, mode,
6473 argtype, true);
6474 t = TREE_CHAIN (t);
6478 /* Add debug arguments. */
6479 if (fndecl
6480 && TREE_CODE (fndecl) == FUNCTION_DECL
6481 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6483 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6484 if (debug_args)
6486 unsigned int ix;
6487 tree param;
6488 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6490 rtx item;
6491 tree dtemp = (**debug_args)[ix + 1];
6492 machine_mode mode = DECL_MODE (dtemp);
6493 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6494 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6495 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6496 call_arguments);
6501 /* Reverse call_arguments chain. */
6502 prev = NULL_RTX;
6503 for (cur = call_arguments; cur; cur = next)
6505 next = XEXP (cur, 1);
6506 XEXP (cur, 1) = prev;
6507 prev = cur;
6509 call_arguments = prev;
6511 x = get_call_rtx_from (insn);
6512 if (x)
6514 x = XEXP (XEXP (x, 0), 0);
6515 if (GET_CODE (x) == SYMBOL_REF)
6516 /* Don't record anything. */;
6517 else if (CONSTANT_P (x))
6519 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6520 pc_rtx, x);
6521 call_arguments
6522 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6524 else
6526 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6527 if (val && cselib_preserved_value_p (val))
6529 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6530 call_arguments
6531 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6535 if (this_arg)
6537 machine_mode mode
6538 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6539 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6540 HOST_WIDE_INT token
6541 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6542 if (token)
6543 clobbered = plus_constant (mode, clobbered,
6544 token * GET_MODE_SIZE (mode));
6545 clobbered = gen_rtx_MEM (mode, clobbered);
6546 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6547 call_arguments
6548 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6552 /* Callback for cselib_record_sets_hook, that records as micro
6553 operations uses and stores in an insn after cselib_record_sets has
6554 analyzed the sets in an insn, but before it modifies the stored
6555 values in the internal tables, unless cselib_record_sets doesn't
6556 call it directly (perhaps because we're not doing cselib in the
6557 first place, in which case sets and n_sets will be 0). */
6559 static void
6560 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6562 basic_block bb = BLOCK_FOR_INSN (insn);
6563 int n1, n2;
6564 struct count_use_info cui;
6565 micro_operation *mos;
6567 cselib_hook_called = true;
6569 cui.insn = insn;
6570 cui.bb = bb;
6571 cui.sets = sets;
6572 cui.n_sets = n_sets;
6574 n1 = VTI (bb)->mos.length ();
6575 cui.store_p = false;
6576 note_uses (&PATTERN (insn), add_uses_1, &cui);
6577 n2 = VTI (bb)->mos.length () - 1;
6578 mos = VTI (bb)->mos.address ();
6580 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6581 MO_VAL_LOC last. */
6582 while (n1 < n2)
6584 while (n1 < n2 && mos[n1].type == MO_USE)
6585 n1++;
6586 while (n1 < n2 && mos[n2].type != MO_USE)
6587 n2--;
6588 if (n1 < n2)
6589 std::swap (mos[n1], mos[n2]);
6592 n2 = VTI (bb)->mos.length () - 1;
6593 while (n1 < n2)
6595 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6596 n1++;
6597 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6598 n2--;
6599 if (n1 < n2)
6600 std::swap (mos[n1], mos[n2]);
6603 if (CALL_P (insn))
6605 micro_operation mo;
6607 mo.type = MO_CALL;
6608 mo.insn = insn;
6609 mo.u.loc = call_arguments;
6610 call_arguments = NULL_RTX;
6612 if (dump_file && (dump_flags & TDF_DETAILS))
6613 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6614 VTI (bb)->mos.safe_push (mo);
6617 n1 = VTI (bb)->mos.length ();
6618 /* This will record NEXT_INSN (insn), such that we can
6619 insert notes before it without worrying about any
6620 notes that MO_USEs might emit after the insn. */
6621 cui.store_p = true;
6622 note_stores (PATTERN (insn), add_stores, &cui);
6623 n2 = VTI (bb)->mos.length () - 1;
6624 mos = VTI (bb)->mos.address ();
6626 /* Order the MO_VAL_USEs first (note_stores does nothing
6627 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6628 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6629 while (n1 < n2)
6631 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6632 n1++;
6633 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6634 n2--;
6635 if (n1 < n2)
6636 std::swap (mos[n1], mos[n2]);
6639 n2 = VTI (bb)->mos.length () - 1;
6640 while (n1 < n2)
6642 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6643 n1++;
6644 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6645 n2--;
6646 if (n1 < n2)
6647 std::swap (mos[n1], mos[n2]);
6651 static enum var_init_status
6652 find_src_status (dataflow_set *in, rtx src)
6654 tree decl = NULL_TREE;
6655 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6657 if (! flag_var_tracking_uninit)
6658 status = VAR_INIT_STATUS_INITIALIZED;
6660 if (src && REG_P (src))
6661 decl = var_debug_decl (REG_EXPR (src));
6662 else if (src && MEM_P (src))
6663 decl = var_debug_decl (MEM_EXPR (src));
6665 if (src && decl)
6666 status = get_init_value (in, src, dv_from_decl (decl));
6668 return status;
6671 /* SRC is the source of an assignment. Use SET to try to find what
6672 was ultimately assigned to SRC. Return that value if known,
6673 otherwise return SRC itself. */
6675 static rtx
6676 find_src_set_src (dataflow_set *set, rtx src)
6678 tree decl = NULL_TREE; /* The variable being copied around. */
6679 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6680 variable *var;
6681 location_chain *nextp;
6682 int i;
6683 bool found;
6685 if (src && REG_P (src))
6686 decl = var_debug_decl (REG_EXPR (src));
6687 else if (src && MEM_P (src))
6688 decl = var_debug_decl (MEM_EXPR (src));
6690 if (src && decl)
6692 decl_or_value dv = dv_from_decl (decl);
6694 var = shared_hash_find (set->vars, dv);
6695 if (var)
6697 found = false;
6698 for (i = 0; i < var->n_var_parts && !found; i++)
6699 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6700 nextp = nextp->next)
6701 if (rtx_equal_p (nextp->loc, src))
6703 set_src = nextp->set_src;
6704 found = true;
6710 return set_src;
6713 /* Compute the changes of variable locations in the basic block BB. */
6715 static bool
6716 compute_bb_dataflow (basic_block bb)
6718 unsigned int i;
6719 micro_operation *mo;
6720 bool changed;
6721 dataflow_set old_out;
6722 dataflow_set *in = &VTI (bb)->in;
6723 dataflow_set *out = &VTI (bb)->out;
6725 dataflow_set_init (&old_out);
6726 dataflow_set_copy (&old_out, out);
6727 dataflow_set_copy (out, in);
6729 if (MAY_HAVE_DEBUG_BIND_INSNS)
6730 local_get_addr_cache = new hash_map<rtx, rtx>;
6732 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6734 rtx_insn *insn = mo->insn;
6736 switch (mo->type)
6738 case MO_CALL:
6739 dataflow_set_clear_at_call (out, insn);
6740 break;
6742 case MO_USE:
6744 rtx loc = mo->u.loc;
6746 if (REG_P (loc))
6747 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6748 else if (MEM_P (loc))
6749 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6751 break;
6753 case MO_VAL_LOC:
6755 rtx loc = mo->u.loc;
6756 rtx val, vloc;
6757 tree var;
6759 if (GET_CODE (loc) == CONCAT)
6761 val = XEXP (loc, 0);
6762 vloc = XEXP (loc, 1);
6764 else
6766 val = NULL_RTX;
6767 vloc = loc;
6770 var = PAT_VAR_LOCATION_DECL (vloc);
6772 clobber_variable_part (out, NULL_RTX,
6773 dv_from_decl (var), 0, NULL_RTX);
6774 if (val)
6776 if (VAL_NEEDS_RESOLUTION (loc))
6777 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6778 set_variable_part (out, val, dv_from_decl (var), 0,
6779 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6780 INSERT);
6782 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6783 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6784 dv_from_decl (var), 0,
6785 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6786 INSERT);
6788 break;
6790 case MO_VAL_USE:
6792 rtx loc = mo->u.loc;
6793 rtx val, vloc, uloc;
6795 vloc = uloc = XEXP (loc, 1);
6796 val = XEXP (loc, 0);
6798 if (GET_CODE (val) == CONCAT)
6800 uloc = XEXP (val, 1);
6801 val = XEXP (val, 0);
6804 if (VAL_NEEDS_RESOLUTION (loc))
6805 val_resolve (out, val, vloc, insn);
6806 else
6807 val_store (out, val, uloc, insn, false);
6809 if (VAL_HOLDS_TRACK_EXPR (loc))
6811 if (GET_CODE (uloc) == REG)
6812 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6813 NULL);
6814 else if (GET_CODE (uloc) == MEM)
6815 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6816 NULL);
6819 break;
6821 case MO_VAL_SET:
6823 rtx loc = mo->u.loc;
6824 rtx val, vloc, uloc;
6825 rtx dstv, srcv;
6827 vloc = loc;
6828 uloc = XEXP (vloc, 1);
6829 val = XEXP (vloc, 0);
6830 vloc = uloc;
6832 if (GET_CODE (uloc) == SET)
6834 dstv = SET_DEST (uloc);
6835 srcv = SET_SRC (uloc);
6837 else
6839 dstv = uloc;
6840 srcv = NULL;
6843 if (GET_CODE (val) == CONCAT)
6845 dstv = vloc = XEXP (val, 1);
6846 val = XEXP (val, 0);
6849 if (GET_CODE (vloc) == SET)
6851 srcv = SET_SRC (vloc);
6853 gcc_assert (val != srcv);
6854 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6856 dstv = vloc = SET_DEST (vloc);
6858 if (VAL_NEEDS_RESOLUTION (loc))
6859 val_resolve (out, val, srcv, insn);
6861 else if (VAL_NEEDS_RESOLUTION (loc))
6863 gcc_assert (GET_CODE (uloc) == SET
6864 && GET_CODE (SET_SRC (uloc)) == REG);
6865 val_resolve (out, val, SET_SRC (uloc), insn);
6868 if (VAL_HOLDS_TRACK_EXPR (loc))
6870 if (VAL_EXPR_IS_CLOBBERED (loc))
6872 if (REG_P (uloc))
6873 var_reg_delete (out, uloc, true);
6874 else if (MEM_P (uloc))
6876 gcc_assert (MEM_P (dstv));
6877 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6878 var_mem_delete (out, dstv, true);
6881 else
6883 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6884 rtx src = NULL, dst = uloc;
6885 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6887 if (GET_CODE (uloc) == SET)
6889 src = SET_SRC (uloc);
6890 dst = SET_DEST (uloc);
6893 if (copied_p)
6895 if (flag_var_tracking_uninit)
6897 status = find_src_status (in, src);
6899 if (status == VAR_INIT_STATUS_UNKNOWN)
6900 status = find_src_status (out, src);
6903 src = find_src_set_src (in, src);
6906 if (REG_P (dst))
6907 var_reg_delete_and_set (out, dst, !copied_p,
6908 status, srcv);
6909 else if (MEM_P (dst))
6911 gcc_assert (MEM_P (dstv));
6912 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6913 var_mem_delete_and_set (out, dstv, !copied_p,
6914 status, srcv);
6918 else if (REG_P (uloc))
6919 var_regno_delete (out, REGNO (uloc));
6920 else if (MEM_P (uloc))
6922 gcc_checking_assert (GET_CODE (vloc) == MEM);
6923 gcc_checking_assert (dstv == vloc);
6924 if (dstv != vloc)
6925 clobber_overlapping_mems (out, vloc);
6928 val_store (out, val, dstv, insn, true);
6930 break;
6932 case MO_SET:
6934 rtx loc = mo->u.loc;
6935 rtx set_src = NULL;
6937 if (GET_CODE (loc) == SET)
6939 set_src = SET_SRC (loc);
6940 loc = SET_DEST (loc);
6943 if (REG_P (loc))
6944 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6945 set_src);
6946 else if (MEM_P (loc))
6947 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6948 set_src);
6950 break;
6952 case MO_COPY:
6954 rtx loc = mo->u.loc;
6955 enum var_init_status src_status;
6956 rtx set_src = NULL;
6958 if (GET_CODE (loc) == SET)
6960 set_src = SET_SRC (loc);
6961 loc = SET_DEST (loc);
6964 if (! flag_var_tracking_uninit)
6965 src_status = VAR_INIT_STATUS_INITIALIZED;
6966 else
6968 src_status = find_src_status (in, set_src);
6970 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6971 src_status = find_src_status (out, set_src);
6974 set_src = find_src_set_src (in, set_src);
6976 if (REG_P (loc))
6977 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6978 else if (MEM_P (loc))
6979 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6981 break;
6983 case MO_USE_NO_VAR:
6985 rtx loc = mo->u.loc;
6987 if (REG_P (loc))
6988 var_reg_delete (out, loc, false);
6989 else if (MEM_P (loc))
6990 var_mem_delete (out, loc, false);
6992 break;
6994 case MO_CLOBBER:
6996 rtx loc = mo->u.loc;
6998 if (REG_P (loc))
6999 var_reg_delete (out, loc, true);
7000 else if (MEM_P (loc))
7001 var_mem_delete (out, loc, true);
7003 break;
7005 case MO_ADJUST:
7006 out->stack_adjust += mo->u.adjust;
7007 break;
7011 if (MAY_HAVE_DEBUG_BIND_INSNS)
7013 delete local_get_addr_cache;
7014 local_get_addr_cache = NULL;
7016 dataflow_set_equiv_regs (out);
7017 shared_hash_htab (out->vars)
7018 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
7019 shared_hash_htab (out->vars)
7020 ->traverse <dataflow_set *, canonicalize_values_star> (out);
7021 if (flag_checking)
7022 shared_hash_htab (out->vars)
7023 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
7025 changed = dataflow_set_different (&old_out, out);
7026 dataflow_set_destroy (&old_out);
7027 return changed;
7030 /* Find the locations of variables in the whole function. */
7032 static bool
7033 vt_find_locations (void)
7035 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
7036 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
7037 sbitmap in_worklist, in_pending;
7038 basic_block bb;
7039 edge e;
7040 int *bb_order;
7041 int *rc_order;
7042 int i;
7043 int htabsz = 0;
7044 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
7045 bool success = true;
7047 timevar_push (TV_VAR_TRACKING_DATAFLOW);
7048 /* Compute reverse completion order of depth first search of the CFG
7049 so that the data-flow runs faster. */
7050 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
7051 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
7052 pre_and_rev_post_order_compute (NULL, rc_order, false);
7053 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
7054 bb_order[rc_order[i]] = i;
7055 free (rc_order);
7057 auto_sbitmap visited (last_basic_block_for_fn (cfun));
7058 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7059 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7060 bitmap_clear (in_worklist);
7062 FOR_EACH_BB_FN (bb, cfun)
7063 pending->insert (bb_order[bb->index], bb);
7064 bitmap_ones (in_pending);
7066 while (success && !pending->empty ())
7068 std::swap (worklist, pending);
7069 std::swap (in_worklist, in_pending);
7071 bitmap_clear (visited);
7073 while (!worklist->empty ())
7075 bb = worklist->extract_min ();
7076 bitmap_clear_bit (in_worklist, bb->index);
7077 gcc_assert (!bitmap_bit_p (visited, bb->index));
7078 if (!bitmap_bit_p (visited, bb->index))
7080 bool changed;
7081 edge_iterator ei;
7082 int oldinsz, oldoutsz;
7084 bitmap_set_bit (visited, bb->index);
7086 if (VTI (bb)->in.vars)
7088 htabsz
7089 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7090 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7091 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7092 oldoutsz
7093 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7095 else
7096 oldinsz = oldoutsz = 0;
7098 if (MAY_HAVE_DEBUG_BIND_INSNS)
7100 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7101 bool first = true, adjust = false;
7103 /* Calculate the IN set as the intersection of
7104 predecessor OUT sets. */
7106 dataflow_set_clear (in);
7107 dst_can_be_shared = true;
7109 FOR_EACH_EDGE (e, ei, bb->preds)
7110 if (!VTI (e->src)->flooded)
7111 gcc_assert (bb_order[bb->index]
7112 <= bb_order[e->src->index]);
7113 else if (first)
7115 dataflow_set_copy (in, &VTI (e->src)->out);
7116 first_out = &VTI (e->src)->out;
7117 first = false;
7119 else
7121 dataflow_set_merge (in, &VTI (e->src)->out);
7122 adjust = true;
7125 if (adjust)
7127 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7129 if (flag_checking)
7130 /* Merge and merge_adjust should keep entries in
7131 canonical order. */
7132 shared_hash_htab (in->vars)
7133 ->traverse <dataflow_set *,
7134 canonicalize_loc_order_check> (in);
7136 if (dst_can_be_shared)
7138 shared_hash_destroy (in->vars);
7139 in->vars = shared_hash_copy (first_out->vars);
7143 VTI (bb)->flooded = true;
7145 else
7147 /* Calculate the IN set as union of predecessor OUT sets. */
7148 dataflow_set_clear (&VTI (bb)->in);
7149 FOR_EACH_EDGE (e, ei, bb->preds)
7150 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7153 changed = compute_bb_dataflow (bb);
7154 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7155 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7157 if (htabmax && htabsz > htabmax)
7159 if (MAY_HAVE_DEBUG_BIND_INSNS)
7160 inform (DECL_SOURCE_LOCATION (cfun->decl),
7161 "variable tracking size limit exceeded with "
7162 "-fvar-tracking-assignments, retrying without");
7163 else
7164 inform (DECL_SOURCE_LOCATION (cfun->decl),
7165 "variable tracking size limit exceeded");
7166 success = false;
7167 break;
7170 if (changed)
7172 FOR_EACH_EDGE (e, ei, bb->succs)
7174 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7175 continue;
7177 if (bitmap_bit_p (visited, e->dest->index))
7179 if (!bitmap_bit_p (in_pending, e->dest->index))
7181 /* Send E->DEST to next round. */
7182 bitmap_set_bit (in_pending, e->dest->index);
7183 pending->insert (bb_order[e->dest->index],
7184 e->dest);
7187 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7189 /* Add E->DEST to current round. */
7190 bitmap_set_bit (in_worklist, e->dest->index);
7191 worklist->insert (bb_order[e->dest->index],
7192 e->dest);
7197 if (dump_file)
7198 fprintf (dump_file,
7199 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7200 bb->index,
7201 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7202 oldinsz,
7203 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7204 oldoutsz,
7205 (int)worklist->nodes (), (int)pending->nodes (),
7206 htabsz);
7208 if (dump_file && (dump_flags & TDF_DETAILS))
7210 fprintf (dump_file, "BB %i IN:\n", bb->index);
7211 dump_dataflow_set (&VTI (bb)->in);
7212 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7213 dump_dataflow_set (&VTI (bb)->out);
7219 if (success && MAY_HAVE_DEBUG_BIND_INSNS)
7220 FOR_EACH_BB_FN (bb, cfun)
7221 gcc_assert (VTI (bb)->flooded);
7223 free (bb_order);
7224 delete worklist;
7225 delete pending;
7226 sbitmap_free (in_worklist);
7227 sbitmap_free (in_pending);
7229 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7230 return success;
7233 /* Print the content of the LIST to dump file. */
7235 static void
7236 dump_attrs_list (attrs *list)
7238 for (; list; list = list->next)
7240 if (dv_is_decl_p (list->dv))
7241 print_mem_expr (dump_file, dv_as_decl (list->dv));
7242 else
7243 print_rtl_single (dump_file, dv_as_value (list->dv));
7244 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7246 fprintf (dump_file, "\n");
7249 /* Print the information about variable *SLOT to dump file. */
7252 dump_var_tracking_slot (variable **slot, void *data ATTRIBUTE_UNUSED)
7254 variable *var = *slot;
7256 dump_var (var);
7258 /* Continue traversing the hash table. */
7259 return 1;
7262 /* Print the information about variable VAR to dump file. */
7264 static void
7265 dump_var (variable *var)
7267 int i;
7268 location_chain *node;
7270 if (dv_is_decl_p (var->dv))
7272 const_tree decl = dv_as_decl (var->dv);
7274 if (DECL_NAME (decl))
7276 fprintf (dump_file, " name: %s",
7277 IDENTIFIER_POINTER (DECL_NAME (decl)));
7278 if (dump_flags & TDF_UID)
7279 fprintf (dump_file, "D.%u", DECL_UID (decl));
7281 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7282 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7283 else
7284 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7285 fprintf (dump_file, "\n");
7287 else
7289 fputc (' ', dump_file);
7290 print_rtl_single (dump_file, dv_as_value (var->dv));
7293 for (i = 0; i < var->n_var_parts; i++)
7295 fprintf (dump_file, " offset %ld\n",
7296 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7297 for (node = var->var_part[i].loc_chain; node; node = node->next)
7299 fprintf (dump_file, " ");
7300 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7301 fprintf (dump_file, "[uninit]");
7302 print_rtl_single (dump_file, node->loc);
7307 /* Print the information about variables from hash table VARS to dump file. */
7309 static void
7310 dump_vars (variable_table_type *vars)
7312 if (vars->elements () > 0)
7314 fprintf (dump_file, "Variables:\n");
7315 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7319 /* Print the dataflow set SET to dump file. */
7321 static void
7322 dump_dataflow_set (dataflow_set *set)
7324 int i;
7326 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7327 set->stack_adjust);
7328 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7330 if (set->regs[i])
7332 fprintf (dump_file, "Reg %d:", i);
7333 dump_attrs_list (set->regs[i]);
7336 dump_vars (shared_hash_htab (set->vars));
7337 fprintf (dump_file, "\n");
7340 /* Print the IN and OUT sets for each basic block to dump file. */
7342 static void
7343 dump_dataflow_sets (void)
7345 basic_block bb;
7347 FOR_EACH_BB_FN (bb, cfun)
7349 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7350 fprintf (dump_file, "IN:\n");
7351 dump_dataflow_set (&VTI (bb)->in);
7352 fprintf (dump_file, "OUT:\n");
7353 dump_dataflow_set (&VTI (bb)->out);
7357 /* Return the variable for DV in dropped_values, inserting one if
7358 requested with INSERT. */
7360 static inline variable *
7361 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7363 variable **slot;
7364 variable *empty_var;
7365 onepart_enum onepart;
7367 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7369 if (!slot)
7370 return NULL;
7372 if (*slot)
7373 return *slot;
7375 gcc_checking_assert (insert == INSERT);
7377 onepart = dv_onepart_p (dv);
7379 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7381 empty_var = onepart_pool_allocate (onepart);
7382 empty_var->dv = dv;
7383 empty_var->refcount = 1;
7384 empty_var->n_var_parts = 0;
7385 empty_var->onepart = onepart;
7386 empty_var->in_changed_variables = false;
7387 empty_var->var_part[0].loc_chain = NULL;
7388 empty_var->var_part[0].cur_loc = NULL;
7389 VAR_LOC_1PAUX (empty_var) = NULL;
7390 set_dv_changed (dv, true);
7392 *slot = empty_var;
7394 return empty_var;
7397 /* Recover the one-part aux from dropped_values. */
7399 static struct onepart_aux *
7400 recover_dropped_1paux (variable *var)
7402 variable *dvar;
7404 gcc_checking_assert (var->onepart);
7406 if (VAR_LOC_1PAUX (var))
7407 return VAR_LOC_1PAUX (var);
7409 if (var->onepart == ONEPART_VDECL)
7410 return NULL;
7412 dvar = variable_from_dropped (var->dv, NO_INSERT);
7414 if (!dvar)
7415 return NULL;
7417 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7418 VAR_LOC_1PAUX (dvar) = NULL;
7420 return VAR_LOC_1PAUX (var);
7423 /* Add variable VAR to the hash table of changed variables and
7424 if it has no locations delete it from SET's hash table. */
7426 static void
7427 variable_was_changed (variable *var, dataflow_set *set)
7429 hashval_t hash = dv_htab_hash (var->dv);
7431 if (emit_notes)
7433 variable **slot;
7435 /* Remember this decl or VALUE has been added to changed_variables. */
7436 set_dv_changed (var->dv, true);
7438 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7440 if (*slot)
7442 variable *old_var = *slot;
7443 gcc_assert (old_var->in_changed_variables);
7444 old_var->in_changed_variables = false;
7445 if (var != old_var && var->onepart)
7447 /* Restore the auxiliary info from an empty variable
7448 previously created for changed_variables, so it is
7449 not lost. */
7450 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7451 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7452 VAR_LOC_1PAUX (old_var) = NULL;
7454 variable_htab_free (*slot);
7457 if (set && var->n_var_parts == 0)
7459 onepart_enum onepart = var->onepart;
7460 variable *empty_var = NULL;
7461 variable **dslot = NULL;
7463 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7465 dslot = dropped_values->find_slot_with_hash (var->dv,
7466 dv_htab_hash (var->dv),
7467 INSERT);
7468 empty_var = *dslot;
7470 if (empty_var)
7472 gcc_checking_assert (!empty_var->in_changed_variables);
7473 if (!VAR_LOC_1PAUX (var))
7475 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7476 VAR_LOC_1PAUX (empty_var) = NULL;
7478 else
7479 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7483 if (!empty_var)
7485 empty_var = onepart_pool_allocate (onepart);
7486 empty_var->dv = var->dv;
7487 empty_var->refcount = 1;
7488 empty_var->n_var_parts = 0;
7489 empty_var->onepart = onepart;
7490 if (dslot)
7492 empty_var->refcount++;
7493 *dslot = empty_var;
7496 else
7497 empty_var->refcount++;
7498 empty_var->in_changed_variables = true;
7499 *slot = empty_var;
7500 if (onepart)
7502 empty_var->var_part[0].loc_chain = NULL;
7503 empty_var->var_part[0].cur_loc = NULL;
7504 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7505 VAR_LOC_1PAUX (var) = NULL;
7507 goto drop_var;
7509 else
7511 if (var->onepart && !VAR_LOC_1PAUX (var))
7512 recover_dropped_1paux (var);
7513 var->refcount++;
7514 var->in_changed_variables = true;
7515 *slot = var;
7518 else
7520 gcc_assert (set);
7521 if (var->n_var_parts == 0)
7523 variable **slot;
7525 drop_var:
7526 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7527 if (slot)
7529 if (shared_hash_shared (set->vars))
7530 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7531 NO_INSERT);
7532 shared_hash_htab (set->vars)->clear_slot (slot);
7538 /* Look for the index in VAR->var_part corresponding to OFFSET.
7539 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7540 referenced int will be set to the index that the part has or should
7541 have, if it should be inserted. */
7543 static inline int
7544 find_variable_location_part (variable *var, HOST_WIDE_INT offset,
7545 int *insertion_point)
7547 int pos, low, high;
7549 if (var->onepart)
7551 if (offset != 0)
7552 return -1;
7554 if (insertion_point)
7555 *insertion_point = 0;
7557 return var->n_var_parts - 1;
7560 /* Find the location part. */
7561 low = 0;
7562 high = var->n_var_parts;
7563 while (low != high)
7565 pos = (low + high) / 2;
7566 if (VAR_PART_OFFSET (var, pos) < offset)
7567 low = pos + 1;
7568 else
7569 high = pos;
7571 pos = low;
7573 if (insertion_point)
7574 *insertion_point = pos;
7576 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7577 return pos;
7579 return -1;
7582 static variable **
7583 set_slot_part (dataflow_set *set, rtx loc, variable **slot,
7584 decl_or_value dv, HOST_WIDE_INT offset,
7585 enum var_init_status initialized, rtx set_src)
7587 int pos;
7588 location_chain *node, *next;
7589 location_chain **nextp;
7590 variable *var;
7591 onepart_enum onepart;
7593 var = *slot;
7595 if (var)
7596 onepart = var->onepart;
7597 else
7598 onepart = dv_onepart_p (dv);
7600 gcc_checking_assert (offset == 0 || !onepart);
7601 gcc_checking_assert (loc != dv_as_opaque (dv));
7603 if (! flag_var_tracking_uninit)
7604 initialized = VAR_INIT_STATUS_INITIALIZED;
7606 if (!var)
7608 /* Create new variable information. */
7609 var = onepart_pool_allocate (onepart);
7610 var->dv = dv;
7611 var->refcount = 1;
7612 var->n_var_parts = 1;
7613 var->onepart = onepart;
7614 var->in_changed_variables = false;
7615 if (var->onepart)
7616 VAR_LOC_1PAUX (var) = NULL;
7617 else
7618 VAR_PART_OFFSET (var, 0) = offset;
7619 var->var_part[0].loc_chain = NULL;
7620 var->var_part[0].cur_loc = NULL;
7621 *slot = var;
7622 pos = 0;
7623 nextp = &var->var_part[0].loc_chain;
7625 else if (onepart)
7627 int r = -1, c = 0;
7629 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7631 pos = 0;
7633 if (GET_CODE (loc) == VALUE)
7635 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7636 nextp = &node->next)
7637 if (GET_CODE (node->loc) == VALUE)
7639 if (node->loc == loc)
7641 r = 0;
7642 break;
7644 if (canon_value_cmp (node->loc, loc))
7645 c++;
7646 else
7648 r = 1;
7649 break;
7652 else if (REG_P (node->loc) || MEM_P (node->loc))
7653 c++;
7654 else
7656 r = 1;
7657 break;
7660 else if (REG_P (loc))
7662 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7663 nextp = &node->next)
7664 if (REG_P (node->loc))
7666 if (REGNO (node->loc) < REGNO (loc))
7667 c++;
7668 else
7670 if (REGNO (node->loc) == REGNO (loc))
7671 r = 0;
7672 else
7673 r = 1;
7674 break;
7677 else
7679 r = 1;
7680 break;
7683 else if (MEM_P (loc))
7685 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7686 nextp = &node->next)
7687 if (REG_P (node->loc))
7688 c++;
7689 else if (MEM_P (node->loc))
7691 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7692 break;
7693 else
7694 c++;
7696 else
7698 r = 1;
7699 break;
7702 else
7703 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7704 nextp = &node->next)
7705 if ((r = loc_cmp (node->loc, loc)) >= 0)
7706 break;
7707 else
7708 c++;
7710 if (r == 0)
7711 return slot;
7713 if (shared_var_p (var, set->vars))
7715 slot = unshare_variable (set, slot, var, initialized);
7716 var = *slot;
7717 for (nextp = &var->var_part[0].loc_chain; c;
7718 nextp = &(*nextp)->next)
7719 c--;
7720 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7723 else
7725 int inspos = 0;
7727 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7729 pos = find_variable_location_part (var, offset, &inspos);
7731 if (pos >= 0)
7733 node = var->var_part[pos].loc_chain;
7735 if (node
7736 && ((REG_P (node->loc) && REG_P (loc)
7737 && REGNO (node->loc) == REGNO (loc))
7738 || rtx_equal_p (node->loc, loc)))
7740 /* LOC is in the beginning of the chain so we have nothing
7741 to do. */
7742 if (node->init < initialized)
7743 node->init = initialized;
7744 if (set_src != NULL)
7745 node->set_src = set_src;
7747 return slot;
7749 else
7751 /* We have to make a copy of a shared variable. */
7752 if (shared_var_p (var, set->vars))
7754 slot = unshare_variable (set, slot, var, initialized);
7755 var = *slot;
7759 else
7761 /* We have not found the location part, new one will be created. */
7763 /* We have to make a copy of the shared variable. */
7764 if (shared_var_p (var, set->vars))
7766 slot = unshare_variable (set, slot, var, initialized);
7767 var = *slot;
7770 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7771 thus there are at most MAX_VAR_PARTS different offsets. */
7772 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7773 && (!var->n_var_parts || !onepart));
7775 /* We have to move the elements of array starting at index
7776 inspos to the next position. */
7777 for (pos = var->n_var_parts; pos > inspos; pos--)
7778 var->var_part[pos] = var->var_part[pos - 1];
7780 var->n_var_parts++;
7781 gcc_checking_assert (!onepart);
7782 VAR_PART_OFFSET (var, pos) = offset;
7783 var->var_part[pos].loc_chain = NULL;
7784 var->var_part[pos].cur_loc = NULL;
7787 /* Delete the location from the list. */
7788 nextp = &var->var_part[pos].loc_chain;
7789 for (node = var->var_part[pos].loc_chain; node; node = next)
7791 next = node->next;
7792 if ((REG_P (node->loc) && REG_P (loc)
7793 && REGNO (node->loc) == REGNO (loc))
7794 || rtx_equal_p (node->loc, loc))
7796 /* Save these values, to assign to the new node, before
7797 deleting this one. */
7798 if (node->init > initialized)
7799 initialized = node->init;
7800 if (node->set_src != NULL && set_src == NULL)
7801 set_src = node->set_src;
7802 if (var->var_part[pos].cur_loc == node->loc)
7803 var->var_part[pos].cur_loc = NULL;
7804 delete node;
7805 *nextp = next;
7806 break;
7808 else
7809 nextp = &node->next;
7812 nextp = &var->var_part[pos].loc_chain;
7815 /* Add the location to the beginning. */
7816 node = new location_chain;
7817 node->loc = loc;
7818 node->init = initialized;
7819 node->set_src = set_src;
7820 node->next = *nextp;
7821 *nextp = node;
7823 /* If no location was emitted do so. */
7824 if (var->var_part[pos].cur_loc == NULL)
7825 variable_was_changed (var, set);
7827 return slot;
7830 /* Set the part of variable's location in the dataflow set SET. The
7831 variable part is specified by variable's declaration in DV and
7832 offset OFFSET and the part's location by LOC. IOPT should be
7833 NO_INSERT if the variable is known to be in SET already and the
7834 variable hash table must not be resized, and INSERT otherwise. */
7836 static void
7837 set_variable_part (dataflow_set *set, rtx loc,
7838 decl_or_value dv, HOST_WIDE_INT offset,
7839 enum var_init_status initialized, rtx set_src,
7840 enum insert_option iopt)
7842 variable **slot;
7844 if (iopt == NO_INSERT)
7845 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7846 else
7848 slot = shared_hash_find_slot (set->vars, dv);
7849 if (!slot)
7850 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7852 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7855 /* Remove all recorded register locations for the given variable part
7856 from dataflow set SET, except for those that are identical to loc.
7857 The variable part is specified by variable's declaration or value
7858 DV and offset OFFSET. */
7860 static variable **
7861 clobber_slot_part (dataflow_set *set, rtx loc, variable **slot,
7862 HOST_WIDE_INT offset, rtx set_src)
7864 variable *var = *slot;
7865 int pos = find_variable_location_part (var, offset, NULL);
7867 if (pos >= 0)
7869 location_chain *node, *next;
7871 /* Remove the register locations from the dataflow set. */
7872 next = var->var_part[pos].loc_chain;
7873 for (node = next; node; node = next)
7875 next = node->next;
7876 if (node->loc != loc
7877 && (!flag_var_tracking_uninit
7878 || !set_src
7879 || MEM_P (set_src)
7880 || !rtx_equal_p (set_src, node->set_src)))
7882 if (REG_P (node->loc))
7884 attrs *anode, *anext;
7885 attrs **anextp;
7887 /* Remove the variable part from the register's
7888 list, but preserve any other variable parts
7889 that might be regarded as live in that same
7890 register. */
7891 anextp = &set->regs[REGNO (node->loc)];
7892 for (anode = *anextp; anode; anode = anext)
7894 anext = anode->next;
7895 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7896 && anode->offset == offset)
7898 delete anode;
7899 *anextp = anext;
7901 else
7902 anextp = &anode->next;
7906 slot = delete_slot_part (set, node->loc, slot, offset);
7911 return slot;
7914 /* Remove all recorded register locations for the given variable part
7915 from dataflow set SET, except for those that are identical to loc.
7916 The variable part is specified by variable's declaration or value
7917 DV and offset OFFSET. */
7919 static void
7920 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7921 HOST_WIDE_INT offset, rtx set_src)
7923 variable **slot;
7925 if (!dv_as_opaque (dv)
7926 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7927 return;
7929 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7930 if (!slot)
7931 return;
7933 clobber_slot_part (set, loc, slot, offset, set_src);
7936 /* Delete the part of variable's location from dataflow set SET. The
7937 variable part is specified by its SET->vars slot SLOT and offset
7938 OFFSET and the part's location by LOC. */
7940 static variable **
7941 delete_slot_part (dataflow_set *set, rtx loc, variable **slot,
7942 HOST_WIDE_INT offset)
7944 variable *var = *slot;
7945 int pos = find_variable_location_part (var, offset, NULL);
7947 if (pos >= 0)
7949 location_chain *node, *next;
7950 location_chain **nextp;
7951 bool changed;
7952 rtx cur_loc;
7954 if (shared_var_p (var, set->vars))
7956 /* If the variable contains the location part we have to
7957 make a copy of the variable. */
7958 for (node = var->var_part[pos].loc_chain; node;
7959 node = node->next)
7961 if ((REG_P (node->loc) && REG_P (loc)
7962 && REGNO (node->loc) == REGNO (loc))
7963 || rtx_equal_p (node->loc, loc))
7965 slot = unshare_variable (set, slot, var,
7966 VAR_INIT_STATUS_UNKNOWN);
7967 var = *slot;
7968 break;
7973 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7974 cur_loc = VAR_LOC_FROM (var);
7975 else
7976 cur_loc = var->var_part[pos].cur_loc;
7978 /* Delete the location part. */
7979 changed = false;
7980 nextp = &var->var_part[pos].loc_chain;
7981 for (node = *nextp; node; node = next)
7983 next = node->next;
7984 if ((REG_P (node->loc) && REG_P (loc)
7985 && REGNO (node->loc) == REGNO (loc))
7986 || rtx_equal_p (node->loc, loc))
7988 /* If we have deleted the location which was last emitted
7989 we have to emit new location so add the variable to set
7990 of changed variables. */
7991 if (cur_loc == node->loc)
7993 changed = true;
7994 var->var_part[pos].cur_loc = NULL;
7995 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7996 VAR_LOC_FROM (var) = NULL;
7998 delete node;
7999 *nextp = next;
8000 break;
8002 else
8003 nextp = &node->next;
8006 if (var->var_part[pos].loc_chain == NULL)
8008 changed = true;
8009 var->n_var_parts--;
8010 while (pos < var->n_var_parts)
8012 var->var_part[pos] = var->var_part[pos + 1];
8013 pos++;
8016 if (changed)
8017 variable_was_changed (var, set);
8020 return slot;
8023 /* Delete the part of variable's location from dataflow set SET. The
8024 variable part is specified by variable's declaration or value DV
8025 and offset OFFSET and the part's location by LOC. */
8027 static void
8028 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
8029 HOST_WIDE_INT offset)
8031 variable **slot = shared_hash_find_slot_noinsert (set->vars, dv);
8032 if (!slot)
8033 return;
8035 delete_slot_part (set, loc, slot, offset);
8039 /* Structure for passing some other parameters to function
8040 vt_expand_loc_callback. */
8041 struct expand_loc_callback_data
8043 /* The variables and values active at this point. */
8044 variable_table_type *vars;
8046 /* Stack of values and debug_exprs under expansion, and their
8047 children. */
8048 auto_vec<rtx, 4> expanding;
8050 /* Stack of values and debug_exprs whose expansion hit recursion
8051 cycles. They will have VALUE_RECURSED_INTO marked when added to
8052 this list. This flag will be cleared if any of its dependencies
8053 resolves to a valid location. So, if the flag remains set at the
8054 end of the search, we know no valid location for this one can
8055 possibly exist. */
8056 auto_vec<rtx, 4> pending;
8058 /* The maximum depth among the sub-expressions under expansion.
8059 Zero indicates no expansion so far. */
8060 expand_depth depth;
8063 /* Allocate the one-part auxiliary data structure for VAR, with enough
8064 room for COUNT dependencies. */
8066 static void
8067 loc_exp_dep_alloc (variable *var, int count)
8069 size_t allocsize;
8071 gcc_checking_assert (var->onepart);
8073 /* We can be called with COUNT == 0 to allocate the data structure
8074 without any dependencies, e.g. for the backlinks only. However,
8075 if we are specifying a COUNT, then the dependency list must have
8076 been emptied before. It would be possible to adjust pointers or
8077 force it empty here, but this is better done at an earlier point
8078 in the algorithm, so we instead leave an assertion to catch
8079 errors. */
8080 gcc_checking_assert (!count
8081 || VAR_LOC_DEP_VEC (var) == NULL
8082 || VAR_LOC_DEP_VEC (var)->is_empty ());
8084 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8085 return;
8087 allocsize = offsetof (struct onepart_aux, deps)
8088 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8090 if (VAR_LOC_1PAUX (var))
8092 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8093 VAR_LOC_1PAUX (var), allocsize);
8094 /* If the reallocation moves the onepaux structure, the
8095 back-pointer to BACKLINKS in the first list member will still
8096 point to its old location. Adjust it. */
8097 if (VAR_LOC_DEP_LST (var))
8098 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8100 else
8102 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8103 *VAR_LOC_DEP_LSTP (var) = NULL;
8104 VAR_LOC_FROM (var) = NULL;
8105 VAR_LOC_DEPTH (var).complexity = 0;
8106 VAR_LOC_DEPTH (var).entryvals = 0;
8108 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8111 /* Remove all entries from the vector of active dependencies of VAR,
8112 removing them from the back-links lists too. */
8114 static void
8115 loc_exp_dep_clear (variable *var)
8117 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8119 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8120 if (led->next)
8121 led->next->pprev = led->pprev;
8122 if (led->pprev)
8123 *led->pprev = led->next;
8124 VAR_LOC_DEP_VEC (var)->pop ();
8128 /* Insert an active dependency from VAR on X to the vector of
8129 dependencies, and add the corresponding back-link to X's list of
8130 back-links in VARS. */
8132 static void
8133 loc_exp_insert_dep (variable *var, rtx x, variable_table_type *vars)
8135 decl_or_value dv;
8136 variable *xvar;
8137 loc_exp_dep *led;
8139 dv = dv_from_rtx (x);
8141 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8142 an additional look up? */
8143 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8145 if (!xvar)
8147 xvar = variable_from_dropped (dv, NO_INSERT);
8148 gcc_checking_assert (xvar);
8151 /* No point in adding the same backlink more than once. This may
8152 arise if say the same value appears in two complex expressions in
8153 the same loc_list, or even more than once in a single
8154 expression. */
8155 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8156 return;
8158 if (var->onepart == NOT_ONEPART)
8159 led = new loc_exp_dep;
8160 else
8162 loc_exp_dep empty;
8163 memset (&empty, 0, sizeof (empty));
8164 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8165 led = &VAR_LOC_DEP_VEC (var)->last ();
8167 led->dv = var->dv;
8168 led->value = x;
8170 loc_exp_dep_alloc (xvar, 0);
8171 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8172 led->next = *led->pprev;
8173 if (led->next)
8174 led->next->pprev = &led->next;
8175 *led->pprev = led;
8178 /* Create active dependencies of VAR on COUNT values starting at
8179 VALUE, and corresponding back-links to the entries in VARS. Return
8180 true if we found any pending-recursion results. */
8182 static bool
8183 loc_exp_dep_set (variable *var, rtx result, rtx *value, int count,
8184 variable_table_type *vars)
8186 bool pending_recursion = false;
8188 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8189 || VAR_LOC_DEP_VEC (var)->is_empty ());
8191 /* Set up all dependencies from last_child (as set up at the end of
8192 the loop above) to the end. */
8193 loc_exp_dep_alloc (var, count);
8195 while (count--)
8197 rtx x = *value++;
8199 if (!pending_recursion)
8200 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8202 loc_exp_insert_dep (var, x, vars);
8205 return pending_recursion;
8208 /* Notify the back-links of IVAR that are pending recursion that we
8209 have found a non-NIL value for it, so they are cleared for another
8210 attempt to compute a current location. */
8212 static void
8213 notify_dependents_of_resolved_value (variable *ivar, variable_table_type *vars)
8215 loc_exp_dep *led, *next;
8217 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8219 decl_or_value dv = led->dv;
8220 variable *var;
8222 next = led->next;
8224 if (dv_is_value_p (dv))
8226 rtx value = dv_as_value (dv);
8228 /* If we have already resolved it, leave it alone. */
8229 if (!VALUE_RECURSED_INTO (value))
8230 continue;
8232 /* Check that VALUE_RECURSED_INTO, true from the test above,
8233 implies NO_LOC_P. */
8234 gcc_checking_assert (NO_LOC_P (value));
8236 /* We won't notify variables that are being expanded,
8237 because their dependency list is cleared before
8238 recursing. */
8239 NO_LOC_P (value) = false;
8240 VALUE_RECURSED_INTO (value) = false;
8242 gcc_checking_assert (dv_changed_p (dv));
8244 else
8246 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8247 if (!dv_changed_p (dv))
8248 continue;
8251 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8253 if (!var)
8254 var = variable_from_dropped (dv, NO_INSERT);
8256 if (var)
8257 notify_dependents_of_resolved_value (var, vars);
8259 if (next)
8260 next->pprev = led->pprev;
8261 if (led->pprev)
8262 *led->pprev = next;
8263 led->next = NULL;
8264 led->pprev = NULL;
8268 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8269 int max_depth, void *data);
8271 /* Return the combined depth, when one sub-expression evaluated to
8272 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8274 static inline expand_depth
8275 update_depth (expand_depth saved_depth, expand_depth best_depth)
8277 /* If we didn't find anything, stick with what we had. */
8278 if (!best_depth.complexity)
8279 return saved_depth;
8281 /* If we found hadn't found anything, use the depth of the current
8282 expression. Do NOT add one extra level, we want to compute the
8283 maximum depth among sub-expressions. We'll increment it later,
8284 if appropriate. */
8285 if (!saved_depth.complexity)
8286 return best_depth;
8288 /* Combine the entryval count so that regardless of which one we
8289 return, the entryval count is accurate. */
8290 best_depth.entryvals = saved_depth.entryvals
8291 = best_depth.entryvals + saved_depth.entryvals;
8293 if (saved_depth.complexity < best_depth.complexity)
8294 return best_depth;
8295 else
8296 return saved_depth;
8299 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8300 DATA for cselib expand callback. If PENDRECP is given, indicate in
8301 it whether any sub-expression couldn't be fully evaluated because
8302 it is pending recursion resolution. */
8304 static inline rtx
8305 vt_expand_var_loc_chain (variable *var, bitmap regs, void *data,
8306 bool *pendrecp)
8308 struct expand_loc_callback_data *elcd
8309 = (struct expand_loc_callback_data *) data;
8310 location_chain *loc, *next;
8311 rtx result = NULL;
8312 int first_child, result_first_child, last_child;
8313 bool pending_recursion;
8314 rtx loc_from = NULL;
8315 struct elt_loc_list *cloc = NULL;
8316 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8317 int wanted_entryvals, found_entryvals = 0;
8319 /* Clear all backlinks pointing at this, so that we're not notified
8320 while we're active. */
8321 loc_exp_dep_clear (var);
8323 retry:
8324 if (var->onepart == ONEPART_VALUE)
8326 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8328 gcc_checking_assert (cselib_preserved_value_p (val));
8330 cloc = val->locs;
8333 first_child = result_first_child = last_child
8334 = elcd->expanding.length ();
8336 wanted_entryvals = found_entryvals;
8338 /* Attempt to expand each available location in turn. */
8339 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8340 loc || cloc; loc = next)
8342 result_first_child = last_child;
8344 if (!loc)
8346 loc_from = cloc->loc;
8347 next = loc;
8348 cloc = cloc->next;
8349 if (unsuitable_loc (loc_from))
8350 continue;
8352 else
8354 loc_from = loc->loc;
8355 next = loc->next;
8358 gcc_checking_assert (!unsuitable_loc (loc_from));
8360 elcd->depth.complexity = elcd->depth.entryvals = 0;
8361 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8362 vt_expand_loc_callback, data);
8363 last_child = elcd->expanding.length ();
8365 if (result)
8367 depth = elcd->depth;
8369 gcc_checking_assert (depth.complexity
8370 || result_first_child == last_child);
8372 if (last_child - result_first_child != 1)
8374 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8375 depth.entryvals++;
8376 depth.complexity++;
8379 if (depth.complexity <= EXPR_USE_DEPTH)
8381 if (depth.entryvals <= wanted_entryvals)
8382 break;
8383 else if (!found_entryvals || depth.entryvals < found_entryvals)
8384 found_entryvals = depth.entryvals;
8387 result = NULL;
8390 /* Set it up in case we leave the loop. */
8391 depth.complexity = depth.entryvals = 0;
8392 loc_from = NULL;
8393 result_first_child = first_child;
8396 if (!loc_from && wanted_entryvals < found_entryvals)
8398 /* We found entries with ENTRY_VALUEs and skipped them. Since
8399 we could not find any expansions without ENTRY_VALUEs, but we
8400 found at least one with them, go back and get an entry with
8401 the minimum number ENTRY_VALUE count that we found. We could
8402 avoid looping, but since each sub-loc is already resolved,
8403 the re-expansion should be trivial. ??? Should we record all
8404 attempted locs as dependencies, so that we retry the
8405 expansion should any of them change, in the hope it can give
8406 us a new entry without an ENTRY_VALUE? */
8407 elcd->expanding.truncate (first_child);
8408 goto retry;
8411 /* Register all encountered dependencies as active. */
8412 pending_recursion = loc_exp_dep_set
8413 (var, result, elcd->expanding.address () + result_first_child,
8414 last_child - result_first_child, elcd->vars);
8416 elcd->expanding.truncate (first_child);
8418 /* Record where the expansion came from. */
8419 gcc_checking_assert (!result || !pending_recursion);
8420 VAR_LOC_FROM (var) = loc_from;
8421 VAR_LOC_DEPTH (var) = depth;
8423 gcc_checking_assert (!depth.complexity == !result);
8425 elcd->depth = update_depth (saved_depth, depth);
8427 /* Indicate whether any of the dependencies are pending recursion
8428 resolution. */
8429 if (pendrecp)
8430 *pendrecp = pending_recursion;
8432 if (!pendrecp || !pending_recursion)
8433 var->var_part[0].cur_loc = result;
8435 return result;
8438 /* Callback for cselib_expand_value, that looks for expressions
8439 holding the value in the var-tracking hash tables. Return X for
8440 standard processing, anything else is to be used as-is. */
8442 static rtx
8443 vt_expand_loc_callback (rtx x, bitmap regs,
8444 int max_depth ATTRIBUTE_UNUSED,
8445 void *data)
8447 struct expand_loc_callback_data *elcd
8448 = (struct expand_loc_callback_data *) data;
8449 decl_or_value dv;
8450 variable *var;
8451 rtx result, subreg;
8452 bool pending_recursion = false;
8453 bool from_empty = false;
8455 switch (GET_CODE (x))
8457 case SUBREG:
8458 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8459 EXPR_DEPTH,
8460 vt_expand_loc_callback, data);
8462 if (!subreg)
8463 return NULL;
8465 result = simplify_gen_subreg (GET_MODE (x), subreg,
8466 GET_MODE (SUBREG_REG (x)),
8467 SUBREG_BYTE (x));
8469 /* Invalid SUBREGs are ok in debug info. ??? We could try
8470 alternate expansions for the VALUE as well. */
8471 if (!result)
8472 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8474 return result;
8476 case DEBUG_EXPR:
8477 case VALUE:
8478 dv = dv_from_rtx (x);
8479 break;
8481 default:
8482 return x;
8485 elcd->expanding.safe_push (x);
8487 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8488 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8490 if (NO_LOC_P (x))
8492 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8493 return NULL;
8496 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8498 if (!var)
8500 from_empty = true;
8501 var = variable_from_dropped (dv, INSERT);
8504 gcc_checking_assert (var);
8506 if (!dv_changed_p (dv))
8508 gcc_checking_assert (!NO_LOC_P (x));
8509 gcc_checking_assert (var->var_part[0].cur_loc);
8510 gcc_checking_assert (VAR_LOC_1PAUX (var));
8511 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8513 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8515 return var->var_part[0].cur_loc;
8518 VALUE_RECURSED_INTO (x) = true;
8519 /* This is tentative, but it makes some tests simpler. */
8520 NO_LOC_P (x) = true;
8522 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8524 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8526 if (pending_recursion)
8528 gcc_checking_assert (!result);
8529 elcd->pending.safe_push (x);
8531 else
8533 NO_LOC_P (x) = !result;
8534 VALUE_RECURSED_INTO (x) = false;
8535 set_dv_changed (dv, false);
8537 if (result)
8538 notify_dependents_of_resolved_value (var, elcd->vars);
8541 return result;
8544 /* While expanding variables, we may encounter recursion cycles
8545 because of mutual (possibly indirect) dependencies between two
8546 particular variables (or values), say A and B. If we're trying to
8547 expand A when we get to B, which in turn attempts to expand A, if
8548 we can't find any other expansion for B, we'll add B to this
8549 pending-recursion stack, and tentatively return NULL for its
8550 location. This tentative value will be used for any other
8551 occurrences of B, unless A gets some other location, in which case
8552 it will notify B that it is worth another try at computing a
8553 location for it, and it will use the location computed for A then.
8554 At the end of the expansion, the tentative NULL locations become
8555 final for all members of PENDING that didn't get a notification.
8556 This function performs this finalization of NULL locations. */
8558 static void
8559 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8561 while (!pending->is_empty ())
8563 rtx x = pending->pop ();
8564 decl_or_value dv;
8566 if (!VALUE_RECURSED_INTO (x))
8567 continue;
8569 gcc_checking_assert (NO_LOC_P (x));
8570 VALUE_RECURSED_INTO (x) = false;
8571 dv = dv_from_rtx (x);
8572 gcc_checking_assert (dv_changed_p (dv));
8573 set_dv_changed (dv, false);
8577 /* Initialize expand_loc_callback_data D with variable hash table V.
8578 It must be a macro because of alloca (vec stack). */
8579 #define INIT_ELCD(d, v) \
8580 do \
8582 (d).vars = (v); \
8583 (d).depth.complexity = (d).depth.entryvals = 0; \
8585 while (0)
8586 /* Finalize expand_loc_callback_data D, resolved to location L. */
8587 #define FINI_ELCD(d, l) \
8588 do \
8590 resolve_expansions_pending_recursion (&(d).pending); \
8591 (d).pending.release (); \
8592 (d).expanding.release (); \
8594 if ((l) && MEM_P (l)) \
8595 (l) = targetm.delegitimize_address (l); \
8597 while (0)
8599 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8600 equivalences in VARS, updating their CUR_LOCs in the process. */
8602 static rtx
8603 vt_expand_loc (rtx loc, variable_table_type *vars)
8605 struct expand_loc_callback_data data;
8606 rtx result;
8608 if (!MAY_HAVE_DEBUG_BIND_INSNS)
8609 return loc;
8611 INIT_ELCD (data, vars);
8613 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8614 vt_expand_loc_callback, &data);
8616 FINI_ELCD (data, result);
8618 return result;
8621 /* Expand the one-part VARiable to a location, using the equivalences
8622 in VARS, updating their CUR_LOCs in the process. */
8624 static rtx
8625 vt_expand_1pvar (variable *var, variable_table_type *vars)
8627 struct expand_loc_callback_data data;
8628 rtx loc;
8630 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8632 if (!dv_changed_p (var->dv))
8633 return var->var_part[0].cur_loc;
8635 INIT_ELCD (data, vars);
8637 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8639 gcc_checking_assert (data.expanding.is_empty ());
8641 FINI_ELCD (data, loc);
8643 return loc;
8646 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8647 additional parameters: WHERE specifies whether the note shall be emitted
8648 before or after instruction INSN. */
8651 emit_note_insn_var_location (variable **varp, emit_note_data *data)
8653 variable *var = *varp;
8654 rtx_insn *insn = data->insn;
8655 enum emit_note_where where = data->where;
8656 variable_table_type *vars = data->vars;
8657 rtx_note *note;
8658 rtx note_vl;
8659 int i, j, n_var_parts;
8660 bool complete;
8661 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8662 HOST_WIDE_INT last_limit;
8663 tree type_size_unit;
8664 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8665 rtx loc[MAX_VAR_PARTS];
8666 tree decl;
8667 location_chain *lc;
8669 gcc_checking_assert (var->onepart == NOT_ONEPART
8670 || var->onepart == ONEPART_VDECL);
8672 decl = dv_as_decl (var->dv);
8674 complete = true;
8675 last_limit = 0;
8676 n_var_parts = 0;
8677 if (!var->onepart)
8678 for (i = 0; i < var->n_var_parts; i++)
8679 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8680 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8681 for (i = 0; i < var->n_var_parts; i++)
8683 machine_mode mode, wider_mode;
8684 rtx loc2;
8685 HOST_WIDE_INT offset;
8687 if (i == 0 && var->onepart)
8689 gcc_checking_assert (var->n_var_parts == 1);
8690 offset = 0;
8691 initialized = VAR_INIT_STATUS_INITIALIZED;
8692 loc2 = vt_expand_1pvar (var, vars);
8694 else
8696 if (last_limit < VAR_PART_OFFSET (var, i))
8698 complete = false;
8699 break;
8701 else if (last_limit > VAR_PART_OFFSET (var, i))
8702 continue;
8703 offset = VAR_PART_OFFSET (var, i);
8704 loc2 = var->var_part[i].cur_loc;
8705 if (loc2 && GET_CODE (loc2) == MEM
8706 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8708 rtx depval = XEXP (loc2, 0);
8710 loc2 = vt_expand_loc (loc2, vars);
8712 if (loc2)
8713 loc_exp_insert_dep (var, depval, vars);
8715 if (!loc2)
8717 complete = false;
8718 continue;
8720 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8721 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8722 if (var->var_part[i].cur_loc == lc->loc)
8724 initialized = lc->init;
8725 break;
8727 gcc_assert (lc);
8730 offsets[n_var_parts] = offset;
8731 if (!loc2)
8733 complete = false;
8734 continue;
8736 loc[n_var_parts] = loc2;
8737 mode = GET_MODE (var->var_part[i].cur_loc);
8738 if (mode == VOIDmode && var->onepart)
8739 mode = DECL_MODE (decl);
8740 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8742 /* Attempt to merge adjacent registers or memory. */
8743 for (j = i + 1; j < var->n_var_parts; j++)
8744 if (last_limit <= VAR_PART_OFFSET (var, j))
8745 break;
8746 if (j < var->n_var_parts
8747 && GET_MODE_WIDER_MODE (mode).exists (&wider_mode)
8748 && var->var_part[j].cur_loc
8749 && mode == GET_MODE (var->var_part[j].cur_loc)
8750 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8751 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8752 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8753 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8755 rtx new_loc = NULL;
8757 if (REG_P (loc[n_var_parts])
8758 && hard_regno_nregs (REGNO (loc[n_var_parts]), mode) * 2
8759 == hard_regno_nregs (REGNO (loc[n_var_parts]), wider_mode)
8760 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8761 == REGNO (loc2))
8763 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8764 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8765 mode, 0);
8766 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8767 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8768 if (new_loc)
8770 if (!REG_P (new_loc)
8771 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8772 new_loc = NULL;
8773 else
8774 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8777 else if (MEM_P (loc[n_var_parts])
8778 && GET_CODE (XEXP (loc2, 0)) == PLUS
8779 && REG_P (XEXP (XEXP (loc2, 0), 0))
8780 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8782 if ((REG_P (XEXP (loc[n_var_parts], 0))
8783 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8784 XEXP (XEXP (loc2, 0), 0))
8785 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8786 == GET_MODE_SIZE (mode))
8787 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8788 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8789 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8790 XEXP (XEXP (loc2, 0), 0))
8791 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8792 + GET_MODE_SIZE (mode)
8793 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8794 new_loc = adjust_address_nv (loc[n_var_parts],
8795 wider_mode, 0);
8798 if (new_loc)
8800 loc[n_var_parts] = new_loc;
8801 mode = wider_mode;
8802 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8803 i = j;
8806 ++n_var_parts;
8808 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8809 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8810 complete = false;
8812 if (! flag_var_tracking_uninit)
8813 initialized = VAR_INIT_STATUS_INITIALIZED;
8815 note_vl = NULL_RTX;
8816 if (!complete)
8817 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8818 else if (n_var_parts == 1)
8820 rtx expr_list;
8822 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8823 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8824 else
8825 expr_list = loc[0];
8827 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8829 else if (n_var_parts)
8831 rtx parallel;
8833 for (i = 0; i < n_var_parts; i++)
8834 loc[i]
8835 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8837 parallel = gen_rtx_PARALLEL (VOIDmode,
8838 gen_rtvec_v (n_var_parts, loc));
8839 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8840 parallel, initialized);
8843 if (where != EMIT_NOTE_BEFORE_INSN)
8845 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8846 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8847 NOTE_DURING_CALL_P (note) = true;
8849 else
8851 /* Make sure that the call related notes come first. */
8852 while (NEXT_INSN (insn)
8853 && NOTE_P (insn)
8854 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8855 && NOTE_DURING_CALL_P (insn))
8856 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8857 insn = NEXT_INSN (insn);
8858 if (NOTE_P (insn)
8859 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8860 && NOTE_DURING_CALL_P (insn))
8861 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8862 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8863 else
8864 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8866 NOTE_VAR_LOCATION (note) = note_vl;
8868 set_dv_changed (var->dv, false);
8869 gcc_assert (var->in_changed_variables);
8870 var->in_changed_variables = false;
8871 changed_variables->clear_slot (varp);
8873 /* Continue traversing the hash table. */
8874 return 1;
8877 /* While traversing changed_variables, push onto DATA (a stack of RTX
8878 values) entries that aren't user variables. */
8881 var_track_values_to_stack (variable **slot,
8882 vec<rtx, va_heap> *changed_values_stack)
8884 variable *var = *slot;
8886 if (var->onepart == ONEPART_VALUE)
8887 changed_values_stack->safe_push (dv_as_value (var->dv));
8888 else if (var->onepart == ONEPART_DEXPR)
8889 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8891 return 1;
8894 /* Remove from changed_variables the entry whose DV corresponds to
8895 value or debug_expr VAL. */
8896 static void
8897 remove_value_from_changed_variables (rtx val)
8899 decl_or_value dv = dv_from_rtx (val);
8900 variable **slot;
8901 variable *var;
8903 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8904 NO_INSERT);
8905 var = *slot;
8906 var->in_changed_variables = false;
8907 changed_variables->clear_slot (slot);
8910 /* If VAL (a value or debug_expr) has backlinks to variables actively
8911 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8912 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8913 have dependencies of their own to notify. */
8915 static void
8916 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8917 vec<rtx, va_heap> *changed_values_stack)
8919 variable **slot;
8920 variable *var;
8921 loc_exp_dep *led;
8922 decl_or_value dv = dv_from_rtx (val);
8924 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8925 NO_INSERT);
8926 if (!slot)
8927 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8928 if (!slot)
8929 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8930 NO_INSERT);
8931 var = *slot;
8933 while ((led = VAR_LOC_DEP_LST (var)))
8935 decl_or_value ldv = led->dv;
8936 variable *ivar;
8938 /* Deactivate and remove the backlink, as it was “used up”. It
8939 makes no sense to attempt to notify the same entity again:
8940 either it will be recomputed and re-register an active
8941 dependency, or it will still have the changed mark. */
8942 if (led->next)
8943 led->next->pprev = led->pprev;
8944 if (led->pprev)
8945 *led->pprev = led->next;
8946 led->next = NULL;
8947 led->pprev = NULL;
8949 if (dv_changed_p (ldv))
8950 continue;
8952 switch (dv_onepart_p (ldv))
8954 case ONEPART_VALUE:
8955 case ONEPART_DEXPR:
8956 set_dv_changed (ldv, true);
8957 changed_values_stack->safe_push (dv_as_rtx (ldv));
8958 break;
8960 case ONEPART_VDECL:
8961 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8962 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8963 variable_was_changed (ivar, NULL);
8964 break;
8966 case NOT_ONEPART:
8967 delete led;
8968 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8969 if (ivar)
8971 int i = ivar->n_var_parts;
8972 while (i--)
8974 rtx loc = ivar->var_part[i].cur_loc;
8976 if (loc && GET_CODE (loc) == MEM
8977 && XEXP (loc, 0) == val)
8979 variable_was_changed (ivar, NULL);
8980 break;
8984 break;
8986 default:
8987 gcc_unreachable ();
8992 /* Take out of changed_variables any entries that don't refer to use
8993 variables. Back-propagate change notifications from values and
8994 debug_exprs to their active dependencies in HTAB or in
8995 CHANGED_VARIABLES. */
8997 static void
8998 process_changed_values (variable_table_type *htab)
9000 int i, n;
9001 rtx val;
9002 auto_vec<rtx, 20> changed_values_stack;
9004 /* Move values from changed_variables to changed_values_stack. */
9005 changed_variables
9006 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
9007 (&changed_values_stack);
9009 /* Back-propagate change notifications in values while popping
9010 them from the stack. */
9011 for (n = i = changed_values_stack.length ();
9012 i > 0; i = changed_values_stack.length ())
9014 val = changed_values_stack.pop ();
9015 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
9017 /* This condition will hold when visiting each of the entries
9018 originally in changed_variables. We can't remove them
9019 earlier because this could drop the backlinks before we got a
9020 chance to use them. */
9021 if (i == n)
9023 remove_value_from_changed_variables (val);
9024 n--;
9029 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
9030 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
9031 the notes shall be emitted before of after instruction INSN. */
9033 static void
9034 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
9035 shared_hash *vars)
9037 emit_note_data data;
9038 variable_table_type *htab = shared_hash_htab (vars);
9040 if (!changed_variables->elements ())
9041 return;
9043 if (MAY_HAVE_DEBUG_BIND_INSNS)
9044 process_changed_values (htab);
9046 data.insn = insn;
9047 data.where = where;
9048 data.vars = htab;
9050 changed_variables
9051 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9054 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9055 same variable in hash table DATA or is not there at all. */
9058 emit_notes_for_differences_1 (variable **slot, variable_table_type *new_vars)
9060 variable *old_var, *new_var;
9062 old_var = *slot;
9063 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9065 if (!new_var)
9067 /* Variable has disappeared. */
9068 variable *empty_var = NULL;
9070 if (old_var->onepart == ONEPART_VALUE
9071 || old_var->onepart == ONEPART_DEXPR)
9073 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9074 if (empty_var)
9076 gcc_checking_assert (!empty_var->in_changed_variables);
9077 if (!VAR_LOC_1PAUX (old_var))
9079 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9080 VAR_LOC_1PAUX (empty_var) = NULL;
9082 else
9083 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9087 if (!empty_var)
9089 empty_var = onepart_pool_allocate (old_var->onepart);
9090 empty_var->dv = old_var->dv;
9091 empty_var->refcount = 0;
9092 empty_var->n_var_parts = 0;
9093 empty_var->onepart = old_var->onepart;
9094 empty_var->in_changed_variables = false;
9097 if (empty_var->onepart)
9099 /* Propagate the auxiliary data to (ultimately)
9100 changed_variables. */
9101 empty_var->var_part[0].loc_chain = NULL;
9102 empty_var->var_part[0].cur_loc = NULL;
9103 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9104 VAR_LOC_1PAUX (old_var) = NULL;
9106 variable_was_changed (empty_var, NULL);
9107 /* Continue traversing the hash table. */
9108 return 1;
9110 /* Update cur_loc and one-part auxiliary data, before new_var goes
9111 through variable_was_changed. */
9112 if (old_var != new_var && new_var->onepart)
9114 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9115 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9116 VAR_LOC_1PAUX (old_var) = NULL;
9117 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9119 if (variable_different_p (old_var, new_var))
9120 variable_was_changed (new_var, NULL);
9122 /* Continue traversing the hash table. */
9123 return 1;
9126 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9127 table DATA. */
9130 emit_notes_for_differences_2 (variable **slot, variable_table_type *old_vars)
9132 variable *old_var, *new_var;
9134 new_var = *slot;
9135 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9136 if (!old_var)
9138 int i;
9139 for (i = 0; i < new_var->n_var_parts; i++)
9140 new_var->var_part[i].cur_loc = NULL;
9141 variable_was_changed (new_var, NULL);
9144 /* Continue traversing the hash table. */
9145 return 1;
9148 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9149 NEW_SET. */
9151 static void
9152 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9153 dataflow_set *new_set)
9155 shared_hash_htab (old_set->vars)
9156 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9157 (shared_hash_htab (new_set->vars));
9158 shared_hash_htab (new_set->vars)
9159 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9160 (shared_hash_htab (old_set->vars));
9161 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9164 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9166 static rtx_insn *
9167 next_non_note_insn_var_location (rtx_insn *insn)
9169 while (insn)
9171 insn = NEXT_INSN (insn);
9172 if (insn == 0
9173 || !NOTE_P (insn)
9174 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9175 break;
9178 return insn;
9181 /* Emit the notes for changes of location parts in the basic block BB. */
9183 static void
9184 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9186 unsigned int i;
9187 micro_operation *mo;
9189 dataflow_set_clear (set);
9190 dataflow_set_copy (set, &VTI (bb)->in);
9192 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9194 rtx_insn *insn = mo->insn;
9195 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9197 switch (mo->type)
9199 case MO_CALL:
9200 dataflow_set_clear_at_call (set, insn);
9201 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9203 rtx arguments = mo->u.loc, *p = &arguments;
9204 rtx_note *note;
9205 while (*p)
9207 XEXP (XEXP (*p, 0), 1)
9208 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9209 shared_hash_htab (set->vars));
9210 /* If expansion is successful, keep it in the list. */
9211 if (XEXP (XEXP (*p, 0), 1))
9212 p = &XEXP (*p, 1);
9213 /* Otherwise, if the following item is data_value for it,
9214 drop it too too. */
9215 else if (XEXP (*p, 1)
9216 && REG_P (XEXP (XEXP (*p, 0), 0))
9217 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9218 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9220 && REGNO (XEXP (XEXP (*p, 0), 0))
9221 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9222 0), 0)))
9223 *p = XEXP (XEXP (*p, 1), 1);
9224 /* Just drop this item. */
9225 else
9226 *p = XEXP (*p, 1);
9228 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9229 NOTE_VAR_LOCATION (note) = arguments;
9231 break;
9233 case MO_USE:
9235 rtx loc = mo->u.loc;
9237 if (REG_P (loc))
9238 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9239 else
9240 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9242 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9244 break;
9246 case MO_VAL_LOC:
9248 rtx loc = mo->u.loc;
9249 rtx val, vloc;
9250 tree var;
9252 if (GET_CODE (loc) == CONCAT)
9254 val = XEXP (loc, 0);
9255 vloc = XEXP (loc, 1);
9257 else
9259 val = NULL_RTX;
9260 vloc = loc;
9263 var = PAT_VAR_LOCATION_DECL (vloc);
9265 clobber_variable_part (set, NULL_RTX,
9266 dv_from_decl (var), 0, NULL_RTX);
9267 if (val)
9269 if (VAL_NEEDS_RESOLUTION (loc))
9270 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9271 set_variable_part (set, val, dv_from_decl (var), 0,
9272 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9273 INSERT);
9275 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9276 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9277 dv_from_decl (var), 0,
9278 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9279 INSERT);
9281 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9283 break;
9285 case MO_VAL_USE:
9287 rtx loc = mo->u.loc;
9288 rtx val, vloc, uloc;
9290 vloc = uloc = XEXP (loc, 1);
9291 val = XEXP (loc, 0);
9293 if (GET_CODE (val) == CONCAT)
9295 uloc = XEXP (val, 1);
9296 val = XEXP (val, 0);
9299 if (VAL_NEEDS_RESOLUTION (loc))
9300 val_resolve (set, val, vloc, insn);
9301 else
9302 val_store (set, val, uloc, insn, false);
9304 if (VAL_HOLDS_TRACK_EXPR (loc))
9306 if (GET_CODE (uloc) == REG)
9307 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9308 NULL);
9309 else if (GET_CODE (uloc) == MEM)
9310 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9311 NULL);
9314 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9316 break;
9318 case MO_VAL_SET:
9320 rtx loc = mo->u.loc;
9321 rtx val, vloc, uloc;
9322 rtx dstv, srcv;
9324 vloc = loc;
9325 uloc = XEXP (vloc, 1);
9326 val = XEXP (vloc, 0);
9327 vloc = uloc;
9329 if (GET_CODE (uloc) == SET)
9331 dstv = SET_DEST (uloc);
9332 srcv = SET_SRC (uloc);
9334 else
9336 dstv = uloc;
9337 srcv = NULL;
9340 if (GET_CODE (val) == CONCAT)
9342 dstv = vloc = XEXP (val, 1);
9343 val = XEXP (val, 0);
9346 if (GET_CODE (vloc) == SET)
9348 srcv = SET_SRC (vloc);
9350 gcc_assert (val != srcv);
9351 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9353 dstv = vloc = SET_DEST (vloc);
9355 if (VAL_NEEDS_RESOLUTION (loc))
9356 val_resolve (set, val, srcv, insn);
9358 else if (VAL_NEEDS_RESOLUTION (loc))
9360 gcc_assert (GET_CODE (uloc) == SET
9361 && GET_CODE (SET_SRC (uloc)) == REG);
9362 val_resolve (set, val, SET_SRC (uloc), insn);
9365 if (VAL_HOLDS_TRACK_EXPR (loc))
9367 if (VAL_EXPR_IS_CLOBBERED (loc))
9369 if (REG_P (uloc))
9370 var_reg_delete (set, uloc, true);
9371 else if (MEM_P (uloc))
9373 gcc_assert (MEM_P (dstv));
9374 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9375 var_mem_delete (set, dstv, true);
9378 else
9380 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9381 rtx src = NULL, dst = uloc;
9382 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9384 if (GET_CODE (uloc) == SET)
9386 src = SET_SRC (uloc);
9387 dst = SET_DEST (uloc);
9390 if (copied_p)
9392 status = find_src_status (set, src);
9394 src = find_src_set_src (set, src);
9397 if (REG_P (dst))
9398 var_reg_delete_and_set (set, dst, !copied_p,
9399 status, srcv);
9400 else if (MEM_P (dst))
9402 gcc_assert (MEM_P (dstv));
9403 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9404 var_mem_delete_and_set (set, dstv, !copied_p,
9405 status, srcv);
9409 else if (REG_P (uloc))
9410 var_regno_delete (set, REGNO (uloc));
9411 else if (MEM_P (uloc))
9413 gcc_checking_assert (GET_CODE (vloc) == MEM);
9414 gcc_checking_assert (vloc == dstv);
9415 if (vloc != dstv)
9416 clobber_overlapping_mems (set, vloc);
9419 val_store (set, val, dstv, insn, true);
9421 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9422 set->vars);
9424 break;
9426 case MO_SET:
9428 rtx loc = mo->u.loc;
9429 rtx set_src = NULL;
9431 if (GET_CODE (loc) == SET)
9433 set_src = SET_SRC (loc);
9434 loc = SET_DEST (loc);
9437 if (REG_P (loc))
9438 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9439 set_src);
9440 else
9441 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9442 set_src);
9444 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9445 set->vars);
9447 break;
9449 case MO_COPY:
9451 rtx loc = mo->u.loc;
9452 enum var_init_status src_status;
9453 rtx set_src = NULL;
9455 if (GET_CODE (loc) == SET)
9457 set_src = SET_SRC (loc);
9458 loc = SET_DEST (loc);
9461 src_status = find_src_status (set, set_src);
9462 set_src = find_src_set_src (set, set_src);
9464 if (REG_P (loc))
9465 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9466 else
9467 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9469 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9470 set->vars);
9472 break;
9474 case MO_USE_NO_VAR:
9476 rtx loc = mo->u.loc;
9478 if (REG_P (loc))
9479 var_reg_delete (set, loc, false);
9480 else
9481 var_mem_delete (set, loc, false);
9483 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9485 break;
9487 case MO_CLOBBER:
9489 rtx loc = mo->u.loc;
9491 if (REG_P (loc))
9492 var_reg_delete (set, loc, true);
9493 else
9494 var_mem_delete (set, loc, true);
9496 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9497 set->vars);
9499 break;
9501 case MO_ADJUST:
9502 set->stack_adjust += mo->u.adjust;
9503 break;
9508 /* Return BB's head, unless BB is the block that succeeds ENTRY_BLOCK,
9509 in which case it searches back from BB's head for the very first
9510 insn. Use [get_first_insn (bb), BB_HEAD (bb->next_bb)[ as a range
9511 to iterate over all insns of a function while iterating over its
9512 BBs. */
9514 static rtx_insn *
9515 get_first_insn (basic_block bb)
9517 rtx_insn *insn = BB_HEAD (bb);
9519 if (bb->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
9520 while (rtx_insn *prev = PREV_INSN (insn))
9521 insn = prev;
9523 return insn;
9526 /* Emit notes for the whole function. */
9528 static void
9529 vt_emit_notes (void)
9531 basic_block bb;
9532 dataflow_set cur;
9534 gcc_assert (!changed_variables->elements ());
9536 /* Free memory occupied by the out hash tables, as they aren't used
9537 anymore. */
9538 FOR_EACH_BB_FN (bb, cfun)
9539 dataflow_set_clear (&VTI (bb)->out);
9541 /* Enable emitting notes by functions (mainly by set_variable_part and
9542 delete_variable_part). */
9543 emit_notes = true;
9545 if (MAY_HAVE_DEBUG_BIND_INSNS)
9546 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9548 dataflow_set_init (&cur);
9550 FOR_EACH_BB_FN (bb, cfun)
9552 /* Emit the notes for changes of variable locations between two
9553 subsequent basic blocks. */
9554 emit_notes_for_differences (get_first_insn (bb),
9555 &cur, &VTI (bb)->in);
9557 if (MAY_HAVE_DEBUG_BIND_INSNS)
9558 local_get_addr_cache = new hash_map<rtx, rtx>;
9560 /* Emit the notes for the changes in the basic block itself. */
9561 emit_notes_in_bb (bb, &cur);
9563 if (MAY_HAVE_DEBUG_BIND_INSNS)
9564 delete local_get_addr_cache;
9565 local_get_addr_cache = NULL;
9567 /* Free memory occupied by the in hash table, we won't need it
9568 again. */
9569 dataflow_set_clear (&VTI (bb)->in);
9572 if (flag_checking)
9573 shared_hash_htab (cur.vars)
9574 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9575 (shared_hash_htab (empty_shared_hash));
9577 dataflow_set_destroy (&cur);
9579 if (MAY_HAVE_DEBUG_BIND_INSNS)
9580 delete dropped_values;
9581 dropped_values = NULL;
9583 emit_notes = false;
9586 /* If there is a declaration and offset associated with register/memory RTL
9587 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9589 static bool
9590 vt_get_decl_and_offset (rtx rtl, tree *declp, poly_int64 *offsetp)
9592 if (REG_P (rtl))
9594 if (REG_ATTRS (rtl))
9596 *declp = REG_EXPR (rtl);
9597 *offsetp = REG_OFFSET (rtl);
9598 return true;
9601 else if (GET_CODE (rtl) == PARALLEL)
9603 tree decl = NULL_TREE;
9604 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9605 int len = XVECLEN (rtl, 0), i;
9607 for (i = 0; i < len; i++)
9609 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9610 if (!REG_P (reg) || !REG_ATTRS (reg))
9611 break;
9612 if (!decl)
9613 decl = REG_EXPR (reg);
9614 if (REG_EXPR (reg) != decl)
9615 break;
9616 HOST_WIDE_INT this_offset;
9617 if (!track_offset_p (REG_OFFSET (reg), &this_offset))
9618 break;
9619 offset = MIN (offset, this_offset);
9622 if (i == len)
9624 *declp = decl;
9625 *offsetp = offset;
9626 return true;
9629 else if (MEM_P (rtl))
9631 if (MEM_ATTRS (rtl))
9633 *declp = MEM_EXPR (rtl);
9634 *offsetp = int_mem_offset (rtl);
9635 return true;
9638 return false;
9641 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9642 of VAL. */
9644 static void
9645 record_entry_value (cselib_val *val, rtx rtl)
9647 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9649 ENTRY_VALUE_EXP (ev) = rtl;
9651 cselib_add_permanent_equiv (val, ev, get_insns ());
9654 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9656 static void
9657 vt_add_function_parameter (tree parm)
9659 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9660 rtx incoming = DECL_INCOMING_RTL (parm);
9661 tree decl;
9662 machine_mode mode;
9663 poly_int64 offset;
9664 dataflow_set *out;
9665 decl_or_value dv;
9667 if (TREE_CODE (parm) != PARM_DECL)
9668 return;
9670 if (!decl_rtl || !incoming)
9671 return;
9673 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9674 return;
9676 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9677 rewrite the incoming location of parameters passed on the stack
9678 into MEMs based on the argument pointer, so that incoming doesn't
9679 depend on a pseudo. */
9680 if (MEM_P (incoming)
9681 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9682 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9683 && XEXP (XEXP (incoming, 0), 0)
9684 == crtl->args.internal_arg_pointer
9685 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9687 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9688 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9689 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9690 incoming
9691 = replace_equiv_address_nv (incoming,
9692 plus_constant (Pmode,
9693 arg_pointer_rtx, off));
9696 #ifdef HAVE_window_save
9697 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9698 If the target machine has an explicit window save instruction, the
9699 actual entry value is the corresponding OUTGOING_REGNO instead. */
9700 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9702 if (REG_P (incoming)
9703 && HARD_REGISTER_P (incoming)
9704 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9706 parm_reg p;
9707 p.incoming = incoming;
9708 incoming
9709 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9710 OUTGOING_REGNO (REGNO (incoming)), 0);
9711 p.outgoing = incoming;
9712 vec_safe_push (windowed_parm_regs, p);
9714 else if (GET_CODE (incoming) == PARALLEL)
9716 rtx outgoing
9717 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9718 int i;
9720 for (i = 0; i < XVECLEN (incoming, 0); i++)
9722 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9723 parm_reg p;
9724 p.incoming = reg;
9725 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9726 OUTGOING_REGNO (REGNO (reg)), 0);
9727 p.outgoing = reg;
9728 XVECEXP (outgoing, 0, i)
9729 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9730 XEXP (XVECEXP (incoming, 0, i), 1));
9731 vec_safe_push (windowed_parm_regs, p);
9734 incoming = outgoing;
9736 else if (MEM_P (incoming)
9737 && REG_P (XEXP (incoming, 0))
9738 && HARD_REGISTER_P (XEXP (incoming, 0)))
9740 rtx reg = XEXP (incoming, 0);
9741 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9743 parm_reg p;
9744 p.incoming = reg;
9745 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9746 p.outgoing = reg;
9747 vec_safe_push (windowed_parm_regs, p);
9748 incoming = replace_equiv_address_nv (incoming, reg);
9752 #endif
9754 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9756 if (MEM_P (incoming))
9758 /* This means argument is passed by invisible reference. */
9759 offset = 0;
9760 decl = parm;
9762 else
9764 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9765 return;
9766 offset += byte_lowpart_offset (GET_MODE (incoming),
9767 GET_MODE (decl_rtl));
9771 if (!decl)
9772 return;
9774 if (parm != decl)
9776 /* If that DECL_RTL wasn't a pseudo that got spilled to
9777 memory, bail out. Otherwise, the spill slot sharing code
9778 will force the memory to reference spill_slot_decl (%sfp),
9779 so we don't match above. That's ok, the pseudo must have
9780 referenced the entire parameter, so just reset OFFSET. */
9781 if (decl != get_spill_slot_decl (false))
9782 return;
9783 offset = 0;
9786 HOST_WIDE_INT const_offset;
9787 if (!track_loc_p (incoming, parm, offset, false, &mode, &const_offset))
9788 return;
9790 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9792 dv = dv_from_decl (parm);
9794 if (target_for_debug_bind (parm)
9795 /* We can't deal with these right now, because this kind of
9796 variable is single-part. ??? We could handle parallels
9797 that describe multiple locations for the same single
9798 value, but ATM we don't. */
9799 && GET_CODE (incoming) != PARALLEL)
9801 cselib_val *val;
9802 rtx lowpart;
9804 /* ??? We shouldn't ever hit this, but it may happen because
9805 arguments passed by invisible reference aren't dealt with
9806 above: incoming-rtl will have Pmode rather than the
9807 expected mode for the type. */
9808 if (const_offset)
9809 return;
9811 lowpart = var_lowpart (mode, incoming);
9812 if (!lowpart)
9813 return;
9815 val = cselib_lookup_from_insn (lowpart, mode, true,
9816 VOIDmode, get_insns ());
9818 /* ??? Float-typed values in memory are not handled by
9819 cselib. */
9820 if (val)
9822 preserve_value (val);
9823 set_variable_part (out, val->val_rtx, dv, const_offset,
9824 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9825 dv = dv_from_value (val->val_rtx);
9828 if (MEM_P (incoming))
9830 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9831 VOIDmode, get_insns ());
9832 if (val)
9834 preserve_value (val);
9835 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9840 if (REG_P (incoming))
9842 incoming = var_lowpart (mode, incoming);
9843 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9844 attrs_list_insert (&out->regs[REGNO (incoming)], dv, const_offset,
9845 incoming);
9846 set_variable_part (out, incoming, dv, const_offset,
9847 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9848 if (dv_is_value_p (dv))
9850 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9851 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9852 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9854 machine_mode indmode
9855 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9856 rtx mem = gen_rtx_MEM (indmode, incoming);
9857 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9858 VOIDmode,
9859 get_insns ());
9860 if (val)
9862 preserve_value (val);
9863 record_entry_value (val, mem);
9864 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9865 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9870 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9872 int i;
9874 for (i = 0; i < XVECLEN (incoming, 0); i++)
9876 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9877 /* vt_get_decl_and_offset has already checked that the offset
9878 is a valid variable part. */
9879 const_offset = get_tracked_reg_offset (reg);
9880 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9881 attrs_list_insert (&out->regs[REGNO (reg)], dv, const_offset, reg);
9882 set_variable_part (out, reg, dv, const_offset,
9883 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9886 else if (MEM_P (incoming))
9888 incoming = var_lowpart (mode, incoming);
9889 set_variable_part (out, incoming, dv, const_offset,
9890 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9894 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9896 static void
9897 vt_add_function_parameters (void)
9899 tree parm;
9901 for (parm = DECL_ARGUMENTS (current_function_decl);
9902 parm; parm = DECL_CHAIN (parm))
9903 if (!POINTER_BOUNDS_P (parm))
9904 vt_add_function_parameter (parm);
9906 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9908 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9910 if (TREE_CODE (vexpr) == INDIRECT_REF)
9911 vexpr = TREE_OPERAND (vexpr, 0);
9913 if (TREE_CODE (vexpr) == PARM_DECL
9914 && DECL_ARTIFICIAL (vexpr)
9915 && !DECL_IGNORED_P (vexpr)
9916 && DECL_NAMELESS (vexpr))
9917 vt_add_function_parameter (vexpr);
9921 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9922 ensure it isn't flushed during cselib_reset_table.
9923 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9924 has been eliminated. */
9926 static void
9927 vt_init_cfa_base (void)
9929 cselib_val *val;
9931 #ifdef FRAME_POINTER_CFA_OFFSET
9932 cfa_base_rtx = frame_pointer_rtx;
9933 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9934 #else
9935 cfa_base_rtx = arg_pointer_rtx;
9936 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9937 #endif
9938 if (cfa_base_rtx == hard_frame_pointer_rtx
9939 || !fixed_regs[REGNO (cfa_base_rtx)])
9941 cfa_base_rtx = NULL_RTX;
9942 return;
9944 if (!MAY_HAVE_DEBUG_BIND_INSNS)
9945 return;
9947 /* Tell alias analysis that cfa_base_rtx should share
9948 find_base_term value with stack pointer or hard frame pointer. */
9949 if (!frame_pointer_needed)
9950 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9951 else if (!crtl->stack_realign_tried)
9952 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9954 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9955 VOIDmode, get_insns ());
9956 preserve_value (val);
9957 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9960 /* Reemit INSN, a MARKER_DEBUG_INSN, as a note. */
9962 static rtx_insn *
9963 reemit_marker_as_note (rtx_insn *insn, basic_block *bb)
9965 gcc_checking_assert (DEBUG_MARKER_INSN_P (insn));
9967 enum insn_note kind = INSN_DEBUG_MARKER_KIND (insn);
9969 switch (kind)
9971 case NOTE_INSN_BEGIN_STMT:
9973 rtx_insn *note = NULL;
9974 if (cfun->debug_nonbind_markers)
9976 note = emit_note_before (kind, insn);
9977 NOTE_MARKER_LOCATION (note) = INSN_LOCATION (insn);
9978 if (bb)
9979 BLOCK_FOR_INSN (note) = *bb;
9981 delete_insn (insn);
9982 return note;
9985 default:
9986 gcc_unreachable ();
9990 /* Allocate and initialize the data structures for variable tracking
9991 and parse the RTL to get the micro operations. */
9993 static bool
9994 vt_initialize (void)
9996 basic_block bb;
9997 HOST_WIDE_INT fp_cfa_offset = -1;
9999 alloc_aux_for_blocks (sizeof (variable_tracking_info));
10001 empty_shared_hash = shared_hash_pool.allocate ();
10002 empty_shared_hash->refcount = 1;
10003 empty_shared_hash->htab = new variable_table_type (1);
10004 changed_variables = new variable_table_type (10);
10006 /* Init the IN and OUT sets. */
10007 FOR_ALL_BB_FN (bb, cfun)
10009 VTI (bb)->visited = false;
10010 VTI (bb)->flooded = false;
10011 dataflow_set_init (&VTI (bb)->in);
10012 dataflow_set_init (&VTI (bb)->out);
10013 VTI (bb)->permp = NULL;
10016 if (MAY_HAVE_DEBUG_BIND_INSNS)
10018 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
10019 scratch_regs = BITMAP_ALLOC (NULL);
10020 preserved_values.create (256);
10021 global_get_addr_cache = new hash_map<rtx, rtx>;
10023 else
10025 scratch_regs = NULL;
10026 global_get_addr_cache = NULL;
10029 if (MAY_HAVE_DEBUG_BIND_INSNS)
10031 rtx reg, expr;
10032 int ofst;
10033 cselib_val *val;
10035 #ifdef FRAME_POINTER_CFA_OFFSET
10036 reg = frame_pointer_rtx;
10037 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10038 #else
10039 reg = arg_pointer_rtx;
10040 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
10041 #endif
10043 ofst -= INCOMING_FRAME_SP_OFFSET;
10045 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
10046 VOIDmode, get_insns ());
10047 preserve_value (val);
10048 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
10049 cselib_preserve_cfa_base_value (val, REGNO (reg));
10050 expr = plus_constant (GET_MODE (stack_pointer_rtx),
10051 stack_pointer_rtx, -ofst);
10052 cselib_add_permanent_equiv (val, expr, get_insns ());
10054 if (ofst)
10056 val = cselib_lookup_from_insn (stack_pointer_rtx,
10057 GET_MODE (stack_pointer_rtx), 1,
10058 VOIDmode, get_insns ());
10059 preserve_value (val);
10060 expr = plus_constant (GET_MODE (reg), reg, ofst);
10061 cselib_add_permanent_equiv (val, expr, get_insns ());
10065 /* In order to factor out the adjustments made to the stack pointer or to
10066 the hard frame pointer and thus be able to use DW_OP_fbreg operations
10067 instead of individual location lists, we're going to rewrite MEMs based
10068 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
10069 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
10070 resp. arg_pointer_rtx. We can do this either when there is no frame
10071 pointer in the function and stack adjustments are consistent for all
10072 basic blocks or when there is a frame pointer and no stack realignment.
10073 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
10074 has been eliminated. */
10075 if (!frame_pointer_needed)
10077 rtx reg, elim;
10079 if (!vt_stack_adjustments ())
10080 return false;
10082 #ifdef FRAME_POINTER_CFA_OFFSET
10083 reg = frame_pointer_rtx;
10084 #else
10085 reg = arg_pointer_rtx;
10086 #endif
10087 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10088 if (elim != reg)
10090 if (GET_CODE (elim) == PLUS)
10091 elim = XEXP (elim, 0);
10092 if (elim == stack_pointer_rtx)
10093 vt_init_cfa_base ();
10096 else if (!crtl->stack_realign_tried)
10098 rtx reg, elim;
10100 #ifdef FRAME_POINTER_CFA_OFFSET
10101 reg = frame_pointer_rtx;
10102 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10103 #else
10104 reg = arg_pointer_rtx;
10105 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10106 #endif
10107 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10108 if (elim != reg)
10110 if (GET_CODE (elim) == PLUS)
10112 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10113 elim = XEXP (elim, 0);
10115 if (elim != hard_frame_pointer_rtx)
10116 fp_cfa_offset = -1;
10118 else
10119 fp_cfa_offset = -1;
10122 /* If the stack is realigned and a DRAP register is used, we're going to
10123 rewrite MEMs based on it representing incoming locations of parameters
10124 passed on the stack into MEMs based on the argument pointer. Although
10125 we aren't going to rewrite other MEMs, we still need to initialize the
10126 virtual CFA pointer in order to ensure that the argument pointer will
10127 be seen as a constant throughout the function.
10129 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10130 else if (stack_realign_drap)
10132 rtx reg, elim;
10134 #ifdef FRAME_POINTER_CFA_OFFSET
10135 reg = frame_pointer_rtx;
10136 #else
10137 reg = arg_pointer_rtx;
10138 #endif
10139 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10140 if (elim != reg)
10142 if (GET_CODE (elim) == PLUS)
10143 elim = XEXP (elim, 0);
10144 if (elim == hard_frame_pointer_rtx)
10145 vt_init_cfa_base ();
10149 hard_frame_pointer_adjustment = -1;
10151 vt_add_function_parameters ();
10153 FOR_EACH_BB_FN (bb, cfun)
10155 rtx_insn *insn;
10156 HOST_WIDE_INT pre, post = 0;
10157 basic_block first_bb, last_bb;
10159 if (MAY_HAVE_DEBUG_BIND_INSNS)
10161 cselib_record_sets_hook = add_with_sets;
10162 if (dump_file && (dump_flags & TDF_DETAILS))
10163 fprintf (dump_file, "first value: %i\n",
10164 cselib_get_next_uid ());
10167 first_bb = bb;
10168 for (;;)
10170 edge e;
10171 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10172 || ! single_pred_p (bb->next_bb))
10173 break;
10174 e = find_edge (bb, bb->next_bb);
10175 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10176 break;
10177 bb = bb->next_bb;
10179 last_bb = bb;
10181 /* Add the micro-operations to the vector. */
10182 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10184 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10185 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10187 /* If we are walking the first basic block, walk any HEADER
10188 insns that might be before it too. Unfortunately,
10189 BB_HEADER and BB_FOOTER are not set while we run this
10190 pass. */
10191 rtx_insn *next;
10192 bool outside_bb = true;
10193 for (insn = get_first_insn (bb); insn != BB_HEAD (bb->next_bb);
10194 insn = next)
10196 if (insn == BB_HEAD (bb))
10197 outside_bb = false;
10198 else if (insn == NEXT_INSN (BB_END (bb)))
10199 outside_bb = true;
10200 next = NEXT_INSN (insn);
10201 if (INSN_P (insn))
10203 if (outside_bb)
10205 /* Ignore non-debug insns outside of basic blocks. */
10206 if (!DEBUG_INSN_P (insn))
10207 continue;
10208 /* Debug binds shouldn't appear outside of bbs. */
10209 gcc_assert (!DEBUG_BIND_INSN_P (insn));
10211 basic_block save_bb = BLOCK_FOR_INSN (insn);
10212 if (!BLOCK_FOR_INSN (insn))
10214 gcc_assert (outside_bb);
10215 BLOCK_FOR_INSN (insn) = bb;
10217 else
10218 gcc_assert (BLOCK_FOR_INSN (insn) == bb);
10220 if (!frame_pointer_needed)
10222 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10223 if (pre)
10225 micro_operation mo;
10226 mo.type = MO_ADJUST;
10227 mo.u.adjust = pre;
10228 mo.insn = insn;
10229 if (dump_file && (dump_flags & TDF_DETAILS))
10230 log_op_type (PATTERN (insn), bb, insn,
10231 MO_ADJUST, dump_file);
10232 VTI (bb)->mos.safe_push (mo);
10233 VTI (bb)->out.stack_adjust += pre;
10237 cselib_hook_called = false;
10238 adjust_insn (bb, insn);
10239 if (DEBUG_MARKER_INSN_P (insn))
10241 insn = reemit_marker_as_note (insn, &save_bb);
10242 continue;
10245 if (MAY_HAVE_DEBUG_BIND_INSNS)
10247 if (CALL_P (insn))
10248 prepare_call_arguments (bb, insn);
10249 cselib_process_insn (insn);
10250 if (dump_file && (dump_flags & TDF_DETAILS))
10252 print_rtl_single (dump_file, insn);
10253 dump_cselib_table (dump_file);
10256 if (!cselib_hook_called)
10257 add_with_sets (insn, 0, 0);
10258 cancel_changes (0);
10260 if (!frame_pointer_needed && post)
10262 micro_operation mo;
10263 mo.type = MO_ADJUST;
10264 mo.u.adjust = post;
10265 mo.insn = insn;
10266 if (dump_file && (dump_flags & TDF_DETAILS))
10267 log_op_type (PATTERN (insn), bb, insn,
10268 MO_ADJUST, dump_file);
10269 VTI (bb)->mos.safe_push (mo);
10270 VTI (bb)->out.stack_adjust += post;
10273 if (fp_cfa_offset != -1
10274 && hard_frame_pointer_adjustment == -1
10275 && fp_setter_insn (insn))
10277 vt_init_cfa_base ();
10278 hard_frame_pointer_adjustment = fp_cfa_offset;
10279 /* Disassociate sp from fp now. */
10280 if (MAY_HAVE_DEBUG_BIND_INSNS)
10282 cselib_val *v;
10283 cselib_invalidate_rtx (stack_pointer_rtx);
10284 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10285 VOIDmode);
10286 if (v && !cselib_preserved_value_p (v))
10288 cselib_set_value_sp_based (v);
10289 preserve_value (v);
10293 BLOCK_FOR_INSN (insn) = save_bb;
10296 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10299 bb = last_bb;
10301 if (MAY_HAVE_DEBUG_BIND_INSNS)
10303 cselib_preserve_only_values ();
10304 cselib_reset_table (cselib_get_next_uid ());
10305 cselib_record_sets_hook = NULL;
10309 hard_frame_pointer_adjustment = -1;
10310 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10311 cfa_base_rtx = NULL_RTX;
10312 return true;
10315 /* This is *not* reset after each function. It gives each
10316 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10317 a unique label number. */
10319 static int debug_label_num = 1;
10321 /* Remove from the insn stream all debug insns used for variable
10322 tracking at assignments. */
10324 static void
10325 delete_vta_debug_insns (void)
10327 basic_block bb;
10328 rtx_insn *insn, *next;
10330 if (!MAY_HAVE_DEBUG_INSNS)
10331 return;
10333 FOR_EACH_BB_FN (bb, cfun)
10335 for (insn = get_first_insn (bb);
10336 insn != BB_HEAD (bb->next_bb)
10337 ? next = NEXT_INSN (insn), true : false;
10338 insn = next)
10339 if (DEBUG_INSN_P (insn))
10341 if (DEBUG_MARKER_INSN_P (insn))
10343 insn = reemit_marker_as_note (insn, NULL);
10344 continue;
10347 tree decl = INSN_VAR_LOCATION_DECL (insn);
10348 if (TREE_CODE (decl) == LABEL_DECL
10349 && DECL_NAME (decl)
10350 && !DECL_RTL_SET_P (decl))
10352 PUT_CODE (insn, NOTE);
10353 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10354 NOTE_DELETED_LABEL_NAME (insn)
10355 = IDENTIFIER_POINTER (DECL_NAME (decl));
10356 SET_DECL_RTL (decl, insn);
10357 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10359 else
10360 delete_insn (insn);
10365 /* Run a fast, BB-local only version of var tracking, to take care of
10366 information that we don't do global analysis on, such that not all
10367 information is lost. If SKIPPED holds, we're skipping the global
10368 pass entirely, so we should try to use information it would have
10369 handled as well.. */
10371 static void
10372 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10374 /* ??? Just skip it all for now. */
10375 delete_vta_debug_insns ();
10378 /* Free the data structures needed for variable tracking. */
10380 static void
10381 vt_finalize (void)
10383 basic_block bb;
10385 FOR_EACH_BB_FN (bb, cfun)
10387 VTI (bb)->mos.release ();
10390 FOR_ALL_BB_FN (bb, cfun)
10392 dataflow_set_destroy (&VTI (bb)->in);
10393 dataflow_set_destroy (&VTI (bb)->out);
10394 if (VTI (bb)->permp)
10396 dataflow_set_destroy (VTI (bb)->permp);
10397 XDELETE (VTI (bb)->permp);
10400 free_aux_for_blocks ();
10401 delete empty_shared_hash->htab;
10402 empty_shared_hash->htab = NULL;
10403 delete changed_variables;
10404 changed_variables = NULL;
10405 attrs_pool.release ();
10406 var_pool.release ();
10407 location_chain_pool.release ();
10408 shared_hash_pool.release ();
10410 if (MAY_HAVE_DEBUG_BIND_INSNS)
10412 if (global_get_addr_cache)
10413 delete global_get_addr_cache;
10414 global_get_addr_cache = NULL;
10415 loc_exp_dep_pool.release ();
10416 valvar_pool.release ();
10417 preserved_values.release ();
10418 cselib_finish ();
10419 BITMAP_FREE (scratch_regs);
10420 scratch_regs = NULL;
10423 #ifdef HAVE_window_save
10424 vec_free (windowed_parm_regs);
10425 #endif
10427 if (vui_vec)
10428 XDELETEVEC (vui_vec);
10429 vui_vec = NULL;
10430 vui_allocated = 0;
10433 /* The entry point to variable tracking pass. */
10435 static inline unsigned int
10436 variable_tracking_main_1 (void)
10438 bool success;
10440 /* We won't be called as a separate pass if flag_var_tracking is not
10441 set, but final may call us to turn debug markers into notes. */
10442 if ((!flag_var_tracking && MAY_HAVE_DEBUG_INSNS)
10443 || flag_var_tracking_assignments < 0
10444 /* Var-tracking right now assumes the IR doesn't contain
10445 any pseudos at this point. */
10446 || targetm.no_register_allocation)
10448 delete_vta_debug_insns ();
10449 return 0;
10452 if (!flag_var_tracking)
10453 return 0;
10455 if (n_basic_blocks_for_fn (cfun) > 500
10456 && n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10458 vt_debug_insns_local (true);
10459 return 0;
10462 mark_dfs_back_edges ();
10463 if (!vt_initialize ())
10465 vt_finalize ();
10466 vt_debug_insns_local (true);
10467 return 0;
10470 success = vt_find_locations ();
10472 if (!success && flag_var_tracking_assignments > 0)
10474 vt_finalize ();
10476 delete_vta_debug_insns ();
10478 /* This is later restored by our caller. */
10479 flag_var_tracking_assignments = 0;
10481 success = vt_initialize ();
10482 gcc_assert (success);
10484 success = vt_find_locations ();
10487 if (!success)
10489 vt_finalize ();
10490 vt_debug_insns_local (false);
10491 return 0;
10494 if (dump_file && (dump_flags & TDF_DETAILS))
10496 dump_dataflow_sets ();
10497 dump_reg_info (dump_file);
10498 dump_flow_info (dump_file, dump_flags);
10501 timevar_push (TV_VAR_TRACKING_EMIT);
10502 vt_emit_notes ();
10503 timevar_pop (TV_VAR_TRACKING_EMIT);
10505 vt_finalize ();
10506 vt_debug_insns_local (false);
10507 return 0;
10510 unsigned int
10511 variable_tracking_main (void)
10513 unsigned int ret;
10514 int save = flag_var_tracking_assignments;
10516 ret = variable_tracking_main_1 ();
10518 flag_var_tracking_assignments = save;
10520 return ret;
10523 namespace {
10525 const pass_data pass_data_variable_tracking =
10527 RTL_PASS, /* type */
10528 "vartrack", /* name */
10529 OPTGROUP_NONE, /* optinfo_flags */
10530 TV_VAR_TRACKING, /* tv_id */
10531 0, /* properties_required */
10532 0, /* properties_provided */
10533 0, /* properties_destroyed */
10534 0, /* todo_flags_start */
10535 0, /* todo_flags_finish */
10538 class pass_variable_tracking : public rtl_opt_pass
10540 public:
10541 pass_variable_tracking (gcc::context *ctxt)
10542 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10545 /* opt_pass methods: */
10546 virtual bool gate (function *)
10548 return (flag_var_tracking && !targetm.delay_vartrack);
10551 virtual unsigned int execute (function *)
10553 return variable_tracking_main ();
10556 }; // class pass_variable_tracking
10558 } // anon namespace
10560 rtl_opt_pass *
10561 make_pass_variable_tracking (gcc::context *ctxt)
10563 return new pass_variable_tracking (ctxt);