1 /* Lower complex number and vector operations to scalar operations.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 #include "coretypes.h"
28 #include "insn-codes.h"
29 #include "diagnostic.h"
32 #include "langhooks.h"
33 #include "tree-flow.h"
34 #include "tree-gimple.h"
35 #include "tree-iterator.h"
36 #include "tree-pass.h"
41 /* Extract the real or imaginary part of a complex variable or constant.
42 Make sure that it's a proper gimple_val and gimplify it if not.
43 Emit any new code before BSI. */
46 extract_component (block_stmt_iterator
*bsi
, tree t
, bool imagpart_p
)
50 inner_type
= TREE_TYPE (TREE_TYPE (t
));
51 switch (TREE_CODE (t
))
54 ret
= (imagpart_p
? TREE_IMAGPART (t
) : TREE_REALPART (t
));
58 ret
= TREE_OPERAND (t
, imagpart_p
);
63 ret
= build1 ((imagpart_p
? IMAGPART_EXPR
: REALPART_EXPR
),
71 return gimplify_val (bsi
, inner_type
, ret
);
74 /* Update an assignment to a complex variable in place. */
77 update_complex_assignment (block_stmt_iterator
*bsi
, tree r
, tree i
)
79 tree stmt
= bsi_stmt (*bsi
);
82 if (TREE_CODE (stmt
) == RETURN_EXPR
)
83 stmt
= TREE_OPERAND (stmt
, 0);
85 type
= TREE_TYPE (TREE_OPERAND (stmt
, 1));
86 TREE_OPERAND (stmt
, 1) = build (COMPLEX_EXPR
, type
, r
, i
);
90 /* Expand complex addition to scalars:
91 a + b = (ar + br) + i(ai + bi)
92 a - b = (ar - br) + i(ai + bi)
96 expand_complex_addition (block_stmt_iterator
*bsi
, tree inner_type
,
97 tree ar
, tree ai
, tree br
, tree bi
,
102 rr
= gimplify_build2 (bsi
, code
, inner_type
, ar
, br
);
103 ri
= gimplify_build2 (bsi
, code
, inner_type
, ai
, bi
);
105 update_complex_assignment (bsi
, rr
, ri
);
108 /* Expand a complex multiplication or division to a libcall to the c99
109 compliant routines. */
112 expand_complex_libcall (block_stmt_iterator
*bsi
, tree ar
, tree ai
,
113 tree br
, tree bi
, enum tree_code code
)
115 enum machine_mode mode
;
116 enum built_in_function bcode
;
117 tree args
, fn
, stmt
, type
;
119 args
= tree_cons (NULL
, bi
, NULL
);
120 args
= tree_cons (NULL
, br
, args
);
121 args
= tree_cons (NULL
, ai
, args
);
122 args
= tree_cons (NULL
, ar
, args
);
124 stmt
= bsi_stmt (*bsi
);
125 type
= TREE_TYPE (TREE_OPERAND (stmt
, 1));
127 mode
= TYPE_MODE (type
);
128 gcc_assert (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
);
129 if (code
== MULT_EXPR
)
130 bcode
= BUILT_IN_COMPLEX_MUL_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
;
131 else if (code
== RDIV_EXPR
)
132 bcode
= BUILT_IN_COMPLEX_DIV_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
;
135 fn
= built_in_decls
[bcode
];
137 TREE_OPERAND (stmt
, 1)
138 = build3 (CALL_EXPR
, type
, build_fold_addr_expr (fn
), args
, NULL
);
142 /* Expand complex multiplication to scalars:
143 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
147 expand_complex_multiplication (block_stmt_iterator
*bsi
, tree inner_type
,
148 tree ar
, tree ai
, tree br
, tree bi
)
150 tree t1
, t2
, t3
, t4
, rr
, ri
;
152 if (flag_complex_method
== 2 && SCALAR_FLOAT_TYPE_P (inner_type
))
154 expand_complex_libcall (bsi
, ar
, ai
, br
, bi
, MULT_EXPR
);
158 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ar
, br
);
159 t2
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ai
, bi
);
160 t3
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ar
, bi
);
162 /* Avoid expanding redundant multiplication for the common
163 case of squaring a complex number. */
164 if (ar
== br
&& ai
== bi
)
167 t4
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ai
, br
);
169 rr
= gimplify_build2 (bsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
170 ri
= gimplify_build2 (bsi
, PLUS_EXPR
, inner_type
, t3
, t4
);
172 update_complex_assignment (bsi
, rr
, ri
);
175 /* Expand complex division to scalars, straightforward algorithm.
176 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
181 expand_complex_div_straight (block_stmt_iterator
*bsi
, tree inner_type
,
182 tree ar
, tree ai
, tree br
, tree bi
,
185 tree rr
, ri
, div
, t1
, t2
, t3
;
187 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, br
, br
);
188 t2
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, bi
, bi
);
189 div
= gimplify_build2 (bsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
191 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ar
, br
);
192 t2
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ai
, bi
);
193 t3
= gimplify_build2 (bsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
194 rr
= gimplify_build2 (bsi
, code
, inner_type
, t3
, div
);
196 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ai
, br
);
197 t2
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ar
, bi
);
198 t3
= gimplify_build2 (bsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
199 ri
= gimplify_build2 (bsi
, code
, inner_type
, t3
, div
);
201 update_complex_assignment (bsi
, rr
, ri
);
204 /* Expand complex division to scalars, modified algorithm to minimize
205 overflow with wide input ranges. */
208 expand_complex_div_wide (block_stmt_iterator
*bsi
, tree inner_type
,
209 tree ar
, tree ai
, tree br
, tree bi
,
212 tree rr
, ri
, ratio
, div
, t1
, t2
, tr
, ti
, cond
;
213 basic_block bb_cond
, bb_true
, bb_false
, bb_join
;
215 /* Examine |br| < |bi|, and branch. */
216 t1
= gimplify_build1 (bsi
, ABS_EXPR
, inner_type
, br
);
217 t2
= gimplify_build1 (bsi
, ABS_EXPR
, inner_type
, bi
);
218 cond
= fold (build (LT_EXPR
, boolean_type_node
, t1
, t2
));
221 bb_cond
= bb_true
= bb_false
= bb_join
= NULL
;
222 rr
= ri
= tr
= ti
= NULL
;
223 if (!TREE_CONSTANT (cond
))
227 cond
= build (COND_EXPR
, void_type_node
, cond
, NULL
, NULL
);
228 bsi_insert_before (bsi
, cond
, BSI_SAME_STMT
);
230 /* Split the original block, and create the TRUE and FALSE blocks. */
231 e
= split_block (bsi
->bb
, cond
);
234 bb_true
= create_empty_bb (bb_cond
);
235 bb_false
= create_empty_bb (bb_true
);
237 t1
= build (GOTO_EXPR
, void_type_node
, tree_block_label (bb_true
));
238 t2
= build (GOTO_EXPR
, void_type_node
, tree_block_label (bb_false
));
239 COND_EXPR_THEN (cond
) = t1
;
240 COND_EXPR_ELSE (cond
) = t2
;
242 /* Wire the blocks together. */
243 e
->flags
= EDGE_TRUE_VALUE
;
244 redirect_edge_succ (e
, bb_true
);
245 make_edge (bb_cond
, bb_false
, EDGE_FALSE_VALUE
);
246 make_edge (bb_true
, bb_join
, EDGE_FALLTHRU
);
247 make_edge (bb_false
, bb_join
, EDGE_FALLTHRU
);
249 /* Update dominance info. Note that bb_join's data was
250 updated by split_block. */
251 if (dom_info_available_p (CDI_DOMINATORS
))
253 set_immediate_dominator (CDI_DOMINATORS
, bb_true
, bb_cond
);
254 set_immediate_dominator (CDI_DOMINATORS
, bb_false
, bb_cond
);
257 rr
= make_rename_temp (inner_type
, NULL
);
258 ri
= make_rename_temp (inner_type
, NULL
);
261 /* In the TRUE branch, we compute
263 div = (br * ratio) + bi;
264 tr = (ar * ratio) + ai;
265 ti = (ai * ratio) - ar;
268 if (bb_true
|| integer_nonzerop (cond
))
272 *bsi
= bsi_last (bb_true
);
273 bsi_insert_after (bsi
, build_empty_stmt (), BSI_NEW_STMT
);
276 ratio
= gimplify_build2 (bsi
, code
, inner_type
, br
, bi
);
278 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, br
, ratio
);
279 div
= gimplify_build2 (bsi
, PLUS_EXPR
, inner_type
, t1
, bi
);
281 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
282 tr
= gimplify_build2 (bsi
, PLUS_EXPR
, inner_type
, t1
, ai
);
284 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
285 ti
= gimplify_build2 (bsi
, MINUS_EXPR
, inner_type
, t1
, ar
);
287 tr
= gimplify_build2 (bsi
, code
, inner_type
, tr
, div
);
288 ti
= gimplify_build2 (bsi
, code
, inner_type
, ti
, div
);
292 t1
= build (MODIFY_EXPR
, inner_type
, rr
, tr
);
293 bsi_insert_before (bsi
, t1
, BSI_SAME_STMT
);
294 t1
= build (MODIFY_EXPR
, inner_type
, ri
, ti
);
295 bsi_insert_before (bsi
, t1
, BSI_SAME_STMT
);
300 /* In the FALSE branch, we compute
302 divisor = (d * ratio) + c;
303 tr = (b * ratio) + a;
304 ti = b - (a * ratio);
307 if (bb_false
|| integer_zerop (cond
))
311 *bsi
= bsi_last (bb_false
);
312 bsi_insert_after (bsi
, build_empty_stmt (), BSI_NEW_STMT
);
315 ratio
= gimplify_build2 (bsi
, code
, inner_type
, bi
, br
);
317 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, bi
, ratio
);
318 div
= gimplify_build2 (bsi
, PLUS_EXPR
, inner_type
, t1
, br
);
320 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
321 tr
= gimplify_build2 (bsi
, PLUS_EXPR
, inner_type
, t1
, ar
);
323 t1
= gimplify_build2 (bsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
324 ti
= gimplify_build2 (bsi
, MINUS_EXPR
, inner_type
, ai
, t1
);
326 tr
= gimplify_build2 (bsi
, code
, inner_type
, tr
, div
);
327 ti
= gimplify_build2 (bsi
, code
, inner_type
, ti
, div
);
331 t1
= build (MODIFY_EXPR
, inner_type
, rr
, tr
);
332 bsi_insert_before (bsi
, t1
, BSI_SAME_STMT
);
333 t1
= build (MODIFY_EXPR
, inner_type
, ri
, ti
);
334 bsi_insert_before (bsi
, t1
, BSI_SAME_STMT
);
340 *bsi
= bsi_start (bb_join
);
344 update_complex_assignment (bsi
, rr
, ri
);
347 /* Expand complex division to scalars. */
350 expand_complex_division (block_stmt_iterator
*bsi
, tree inner_type
,
351 tree ar
, tree ai
, tree br
, tree bi
,
354 switch (flag_complex_method
)
357 /* straightforward implementation of complex divide acceptable. */
358 expand_complex_div_straight (bsi
, inner_type
, ar
, ai
, br
, bi
, code
);
362 if (SCALAR_FLOAT_TYPE_P (inner_type
))
364 expand_complex_libcall (bsi
, ar
, ai
, br
, bi
, code
);
370 /* wide ranges of inputs must work for complex divide. */
371 expand_complex_div_wide (bsi
, inner_type
, ar
, ai
, br
, bi
, code
);
379 /* Expand complex negation to scalars:
384 expand_complex_negation (block_stmt_iterator
*bsi
, tree inner_type
,
389 rr
= gimplify_build1 (bsi
, NEGATE_EXPR
, inner_type
, ar
);
390 ri
= gimplify_build1 (bsi
, NEGATE_EXPR
, inner_type
, ai
);
392 update_complex_assignment (bsi
, rr
, ri
);
395 /* Expand complex conjugate to scalars:
400 expand_complex_conjugate (block_stmt_iterator
*bsi
, tree inner_type
,
405 ri
= gimplify_build1 (bsi
, NEGATE_EXPR
, inner_type
, ai
);
407 update_complex_assignment (bsi
, ar
, ri
);
410 /* Expand complex comparison (EQ or NE only). */
413 expand_complex_comparison (block_stmt_iterator
*bsi
, tree ar
, tree ai
,
414 tree br
, tree bi
, enum tree_code code
)
416 tree cr
, ci
, cc
, stmt
, expr
, type
;
418 cr
= gimplify_build2 (bsi
, code
, boolean_type_node
, ar
, br
);
419 ci
= gimplify_build2 (bsi
, code
, boolean_type_node
, ai
, bi
);
420 cc
= gimplify_build2 (bsi
,
421 (code
== EQ_EXPR
? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
),
422 boolean_type_node
, cr
, ci
);
424 stmt
= expr
= bsi_stmt (*bsi
);
426 switch (TREE_CODE (stmt
))
429 expr
= TREE_OPERAND (stmt
, 0);
432 type
= TREE_TYPE (TREE_OPERAND (expr
, 1));
433 TREE_OPERAND (expr
, 1) = fold_convert (type
, cc
);
436 TREE_OPERAND (stmt
, 0) = cc
;
445 /* Process one statement. If we identify a complex operation, expand it. */
448 expand_complex_operations_1 (block_stmt_iterator
*bsi
)
450 tree stmt
= bsi_stmt (*bsi
);
451 tree rhs
, type
, inner_type
;
452 tree ac
, ar
, ai
, bc
, br
, bi
;
455 switch (TREE_CODE (stmt
))
458 stmt
= TREE_OPERAND (stmt
, 0);
461 if (TREE_CODE (stmt
) != MODIFY_EXPR
)
466 rhs
= TREE_OPERAND (stmt
, 1);
470 rhs
= TREE_OPERAND (stmt
, 0);
477 type
= TREE_TYPE (rhs
);
478 code
= TREE_CODE (rhs
);
480 /* Initial filter for operations we handle. */
493 if (TREE_CODE (type
) != COMPLEX_TYPE
)
495 inner_type
= TREE_TYPE (type
);
500 inner_type
= TREE_TYPE (TREE_OPERAND (rhs
, 1));
501 if (TREE_CODE (inner_type
) != COMPLEX_TYPE
)
509 /* Extract the components of the two complex values. Make sure and
510 handle the common case of the same value used twice specially. */
511 ac
= TREE_OPERAND (rhs
, 0);
512 ar
= extract_component (bsi
, ac
, 0);
513 ai
= extract_component (bsi
, ac
, 1);
515 if (TREE_CODE_CLASS (code
) == tcc_unary
)
519 bc
= TREE_OPERAND (rhs
, 1);
524 br
= extract_component (bsi
, bc
, 0);
525 bi
= extract_component (bsi
, bc
, 1);
533 expand_complex_addition (bsi
, inner_type
, ar
, ai
, br
, bi
, code
);
537 expand_complex_multiplication (bsi
, inner_type
, ar
, ai
, br
, bi
);
545 expand_complex_division (bsi
, inner_type
, ar
, ai
, br
, bi
, code
);
549 expand_complex_negation (bsi
, inner_type
, ar
, ai
);
553 expand_complex_conjugate (bsi
, inner_type
, ar
, ai
);
558 expand_complex_comparison (bsi
, ar
, ai
, br
, bi
, code
);
566 /* Build a constant of type TYPE, made of VALUE's bits replicated
567 every TYPE_SIZE (INNER_TYPE) bits to fit TYPE's precision. */
569 build_replicated_const (tree type
, tree inner_type
, HOST_WIDE_INT value
)
571 int width
= tree_low_cst (TYPE_SIZE (inner_type
), 1);
572 int n
= HOST_BITS_PER_WIDE_INT
/ width
;
573 unsigned HOST_WIDE_INT low
, high
, mask
;
578 if (width
== HOST_BITS_PER_WIDE_INT
)
582 mask
= ((HOST_WIDE_INT
)1 << width
) - 1;
583 low
= (unsigned HOST_WIDE_INT
) ~0 / mask
* (value
& mask
);
586 if (TYPE_PRECISION (type
) < HOST_BITS_PER_WIDE_INT
)
587 low
&= ((HOST_WIDE_INT
)1 << TYPE_PRECISION (type
)) - 1, high
= 0;
588 else if (TYPE_PRECISION (type
) == HOST_BITS_PER_WIDE_INT
)
590 else if (TYPE_PRECISION (type
) == 2 * HOST_BITS_PER_WIDE_INT
)
595 ret
= build_int_cst_wide (type
, low
, high
);
599 static GTY(()) tree vector_inner_type
;
600 static GTY(()) tree vector_last_type
;
601 static GTY(()) int vector_last_nunits
;
603 /* Return a suitable vector types made of SUBPARTS units each of mode
604 "word_mode" (the global variable). */
606 build_word_mode_vector_type (int nunits
)
608 if (!vector_inner_type
)
609 vector_inner_type
= lang_hooks
.types
.type_for_mode (word_mode
, 1);
610 else if (vector_last_nunits
== nunits
)
612 gcc_assert (TREE_CODE (vector_last_type
) == VECTOR_TYPE
);
613 return vector_last_type
;
616 /* We build a new type, but we canonicalize it nevertheless,
617 because it still saves some memory. */
618 vector_last_nunits
= nunits
;
619 vector_last_type
= type_hash_canon (nunits
,
620 build_vector_type (vector_inner_type
,
622 return vector_last_type
;
625 typedef tree (*elem_op_func
) (block_stmt_iterator
*,
626 tree
, tree
, tree
, tree
, tree
, enum tree_code
);
629 tree_vec_extract (block_stmt_iterator
*bsi
, tree type
,
630 tree t
, tree bitsize
, tree bitpos
)
633 return gimplify_build3 (bsi
, BIT_FIELD_REF
, type
, t
, bitsize
, bitpos
);
635 return gimplify_build1 (bsi
, VIEW_CONVERT_EXPR
, type
, t
);
639 do_unop (block_stmt_iterator
*bsi
, tree inner_type
, tree a
,
640 tree b ATTRIBUTE_UNUSED
, tree bitpos
, tree bitsize
,
643 a
= tree_vec_extract (bsi
, inner_type
, a
, bitsize
, bitpos
);
644 return gimplify_build1 (bsi
, code
, inner_type
, a
);
648 do_binop (block_stmt_iterator
*bsi
, tree inner_type
, tree a
, tree b
,
649 tree bitpos
, tree bitsize
, enum tree_code code
)
651 a
= tree_vec_extract (bsi
, inner_type
, a
, bitsize
, bitpos
);
652 b
= tree_vec_extract (bsi
, inner_type
, b
, bitsize
, bitpos
);
653 return gimplify_build2 (bsi
, code
, inner_type
, a
, b
);
656 /* Expand vector addition to scalars. This does bit twiddling
657 in order to increase parallelism:
659 a + b = (((int) a & 0x7f7f7f7f) + ((int) b & 0x7f7f7f7f)) ^
662 a - b = (((int) a | 0x80808080) - ((int) b & 0x7f7f7f7f)) ^
663 (a ^ ~b) & 0x80808080
665 -b = (0x80808080 - ((int) b & 0x7f7f7f7f)) ^ (~b & 0x80808080)
667 This optimization should be done only if 4 vector items or more
670 do_plus_minus (block_stmt_iterator
*bsi
, tree word_type
, tree a
, tree b
,
671 tree bitpos ATTRIBUTE_UNUSED
, tree bitsize ATTRIBUTE_UNUSED
,
674 tree inner_type
= TREE_TYPE (TREE_TYPE (a
));
675 unsigned HOST_WIDE_INT max
;
676 tree low_bits
, high_bits
, a_low
, b_low
, result_low
, signs
;
678 max
= GET_MODE_MASK (TYPE_MODE (inner_type
));
679 low_bits
= build_replicated_const (word_type
, inner_type
, max
>> 1);
680 high_bits
= build_replicated_const (word_type
, inner_type
, max
& ~(max
>> 1));
682 a
= tree_vec_extract (bsi
, word_type
, a
, bitsize
, bitpos
);
683 b
= tree_vec_extract (bsi
, word_type
, b
, bitsize
, bitpos
);
685 signs
= gimplify_build2 (bsi
, BIT_XOR_EXPR
, word_type
, a
, b
);
686 b_low
= gimplify_build2 (bsi
, BIT_AND_EXPR
, word_type
, b
, low_bits
);
687 if (code
== PLUS_EXPR
)
688 a_low
= gimplify_build2 (bsi
, BIT_AND_EXPR
, word_type
, a
, low_bits
);
691 a_low
= gimplify_build2 (bsi
, BIT_IOR_EXPR
, word_type
, a
, high_bits
);
692 signs
= gimplify_build1 (bsi
, BIT_NOT_EXPR
, word_type
, signs
);
695 signs
= gimplify_build2 (bsi
, BIT_AND_EXPR
, word_type
, signs
, high_bits
);
696 result_low
= gimplify_build2 (bsi
, code
, word_type
, a_low
, b_low
);
697 return gimplify_build2 (bsi
, BIT_XOR_EXPR
, word_type
, result_low
, signs
);
701 do_negate (block_stmt_iterator
*bsi
, tree word_type
, tree b
,
702 tree unused ATTRIBUTE_UNUSED
, tree bitpos ATTRIBUTE_UNUSED
,
703 tree bitsize ATTRIBUTE_UNUSED
,
704 enum tree_code code ATTRIBUTE_UNUSED
)
706 tree inner_type
= TREE_TYPE (TREE_TYPE (b
));
708 tree low_bits
, high_bits
, b_low
, result_low
, signs
;
710 max
= GET_MODE_MASK (TYPE_MODE (inner_type
));
711 low_bits
= build_replicated_const (word_type
, inner_type
, max
>> 1);
712 high_bits
= build_replicated_const (word_type
, inner_type
, max
& ~(max
>> 1));
714 b
= tree_vec_extract (bsi
, word_type
, b
, bitsize
, bitpos
);
716 b_low
= gimplify_build2 (bsi
, BIT_AND_EXPR
, word_type
, b
, low_bits
);
717 signs
= gimplify_build1 (bsi
, BIT_NOT_EXPR
, word_type
, b
);
718 signs
= gimplify_build2 (bsi
, BIT_AND_EXPR
, word_type
, signs
, high_bits
);
719 result_low
= gimplify_build2 (bsi
, MINUS_EXPR
, word_type
, high_bits
, b_low
);
720 return gimplify_build2 (bsi
, BIT_XOR_EXPR
, word_type
, result_low
, signs
);
723 /* Expand a vector operation to scalars, by using many operations
724 whose type is the vector type's inner type. */
726 expand_vector_piecewise (block_stmt_iterator
*bsi
, elem_op_func f
,
727 tree type
, tree inner_type
,
728 tree a
, tree b
, enum tree_code code
)
730 tree head
, *chain
= &head
;
731 tree part_width
= TYPE_SIZE (inner_type
);
732 tree index
= bitsize_int (0);
733 int nunits
= TYPE_VECTOR_SUBPARTS (type
);
734 int delta
= tree_low_cst (part_width
, 1)
735 / tree_low_cst (TYPE_SIZE (TREE_TYPE (type
)), 1);
738 for (i
= 0; i
< nunits
;
739 i
+= delta
, index
= int_const_binop (PLUS_EXPR
, index
, part_width
, 0))
741 tree result
= f (bsi
, inner_type
, a
, b
, index
, part_width
, code
);
742 *chain
= tree_cons (NULL_TREE
, result
, NULL_TREE
);
743 chain
= &TREE_CHAIN (*chain
);
746 return build1 (CONSTRUCTOR
, type
, head
);
749 /* Expand a vector operation to scalars with the freedom to use
750 a scalar integer type, or to use a different size for the items
751 in the vector type. */
753 expand_vector_parallel (block_stmt_iterator
*bsi
, elem_op_func f
, tree type
,
757 tree result
, compute_type
;
758 enum machine_mode mode
;
759 int n_words
= tree_low_cst (TYPE_SIZE_UNIT (type
), 1) / UNITS_PER_WORD
;
761 /* We have three strategies. If the type is already correct, just do
762 the operation an element at a time. Else, if the vector is wider than
763 one word, do it a word at a time; finally, if the vector is smaller
764 than one word, do it as a scalar. */
765 if (TYPE_MODE (TREE_TYPE (type
)) == word_mode
)
766 return expand_vector_piecewise (bsi
, f
,
767 type
, TREE_TYPE (type
),
769 else if (n_words
> 1)
771 tree word_type
= build_word_mode_vector_type (n_words
);
772 result
= expand_vector_piecewise (bsi
, f
,
773 word_type
, TREE_TYPE (word_type
),
775 result
= gimplify_val (bsi
, word_type
, result
);
779 /* Use a single scalar operation with a mode no wider than word_mode. */
780 mode
= mode_for_size (tree_low_cst (TYPE_SIZE (type
), 1), MODE_INT
, 0);
781 compute_type
= lang_hooks
.types
.type_for_mode (mode
, 1);
782 result
= f (bsi
, compute_type
, a
, b
, NULL_TREE
, NULL_TREE
, code
);
785 return build1 (VIEW_CONVERT_EXPR
, type
, result
);
788 /* Expand a vector operation to scalars; for integer types we can use
789 special bit twiddling tricks to do the sums a word at a time, using
790 function F_PARALLEL instead of F. These tricks are done only if
791 they can process at least four items, that is, only if the vector
792 holds at least four items and if a word can hold four items. */
794 expand_vector_addition (block_stmt_iterator
*bsi
,
795 elem_op_func f
, elem_op_func f_parallel
,
796 tree type
, tree a
, tree b
, enum tree_code code
)
798 int parts_per_word
= UNITS_PER_WORD
799 / tree_low_cst (TYPE_SIZE_UNIT (TREE_TYPE (type
)), 1);
801 if (INTEGRAL_TYPE_P (TREE_TYPE (type
))
802 && parts_per_word
>= 4
803 && TYPE_VECTOR_SUBPARTS (type
) >= 4)
804 return expand_vector_parallel (bsi
, f_parallel
,
807 return expand_vector_piecewise (bsi
, f
,
808 type
, TREE_TYPE (type
),
812 /* Return a type for the widest vector mode whose components are of mode
813 INNER_MODE, or NULL_TREE if none is found. */
815 type_for_widest_vector_mode (enum machine_mode inner_mode
, optab op
)
817 enum machine_mode best_mode
= VOIDmode
, mode
;
820 if (GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
)
821 mode
= MIN_MODE_VECTOR_FLOAT
;
823 mode
= MIN_MODE_VECTOR_INT
;
825 for (; mode
!= VOIDmode
; mode
= GET_MODE_WIDER_MODE (mode
))
826 if (GET_MODE_INNER (mode
) == inner_mode
827 && GET_MODE_NUNITS (mode
) > best_nunits
828 && op
->handlers
[mode
].insn_code
!= CODE_FOR_nothing
)
829 best_mode
= mode
, best_nunits
= GET_MODE_NUNITS (mode
);
831 if (best_mode
== VOIDmode
)
834 return lang_hooks
.types
.type_for_mode (best_mode
, 1);
837 /* Process one statement. If we identify a vector operation, expand it. */
840 expand_vector_operations_1 (block_stmt_iterator
*bsi
)
842 tree stmt
= bsi_stmt (*bsi
);
843 tree
*p_rhs
, rhs
, type
, compute_type
;
845 enum machine_mode compute_mode
;
848 switch (TREE_CODE (stmt
))
851 stmt
= TREE_OPERAND (stmt
, 0);
852 if (!stmt
|| TREE_CODE (stmt
) != MODIFY_EXPR
)
858 p_rhs
= &TREE_OPERAND (stmt
, 1);
866 type
= TREE_TYPE (rhs
);
867 if (TREE_CODE (type
) != VECTOR_TYPE
)
870 code
= TREE_CODE (rhs
);
871 if (TREE_CODE_CLASS (code
) != tcc_unary
872 && TREE_CODE_CLASS (code
) != tcc_binary
)
875 if (code
== NOP_EXPR
|| code
== VIEW_CONVERT_EXPR
)
878 gcc_assert (code
!= CONVERT_EXPR
);
879 op
= optab_for_tree_code (code
, type
);
881 /* Optabs will try converting a negation into a subtraction, so
882 look for it as well. TODO: negation of floating-point vectors
883 might be turned into an exclusive OR toggling the sign bit. */
885 && code
== NEGATE_EXPR
886 && INTEGRAL_TYPE_P (TREE_TYPE (type
)))
887 op
= optab_for_tree_code (MINUS_EXPR
, type
);
889 /* For very wide vectors, try using a smaller vector mode. */
891 if (TYPE_MODE (type
) == BLKmode
&& op
)
893 tree vector_compute_type
894 = type_for_widest_vector_mode (TYPE_MODE (TREE_TYPE (type
)), op
);
895 if (vector_compute_type
!= NULL_TREE
)
896 compute_type
= vector_compute_type
;
899 compute_mode
= TYPE_MODE (compute_type
);
901 /* If we are breaking a BLKmode vector into smaller pieces,
902 type_for_widest_vector_mode has already looked into the optab,
903 so skip these checks. */
904 if (compute_type
== type
)
906 if ((GET_MODE_CLASS (compute_mode
) == MODE_VECTOR_INT
907 || GET_MODE_CLASS (compute_mode
) == MODE_VECTOR_FLOAT
)
909 && op
->handlers
[compute_mode
].insn_code
!= CODE_FOR_nothing
)
913 /* There is no operation in hardware, so fall back to scalars. */
914 compute_type
= TREE_TYPE (type
);
915 compute_mode
= TYPE_MODE (compute_type
);
919 /* If the compute mode is not a vector mode (hence we are decomposing
920 a BLKmode vector to smaller, hardware-supported vectors), we may
921 want to expand the operations in parallel. */
922 if (GET_MODE_CLASS (compute_mode
) != MODE_VECTOR_INT
923 && GET_MODE_CLASS (compute_mode
) != MODE_VECTOR_FLOAT
)
928 if (TYPE_TRAP_SIGNED (type
))
931 *p_rhs
= expand_vector_addition (bsi
, do_binop
, do_plus_minus
, type
,
932 TREE_OPERAND (rhs
, 0),
933 TREE_OPERAND (rhs
, 1), code
);
934 modify_stmt (bsi_stmt (*bsi
));
938 if (TYPE_TRAP_SIGNED (type
))
941 *p_rhs
= expand_vector_addition (bsi
, do_unop
, do_negate
, type
,
942 TREE_OPERAND (rhs
, 0),
944 modify_stmt (bsi_stmt (*bsi
));
950 *p_rhs
= expand_vector_parallel (bsi
, do_binop
, type
,
951 TREE_OPERAND (rhs
, 0),
952 TREE_OPERAND (rhs
, 1), code
);
953 modify_stmt (bsi_stmt (*bsi
));
957 *p_rhs
= expand_vector_parallel (bsi
, do_unop
, type
,
958 TREE_OPERAND (rhs
, 0),
960 modify_stmt (bsi_stmt (*bsi
));
967 if (TREE_CODE_CLASS (code
) == tcc_unary
)
968 *p_rhs
= expand_vector_piecewise (bsi
, do_unop
, type
, compute_type
,
969 TREE_OPERAND (rhs
, 0),
972 *p_rhs
= expand_vector_piecewise (bsi
, do_binop
, type
, compute_type
,
973 TREE_OPERAND (rhs
, 0),
974 TREE_OPERAND (rhs
, 1), code
);
976 modify_stmt (bsi_stmt (*bsi
));
980 expand_vector_operations (void)
982 block_stmt_iterator bsi
;
987 for (bsi
= bsi_start (bb
); !bsi_end_p (bsi
); bsi_next (&bsi
))
988 expand_vector_operations_1 (&bsi
);
993 tree_lower_operations (void)
995 int old_last_basic_block
= last_basic_block
;
996 block_stmt_iterator bsi
;
1001 if (bb
->index
>= old_last_basic_block
)
1003 for (bsi
= bsi_start (bb
); !bsi_end_p (bsi
); bsi_next (&bsi
))
1005 expand_complex_operations_1 (&bsi
);
1006 expand_vector_operations_1 (&bsi
);
1012 struct tree_opt_pass pass_lower_vector_ssa
=
1014 "vector", /* name */
1016 expand_vector_operations
, /* execute */
1019 0, /* static_pass_number */
1021 PROP_cfg
, /* properties_required */
1022 0, /* properties_provided */
1023 0, /* properties_destroyed */
1024 0, /* todo_flags_start */
1025 TODO_dump_func
| TODO_rename_vars
/* todo_flags_finish */
1026 | TODO_ggc_collect
| TODO_verify_ssa
1027 | TODO_verify_stmts
| TODO_verify_flow
,
1031 struct tree_opt_pass pass_pre_expand
=
1033 "oplower", /* name */
1035 tree_lower_operations
, /* execute */
1038 0, /* static_pass_number */
1040 PROP_cfg
, /* properties_required */
1041 0, /* properties_provided */
1042 0, /* properties_destroyed */
1043 0, /* todo_flags_start */
1044 TODO_dump_func
| TODO_ggc_collect
1045 | TODO_verify_stmts
, /* todo_flags_finish */
1049 #include "gt-tree-complex.h"