1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 #include "coretypes.h"
32 #include "hard-reg-set.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
44 #include "typeclass.h"
47 #include "langhooks.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
56 /* Decide whether a function's arguments should be processed
57 from first to last or from last to first.
59 They should if the stack and args grow in opposite directions, but
60 only if we have push insns. */
64 #ifndef PUSH_ARGS_REVERSED
65 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
66 #define PUSH_ARGS_REVERSED /* If it's last to first. */
72 #ifndef STACK_PUSH_CODE
73 #ifdef STACK_GROWS_DOWNWARD
74 #define STACK_PUSH_CODE PRE_DEC
76 #define STACK_PUSH_CODE PRE_INC
81 /* If this is nonzero, we do not bother generating VOLATILE
82 around volatile memory references, and we are willing to
83 output indirect addresses. If cse is to follow, we reject
84 indirect addresses so a useful potential cse is generated;
85 if it is used only once, instruction combination will produce
86 the same indirect address eventually. */
89 /* This structure is used by move_by_pieces to describe the move to
100 int explicit_inc_from
;
101 unsigned HOST_WIDE_INT len
;
102 HOST_WIDE_INT offset
;
106 /* This structure is used by store_by_pieces to describe the clear to
109 struct store_by_pieces
115 unsigned HOST_WIDE_INT len
;
116 HOST_WIDE_INT offset
;
117 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
122 static unsigned HOST_WIDE_INT
move_by_pieces_ninsns (unsigned HOST_WIDE_INT
,
125 static void move_by_pieces_1 (rtx (*) (rtx
, ...), enum machine_mode
,
126 struct move_by_pieces
*);
127 static bool block_move_libcall_safe_for_call_parm (void);
128 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned);
129 static rtx
emit_block_move_via_libcall (rtx
, rtx
, rtx
);
130 static tree
emit_block_move_libcall_fn (int);
131 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
132 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
133 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
134 static void store_by_pieces_1 (struct store_by_pieces
*, unsigned int);
135 static void store_by_pieces_2 (rtx (*) (rtx
, ...), enum machine_mode
,
136 struct store_by_pieces
*);
137 static bool clear_storage_via_clrmem (rtx
, rtx
, unsigned);
138 static rtx
clear_storage_via_libcall (rtx
, rtx
);
139 static tree
clear_storage_libcall_fn (int);
140 static rtx
compress_float_constant (rtx
, rtx
);
141 static rtx
get_subtarget (rtx
);
142 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
143 HOST_WIDE_INT
, enum machine_mode
,
144 tree
, tree
, int, int);
145 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
146 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
, enum machine_mode
,
149 static unsigned HOST_WIDE_INT
highest_pow2_factor (tree
);
150 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (tree
, tree
);
152 static int is_aligning_offset (tree
, tree
);
153 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
154 enum expand_modifier
);
155 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
156 static rtx
do_store_flag (tree
, rtx
, enum machine_mode
, int);
158 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
160 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
);
161 static rtx
const_vector_from_tree (tree
);
162 static void write_complex_part (rtx
, rtx
, bool);
164 /* Record for each mode whether we can move a register directly to or
165 from an object of that mode in memory. If we can't, we won't try
166 to use that mode directly when accessing a field of that mode. */
168 static char direct_load
[NUM_MACHINE_MODES
];
169 static char direct_store
[NUM_MACHINE_MODES
];
171 /* Record for each mode whether we can float-extend from memory. */
173 static bool float_extend_from_mem
[NUM_MACHINE_MODES
][NUM_MACHINE_MODES
];
175 /* This macro is used to determine whether move_by_pieces should be called
176 to perform a structure copy. */
177 #ifndef MOVE_BY_PIECES_P
178 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
179 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
180 < (unsigned int) MOVE_RATIO)
183 /* This macro is used to determine whether clear_by_pieces should be
184 called to clear storage. */
185 #ifndef CLEAR_BY_PIECES_P
186 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
187 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
188 < (unsigned int) CLEAR_RATIO)
191 /* This macro is used to determine whether store_by_pieces should be
192 called to "memset" storage with byte values other than zero, or
193 to "memcpy" storage when the source is a constant string. */
194 #ifndef STORE_BY_PIECES_P
195 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
196 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
197 < (unsigned int) MOVE_RATIO)
200 /* This array records the insn_code of insns to perform block moves. */
201 enum insn_code movmem_optab
[NUM_MACHINE_MODES
];
203 /* This array records the insn_code of insns to perform block clears. */
204 enum insn_code clrmem_optab
[NUM_MACHINE_MODES
];
206 /* These arrays record the insn_code of two different kinds of insns
207 to perform block compares. */
208 enum insn_code cmpstr_optab
[NUM_MACHINE_MODES
];
209 enum insn_code cmpmem_optab
[NUM_MACHINE_MODES
];
211 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
213 #ifndef SLOW_UNALIGNED_ACCESS
214 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
217 /* This is run once per compilation to set up which modes can be used
218 directly in memory and to initialize the block move optab. */
221 init_expr_once (void)
224 enum machine_mode mode
;
229 /* Try indexing by frame ptr and try by stack ptr.
230 It is known that on the Convex the stack ptr isn't a valid index.
231 With luck, one or the other is valid on any machine. */
232 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
233 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
235 /* A scratch register we can modify in-place below to avoid
236 useless RTL allocations. */
237 reg
= gen_rtx_REG (VOIDmode
, -1);
239 insn
= rtx_alloc (INSN
);
240 pat
= gen_rtx_SET (0, NULL_RTX
, NULL_RTX
);
241 PATTERN (insn
) = pat
;
243 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
244 mode
= (enum machine_mode
) ((int) mode
+ 1))
248 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
249 PUT_MODE (mem
, mode
);
250 PUT_MODE (mem1
, mode
);
251 PUT_MODE (reg
, mode
);
253 /* See if there is some register that can be used in this mode and
254 directly loaded or stored from memory. */
256 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
257 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
258 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
261 if (! HARD_REGNO_MODE_OK (regno
, mode
))
267 SET_DEST (pat
) = reg
;
268 if (recog (pat
, insn
, &num_clobbers
) >= 0)
269 direct_load
[(int) mode
] = 1;
271 SET_SRC (pat
) = mem1
;
272 SET_DEST (pat
) = reg
;
273 if (recog (pat
, insn
, &num_clobbers
) >= 0)
274 direct_load
[(int) mode
] = 1;
277 SET_DEST (pat
) = mem
;
278 if (recog (pat
, insn
, &num_clobbers
) >= 0)
279 direct_store
[(int) mode
] = 1;
282 SET_DEST (pat
) = mem1
;
283 if (recog (pat
, insn
, &num_clobbers
) >= 0)
284 direct_store
[(int) mode
] = 1;
288 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
290 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
291 mode
= GET_MODE_WIDER_MODE (mode
))
293 enum machine_mode srcmode
;
294 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
295 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
299 ic
= can_extend_p (mode
, srcmode
, 0);
300 if (ic
== CODE_FOR_nothing
)
303 PUT_MODE (mem
, srcmode
);
305 if ((*insn_data
[ic
].operand
[1].predicate
) (mem
, srcmode
))
306 float_extend_from_mem
[mode
][srcmode
] = true;
311 /* This is run at the start of compiling a function. */
316 cfun
->expr
= ggc_alloc_cleared (sizeof (struct expr_status
));
319 /* Copy data from FROM to TO, where the machine modes are not the same.
320 Both modes may be integer, or both may be floating.
321 UNSIGNEDP should be nonzero if FROM is an unsigned type.
322 This causes zero-extension instead of sign-extension. */
325 convert_move (rtx to
, rtx from
, int unsignedp
)
327 enum machine_mode to_mode
= GET_MODE (to
);
328 enum machine_mode from_mode
= GET_MODE (from
);
329 int to_real
= GET_MODE_CLASS (to_mode
) == MODE_FLOAT
;
330 int from_real
= GET_MODE_CLASS (from_mode
) == MODE_FLOAT
;
334 /* rtx code for making an equivalent value. */
335 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
336 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
339 gcc_assert (to_real
== from_real
);
341 /* If the source and destination are already the same, then there's
346 /* If FROM is a SUBREG that indicates that we have already done at least
347 the required extension, strip it. We don't handle such SUBREGs as
350 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
351 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from
)))
352 >= GET_MODE_SIZE (to_mode
))
353 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
354 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
356 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
358 if (to_mode
== from_mode
359 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
361 emit_move_insn (to
, from
);
365 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
367 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
369 if (VECTOR_MODE_P (to_mode
))
370 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
372 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
374 emit_move_insn (to
, from
);
378 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
380 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
381 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
390 gcc_assert (GET_MODE_PRECISION (from_mode
)
391 != GET_MODE_PRECISION (to_mode
));
393 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
398 /* Try converting directly if the insn is supported. */
400 code
= tab
->handlers
[to_mode
][from_mode
].insn_code
;
401 if (code
!= CODE_FOR_nothing
)
403 emit_unop_insn (code
, to
, from
,
404 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
408 /* Otherwise use a libcall. */
409 libcall
= tab
->handlers
[to_mode
][from_mode
].libfunc
;
411 /* Is this conversion implemented yet? */
412 gcc_assert (libcall
);
415 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
417 insns
= get_insns ();
419 emit_libcall_block (insns
, to
, value
,
420 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
422 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
426 /* Handle pointer conversion. */ /* SPEE 900220. */
427 /* Targets are expected to provide conversion insns between PxImode and
428 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
429 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
431 enum machine_mode full_mode
432 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
434 gcc_assert (trunc_optab
->handlers
[to_mode
][full_mode
].insn_code
435 != CODE_FOR_nothing
);
437 if (full_mode
!= from_mode
)
438 from
= convert_to_mode (full_mode
, from
, unsignedp
);
439 emit_unop_insn (trunc_optab
->handlers
[to_mode
][full_mode
].insn_code
,
443 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
445 enum machine_mode full_mode
446 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
448 gcc_assert (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
449 != CODE_FOR_nothing
);
451 emit_unop_insn (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
,
453 if (to_mode
== full_mode
)
456 /* else proceed to integer conversions below. */
457 from_mode
= full_mode
;
460 /* Now both modes are integers. */
462 /* Handle expanding beyond a word. */
463 if (GET_MODE_BITSIZE (from_mode
) < GET_MODE_BITSIZE (to_mode
)
464 && GET_MODE_BITSIZE (to_mode
) > BITS_PER_WORD
)
471 enum machine_mode lowpart_mode
;
472 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
474 /* Try converting directly if the insn is supported. */
475 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
478 /* If FROM is a SUBREG, put it into a register. Do this
479 so that we always generate the same set of insns for
480 better cse'ing; if an intermediate assignment occurred,
481 we won't be doing the operation directly on the SUBREG. */
482 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
483 from
= force_reg (from_mode
, from
);
484 emit_unop_insn (code
, to
, from
, equiv_code
);
487 /* Next, try converting via full word. */
488 else if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
489 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
490 != CODE_FOR_nothing
))
494 if (reg_overlap_mentioned_p (to
, from
))
495 from
= force_reg (from_mode
, from
);
496 emit_insn (gen_rtx_CLOBBER (VOIDmode
, to
));
498 convert_move (gen_lowpart (word_mode
, to
), from
, unsignedp
);
499 emit_unop_insn (code
, to
,
500 gen_lowpart (word_mode
, to
), equiv_code
);
504 /* No special multiword conversion insn; do it by hand. */
507 /* Since we will turn this into a no conflict block, we must ensure
508 that the source does not overlap the target. */
510 if (reg_overlap_mentioned_p (to
, from
))
511 from
= force_reg (from_mode
, from
);
513 /* Get a copy of FROM widened to a word, if necessary. */
514 if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
)
515 lowpart_mode
= word_mode
;
517 lowpart_mode
= from_mode
;
519 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
521 lowpart
= gen_lowpart (lowpart_mode
, to
);
522 emit_move_insn (lowpart
, lowfrom
);
524 /* Compute the value to put in each remaining word. */
526 fill_value
= const0_rtx
;
531 && insn_data
[(int) CODE_FOR_slt
].operand
[0].mode
== word_mode
532 && STORE_FLAG_VALUE
== -1)
534 emit_cmp_insn (lowfrom
, const0_rtx
, NE
, NULL_RTX
,
536 fill_value
= gen_reg_rtx (word_mode
);
537 emit_insn (gen_slt (fill_value
));
543 = expand_shift (RSHIFT_EXPR
, lowpart_mode
, lowfrom
,
544 size_int (GET_MODE_BITSIZE (lowpart_mode
) - 1),
546 fill_value
= convert_to_mode (word_mode
, fill_value
, 1);
550 /* Fill the remaining words. */
551 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
553 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
554 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
556 gcc_assert (subword
);
558 if (fill_value
!= subword
)
559 emit_move_insn (subword
, fill_value
);
562 insns
= get_insns ();
565 emit_no_conflict_block (insns
, to
, from
, NULL_RTX
,
566 gen_rtx_fmt_e (equiv_code
, to_mode
, copy_rtx (from
)));
570 /* Truncating multi-word to a word or less. */
571 if (GET_MODE_BITSIZE (from_mode
) > BITS_PER_WORD
572 && GET_MODE_BITSIZE (to_mode
) <= BITS_PER_WORD
)
575 && ! MEM_VOLATILE_P (from
)
576 && direct_load
[(int) to_mode
]
577 && ! mode_dependent_address_p (XEXP (from
, 0)))
579 || GET_CODE (from
) == SUBREG
))
580 from
= force_reg (from_mode
, from
);
581 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
585 /* Now follow all the conversions between integers
586 no more than a word long. */
588 /* For truncation, usually we can just refer to FROM in a narrower mode. */
589 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
590 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
591 GET_MODE_BITSIZE (from_mode
)))
594 && ! MEM_VOLATILE_P (from
)
595 && direct_load
[(int) to_mode
]
596 && ! mode_dependent_address_p (XEXP (from
, 0)))
598 || GET_CODE (from
) == SUBREG
))
599 from
= force_reg (from_mode
, from
);
600 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
601 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
602 from
= copy_to_reg (from
);
603 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
607 /* Handle extension. */
608 if (GET_MODE_BITSIZE (to_mode
) > GET_MODE_BITSIZE (from_mode
))
610 /* Convert directly if that works. */
611 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
615 from
= force_not_mem (from
);
617 emit_unop_insn (code
, to
, from
, equiv_code
);
622 enum machine_mode intermediate
;
626 /* Search for a mode to convert via. */
627 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
628 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
629 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
631 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
632 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
633 GET_MODE_BITSIZE (intermediate
))))
634 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
635 != CODE_FOR_nothing
))
637 convert_move (to
, convert_to_mode (intermediate
, from
,
638 unsignedp
), unsignedp
);
642 /* No suitable intermediate mode.
643 Generate what we need with shifts. */
644 shift_amount
= build_int_cst (NULL_TREE
,
645 GET_MODE_BITSIZE (to_mode
)
646 - GET_MODE_BITSIZE (from_mode
));
647 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
648 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
650 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
653 emit_move_insn (to
, tmp
);
658 /* Support special truncate insns for certain modes. */
659 if (trunc_optab
->handlers
[to_mode
][from_mode
].insn_code
!= CODE_FOR_nothing
)
661 emit_unop_insn (trunc_optab
->handlers
[to_mode
][from_mode
].insn_code
,
666 /* Handle truncation of volatile memrefs, and so on;
667 the things that couldn't be truncated directly,
668 and for which there was no special instruction.
670 ??? Code above formerly short-circuited this, for most integer
671 mode pairs, with a force_reg in from_mode followed by a recursive
672 call to this routine. Appears always to have been wrong. */
673 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
))
675 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
676 emit_move_insn (to
, temp
);
680 /* Mode combination is not recognized. */
684 /* Return an rtx for a value that would result
685 from converting X to mode MODE.
686 Both X and MODE may be floating, or both integer.
687 UNSIGNEDP is nonzero if X is an unsigned value.
688 This can be done by referring to a part of X in place
689 or by copying to a new temporary with conversion. */
692 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
694 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
697 /* Return an rtx for a value that would result
698 from converting X from mode OLDMODE to mode MODE.
699 Both modes may be floating, or both integer.
700 UNSIGNEDP is nonzero if X is an unsigned value.
702 This can be done by referring to a part of X in place
703 or by copying to a new temporary with conversion.
705 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
708 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
712 /* If FROM is a SUBREG that indicates that we have already done at least
713 the required extension, strip it. */
715 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
716 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
717 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
718 x
= gen_lowpart (mode
, x
);
720 if (GET_MODE (x
) != VOIDmode
)
721 oldmode
= GET_MODE (x
);
726 /* There is one case that we must handle specially: If we are converting
727 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
728 we are to interpret the constant as unsigned, gen_lowpart will do
729 the wrong if the constant appears negative. What we want to do is
730 make the high-order word of the constant zero, not all ones. */
732 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
733 && GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
734 && GET_CODE (x
) == CONST_INT
&& INTVAL (x
) < 0)
736 HOST_WIDE_INT val
= INTVAL (x
);
738 if (oldmode
!= VOIDmode
739 && HOST_BITS_PER_WIDE_INT
> GET_MODE_BITSIZE (oldmode
))
741 int width
= GET_MODE_BITSIZE (oldmode
);
743 /* We need to zero extend VAL. */
744 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
747 return immed_double_const (val
, (HOST_WIDE_INT
) 0, mode
);
750 /* We can do this with a gen_lowpart if both desired and current modes
751 are integer, and this is either a constant integer, a register, or a
752 non-volatile MEM. Except for the constant case where MODE is no
753 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
755 if ((GET_CODE (x
) == CONST_INT
756 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
757 || (GET_MODE_CLASS (mode
) == MODE_INT
758 && GET_MODE_CLASS (oldmode
) == MODE_INT
759 && (GET_CODE (x
) == CONST_DOUBLE
760 || (GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (oldmode
)
761 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
762 && direct_load
[(int) mode
])
764 && (! HARD_REGISTER_P (x
)
765 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
766 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
767 GET_MODE_BITSIZE (GET_MODE (x
)))))))))
769 /* ?? If we don't know OLDMODE, we have to assume here that
770 X does not need sign- or zero-extension. This may not be
771 the case, but it's the best we can do. */
772 if (GET_CODE (x
) == CONST_INT
&& oldmode
!= VOIDmode
773 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (oldmode
))
775 HOST_WIDE_INT val
= INTVAL (x
);
776 int width
= GET_MODE_BITSIZE (oldmode
);
778 /* We must sign or zero-extend in this case. Start by
779 zero-extending, then sign extend if we need to. */
780 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
782 && (val
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
783 val
|= (HOST_WIDE_INT
) (-1) << width
;
785 return gen_int_mode (val
, mode
);
788 return gen_lowpart (mode
, x
);
791 /* Converting from integer constant into mode is always equivalent to an
793 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
795 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
796 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
799 temp
= gen_reg_rtx (mode
);
800 convert_move (temp
, x
, unsignedp
);
804 /* STORE_MAX_PIECES is the number of bytes at a time that we can
805 store efficiently. Due to internal GCC limitations, this is
806 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
807 for an immediate constant. */
809 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
811 /* Determine whether the LEN bytes can be moved by using several move
812 instructions. Return nonzero if a call to move_by_pieces should
816 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
817 unsigned int align ATTRIBUTE_UNUSED
)
819 return MOVE_BY_PIECES_P (len
, align
);
822 /* Generate several move instructions to copy LEN bytes from block FROM to
823 block TO. (These are MEM rtx's with BLKmode).
825 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
826 used to push FROM to the stack.
828 ALIGN is maximum stack alignment we can assume.
830 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
831 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
835 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
836 unsigned int align
, int endp
)
838 struct move_by_pieces data
;
839 rtx to_addr
, from_addr
= XEXP (from
, 0);
840 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
841 enum machine_mode mode
= VOIDmode
, tmode
;
842 enum insn_code icode
;
844 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
847 data
.from_addr
= from_addr
;
850 to_addr
= XEXP (to
, 0);
853 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
854 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
856 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
863 #ifdef STACK_GROWS_DOWNWARD
869 data
.to_addr
= to_addr
;
872 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
873 || GET_CODE (from_addr
) == POST_INC
874 || GET_CODE (from_addr
) == POST_DEC
);
876 data
.explicit_inc_from
= 0;
877 data
.explicit_inc_to
= 0;
878 if (data
.reverse
) data
.offset
= len
;
881 /* If copying requires more than two move insns,
882 copy addresses to registers (to make displacements shorter)
883 and use post-increment if available. */
884 if (!(data
.autinc_from
&& data
.autinc_to
)
885 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
887 /* Find the mode of the largest move... */
888 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
889 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
890 if (GET_MODE_SIZE (tmode
) < max_size
)
893 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
895 data
.from_addr
= copy_addr_to_reg (plus_constant (from_addr
, len
));
896 data
.autinc_from
= 1;
897 data
.explicit_inc_from
= -1;
899 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
901 data
.from_addr
= copy_addr_to_reg (from_addr
);
902 data
.autinc_from
= 1;
903 data
.explicit_inc_from
= 1;
905 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
906 data
.from_addr
= copy_addr_to_reg (from_addr
);
907 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
909 data
.to_addr
= copy_addr_to_reg (plus_constant (to_addr
, len
));
911 data
.explicit_inc_to
= -1;
913 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
915 data
.to_addr
= copy_addr_to_reg (to_addr
);
917 data
.explicit_inc_to
= 1;
919 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
920 data
.to_addr
= copy_addr_to_reg (to_addr
);
923 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
924 if (align
>= GET_MODE_ALIGNMENT (tmode
))
925 align
= GET_MODE_ALIGNMENT (tmode
);
928 enum machine_mode xmode
;
930 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
932 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
933 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
934 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
937 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
940 /* First move what we can in the largest integer mode, then go to
941 successively smaller modes. */
945 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
946 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
947 if (GET_MODE_SIZE (tmode
) < max_size
)
950 if (mode
== VOIDmode
)
953 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
954 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
955 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
957 max_size
= GET_MODE_SIZE (mode
);
960 /* The code above should have handled everything. */
961 gcc_assert (!data
.len
);
967 gcc_assert (!data
.reverse
);
972 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
973 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
975 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
978 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
985 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
993 /* Return number of insns required to move L bytes by pieces.
994 ALIGN (in bits) is maximum alignment we can assume. */
996 static unsigned HOST_WIDE_INT
997 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
998 unsigned int max_size
)
1000 unsigned HOST_WIDE_INT n_insns
= 0;
1001 enum machine_mode tmode
;
1003 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
1004 if (align
>= GET_MODE_ALIGNMENT (tmode
))
1005 align
= GET_MODE_ALIGNMENT (tmode
);
1008 enum machine_mode tmode
, xmode
;
1010 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
1012 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
1013 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
1014 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
1017 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
1020 while (max_size
> 1)
1022 enum machine_mode mode
= VOIDmode
;
1023 enum insn_code icode
;
1025 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1026 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
1027 if (GET_MODE_SIZE (tmode
) < max_size
)
1030 if (mode
== VOIDmode
)
1033 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
1034 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1035 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1037 max_size
= GET_MODE_SIZE (mode
);
1044 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1045 with move instructions for mode MODE. GENFUN is the gen_... function
1046 to make a move insn for that mode. DATA has all the other info. */
1049 move_by_pieces_1 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
1050 struct move_by_pieces
*data
)
1052 unsigned int size
= GET_MODE_SIZE (mode
);
1053 rtx to1
= NULL_RTX
, from1
;
1055 while (data
->len
>= size
)
1058 data
->offset
-= size
;
1062 if (data
->autinc_to
)
1063 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1066 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1069 if (data
->autinc_from
)
1070 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1073 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1075 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1076 emit_insn (gen_add2_insn (data
->to_addr
,
1077 GEN_INT (-(HOST_WIDE_INT
)size
)));
1078 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1079 emit_insn (gen_add2_insn (data
->from_addr
,
1080 GEN_INT (-(HOST_WIDE_INT
)size
)));
1083 emit_insn ((*genfun
) (to1
, from1
));
1086 #ifdef PUSH_ROUNDING
1087 emit_single_push_insn (mode
, from1
, NULL
);
1093 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1094 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
1095 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1096 emit_insn (gen_add2_insn (data
->from_addr
, GEN_INT (size
)));
1098 if (! data
->reverse
)
1099 data
->offset
+= size
;
1105 /* Emit code to move a block Y to a block X. This may be done with
1106 string-move instructions, with multiple scalar move instructions,
1107 or with a library call.
1109 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1110 SIZE is an rtx that says how long they are.
1111 ALIGN is the maximum alignment we can assume they have.
1112 METHOD describes what kind of copy this is, and what mechanisms may be used.
1114 Return the address of the new block, if memcpy is called and returns it,
1118 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1126 case BLOCK_OP_NORMAL
:
1127 may_use_call
= true;
1130 case BLOCK_OP_CALL_PARM
:
1131 may_use_call
= block_move_libcall_safe_for_call_parm ();
1133 /* Make inhibit_defer_pop nonzero around the library call
1134 to force it to pop the arguments right away. */
1138 case BLOCK_OP_NO_LIBCALL
:
1139 may_use_call
= false;
1146 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1148 gcc_assert (MEM_P (x
));
1149 gcc_assert (MEM_P (y
));
1152 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1153 block copy is more efficient for other large modes, e.g. DCmode. */
1154 x
= adjust_address (x
, BLKmode
, 0);
1155 y
= adjust_address (y
, BLKmode
, 0);
1157 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1158 can be incorrect is coming from __builtin_memcpy. */
1159 if (GET_CODE (size
) == CONST_INT
)
1161 if (INTVAL (size
) == 0)
1164 x
= shallow_copy_rtx (x
);
1165 y
= shallow_copy_rtx (y
);
1166 set_mem_size (x
, size
);
1167 set_mem_size (y
, size
);
1170 if (GET_CODE (size
) == CONST_INT
&& MOVE_BY_PIECES_P (INTVAL (size
), align
))
1171 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1172 else if (emit_block_move_via_movmem (x
, y
, size
, align
))
1174 else if (may_use_call
)
1175 retval
= emit_block_move_via_libcall (x
, y
, size
);
1177 emit_block_move_via_loop (x
, y
, size
, align
);
1179 if (method
== BLOCK_OP_CALL_PARM
)
1185 /* A subroutine of emit_block_move. Returns true if calling the
1186 block move libcall will not clobber any parameters which may have
1187 already been placed on the stack. */
1190 block_move_libcall_safe_for_call_parm (void)
1192 /* If arguments are pushed on the stack, then they're safe. */
1196 /* If registers go on the stack anyway, any argument is sure to clobber
1197 an outgoing argument. */
1198 #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1200 tree fn
= emit_block_move_libcall_fn (false);
1202 if (REG_PARM_STACK_SPACE (fn
) != 0)
1207 /* If any argument goes in memory, then it might clobber an outgoing
1210 CUMULATIVE_ARGS args_so_far
;
1213 fn
= emit_block_move_libcall_fn (false);
1214 INIT_CUMULATIVE_ARGS (args_so_far
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1216 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1217 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1219 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1220 rtx tmp
= FUNCTION_ARG (args_so_far
, mode
, NULL_TREE
, 1);
1221 if (!tmp
|| !REG_P (tmp
))
1223 if (targetm
.calls
.arg_partial_bytes (&args_so_far
, mode
, NULL
, 1))
1225 FUNCTION_ARG_ADVANCE (args_so_far
, mode
, NULL_TREE
, 1);
1231 /* A subroutine of emit_block_move. Expand a movmem pattern;
1232 return true if successful. */
1235 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
)
1237 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
1238 int save_volatile_ok
= volatile_ok
;
1239 enum machine_mode mode
;
1241 /* Since this is a move insn, we don't care about volatility. */
1244 /* Try the most limited insn first, because there's no point
1245 including more than one in the machine description unless
1246 the more limited one has some advantage. */
1248 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1249 mode
= GET_MODE_WIDER_MODE (mode
))
1251 enum insn_code code
= movmem_optab
[(int) mode
];
1252 insn_operand_predicate_fn pred
;
1254 if (code
!= CODE_FOR_nothing
1255 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1256 here because if SIZE is less than the mode mask, as it is
1257 returned by the macro, it will definitely be less than the
1258 actual mode mask. */
1259 && ((GET_CODE (size
) == CONST_INT
1260 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1261 <= (GET_MODE_MASK (mode
) >> 1)))
1262 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
1263 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
1264 || (*pred
) (x
, BLKmode
))
1265 && ((pred
= insn_data
[(int) code
].operand
[1].predicate
) == 0
1266 || (*pred
) (y
, BLKmode
))
1267 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
1268 || (*pred
) (opalign
, VOIDmode
)))
1271 rtx last
= get_last_insn ();
1274 op2
= convert_to_mode (mode
, size
, 1);
1275 pred
= insn_data
[(int) code
].operand
[2].predicate
;
1276 if (pred
!= 0 && ! (*pred
) (op2
, mode
))
1277 op2
= copy_to_mode_reg (mode
, op2
);
1279 /* ??? When called via emit_block_move_for_call, it'd be
1280 nice if there were some way to inform the backend, so
1281 that it doesn't fail the expansion because it thinks
1282 emitting the libcall would be more efficient. */
1284 pat
= GEN_FCN ((int) code
) (x
, y
, op2
, opalign
);
1288 volatile_ok
= save_volatile_ok
;
1292 delete_insns_since (last
);
1296 volatile_ok
= save_volatile_ok
;
1300 /* A subroutine of emit_block_move. Expand a call to memcpy.
1301 Return the return value from memcpy, 0 otherwise. */
1304 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
)
1306 rtx dst_addr
, src_addr
;
1307 tree call_expr
, arg_list
, fn
, src_tree
, dst_tree
, size_tree
;
1308 enum machine_mode size_mode
;
1311 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1312 pseudos. We can then place those new pseudos into a VAR_DECL and
1315 dst_addr
= copy_to_mode_reg (Pmode
, XEXP (dst
, 0));
1316 src_addr
= copy_to_mode_reg (Pmode
, XEXP (src
, 0));
1318 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1319 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1321 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1322 src_tree
= make_tree (ptr_type_node
, src_addr
);
1324 size_mode
= TYPE_MODE (sizetype
);
1326 size
= convert_to_mode (size_mode
, size
, 1);
1327 size
= copy_to_mode_reg (size_mode
, size
);
1329 /* It is incorrect to use the libcall calling conventions to call
1330 memcpy in this context. This could be a user call to memcpy and
1331 the user may wish to examine the return value from memcpy. For
1332 targets where libcalls and normal calls have different conventions
1333 for returning pointers, we could end up generating incorrect code. */
1335 size_tree
= make_tree (sizetype
, size
);
1337 fn
= emit_block_move_libcall_fn (true);
1338 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
1339 arg_list
= tree_cons (NULL_TREE
, src_tree
, arg_list
);
1340 arg_list
= tree_cons (NULL_TREE
, dst_tree
, arg_list
);
1342 /* Now we have to build up the CALL_EXPR itself. */
1343 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
1344 call_expr
= build3 (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
1345 call_expr
, arg_list
, NULL_TREE
);
1347 retval
= expand_expr (call_expr
, NULL_RTX
, VOIDmode
, 0);
1352 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1353 for the function we use for block copies. The first time FOR_CALL
1354 is true, we call assemble_external. */
1356 static GTY(()) tree block_move_fn
;
1359 init_block_move_fn (const char *asmspec
)
1365 fn
= get_identifier ("memcpy");
1366 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1367 const_ptr_type_node
, sizetype
,
1370 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
1371 DECL_EXTERNAL (fn
) = 1;
1372 TREE_PUBLIC (fn
) = 1;
1373 DECL_ARTIFICIAL (fn
) = 1;
1374 TREE_NOTHROW (fn
) = 1;
1380 set_user_assembler_name (block_move_fn
, asmspec
);
1384 emit_block_move_libcall_fn (int for_call
)
1386 static bool emitted_extern
;
1389 init_block_move_fn (NULL
);
1391 if (for_call
&& !emitted_extern
)
1393 emitted_extern
= true;
1394 make_decl_rtl (block_move_fn
);
1395 assemble_external (block_move_fn
);
1398 return block_move_fn
;
1401 /* A subroutine of emit_block_move. Copy the data via an explicit
1402 loop. This is used only when libcalls are forbidden. */
1403 /* ??? It'd be nice to copy in hunks larger than QImode. */
1406 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1407 unsigned int align ATTRIBUTE_UNUSED
)
1409 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1410 enum machine_mode iter_mode
;
1412 iter_mode
= GET_MODE (size
);
1413 if (iter_mode
== VOIDmode
)
1414 iter_mode
= word_mode
;
1416 top_label
= gen_label_rtx ();
1417 cmp_label
= gen_label_rtx ();
1418 iter
= gen_reg_rtx (iter_mode
);
1420 emit_move_insn (iter
, const0_rtx
);
1422 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1423 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1424 do_pending_stack_adjust ();
1426 emit_jump (cmp_label
);
1427 emit_label (top_label
);
1429 tmp
= convert_modes (Pmode
, iter_mode
, iter
, true);
1430 x_addr
= gen_rtx_PLUS (Pmode
, x_addr
, tmp
);
1431 y_addr
= gen_rtx_PLUS (Pmode
, y_addr
, tmp
);
1432 x
= change_address (x
, QImode
, x_addr
);
1433 y
= change_address (y
, QImode
, y_addr
);
1435 emit_move_insn (x
, y
);
1437 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1438 true, OPTAB_LIB_WIDEN
);
1440 emit_move_insn (iter
, tmp
);
1442 emit_label (cmp_label
);
1444 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1448 /* Copy all or part of a value X into registers starting at REGNO.
1449 The number of registers to be filled is NREGS. */
1452 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1455 #ifdef HAVE_load_multiple
1463 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
1464 x
= validize_mem (force_const_mem (mode
, x
));
1466 /* See if the machine can do this with a load multiple insn. */
1467 #ifdef HAVE_load_multiple
1468 if (HAVE_load_multiple
)
1470 last
= get_last_insn ();
1471 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1479 delete_insns_since (last
);
1483 for (i
= 0; i
< nregs
; i
++)
1484 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1485 operand_subword_force (x
, i
, mode
));
1488 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1489 The number of registers to be filled is NREGS. */
1492 move_block_from_reg (int regno
, rtx x
, int nregs
)
1499 /* See if the machine can do this with a store multiple insn. */
1500 #ifdef HAVE_store_multiple
1501 if (HAVE_store_multiple
)
1503 rtx last
= get_last_insn ();
1504 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1512 delete_insns_since (last
);
1516 for (i
= 0; i
< nregs
; i
++)
1518 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1522 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1526 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1527 ORIG, where ORIG is a non-consecutive group of registers represented by
1528 a PARALLEL. The clone is identical to the original except in that the
1529 original set of registers is replaced by a new set of pseudo registers.
1530 The new set has the same modes as the original set. */
1533 gen_group_rtx (rtx orig
)
1538 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1540 length
= XVECLEN (orig
, 0);
1541 tmps
= alloca (sizeof (rtx
) * length
);
1543 /* Skip a NULL entry in first slot. */
1544 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1549 for (; i
< length
; i
++)
1551 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1552 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1554 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1557 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1560 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1561 except that values are placed in TMPS[i], and must later be moved
1562 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1565 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1569 enum machine_mode m
= GET_MODE (orig_src
);
1571 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1574 && !SCALAR_INT_MODE_P (m
)
1575 && !MEM_P (orig_src
)
1576 && GET_CODE (orig_src
) != CONCAT
)
1578 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1579 if (imode
== BLKmode
)
1580 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
, 0);
1582 src
= gen_reg_rtx (imode
);
1583 if (imode
!= BLKmode
)
1584 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1585 emit_move_insn (src
, orig_src
);
1586 /* ...and back again. */
1587 if (imode
!= BLKmode
)
1588 src
= gen_lowpart (imode
, src
);
1589 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1593 /* Check for a NULL entry, used to indicate that the parameter goes
1594 both on the stack and in registers. */
1595 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1600 /* Process the pieces. */
1601 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1603 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1604 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1605 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1608 /* Handle trailing fragments that run over the size of the struct. */
1609 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1611 /* Arrange to shift the fragment to where it belongs.
1612 extract_bit_field loads to the lsb of the reg. */
1614 #ifdef BLOCK_REG_PADDING
1615 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1616 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1621 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1622 bytelen
= ssize
- bytepos
;
1623 gcc_assert (bytelen
> 0);
1626 /* If we won't be loading directly from memory, protect the real source
1627 from strange tricks we might play; but make sure that the source can
1628 be loaded directly into the destination. */
1630 if (!MEM_P (orig_src
)
1631 && (!CONSTANT_P (orig_src
)
1632 || (GET_MODE (orig_src
) != mode
1633 && GET_MODE (orig_src
) != VOIDmode
)))
1635 if (GET_MODE (orig_src
) == VOIDmode
)
1636 src
= gen_reg_rtx (mode
);
1638 src
= gen_reg_rtx (GET_MODE (orig_src
));
1640 emit_move_insn (src
, orig_src
);
1643 /* Optimize the access just a bit. */
1645 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1646 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1647 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1648 && bytelen
== GET_MODE_SIZE (mode
))
1650 tmps
[i
] = gen_reg_rtx (mode
);
1651 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1653 else if (COMPLEX_MODE_P (mode
)
1654 && GET_MODE (src
) == mode
1655 && bytelen
== GET_MODE_SIZE (mode
))
1656 /* Let emit_move_complex do the bulk of the work. */
1658 else if (GET_CODE (src
) == CONCAT
)
1660 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1661 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1663 if ((bytepos
== 0 && bytelen
== slen0
)
1664 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1666 /* The following assumes that the concatenated objects all
1667 have the same size. In this case, a simple calculation
1668 can be used to determine the object and the bit field
1670 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1671 if (! CONSTANT_P (tmps
[i
])
1672 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1673 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1674 (bytepos
% slen0
) * BITS_PER_UNIT
,
1675 1, NULL_RTX
, mode
, mode
);
1681 gcc_assert (!bytepos
);
1682 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1683 emit_move_insn (mem
, src
);
1684 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1685 0, 1, NULL_RTX
, mode
, mode
);
1688 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1689 SIMD register, which is currently broken. While we get GCC
1690 to emit proper RTL for these cases, let's dump to memory. */
1691 else if (VECTOR_MODE_P (GET_MODE (dst
))
1694 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1697 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1698 emit_move_insn (mem
, src
);
1699 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1701 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1702 && XVECLEN (dst
, 0) > 1)
1703 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE(dst
), bytepos
);
1704 else if (CONSTANT_P (src
)
1705 || (REG_P (src
) && GET_MODE (src
) == mode
))
1708 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1709 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1713 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1714 build_int_cst (NULL_TREE
, shift
), tmps
[i
], 0);
1718 /* Emit code to move a block SRC of type TYPE to a block DST,
1719 where DST is non-consecutive registers represented by a PARALLEL.
1720 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1724 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1729 tmps
= alloca (sizeof (rtx
) * XVECLEN (dst
, 0));
1730 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1732 /* Copy the extracted pieces into the proper (probable) hard regs. */
1733 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1735 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1738 emit_move_insn (d
, tmps
[i
]);
1742 /* Similar, but load SRC into new pseudos in a format that looks like
1743 PARALLEL. This can later be fed to emit_group_move to get things
1744 in the right place. */
1747 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1752 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1753 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1755 /* Convert the vector to look just like the original PARALLEL, except
1756 with the computed values. */
1757 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1759 rtx e
= XVECEXP (parallel
, 0, i
);
1760 rtx d
= XEXP (e
, 0);
1764 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1765 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1767 RTVEC_ELT (vec
, i
) = e
;
1770 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1773 /* Emit code to move a block SRC to block DST, where SRC and DST are
1774 non-consecutive groups of registers, each represented by a PARALLEL. */
1777 emit_group_move (rtx dst
, rtx src
)
1781 gcc_assert (GET_CODE (src
) == PARALLEL
1782 && GET_CODE (dst
) == PARALLEL
1783 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1785 /* Skip first entry if NULL. */
1786 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1787 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1788 XEXP (XVECEXP (src
, 0, i
), 0));
1791 /* Move a group of registers represented by a PARALLEL into pseudos. */
1794 emit_group_move_into_temps (rtx src
)
1796 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1799 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1801 rtx e
= XVECEXP (src
, 0, i
);
1802 rtx d
= XEXP (e
, 0);
1805 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1806 RTVEC_ELT (vec
, i
) = e
;
1809 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1812 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1813 where SRC is non-consecutive registers represented by a PARALLEL.
1814 SSIZE represents the total size of block ORIG_DST, or -1 if not
1818 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1822 enum machine_mode m
= GET_MODE (orig_dst
);
1824 gcc_assert (GET_CODE (src
) == PARALLEL
);
1826 if (!SCALAR_INT_MODE_P (m
)
1827 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1829 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1830 if (imode
== BLKmode
)
1831 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
, 0);
1833 dst
= gen_reg_rtx (imode
);
1834 emit_group_store (dst
, src
, type
, ssize
);
1835 if (imode
!= BLKmode
)
1836 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1837 emit_move_insn (orig_dst
, dst
);
1841 /* Check for a NULL entry, used to indicate that the parameter goes
1842 both on the stack and in registers. */
1843 if (XEXP (XVECEXP (src
, 0, 0), 0))
1848 tmps
= alloca (sizeof (rtx
) * XVECLEN (src
, 0));
1850 /* Copy the (probable) hard regs into pseudos. */
1851 for (i
= start
; i
< XVECLEN (src
, 0); i
++)
1853 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1854 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1855 emit_move_insn (tmps
[i
], reg
);
1858 /* If we won't be storing directly into memory, protect the real destination
1859 from strange tricks we might play. */
1861 if (GET_CODE (dst
) == PARALLEL
)
1865 /* We can get a PARALLEL dst if there is a conditional expression in
1866 a return statement. In that case, the dst and src are the same,
1867 so no action is necessary. */
1868 if (rtx_equal_p (dst
, src
))
1871 /* It is unclear if we can ever reach here, but we may as well handle
1872 it. Allocate a temporary, and split this into a store/load to/from
1875 temp
= assign_stack_temp (GET_MODE (dst
), ssize
, 0);
1876 emit_group_store (temp
, src
, type
, ssize
);
1877 emit_group_load (dst
, temp
, type
, ssize
);
1880 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1882 dst
= gen_reg_rtx (GET_MODE (orig_dst
));
1883 /* Make life a bit easier for combine. */
1884 emit_move_insn (dst
, CONST0_RTX (GET_MODE (orig_dst
)));
1887 /* Process the pieces. */
1888 for (i
= start
; i
< XVECLEN (src
, 0); i
++)
1890 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
1891 enum machine_mode mode
= GET_MODE (tmps
[i
]);
1892 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1895 /* Handle trailing fragments that run over the size of the struct. */
1896 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1898 /* store_bit_field always takes its value from the lsb.
1899 Move the fragment to the lsb if it's not already there. */
1901 #ifdef BLOCK_REG_PADDING
1902 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
1903 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1909 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1910 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
1911 build_int_cst (NULL_TREE
, shift
),
1914 bytelen
= ssize
- bytepos
;
1917 if (GET_CODE (dst
) == CONCAT
)
1919 if (bytepos
+ bytelen
<= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
1920 dest
= XEXP (dst
, 0);
1921 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
1923 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
1924 dest
= XEXP (dst
, 1);
1928 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
1929 dest
= assign_stack_temp (GET_MODE (dest
),
1930 GET_MODE_SIZE (GET_MODE (dest
)), 0);
1931 emit_move_insn (adjust_address (dest
, GET_MODE (tmps
[i
]), bytepos
),
1938 /* Optimize the access just a bit. */
1940 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
1941 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
1942 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1943 && bytelen
== GET_MODE_SIZE (mode
))
1944 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
1946 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
1950 /* Copy from the pseudo into the (probable) hard reg. */
1951 if (orig_dst
!= dst
)
1952 emit_move_insn (orig_dst
, dst
);
1955 /* Generate code to copy a BLKmode object of TYPE out of a
1956 set of registers starting with SRCREG into TGTBLK. If TGTBLK
1957 is null, a stack temporary is created. TGTBLK is returned.
1959 The purpose of this routine is to handle functions that return
1960 BLKmode structures in registers. Some machines (the PA for example)
1961 want to return all small structures in registers regardless of the
1962 structure's alignment. */
1965 copy_blkmode_from_reg (rtx tgtblk
, rtx srcreg
, tree type
)
1967 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
1968 rtx src
= NULL
, dst
= NULL
;
1969 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
1970 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
1974 tgtblk
= assign_temp (build_qualified_type (type
,
1976 | TYPE_QUAL_CONST
)),
1978 preserve_temp_slots (tgtblk
);
1981 /* This code assumes srcreg is at least a full word. If it isn't, copy it
1982 into a new pseudo which is a full word. */
1984 if (GET_MODE (srcreg
) != BLKmode
1985 && GET_MODE_SIZE (GET_MODE (srcreg
)) < UNITS_PER_WORD
)
1986 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
1988 /* If the structure doesn't take up a whole number of words, see whether
1989 SRCREG is padded on the left or on the right. If it's on the left,
1990 set PADDING_CORRECTION to the number of bits to skip.
1992 In most ABIs, the structure will be returned at the least end of
1993 the register, which translates to right padding on little-endian
1994 targets and left padding on big-endian targets. The opposite
1995 holds if the structure is returned at the most significant
1996 end of the register. */
1997 if (bytes
% UNITS_PER_WORD
!= 0
1998 && (targetm
.calls
.return_in_msb (type
)
2000 : BYTES_BIG_ENDIAN
))
2002 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2004 /* Copy the structure BITSIZE bites at a time.
2006 We could probably emit more efficient code for machines which do not use
2007 strict alignment, but it doesn't seem worth the effort at the current
2009 for (bitpos
= 0, xbitpos
= padding_correction
;
2010 bitpos
< bytes
* BITS_PER_UNIT
;
2011 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2013 /* We need a new source operand each time xbitpos is on a
2014 word boundary and when xbitpos == padding_correction
2015 (the first time through). */
2016 if (xbitpos
% BITS_PER_WORD
== 0
2017 || xbitpos
== padding_correction
)
2018 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
,
2021 /* We need a new destination operand each time bitpos is on
2023 if (bitpos
% BITS_PER_WORD
== 0)
2024 dst
= operand_subword (tgtblk
, bitpos
/ BITS_PER_WORD
, 1, BLKmode
);
2026 /* Use xbitpos for the source extraction (right justified) and
2027 xbitpos for the destination store (left justified). */
2028 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, word_mode
,
2029 extract_bit_field (src
, bitsize
,
2030 xbitpos
% BITS_PER_WORD
, 1,
2031 NULL_RTX
, word_mode
, word_mode
));
2037 /* Add a USE expression for REG to the (possibly empty) list pointed
2038 to by CALL_FUSAGE. REG must denote a hard register. */
2041 use_reg (rtx
*call_fusage
, rtx reg
)
2043 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2046 = gen_rtx_EXPR_LIST (VOIDmode
,
2047 gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2050 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2051 starting at REGNO. All of these registers must be hard registers. */
2054 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2058 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2060 for (i
= 0; i
< nregs
; i
++)
2061 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2064 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2065 PARALLEL REGS. This is for calls that pass values in multiple
2066 non-contiguous locations. The Irix 6 ABI has examples of this. */
2069 use_group_regs (rtx
*call_fusage
, rtx regs
)
2073 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2075 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2077 /* A NULL entry means the parameter goes both on the stack and in
2078 registers. This can also be a MEM for targets that pass values
2079 partially on the stack and partially in registers. */
2080 if (reg
!= 0 && REG_P (reg
))
2081 use_reg (call_fusage
, reg
);
2086 /* Determine whether the LEN bytes generated by CONSTFUN can be
2087 stored to memory using several move instructions. CONSTFUNDATA is
2088 a pointer which will be passed as argument in every CONSTFUN call.
2089 ALIGN is maximum alignment we can assume. Return nonzero if a
2090 call to store_by_pieces should succeed. */
2093 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2094 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2095 void *constfundata
, unsigned int align
)
2097 unsigned HOST_WIDE_INT l
;
2098 unsigned int max_size
;
2099 HOST_WIDE_INT offset
= 0;
2100 enum machine_mode mode
, tmode
;
2101 enum insn_code icode
;
2108 if (! STORE_BY_PIECES_P (len
, align
))
2111 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2112 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2113 align
= GET_MODE_ALIGNMENT (tmode
);
2116 enum machine_mode xmode
;
2118 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2120 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2121 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2122 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2125 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2128 /* We would first store what we can in the largest integer mode, then go to
2129 successively smaller modes. */
2132 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2137 max_size
= STORE_MAX_PIECES
+ 1;
2138 while (max_size
> 1)
2140 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2141 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2142 if (GET_MODE_SIZE (tmode
) < max_size
)
2145 if (mode
== VOIDmode
)
2148 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2149 if (icode
!= CODE_FOR_nothing
2150 && align
>= GET_MODE_ALIGNMENT (mode
))
2152 unsigned int size
= GET_MODE_SIZE (mode
);
2159 cst
= (*constfun
) (constfundata
, offset
, mode
);
2160 if (!LEGITIMATE_CONSTANT_P (cst
))
2170 max_size
= GET_MODE_SIZE (mode
);
2173 /* The code above should have handled everything. */
2180 /* Generate several move instructions to store LEN bytes generated by
2181 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2182 pointer which will be passed as argument in every CONSTFUN call.
2183 ALIGN is maximum alignment we can assume.
2184 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2185 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2189 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2190 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2191 void *constfundata
, unsigned int align
, int endp
)
2193 struct store_by_pieces data
;
2197 gcc_assert (endp
!= 2);
2201 gcc_assert (STORE_BY_PIECES_P (len
, align
));
2202 data
.constfun
= constfun
;
2203 data
.constfundata
= constfundata
;
2206 store_by_pieces_1 (&data
, align
);
2211 gcc_assert (!data
.reverse
);
2216 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2217 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2219 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
2222 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2229 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2237 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2238 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2241 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2243 struct store_by_pieces data
;
2248 data
.constfun
= clear_by_pieces_1
;
2249 data
.constfundata
= NULL
;
2252 store_by_pieces_1 (&data
, align
);
2255 /* Callback routine for clear_by_pieces.
2256 Return const0_rtx unconditionally. */
2259 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2260 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2261 enum machine_mode mode ATTRIBUTE_UNUSED
)
2266 /* Subroutine of clear_by_pieces and store_by_pieces.
2267 Generate several move instructions to store LEN bytes of block TO. (A MEM
2268 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2271 store_by_pieces_1 (struct store_by_pieces
*data ATTRIBUTE_UNUSED
,
2272 unsigned int align ATTRIBUTE_UNUSED
)
2274 rtx to_addr
= XEXP (data
->to
, 0);
2275 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2276 enum machine_mode mode
= VOIDmode
, tmode
;
2277 enum insn_code icode
;
2280 data
->to_addr
= to_addr
;
2282 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2283 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2285 data
->explicit_inc_to
= 0;
2287 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2289 data
->offset
= data
->len
;
2291 /* If storing requires more than two move insns,
2292 copy addresses to registers (to make displacements shorter)
2293 and use post-increment if available. */
2294 if (!data
->autinc_to
2295 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2297 /* Determine the main mode we'll be using. */
2298 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2299 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2300 if (GET_MODE_SIZE (tmode
) < max_size
)
2303 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2305 data
->to_addr
= copy_addr_to_reg (plus_constant (to_addr
, data
->len
));
2306 data
->autinc_to
= 1;
2307 data
->explicit_inc_to
= -1;
2310 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2311 && ! data
->autinc_to
)
2313 data
->to_addr
= copy_addr_to_reg (to_addr
);
2314 data
->autinc_to
= 1;
2315 data
->explicit_inc_to
= 1;
2318 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2319 data
->to_addr
= copy_addr_to_reg (to_addr
);
2322 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2323 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2324 align
= GET_MODE_ALIGNMENT (tmode
);
2327 enum machine_mode xmode
;
2329 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2331 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2332 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2333 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2336 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2339 /* First store what we can in the largest integer mode, then go to
2340 successively smaller modes. */
2342 while (max_size
> 1)
2344 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2345 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2346 if (GET_MODE_SIZE (tmode
) < max_size
)
2349 if (mode
== VOIDmode
)
2352 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2353 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2354 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2356 max_size
= GET_MODE_SIZE (mode
);
2359 /* The code above should have handled everything. */
2360 gcc_assert (!data
->len
);
2363 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2364 with move instructions for mode MODE. GENFUN is the gen_... function
2365 to make a move insn for that mode. DATA has all the other info. */
2368 store_by_pieces_2 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
2369 struct store_by_pieces
*data
)
2371 unsigned int size
= GET_MODE_SIZE (mode
);
2374 while (data
->len
>= size
)
2377 data
->offset
-= size
;
2379 if (data
->autinc_to
)
2380 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2383 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2385 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2386 emit_insn (gen_add2_insn (data
->to_addr
,
2387 GEN_INT (-(HOST_WIDE_INT
) size
)));
2389 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2390 emit_insn ((*genfun
) (to1
, cst
));
2392 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2393 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
2395 if (! data
->reverse
)
2396 data
->offset
+= size
;
2402 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2403 its length in bytes. */
2406 clear_storage (rtx object
, rtx size
)
2408 enum machine_mode mode
= GET_MODE (object
);
2411 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2412 just move a zero. Otherwise, do this a piece at a time. */
2414 && GET_CODE (size
) == CONST_INT
2415 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2417 rtx zero
= CONST0_RTX (mode
);
2420 emit_move_insn (object
, zero
);
2424 if (COMPLEX_MODE_P (mode
))
2426 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2429 write_complex_part (object
, zero
, 0);
2430 write_complex_part (object
, zero
, 1);
2436 if (size
== const0_rtx
)
2439 align
= MEM_ALIGN (object
);
2441 if (GET_CODE (size
) == CONST_INT
2442 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2443 clear_by_pieces (object
, INTVAL (size
), align
);
2444 else if (clear_storage_via_clrmem (object
, size
, align
))
2447 return clear_storage_via_libcall (object
, size
);
2452 /* A subroutine of clear_storage. Expand a clrmem pattern;
2453 return true if successful. */
2456 clear_storage_via_clrmem (rtx object
, rtx size
, unsigned int align
)
2458 /* Try the most limited insn first, because there's no point
2459 including more than one in the machine description unless
2460 the more limited one has some advantage. */
2462 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
2463 enum machine_mode mode
;
2465 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2466 mode
= GET_MODE_WIDER_MODE (mode
))
2468 enum insn_code code
= clrmem_optab
[(int) mode
];
2469 insn_operand_predicate_fn pred
;
2471 if (code
!= CODE_FOR_nothing
2472 /* We don't need MODE to be narrower than
2473 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2474 the mode mask, as it is returned by the macro, it will
2475 definitely be less than the actual mode mask. */
2476 && ((GET_CODE (size
) == CONST_INT
2477 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2478 <= (GET_MODE_MASK (mode
) >> 1)))
2479 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
2480 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
2481 || (*pred
) (object
, BLKmode
))
2482 && ((pred
= insn_data
[(int) code
].operand
[2].predicate
) == 0
2483 || (*pred
) (opalign
, VOIDmode
)))
2486 rtx last
= get_last_insn ();
2489 op1
= convert_to_mode (mode
, size
, 1);
2490 pred
= insn_data
[(int) code
].operand
[1].predicate
;
2491 if (pred
!= 0 && ! (*pred
) (op1
, mode
))
2492 op1
= copy_to_mode_reg (mode
, op1
);
2494 pat
= GEN_FCN ((int) code
) (object
, op1
, opalign
);
2501 delete_insns_since (last
);
2508 /* A subroutine of clear_storage. Expand a call to memset.
2509 Return the return value of memset, 0 otherwise. */
2512 clear_storage_via_libcall (rtx object
, rtx size
)
2514 tree call_expr
, arg_list
, fn
, object_tree
, size_tree
;
2515 enum machine_mode size_mode
;
2518 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2519 place those into new pseudos into a VAR_DECL and use them later. */
2521 object
= copy_to_mode_reg (Pmode
, XEXP (object
, 0));
2523 size_mode
= TYPE_MODE (sizetype
);
2524 size
= convert_to_mode (size_mode
, size
, 1);
2525 size
= copy_to_mode_reg (size_mode
, size
);
2527 /* It is incorrect to use the libcall calling conventions to call
2528 memset in this context. This could be a user call to memset and
2529 the user may wish to examine the return value from memset. For
2530 targets where libcalls and normal calls have different conventions
2531 for returning pointers, we could end up generating incorrect code. */
2533 object_tree
= make_tree (ptr_type_node
, object
);
2534 size_tree
= make_tree (sizetype
, size
);
2536 fn
= clear_storage_libcall_fn (true);
2537 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
2538 arg_list
= tree_cons (NULL_TREE
, integer_zero_node
, arg_list
);
2539 arg_list
= tree_cons (NULL_TREE
, object_tree
, arg_list
);
2541 /* Now we have to build up the CALL_EXPR itself. */
2542 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
2543 call_expr
= build3 (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
2544 call_expr
, arg_list
, NULL_TREE
);
2546 retval
= expand_expr (call_expr
, NULL_RTX
, VOIDmode
, 0);
2551 /* A subroutine of clear_storage_via_libcall. Create the tree node
2552 for the function we use for block clears. The first time FOR_CALL
2553 is true, we call assemble_external. */
2555 static GTY(()) tree block_clear_fn
;
2558 init_block_clear_fn (const char *asmspec
)
2560 if (!block_clear_fn
)
2564 fn
= get_identifier ("memset");
2565 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2566 integer_type_node
, sizetype
,
2569 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
2570 DECL_EXTERNAL (fn
) = 1;
2571 TREE_PUBLIC (fn
) = 1;
2572 DECL_ARTIFICIAL (fn
) = 1;
2573 TREE_NOTHROW (fn
) = 1;
2575 block_clear_fn
= fn
;
2579 set_user_assembler_name (block_clear_fn
, asmspec
);
2583 clear_storage_libcall_fn (int for_call
)
2585 static bool emitted_extern
;
2587 if (!block_clear_fn
)
2588 init_block_clear_fn (NULL
);
2590 if (for_call
&& !emitted_extern
)
2592 emitted_extern
= true;
2593 make_decl_rtl (block_clear_fn
);
2594 assemble_external (block_clear_fn
);
2597 return block_clear_fn
;
2600 /* Write to one of the components of the complex value CPLX. Write VAL to
2601 the real part if IMAG_P is false, and the imaginary part if its true. */
2604 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
2606 enum machine_mode cmode
;
2607 enum machine_mode imode
;
2610 if (GET_CODE (cplx
) == CONCAT
)
2612 emit_move_insn (XEXP (cplx
, imag_p
), val
);
2616 cmode
= GET_MODE (cplx
);
2617 imode
= GET_MODE_INNER (cmode
);
2618 ibitsize
= GET_MODE_BITSIZE (imode
);
2620 /* If the sub-object is at least word sized, then we know that subregging
2621 will work. This special case is important, since store_bit_field
2622 wants to operate on integer modes, and there's rarely an OImode to
2623 correspond to TCmode. */
2624 if (ibitsize
>= BITS_PER_WORD
2625 /* For hard regs we have exact predicates. Assume we can split
2626 the original object if it spans an even number of hard regs.
2627 This special case is important for SCmode on 64-bit platforms
2628 where the natural size of floating-point regs is 32-bit. */
2629 || (GET_CODE (cplx
) == REG
2630 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2631 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0)
2632 /* For MEMs we always try to make a "subreg", that is to adjust
2633 the MEM, because store_bit_field may generate overly
2634 convoluted RTL for sub-word fields. */
2637 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
2638 imag_p
? GET_MODE_SIZE (imode
) : 0);
2641 emit_move_insn (part
, val
);
2645 /* simplify_gen_subreg may fail for sub-word MEMs. */
2646 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2649 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, imode
, val
);
2652 /* Extract one of the components of the complex value CPLX. Extract the
2653 real part if IMAG_P is false, and the imaginary part if it's true. */
2656 read_complex_part (rtx cplx
, bool imag_p
)
2658 enum machine_mode cmode
, imode
;
2661 if (GET_CODE (cplx
) == CONCAT
)
2662 return XEXP (cplx
, imag_p
);
2664 cmode
= GET_MODE (cplx
);
2665 imode
= GET_MODE_INNER (cmode
);
2666 ibitsize
= GET_MODE_BITSIZE (imode
);
2668 /* Special case reads from complex constants that got spilled to memory. */
2669 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
2671 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
2672 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
2674 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
2675 if (CONSTANT_CLASS_P (part
))
2676 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
2680 /* If the sub-object is at least word sized, then we know that subregging
2681 will work. This special case is important, since extract_bit_field
2682 wants to operate on integer modes, and there's rarely an OImode to
2683 correspond to TCmode. */
2684 if (ibitsize
>= BITS_PER_WORD
2685 /* For hard regs we have exact predicates. Assume we can split
2686 the original object if it spans an even number of hard regs.
2687 This special case is important for SCmode on 64-bit platforms
2688 where the natural size of floating-point regs is 32-bit. */
2689 || (GET_CODE (cplx
) == REG
2690 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2691 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0)
2692 /* For MEMs we always try to make a "subreg", that is to adjust
2693 the MEM, because extract_bit_field may generate overly
2694 convoluted RTL for sub-word fields. */
2697 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
2698 imag_p
? GET_MODE_SIZE (imode
) : 0);
2702 /* simplify_gen_subreg may fail for sub-word MEMs. */
2703 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2706 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
2707 true, NULL_RTX
, imode
, imode
);
2710 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2711 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2712 represented in NEW_MODE. If FORCE is true, this will never happen, as
2713 we'll force-create a SUBREG if needed. */
2716 emit_move_change_mode (enum machine_mode new_mode
,
2717 enum machine_mode old_mode
, rtx x
, bool force
)
2721 if (reload_in_progress
&& MEM_P (x
))
2723 /* We can't use gen_lowpart here because it may call change_address
2724 which is not appropriate if we were called when a reload was in
2725 progress. We don't have to worry about changing the address since
2726 the size in bytes is supposed to be the same. Copy the MEM to
2727 change the mode and move any substitutions from the old MEM to
2730 ret
= adjust_address_nv (x
, new_mode
, 0);
2731 copy_replacements (x
, ret
);
2735 /* Note that we do want simplify_subreg's behavior of validating
2736 that the new mode is ok for a hard register. If we were to use
2737 simplify_gen_subreg, we would create the subreg, but would
2738 probably run into the target not being able to implement it. */
2739 /* Except, of course, when FORCE is true, when this is exactly what
2740 we want. Which is needed for CCmodes on some targets. */
2742 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
2744 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
2750 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2751 an integer mode of the same size as MODE. Returns the instruction
2752 emitted, or NULL if such a move could not be generated. */
2755 emit_move_via_integer (enum machine_mode mode
, rtx x
, rtx y
)
2757 enum machine_mode imode
;
2758 enum insn_code code
;
2760 /* There must exist a mode of the exact size we require. */
2761 imode
= int_mode_for_mode (mode
);
2762 if (imode
== BLKmode
)
2765 /* The target must support moves in this mode. */
2766 code
= mov_optab
->handlers
[imode
].insn_code
;
2767 if (code
== CODE_FOR_nothing
)
2770 x
= emit_move_change_mode (imode
, mode
, x
, false);
2773 y
= emit_move_change_mode (imode
, mode
, y
, false);
2776 return emit_insn (GEN_FCN (code
) (x
, y
));
2779 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2780 Return an equivalent MEM that does not use an auto-increment. */
2783 emit_move_resolve_push (enum machine_mode mode
, rtx x
)
2785 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
2786 HOST_WIDE_INT adjust
;
2789 adjust
= GET_MODE_SIZE (mode
);
2790 #ifdef PUSH_ROUNDING
2791 adjust
= PUSH_ROUNDING (adjust
);
2793 if (code
== PRE_DEC
|| code
== POST_DEC
)
2796 /* Do not use anti_adjust_stack, since we don't want to update
2797 stack_pointer_delta. */
2798 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
2799 GEN_INT (adjust
), stack_pointer_rtx
,
2800 0, OPTAB_LIB_WIDEN
);
2801 if (temp
!= stack_pointer_rtx
)
2802 emit_move_insn (stack_pointer_rtx
, temp
);
2808 temp
= stack_pointer_rtx
;
2811 temp
= plus_constant (stack_pointer_rtx
, -GET_MODE_SIZE (mode
));
2814 temp
= plus_constant (stack_pointer_rtx
, GET_MODE_SIZE (mode
));
2820 return replace_equiv_address (x
, temp
);
2823 /* A subroutine of emit_move_complex. Generate a move from Y into X.
2824 X is known to satisfy push_operand, and MODE is known to be complex.
2825 Returns the last instruction emitted. */
2828 emit_move_complex_push (enum machine_mode mode
, rtx x
, rtx y
)
2830 enum machine_mode submode
= GET_MODE_INNER (mode
);
2833 #ifdef PUSH_ROUNDING
2834 unsigned int submodesize
= GET_MODE_SIZE (submode
);
2836 /* In case we output to the stack, but the size is smaller than the
2837 machine can push exactly, we need to use move instructions. */
2838 if (PUSH_ROUNDING (submodesize
) != submodesize
)
2840 x
= emit_move_resolve_push (mode
, x
);
2841 return emit_move_insn (x
, y
);
2845 /* Note that the real part always precedes the imag part in memory
2846 regardless of machine's endianness. */
2847 switch (GET_CODE (XEXP (x
, 0)))
2861 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
2862 read_complex_part (y
, imag_first
));
2863 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
2864 read_complex_part (y
, !imag_first
));
2867 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2868 MODE is known to be complex. Returns the last instruction emitted. */
2871 emit_move_complex (enum machine_mode mode
, rtx x
, rtx y
)
2875 /* Need to take special care for pushes, to maintain proper ordering
2876 of the data, and possibly extra padding. */
2877 if (push_operand (x
, mode
))
2878 return emit_move_complex_push (mode
, x
, y
);
2880 /* See if we can coerce the target into moving both values at once. */
2882 /* Move floating point as parts. */
2883 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
2884 && mov_optab
->handlers
[GET_MODE_INNER (mode
)].insn_code
!= CODE_FOR_nothing
)
2886 /* Not possible if the values are inherently not adjacent. */
2887 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
2889 /* Is possible if both are registers (or subregs of registers). */
2890 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
2892 /* If one of the operands is a memory, and alignment constraints
2893 are friendly enough, we may be able to do combined memory operations.
2894 We do not attempt this if Y is a constant because that combination is
2895 usually better with the by-parts thing below. */
2896 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
2897 && (!STRICT_ALIGNMENT
2898 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
2907 /* For memory to memory moves, optimal behavior can be had with the
2908 existing block move logic. */
2909 if (MEM_P (x
) && MEM_P (y
))
2911 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
2912 BLOCK_OP_NO_LIBCALL
);
2913 return get_last_insn ();
2916 ret
= emit_move_via_integer (mode
, x
, y
);
2921 /* Show the output dies here. This is necessary for SUBREGs
2922 of pseudos since we cannot track their lifetimes correctly;
2923 hard regs shouldn't appear here except as return values. */
2924 if (!reload_completed
&& !reload_in_progress
2925 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
2926 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
2928 write_complex_part (x
, read_complex_part (y
, false), false);
2929 write_complex_part (x
, read_complex_part (y
, true), true);
2930 return get_last_insn ();
2933 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2934 MODE is known to be MODE_CC. Returns the last instruction emitted. */
2937 emit_move_ccmode (enum machine_mode mode
, rtx x
, rtx y
)
2941 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
2944 enum insn_code code
= mov_optab
->handlers
[CCmode
].insn_code
;
2945 if (code
!= CODE_FOR_nothing
)
2947 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
2948 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
2949 return emit_insn (GEN_FCN (code
) (x
, y
));
2953 /* Otherwise, find the MODE_INT mode of the same width. */
2954 ret
= emit_move_via_integer (mode
, x
, y
);
2955 gcc_assert (ret
!= NULL
);
2959 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2960 MODE is any multi-word or full-word mode that lacks a move_insn
2961 pattern. Note that you will get better code if you define such
2962 patterns, even if they must turn into multiple assembler instructions. */
2965 emit_move_multi_word (enum machine_mode mode
, rtx x
, rtx y
)
2972 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
2974 /* If X is a push on the stack, do the push now and replace
2975 X with a reference to the stack pointer. */
2976 if (push_operand (x
, mode
))
2977 x
= emit_move_resolve_push (mode
, x
);
2979 /* If we are in reload, see if either operand is a MEM whose address
2980 is scheduled for replacement. */
2981 if (reload_in_progress
&& MEM_P (x
)
2982 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
2983 x
= replace_equiv_address_nv (x
, inner
);
2984 if (reload_in_progress
&& MEM_P (y
)
2985 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
2986 y
= replace_equiv_address_nv (y
, inner
);
2990 need_clobber
= false;
2992 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
2995 rtx xpart
= operand_subword (x
, i
, 1, mode
);
2996 rtx ypart
= operand_subword (y
, i
, 1, mode
);
2998 /* If we can't get a part of Y, put Y into memory if it is a
2999 constant. Otherwise, force it into a register. If we still
3000 can't get a part of Y, abort. */
3001 if (ypart
== 0 && CONSTANT_P (y
))
3003 y
= force_const_mem (mode
, y
);
3004 ypart
= operand_subword (y
, i
, 1, mode
);
3006 else if (ypart
== 0)
3007 ypart
= operand_subword_force (y
, i
, mode
);
3009 gcc_assert (xpart
&& ypart
);
3011 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3013 last_insn
= emit_move_insn (xpart
, ypart
);
3019 /* Show the output dies here. This is necessary for SUBREGs
3020 of pseudos since we cannot track their lifetimes correctly;
3021 hard regs shouldn't appear here except as return values.
3022 We never want to emit such a clobber after reload. */
3024 && ! (reload_in_progress
|| reload_completed
)
3025 && need_clobber
!= 0)
3026 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
3033 /* Low level part of emit_move_insn.
3034 Called just like emit_move_insn, but assumes X and Y
3035 are basically valid. */
3038 emit_move_insn_1 (rtx x
, rtx y
)
3040 enum machine_mode mode
= GET_MODE (x
);
3041 enum insn_code code
;
3043 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3045 code
= mov_optab
->handlers
[mode
].insn_code
;
3046 if (code
!= CODE_FOR_nothing
)
3047 return emit_insn (GEN_FCN (code
) (x
, y
));
3049 /* Expand complex moves by moving real part and imag part. */
3050 if (COMPLEX_MODE_P (mode
))
3051 return emit_move_complex (mode
, x
, y
);
3053 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3054 return emit_move_ccmode (mode
, x
, y
);
3056 /* Try using a move pattern for the corresponding integer mode. This is
3057 only safe when simplify_subreg can convert MODE constants into integer
3058 constants. At present, it can only do this reliably if the value
3059 fits within a HOST_WIDE_INT. */
3060 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3062 rtx ret
= emit_move_via_integer (mode
, x
, y
);
3067 return emit_move_multi_word (mode
, x
, y
);
3070 /* Generate code to copy Y into X.
3071 Both Y and X must have the same mode, except that
3072 Y can be a constant with VOIDmode.
3073 This mode cannot be BLKmode; use emit_block_move for that.
3075 Return the last instruction emitted. */
3078 emit_move_insn (rtx x
, rtx y
)
3080 enum machine_mode mode
= GET_MODE (x
);
3081 rtx y_cst
= NULL_RTX
;
3084 gcc_assert (mode
!= BLKmode
3085 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3090 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3091 && (last_insn
= compress_float_constant (x
, y
)))
3096 if (!LEGITIMATE_CONSTANT_P (y
))
3098 y
= force_const_mem (mode
, y
);
3100 /* If the target's cannot_force_const_mem prevented the spill,
3101 assume that the target's move expanders will also take care
3102 of the non-legitimate constant. */
3108 /* If X or Y are memory references, verify that their addresses are valid
3111 && ((! memory_address_p (GET_MODE (x
), XEXP (x
, 0))
3112 && ! push_operand (x
, GET_MODE (x
)))
3114 && CONSTANT_ADDRESS_P (XEXP (x
, 0)))))
3115 x
= validize_mem (x
);
3118 && (! memory_address_p (GET_MODE (y
), XEXP (y
, 0))
3120 && CONSTANT_ADDRESS_P (XEXP (y
, 0)))))
3121 y
= validize_mem (y
);
3123 gcc_assert (mode
!= BLKmode
);
3125 last_insn
= emit_move_insn_1 (x
, y
);
3127 if (y_cst
&& REG_P (x
)
3128 && (set
= single_set (last_insn
)) != NULL_RTX
3129 && SET_DEST (set
) == x
3130 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3131 set_unique_reg_note (last_insn
, REG_EQUAL
, y_cst
);
3136 /* If Y is representable exactly in a narrower mode, and the target can
3137 perform the extension directly from constant or memory, then emit the
3138 move as an extension. */
3141 compress_float_constant (rtx x
, rtx y
)
3143 enum machine_mode dstmode
= GET_MODE (x
);
3144 enum machine_mode orig_srcmode
= GET_MODE (y
);
3145 enum machine_mode srcmode
;
3148 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3150 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3151 srcmode
!= orig_srcmode
;
3152 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3155 rtx trunc_y
, last_insn
;
3157 /* Skip if the target can't extend this way. */
3158 ic
= can_extend_p (dstmode
, srcmode
, 0);
3159 if (ic
== CODE_FOR_nothing
)
3162 /* Skip if the narrowed value isn't exact. */
3163 if (! exact_real_truncate (srcmode
, &r
))
3166 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3168 if (LEGITIMATE_CONSTANT_P (trunc_y
))
3170 /* Skip if the target needs extra instructions to perform
3172 if (! (*insn_data
[ic
].operand
[1].predicate
) (trunc_y
, srcmode
))
3175 else if (float_extend_from_mem
[dstmode
][srcmode
])
3176 trunc_y
= validize_mem (force_const_mem (srcmode
, trunc_y
));
3180 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
3181 last_insn
= get_last_insn ();
3184 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3192 /* Pushing data onto the stack. */
3194 /* Push a block of length SIZE (perhaps variable)
3195 and return an rtx to address the beginning of the block.
3196 The value may be virtual_outgoing_args_rtx.
3198 EXTRA is the number of bytes of padding to push in addition to SIZE.
3199 BELOW nonzero means this padding comes at low addresses;
3200 otherwise, the padding comes at high addresses. */
3203 push_block (rtx size
, int extra
, int below
)
3207 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3208 if (CONSTANT_P (size
))
3209 anti_adjust_stack (plus_constant (size
, extra
));
3210 else if (REG_P (size
) && extra
== 0)
3211 anti_adjust_stack (size
);
3214 temp
= copy_to_mode_reg (Pmode
, size
);
3216 temp
= expand_binop (Pmode
, add_optab
, temp
, GEN_INT (extra
),
3217 temp
, 0, OPTAB_LIB_WIDEN
);
3218 anti_adjust_stack (temp
);
3221 #ifndef STACK_GROWS_DOWNWARD
3227 temp
= virtual_outgoing_args_rtx
;
3228 if (extra
!= 0 && below
)
3229 temp
= plus_constant (temp
, extra
);
3233 if (GET_CODE (size
) == CONST_INT
)
3234 temp
= plus_constant (virtual_outgoing_args_rtx
,
3235 -INTVAL (size
) - (below
? 0 : extra
));
3236 else if (extra
!= 0 && !below
)
3237 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3238 negate_rtx (Pmode
, plus_constant (size
, extra
)));
3240 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3241 negate_rtx (Pmode
, size
));
3244 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3247 #ifdef PUSH_ROUNDING
3249 /* Emit single push insn. */
3252 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
3255 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3257 enum insn_code icode
;
3258 insn_operand_predicate_fn pred
;
3260 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3261 /* If there is push pattern, use it. Otherwise try old way of throwing
3262 MEM representing push operation to move expander. */
3263 icode
= push_optab
->handlers
[(int) mode
].insn_code
;
3264 if (icode
!= CODE_FOR_nothing
)
3266 if (((pred
= insn_data
[(int) icode
].operand
[0].predicate
)
3267 && !((*pred
) (x
, mode
))))
3268 x
= force_reg (mode
, x
);
3269 emit_insn (GEN_FCN (icode
) (x
));
3272 if (GET_MODE_SIZE (mode
) == rounded_size
)
3273 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3274 /* If we are to pad downward, adjust the stack pointer first and
3275 then store X into the stack location using an offset. This is
3276 because emit_move_insn does not know how to pad; it does not have
3278 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
3280 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
3281 HOST_WIDE_INT offset
;
3283 emit_move_insn (stack_pointer_rtx
,
3284 expand_binop (Pmode
,
3285 #ifdef STACK_GROWS_DOWNWARD
3291 GEN_INT (rounded_size
),
3292 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
3294 offset
= (HOST_WIDE_INT
) padding_size
;
3295 #ifdef STACK_GROWS_DOWNWARD
3296 if (STACK_PUSH_CODE
== POST_DEC
)
3297 /* We have already decremented the stack pointer, so get the
3299 offset
+= (HOST_WIDE_INT
) rounded_size
;
3301 if (STACK_PUSH_CODE
== POST_INC
)
3302 /* We have already incremented the stack pointer, so get the
3304 offset
-= (HOST_WIDE_INT
) rounded_size
;
3306 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, GEN_INT (offset
));
3310 #ifdef STACK_GROWS_DOWNWARD
3311 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3312 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3313 GEN_INT (-(HOST_WIDE_INT
) rounded_size
));
3315 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3316 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3317 GEN_INT (rounded_size
));
3319 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
3322 dest
= gen_rtx_MEM (mode
, dest_addr
);
3326 set_mem_attributes (dest
, type
, 1);
3328 if (flag_optimize_sibling_calls
)
3329 /* Function incoming arguments may overlap with sibling call
3330 outgoing arguments and we cannot allow reordering of reads
3331 from function arguments with stores to outgoing arguments
3332 of sibling calls. */
3333 set_mem_alias_set (dest
, 0);
3335 emit_move_insn (dest
, x
);
3339 /* Generate code to push X onto the stack, assuming it has mode MODE and
3341 MODE is redundant except when X is a CONST_INT (since they don't
3343 SIZE is an rtx for the size of data to be copied (in bytes),
3344 needed only if X is BLKmode.
3346 ALIGN (in bits) is maximum alignment we can assume.
3348 If PARTIAL and REG are both nonzero, then copy that many of the first
3349 bytes of X into registers starting with REG, and push the rest of X.
3350 The amount of space pushed is decreased by PARTIAL bytes.
3351 REG must be a hard register in this case.
3352 If REG is zero but PARTIAL is not, take any all others actions for an
3353 argument partially in registers, but do not actually load any
3356 EXTRA is the amount in bytes of extra space to leave next to this arg.
3357 This is ignored if an argument block has already been allocated.
3359 On a machine that lacks real push insns, ARGS_ADDR is the address of
3360 the bottom of the argument block for this call. We use indexing off there
3361 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3362 argument block has not been preallocated.
3364 ARGS_SO_FAR is the size of args previously pushed for this call.
3366 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3367 for arguments passed in registers. If nonzero, it will be the number
3368 of bytes required. */
3371 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
3372 unsigned int align
, int partial
, rtx reg
, int extra
,
3373 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
3377 enum direction stack_direction
3378 #ifdef STACK_GROWS_DOWNWARD
3384 /* Decide where to pad the argument: `downward' for below,
3385 `upward' for above, or `none' for don't pad it.
3386 Default is below for small data on big-endian machines; else above. */
3387 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
3389 /* Invert direction if stack is post-decrement.
3391 if (STACK_PUSH_CODE
== POST_DEC
)
3392 if (where_pad
!= none
)
3393 where_pad
= (where_pad
== downward
? upward
: downward
);
3397 if (mode
== BLKmode
)
3399 /* Copy a block into the stack, entirely or partially. */
3406 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3407 used
= partial
- offset
;
3411 /* USED is now the # of bytes we need not copy to the stack
3412 because registers will take care of them. */
3415 xinner
= adjust_address (xinner
, BLKmode
, used
);
3417 /* If the partial register-part of the arg counts in its stack size,
3418 skip the part of stack space corresponding to the registers.
3419 Otherwise, start copying to the beginning of the stack space,
3420 by setting SKIP to 0. */
3421 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
3423 #ifdef PUSH_ROUNDING
3424 /* Do it with several push insns if that doesn't take lots of insns
3425 and if there is no difficulty with push insns that skip bytes
3426 on the stack for alignment purposes. */
3429 && GET_CODE (size
) == CONST_INT
3431 && MEM_ALIGN (xinner
) >= align
3432 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
3433 /* Here we avoid the case of a structure whose weak alignment
3434 forces many pushes of a small amount of data,
3435 and such small pushes do rounding that causes trouble. */
3436 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
3437 || align
>= BIGGEST_ALIGNMENT
3438 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
3439 == (align
/ BITS_PER_UNIT
)))
3440 && PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
3442 /* Push padding now if padding above and stack grows down,
3443 or if padding below and stack grows up.
3444 But if space already allocated, this has already been done. */
3445 if (extra
&& args_addr
== 0
3446 && where_pad
!= none
&& where_pad
!= stack_direction
)
3447 anti_adjust_stack (GEN_INT (extra
));
3449 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
3452 #endif /* PUSH_ROUNDING */
3456 /* Otherwise make space on the stack and copy the data
3457 to the address of that space. */
3459 /* Deduct words put into registers from the size we must copy. */
3462 if (GET_CODE (size
) == CONST_INT
)
3463 size
= GEN_INT (INTVAL (size
) - used
);
3465 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
3466 GEN_INT (used
), NULL_RTX
, 0,
3470 /* Get the address of the stack space.
3471 In this case, we do not deal with EXTRA separately.
3472 A single stack adjust will do. */
3475 temp
= push_block (size
, extra
, where_pad
== downward
);
3478 else if (GET_CODE (args_so_far
) == CONST_INT
)
3479 temp
= memory_address (BLKmode
,
3480 plus_constant (args_addr
,
3481 skip
+ INTVAL (args_so_far
)));
3483 temp
= memory_address (BLKmode
,
3484 plus_constant (gen_rtx_PLUS (Pmode
,
3489 if (!ACCUMULATE_OUTGOING_ARGS
)
3491 /* If the source is referenced relative to the stack pointer,
3492 copy it to another register to stabilize it. We do not need
3493 to do this if we know that we won't be changing sp. */
3495 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
3496 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
3497 temp
= copy_to_reg (temp
);
3500 target
= gen_rtx_MEM (BLKmode
, temp
);
3502 /* We do *not* set_mem_attributes here, because incoming arguments
3503 may overlap with sibling call outgoing arguments and we cannot
3504 allow reordering of reads from function arguments with stores
3505 to outgoing arguments of sibling calls. We do, however, want
3506 to record the alignment of the stack slot. */
3507 /* ALIGN may well be better aligned than TYPE, e.g. due to
3508 PARM_BOUNDARY. Assume the caller isn't lying. */
3509 set_mem_align (target
, align
);
3511 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
3514 else if (partial
> 0)
3516 /* Scalar partly in registers. */
3518 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
3521 /* # bytes of start of argument
3522 that we must make space for but need not store. */
3523 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_WORD
);
3524 int args_offset
= INTVAL (args_so_far
);
3527 /* Push padding now if padding above and stack grows down,
3528 or if padding below and stack grows up.
3529 But if space already allocated, this has already been done. */
3530 if (extra
&& args_addr
== 0
3531 && where_pad
!= none
&& where_pad
!= stack_direction
)
3532 anti_adjust_stack (GEN_INT (extra
));
3534 /* If we make space by pushing it, we might as well push
3535 the real data. Otherwise, we can leave OFFSET nonzero
3536 and leave the space uninitialized. */
3540 /* Now NOT_STACK gets the number of words that we don't need to
3541 allocate on the stack. */
3542 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
3544 /* If the partial register-part of the arg counts in its stack size,
3545 skip the part of stack space corresponding to the registers.
3546 Otherwise, start copying to the beginning of the stack space,
3547 by setting SKIP to 0. */
3548 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
3550 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
3551 x
= validize_mem (force_const_mem (mode
, x
));
3553 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3554 SUBREGs of such registers are not allowed. */
3555 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3556 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
3557 x
= copy_to_reg (x
);
3559 /* Loop over all the words allocated on the stack for this arg. */
3560 /* We can do it by words, because any scalar bigger than a word
3561 has a size a multiple of a word. */
3562 #ifndef PUSH_ARGS_REVERSED
3563 for (i
= not_stack
; i
< size
; i
++)
3565 for (i
= size
- 1; i
>= not_stack
; i
--)
3567 if (i
>= not_stack
+ offset
)
3568 emit_push_insn (operand_subword_force (x
, i
, mode
),
3569 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
3571 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
3573 reg_parm_stack_space
, alignment_pad
);
3580 /* Push padding now if padding above and stack grows down,
3581 or if padding below and stack grows up.
3582 But if space already allocated, this has already been done. */
3583 if (extra
&& args_addr
== 0
3584 && where_pad
!= none
&& where_pad
!= stack_direction
)
3585 anti_adjust_stack (GEN_INT (extra
));
3587 #ifdef PUSH_ROUNDING
3588 if (args_addr
== 0 && PUSH_ARGS
)
3589 emit_single_push_insn (mode
, x
, type
);
3593 if (GET_CODE (args_so_far
) == CONST_INT
)
3595 = memory_address (mode
,
3596 plus_constant (args_addr
,
3597 INTVAL (args_so_far
)));
3599 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
3601 dest
= gen_rtx_MEM (mode
, addr
);
3603 /* We do *not* set_mem_attributes here, because incoming arguments
3604 may overlap with sibling call outgoing arguments and we cannot
3605 allow reordering of reads from function arguments with stores
3606 to outgoing arguments of sibling calls. We do, however, want
3607 to record the alignment of the stack slot. */
3608 /* ALIGN may well be better aligned than TYPE, e.g. due to
3609 PARM_BOUNDARY. Assume the caller isn't lying. */
3610 set_mem_align (dest
, align
);
3612 emit_move_insn (dest
, x
);
3616 /* If part should go in registers, copy that part
3617 into the appropriate registers. Do this now, at the end,
3618 since mem-to-mem copies above may do function calls. */
3619 if (partial
> 0 && reg
!= 0)
3621 /* Handle calls that pass values in multiple non-contiguous locations.
3622 The Irix 6 ABI has examples of this. */
3623 if (GET_CODE (reg
) == PARALLEL
)
3624 emit_group_load (reg
, x
, type
, -1);
3627 gcc_assert (partial
% UNITS_PER_WORD
== 0);
3628 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
3632 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
3633 anti_adjust_stack (GEN_INT (extra
));
3635 if (alignment_pad
&& args_addr
== 0)
3636 anti_adjust_stack (alignment_pad
);
3639 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3643 get_subtarget (rtx x
)
3647 /* Only registers can be subtargets. */
3649 /* Don't use hard regs to avoid extending their life. */
3650 || REGNO (x
) < FIRST_PSEUDO_REGISTER
3654 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3655 FIELD is a bitfield. Returns true if the optimization was successful,
3656 and there's nothing else to do. */
3659 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
3660 unsigned HOST_WIDE_INT bitpos
,
3661 enum machine_mode mode1
, rtx str_rtx
,
3664 enum machine_mode str_mode
= GET_MODE (str_rtx
);
3665 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
3670 if (mode1
!= VOIDmode
3671 || bitsize
>= BITS_PER_WORD
3672 || str_bitsize
> BITS_PER_WORD
3673 || TREE_SIDE_EFFECTS (to
)
3674 || TREE_THIS_VOLATILE (to
))
3678 if (!BINARY_CLASS_P (src
)
3679 || TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
3682 op0
= TREE_OPERAND (src
, 0);
3683 op1
= TREE_OPERAND (src
, 1);
3686 if (!operand_equal_p (to
, op0
, 0))
3689 if (MEM_P (str_rtx
))
3691 unsigned HOST_WIDE_INT offset1
;
3693 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
3694 str_mode
= word_mode
;
3695 str_mode
= get_best_mode (bitsize
, bitpos
,
3696 MEM_ALIGN (str_rtx
), str_mode
, 0);
3697 if (str_mode
== VOIDmode
)
3699 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
3702 bitpos
%= str_bitsize
;
3703 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
3704 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
3706 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
3709 /* If the bit field covers the whole REG/MEM, store_field
3710 will likely generate better code. */
3711 if (bitsize
>= str_bitsize
)
3714 /* We can't handle fields split across multiple entities. */
3715 if (bitpos
+ bitsize
> str_bitsize
)
3718 if (BYTES_BIG_ENDIAN
)
3719 bitpos
= str_bitsize
- bitpos
- bitsize
;
3721 switch (TREE_CODE (src
))
3725 /* For now, just optimize the case of the topmost bitfield
3726 where we don't need to do any masking and also
3727 1 bit bitfields where xor can be used.
3728 We might win by one instruction for the other bitfields
3729 too if insv/extv instructions aren't used, so that
3730 can be added later. */
3731 if (bitpos
+ bitsize
!= str_bitsize
3732 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
3735 value
= expand_expr (op1
, NULL_RTX
, str_mode
, 0);
3736 value
= convert_modes (str_mode
,
3737 TYPE_MODE (TREE_TYPE (op1
)), value
,
3738 TYPE_UNSIGNED (TREE_TYPE (op1
)));
3740 /* We may be accessing data outside the field, which means
3741 we can alias adjacent data. */
3742 if (MEM_P (str_rtx
))
3744 str_rtx
= shallow_copy_rtx (str_rtx
);
3745 set_mem_alias_set (str_rtx
, 0);
3746 set_mem_expr (str_rtx
, 0);
3749 binop
= TREE_CODE (src
) == PLUS_EXPR
? add_optab
: sub_optab
;
3750 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
3752 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
3755 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
,
3756 build_int_cst (NULL_TREE
, bitpos
),
3758 result
= expand_binop (str_mode
, binop
, str_rtx
,
3759 value
, str_rtx
, 1, OPTAB_WIDEN
);
3760 if (result
!= str_rtx
)
3761 emit_move_insn (str_rtx
, result
);
3766 if (TREE_CODE (op1
) != INTEGER_CST
)
3768 value
= expand_expr (op1
, NULL_RTX
, GET_MODE (str_rtx
), 0);
3769 value
= convert_modes (GET_MODE (str_rtx
),
3770 TYPE_MODE (TREE_TYPE (op1
)), value
,
3771 TYPE_UNSIGNED (TREE_TYPE (op1
)));
3773 /* We may be accessing data outside the field, which means
3774 we can alias adjacent data. */
3775 if (MEM_P (str_rtx
))
3777 str_rtx
= shallow_copy_rtx (str_rtx
);
3778 set_mem_alias_set (str_rtx
, 0);
3779 set_mem_expr (str_rtx
, 0);
3782 binop
= TREE_CODE (src
) == BIT_IOR_EXPR
? ior_optab
: xor_optab
;
3783 if (bitpos
+ bitsize
!= GET_MODE_BITSIZE (GET_MODE (str_rtx
)))
3785 rtx mask
= GEN_INT (((unsigned HOST_WIDE_INT
) 1 << bitsize
)
3787 value
= expand_and (GET_MODE (str_rtx
), value
, mask
,
3790 value
= expand_shift (LSHIFT_EXPR
, GET_MODE (str_rtx
), value
,
3791 build_int_cst (NULL_TREE
, bitpos
),
3793 result
= expand_binop (GET_MODE (str_rtx
), binop
, str_rtx
,
3794 value
, str_rtx
, 1, OPTAB_WIDEN
);
3795 if (result
!= str_rtx
)
3796 emit_move_insn (str_rtx
, result
);
3807 /* Expand an assignment that stores the value of FROM into TO. */
3810 expand_assignment (tree to
, tree from
)
3815 /* Don't crash if the lhs of the assignment was erroneous. */
3817 if (TREE_CODE (to
) == ERROR_MARK
)
3819 result
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
3823 /* Assignment of a structure component needs special treatment
3824 if the structure component's rtx is not simply a MEM.
3825 Assignment of an array element at a constant index, and assignment of
3826 an array element in an unaligned packed structure field, has the same
3828 if (handled_component_p (to
)
3829 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
3831 enum machine_mode mode1
;
3832 HOST_WIDE_INT bitsize
, bitpos
;
3839 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
3840 &unsignedp
, &volatilep
, true);
3842 /* If we are going to use store_bit_field and extract_bit_field,
3843 make sure to_rtx will be safe for multiple use. */
3845 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, 0);
3849 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
3851 gcc_assert (MEM_P (to_rtx
));
3853 #ifdef POINTERS_EXTEND_UNSIGNED
3854 if (GET_MODE (offset_rtx
) != Pmode
)
3855 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
3857 if (GET_MODE (offset_rtx
) != ptr_mode
)
3858 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
3861 /* A constant address in TO_RTX can have VOIDmode, we must not try
3862 to call force_reg for that case. Avoid that case. */
3864 && GET_MODE (to_rtx
) == BLKmode
3865 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
3867 && (bitpos
% bitsize
) == 0
3868 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
3869 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
3871 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
3875 to_rtx
= offset_address (to_rtx
, offset_rtx
,
3876 highest_pow2_factor_for_target (to
,
3880 /* Handle expand_expr of a complex value returning a CONCAT. */
3881 if (GET_CODE (to_rtx
) == CONCAT
)
3883 if (TREE_CODE (TREE_TYPE (from
)) == COMPLEX_TYPE
)
3885 gcc_assert (bitpos
== 0);
3886 result
= store_expr (from
, to_rtx
, false);
3890 gcc_assert (bitpos
== 0 || bitpos
== GET_MODE_BITSIZE (mode1
));
3891 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false);
3898 /* If the field is at offset zero, we could have been given the
3899 DECL_RTX of the parent struct. Don't munge it. */
3900 to_rtx
= shallow_copy_rtx (to_rtx
);
3902 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
3904 /* Deal with volatile and readonly fields. The former is only
3905 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
3907 MEM_VOLATILE_P (to_rtx
) = 1;
3908 if (component_uses_parent_alias_set (to
))
3909 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
3912 if (optimize_bitfield_assignment_op (bitsize
, bitpos
, mode1
,
3916 result
= store_field (to_rtx
, bitsize
, bitpos
, mode1
, from
,
3917 TREE_TYPE (tem
), get_alias_set (to
));
3921 preserve_temp_slots (result
);
3927 /* If the rhs is a function call and its value is not an aggregate,
3928 call the function before we start to compute the lhs.
3929 This is needed for correct code for cases such as
3930 val = setjmp (buf) on machines where reference to val
3931 requires loading up part of an address in a separate insn.
3933 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
3934 since it might be a promoted variable where the zero- or sign- extension
3935 needs to be done. Handling this in the normal way is safe because no
3936 computation is done before the call. */
3937 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
3938 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
3939 && ! ((TREE_CODE (to
) == VAR_DECL
|| TREE_CODE (to
) == PARM_DECL
)
3940 && REG_P (DECL_RTL (to
))))
3945 value
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
3947 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
3949 /* Handle calls that return values in multiple non-contiguous locations.
3950 The Irix 6 ABI has examples of this. */
3951 if (GET_CODE (to_rtx
) == PARALLEL
)
3952 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
3953 int_size_in_bytes (TREE_TYPE (from
)));
3954 else if (GET_MODE (to_rtx
) == BLKmode
)
3955 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
3958 if (POINTER_TYPE_P (TREE_TYPE (to
)))
3959 value
= convert_memory_address (GET_MODE (to_rtx
), value
);
3960 emit_move_insn (to_rtx
, value
);
3962 preserve_temp_slots (to_rtx
);
3968 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
3969 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
3972 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
3974 /* Don't move directly into a return register. */
3975 if (TREE_CODE (to
) == RESULT_DECL
3976 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
3981 temp
= expand_expr (from
, 0, GET_MODE (to_rtx
), 0);
3983 if (GET_CODE (to_rtx
) == PARALLEL
)
3984 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
3985 int_size_in_bytes (TREE_TYPE (from
)));
3987 emit_move_insn (to_rtx
, temp
);
3989 preserve_temp_slots (to_rtx
);
3995 /* In case we are returning the contents of an object which overlaps
3996 the place the value is being stored, use a safe function when copying
3997 a value through a pointer into a structure value return block. */
3998 if (TREE_CODE (to
) == RESULT_DECL
&& TREE_CODE (from
) == INDIRECT_REF
3999 && current_function_returns_struct
4000 && !current_function_returns_pcc_struct
)
4005 size
= expr_size (from
);
4006 from_rtx
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
4008 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
4009 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
4010 XEXP (from_rtx
, 0), Pmode
,
4011 convert_to_mode (TYPE_MODE (sizetype
),
4012 size
, TYPE_UNSIGNED (sizetype
)),
4013 TYPE_MODE (sizetype
));
4015 preserve_temp_slots (to_rtx
);
4021 /* Compute FROM and store the value in the rtx we got. */
4024 result
= store_expr (from
, to_rtx
, 0);
4025 preserve_temp_slots (result
);
4031 /* Generate code for computing expression EXP,
4032 and storing the value into TARGET.
4034 If the mode is BLKmode then we may return TARGET itself.
4035 It turns out that in BLKmode it doesn't cause a problem.
4036 because C has no operators that could combine two different
4037 assignments into the same BLKmode object with different values
4038 with no sequence point. Will other languages need this to
4041 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4042 stack, and block moves may need to be treated specially. */
4045 store_expr (tree exp
, rtx target
, int call_param_p
)
4048 rtx alt_rtl
= NULL_RTX
;
4049 int dont_return_target
= 0;
4051 if (VOID_TYPE_P (TREE_TYPE (exp
)))
4053 /* C++ can generate ?: expressions with a throw expression in one
4054 branch and an rvalue in the other. Here, we resolve attempts to
4055 store the throw expression's nonexistent result. */
4056 gcc_assert (!call_param_p
);
4057 expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
4060 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
4062 /* Perform first part of compound expression, then assign from second
4064 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
4065 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4066 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
);
4068 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
4070 /* For conditional expression, get safe form of the target. Then
4071 test the condition, doing the appropriate assignment on either
4072 side. This avoids the creation of unnecessary temporaries.
4073 For non-BLKmode, it is more efficient not to do this. */
4075 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
4077 do_pending_stack_adjust ();
4079 jumpifnot (TREE_OPERAND (exp
, 0), lab1
);
4080 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
);
4081 emit_jump_insn (gen_jump (lab2
));
4084 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
);
4090 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
4091 /* If this is a scalar in a register that is stored in a wider mode
4092 than the declared mode, compute the result into its declared mode
4093 and then convert to the wider mode. Our value is the computed
4096 rtx inner_target
= 0;
4098 /* We can do the conversion inside EXP, which will often result
4099 in some optimizations. Do the conversion in two steps: first
4100 change the signedness, if needed, then the extend. But don't
4101 do this if the type of EXP is a subtype of something else
4102 since then the conversion might involve more than just
4103 converting modes. */
4104 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
4105 && TREE_TYPE (TREE_TYPE (exp
)) == 0
4106 && (!lang_hooks
.reduce_bit_field_operations
4107 || (GET_MODE_PRECISION (GET_MODE (target
))
4108 == TYPE_PRECISION (TREE_TYPE (exp
)))))
4110 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
4111 != SUBREG_PROMOTED_UNSIGNED_P (target
))
4113 (lang_hooks
.types
.signed_or_unsigned_type
4114 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)), exp
);
4116 exp
= convert (lang_hooks
.types
.type_for_mode
4117 (GET_MODE (SUBREG_REG (target
)),
4118 SUBREG_PROMOTED_UNSIGNED_P (target
)),
4121 inner_target
= SUBREG_REG (target
);
4124 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
4125 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4127 /* If TEMP is a VOIDmode constant, use convert_modes to make
4128 sure that we properly convert it. */
4129 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
4131 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4132 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
4133 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
4134 GET_MODE (target
), temp
,
4135 SUBREG_PROMOTED_UNSIGNED_P (target
));
4138 convert_move (SUBREG_REG (target
), temp
,
4139 SUBREG_PROMOTED_UNSIGNED_P (target
));
4145 temp
= expand_expr_real (exp
, target
, GET_MODE (target
),
4147 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
4149 /* Return TARGET if it's a specified hardware register.
4150 If TARGET is a volatile mem ref, either return TARGET
4151 or return a reg copied *from* TARGET; ANSI requires this.
4153 Otherwise, if TEMP is not TARGET, return TEMP
4154 if it is constant (for efficiency),
4155 or if we really want the correct value. */
4156 if (!(target
&& REG_P (target
)
4157 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)
4158 && !(MEM_P (target
) && MEM_VOLATILE_P (target
))
4159 && ! rtx_equal_p (temp
, target
)
4160 && CONSTANT_P (temp
))
4161 dont_return_target
= 1;
4164 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4165 the same as that of TARGET, adjust the constant. This is needed, for
4166 example, in case it is a CONST_DOUBLE and we want only a word-sized
4168 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
4169 && TREE_CODE (exp
) != ERROR_MARK
4170 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
4171 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4172 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
4174 /* If value was not generated in the target, store it there.
4175 Convert the value to TARGET's type first if necessary and emit the
4176 pending incrementations that have been queued when expanding EXP.
4177 Note that we cannot emit the whole queue blindly because this will
4178 effectively disable the POST_INC optimization later.
4180 If TEMP and TARGET compare equal according to rtx_equal_p, but
4181 one or both of them are volatile memory refs, we have to distinguish
4183 - expand_expr has used TARGET. In this case, we must not generate
4184 another copy. This can be detected by TARGET being equal according
4186 - expand_expr has not used TARGET - that means that the source just
4187 happens to have the same RTX form. Since temp will have been created
4188 by expand_expr, it will compare unequal according to == .
4189 We must generate a copy in this case, to reach the correct number
4190 of volatile memory references. */
4192 if ((! rtx_equal_p (temp
, target
)
4193 || (temp
!= target
&& (side_effects_p (temp
)
4194 || side_effects_p (target
))))
4195 && TREE_CODE (exp
) != ERROR_MARK
4196 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4197 but TARGET is not valid memory reference, TEMP will differ
4198 from TARGET although it is really the same location. */
4199 && !(alt_rtl
&& rtx_equal_p (alt_rtl
, target
))
4200 /* If there's nothing to copy, don't bother. Don't call expr_size
4201 unless necessary, because some front-ends (C++) expr_size-hook
4202 aborts on objects that are not supposed to be bit-copied or
4204 && expr_size (exp
) != const0_rtx
)
4206 if (GET_MODE (temp
) != GET_MODE (target
)
4207 && GET_MODE (temp
) != VOIDmode
)
4209 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
4210 if (dont_return_target
)
4212 /* In this case, we will return TEMP,
4213 so make sure it has the proper mode.
4214 But don't forget to store the value into TARGET. */
4215 temp
= convert_to_mode (GET_MODE (target
), temp
, unsignedp
);
4216 emit_move_insn (target
, temp
);
4219 convert_move (target
, temp
, unsignedp
);
4222 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
4224 /* Handle copying a string constant into an array. The string
4225 constant may be shorter than the array. So copy just the string's
4226 actual length, and clear the rest. First get the size of the data
4227 type of the string, which is actually the size of the target. */
4228 rtx size
= expr_size (exp
);
4230 if (GET_CODE (size
) == CONST_INT
4231 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
4232 emit_block_move (target
, temp
, size
,
4234 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4237 /* Compute the size of the data to copy from the string. */
4239 = size_binop (MIN_EXPR
,
4240 make_tree (sizetype
, size
),
4241 size_int (TREE_STRING_LENGTH (exp
)));
4243 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
4245 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
4248 /* Copy that much. */
4249 copy_size_rtx
= convert_to_mode (ptr_mode
, copy_size_rtx
,
4250 TYPE_UNSIGNED (sizetype
));
4251 emit_block_move (target
, temp
, copy_size_rtx
,
4253 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4255 /* Figure out how much is left in TARGET that we have to clear.
4256 Do all calculations in ptr_mode. */
4257 if (GET_CODE (copy_size_rtx
) == CONST_INT
)
4259 size
= plus_constant (size
, -INTVAL (copy_size_rtx
));
4260 target
= adjust_address (target
, BLKmode
,
4261 INTVAL (copy_size_rtx
));
4265 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
4266 copy_size_rtx
, NULL_RTX
, 0,
4269 #ifdef POINTERS_EXTEND_UNSIGNED
4270 if (GET_MODE (copy_size_rtx
) != Pmode
)
4271 copy_size_rtx
= convert_to_mode (Pmode
, copy_size_rtx
,
4272 TYPE_UNSIGNED (sizetype
));
4275 target
= offset_address (target
, copy_size_rtx
,
4276 highest_pow2_factor (copy_size
));
4277 label
= gen_label_rtx ();
4278 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
4279 GET_MODE (size
), 0, label
);
4282 if (size
!= const0_rtx
)
4283 clear_storage (target
, size
);
4289 /* Handle calls that return values in multiple non-contiguous locations.
4290 The Irix 6 ABI has examples of this. */
4291 else if (GET_CODE (target
) == PARALLEL
)
4292 emit_group_load (target
, temp
, TREE_TYPE (exp
),
4293 int_size_in_bytes (TREE_TYPE (exp
)));
4294 else if (GET_MODE (temp
) == BLKmode
)
4295 emit_block_move (target
, temp
, expr_size (exp
),
4297 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4300 temp
= force_operand (temp
, target
);
4302 emit_move_insn (target
, temp
);
4309 /* Examine CTOR to discover:
4310 * how many scalar fields are set to nonzero values,
4311 and place it in *P_NZ_ELTS;
4312 * how many scalar fields are set to non-constant values,
4313 and place it in *P_NC_ELTS; and
4314 * how many scalar fields in total are in CTOR,
4315 and place it in *P_ELT_COUNT.
4316 * if a type is a union, and the initializer from the constructor
4317 is not the largest element in the union, then set *p_must_clear. */
4320 categorize_ctor_elements_1 (tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4321 HOST_WIDE_INT
*p_nc_elts
,
4322 HOST_WIDE_INT
*p_elt_count
,
4325 HOST_WIDE_INT nz_elts
, nc_elts
, elt_count
;
4332 for (list
= CONSTRUCTOR_ELTS (ctor
); list
; list
= TREE_CHAIN (list
))
4334 tree value
= TREE_VALUE (list
);
4335 tree purpose
= TREE_PURPOSE (list
);
4339 if (TREE_CODE (purpose
) == RANGE_EXPR
)
4341 tree lo_index
= TREE_OPERAND (purpose
, 0);
4342 tree hi_index
= TREE_OPERAND (purpose
, 1);
4344 if (host_integerp (lo_index
, 1) && host_integerp (hi_index
, 1))
4345 mult
= (tree_low_cst (hi_index
, 1)
4346 - tree_low_cst (lo_index
, 1) + 1);
4349 switch (TREE_CODE (value
))
4353 HOST_WIDE_INT nz
= 0, nc
= 0, ic
= 0;
4354 categorize_ctor_elements_1 (value
, &nz
, &nc
, &ic
, p_must_clear
);
4355 nz_elts
+= mult
* nz
;
4356 nc_elts
+= mult
* nc
;
4357 elt_count
+= mult
* ic
;
4363 if (!initializer_zerop (value
))
4369 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
4370 elt_count
+= mult
* TREE_STRING_LENGTH (value
);
4374 if (!initializer_zerop (TREE_REALPART (value
)))
4376 if (!initializer_zerop (TREE_IMAGPART (value
)))
4384 for (v
= TREE_VECTOR_CST_ELTS (value
); v
; v
= TREE_CHAIN (v
))
4386 if (!initializer_zerop (TREE_VALUE (v
)))
4396 if (!initializer_constant_valid_p (value
, TREE_TYPE (value
)))
4403 && (TREE_CODE (TREE_TYPE (ctor
)) == UNION_TYPE
4404 || TREE_CODE (TREE_TYPE (ctor
)) == QUAL_UNION_TYPE
))
4407 bool clear_this
= true;
4409 list
= CONSTRUCTOR_ELTS (ctor
);
4412 /* We don't expect more than one element of the union to be
4413 initialized. Not sure what we should do otherwise... */
4414 gcc_assert (TREE_CHAIN (list
) == NULL
);
4416 init_sub_type
= TREE_TYPE (TREE_VALUE (list
));
4418 /* ??? We could look at each element of the union, and find the
4419 largest element. Which would avoid comparing the size of the
4420 initialized element against any tail padding in the union.
4421 Doesn't seem worth the effort... */
4422 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor
)),
4423 TYPE_SIZE (init_sub_type
)) == 1)
4425 /* And now we have to find out if the element itself is fully
4426 constructed. E.g. for union { struct { int a, b; } s; } u
4427 = { .s = { .a = 1 } }. */
4428 if (elt_count
== count_type_elements (init_sub_type
))
4433 *p_must_clear
= clear_this
;
4436 *p_nz_elts
+= nz_elts
;
4437 *p_nc_elts
+= nc_elts
;
4438 *p_elt_count
+= elt_count
;
4442 categorize_ctor_elements (tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4443 HOST_WIDE_INT
*p_nc_elts
,
4444 HOST_WIDE_INT
*p_elt_count
,
4450 *p_must_clear
= false;
4451 categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_nc_elts
, p_elt_count
,
4455 /* Count the number of scalars in TYPE. Return -1 on overflow or
4459 count_type_elements (tree type
)
4461 const HOST_WIDE_INT max
= ~((HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1));
4462 switch (TREE_CODE (type
))
4466 tree telts
= array_type_nelts (type
);
4467 if (telts
&& host_integerp (telts
, 1))
4469 HOST_WIDE_INT n
= tree_low_cst (telts
, 1) + 1;
4470 HOST_WIDE_INT m
= count_type_elements (TREE_TYPE (type
));
4473 else if (max
/ n
> m
)
4481 HOST_WIDE_INT n
= 0, t
;
4484 for (f
= TYPE_FIELDS (type
); f
; f
= TREE_CHAIN (f
))
4485 if (TREE_CODE (f
) == FIELD_DECL
)
4487 t
= count_type_elements (TREE_TYPE (f
));
4497 case QUAL_UNION_TYPE
:
4499 /* Ho hum. How in the world do we guess here? Clearly it isn't
4500 right to count the fields. Guess based on the number of words. */
4501 HOST_WIDE_INT n
= int_size_in_bytes (type
);
4504 return n
/ UNITS_PER_WORD
;
4511 return TYPE_VECTOR_SUBPARTS (type
);
4520 case REFERENCE_TYPE
:
4533 /* Return 1 if EXP contains mostly (3/4) zeros. */
4536 mostly_zeros_p (tree exp
)
4538 if (TREE_CODE (exp
) == CONSTRUCTOR
)
4541 HOST_WIDE_INT nz_elts
, nc_elts
, count
, elts
;
4544 categorize_ctor_elements (exp
, &nz_elts
, &nc_elts
, &count
, &must_clear
);
4548 elts
= count_type_elements (TREE_TYPE (exp
));
4550 return nz_elts
< elts
/ 4;
4553 return initializer_zerop (exp
);
4556 /* Helper function for store_constructor.
4557 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4558 TYPE is the type of the CONSTRUCTOR, not the element type.
4559 CLEARED is as for store_constructor.
4560 ALIAS_SET is the alias set to use for any stores.
4562 This provides a recursive shortcut back to store_constructor when it isn't
4563 necessary to go through store_field. This is so that we can pass through
4564 the cleared field to let store_constructor know that we may not have to
4565 clear a substructure if the outer structure has already been cleared. */
4568 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
4569 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
4570 tree exp
, tree type
, int cleared
, int alias_set
)
4572 if (TREE_CODE (exp
) == CONSTRUCTOR
4573 /* We can only call store_constructor recursively if the size and
4574 bit position are on a byte boundary. */
4575 && bitpos
% BITS_PER_UNIT
== 0
4576 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
4577 /* If we have a nonzero bitpos for a register target, then we just
4578 let store_field do the bitfield handling. This is unlikely to
4579 generate unnecessary clear instructions anyways. */
4580 && (bitpos
== 0 || MEM_P (target
)))
4584 = adjust_address (target
,
4585 GET_MODE (target
) == BLKmode
4587 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
4588 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
4591 /* Update the alias set, if required. */
4592 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
4593 && MEM_ALIAS_SET (target
) != 0)
4595 target
= copy_rtx (target
);
4596 set_mem_alias_set (target
, alias_set
);
4599 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
4602 store_field (target
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
);
4605 /* Store the value of constructor EXP into the rtx TARGET.
4606 TARGET is either a REG or a MEM; we know it cannot conflict, since
4607 safe_from_p has been called.
4608 CLEARED is true if TARGET is known to have been zero'd.
4609 SIZE is the number of bytes of TARGET we are allowed to modify: this
4610 may not be the same as the size of EXP if we are assigning to a field
4611 which has been packed to exclude padding bits. */
4614 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
4616 tree type
= TREE_TYPE (exp
);
4617 #ifdef WORD_REGISTER_OPERATIONS
4618 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
4621 switch (TREE_CODE (type
))
4625 case QUAL_UNION_TYPE
:
4629 /* If size is zero or the target is already cleared, do nothing. */
4630 if (size
== 0 || cleared
)
4632 /* We either clear the aggregate or indicate the value is dead. */
4633 else if ((TREE_CODE (type
) == UNION_TYPE
4634 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
4635 && ! CONSTRUCTOR_ELTS (exp
))
4636 /* If the constructor is empty, clear the union. */
4638 clear_storage (target
, expr_size (exp
));
4642 /* If we are building a static constructor into a register,
4643 set the initial value as zero so we can fold the value into
4644 a constant. But if more than one register is involved,
4645 this probably loses. */
4646 else if (REG_P (target
) && TREE_STATIC (exp
)
4647 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
4649 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
4653 /* If the constructor has fewer fields than the structure or
4654 if we are initializing the structure to mostly zeros, clear
4655 the whole structure first. Don't do this if TARGET is a
4656 register whose mode size isn't equal to SIZE since
4657 clear_storage can't handle this case. */
4659 && ((list_length (CONSTRUCTOR_ELTS (exp
))
4660 != fields_length (type
))
4661 || mostly_zeros_p (exp
))
4663 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
4666 clear_storage (target
, GEN_INT (size
));
4671 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
4673 /* Store each element of the constructor into the
4674 corresponding field of TARGET. */
4676 for (elt
= CONSTRUCTOR_ELTS (exp
); elt
; elt
= TREE_CHAIN (elt
))
4678 tree field
= TREE_PURPOSE (elt
);
4679 tree value
= TREE_VALUE (elt
);
4680 enum machine_mode mode
;
4681 HOST_WIDE_INT bitsize
;
4682 HOST_WIDE_INT bitpos
= 0;
4684 rtx to_rtx
= target
;
4686 /* Just ignore missing fields. We cleared the whole
4687 structure, above, if any fields are missing. */
4691 if (cleared
&& initializer_zerop (value
))
4694 if (host_integerp (DECL_SIZE (field
), 1))
4695 bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
4699 mode
= DECL_MODE (field
);
4700 if (DECL_BIT_FIELD (field
))
4703 offset
= DECL_FIELD_OFFSET (field
);
4704 if (host_integerp (offset
, 0)
4705 && host_integerp (bit_position (field
), 0))
4707 bitpos
= int_bit_position (field
);
4711 bitpos
= tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 0);
4718 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
4719 make_tree (TREE_TYPE (exp
),
4722 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, 0);
4723 gcc_assert (MEM_P (to_rtx
));
4725 #ifdef POINTERS_EXTEND_UNSIGNED
4726 if (GET_MODE (offset_rtx
) != Pmode
)
4727 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
4729 if (GET_MODE (offset_rtx
) != ptr_mode
)
4730 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
4733 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4734 highest_pow2_factor (offset
));
4737 #ifdef WORD_REGISTER_OPERATIONS
4738 /* If this initializes a field that is smaller than a
4739 word, at the start of a word, try to widen it to a full
4740 word. This special case allows us to output C++ member
4741 function initializations in a form that the optimizers
4744 && bitsize
< BITS_PER_WORD
4745 && bitpos
% BITS_PER_WORD
== 0
4746 && GET_MODE_CLASS (mode
) == MODE_INT
4747 && TREE_CODE (value
) == INTEGER_CST
4749 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
4751 tree type
= TREE_TYPE (value
);
4753 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
4755 type
= lang_hooks
.types
.type_for_size
4756 (BITS_PER_WORD
, TYPE_UNSIGNED (type
));
4757 value
= convert (type
, value
);
4760 if (BYTES_BIG_ENDIAN
)
4762 = fold (build2 (LSHIFT_EXPR
, type
, value
,
4763 build_int_cst (NULL_TREE
,
4764 BITS_PER_WORD
- bitsize
)));
4765 bitsize
= BITS_PER_WORD
;
4770 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
4771 && DECL_NONADDRESSABLE_P (field
))
4773 to_rtx
= copy_rtx (to_rtx
);
4774 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
4777 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
4778 value
, type
, cleared
,
4779 get_alias_set (TREE_TYPE (field
)));
4789 tree elttype
= TREE_TYPE (type
);
4791 HOST_WIDE_INT minelt
= 0;
4792 HOST_WIDE_INT maxelt
= 0;
4794 domain
= TYPE_DOMAIN (type
);
4795 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
4796 && TYPE_MAX_VALUE (domain
)
4797 && host_integerp (TYPE_MIN_VALUE (domain
), 0)
4798 && host_integerp (TYPE_MAX_VALUE (domain
), 0));
4800 /* If we have constant bounds for the range of the type, get them. */
4803 minelt
= tree_low_cst (TYPE_MIN_VALUE (domain
), 0);
4804 maxelt
= tree_low_cst (TYPE_MAX_VALUE (domain
), 0);
4807 /* If the constructor has fewer elements than the array, clear
4808 the whole array first. Similarly if this is static
4809 constructor of a non-BLKmode object. */
4812 else if (REG_P (target
) && TREE_STATIC (exp
))
4816 HOST_WIDE_INT count
= 0, zero_count
= 0;
4817 need_to_clear
= ! const_bounds_p
;
4819 /* This loop is a more accurate version of the loop in
4820 mostly_zeros_p (it handles RANGE_EXPR in an index). It
4821 is also needed to check for missing elements. */
4822 for (elt
= CONSTRUCTOR_ELTS (exp
);
4823 elt
!= NULL_TREE
&& ! need_to_clear
;
4824 elt
= TREE_CHAIN (elt
))
4826 tree index
= TREE_PURPOSE (elt
);
4827 HOST_WIDE_INT this_node_count
;
4829 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
4831 tree lo_index
= TREE_OPERAND (index
, 0);
4832 tree hi_index
= TREE_OPERAND (index
, 1);
4834 if (! host_integerp (lo_index
, 1)
4835 || ! host_integerp (hi_index
, 1))
4841 this_node_count
= (tree_low_cst (hi_index
, 1)
4842 - tree_low_cst (lo_index
, 1) + 1);
4845 this_node_count
= 1;
4847 count
+= this_node_count
;
4848 if (mostly_zeros_p (TREE_VALUE (elt
)))
4849 zero_count
+= this_node_count
;
4852 /* Clear the entire array first if there are any missing
4853 elements, or if the incidence of zero elements is >=
4856 && (count
< maxelt
- minelt
+ 1
4857 || 4 * zero_count
>= 3 * count
))
4861 if (need_to_clear
&& size
> 0)
4864 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
4866 clear_storage (target
, GEN_INT (size
));
4870 if (!cleared
&& REG_P (target
))
4871 /* Inform later passes that the old value is dead. */
4872 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
4874 /* Store each element of the constructor into the
4875 corresponding element of TARGET, determined by counting the
4877 for (elt
= CONSTRUCTOR_ELTS (exp
), i
= 0;
4879 elt
= TREE_CHAIN (elt
), i
++)
4881 enum machine_mode mode
;
4882 HOST_WIDE_INT bitsize
;
4883 HOST_WIDE_INT bitpos
;
4885 tree value
= TREE_VALUE (elt
);
4886 tree index
= TREE_PURPOSE (elt
);
4887 rtx xtarget
= target
;
4889 if (cleared
&& initializer_zerop (value
))
4892 unsignedp
= TYPE_UNSIGNED (elttype
);
4893 mode
= TYPE_MODE (elttype
);
4894 if (mode
== BLKmode
)
4895 bitsize
= (host_integerp (TYPE_SIZE (elttype
), 1)
4896 ? tree_low_cst (TYPE_SIZE (elttype
), 1)
4899 bitsize
= GET_MODE_BITSIZE (mode
);
4901 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
4903 tree lo_index
= TREE_OPERAND (index
, 0);
4904 tree hi_index
= TREE_OPERAND (index
, 1);
4905 rtx index_r
, pos_rtx
;
4906 HOST_WIDE_INT lo
, hi
, count
;
4909 /* If the range is constant and "small", unroll the loop. */
4911 && host_integerp (lo_index
, 0)
4912 && host_integerp (hi_index
, 0)
4913 && (lo
= tree_low_cst (lo_index
, 0),
4914 hi
= tree_low_cst (hi_index
, 0),
4915 count
= hi
- lo
+ 1,
4918 || (host_integerp (TYPE_SIZE (elttype
), 1)
4919 && (tree_low_cst (TYPE_SIZE (elttype
), 1) * count
4922 lo
-= minelt
; hi
-= minelt
;
4923 for (; lo
<= hi
; lo
++)
4925 bitpos
= lo
* tree_low_cst (TYPE_SIZE (elttype
), 0);
4928 && !MEM_KEEP_ALIAS_SET_P (target
)
4929 && TREE_CODE (type
) == ARRAY_TYPE
4930 && TYPE_NONALIASED_COMPONENT (type
))
4932 target
= copy_rtx (target
);
4933 MEM_KEEP_ALIAS_SET_P (target
) = 1;
4936 store_constructor_field
4937 (target
, bitsize
, bitpos
, mode
, value
, type
, cleared
,
4938 get_alias_set (elttype
));
4943 rtx loop_start
= gen_label_rtx ();
4944 rtx loop_end
= gen_label_rtx ();
4947 expand_expr (hi_index
, NULL_RTX
, VOIDmode
, 0);
4948 unsignedp
= TYPE_UNSIGNED (domain
);
4950 index
= build_decl (VAR_DECL
, NULL_TREE
, domain
);
4953 = gen_reg_rtx (promote_mode (domain
, DECL_MODE (index
),
4955 SET_DECL_RTL (index
, index_r
);
4956 store_expr (lo_index
, index_r
, 0);
4958 /* Build the head of the loop. */
4959 do_pending_stack_adjust ();
4960 emit_label (loop_start
);
4962 /* Assign value to element index. */
4964 = convert (ssizetype
,
4965 fold (build2 (MINUS_EXPR
, TREE_TYPE (index
),
4966 index
, TYPE_MIN_VALUE (domain
))));
4967 position
= size_binop (MULT_EXPR
, position
,
4969 TYPE_SIZE_UNIT (elttype
)));
4971 pos_rtx
= expand_expr (position
, 0, VOIDmode
, 0);
4972 xtarget
= offset_address (target
, pos_rtx
,
4973 highest_pow2_factor (position
));
4974 xtarget
= adjust_address (xtarget
, mode
, 0);
4975 if (TREE_CODE (value
) == CONSTRUCTOR
)
4976 store_constructor (value
, xtarget
, cleared
,
4977 bitsize
/ BITS_PER_UNIT
);
4979 store_expr (value
, xtarget
, 0);
4981 /* Generate a conditional jump to exit the loop. */
4982 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
4984 jumpif (exit_cond
, loop_end
);
4986 /* Update the loop counter, and jump to the head of
4988 expand_assignment (index
,
4989 build2 (PLUS_EXPR
, TREE_TYPE (index
),
4990 index
, integer_one_node
));
4992 emit_jump (loop_start
);
4994 /* Build the end of the loop. */
4995 emit_label (loop_end
);
4998 else if ((index
!= 0 && ! host_integerp (index
, 0))
4999 || ! host_integerp (TYPE_SIZE (elttype
), 1))
5004 index
= ssize_int (1);
5007 index
= fold_convert (ssizetype
,
5008 fold (build2 (MINUS_EXPR
,
5011 TYPE_MIN_VALUE (domain
))));
5013 position
= size_binop (MULT_EXPR
, index
,
5015 TYPE_SIZE_UNIT (elttype
)));
5016 xtarget
= offset_address (target
,
5017 expand_expr (position
, 0, VOIDmode
, 0),
5018 highest_pow2_factor (position
));
5019 xtarget
= adjust_address (xtarget
, mode
, 0);
5020 store_expr (value
, xtarget
, 0);
5025 bitpos
= ((tree_low_cst (index
, 0) - minelt
)
5026 * tree_low_cst (TYPE_SIZE (elttype
), 1));
5028 bitpos
= (i
* tree_low_cst (TYPE_SIZE (elttype
), 1));
5030 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
5031 && TREE_CODE (type
) == ARRAY_TYPE
5032 && TYPE_NONALIASED_COMPONENT (type
))
5034 target
= copy_rtx (target
);
5035 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5037 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
5038 type
, cleared
, get_alias_set (elttype
));
5050 tree elttype
= TREE_TYPE (type
);
5051 int elt_size
= tree_low_cst (TYPE_SIZE (elttype
), 1);
5052 enum machine_mode eltmode
= TYPE_MODE (elttype
);
5053 HOST_WIDE_INT bitsize
;
5054 HOST_WIDE_INT bitpos
;
5055 rtvec vector
= NULL
;
5058 gcc_assert (eltmode
!= BLKmode
);
5060 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
5061 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
5063 enum machine_mode mode
= GET_MODE (target
);
5065 icode
= (int) vec_init_optab
->handlers
[mode
].insn_code
;
5066 if (icode
!= CODE_FOR_nothing
)
5070 vector
= rtvec_alloc (n_elts
);
5071 for (i
= 0; i
< n_elts
; i
++)
5072 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
5076 /* If the constructor has fewer elements than the vector,
5077 clear the whole array first. Similarly if this is static
5078 constructor of a non-BLKmode object. */
5081 else if (REG_P (target
) && TREE_STATIC (exp
))
5085 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
5087 for (elt
= CONSTRUCTOR_ELTS (exp
);
5089 elt
= TREE_CHAIN (elt
))
5091 int n_elts_here
= tree_low_cst
5092 (int_const_binop (TRUNC_DIV_EXPR
,
5093 TYPE_SIZE (TREE_TYPE (TREE_VALUE (elt
))),
5094 TYPE_SIZE (elttype
), 0), 1);
5096 count
+= n_elts_here
;
5097 if (mostly_zeros_p (TREE_VALUE (elt
)))
5098 zero_count
+= n_elts_here
;
5101 /* Clear the entire vector first if there are any missing elements,
5102 or if the incidence of zero elements is >= 75%. */
5103 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
5106 if (need_to_clear
&& size
> 0 && !vector
)
5109 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5111 clear_storage (target
, GEN_INT (size
));
5115 if (!cleared
&& REG_P (target
))
5116 /* Inform later passes that the old value is dead. */
5117 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
5119 /* Store each element of the constructor into the corresponding
5120 element of TARGET, determined by counting the elements. */
5121 for (elt
= CONSTRUCTOR_ELTS (exp
), i
= 0;
5123 elt
= TREE_CHAIN (elt
), i
+= bitsize
/ elt_size
)
5125 tree value
= TREE_VALUE (elt
);
5126 tree index
= TREE_PURPOSE (elt
);
5127 HOST_WIDE_INT eltpos
;
5129 bitsize
= tree_low_cst (TYPE_SIZE (TREE_TYPE (value
)), 1);
5130 if (cleared
&& initializer_zerop (value
))
5134 eltpos
= tree_low_cst (index
, 1);
5140 /* Vector CONSTRUCTORs should only be built from smaller
5141 vectors in the case of BLKmode vectors. */
5142 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
5143 RTVEC_ELT (vector
, eltpos
)
5144 = expand_expr (value
, NULL_RTX
, VOIDmode
, 0);
5148 enum machine_mode value_mode
=
5149 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
5150 ? TYPE_MODE (TREE_TYPE (value
))
5152 bitpos
= eltpos
* elt_size
;
5153 store_constructor_field (target
, bitsize
, bitpos
,
5154 value_mode
, value
, type
,
5155 cleared
, get_alias_set (elttype
));
5160 emit_insn (GEN_FCN (icode
)
5162 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
5171 /* Store the value of EXP (an expression tree)
5172 into a subfield of TARGET which has mode MODE and occupies
5173 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5174 If MODE is VOIDmode, it means that we are storing into a bit-field.
5176 Always return const0_rtx unless we have something particular to
5179 TYPE is the type of the underlying object,
5181 ALIAS_SET is the alias set for the destination. This value will
5182 (in general) be different from that for TARGET, since TARGET is a
5183 reference to the containing structure. */
5186 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
5187 enum machine_mode mode
, tree exp
, tree type
, int alias_set
)
5189 HOST_WIDE_INT width_mask
= 0;
5191 if (TREE_CODE (exp
) == ERROR_MARK
)
5194 /* If we have nothing to store, do nothing unless the expression has
5197 return expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
5198 else if (bitsize
>= 0 && bitsize
< HOST_BITS_PER_WIDE_INT
)
5199 width_mask
= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
5201 /* If we are storing into an unaligned field of an aligned union that is
5202 in a register, we may have the mode of TARGET being an integer mode but
5203 MODE == BLKmode. In that case, get an aligned object whose size and
5204 alignment are the same as TARGET and store TARGET into it (we can avoid
5205 the store if the field being stored is the entire width of TARGET). Then
5206 call ourselves recursively to store the field into a BLKmode version of
5207 that object. Finally, load from the object into TARGET. This is not
5208 very efficient in general, but should only be slightly more expensive
5209 than the otherwise-required unaligned accesses. Perhaps this can be
5210 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5211 twice, once with emit_move_insn and once via store_field. */
5214 && (REG_P (target
) || GET_CODE (target
) == SUBREG
))
5216 rtx object
= assign_temp (type
, 0, 1, 1);
5217 rtx blk_object
= adjust_address (object
, BLKmode
, 0);
5219 if (bitsize
!= (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (target
)))
5220 emit_move_insn (object
, target
);
5222 store_field (blk_object
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
);
5224 emit_move_insn (target
, object
);
5226 /* We want to return the BLKmode version of the data. */
5230 if (GET_CODE (target
) == CONCAT
)
5232 /* We're storing into a struct containing a single __complex. */
5234 gcc_assert (!bitpos
);
5235 return store_expr (exp
, target
, 0);
5238 /* If the structure is in a register or if the component
5239 is a bit field, we cannot use addressing to access it.
5240 Use bit-field techniques or SUBREG to store in it. */
5242 if (mode
== VOIDmode
5243 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
5244 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
5245 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
5247 || GET_CODE (target
) == SUBREG
5248 /* If the field isn't aligned enough to store as an ordinary memref,
5249 store it as a bit field. */
5251 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
5252 || bitpos
% GET_MODE_ALIGNMENT (mode
))
5253 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
5254 || (bitpos
% BITS_PER_UNIT
!= 0)))
5255 /* If the RHS and field are a constant size and the size of the
5256 RHS isn't the same size as the bitfield, we must use bitfield
5259 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
5260 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0))
5264 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5265 implies a mask operation. If the precision is the same size as
5266 the field we're storing into, that mask is redundant. This is
5267 particularly common with bit field assignments generated by the
5269 if (TREE_CODE (exp
) == NOP_EXPR
)
5271 tree type
= TREE_TYPE (exp
);
5272 if (INTEGRAL_TYPE_P (type
)
5273 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
5274 && bitsize
== TYPE_PRECISION (type
))
5276 type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
5277 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
5278 exp
= TREE_OPERAND (exp
, 0);
5282 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, 0);
5284 /* If BITSIZE is narrower than the size of the type of EXP
5285 we will be narrowing TEMP. Normally, what's wanted are the
5286 low-order bits. However, if EXP's type is a record and this is
5287 big-endian machine, we want the upper BITSIZE bits. */
5288 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
5289 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
5290 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
5291 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
5292 size_int (GET_MODE_BITSIZE (GET_MODE (temp
))
5296 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5298 if (mode
!= VOIDmode
&& mode
!= BLKmode
5299 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
5300 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
5302 /* If the modes of TARGET and TEMP are both BLKmode, both
5303 must be in memory and BITPOS must be aligned on a byte
5304 boundary. If so, we simply do a block copy. */
5305 if (GET_MODE (target
) == BLKmode
&& GET_MODE (temp
) == BLKmode
)
5307 gcc_assert (MEM_P (target
) && MEM_P (temp
)
5308 && !(bitpos
% BITS_PER_UNIT
));
5310 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5311 emit_block_move (target
, temp
,
5312 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
5319 /* Store the value in the bitfield. */
5320 store_bit_field (target
, bitsize
, bitpos
, mode
, temp
);
5326 /* Now build a reference to just the desired component. */
5327 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
5329 if (to_rtx
== target
)
5330 to_rtx
= copy_rtx (to_rtx
);
5332 MEM_SET_IN_STRUCT_P (to_rtx
, 1);
5333 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
5334 set_mem_alias_set (to_rtx
, alias_set
);
5336 return store_expr (exp
, to_rtx
, 0);
5340 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5341 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5342 codes and find the ultimate containing object, which we return.
5344 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5345 bit position, and *PUNSIGNEDP to the signedness of the field.
5346 If the position of the field is variable, we store a tree
5347 giving the variable offset (in units) in *POFFSET.
5348 This offset is in addition to the bit position.
5349 If the position is not variable, we store 0 in *POFFSET.
5351 If any of the extraction expressions is volatile,
5352 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5354 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5355 is a mode that can be used to access the field. In that case, *PBITSIZE
5358 If the field describes a variable-sized object, *PMODE is set to
5359 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5360 this case, but the address of the object can be found.
5362 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5363 look through nodes that serve as markers of a greater alignment than
5364 the one that can be deduced from the expression. These nodes make it
5365 possible for front-ends to prevent temporaries from being created by
5366 the middle-end on alignment considerations. For that purpose, the
5367 normal operating mode at high-level is to always pass FALSE so that
5368 the ultimate containing object is really returned; moreover, the
5369 associated predicate handled_component_p will always return TRUE
5370 on these nodes, thus indicating that they are essentially handled
5371 by get_inner_reference. TRUE should only be passed when the caller
5372 is scanning the expression in order to build another representation
5373 and specifically knows how to handle these nodes; as such, this is
5374 the normal operating mode in the RTL expanders. */
5377 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
5378 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
5379 enum machine_mode
*pmode
, int *punsignedp
,
5380 int *pvolatilep
, bool keep_aligning
)
5383 enum machine_mode mode
= VOIDmode
;
5384 tree offset
= size_zero_node
;
5385 tree bit_offset
= bitsize_zero_node
;
5388 /* First get the mode, signedness, and size. We do this from just the
5389 outermost expression. */
5390 if (TREE_CODE (exp
) == COMPONENT_REF
)
5392 size_tree
= DECL_SIZE (TREE_OPERAND (exp
, 1));
5393 if (! DECL_BIT_FIELD (TREE_OPERAND (exp
, 1)))
5394 mode
= DECL_MODE (TREE_OPERAND (exp
, 1));
5396 *punsignedp
= DECL_UNSIGNED (TREE_OPERAND (exp
, 1));
5398 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
5400 size_tree
= TREE_OPERAND (exp
, 1);
5401 *punsignedp
= BIT_FIELD_REF_UNSIGNED (exp
);
5405 mode
= TYPE_MODE (TREE_TYPE (exp
));
5406 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
5408 if (mode
== BLKmode
)
5409 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
5411 *pbitsize
= GET_MODE_BITSIZE (mode
);
5416 if (! host_integerp (size_tree
, 1))
5417 mode
= BLKmode
, *pbitsize
= -1;
5419 *pbitsize
= tree_low_cst (size_tree
, 1);
5422 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5423 and find the ultimate containing object. */
5426 switch (TREE_CODE (exp
))
5429 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5430 TREE_OPERAND (exp
, 2));
5435 tree field
= TREE_OPERAND (exp
, 1);
5436 tree this_offset
= component_ref_field_offset (exp
);
5438 /* If this field hasn't been filled in yet, don't go past it.
5439 This should only happen when folding expressions made during
5440 type construction. */
5441 if (this_offset
== 0)
5444 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
5445 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5446 DECL_FIELD_BIT_OFFSET (field
));
5448 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5453 case ARRAY_RANGE_REF
:
5455 tree index
= TREE_OPERAND (exp
, 1);
5456 tree low_bound
= array_ref_low_bound (exp
);
5457 tree unit_size
= array_ref_element_size (exp
);
5459 /* We assume all arrays have sizes that are a multiple of a byte.
5460 First subtract the lower bound, if any, in the type of the
5461 index, then convert to sizetype and multiply by the size of
5462 the array element. */
5463 if (! integer_zerop (low_bound
))
5464 index
= fold (build2 (MINUS_EXPR
, TREE_TYPE (index
),
5467 offset
= size_binop (PLUS_EXPR
, offset
,
5468 size_binop (MULT_EXPR
,
5469 convert (sizetype
, index
),
5478 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5479 bitsize_int (*pbitsize
));
5482 case VIEW_CONVERT_EXPR
:
5483 if (keep_aligning
&& STRICT_ALIGNMENT
5484 && (TYPE_ALIGN (TREE_TYPE (exp
))
5485 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
5486 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
5487 < BIGGEST_ALIGNMENT
)
5488 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
5489 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
5497 /* If any reference in the chain is volatile, the effect is volatile. */
5498 if (TREE_THIS_VOLATILE (exp
))
5501 exp
= TREE_OPERAND (exp
, 0);
5505 /* If OFFSET is constant, see if we can return the whole thing as a
5506 constant bit position. Otherwise, split it up. */
5507 if (host_integerp (offset
, 0)
5508 && 0 != (tem
= size_binop (MULT_EXPR
, convert (bitsizetype
, offset
),
5510 && 0 != (tem
= size_binop (PLUS_EXPR
, tem
, bit_offset
))
5511 && host_integerp (tem
, 0))
5512 *pbitpos
= tree_low_cst (tem
, 0), *poffset
= 0;
5514 *pbitpos
= tree_low_cst (bit_offset
, 0), *poffset
= offset
;
5520 /* Return a tree of sizetype representing the size, in bytes, of the element
5521 of EXP, an ARRAY_REF. */
5524 array_ref_element_size (tree exp
)
5526 tree aligned_size
= TREE_OPERAND (exp
, 3);
5527 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5529 /* If a size was specified in the ARRAY_REF, it's the size measured
5530 in alignment units of the element type. So multiply by that value. */
5533 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5534 sizetype from another type of the same width and signedness. */
5535 if (TREE_TYPE (aligned_size
) != sizetype
)
5536 aligned_size
= fold_convert (sizetype
, aligned_size
);
5537 return size_binop (MULT_EXPR
, aligned_size
,
5538 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
5541 /* Otherwise, take the size from that of the element type. Substitute
5542 any PLACEHOLDER_EXPR that we have. */
5544 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
5547 /* Return a tree representing the lower bound of the array mentioned in
5548 EXP, an ARRAY_REF. */
5551 array_ref_low_bound (tree exp
)
5553 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5555 /* If a lower bound is specified in EXP, use it. */
5556 if (TREE_OPERAND (exp
, 2))
5557 return TREE_OPERAND (exp
, 2);
5559 /* Otherwise, if there is a domain type and it has a lower bound, use it,
5560 substituting for a PLACEHOLDER_EXPR as needed. */
5561 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
5562 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
5564 /* Otherwise, return a zero of the appropriate type. */
5565 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
5568 /* Return a tree representing the upper bound of the array mentioned in
5569 EXP, an ARRAY_REF. */
5572 array_ref_up_bound (tree exp
)
5574 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5576 /* If there is a domain type and it has an upper bound, use it, substituting
5577 for a PLACEHOLDER_EXPR as needed. */
5578 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
5579 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
5581 /* Otherwise fail. */
5585 /* Return a tree representing the offset, in bytes, of the field referenced
5586 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
5589 component_ref_field_offset (tree exp
)
5591 tree aligned_offset
= TREE_OPERAND (exp
, 2);
5592 tree field
= TREE_OPERAND (exp
, 1);
5594 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5595 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
5599 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5600 sizetype from another type of the same width and signedness. */
5601 if (TREE_TYPE (aligned_offset
) != sizetype
)
5602 aligned_offset
= fold_convert (sizetype
, aligned_offset
);
5603 return size_binop (MULT_EXPR
, aligned_offset
,
5604 size_int (DECL_OFFSET_ALIGN (field
) / BITS_PER_UNIT
));
5607 /* Otherwise, take the offset from that of the field. Substitute
5608 any PLACEHOLDER_EXPR that we have. */
5610 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
5613 /* Return 1 if T is an expression that get_inner_reference handles. */
5616 handled_component_p (tree t
)
5618 switch (TREE_CODE (t
))
5623 case ARRAY_RANGE_REF
:
5624 case VIEW_CONVERT_EXPR
:
5634 /* Given an rtx VALUE that may contain additions and multiplications, return
5635 an equivalent value that just refers to a register, memory, or constant.
5636 This is done by generating instructions to perform the arithmetic and
5637 returning a pseudo-register containing the value.
5639 The returned value may be a REG, SUBREG, MEM or constant. */
5642 force_operand (rtx value
, rtx target
)
5645 /* Use subtarget as the target for operand 0 of a binary operation. */
5646 rtx subtarget
= get_subtarget (target
);
5647 enum rtx_code code
= GET_CODE (value
);
5649 /* Check for subreg applied to an expression produced by loop optimizer. */
5651 && !REG_P (SUBREG_REG (value
))
5652 && !MEM_P (SUBREG_REG (value
)))
5654 value
= simplify_gen_subreg (GET_MODE (value
),
5655 force_reg (GET_MODE (SUBREG_REG (value
)),
5656 force_operand (SUBREG_REG (value
),
5658 GET_MODE (SUBREG_REG (value
)),
5659 SUBREG_BYTE (value
));
5660 code
= GET_CODE (value
);
5663 /* Check for a PIC address load. */
5664 if ((code
== PLUS
|| code
== MINUS
)
5665 && XEXP (value
, 0) == pic_offset_table_rtx
5666 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
5667 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
5668 || GET_CODE (XEXP (value
, 1)) == CONST
))
5671 subtarget
= gen_reg_rtx (GET_MODE (value
));
5672 emit_move_insn (subtarget
, value
);
5676 if (code
== ZERO_EXTEND
|| code
== SIGN_EXTEND
)
5679 target
= gen_reg_rtx (GET_MODE (value
));
5680 convert_move (target
, force_operand (XEXP (value
, 0), NULL
),
5681 code
== ZERO_EXTEND
);
5685 if (ARITHMETIC_P (value
))
5687 op2
= XEXP (value
, 1);
5688 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
5690 if (code
== MINUS
&& GET_CODE (op2
) == CONST_INT
)
5693 op2
= negate_rtx (GET_MODE (value
), op2
);
5696 /* Check for an addition with OP2 a constant integer and our first
5697 operand a PLUS of a virtual register and something else. In that
5698 case, we want to emit the sum of the virtual register and the
5699 constant first and then add the other value. This allows virtual
5700 register instantiation to simply modify the constant rather than
5701 creating another one around this addition. */
5702 if (code
== PLUS
&& GET_CODE (op2
) == CONST_INT
5703 && GET_CODE (XEXP (value
, 0)) == PLUS
5704 && REG_P (XEXP (XEXP (value
, 0), 0))
5705 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5706 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
5708 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
5709 XEXP (XEXP (value
, 0), 0), op2
,
5710 subtarget
, 0, OPTAB_LIB_WIDEN
);
5711 return expand_simple_binop (GET_MODE (value
), code
, temp
,
5712 force_operand (XEXP (XEXP (value
,
5714 target
, 0, OPTAB_LIB_WIDEN
);
5717 op1
= force_operand (XEXP (value
, 0), subtarget
);
5718 op2
= force_operand (op2
, NULL_RTX
);
5722 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
5724 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
5725 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5726 target
, 1, OPTAB_LIB_WIDEN
);
5728 return expand_divmod (0,
5729 FLOAT_MODE_P (GET_MODE (value
))
5730 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
5731 GET_MODE (value
), op1
, op2
, target
, 0);
5734 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
5738 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
5742 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
5746 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5747 target
, 0, OPTAB_LIB_WIDEN
);
5750 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5751 target
, 1, OPTAB_LIB_WIDEN
);
5754 if (UNARY_P (value
))
5756 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
5757 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
5760 #ifdef INSN_SCHEDULING
5761 /* On machines that have insn scheduling, we want all memory reference to be
5762 explicit, so we need to deal with such paradoxical SUBREGs. */
5763 if (GET_CODE (value
) == SUBREG
&& MEM_P (SUBREG_REG (value
))
5764 && (GET_MODE_SIZE (GET_MODE (value
))
5765 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value
)))))
5767 = simplify_gen_subreg (GET_MODE (value
),
5768 force_reg (GET_MODE (SUBREG_REG (value
)),
5769 force_operand (SUBREG_REG (value
),
5771 GET_MODE (SUBREG_REG (value
)),
5772 SUBREG_BYTE (value
));
5778 /* Subroutine of expand_expr: return nonzero iff there is no way that
5779 EXP can reference X, which is being modified. TOP_P is nonzero if this
5780 call is going to be used to determine whether we need a temporary
5781 for EXP, as opposed to a recursive call to this function.
5783 It is always safe for this routine to return zero since it merely
5784 searches for optimization opportunities. */
5787 safe_from_p (rtx x
, tree exp
, int top_p
)
5793 /* If EXP has varying size, we MUST use a target since we currently
5794 have no way of allocating temporaries of variable size
5795 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
5796 So we assume here that something at a higher level has prevented a
5797 clash. This is somewhat bogus, but the best we can do. Only
5798 do this when X is BLKmode and when we are at the top level. */
5799 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
5800 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
5801 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
5802 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
5803 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
5805 && GET_MODE (x
) == BLKmode
)
5806 /* If X is in the outgoing argument area, it is always safe. */
5808 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
5809 || (GET_CODE (XEXP (x
, 0)) == PLUS
5810 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
5813 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
5814 find the underlying pseudo. */
5815 if (GET_CODE (x
) == SUBREG
)
5818 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
5822 /* Now look at our tree code and possibly recurse. */
5823 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
5825 case tcc_declaration
:
5826 exp_rtl
= DECL_RTL_IF_SET (exp
);
5832 case tcc_exceptional
:
5833 if (TREE_CODE (exp
) == TREE_LIST
)
5837 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
5839 exp
= TREE_CHAIN (exp
);
5842 if (TREE_CODE (exp
) != TREE_LIST
)
5843 return safe_from_p (x
, exp
, 0);
5846 else if (TREE_CODE (exp
) == ERROR_MARK
)
5847 return 1; /* An already-visited SAVE_EXPR? */
5852 /* The only case we look at here is the DECL_INITIAL inside a
5854 return (TREE_CODE (exp
) != DECL_EXPR
5855 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
5856 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
5857 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
5860 case tcc_comparison
:
5861 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
5866 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
5868 case tcc_expression
:
5870 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
5871 the expression. If it is set, we conflict iff we are that rtx or
5872 both are in memory. Otherwise, we check all operands of the
5873 expression recursively. */
5875 switch (TREE_CODE (exp
))
5878 /* If the operand is static or we are static, we can't conflict.
5879 Likewise if we don't conflict with the operand at all. */
5880 if (staticp (TREE_OPERAND (exp
, 0))
5881 || TREE_STATIC (exp
)
5882 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
5885 /* Otherwise, the only way this can conflict is if we are taking
5886 the address of a DECL a that address if part of X, which is
5888 exp
= TREE_OPERAND (exp
, 0);
5891 if (!DECL_RTL_SET_P (exp
)
5892 || !MEM_P (DECL_RTL (exp
)))
5895 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
5899 case MISALIGNED_INDIRECT_REF
:
5900 case ALIGN_INDIRECT_REF
:
5903 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
5904 get_alias_set (exp
)))
5909 /* Assume that the call will clobber all hard registers and
5911 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
5916 case WITH_CLEANUP_EXPR
:
5917 case CLEANUP_POINT_EXPR
:
5918 /* Lowered by gimplify.c. */
5922 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
5928 /* If we have an rtx, we do not need to scan our operands. */
5932 nops
= TREE_CODE_LENGTH (TREE_CODE (exp
));
5933 for (i
= 0; i
< nops
; i
++)
5934 if (TREE_OPERAND (exp
, i
) != 0
5935 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
5938 /* If this is a language-specific tree code, it may require
5939 special handling. */
5940 if ((unsigned int) TREE_CODE (exp
)
5941 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
5942 && !lang_hooks
.safe_from_p (x
, exp
))
5947 /* Should never get a type here. */
5951 /* If we have an rtl, find any enclosed object. Then see if we conflict
5955 if (GET_CODE (exp_rtl
) == SUBREG
)
5957 exp_rtl
= SUBREG_REG (exp_rtl
);
5959 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
5963 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
5964 are memory and they conflict. */
5965 return ! (rtx_equal_p (x
, exp_rtl
)
5966 || (MEM_P (x
) && MEM_P (exp_rtl
)
5967 && true_dependence (exp_rtl
, VOIDmode
, x
,
5968 rtx_addr_varies_p
)));
5971 /* If we reach here, it is safe. */
5976 /* Return the highest power of two that EXP is known to be a multiple of.
5977 This is used in updating alignment of MEMs in array references. */
5979 static unsigned HOST_WIDE_INT
5980 highest_pow2_factor (tree exp
)
5982 unsigned HOST_WIDE_INT c0
, c1
;
5984 switch (TREE_CODE (exp
))
5987 /* We can find the lowest bit that's a one. If the low
5988 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
5989 We need to handle this case since we can find it in a COND_EXPR,
5990 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
5991 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
5993 if (TREE_CONSTANT_OVERFLOW (exp
))
5994 return BIGGEST_ALIGNMENT
;
5997 /* Note: tree_low_cst is intentionally not used here,
5998 we don't care about the upper bits. */
5999 c0
= TREE_INT_CST_LOW (exp
);
6001 return c0
? c0
: BIGGEST_ALIGNMENT
;
6005 case PLUS_EXPR
: case MINUS_EXPR
: case MIN_EXPR
: case MAX_EXPR
:
6006 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6007 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6008 return MIN (c0
, c1
);
6011 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6012 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6015 case ROUND_DIV_EXPR
: case TRUNC_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6017 if (integer_pow2p (TREE_OPERAND (exp
, 1))
6018 && host_integerp (TREE_OPERAND (exp
, 1), 1))
6020 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6021 c1
= tree_low_cst (TREE_OPERAND (exp
, 1), 1);
6022 return MAX (1, c0
/ c1
);
6026 case NON_LVALUE_EXPR
: case NOP_EXPR
: case CONVERT_EXPR
:
6028 return highest_pow2_factor (TREE_OPERAND (exp
, 0));
6031 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
6034 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6035 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 2));
6036 return MIN (c0
, c1
);
6045 /* Similar, except that the alignment requirements of TARGET are
6046 taken into account. Assume it is at least as aligned as its
6047 type, unless it is a COMPONENT_REF in which case the layout of
6048 the structure gives the alignment. */
6050 static unsigned HOST_WIDE_INT
6051 highest_pow2_factor_for_target (tree target
, tree exp
)
6053 unsigned HOST_WIDE_INT target_align
, factor
;
6055 factor
= highest_pow2_factor (exp
);
6056 if (TREE_CODE (target
) == COMPONENT_REF
)
6057 target_align
= DECL_ALIGN_UNIT (TREE_OPERAND (target
, 1));
6059 target_align
= TYPE_ALIGN_UNIT (TREE_TYPE (target
));
6060 return MAX (factor
, target_align
);
6063 /* Expands variable VAR. */
6066 expand_var (tree var
)
6068 if (DECL_EXTERNAL (var
))
6071 if (TREE_STATIC (var
))
6072 /* If this is an inlined copy of a static local variable,
6073 look up the original decl. */
6074 var
= DECL_ORIGIN (var
);
6076 if (TREE_STATIC (var
)
6077 ? !TREE_ASM_WRITTEN (var
)
6078 : !DECL_RTL_SET_P (var
))
6080 if (TREE_CODE (var
) == VAR_DECL
&& DECL_VALUE_EXPR (var
))
6081 /* Should be ignored. */;
6082 else if (lang_hooks
.expand_decl (var
))
6084 else if (TREE_CODE (var
) == VAR_DECL
&& !TREE_STATIC (var
))
6086 else if (TREE_CODE (var
) == VAR_DECL
&& TREE_STATIC (var
))
6087 rest_of_decl_compilation (var
, 0, 0);
6089 /* No expansion needed. */
6090 gcc_assert (TREE_CODE (var
) == TYPE_DECL
6091 || TREE_CODE (var
) == CONST_DECL
6092 || TREE_CODE (var
) == FUNCTION_DECL
6093 || TREE_CODE (var
) == LABEL_DECL
);
6097 /* Subroutine of expand_expr. Expand the two operands of a binary
6098 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6099 The value may be stored in TARGET if TARGET is nonzero. The
6100 MODIFIER argument is as documented by expand_expr. */
6103 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
6104 enum expand_modifier modifier
)
6106 if (! safe_from_p (target
, exp1
, 1))
6108 if (operand_equal_p (exp0
, exp1
, 0))
6110 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6111 *op1
= copy_rtx (*op0
);
6115 /* If we need to preserve evaluation order, copy exp0 into its own
6116 temporary variable so that it can't be clobbered by exp1. */
6117 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
6118 exp0
= save_expr (exp0
);
6119 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6120 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
6125 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6126 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6129 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6130 enum expand_modifier modifier
)
6132 rtx result
, subtarget
;
6134 HOST_WIDE_INT bitsize
, bitpos
;
6135 int volatilep
, unsignedp
;
6136 enum machine_mode mode1
;
6138 /* If we are taking the address of a constant and are at the top level,
6139 we have to use output_constant_def since we can't call force_const_mem
6141 /* ??? This should be considered a front-end bug. We should not be
6142 generating ADDR_EXPR of something that isn't an LVALUE. The only
6143 exception here is STRING_CST. */
6144 if (TREE_CODE (exp
) == CONSTRUCTOR
6145 || CONSTANT_CLASS_P (exp
))
6146 return XEXP (output_constant_def (exp
, 0), 0);
6148 /* Everything must be something allowed by is_gimple_addressable. */
6149 switch (TREE_CODE (exp
))
6152 /* This case will happen via recursion for &a->b. */
6153 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, EXPAND_NORMAL
);
6156 /* Recurse and make the output_constant_def clause above handle this. */
6157 return expand_expr_addr_expr_1 (DECL_INITIAL (exp
), target
,
6161 /* The real part of the complex number is always first, therefore
6162 the address is the same as the address of the parent object. */
6165 inner
= TREE_OPERAND (exp
, 0);
6169 /* The imaginary part of the complex number is always second.
6170 The expression is therefore always offset by the size of the
6173 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
6174 inner
= TREE_OPERAND (exp
, 0);
6178 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6179 expand_expr, as that can have various side effects; LABEL_DECLs for
6180 example, may not have their DECL_RTL set yet. Assume language
6181 specific tree nodes can be expanded in some interesting way. */
6183 || TREE_CODE (exp
) >= LAST_AND_UNUSED_TREE_CODE
)
6185 result
= expand_expr (exp
, target
, tmode
,
6186 modifier
== EXPAND_INITIALIZER
6187 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
6189 /* If the DECL isn't in memory, then the DECL wasn't properly
6190 marked TREE_ADDRESSABLE, which will be either a front-end
6191 or a tree optimizer bug. */
6192 gcc_assert (GET_CODE (result
) == MEM
);
6193 result
= XEXP (result
, 0);
6195 /* ??? Is this needed anymore? */
6196 if (DECL_P (exp
) && !TREE_USED (exp
) == 0)
6198 assemble_external (exp
);
6199 TREE_USED (exp
) = 1;
6202 if (modifier
!= EXPAND_INITIALIZER
6203 && modifier
!= EXPAND_CONST_ADDRESS
)
6204 result
= force_operand (result
, target
);
6208 /* Pass FALSE as the last argument to get_inner_reference although
6209 we are expanding to RTL. The rationale is that we know how to
6210 handle "aligning nodes" here: we can just bypass them because
6211 they won't change the final object whose address will be returned
6212 (they actually exist only for that purpose). */
6213 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
6214 &mode1
, &unsignedp
, &volatilep
, false);
6218 /* We must have made progress. */
6219 gcc_assert (inner
!= exp
);
6221 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
6222 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
);
6228 if (modifier
!= EXPAND_NORMAL
)
6229 result
= force_operand (result
, NULL
);
6230 tmp
= expand_expr (offset
, NULL
, tmode
, EXPAND_NORMAL
);
6232 result
= convert_memory_address (tmode
, result
);
6233 tmp
= convert_memory_address (tmode
, tmp
);
6235 if (modifier
== EXPAND_SUM
)
6236 result
= gen_rtx_PLUS (tmode
, result
, tmp
);
6239 subtarget
= bitpos
? NULL_RTX
: target
;
6240 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
6241 1, OPTAB_LIB_WIDEN
);
6247 /* Someone beforehand should have rejected taking the address
6248 of such an object. */
6249 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
6251 result
= plus_constant (result
, bitpos
/ BITS_PER_UNIT
);
6252 if (modifier
< EXPAND_SUM
)
6253 result
= force_operand (result
, target
);
6259 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6260 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6263 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
6264 enum expand_modifier modifier
)
6266 enum machine_mode rmode
;
6269 /* Target mode of VOIDmode says "whatever's natural". */
6270 if (tmode
== VOIDmode
)
6271 tmode
= TYPE_MODE (TREE_TYPE (exp
));
6273 /* We can get called with some Weird Things if the user does silliness
6274 like "(short) &a". In that case, convert_memory_address won't do
6275 the right thing, so ignore the given target mode. */
6276 if (tmode
!= Pmode
&& tmode
!= ptr_mode
)
6279 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
6282 /* Despite expand_expr claims concerning ignoring TMODE when not
6283 strictly convenient, stuff breaks if we don't honor it. Note
6284 that combined with the above, we only do this for pointer modes. */
6285 rmode
= GET_MODE (result
);
6286 if (rmode
== VOIDmode
)
6289 result
= convert_memory_address (tmode
, result
);
6295 /* expand_expr: generate code for computing expression EXP.
6296 An rtx for the computed value is returned. The value is never null.
6297 In the case of a void EXP, const0_rtx is returned.
6299 The value may be stored in TARGET if TARGET is nonzero.
6300 TARGET is just a suggestion; callers must assume that
6301 the rtx returned may not be the same as TARGET.
6303 If TARGET is CONST0_RTX, it means that the value will be ignored.
6305 If TMODE is not VOIDmode, it suggests generating the
6306 result in mode TMODE. But this is done only when convenient.
6307 Otherwise, TMODE is ignored and the value generated in its natural mode.
6308 TMODE is just a suggestion; callers must assume that
6309 the rtx returned may not have mode TMODE.
6311 Note that TARGET may have neither TMODE nor MODE. In that case, it
6312 probably will not be used.
6314 If MODIFIER is EXPAND_SUM then when EXP is an addition
6315 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6316 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6317 products as above, or REG or MEM, or constant.
6318 Ordinarily in such cases we would output mul or add instructions
6319 and then return a pseudo reg containing the sum.
6321 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6322 it also marks a label as absolutely required (it can't be dead).
6323 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6324 This is used for outputting expressions used in initializers.
6326 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6327 with a constant address even if that address is not normally legitimate.
6328 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6330 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6331 a call parameter. Such targets require special care as we haven't yet
6332 marked TARGET so that it's safe from being trashed by libcalls. We
6333 don't want to use TARGET for anything but the final result;
6334 Intermediate values must go elsewhere. Additionally, calls to
6335 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6337 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6338 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6339 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
6340 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6343 static rtx
expand_expr_real_1 (tree
, rtx
, enum machine_mode
,
6344 enum expand_modifier
, rtx
*);
6347 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
6348 enum expand_modifier modifier
, rtx
*alt_rtl
)
6351 rtx ret
, last
= NULL
;
6353 /* Handle ERROR_MARK before anybody tries to access its type. */
6354 if (TREE_CODE (exp
) == ERROR_MARK
6355 || TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
)
6357 ret
= CONST0_RTX (tmode
);
6358 return ret
? ret
: const0_rtx
;
6361 if (flag_non_call_exceptions
)
6363 rn
= lookup_stmt_eh_region (exp
);
6364 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
6366 last
= get_last_insn ();
6369 /* If this is an expression of some kind and it has an associated line
6370 number, then emit the line number before expanding the expression.
6372 We need to save and restore the file and line information so that
6373 errors discovered during expansion are emitted with the right
6374 information. It would be better of the diagnostic routines
6375 used the file/line information embedded in the tree nodes rather
6377 if (cfun
&& EXPR_HAS_LOCATION (exp
))
6379 location_t saved_location
= input_location
;
6380 input_location
= EXPR_LOCATION (exp
);
6381 emit_line_note (input_location
);
6383 /* Record where the insns produced belong. */
6384 record_block_change (TREE_BLOCK (exp
));
6386 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
6388 input_location
= saved_location
;
6392 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
6395 /* If using non-call exceptions, mark all insns that may trap.
6396 expand_call() will mark CALL_INSNs before we get to this code,
6397 but it doesn't handle libcalls, and these may trap. */
6401 for (insn
= next_real_insn (last
); insn
;
6402 insn
= next_real_insn (insn
))
6404 if (! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
6405 /* If we want exceptions for non-call insns, any
6406 may_trap_p instruction may throw. */
6407 && GET_CODE (PATTERN (insn
)) != CLOBBER
6408 && GET_CODE (PATTERN (insn
)) != USE
6409 && (CALL_P (insn
) || may_trap_p (PATTERN (insn
))))
6411 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_EH_REGION
, GEN_INT (rn
),
6421 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6422 enum expand_modifier modifier
, rtx
*alt_rtl
)
6425 tree type
= TREE_TYPE (exp
);
6427 enum machine_mode mode
;
6428 enum tree_code code
= TREE_CODE (exp
);
6430 rtx subtarget
, original_target
;
6433 bool reduce_bit_field
= false;
6434 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
6435 ? reduce_to_bit_field_precision ((expr), \
6440 mode
= TYPE_MODE (type
);
6441 unsignedp
= TYPE_UNSIGNED (type
);
6442 if (lang_hooks
.reduce_bit_field_operations
6443 && TREE_CODE (type
) == INTEGER_TYPE
6444 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
))
6446 /* An operation in what may be a bit-field type needs the
6447 result to be reduced to the precision of the bit-field type,
6448 which is narrower than that of the type's mode. */
6449 reduce_bit_field
= true;
6450 if (modifier
== EXPAND_STACK_PARM
)
6454 /* Use subtarget as the target for operand 0 of a binary operation. */
6455 subtarget
= get_subtarget (target
);
6456 original_target
= target
;
6457 ignore
= (target
== const0_rtx
6458 || ((code
== NON_LVALUE_EXPR
|| code
== NOP_EXPR
6459 || code
== CONVERT_EXPR
|| code
== COND_EXPR
6460 || code
== VIEW_CONVERT_EXPR
)
6461 && TREE_CODE (type
) == VOID_TYPE
));
6463 /* If we are going to ignore this result, we need only do something
6464 if there is a side-effect somewhere in the expression. If there
6465 is, short-circuit the most common cases here. Note that we must
6466 not call expand_expr with anything but const0_rtx in case this
6467 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6471 if (! TREE_SIDE_EFFECTS (exp
))
6474 /* Ensure we reference a volatile object even if value is ignored, but
6475 don't do this if all we are doing is taking its address. */
6476 if (TREE_THIS_VOLATILE (exp
)
6477 && TREE_CODE (exp
) != FUNCTION_DECL
6478 && mode
!= VOIDmode
&& mode
!= BLKmode
6479 && modifier
!= EXPAND_CONST_ADDRESS
)
6481 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
6483 temp
= copy_to_reg (temp
);
6487 if (TREE_CODE_CLASS (code
) == tcc_unary
6488 || code
== COMPONENT_REF
|| code
== INDIRECT_REF
)
6489 return expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
6492 else if (TREE_CODE_CLASS (code
) == tcc_binary
6493 || TREE_CODE_CLASS (code
) == tcc_comparison
6494 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
6496 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6497 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6500 else if (code
== BIT_FIELD_REF
)
6502 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6503 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6504 expand_expr (TREE_OPERAND (exp
, 2), const0_rtx
, VOIDmode
, modifier
);
6511 /* If will do cse, generate all results into pseudo registers
6512 since 1) that allows cse to find more things
6513 and 2) otherwise cse could produce an insn the machine
6514 cannot support. An exception is a CONSTRUCTOR into a multi-word
6515 MEM: that's much more likely to be most efficient into the MEM.
6516 Another is a CALL_EXPR which must return in memory. */
6518 if (! cse_not_expected
&& mode
!= BLKmode
&& target
6519 && (!REG_P (target
) || REGNO (target
) < FIRST_PSEUDO_REGISTER
)
6520 && ! (code
== CONSTRUCTOR
&& GET_MODE_SIZE (mode
) > UNITS_PER_WORD
)
6521 && ! (code
== CALL_EXPR
&& aggregate_value_p (exp
, exp
)))
6528 tree function
= decl_function_context (exp
);
6530 temp
= label_rtx (exp
);
6531 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
6533 if (function
!= current_function_decl
6535 LABEL_REF_NONLOCAL_P (temp
) = 1;
6537 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
6542 return expand_expr_real_1 (SSA_NAME_VAR (exp
), target
, tmode
, modifier
,
6547 /* If a static var's type was incomplete when the decl was written,
6548 but the type is complete now, lay out the decl now. */
6549 if (DECL_SIZE (exp
) == 0
6550 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
6551 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
6552 layout_decl (exp
, 0);
6554 /* ... fall through ... */
6558 gcc_assert (DECL_RTL (exp
));
6560 /* Ensure variable marked as used even if it doesn't go through
6561 a parser. If it hasn't be used yet, write out an external
6563 if (! TREE_USED (exp
))
6565 assemble_external (exp
);
6566 TREE_USED (exp
) = 1;
6569 /* Show we haven't gotten RTL for this yet. */
6572 /* Variables inherited from containing functions should have
6573 been lowered by this point. */
6574 context
= decl_function_context (exp
);
6575 gcc_assert (!context
6576 || context
== current_function_decl
6577 || TREE_STATIC (exp
)
6578 /* ??? C++ creates functions that are not TREE_STATIC. */
6579 || TREE_CODE (exp
) == FUNCTION_DECL
);
6581 /* This is the case of an array whose size is to be determined
6582 from its initializer, while the initializer is still being parsed.
6585 if (MEM_P (DECL_RTL (exp
))
6586 && REG_P (XEXP (DECL_RTL (exp
), 0)))
6587 temp
= validize_mem (DECL_RTL (exp
));
6589 /* If DECL_RTL is memory, we are in the normal case and either
6590 the address is not valid or it is not a register and -fforce-addr
6591 is specified, get the address into a register. */
6593 else if (MEM_P (DECL_RTL (exp
))
6594 && modifier
!= EXPAND_CONST_ADDRESS
6595 && modifier
!= EXPAND_SUM
6596 && modifier
!= EXPAND_INITIALIZER
6597 && (! memory_address_p (DECL_MODE (exp
),
6598 XEXP (DECL_RTL (exp
), 0))
6600 && !REG_P (XEXP (DECL_RTL (exp
), 0)))))
6603 *alt_rtl
= DECL_RTL (exp
);
6604 temp
= replace_equiv_address (DECL_RTL (exp
),
6605 copy_rtx (XEXP (DECL_RTL (exp
), 0)));
6608 /* If we got something, return it. But first, set the alignment
6609 if the address is a register. */
6612 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
6613 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
6618 /* If the mode of DECL_RTL does not match that of the decl, it
6619 must be a promoted value. We return a SUBREG of the wanted mode,
6620 but mark it so that we know that it was already extended. */
6622 if (REG_P (DECL_RTL (exp
))
6623 && GET_MODE (DECL_RTL (exp
)) != DECL_MODE (exp
))
6625 enum machine_mode pmode
;
6627 /* Get the signedness used for this variable. Ensure we get the
6628 same mode we got when the variable was declared. */
6629 pmode
= promote_mode (type
, DECL_MODE (exp
), &unsignedp
,
6630 (TREE_CODE (exp
) == RESULT_DECL
? 1 : 0));
6631 gcc_assert (GET_MODE (DECL_RTL (exp
)) == pmode
);
6633 temp
= gen_lowpart_SUBREG (mode
, DECL_RTL (exp
));
6634 SUBREG_PROMOTED_VAR_P (temp
) = 1;
6635 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
6639 return DECL_RTL (exp
);
6642 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
6643 TREE_INT_CST_HIGH (exp
), mode
);
6645 /* ??? If overflow is set, fold will have done an incomplete job,
6646 which can result in (plus xx (const_int 0)), which can get
6647 simplified by validate_replace_rtx during virtual register
6648 instantiation, which can result in unrecognizable insns.
6649 Avoid this by forcing all overflows into registers. */
6650 if (TREE_CONSTANT_OVERFLOW (exp
)
6651 && modifier
!= EXPAND_INITIALIZER
)
6652 temp
= force_reg (mode
, temp
);
6657 if (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
))) == MODE_VECTOR_INT
6658 || GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
))) == MODE_VECTOR_FLOAT
)
6659 return const_vector_from_tree (exp
);
6661 return expand_expr (build1 (CONSTRUCTOR
, TREE_TYPE (exp
),
6662 TREE_VECTOR_CST_ELTS (exp
)),
6663 ignore
? const0_rtx
: target
, tmode
, modifier
);
6666 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
6669 /* If optimized, generate immediate CONST_DOUBLE
6670 which will be turned into memory by reload if necessary.
6672 We used to force a register so that loop.c could see it. But
6673 this does not allow gen_* patterns to perform optimizations with
6674 the constants. It also produces two insns in cases like "x = 1.0;".
6675 On most machines, floating-point constants are not permitted in
6676 many insns, so we'd end up copying it to a register in any case.
6678 Now, we do the copying in expand_binop, if appropriate. */
6679 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
6680 TYPE_MODE (TREE_TYPE (exp
)));
6683 /* Handle evaluating a complex constant in a CONCAT target. */
6684 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
6686 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
6689 rtarg
= XEXP (original_target
, 0);
6690 itarg
= XEXP (original_target
, 1);
6692 /* Move the real and imaginary parts separately. */
6693 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, 0);
6694 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, 0);
6697 emit_move_insn (rtarg
, op0
);
6699 emit_move_insn (itarg
, op1
);
6701 return original_target
;
6704 /* ... fall through ... */
6707 temp
= output_constant_def (exp
, 1);
6709 /* temp contains a constant address.
6710 On RISC machines where a constant address isn't valid,
6711 make some insns to get that address into a register. */
6712 if (modifier
!= EXPAND_CONST_ADDRESS
6713 && modifier
!= EXPAND_INITIALIZER
6714 && modifier
!= EXPAND_SUM
6715 && (! memory_address_p (mode
, XEXP (temp
, 0))
6716 || flag_force_addr
))
6717 return replace_equiv_address (temp
,
6718 copy_rtx (XEXP (temp
, 0)));
6723 tree val
= TREE_OPERAND (exp
, 0);
6724 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
);
6726 if (!SAVE_EXPR_RESOLVED_P (exp
))
6728 /* We can indeed still hit this case, typically via builtin
6729 expanders calling save_expr immediately before expanding
6730 something. Assume this means that we only have to deal
6731 with non-BLKmode values. */
6732 gcc_assert (GET_MODE (ret
) != BLKmode
);
6734 val
= build_decl (VAR_DECL
, NULL
, TREE_TYPE (exp
));
6735 DECL_ARTIFICIAL (val
) = 1;
6736 DECL_IGNORED_P (val
) = 1;
6737 TREE_OPERAND (exp
, 0) = val
;
6738 SAVE_EXPR_RESOLVED_P (exp
) = 1;
6740 if (!CONSTANT_P (ret
))
6741 ret
= copy_to_reg (ret
);
6742 SET_DECL_RTL (val
, ret
);
6749 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == LABEL_DECL
)
6750 expand_goto (TREE_OPERAND (exp
, 0));
6752 expand_computed_goto (TREE_OPERAND (exp
, 0));
6756 /* If we don't need the result, just ensure we evaluate any
6762 for (elt
= CONSTRUCTOR_ELTS (exp
); elt
; elt
= TREE_CHAIN (elt
))
6763 expand_expr (TREE_VALUE (elt
), const0_rtx
, VOIDmode
, 0);
6768 /* All elts simple constants => refer to a constant in memory. But
6769 if this is a non-BLKmode mode, let it store a field at a time
6770 since that should make a CONST_INT or CONST_DOUBLE when we
6771 fold. Likewise, if we have a target we can use, it is best to
6772 store directly into the target unless the type is large enough
6773 that memcpy will be used. If we are making an initializer and
6774 all operands are constant, put it in memory as well.
6776 FIXME: Avoid trying to fill vector constructors piece-meal.
6777 Output them with output_constant_def below unless we're sure
6778 they're zeros. This should go away when vector initializers
6779 are treated like VECTOR_CST instead of arrays.
6781 else if ((TREE_STATIC (exp
)
6782 && ((mode
== BLKmode
6783 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
6784 || TREE_ADDRESSABLE (exp
)
6785 || (host_integerp (TYPE_SIZE_UNIT (type
), 1)
6786 && (! MOVE_BY_PIECES_P
6787 (tree_low_cst (TYPE_SIZE_UNIT (type
), 1),
6789 && ! mostly_zeros_p (exp
))))
6790 || ((modifier
== EXPAND_INITIALIZER
6791 || modifier
== EXPAND_CONST_ADDRESS
)
6792 && TREE_CONSTANT (exp
)))
6794 rtx constructor
= output_constant_def (exp
, 1);
6796 if (modifier
!= EXPAND_CONST_ADDRESS
6797 && modifier
!= EXPAND_INITIALIZER
6798 && modifier
!= EXPAND_SUM
)
6799 constructor
= validize_mem (constructor
);
6805 /* Handle calls that pass values in multiple non-contiguous
6806 locations. The Irix 6 ABI has examples of this. */
6807 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
6808 || GET_CODE (target
) == PARALLEL
6809 || modifier
== EXPAND_STACK_PARM
)
6811 = assign_temp (build_qualified_type (type
,
6813 | (TREE_READONLY (exp
)
6814 * TYPE_QUAL_CONST
))),
6815 0, TREE_ADDRESSABLE (exp
), 1);
6817 store_constructor (exp
, target
, 0, int_expr_size (exp
));
6821 case MISALIGNED_INDIRECT_REF
:
6822 case ALIGN_INDIRECT_REF
:
6825 tree exp1
= TREE_OPERAND (exp
, 0);
6828 if (modifier
!= EXPAND_WRITE
)
6832 t
= fold_read_from_constant_string (exp
);
6834 return expand_expr (t
, target
, tmode
, modifier
);
6837 op0
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
6838 op0
= memory_address (mode
, op0
);
6840 if (code
== ALIGN_INDIRECT_REF
)
6842 int align
= TYPE_ALIGN_UNIT (type
);
6843 op0
= gen_rtx_AND (Pmode
, op0
, GEN_INT (-align
));
6844 op0
= memory_address (mode
, op0
);
6847 temp
= gen_rtx_MEM (mode
, op0
);
6849 orig
= REF_ORIGINAL (exp
);
6852 set_mem_attributes (temp
, orig
, 0);
6854 /* Resolve the misalignment now, so that we don't have to remember
6855 to resolve it later. Of course, this only works for reads. */
6856 /* ??? When we get around to supporting writes, we'll have to handle
6857 this in store_expr directly. The vectorizer isn't generating
6858 those yet, however. */
6859 if (code
== MISALIGNED_INDIRECT_REF
)
6864 gcc_assert (modifier
== EXPAND_NORMAL
);
6866 /* The vectorizer should have already checked the mode. */
6867 icode
= movmisalign_optab
->handlers
[mode
].insn_code
;
6868 gcc_assert (icode
!= CODE_FOR_nothing
);
6870 /* We've already validated the memory, and we're creating a
6871 new pseudo destination. The predicates really can't fail. */
6872 reg
= gen_reg_rtx (mode
);
6874 /* Nor can the insn generator. */
6875 insn
= GEN_FCN (icode
) (reg
, temp
);
6887 tree array
= TREE_OPERAND (exp
, 0);
6888 tree index
= TREE_OPERAND (exp
, 1);
6890 /* Fold an expression like: "foo"[2].
6891 This is not done in fold so it won't happen inside &.
6892 Don't fold if this is for wide characters since it's too
6893 difficult to do correctly and this is a very rare case. */
6895 if (modifier
!= EXPAND_CONST_ADDRESS
6896 && modifier
!= EXPAND_INITIALIZER
6897 && modifier
!= EXPAND_MEMORY
)
6899 tree t
= fold_read_from_constant_string (exp
);
6902 return expand_expr (t
, target
, tmode
, modifier
);
6905 /* If this is a constant index into a constant array,
6906 just get the value from the array. Handle both the cases when
6907 we have an explicit constructor and when our operand is a variable
6908 that was declared const. */
6910 if (modifier
!= EXPAND_CONST_ADDRESS
6911 && modifier
!= EXPAND_INITIALIZER
6912 && modifier
!= EXPAND_MEMORY
6913 && TREE_CODE (array
) == CONSTRUCTOR
6914 && ! TREE_SIDE_EFFECTS (array
)
6915 && TREE_CODE (index
) == INTEGER_CST
)
6919 for (elem
= CONSTRUCTOR_ELTS (array
);
6920 (elem
&& !tree_int_cst_equal (TREE_PURPOSE (elem
), index
));
6921 elem
= TREE_CHAIN (elem
))
6924 if (elem
&& !TREE_SIDE_EFFECTS (TREE_VALUE (elem
)))
6925 return expand_expr (fold (TREE_VALUE (elem
)), target
, tmode
,
6929 else if (optimize
>= 1
6930 && modifier
!= EXPAND_CONST_ADDRESS
6931 && modifier
!= EXPAND_INITIALIZER
6932 && modifier
!= EXPAND_MEMORY
6933 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
6934 && TREE_CODE (array
) == VAR_DECL
&& DECL_INITIAL (array
)
6935 && TREE_CODE (DECL_INITIAL (array
)) != ERROR_MARK
6936 && targetm
.binds_local_p (array
))
6938 if (TREE_CODE (index
) == INTEGER_CST
)
6940 tree init
= DECL_INITIAL (array
);
6942 if (TREE_CODE (init
) == CONSTRUCTOR
)
6946 for (elem
= CONSTRUCTOR_ELTS (init
);
6948 && !tree_int_cst_equal (TREE_PURPOSE (elem
), index
));
6949 elem
= TREE_CHAIN (elem
))
6952 if (elem
&& !TREE_SIDE_EFFECTS (TREE_VALUE (elem
)))
6953 return expand_expr (fold (TREE_VALUE (elem
)), target
,
6956 else if (TREE_CODE (init
) == STRING_CST
6957 && 0 > compare_tree_int (index
,
6958 TREE_STRING_LENGTH (init
)))
6960 tree type
= TREE_TYPE (TREE_TYPE (init
));
6961 enum machine_mode mode
= TYPE_MODE (type
);
6963 if (GET_MODE_CLASS (mode
) == MODE_INT
6964 && GET_MODE_SIZE (mode
) == 1)
6965 return gen_int_mode (TREE_STRING_POINTER (init
)
6966 [TREE_INT_CST_LOW (index
)], mode
);
6971 goto normal_inner_ref
;
6974 /* If the operand is a CONSTRUCTOR, we can just extract the
6975 appropriate field if it is present. */
6976 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == CONSTRUCTOR
)
6980 for (elt
= CONSTRUCTOR_ELTS (TREE_OPERAND (exp
, 0)); elt
;
6981 elt
= TREE_CHAIN (elt
))
6982 if (TREE_PURPOSE (elt
) == TREE_OPERAND (exp
, 1)
6983 /* We can normally use the value of the field in the
6984 CONSTRUCTOR. However, if this is a bitfield in
6985 an integral mode that we can fit in a HOST_WIDE_INT,
6986 we must mask only the number of bits in the bitfield,
6987 since this is done implicitly by the constructor. If
6988 the bitfield does not meet either of those conditions,
6989 we can't do this optimization. */
6990 && (! DECL_BIT_FIELD (TREE_PURPOSE (elt
))
6991 || ((GET_MODE_CLASS (DECL_MODE (TREE_PURPOSE (elt
)))
6993 && (GET_MODE_BITSIZE (DECL_MODE (TREE_PURPOSE (elt
)))
6994 <= HOST_BITS_PER_WIDE_INT
))))
6996 if (DECL_BIT_FIELD (TREE_PURPOSE (elt
))
6997 && modifier
== EXPAND_STACK_PARM
)
6999 op0
= expand_expr (TREE_VALUE (elt
), target
, tmode
, modifier
);
7000 if (DECL_BIT_FIELD (TREE_PURPOSE (elt
)))
7002 HOST_WIDE_INT bitsize
7003 = TREE_INT_CST_LOW (DECL_SIZE (TREE_PURPOSE (elt
)));
7004 enum machine_mode imode
7005 = TYPE_MODE (TREE_TYPE (TREE_PURPOSE (elt
)));
7007 if (TYPE_UNSIGNED (TREE_TYPE (TREE_PURPOSE (elt
))))
7009 op1
= GEN_INT (((HOST_WIDE_INT
) 1 << bitsize
) - 1);
7010 op0
= expand_and (imode
, op0
, op1
, target
);
7015 = build_int_cst (NULL_TREE
,
7016 GET_MODE_BITSIZE (imode
) - bitsize
);
7018 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
7020 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
7028 goto normal_inner_ref
;
7031 case ARRAY_RANGE_REF
:
7034 enum machine_mode mode1
;
7035 HOST_WIDE_INT bitsize
, bitpos
;
7038 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7039 &mode1
, &unsignedp
, &volatilep
, true);
7042 /* If we got back the original object, something is wrong. Perhaps
7043 we are evaluating an expression too early. In any event, don't
7044 infinitely recurse. */
7045 gcc_assert (tem
!= exp
);
7047 /* If TEM's type is a union of variable size, pass TARGET to the inner
7048 computation, since it will need a temporary and TARGET is known
7049 to have to do. This occurs in unchecked conversion in Ada. */
7053 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
7054 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
7056 && modifier
!= EXPAND_STACK_PARM
7057 ? target
: NULL_RTX
),
7059 (modifier
== EXPAND_INITIALIZER
7060 || modifier
== EXPAND_CONST_ADDRESS
7061 || modifier
== EXPAND_STACK_PARM
)
7062 ? modifier
: EXPAND_NORMAL
);
7064 /* If this is a constant, put it into a register if it is a
7065 legitimate constant and OFFSET is 0 and memory if it isn't. */
7066 if (CONSTANT_P (op0
))
7068 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (tem
));
7069 if (mode
!= BLKmode
&& LEGITIMATE_CONSTANT_P (op0
)
7071 op0
= force_reg (mode
, op0
);
7073 op0
= validize_mem (force_const_mem (mode
, op0
));
7076 /* Otherwise, if this object not in memory and we either have an
7077 offset or a BLKmode result, put it there. This case can't occur in
7078 C, but can in Ada if we have unchecked conversion of an expression
7079 from a scalar type to an array or record type or for an
7080 ARRAY_RANGE_REF whose type is BLKmode. */
7081 else if (!MEM_P (op0
)
7083 || (code
== ARRAY_RANGE_REF
&& mode
== BLKmode
)))
7085 tree nt
= build_qualified_type (TREE_TYPE (tem
),
7086 (TYPE_QUALS (TREE_TYPE (tem
))
7087 | TYPE_QUAL_CONST
));
7088 rtx memloc
= assign_temp (nt
, 1, 1, 1);
7090 emit_move_insn (memloc
, op0
);
7096 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
7099 gcc_assert (MEM_P (op0
));
7101 #ifdef POINTERS_EXTEND_UNSIGNED
7102 if (GET_MODE (offset_rtx
) != Pmode
)
7103 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
7105 if (GET_MODE (offset_rtx
) != ptr_mode
)
7106 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
7109 if (GET_MODE (op0
) == BLKmode
7110 /* A constant address in OP0 can have VOIDmode, we must
7111 not try to call force_reg in that case. */
7112 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
7114 && (bitpos
% bitsize
) == 0
7115 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
7116 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
7118 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7122 op0
= offset_address (op0
, offset_rtx
,
7123 highest_pow2_factor (offset
));
7126 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7127 record its alignment as BIGGEST_ALIGNMENT. */
7128 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
7129 && is_aligning_offset (offset
, tem
))
7130 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
7132 /* Don't forget about volatility even if this is a bitfield. */
7133 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
7135 if (op0
== orig_op0
)
7136 op0
= copy_rtx (op0
);
7138 MEM_VOLATILE_P (op0
) = 1;
7141 /* The following code doesn't handle CONCAT.
7142 Assume only bitpos == 0 can be used for CONCAT, due to
7143 one element arrays having the same mode as its element. */
7144 if (GET_CODE (op0
) == CONCAT
)
7146 gcc_assert (bitpos
== 0
7147 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)));
7151 /* In cases where an aligned union has an unaligned object
7152 as a field, we might be extracting a BLKmode value from
7153 an integer-mode (e.g., SImode) object. Handle this case
7154 by doing the extract into an object as wide as the field
7155 (which we know to be the width of a basic mode), then
7156 storing into memory, and changing the mode to BLKmode. */
7157 if (mode1
== VOIDmode
7158 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
7159 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
7160 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7161 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
7162 && modifier
!= EXPAND_CONST_ADDRESS
7163 && modifier
!= EXPAND_INITIALIZER
)
7164 /* If the field isn't aligned enough to fetch as a memref,
7165 fetch it as a bit field. */
7166 || (mode1
!= BLKmode
7167 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
7168 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
7170 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
7171 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
7172 && ((modifier
== EXPAND_CONST_ADDRESS
7173 || modifier
== EXPAND_INITIALIZER
)
7175 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
7176 || (bitpos
% BITS_PER_UNIT
!= 0)))
7177 /* If the type and the field are a constant size and the
7178 size of the type isn't the same size as the bitfield,
7179 we must use bitfield operations. */
7181 && TYPE_SIZE (TREE_TYPE (exp
))
7182 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
7183 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
7186 enum machine_mode ext_mode
= mode
;
7188 if (ext_mode
== BLKmode
7189 && ! (target
!= 0 && MEM_P (op0
)
7191 && bitpos
% BITS_PER_UNIT
== 0))
7192 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
7194 if (ext_mode
== BLKmode
)
7197 target
= assign_temp (type
, 0, 1, 1);
7202 /* In this case, BITPOS must start at a byte boundary and
7203 TARGET, if specified, must be a MEM. */
7204 gcc_assert (MEM_P (op0
)
7205 && (!target
|| MEM_P (target
))
7206 && !(bitpos
% BITS_PER_UNIT
));
7208 emit_block_move (target
,
7209 adjust_address (op0
, VOIDmode
,
7210 bitpos
/ BITS_PER_UNIT
),
7211 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
7213 (modifier
== EXPAND_STACK_PARM
7214 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7219 op0
= validize_mem (op0
);
7221 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
7222 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7224 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
7225 (modifier
== EXPAND_STACK_PARM
7226 ? NULL_RTX
: target
),
7227 ext_mode
, ext_mode
);
7229 /* If the result is a record type and BITSIZE is narrower than
7230 the mode of OP0, an integral mode, and this is a big endian
7231 machine, we must put the field into the high-order bits. */
7232 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
7233 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7234 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
7235 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
7236 size_int (GET_MODE_BITSIZE (GET_MODE (op0
))
7240 /* If the result type is BLKmode, store the data into a temporary
7241 of the appropriate type, but with the mode corresponding to the
7242 mode for the data we have (op0's mode). It's tempting to make
7243 this a constant type, since we know it's only being stored once,
7244 but that can cause problems if we are taking the address of this
7245 COMPONENT_REF because the MEM of any reference via that address
7246 will have flags corresponding to the type, which will not
7247 necessarily be constant. */
7248 if (mode
== BLKmode
)
7251 = assign_stack_temp_for_type
7252 (ext_mode
, GET_MODE_BITSIZE (ext_mode
), 0, type
);
7254 emit_move_insn (new, op0
);
7255 op0
= copy_rtx (new);
7256 PUT_MODE (op0
, BLKmode
);
7257 set_mem_attributes (op0
, exp
, 1);
7263 /* If the result is BLKmode, use that to access the object
7265 if (mode
== BLKmode
)
7268 /* Get a reference to just this component. */
7269 if (modifier
== EXPAND_CONST_ADDRESS
7270 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7271 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7273 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7275 if (op0
== orig_op0
)
7276 op0
= copy_rtx (op0
);
7278 set_mem_attributes (op0
, exp
, 0);
7279 if (REG_P (XEXP (op0
, 0)))
7280 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7282 MEM_VOLATILE_P (op0
) |= volatilep
;
7283 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
7284 || modifier
== EXPAND_CONST_ADDRESS
7285 || modifier
== EXPAND_INITIALIZER
)
7287 else if (target
== 0)
7288 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
7290 convert_move (target
, op0
, unsignedp
);
7295 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
7298 /* Check for a built-in function. */
7299 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
7300 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7302 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7304 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7305 == BUILT_IN_FRONTEND
)
7306 return lang_hooks
.expand_expr (exp
, original_target
,
7310 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
7313 return expand_call (exp
, target
, ignore
);
7315 case NON_LVALUE_EXPR
:
7318 if (TREE_OPERAND (exp
, 0) == error_mark_node
)
7321 if (TREE_CODE (type
) == UNION_TYPE
)
7323 tree valtype
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7325 /* If both input and output are BLKmode, this conversion isn't doing
7326 anything except possibly changing memory attribute. */
7327 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
7329 rtx result
= expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
,
7332 result
= copy_rtx (result
);
7333 set_mem_attributes (result
, exp
, 0);
7339 if (TYPE_MODE (type
) != BLKmode
)
7340 target
= gen_reg_rtx (TYPE_MODE (type
));
7342 target
= assign_temp (type
, 0, 1, 1);
7346 /* Store data into beginning of memory target. */
7347 store_expr (TREE_OPERAND (exp
, 0),
7348 adjust_address (target
, TYPE_MODE (valtype
), 0),
7349 modifier
== EXPAND_STACK_PARM
);
7353 gcc_assert (REG_P (target
));
7355 /* Store this field into a union of the proper type. */
7356 store_field (target
,
7357 MIN ((int_size_in_bytes (TREE_TYPE
7358 (TREE_OPERAND (exp
, 0)))
7360 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
7361 0, TYPE_MODE (valtype
), TREE_OPERAND (exp
, 0),
7365 /* Return the entire union. */
7369 if (mode
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
7371 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
,
7374 /* If the signedness of the conversion differs and OP0 is
7375 a promoted SUBREG, clear that indication since we now
7376 have to do the proper extension. */
7377 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))) != unsignedp
7378 && GET_CODE (op0
) == SUBREG
)
7379 SUBREG_PROMOTED_VAR_P (op0
) = 0;
7381 return REDUCE_BIT_FIELD (op0
);
7384 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7385 if (GET_MODE (op0
) == mode
)
7388 /* If OP0 is a constant, just convert it into the proper mode. */
7389 else if (CONSTANT_P (op0
))
7391 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7392 enum machine_mode inner_mode
= TYPE_MODE (inner_type
);
7394 if (modifier
== EXPAND_INITIALIZER
)
7395 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
7396 subreg_lowpart_offset (mode
,
7399 op0
= convert_modes (mode
, inner_mode
, op0
,
7400 TYPE_UNSIGNED (inner_type
));
7403 else if (modifier
== EXPAND_INITIALIZER
)
7404 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
7406 else if (target
== 0)
7407 op0
= convert_to_mode (mode
, op0
,
7408 TYPE_UNSIGNED (TREE_TYPE
7409 (TREE_OPERAND (exp
, 0))));
7412 convert_move (target
, op0
,
7413 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7417 return REDUCE_BIT_FIELD (op0
);
7419 case VIEW_CONVERT_EXPR
:
7420 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7422 /* If the input and output modes are both the same, we are done.
7423 Otherwise, if neither mode is BLKmode and both are integral and within
7424 a word, we can use gen_lowpart. If neither is true, make sure the
7425 operand is in memory and convert the MEM to the new mode. */
7426 if (TYPE_MODE (type
) == GET_MODE (op0
))
7428 else if (TYPE_MODE (type
) != BLKmode
&& GET_MODE (op0
) != BLKmode
7429 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7430 && GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_INT
7431 && GET_MODE_SIZE (TYPE_MODE (type
)) <= UNITS_PER_WORD
7432 && GET_MODE_SIZE (GET_MODE (op0
)) <= UNITS_PER_WORD
)
7433 op0
= gen_lowpart (TYPE_MODE (type
), op0
);
7434 else if (!MEM_P (op0
))
7436 /* If the operand is not a MEM, force it into memory. Since we
7437 are going to be be changing the mode of the MEM, don't call
7438 force_const_mem for constants because we don't allow pool
7439 constants to change mode. */
7440 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7442 gcc_assert (!TREE_ADDRESSABLE (exp
));
7444 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
7446 = assign_stack_temp_for_type
7447 (TYPE_MODE (inner_type
),
7448 GET_MODE_SIZE (TYPE_MODE (inner_type
)), 0, inner_type
);
7450 emit_move_insn (target
, op0
);
7454 /* At this point, OP0 is in the correct mode. If the output type is such
7455 that the operand is known to be aligned, indicate that it is.
7456 Otherwise, we need only be concerned about alignment for non-BLKmode
7460 op0
= copy_rtx (op0
);
7462 if (TYPE_ALIGN_OK (type
))
7463 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
7464 else if (TYPE_MODE (type
) != BLKmode
&& STRICT_ALIGNMENT
7465 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
)))
7467 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7468 HOST_WIDE_INT temp_size
7469 = MAX (int_size_in_bytes (inner_type
),
7470 (HOST_WIDE_INT
) GET_MODE_SIZE (TYPE_MODE (type
)));
7471 rtx
new = assign_stack_temp_for_type (TYPE_MODE (type
),
7472 temp_size
, 0, type
);
7473 rtx new_with_op0_mode
= adjust_address (new, GET_MODE (op0
), 0);
7475 gcc_assert (!TREE_ADDRESSABLE (exp
));
7477 if (GET_MODE (op0
) == BLKmode
)
7478 emit_block_move (new_with_op0_mode
, op0
,
7479 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type
))),
7480 (modifier
== EXPAND_STACK_PARM
7481 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7483 emit_move_insn (new_with_op0_mode
, op0
);
7488 op0
= adjust_address (op0
, TYPE_MODE (type
), 0);
7494 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7495 something else, make sure we add the register to the constant and
7496 then to the other thing. This case can occur during strength
7497 reduction and doing it this way will produce better code if the
7498 frame pointer or argument pointer is eliminated.
7500 fold-const.c will ensure that the constant is always in the inner
7501 PLUS_EXPR, so the only case we need to do anything about is if
7502 sp, ap, or fp is our second argument, in which case we must swap
7503 the innermost first argument and our second argument. */
7505 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == PLUS_EXPR
7506 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 1)) == INTEGER_CST
7507 && TREE_CODE (TREE_OPERAND (exp
, 1)) == VAR_DECL
7508 && (DECL_RTL (TREE_OPERAND (exp
, 1)) == frame_pointer_rtx
7509 || DECL_RTL (TREE_OPERAND (exp
, 1)) == stack_pointer_rtx
7510 || DECL_RTL (TREE_OPERAND (exp
, 1)) == arg_pointer_rtx
))
7512 tree t
= TREE_OPERAND (exp
, 1);
7514 TREE_OPERAND (exp
, 1) = TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
7515 TREE_OPERAND (TREE_OPERAND (exp
, 0), 0) = t
;
7518 /* If the result is to be ptr_mode and we are adding an integer to
7519 something, we might be forming a constant. So try to use
7520 plus_constant. If it produces a sum and we can't accept it,
7521 use force_operand. This allows P = &ARR[const] to generate
7522 efficient code on machines where a SYMBOL_REF is not a valid
7525 If this is an EXPAND_SUM call, always return the sum. */
7526 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
7527 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
7529 if (modifier
== EXPAND_STACK_PARM
)
7531 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
7532 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
7533 && TREE_CONSTANT (TREE_OPERAND (exp
, 1)))
7537 op1
= expand_expr (TREE_OPERAND (exp
, 1), subtarget
, VOIDmode
,
7539 /* Use immed_double_const to ensure that the constant is
7540 truncated according to the mode of OP1, then sign extended
7541 to a HOST_WIDE_INT. Using the constant directly can result
7542 in non-canonical RTL in a 64x32 cross compile. */
7544 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 0)),
7546 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))));
7547 op1
= plus_constant (op1
, INTVAL (constant_part
));
7548 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7549 op1
= force_operand (op1
, target
);
7550 return REDUCE_BIT_FIELD (op1
);
7553 else if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
7554 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_INT
7555 && TREE_CONSTANT (TREE_OPERAND (exp
, 0)))
7559 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
7560 (modifier
== EXPAND_INITIALIZER
7561 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
7562 if (! CONSTANT_P (op0
))
7564 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
,
7565 VOIDmode
, modifier
);
7566 /* Return a PLUS if modifier says it's OK. */
7567 if (modifier
== EXPAND_SUM
7568 || modifier
== EXPAND_INITIALIZER
)
7569 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
7572 /* Use immed_double_const to ensure that the constant is
7573 truncated according to the mode of OP1, then sign extended
7574 to a HOST_WIDE_INT. Using the constant directly can result
7575 in non-canonical RTL in a 64x32 cross compile. */
7577 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1)),
7579 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7580 op0
= plus_constant (op0
, INTVAL (constant_part
));
7581 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7582 op0
= force_operand (op0
, target
);
7583 return REDUCE_BIT_FIELD (op0
);
7587 /* No sense saving up arithmetic to be done
7588 if it's all in the wrong mode to form part of an address.
7589 And force_operand won't know whether to sign-extend or
7591 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7592 || mode
!= ptr_mode
)
7594 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7595 subtarget
, &op0
, &op1
, 0);
7596 if (op0
== const0_rtx
)
7598 if (op1
== const0_rtx
)
7603 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7604 subtarget
, &op0
, &op1
, modifier
);
7605 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
7608 /* For initializers, we are allowed to return a MINUS of two
7609 symbolic constants. Here we handle all cases when both operands
7611 /* Handle difference of two symbolic constants,
7612 for the sake of an initializer. */
7613 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7614 && really_constant_p (TREE_OPERAND (exp
, 0))
7615 && really_constant_p (TREE_OPERAND (exp
, 1)))
7617 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7618 NULL_RTX
, &op0
, &op1
, modifier
);
7620 /* If the last operand is a CONST_INT, use plus_constant of
7621 the negated constant. Else make the MINUS. */
7622 if (GET_CODE (op1
) == CONST_INT
)
7623 return REDUCE_BIT_FIELD (plus_constant (op0
, - INTVAL (op1
)));
7625 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
7628 /* No sense saving up arithmetic to be done
7629 if it's all in the wrong mode to form part of an address.
7630 And force_operand won't know whether to sign-extend or
7632 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7633 || mode
!= ptr_mode
)
7636 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7637 subtarget
, &op0
, &op1
, modifier
);
7639 /* Convert A - const to A + (-const). */
7640 if (GET_CODE (op1
) == CONST_INT
)
7642 op1
= negate_rtx (mode
, op1
);
7643 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
7649 /* If first operand is constant, swap them.
7650 Thus the following special case checks need only
7651 check the second operand. */
7652 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
)
7654 tree t1
= TREE_OPERAND (exp
, 0);
7655 TREE_OPERAND (exp
, 0) = TREE_OPERAND (exp
, 1);
7656 TREE_OPERAND (exp
, 1) = t1
;
7659 /* Attempt to return something suitable for generating an
7660 indexed address, for machines that support that. */
7662 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
7663 && host_integerp (TREE_OPERAND (exp
, 1), 0))
7665 tree exp1
= TREE_OPERAND (exp
, 1);
7667 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
7671 op0
= force_operand (op0
, NULL_RTX
);
7673 op0
= copy_to_mode_reg (mode
, op0
);
7675 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
7676 gen_int_mode (tree_low_cst (exp1
, 0),
7677 TYPE_MODE (TREE_TYPE (exp1
)))));
7680 if (modifier
== EXPAND_STACK_PARM
)
7683 /* Check for multiplying things that have been extended
7684 from a narrower type. If this machine supports multiplying
7685 in that narrower type with a result in the desired type,
7686 do it that way, and avoid the explicit type-conversion. */
7687 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == NOP_EXPR
7688 && TREE_CODE (type
) == INTEGER_TYPE
7689 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7690 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))))
7691 && ((TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
7692 && int_fits_type_p (TREE_OPERAND (exp
, 1),
7693 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7694 /* Don't use a widening multiply if a shift will do. */
7695 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
7696 > HOST_BITS_PER_WIDE_INT
)
7697 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1))) < 0))
7699 (TREE_CODE (TREE_OPERAND (exp
, 1)) == NOP_EXPR
7700 && (TYPE_PRECISION (TREE_TYPE
7701 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
7702 == TYPE_PRECISION (TREE_TYPE
7704 (TREE_OPERAND (exp
, 0), 0))))
7705 /* If both operands are extended, they must either both
7706 be zero-extended or both be sign-extended. */
7707 && (TYPE_UNSIGNED (TREE_TYPE
7708 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
7709 == TYPE_UNSIGNED (TREE_TYPE
7711 (TREE_OPERAND (exp
, 0), 0)))))))
7713 tree op0type
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0));
7714 enum machine_mode innermode
= TYPE_MODE (op0type
);
7715 bool zextend_p
= TYPE_UNSIGNED (op0type
);
7716 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
7717 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
7719 if (mode
== GET_MODE_WIDER_MODE (innermode
))
7721 if (this_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
7723 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
7724 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7725 TREE_OPERAND (exp
, 1),
7726 NULL_RTX
, &op0
, &op1
, 0);
7728 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7729 TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
7730 NULL_RTX
, &op0
, &op1
, 0);
7733 else if (other_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
7734 && innermode
== word_mode
)
7737 op0
= expand_expr (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7738 NULL_RTX
, VOIDmode
, 0);
7739 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
7740 op1
= convert_modes (innermode
, mode
,
7741 expand_expr (TREE_OPERAND (exp
, 1),
7742 NULL_RTX
, VOIDmode
, 0),
7745 op1
= expand_expr (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
7746 NULL_RTX
, VOIDmode
, 0);
7747 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
7748 unsignedp
, OPTAB_LIB_WIDEN
);
7749 hipart
= gen_highpart (innermode
, temp
);
7750 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
7754 emit_move_insn (hipart
, htem
);
7755 return REDUCE_BIT_FIELD (temp
);
7759 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7760 subtarget
, &op0
, &op1
, 0);
7761 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
7763 case TRUNC_DIV_EXPR
:
7764 case FLOOR_DIV_EXPR
:
7766 case ROUND_DIV_EXPR
:
7767 case EXACT_DIV_EXPR
:
7768 if (modifier
== EXPAND_STACK_PARM
)
7770 /* Possible optimization: compute the dividend with EXPAND_SUM
7771 then if the divisor is constant can optimize the case
7772 where some terms of the dividend have coeffs divisible by it. */
7773 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7774 subtarget
, &op0
, &op1
, 0);
7775 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
7778 /* Emit a/b as a*(1/b). Later we may manage CSE the reciprocal saving
7779 expensive divide. If not, combine will rebuild the original
7781 if (flag_unsafe_math_optimizations
&& optimize
&& !optimize_size
7782 && TREE_CODE (type
) == REAL_TYPE
7783 && !real_onep (TREE_OPERAND (exp
, 0)))
7784 return expand_expr (build2 (MULT_EXPR
, type
, TREE_OPERAND (exp
, 0),
7785 build2 (RDIV_EXPR
, type
,
7786 build_real (type
, dconst1
),
7787 TREE_OPERAND (exp
, 1))),
7788 target
, tmode
, modifier
);
7792 case TRUNC_MOD_EXPR
:
7793 case FLOOR_MOD_EXPR
:
7795 case ROUND_MOD_EXPR
:
7796 if (modifier
== EXPAND_STACK_PARM
)
7798 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7799 subtarget
, &op0
, &op1
, 0);
7800 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
7802 case FIX_ROUND_EXPR
:
7803 case FIX_FLOOR_EXPR
:
7805 gcc_unreachable (); /* Not used for C. */
7807 case FIX_TRUNC_EXPR
:
7808 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
7809 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
7810 target
= gen_reg_rtx (mode
);
7811 expand_fix (target
, op0
, unsignedp
);
7815 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
7816 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
7817 target
= gen_reg_rtx (mode
);
7818 /* expand_float can't figure out what to do if FROM has VOIDmode.
7819 So give it the correct mode. With -O, cse will optimize this. */
7820 if (GET_MODE (op0
) == VOIDmode
)
7821 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))),
7823 expand_float (target
, op0
,
7824 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7828 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7829 if (modifier
== EXPAND_STACK_PARM
)
7831 temp
= expand_unop (mode
,
7832 optab_for_tree_code (NEGATE_EXPR
, type
),
7835 return REDUCE_BIT_FIELD (temp
);
7838 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7839 if (modifier
== EXPAND_STACK_PARM
)
7842 /* ABS_EXPR is not valid for complex arguments. */
7843 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7844 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
7846 /* Unsigned abs is simply the operand. Testing here means we don't
7847 risk generating incorrect code below. */
7848 if (TYPE_UNSIGNED (type
))
7851 return expand_abs (mode
, op0
, target
, unsignedp
,
7852 safe_from_p (target
, TREE_OPERAND (exp
, 0), 1));
7856 target
= original_target
;
7858 || modifier
== EXPAND_STACK_PARM
7859 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
7860 || GET_MODE (target
) != mode
7862 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
7863 target
= gen_reg_rtx (mode
);
7864 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7865 target
, &op0
, &op1
, 0);
7867 /* First try to do it with a special MIN or MAX instruction.
7868 If that does not win, use a conditional jump to select the proper
7870 this_optab
= optab_for_tree_code (code
, type
);
7871 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
7876 /* At this point, a MEM target is no longer useful; we will get better
7879 if (! REG_P (target
))
7880 target
= gen_reg_rtx (mode
);
7882 /* If op1 was placed in target, swap op0 and op1. */
7883 if (target
!= op0
&& target
== op1
)
7890 /* We generate better code and avoid problems with op1 mentioning
7891 target by forcing op1 into a pseudo if it isn't a constant. */
7892 if (! CONSTANT_P (op1
))
7893 op1
= force_reg (mode
, op1
);
7895 #ifdef HAVE_conditional_move
7896 /* Use a conditional move if possible. */
7897 if (can_conditionally_move_p (mode
))
7899 enum rtx_code comparison_code
;
7902 if (code
== MAX_EXPR
)
7903 comparison_code
= unsignedp
? GEU
: GE
;
7905 comparison_code
= unsignedp
? LEU
: LE
;
7907 /* ??? Same problem as in expmed.c: emit_conditional_move
7908 forces a stack adjustment via compare_from_rtx, and we
7909 lose the stack adjustment if the sequence we are about
7910 to create is discarded. */
7911 do_pending_stack_adjust ();
7915 /* Try to emit the conditional move. */
7916 insn
= emit_conditional_move (target
, comparison_code
,
7921 /* If we could do the conditional move, emit the sequence,
7925 rtx seq
= get_insns ();
7931 /* Otherwise discard the sequence and fall back to code with
7937 emit_move_insn (target
, op0
);
7939 temp
= gen_label_rtx ();
7941 /* If this mode is an integer too wide to compare properly,
7942 compare word by word. Rely on cse to optimize constant cases. */
7943 if (GET_MODE_CLASS (mode
) == MODE_INT
7944 && ! can_compare_p (GE
, mode
, ccp_jump
))
7946 if (code
== MAX_EXPR
)
7947 do_jump_by_parts_greater_rtx (mode
, unsignedp
, target
, op1
,
7950 do_jump_by_parts_greater_rtx (mode
, unsignedp
, op1
, target
,
7955 do_compare_rtx_and_jump (target
, op1
, code
== MAX_EXPR
? GE
: LE
,
7956 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
);
7958 emit_move_insn (target
, op1
);
7963 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7964 if (modifier
== EXPAND_STACK_PARM
)
7966 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
7970 /* ??? Can optimize bitwise operations with one arg constant.
7971 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
7972 and (a bitwise1 b) bitwise2 b (etc)
7973 but that is probably not worth while. */
7975 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
7976 boolean values when we want in all cases to compute both of them. In
7977 general it is fastest to do TRUTH_AND_EXPR by computing both operands
7978 as actual zero-or-1 values and then bitwise anding. In cases where
7979 there cannot be any side effects, better code would be made by
7980 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
7981 how to recognize those cases. */
7983 case TRUTH_AND_EXPR
:
7984 code
= BIT_AND_EXPR
;
7989 code
= BIT_IOR_EXPR
;
7993 case TRUTH_XOR_EXPR
:
7994 code
= BIT_XOR_EXPR
;
8002 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
8004 if (modifier
== EXPAND_STACK_PARM
)
8006 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8007 return expand_shift (code
, mode
, op0
, TREE_OPERAND (exp
, 1), target
,
8010 /* Could determine the answer when only additive constants differ. Also,
8011 the addition of one can be handled by changing the condition. */
8018 case UNORDERED_EXPR
:
8026 temp
= do_store_flag (exp
,
8027 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
8028 tmode
!= VOIDmode
? tmode
: mode
, 0);
8032 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8033 if (code
== NE_EXPR
&& integer_zerop (TREE_OPERAND (exp
, 1))
8035 && REG_P (original_target
)
8036 && (GET_MODE (original_target
)
8037 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
8039 temp
= expand_expr (TREE_OPERAND (exp
, 0), original_target
,
8042 /* If temp is constant, we can just compute the result. */
8043 if (GET_CODE (temp
) == CONST_INT
)
8045 if (INTVAL (temp
) != 0)
8046 emit_move_insn (target
, const1_rtx
);
8048 emit_move_insn (target
, const0_rtx
);
8053 if (temp
!= original_target
)
8055 enum machine_mode mode1
= GET_MODE (temp
);
8056 if (mode1
== VOIDmode
)
8057 mode1
= tmode
!= VOIDmode
? tmode
: mode
;
8059 temp
= copy_to_mode_reg (mode1
, temp
);
8062 op1
= gen_label_rtx ();
8063 emit_cmp_and_jump_insns (temp
, const0_rtx
, EQ
, NULL_RTX
,
8064 GET_MODE (temp
), unsignedp
, op1
);
8065 emit_move_insn (temp
, const1_rtx
);
8070 /* If no set-flag instruction, must generate a conditional store
8071 into a temporary variable. Drop through and handle this
8076 || modifier
== EXPAND_STACK_PARM
8077 || ! safe_from_p (target
, exp
, 1)
8078 /* Make sure we don't have a hard reg (such as function's return
8079 value) live across basic blocks, if not optimizing. */
8080 || (!optimize
&& REG_P (target
)
8081 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
8082 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8085 emit_move_insn (target
, const0_rtx
);
8087 op1
= gen_label_rtx ();
8088 jumpifnot (exp
, op1
);
8091 emit_move_insn (target
, const1_rtx
);
8094 return ignore
? const0_rtx
: target
;
8096 case TRUTH_NOT_EXPR
:
8097 if (modifier
== EXPAND_STACK_PARM
)
8099 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
, 0);
8100 /* The parser is careful to generate TRUTH_NOT_EXPR
8101 only with operands that are always zero or one. */
8102 temp
= expand_binop (mode
, xor_optab
, op0
, const1_rtx
,
8103 target
, 1, OPTAB_LIB_WIDEN
);
8107 case STATEMENT_LIST
:
8109 tree_stmt_iterator iter
;
8111 gcc_assert (ignore
);
8113 for (iter
= tsi_start (exp
); !tsi_end_p (iter
); tsi_next (&iter
))
8114 expand_expr (tsi_stmt (iter
), const0_rtx
, VOIDmode
, modifier
);
8119 /* A COND_EXPR with its type being VOID_TYPE represents a
8120 conditional jump and is handled in
8121 expand_gimple_cond_expr. */
8122 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp
)));
8124 /* Note that COND_EXPRs whose type is a structure or union
8125 are required to be constructed to contain assignments of
8126 a temporary variable, so that we can evaluate them here
8127 for side effect only. If type is void, we must do likewise. */
8129 gcc_assert (!TREE_ADDRESSABLE (type
)
8131 && TREE_TYPE (TREE_OPERAND (exp
, 1)) != void_type_node
8132 && TREE_TYPE (TREE_OPERAND (exp
, 2)) != void_type_node
);
8134 /* If we are not to produce a result, we have no target. Otherwise,
8135 if a target was specified use it; it will not be used as an
8136 intermediate target unless it is safe. If no target, use a
8139 if (modifier
!= EXPAND_STACK_PARM
8141 && safe_from_p (original_target
, TREE_OPERAND (exp
, 0), 1)
8142 && GET_MODE (original_target
) == mode
8143 #ifdef HAVE_conditional_move
8144 && (! can_conditionally_move_p (mode
)
8145 || REG_P (original_target
))
8147 && !MEM_P (original_target
))
8148 temp
= original_target
;
8150 temp
= assign_temp (type
, 0, 0, 1);
8152 do_pending_stack_adjust ();
8154 op0
= gen_label_rtx ();
8155 op1
= gen_label_rtx ();
8156 jumpifnot (TREE_OPERAND (exp
, 0), op0
);
8157 store_expr (TREE_OPERAND (exp
, 1), temp
,
8158 modifier
== EXPAND_STACK_PARM
);
8160 emit_jump_insn (gen_jump (op1
));
8163 store_expr (TREE_OPERAND (exp
, 2), temp
,
8164 modifier
== EXPAND_STACK_PARM
);
8171 target
= expand_vec_cond_expr (exp
, target
);
8176 tree lhs
= TREE_OPERAND (exp
, 0);
8177 tree rhs
= TREE_OPERAND (exp
, 1);
8179 gcc_assert (ignore
);
8181 /* Check for |= or &= of a bitfield of size one into another bitfield
8182 of size 1. In this case, (unless we need the result of the
8183 assignment) we can do this more efficiently with a
8184 test followed by an assignment, if necessary.
8186 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8187 things change so we do, this code should be enhanced to
8189 if (TREE_CODE (lhs
) == COMPONENT_REF
8190 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
8191 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
8192 && TREE_OPERAND (rhs
, 0) == lhs
8193 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
8194 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
8195 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
8197 rtx label
= gen_label_rtx ();
8199 do_jump (TREE_OPERAND (rhs
, 1),
8200 TREE_CODE (rhs
) == BIT_IOR_EXPR
? label
: 0,
8201 TREE_CODE (rhs
) == BIT_AND_EXPR
? label
: 0);
8202 expand_assignment (lhs
, convert (TREE_TYPE (rhs
),
8203 (TREE_CODE (rhs
) == BIT_IOR_EXPR
8205 : integer_zero_node
)));
8206 do_pending_stack_adjust ();
8211 expand_assignment (lhs
, rhs
);
8217 if (!TREE_OPERAND (exp
, 0))
8218 expand_null_return ();
8220 expand_return (TREE_OPERAND (exp
, 0));
8224 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
8227 /* Get the rtx code of the operands. */
8228 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8229 op1
= expand_expr (TREE_OPERAND (exp
, 1), 0, VOIDmode
, 0);
8232 target
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp
)));
8234 /* Move the real (op0) and imaginary (op1) parts to their location. */
8235 write_complex_part (target
, op0
, false);
8236 write_complex_part (target
, op1
, true);
8241 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8242 return read_complex_part (op0
, false);
8245 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8246 return read_complex_part (op0
, true);
8249 expand_resx_expr (exp
);
8252 case TRY_CATCH_EXPR
:
8254 case EH_FILTER_EXPR
:
8255 case TRY_FINALLY_EXPR
:
8256 /* Lowered by tree-eh.c. */
8259 case WITH_CLEANUP_EXPR
:
8260 case CLEANUP_POINT_EXPR
:
8262 case CASE_LABEL_EXPR
:
8268 case PREINCREMENT_EXPR
:
8269 case PREDECREMENT_EXPR
:
8270 case POSTINCREMENT_EXPR
:
8271 case POSTDECREMENT_EXPR
:
8274 case TRUTH_ANDIF_EXPR
:
8275 case TRUTH_ORIF_EXPR
:
8276 /* Lowered by gimplify.c. */
8280 return get_exception_pointer (cfun
);
8283 return get_exception_filter (cfun
);
8286 /* Function descriptors are not valid except for as
8287 initialization constants, and should not be expanded. */
8295 expand_label (TREE_OPERAND (exp
, 0));
8299 expand_asm_expr (exp
);
8302 case WITH_SIZE_EXPR
:
8303 /* WITH_SIZE_EXPR expands to its first argument. The caller should
8304 have pulled out the size to use in whatever context it needed. */
8305 return expand_expr_real (TREE_OPERAND (exp
, 0), original_target
, tmode
,
8308 case REALIGN_LOAD_EXPR
:
8310 tree oprnd0
= TREE_OPERAND (exp
, 0);
8311 tree oprnd1
= TREE_OPERAND (exp
, 1);
8312 tree oprnd2
= TREE_OPERAND (exp
, 2);
8315 this_optab
= optab_for_tree_code (code
, type
);
8316 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, 0);
8317 op2
= expand_expr (oprnd2
, NULL_RTX
, VOIDmode
, 0);
8318 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
8327 return lang_hooks
.expand_expr (exp
, original_target
, tmode
,
8331 /* Here to do an ordinary binary operator. */
8333 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8334 subtarget
, &op0
, &op1
, 0);
8336 this_optab
= optab_for_tree_code (code
, type
);
8338 if (modifier
== EXPAND_STACK_PARM
)
8340 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
8341 unsignedp
, OPTAB_LIB_WIDEN
);
8343 return REDUCE_BIT_FIELD (temp
);
8345 #undef REDUCE_BIT_FIELD
8347 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
8348 signedness of TYPE), possibly returning the result in TARGET. */
8350 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
8352 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
8353 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
8355 if (TYPE_UNSIGNED (type
))
8358 if (prec
< HOST_BITS_PER_WIDE_INT
)
8359 mask
= immed_double_const (((unsigned HOST_WIDE_INT
) 1 << prec
) - 1, 0,
8362 mask
= immed_double_const ((unsigned HOST_WIDE_INT
) -1,
8363 ((unsigned HOST_WIDE_INT
) 1
8364 << (prec
- HOST_BITS_PER_WIDE_INT
)) - 1,
8366 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
8370 tree count
= build_int_cst (NULL_TREE
,
8371 GET_MODE_BITSIZE (GET_MODE (exp
)) - prec
);
8372 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
8373 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
8377 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8378 when applied to the address of EXP produces an address known to be
8379 aligned more than BIGGEST_ALIGNMENT. */
8382 is_aligning_offset (tree offset
, tree exp
)
8384 /* Strip off any conversions. */
8385 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8386 || TREE_CODE (offset
) == NOP_EXPR
8387 || TREE_CODE (offset
) == CONVERT_EXPR
)
8388 offset
= TREE_OPERAND (offset
, 0);
8390 /* We must now have a BIT_AND_EXPR with a constant that is one less than
8391 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
8392 if (TREE_CODE (offset
) != BIT_AND_EXPR
8393 || !host_integerp (TREE_OPERAND (offset
, 1), 1)
8394 || compare_tree_int (TREE_OPERAND (offset
, 1),
8395 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
8396 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset
, 1), 1) + 1) < 0)
8399 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8400 It must be NEGATE_EXPR. Then strip any more conversions. */
8401 offset
= TREE_OPERAND (offset
, 0);
8402 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8403 || TREE_CODE (offset
) == NOP_EXPR
8404 || TREE_CODE (offset
) == CONVERT_EXPR
)
8405 offset
= TREE_OPERAND (offset
, 0);
8407 if (TREE_CODE (offset
) != NEGATE_EXPR
)
8410 offset
= TREE_OPERAND (offset
, 0);
8411 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8412 || TREE_CODE (offset
) == NOP_EXPR
8413 || TREE_CODE (offset
) == CONVERT_EXPR
)
8414 offset
= TREE_OPERAND (offset
, 0);
8416 /* This must now be the address of EXP. */
8417 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
8420 /* Return the tree node if an ARG corresponds to a string constant or zero
8421 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
8422 in bytes within the string that ARG is accessing. The type of the
8423 offset will be `sizetype'. */
8426 string_constant (tree arg
, tree
*ptr_offset
)
8431 if (TREE_CODE (arg
) == ADDR_EXPR
)
8433 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
8435 *ptr_offset
= size_zero_node
;
8436 return TREE_OPERAND (arg
, 0);
8438 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
8440 array
= TREE_OPERAND (arg
, 0);
8441 offset
= size_zero_node
;
8443 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
8445 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
8446 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
8447 if (TREE_CODE (array
) != STRING_CST
8448 && TREE_CODE (array
) != VAR_DECL
)
8454 else if (TREE_CODE (arg
) == PLUS_EXPR
)
8456 tree arg0
= TREE_OPERAND (arg
, 0);
8457 tree arg1
= TREE_OPERAND (arg
, 1);
8462 if (TREE_CODE (arg0
) == ADDR_EXPR
8463 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
8464 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
8466 array
= TREE_OPERAND (arg0
, 0);
8469 else if (TREE_CODE (arg1
) == ADDR_EXPR
8470 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
8471 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
8473 array
= TREE_OPERAND (arg1
, 0);
8482 if (TREE_CODE (array
) == STRING_CST
)
8484 *ptr_offset
= convert (sizetype
, offset
);
8487 else if (TREE_CODE (array
) == VAR_DECL
)
8491 /* Variables initialized to string literals can be handled too. */
8492 if (DECL_INITIAL (array
) == NULL_TREE
8493 || TREE_CODE (DECL_INITIAL (array
)) != STRING_CST
)
8496 /* If they are read-only, non-volatile and bind locally. */
8497 if (! TREE_READONLY (array
)
8498 || TREE_SIDE_EFFECTS (array
)
8499 || ! targetm
.binds_local_p (array
))
8502 /* Avoid const char foo[4] = "abcde"; */
8503 if (DECL_SIZE_UNIT (array
) == NULL_TREE
8504 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
8505 || (length
= TREE_STRING_LENGTH (DECL_INITIAL (array
))) <= 0
8506 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
8509 /* If variable is bigger than the string literal, OFFSET must be constant
8510 and inside of the bounds of the string literal. */
8511 offset
= convert (sizetype
, offset
);
8512 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
8513 && (! host_integerp (offset
, 1)
8514 || compare_tree_int (offset
, length
) >= 0))
8517 *ptr_offset
= offset
;
8518 return DECL_INITIAL (array
);
8524 /* Generate code to calculate EXP using a store-flag instruction
8525 and return an rtx for the result. EXP is either a comparison
8526 or a TRUTH_NOT_EXPR whose operand is a comparison.
8528 If TARGET is nonzero, store the result there if convenient.
8530 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
8533 Return zero if there is no suitable set-flag instruction
8534 available on this machine.
8536 Once expand_expr has been called on the arguments of the comparison,
8537 we are committed to doing the store flag, since it is not safe to
8538 re-evaluate the expression. We emit the store-flag insn by calling
8539 emit_store_flag, but only expand the arguments if we have a reason
8540 to believe that emit_store_flag will be successful. If we think that
8541 it will, but it isn't, we have to simulate the store-flag with a
8542 set/jump/set sequence. */
8545 do_store_flag (tree exp
, rtx target
, enum machine_mode mode
, int only_cheap
)
8548 tree arg0
, arg1
, type
;
8550 enum machine_mode operand_mode
;
8554 enum insn_code icode
;
8555 rtx subtarget
= target
;
8558 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
8559 result at the end. We can't simply invert the test since it would
8560 have already been inverted if it were valid. This case occurs for
8561 some floating-point comparisons. */
8563 if (TREE_CODE (exp
) == TRUTH_NOT_EXPR
)
8564 invert
= 1, exp
= TREE_OPERAND (exp
, 0);
8566 arg0
= TREE_OPERAND (exp
, 0);
8567 arg1
= TREE_OPERAND (exp
, 1);
8569 /* Don't crash if the comparison was erroneous. */
8570 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
8573 type
= TREE_TYPE (arg0
);
8574 operand_mode
= TYPE_MODE (type
);
8575 unsignedp
= TYPE_UNSIGNED (type
);
8577 /* We won't bother with BLKmode store-flag operations because it would mean
8578 passing a lot of information to emit_store_flag. */
8579 if (operand_mode
== BLKmode
)
8582 /* We won't bother with store-flag operations involving function pointers
8583 when function pointers must be canonicalized before comparisons. */
8584 #ifdef HAVE_canonicalize_funcptr_for_compare
8585 if (HAVE_canonicalize_funcptr_for_compare
8586 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == POINTER_TYPE
8587 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8589 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 1))) == POINTER_TYPE
8590 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
8591 == FUNCTION_TYPE
))))
8598 /* Get the rtx comparison code to use. We know that EXP is a comparison
8599 operation of some type. Some comparisons against 1 and -1 can be
8600 converted to comparisons with zero. Do so here so that the tests
8601 below will be aware that we have a comparison with zero. These
8602 tests will not catch constants in the first operand, but constants
8603 are rarely passed as the first operand. */
8605 switch (TREE_CODE (exp
))
8614 if (integer_onep (arg1
))
8615 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
8617 code
= unsignedp
? LTU
: LT
;
8620 if (! unsignedp
&& integer_all_onesp (arg1
))
8621 arg1
= integer_zero_node
, code
= LT
;
8623 code
= unsignedp
? LEU
: LE
;
8626 if (! unsignedp
&& integer_all_onesp (arg1
))
8627 arg1
= integer_zero_node
, code
= GE
;
8629 code
= unsignedp
? GTU
: GT
;
8632 if (integer_onep (arg1
))
8633 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
8635 code
= unsignedp
? GEU
: GE
;
8638 case UNORDERED_EXPR
:
8667 /* Put a constant second. */
8668 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
)
8670 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
8671 code
= swap_condition (code
);
8674 /* If this is an equality or inequality test of a single bit, we can
8675 do this by shifting the bit being tested to the low-order bit and
8676 masking the result with the constant 1. If the condition was EQ,
8677 we xor it with 1. This does not require an scc insn and is faster
8678 than an scc insn even if we have it.
8680 The code to make this transformation was moved into fold_single_bit_test,
8681 so we just call into the folder and expand its result. */
8683 if ((code
== NE
|| code
== EQ
)
8684 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
8685 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
8687 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
8688 return expand_expr (fold_single_bit_test (code
== NE
? NE_EXPR
: EQ_EXPR
,
8690 target
, VOIDmode
, EXPAND_NORMAL
);
8693 /* Now see if we are likely to be able to do this. Return if not. */
8694 if (! can_compare_p (code
, operand_mode
, ccp_store_flag
))
8697 icode
= setcc_gen_code
[(int) code
];
8698 if (icode
== CODE_FOR_nothing
8699 || (only_cheap
&& insn_data
[(int) icode
].operand
[0].mode
!= mode
))
8701 /* We can only do this if it is one of the special cases that
8702 can be handled without an scc insn. */
8703 if ((code
== LT
&& integer_zerop (arg1
))
8704 || (! only_cheap
&& code
== GE
&& integer_zerop (arg1
)))
8706 else if (BRANCH_COST
>= 0
8707 && ! only_cheap
&& (code
== NE
|| code
== EQ
)
8708 && TREE_CODE (type
) != REAL_TYPE
8709 && ((abs_optab
->handlers
[(int) operand_mode
].insn_code
8710 != CODE_FOR_nothing
)
8711 || (ffs_optab
->handlers
[(int) operand_mode
].insn_code
8712 != CODE_FOR_nothing
)))
8718 if (! get_subtarget (target
)
8719 || GET_MODE (subtarget
) != operand_mode
)
8722 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, 0);
8725 target
= gen_reg_rtx (mode
);
8727 result
= emit_store_flag (target
, code
, op0
, op1
,
8728 operand_mode
, unsignedp
, 1);
8733 result
= expand_binop (mode
, xor_optab
, result
, const1_rtx
,
8734 result
, 0, OPTAB_LIB_WIDEN
);
8738 /* If this failed, we have to do this with set/compare/jump/set code. */
8740 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
8741 target
= gen_reg_rtx (GET_MODE (target
));
8743 emit_move_insn (target
, invert
? const0_rtx
: const1_rtx
);
8744 result
= compare_from_rtx (op0
, op1
, code
, unsignedp
,
8745 operand_mode
, NULL_RTX
);
8746 if (GET_CODE (result
) == CONST_INT
)
8747 return (((result
== const0_rtx
&& ! invert
)
8748 || (result
!= const0_rtx
&& invert
))
8749 ? const0_rtx
: const1_rtx
);
8751 /* The code of RESULT may not match CODE if compare_from_rtx
8752 decided to swap its operands and reverse the original code.
8754 We know that compare_from_rtx returns either a CONST_INT or
8755 a new comparison code, so it is safe to just extract the
8756 code from RESULT. */
8757 code
= GET_CODE (result
);
8759 label
= gen_label_rtx ();
8760 gcc_assert (bcc_gen_fctn
[(int) code
]);
8762 emit_jump_insn ((*bcc_gen_fctn
[(int) code
]) (label
));
8763 emit_move_insn (target
, invert
? const1_rtx
: const0_rtx
);
8770 /* Stubs in case we haven't got a casesi insn. */
8772 # define HAVE_casesi 0
8773 # define gen_casesi(a, b, c, d, e) (0)
8774 # define CODE_FOR_casesi CODE_FOR_nothing
8777 /* If the machine does not have a case insn that compares the bounds,
8778 this means extra overhead for dispatch tables, which raises the
8779 threshold for using them. */
8780 #ifndef CASE_VALUES_THRESHOLD
8781 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
8782 #endif /* CASE_VALUES_THRESHOLD */
8785 case_values_threshold (void)
8787 return CASE_VALUES_THRESHOLD
;
8790 /* Attempt to generate a casesi instruction. Returns 1 if successful,
8791 0 otherwise (i.e. if there is no casesi instruction). */
8793 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
8794 rtx table_label ATTRIBUTE_UNUSED
, rtx default_label
)
8796 enum machine_mode index_mode
= SImode
;
8797 int index_bits
= GET_MODE_BITSIZE (index_mode
);
8798 rtx op1
, op2
, index
;
8799 enum machine_mode op_mode
;
8804 /* Convert the index to SImode. */
8805 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
8807 enum machine_mode omode
= TYPE_MODE (index_type
);
8808 rtx rangertx
= expand_expr (range
, NULL_RTX
, VOIDmode
, 0);
8810 /* We must handle the endpoints in the original mode. */
8811 index_expr
= build2 (MINUS_EXPR
, index_type
,
8812 index_expr
, minval
);
8813 minval
= integer_zero_node
;
8814 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
8815 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
8816 omode
, 1, default_label
);
8817 /* Now we can safely truncate. */
8818 index
= convert_to_mode (index_mode
, index
, 0);
8822 if (TYPE_MODE (index_type
) != index_mode
)
8824 index_expr
= convert (lang_hooks
.types
.type_for_size
8825 (index_bits
, 0), index_expr
);
8826 index_type
= TREE_TYPE (index_expr
);
8829 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
8832 do_pending_stack_adjust ();
8834 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[0].mode
;
8835 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[0].predicate
)
8837 index
= copy_to_mode_reg (op_mode
, index
);
8839 op1
= expand_expr (minval
, NULL_RTX
, VOIDmode
, 0);
8841 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[1].mode
;
8842 op1
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (minval
)),
8843 op1
, TYPE_UNSIGNED (TREE_TYPE (minval
)));
8844 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[1].predicate
)
8846 op1
= copy_to_mode_reg (op_mode
, op1
);
8848 op2
= expand_expr (range
, NULL_RTX
, VOIDmode
, 0);
8850 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[2].mode
;
8851 op2
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (range
)),
8852 op2
, TYPE_UNSIGNED (TREE_TYPE (range
)));
8853 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[2].predicate
)
8855 op2
= copy_to_mode_reg (op_mode
, op2
);
8857 emit_jump_insn (gen_casesi (index
, op1
, op2
,
8858 table_label
, default_label
));
8862 /* Attempt to generate a tablejump instruction; same concept. */
8863 #ifndef HAVE_tablejump
8864 #define HAVE_tablejump 0
8865 #define gen_tablejump(x, y) (0)
8868 /* Subroutine of the next function.
8870 INDEX is the value being switched on, with the lowest value
8871 in the table already subtracted.
8872 MODE is its expected mode (needed if INDEX is constant).
8873 RANGE is the length of the jump table.
8874 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
8876 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
8877 index value is out of range. */
8880 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
8885 if (INTVAL (range
) > cfun
->max_jumptable_ents
)
8886 cfun
->max_jumptable_ents
= INTVAL (range
);
8888 /* Do an unsigned comparison (in the proper mode) between the index
8889 expression and the value which represents the length of the range.
8890 Since we just finished subtracting the lower bound of the range
8891 from the index expression, this comparison allows us to simultaneously
8892 check that the original index expression value is both greater than
8893 or equal to the minimum value of the range and less than or equal to
8894 the maximum value of the range. */
8896 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
8899 /* If index is in range, it must fit in Pmode.
8900 Convert to Pmode so we can index with it. */
8902 index
= convert_to_mode (Pmode
, index
, 1);
8904 /* Don't let a MEM slip through, because then INDEX that comes
8905 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
8906 and break_out_memory_refs will go to work on it and mess it up. */
8907 #ifdef PIC_CASE_VECTOR_ADDRESS
8908 if (flag_pic
&& !REG_P (index
))
8909 index
= copy_to_mode_reg (Pmode
, index
);
8912 /* If flag_force_addr were to affect this address
8913 it could interfere with the tricky assumptions made
8914 about addresses that contain label-refs,
8915 which may be valid only very near the tablejump itself. */
8916 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
8917 GET_MODE_SIZE, because this indicates how large insns are. The other
8918 uses should all be Pmode, because they are addresses. This code
8919 could fail if addresses and insns are not the same size. */
8920 index
= gen_rtx_PLUS (Pmode
,
8921 gen_rtx_MULT (Pmode
, index
,
8922 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE
))),
8923 gen_rtx_LABEL_REF (Pmode
, table_label
));
8924 #ifdef PIC_CASE_VECTOR_ADDRESS
8926 index
= PIC_CASE_VECTOR_ADDRESS (index
);
8929 index
= memory_address_noforce (CASE_VECTOR_MODE
, index
);
8930 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
8931 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
8932 convert_move (temp
, vector
, 0);
8934 emit_jump_insn (gen_tablejump (temp
, table_label
));
8936 /* If we are generating PIC code or if the table is PC-relative, the
8937 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
8938 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
8943 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
8944 rtx table_label
, rtx default_label
)
8948 if (! HAVE_tablejump
)
8951 index_expr
= fold (build2 (MINUS_EXPR
, index_type
,
8952 convert (index_type
, index_expr
),
8953 convert (index_type
, minval
)));
8954 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
8955 do_pending_stack_adjust ();
8957 do_tablejump (index
, TYPE_MODE (index_type
),
8958 convert_modes (TYPE_MODE (index_type
),
8959 TYPE_MODE (TREE_TYPE (range
)),
8960 expand_expr (range
, NULL_RTX
,
8962 TYPE_UNSIGNED (TREE_TYPE (range
))),
8963 table_label
, default_label
);
8967 /* Nonzero if the mode is a valid vector mode for this architecture.
8968 This returns nonzero even if there is no hardware support for the
8969 vector mode, but we can emulate with narrower modes. */
8972 vector_mode_valid_p (enum machine_mode mode
)
8974 enum mode_class
class = GET_MODE_CLASS (mode
);
8975 enum machine_mode innermode
;
8977 /* Doh! What's going on? */
8978 if (class != MODE_VECTOR_INT
8979 && class != MODE_VECTOR_FLOAT
)
8982 /* Hardware support. Woo hoo! */
8983 if (targetm
.vector_mode_supported_p (mode
))
8986 innermode
= GET_MODE_INNER (mode
);
8988 /* We should probably return 1 if requesting V4DI and we have no DI,
8989 but we have V2DI, but this is probably very unlikely. */
8991 /* If we have support for the inner mode, we can safely emulate it.
8992 We may not have V2DI, but me can emulate with a pair of DIs. */
8993 return targetm
.scalar_mode_supported_p (innermode
);
8996 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
8998 const_vector_from_tree (tree exp
)
9003 enum machine_mode inner
, mode
;
9005 mode
= TYPE_MODE (TREE_TYPE (exp
));
9007 if (initializer_zerop (exp
))
9008 return CONST0_RTX (mode
);
9010 units
= GET_MODE_NUNITS (mode
);
9011 inner
= GET_MODE_INNER (mode
);
9013 v
= rtvec_alloc (units
);
9015 link
= TREE_VECTOR_CST_ELTS (exp
);
9016 for (i
= 0; link
; link
= TREE_CHAIN (link
), ++i
)
9018 elt
= TREE_VALUE (link
);
9020 if (TREE_CODE (elt
) == REAL_CST
)
9021 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
9024 RTVEC_ELT (v
, i
) = immed_double_const (TREE_INT_CST_LOW (elt
),
9025 TREE_INT_CST_HIGH (elt
),
9029 /* Initialize remaining elements to 0. */
9030 for (; i
< units
; ++i
)
9031 RTVEC_ELT (v
, i
) = CONST0_RTX (inner
);
9033 return gen_rtx_CONST_VECTOR (mode
, v
);
9035 #include "gt-expr.h"