* gcc.dg/20020919-1.c: Use _ARCH_PPC64 to test for -mpowerpc64.
[official-gcc.git] / gcc / function.c
blob2c3d1426c1877ab77e886fe4be3c06af86bfc940
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "hash-set.h"
40 #include "machmode.h"
41 #include "vec.h"
42 #include "double-int.h"
43 #include "input.h"
44 #include "alias.h"
45 #include "symtab.h"
46 #include "wide-int.h"
47 #include "inchash.h"
48 #include "tree.h"
49 #include "fold-const.h"
50 #include "stor-layout.h"
51 #include "varasm.h"
52 #include "stringpool.h"
53 #include "flags.h"
54 #include "except.h"
55 #include "hashtab.h"
56 #include "hard-reg-set.h"
57 #include "function.h"
58 #include "rtl.h"
59 #include "statistics.h"
60 #include "real.h"
61 #include "fixed-value.h"
62 #include "insn-config.h"
63 #include "expmed.h"
64 #include "dojump.h"
65 #include "explow.h"
66 #include "calls.h"
67 #include "emit-rtl.h"
68 #include "stmt.h"
69 #include "expr.h"
70 #include "insn-codes.h"
71 #include "optabs.h"
72 #include "libfuncs.h"
73 #include "regs.h"
74 #include "recog.h"
75 #include "output.h"
76 #include "tm_p.h"
77 #include "langhooks.h"
78 #include "target.h"
79 #include "common/common-target.h"
80 #include "gimple-expr.h"
81 #include "gimplify.h"
82 #include "tree-pass.h"
83 #include "predict.h"
84 #include "dominance.h"
85 #include "cfg.h"
86 #include "cfgrtl.h"
87 #include "cfganal.h"
88 #include "cfgbuild.h"
89 #include "cfgcleanup.h"
90 #include "basic-block.h"
91 #include "df.h"
92 #include "params.h"
93 #include "bb-reorder.h"
94 #include "shrink-wrap.h"
95 #include "toplev.h"
96 #include "rtl-iter.h"
97 #include "tree-chkp.h"
98 #include "rtl-chkp.h"
100 /* So we can assign to cfun in this file. */
101 #undef cfun
103 #ifndef STACK_ALIGNMENT_NEEDED
104 #define STACK_ALIGNMENT_NEEDED 1
105 #endif
107 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
109 /* Round a value to the lowest integer less than it that is a multiple of
110 the required alignment. Avoid using division in case the value is
111 negative. Assume the alignment is a power of two. */
112 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
114 /* Similar, but round to the next highest integer that meets the
115 alignment. */
116 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
118 /* Nonzero once virtual register instantiation has been done.
119 assign_stack_local uses frame_pointer_rtx when this is nonzero.
120 calls.c:emit_library_call_value_1 uses it to set up
121 post-instantiation libcalls. */
122 int virtuals_instantiated;
124 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
125 static GTY(()) int funcdef_no;
127 /* These variables hold pointers to functions to create and destroy
128 target specific, per-function data structures. */
129 struct machine_function * (*init_machine_status) (void);
131 /* The currently compiled function. */
132 struct function *cfun = 0;
134 /* These hashes record the prologue and epilogue insns. */
136 struct insn_cache_hasher : ggc_cache_hasher<rtx>
138 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
139 static bool equal (rtx a, rtx b) { return a == b; }
142 static GTY((cache))
143 hash_table<insn_cache_hasher> *prologue_insn_hash;
144 static GTY((cache))
145 hash_table<insn_cache_hasher> *epilogue_insn_hash;
148 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
149 vec<tree, va_gc> *types_used_by_cur_var_decl;
151 /* Forward declarations. */
153 static struct temp_slot *find_temp_slot_from_address (rtx);
154 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
155 static void pad_below (struct args_size *, machine_mode, tree);
156 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
157 static int all_blocks (tree, tree *);
158 static tree *get_block_vector (tree, int *);
159 extern tree debug_find_var_in_block_tree (tree, tree);
160 /* We always define `record_insns' even if it's not used so that we
161 can always export `prologue_epilogue_contains'. */
162 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
163 ATTRIBUTE_UNUSED;
164 static bool contains (const_rtx, hash_table<insn_cache_hasher> *);
165 static void prepare_function_start (void);
166 static void do_clobber_return_reg (rtx, void *);
167 static void do_use_return_reg (rtx, void *);
169 /* Stack of nested functions. */
170 /* Keep track of the cfun stack. */
172 typedef struct function *function_p;
174 static vec<function_p> function_context_stack;
176 /* Save the current context for compilation of a nested function.
177 This is called from language-specific code. */
179 void
180 push_function_context (void)
182 if (cfun == 0)
183 allocate_struct_function (NULL, false);
185 function_context_stack.safe_push (cfun);
186 set_cfun (NULL);
189 /* Restore the last saved context, at the end of a nested function.
190 This function is called from language-specific code. */
192 void
193 pop_function_context (void)
195 struct function *p = function_context_stack.pop ();
196 set_cfun (p);
197 current_function_decl = p->decl;
199 /* Reset variables that have known state during rtx generation. */
200 virtuals_instantiated = 0;
201 generating_concat_p = 1;
204 /* Clear out all parts of the state in F that can safely be discarded
205 after the function has been parsed, but not compiled, to let
206 garbage collection reclaim the memory. */
208 void
209 free_after_parsing (struct function *f)
211 f->language = 0;
214 /* Clear out all parts of the state in F that can safely be discarded
215 after the function has been compiled, to let garbage collection
216 reclaim the memory. */
218 void
219 free_after_compilation (struct function *f)
221 prologue_insn_hash = NULL;
222 epilogue_insn_hash = NULL;
224 free (crtl->emit.regno_pointer_align);
226 memset (crtl, 0, sizeof (struct rtl_data));
227 f->eh = NULL;
228 f->machine = NULL;
229 f->cfg = NULL;
231 regno_reg_rtx = NULL;
234 /* Return size needed for stack frame based on slots so far allocated.
235 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
236 the caller may have to do that. */
238 HOST_WIDE_INT
239 get_frame_size (void)
241 if (FRAME_GROWS_DOWNWARD)
242 return -frame_offset;
243 else
244 return frame_offset;
247 /* Issue an error message and return TRUE if frame OFFSET overflows in
248 the signed target pointer arithmetics for function FUNC. Otherwise
249 return FALSE. */
251 bool
252 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
254 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
256 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
257 /* Leave room for the fixed part of the frame. */
258 - 64 * UNITS_PER_WORD)
260 error_at (DECL_SOURCE_LOCATION (func),
261 "total size of local objects too large");
262 return TRUE;
265 return FALSE;
268 /* Return stack slot alignment in bits for TYPE and MODE. */
270 static unsigned int
271 get_stack_local_alignment (tree type, machine_mode mode)
273 unsigned int alignment;
275 if (mode == BLKmode)
276 alignment = BIGGEST_ALIGNMENT;
277 else
278 alignment = GET_MODE_ALIGNMENT (mode);
280 /* Allow the frond-end to (possibly) increase the alignment of this
281 stack slot. */
282 if (! type)
283 type = lang_hooks.types.type_for_mode (mode, 0);
285 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
288 /* Determine whether it is possible to fit a stack slot of size SIZE and
289 alignment ALIGNMENT into an area in the stack frame that starts at
290 frame offset START and has a length of LENGTH. If so, store the frame
291 offset to be used for the stack slot in *POFFSET and return true;
292 return false otherwise. This function will extend the frame size when
293 given a start/length pair that lies at the end of the frame. */
295 static bool
296 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
297 HOST_WIDE_INT size, unsigned int alignment,
298 HOST_WIDE_INT *poffset)
300 HOST_WIDE_INT this_frame_offset;
301 int frame_off, frame_alignment, frame_phase;
303 /* Calculate how many bytes the start of local variables is off from
304 stack alignment. */
305 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
306 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
307 frame_phase = frame_off ? frame_alignment - frame_off : 0;
309 /* Round the frame offset to the specified alignment. */
311 /* We must be careful here, since FRAME_OFFSET might be negative and
312 division with a negative dividend isn't as well defined as we might
313 like. So we instead assume that ALIGNMENT is a power of two and
314 use logical operations which are unambiguous. */
315 if (FRAME_GROWS_DOWNWARD)
316 this_frame_offset
317 = (FLOOR_ROUND (start + length - size - frame_phase,
318 (unsigned HOST_WIDE_INT) alignment)
319 + frame_phase);
320 else
321 this_frame_offset
322 = (CEIL_ROUND (start - frame_phase,
323 (unsigned HOST_WIDE_INT) alignment)
324 + frame_phase);
326 /* See if it fits. If this space is at the edge of the frame,
327 consider extending the frame to make it fit. Our caller relies on
328 this when allocating a new slot. */
329 if (frame_offset == start && this_frame_offset < frame_offset)
330 frame_offset = this_frame_offset;
331 else if (this_frame_offset < start)
332 return false;
333 else if (start + length == frame_offset
334 && this_frame_offset + size > start + length)
335 frame_offset = this_frame_offset + size;
336 else if (this_frame_offset + size > start + length)
337 return false;
339 *poffset = this_frame_offset;
340 return true;
343 /* Create a new frame_space structure describing free space in the stack
344 frame beginning at START and ending at END, and chain it into the
345 function's frame_space_list. */
347 static void
348 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
350 struct frame_space *space = ggc_alloc<frame_space> ();
351 space->next = crtl->frame_space_list;
352 crtl->frame_space_list = space;
353 space->start = start;
354 space->length = end - start;
357 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
358 with machine mode MODE.
360 ALIGN controls the amount of alignment for the address of the slot:
361 0 means according to MODE,
362 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
363 -2 means use BITS_PER_UNIT,
364 positive specifies alignment boundary in bits.
366 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
367 alignment and ASLK_RECORD_PAD bit set if we should remember
368 extra space we allocated for alignment purposes. When we are
369 called from assign_stack_temp_for_type, it is not set so we don't
370 track the same stack slot in two independent lists.
372 We do not round to stack_boundary here. */
375 assign_stack_local_1 (machine_mode mode, HOST_WIDE_INT size,
376 int align, int kind)
378 rtx x, addr;
379 int bigend_correction = 0;
380 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
381 unsigned int alignment, alignment_in_bits;
383 if (align == 0)
385 alignment = get_stack_local_alignment (NULL, mode);
386 alignment /= BITS_PER_UNIT;
388 else if (align == -1)
390 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
391 size = CEIL_ROUND (size, alignment);
393 else if (align == -2)
394 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
395 else
396 alignment = align / BITS_PER_UNIT;
398 alignment_in_bits = alignment * BITS_PER_UNIT;
400 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
401 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
403 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
404 alignment = alignment_in_bits / BITS_PER_UNIT;
407 if (SUPPORTS_STACK_ALIGNMENT)
409 if (crtl->stack_alignment_estimated < alignment_in_bits)
411 if (!crtl->stack_realign_processed)
412 crtl->stack_alignment_estimated = alignment_in_bits;
413 else
415 /* If stack is realigned and stack alignment value
416 hasn't been finalized, it is OK not to increase
417 stack_alignment_estimated. The bigger alignment
418 requirement is recorded in stack_alignment_needed
419 below. */
420 gcc_assert (!crtl->stack_realign_finalized);
421 if (!crtl->stack_realign_needed)
423 /* It is OK to reduce the alignment as long as the
424 requested size is 0 or the estimated stack
425 alignment >= mode alignment. */
426 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
427 || size == 0
428 || (crtl->stack_alignment_estimated
429 >= GET_MODE_ALIGNMENT (mode)));
430 alignment_in_bits = crtl->stack_alignment_estimated;
431 alignment = alignment_in_bits / BITS_PER_UNIT;
437 if (crtl->stack_alignment_needed < alignment_in_bits)
438 crtl->stack_alignment_needed = alignment_in_bits;
439 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
440 crtl->max_used_stack_slot_alignment = alignment_in_bits;
442 if (mode != BLKmode || size != 0)
444 if (kind & ASLK_RECORD_PAD)
446 struct frame_space **psp;
448 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
450 struct frame_space *space = *psp;
451 if (!try_fit_stack_local (space->start, space->length, size,
452 alignment, &slot_offset))
453 continue;
454 *psp = space->next;
455 if (slot_offset > space->start)
456 add_frame_space (space->start, slot_offset);
457 if (slot_offset + size < space->start + space->length)
458 add_frame_space (slot_offset + size,
459 space->start + space->length);
460 goto found_space;
464 else if (!STACK_ALIGNMENT_NEEDED)
466 slot_offset = frame_offset;
467 goto found_space;
470 old_frame_offset = frame_offset;
472 if (FRAME_GROWS_DOWNWARD)
474 frame_offset -= size;
475 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
477 if (kind & ASLK_RECORD_PAD)
479 if (slot_offset > frame_offset)
480 add_frame_space (frame_offset, slot_offset);
481 if (slot_offset + size < old_frame_offset)
482 add_frame_space (slot_offset + size, old_frame_offset);
485 else
487 frame_offset += size;
488 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
490 if (kind & ASLK_RECORD_PAD)
492 if (slot_offset > old_frame_offset)
493 add_frame_space (old_frame_offset, slot_offset);
494 if (slot_offset + size < frame_offset)
495 add_frame_space (slot_offset + size, frame_offset);
499 found_space:
500 /* On a big-endian machine, if we are allocating more space than we will use,
501 use the least significant bytes of those that are allocated. */
502 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
503 bigend_correction = size - GET_MODE_SIZE (mode);
505 /* If we have already instantiated virtual registers, return the actual
506 address relative to the frame pointer. */
507 if (virtuals_instantiated)
508 addr = plus_constant (Pmode, frame_pointer_rtx,
509 trunc_int_for_mode
510 (slot_offset + bigend_correction
511 + STARTING_FRAME_OFFSET, Pmode));
512 else
513 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
514 trunc_int_for_mode
515 (slot_offset + bigend_correction,
516 Pmode));
518 x = gen_rtx_MEM (mode, addr);
519 set_mem_align (x, alignment_in_bits);
520 MEM_NOTRAP_P (x) = 1;
522 stack_slot_list
523 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
525 if (frame_offset_overflow (frame_offset, current_function_decl))
526 frame_offset = 0;
528 return x;
531 /* Wrap up assign_stack_local_1 with last parameter as false. */
534 assign_stack_local (machine_mode mode, HOST_WIDE_INT size, int align)
536 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
539 /* In order to evaluate some expressions, such as function calls returning
540 structures in memory, we need to temporarily allocate stack locations.
541 We record each allocated temporary in the following structure.
543 Associated with each temporary slot is a nesting level. When we pop up
544 one level, all temporaries associated with the previous level are freed.
545 Normally, all temporaries are freed after the execution of the statement
546 in which they were created. However, if we are inside a ({...}) grouping,
547 the result may be in a temporary and hence must be preserved. If the
548 result could be in a temporary, we preserve it if we can determine which
549 one it is in. If we cannot determine which temporary may contain the
550 result, all temporaries are preserved. A temporary is preserved by
551 pretending it was allocated at the previous nesting level. */
553 struct GTY(()) temp_slot {
554 /* Points to next temporary slot. */
555 struct temp_slot *next;
556 /* Points to previous temporary slot. */
557 struct temp_slot *prev;
558 /* The rtx to used to reference the slot. */
559 rtx slot;
560 /* The size, in units, of the slot. */
561 HOST_WIDE_INT size;
562 /* The type of the object in the slot, or zero if it doesn't correspond
563 to a type. We use this to determine whether a slot can be reused.
564 It can be reused if objects of the type of the new slot will always
565 conflict with objects of the type of the old slot. */
566 tree type;
567 /* The alignment (in bits) of the slot. */
568 unsigned int align;
569 /* Nonzero if this temporary is currently in use. */
570 char in_use;
571 /* Nesting level at which this slot is being used. */
572 int level;
573 /* The offset of the slot from the frame_pointer, including extra space
574 for alignment. This info is for combine_temp_slots. */
575 HOST_WIDE_INT base_offset;
576 /* The size of the slot, including extra space for alignment. This
577 info is for combine_temp_slots. */
578 HOST_WIDE_INT full_size;
581 /* Entry for the below hash table. */
582 struct GTY((for_user)) temp_slot_address_entry {
583 hashval_t hash;
584 rtx address;
585 struct temp_slot *temp_slot;
588 struct temp_address_hasher : ggc_hasher<temp_slot_address_entry *>
590 static hashval_t hash (temp_slot_address_entry *);
591 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
594 /* A table of addresses that represent a stack slot. The table is a mapping
595 from address RTXen to a temp slot. */
596 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
597 static size_t n_temp_slots_in_use;
599 /* Removes temporary slot TEMP from LIST. */
601 static void
602 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
604 if (temp->next)
605 temp->next->prev = temp->prev;
606 if (temp->prev)
607 temp->prev->next = temp->next;
608 else
609 *list = temp->next;
611 temp->prev = temp->next = NULL;
614 /* Inserts temporary slot TEMP to LIST. */
616 static void
617 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
619 temp->next = *list;
620 if (*list)
621 (*list)->prev = temp;
622 temp->prev = NULL;
623 *list = temp;
626 /* Returns the list of used temp slots at LEVEL. */
628 static struct temp_slot **
629 temp_slots_at_level (int level)
631 if (level >= (int) vec_safe_length (used_temp_slots))
632 vec_safe_grow_cleared (used_temp_slots, level + 1);
634 return &(*used_temp_slots)[level];
637 /* Returns the maximal temporary slot level. */
639 static int
640 max_slot_level (void)
642 if (!used_temp_slots)
643 return -1;
645 return used_temp_slots->length () - 1;
648 /* Moves temporary slot TEMP to LEVEL. */
650 static void
651 move_slot_to_level (struct temp_slot *temp, int level)
653 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
654 insert_slot_to_list (temp, temp_slots_at_level (level));
655 temp->level = level;
658 /* Make temporary slot TEMP available. */
660 static void
661 make_slot_available (struct temp_slot *temp)
663 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
664 insert_slot_to_list (temp, &avail_temp_slots);
665 temp->in_use = 0;
666 temp->level = -1;
667 n_temp_slots_in_use--;
670 /* Compute the hash value for an address -> temp slot mapping.
671 The value is cached on the mapping entry. */
672 static hashval_t
673 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
675 int do_not_record = 0;
676 return hash_rtx (t->address, GET_MODE (t->address),
677 &do_not_record, NULL, false);
680 /* Return the hash value for an address -> temp slot mapping. */
681 hashval_t
682 temp_address_hasher::hash (temp_slot_address_entry *t)
684 return t->hash;
687 /* Compare two address -> temp slot mapping entries. */
688 bool
689 temp_address_hasher::equal (temp_slot_address_entry *t1,
690 temp_slot_address_entry *t2)
692 return exp_equiv_p (t1->address, t2->address, 0, true);
695 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
696 static void
697 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
699 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
700 t->address = address;
701 t->temp_slot = temp_slot;
702 t->hash = temp_slot_address_compute_hash (t);
703 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
706 /* Remove an address -> temp slot mapping entry if the temp slot is
707 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
709 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
711 const struct temp_slot_address_entry *t = *slot;
712 if (! t->temp_slot->in_use)
713 temp_slot_address_table->clear_slot (slot);
714 return 1;
717 /* Remove all mappings of addresses to unused temp slots. */
718 static void
719 remove_unused_temp_slot_addresses (void)
721 /* Use quicker clearing if there aren't any active temp slots. */
722 if (n_temp_slots_in_use)
723 temp_slot_address_table->traverse
724 <void *, remove_unused_temp_slot_addresses_1> (NULL);
725 else
726 temp_slot_address_table->empty ();
729 /* Find the temp slot corresponding to the object at address X. */
731 static struct temp_slot *
732 find_temp_slot_from_address (rtx x)
734 struct temp_slot *p;
735 struct temp_slot_address_entry tmp, *t;
737 /* First try the easy way:
738 See if X exists in the address -> temp slot mapping. */
739 tmp.address = x;
740 tmp.temp_slot = NULL;
741 tmp.hash = temp_slot_address_compute_hash (&tmp);
742 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
743 if (t)
744 return t->temp_slot;
746 /* If we have a sum involving a register, see if it points to a temp
747 slot. */
748 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
749 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
750 return p;
751 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
752 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
753 return p;
755 /* Last resort: Address is a virtual stack var address. */
756 if (GET_CODE (x) == PLUS
757 && XEXP (x, 0) == virtual_stack_vars_rtx
758 && CONST_INT_P (XEXP (x, 1)))
760 int i;
761 for (i = max_slot_level (); i >= 0; i--)
762 for (p = *temp_slots_at_level (i); p; p = p->next)
764 if (INTVAL (XEXP (x, 1)) >= p->base_offset
765 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
766 return p;
770 return NULL;
773 /* Allocate a temporary stack slot and record it for possible later
774 reuse.
776 MODE is the machine mode to be given to the returned rtx.
778 SIZE is the size in units of the space required. We do no rounding here
779 since assign_stack_local will do any required rounding.
781 TYPE is the type that will be used for the stack slot. */
784 assign_stack_temp_for_type (machine_mode mode, HOST_WIDE_INT size,
785 tree type)
787 unsigned int align;
788 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
789 rtx slot;
791 /* If SIZE is -1 it means that somebody tried to allocate a temporary
792 of a variable size. */
793 gcc_assert (size != -1);
795 align = get_stack_local_alignment (type, mode);
797 /* Try to find an available, already-allocated temporary of the proper
798 mode which meets the size and alignment requirements. Choose the
799 smallest one with the closest alignment.
801 If assign_stack_temp is called outside of the tree->rtl expansion,
802 we cannot reuse the stack slots (that may still refer to
803 VIRTUAL_STACK_VARS_REGNUM). */
804 if (!virtuals_instantiated)
806 for (p = avail_temp_slots; p; p = p->next)
808 if (p->align >= align && p->size >= size
809 && GET_MODE (p->slot) == mode
810 && objects_must_conflict_p (p->type, type)
811 && (best_p == 0 || best_p->size > p->size
812 || (best_p->size == p->size && best_p->align > p->align)))
814 if (p->align == align && p->size == size)
816 selected = p;
817 cut_slot_from_list (selected, &avail_temp_slots);
818 best_p = 0;
819 break;
821 best_p = p;
826 /* Make our best, if any, the one to use. */
827 if (best_p)
829 selected = best_p;
830 cut_slot_from_list (selected, &avail_temp_slots);
832 /* If there are enough aligned bytes left over, make them into a new
833 temp_slot so that the extra bytes don't get wasted. Do this only
834 for BLKmode slots, so that we can be sure of the alignment. */
835 if (GET_MODE (best_p->slot) == BLKmode)
837 int alignment = best_p->align / BITS_PER_UNIT;
838 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
840 if (best_p->size - rounded_size >= alignment)
842 p = ggc_alloc<temp_slot> ();
843 p->in_use = 0;
844 p->size = best_p->size - rounded_size;
845 p->base_offset = best_p->base_offset + rounded_size;
846 p->full_size = best_p->full_size - rounded_size;
847 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
848 p->align = best_p->align;
849 p->type = best_p->type;
850 insert_slot_to_list (p, &avail_temp_slots);
852 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
853 stack_slot_list);
855 best_p->size = rounded_size;
856 best_p->full_size = rounded_size;
861 /* If we still didn't find one, make a new temporary. */
862 if (selected == 0)
864 HOST_WIDE_INT frame_offset_old = frame_offset;
866 p = ggc_alloc<temp_slot> ();
868 /* We are passing an explicit alignment request to assign_stack_local.
869 One side effect of that is assign_stack_local will not round SIZE
870 to ensure the frame offset remains suitably aligned.
872 So for requests which depended on the rounding of SIZE, we go ahead
873 and round it now. We also make sure ALIGNMENT is at least
874 BIGGEST_ALIGNMENT. */
875 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
876 p->slot = assign_stack_local_1 (mode,
877 (mode == BLKmode
878 ? CEIL_ROUND (size,
879 (int) align
880 / BITS_PER_UNIT)
881 : size),
882 align, 0);
884 p->align = align;
886 /* The following slot size computation is necessary because we don't
887 know the actual size of the temporary slot until assign_stack_local
888 has performed all the frame alignment and size rounding for the
889 requested temporary. Note that extra space added for alignment
890 can be either above or below this stack slot depending on which
891 way the frame grows. We include the extra space if and only if it
892 is above this slot. */
893 if (FRAME_GROWS_DOWNWARD)
894 p->size = frame_offset_old - frame_offset;
895 else
896 p->size = size;
898 /* Now define the fields used by combine_temp_slots. */
899 if (FRAME_GROWS_DOWNWARD)
901 p->base_offset = frame_offset;
902 p->full_size = frame_offset_old - frame_offset;
904 else
906 p->base_offset = frame_offset_old;
907 p->full_size = frame_offset - frame_offset_old;
910 selected = p;
913 p = selected;
914 p->in_use = 1;
915 p->type = type;
916 p->level = temp_slot_level;
917 n_temp_slots_in_use++;
919 pp = temp_slots_at_level (p->level);
920 insert_slot_to_list (p, pp);
921 insert_temp_slot_address (XEXP (p->slot, 0), p);
923 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
924 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
925 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
927 /* If we know the alias set for the memory that will be used, use
928 it. If there's no TYPE, then we don't know anything about the
929 alias set for the memory. */
930 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
931 set_mem_align (slot, align);
933 /* If a type is specified, set the relevant flags. */
934 if (type != 0)
935 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
936 MEM_NOTRAP_P (slot) = 1;
938 return slot;
941 /* Allocate a temporary stack slot and record it for possible later
942 reuse. First two arguments are same as in preceding function. */
945 assign_stack_temp (machine_mode mode, HOST_WIDE_INT size)
947 return assign_stack_temp_for_type (mode, size, NULL_TREE);
950 /* Assign a temporary.
951 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
952 and so that should be used in error messages. In either case, we
953 allocate of the given type.
954 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
955 it is 0 if a register is OK.
956 DONT_PROMOTE is 1 if we should not promote values in register
957 to wider modes. */
960 assign_temp (tree type_or_decl, int memory_required,
961 int dont_promote ATTRIBUTE_UNUSED)
963 tree type, decl;
964 machine_mode mode;
965 #ifdef PROMOTE_MODE
966 int unsignedp;
967 #endif
969 if (DECL_P (type_or_decl))
970 decl = type_or_decl, type = TREE_TYPE (decl);
971 else
972 decl = NULL, type = type_or_decl;
974 mode = TYPE_MODE (type);
975 #ifdef PROMOTE_MODE
976 unsignedp = TYPE_UNSIGNED (type);
977 #endif
979 if (mode == BLKmode || memory_required)
981 HOST_WIDE_INT size = int_size_in_bytes (type);
982 rtx tmp;
984 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
985 problems with allocating the stack space. */
986 if (size == 0)
987 size = 1;
989 /* Unfortunately, we don't yet know how to allocate variable-sized
990 temporaries. However, sometimes we can find a fixed upper limit on
991 the size, so try that instead. */
992 else if (size == -1)
993 size = max_int_size_in_bytes (type);
995 /* The size of the temporary may be too large to fit into an integer. */
996 /* ??? Not sure this should happen except for user silliness, so limit
997 this to things that aren't compiler-generated temporaries. The
998 rest of the time we'll die in assign_stack_temp_for_type. */
999 if (decl && size == -1
1000 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1002 error ("size of variable %q+D is too large", decl);
1003 size = 1;
1006 tmp = assign_stack_temp_for_type (mode, size, type);
1007 return tmp;
1010 #ifdef PROMOTE_MODE
1011 if (! dont_promote)
1012 mode = promote_mode (type, mode, &unsignedp);
1013 #endif
1015 return gen_reg_rtx (mode);
1018 /* Combine temporary stack slots which are adjacent on the stack.
1020 This allows for better use of already allocated stack space. This is only
1021 done for BLKmode slots because we can be sure that we won't have alignment
1022 problems in this case. */
1024 static void
1025 combine_temp_slots (void)
1027 struct temp_slot *p, *q, *next, *next_q;
1028 int num_slots;
1030 /* We can't combine slots, because the information about which slot
1031 is in which alias set will be lost. */
1032 if (flag_strict_aliasing)
1033 return;
1035 /* If there are a lot of temp slots, don't do anything unless
1036 high levels of optimization. */
1037 if (! flag_expensive_optimizations)
1038 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1039 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1040 return;
1042 for (p = avail_temp_slots; p; p = next)
1044 int delete_p = 0;
1046 next = p->next;
1048 if (GET_MODE (p->slot) != BLKmode)
1049 continue;
1051 for (q = p->next; q; q = next_q)
1053 int delete_q = 0;
1055 next_q = q->next;
1057 if (GET_MODE (q->slot) != BLKmode)
1058 continue;
1060 if (p->base_offset + p->full_size == q->base_offset)
1062 /* Q comes after P; combine Q into P. */
1063 p->size += q->size;
1064 p->full_size += q->full_size;
1065 delete_q = 1;
1067 else if (q->base_offset + q->full_size == p->base_offset)
1069 /* P comes after Q; combine P into Q. */
1070 q->size += p->size;
1071 q->full_size += p->full_size;
1072 delete_p = 1;
1073 break;
1075 if (delete_q)
1076 cut_slot_from_list (q, &avail_temp_slots);
1079 /* Either delete P or advance past it. */
1080 if (delete_p)
1081 cut_slot_from_list (p, &avail_temp_slots);
1085 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1086 slot that previously was known by OLD_RTX. */
1088 void
1089 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1091 struct temp_slot *p;
1093 if (rtx_equal_p (old_rtx, new_rtx))
1094 return;
1096 p = find_temp_slot_from_address (old_rtx);
1098 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1099 NEW_RTX is a register, see if one operand of the PLUS is a
1100 temporary location. If so, NEW_RTX points into it. Otherwise,
1101 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1102 in common between them. If so, try a recursive call on those
1103 values. */
1104 if (p == 0)
1106 if (GET_CODE (old_rtx) != PLUS)
1107 return;
1109 if (REG_P (new_rtx))
1111 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1112 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1113 return;
1115 else if (GET_CODE (new_rtx) != PLUS)
1116 return;
1118 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1119 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1120 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1121 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1122 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1123 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1124 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1125 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1127 return;
1130 /* Otherwise add an alias for the temp's address. */
1131 insert_temp_slot_address (new_rtx, p);
1134 /* If X could be a reference to a temporary slot, mark that slot as
1135 belonging to the to one level higher than the current level. If X
1136 matched one of our slots, just mark that one. Otherwise, we can't
1137 easily predict which it is, so upgrade all of them.
1139 This is called when an ({...}) construct occurs and a statement
1140 returns a value in memory. */
1142 void
1143 preserve_temp_slots (rtx x)
1145 struct temp_slot *p = 0, *next;
1147 if (x == 0)
1148 return;
1150 /* If X is a register that is being used as a pointer, see if we have
1151 a temporary slot we know it points to. */
1152 if (REG_P (x) && REG_POINTER (x))
1153 p = find_temp_slot_from_address (x);
1155 /* If X is not in memory or is at a constant address, it cannot be in
1156 a temporary slot. */
1157 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1158 return;
1160 /* First see if we can find a match. */
1161 if (p == 0)
1162 p = find_temp_slot_from_address (XEXP (x, 0));
1164 if (p != 0)
1166 if (p->level == temp_slot_level)
1167 move_slot_to_level (p, temp_slot_level - 1);
1168 return;
1171 /* Otherwise, preserve all non-kept slots at this level. */
1172 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1174 next = p->next;
1175 move_slot_to_level (p, temp_slot_level - 1);
1179 /* Free all temporaries used so far. This is normally called at the
1180 end of generating code for a statement. */
1182 void
1183 free_temp_slots (void)
1185 struct temp_slot *p, *next;
1186 bool some_available = false;
1188 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1190 next = p->next;
1191 make_slot_available (p);
1192 some_available = true;
1195 if (some_available)
1197 remove_unused_temp_slot_addresses ();
1198 combine_temp_slots ();
1202 /* Push deeper into the nesting level for stack temporaries. */
1204 void
1205 push_temp_slots (void)
1207 temp_slot_level++;
1210 /* Pop a temporary nesting level. All slots in use in the current level
1211 are freed. */
1213 void
1214 pop_temp_slots (void)
1216 free_temp_slots ();
1217 temp_slot_level--;
1220 /* Initialize temporary slots. */
1222 void
1223 init_temp_slots (void)
1225 /* We have not allocated any temporaries yet. */
1226 avail_temp_slots = 0;
1227 vec_alloc (used_temp_slots, 0);
1228 temp_slot_level = 0;
1229 n_temp_slots_in_use = 0;
1231 /* Set up the table to map addresses to temp slots. */
1232 if (! temp_slot_address_table)
1233 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1234 else
1235 temp_slot_address_table->empty ();
1238 /* Functions and data structures to keep track of the values hard regs
1239 had at the start of the function. */
1241 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1242 and has_hard_reg_initial_val.. */
1243 typedef struct GTY(()) initial_value_pair {
1244 rtx hard_reg;
1245 rtx pseudo;
1246 } initial_value_pair;
1247 /* ??? This could be a VEC but there is currently no way to define an
1248 opaque VEC type. This could be worked around by defining struct
1249 initial_value_pair in function.h. */
1250 typedef struct GTY(()) initial_value_struct {
1251 int num_entries;
1252 int max_entries;
1253 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1254 } initial_value_struct;
1256 /* If a pseudo represents an initial hard reg (or expression), return
1257 it, else return NULL_RTX. */
1260 get_hard_reg_initial_reg (rtx reg)
1262 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1263 int i;
1265 if (ivs == 0)
1266 return NULL_RTX;
1268 for (i = 0; i < ivs->num_entries; i++)
1269 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1270 return ivs->entries[i].hard_reg;
1272 return NULL_RTX;
1275 /* Make sure that there's a pseudo register of mode MODE that stores the
1276 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1279 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1281 struct initial_value_struct *ivs;
1282 rtx rv;
1284 rv = has_hard_reg_initial_val (mode, regno);
1285 if (rv)
1286 return rv;
1288 ivs = crtl->hard_reg_initial_vals;
1289 if (ivs == 0)
1291 ivs = ggc_alloc<initial_value_struct> ();
1292 ivs->num_entries = 0;
1293 ivs->max_entries = 5;
1294 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1295 crtl->hard_reg_initial_vals = ivs;
1298 if (ivs->num_entries >= ivs->max_entries)
1300 ivs->max_entries += 5;
1301 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1302 ivs->max_entries);
1305 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1306 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1308 return ivs->entries[ivs->num_entries++].pseudo;
1311 /* See if get_hard_reg_initial_val has been used to create a pseudo
1312 for the initial value of hard register REGNO in mode MODE. Return
1313 the associated pseudo if so, otherwise return NULL. */
1316 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1318 struct initial_value_struct *ivs;
1319 int i;
1321 ivs = crtl->hard_reg_initial_vals;
1322 if (ivs != 0)
1323 for (i = 0; i < ivs->num_entries; i++)
1324 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1325 && REGNO (ivs->entries[i].hard_reg) == regno)
1326 return ivs->entries[i].pseudo;
1328 return NULL_RTX;
1331 unsigned int
1332 emit_initial_value_sets (void)
1334 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1335 int i;
1336 rtx_insn *seq;
1338 if (ivs == 0)
1339 return 0;
1341 start_sequence ();
1342 for (i = 0; i < ivs->num_entries; i++)
1343 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1344 seq = get_insns ();
1345 end_sequence ();
1347 emit_insn_at_entry (seq);
1348 return 0;
1351 /* Return the hardreg-pseudoreg initial values pair entry I and
1352 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1353 bool
1354 initial_value_entry (int i, rtx *hreg, rtx *preg)
1356 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1357 if (!ivs || i >= ivs->num_entries)
1358 return false;
1360 *hreg = ivs->entries[i].hard_reg;
1361 *preg = ivs->entries[i].pseudo;
1362 return true;
1365 /* These routines are responsible for converting virtual register references
1366 to the actual hard register references once RTL generation is complete.
1368 The following four variables are used for communication between the
1369 routines. They contain the offsets of the virtual registers from their
1370 respective hard registers. */
1372 static int in_arg_offset;
1373 static int var_offset;
1374 static int dynamic_offset;
1375 static int out_arg_offset;
1376 static int cfa_offset;
1378 /* In most machines, the stack pointer register is equivalent to the bottom
1379 of the stack. */
1381 #ifndef STACK_POINTER_OFFSET
1382 #define STACK_POINTER_OFFSET 0
1383 #endif
1385 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1386 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1387 #endif
1389 /* If not defined, pick an appropriate default for the offset of dynamically
1390 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1391 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1393 #ifndef STACK_DYNAMIC_OFFSET
1395 /* The bottom of the stack points to the actual arguments. If
1396 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1397 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1398 stack space for register parameters is not pushed by the caller, but
1399 rather part of the fixed stack areas and hence not included in
1400 `crtl->outgoing_args_size'. Nevertheless, we must allow
1401 for it when allocating stack dynamic objects. */
1403 #ifdef INCOMING_REG_PARM_STACK_SPACE
1404 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1405 ((ACCUMULATE_OUTGOING_ARGS \
1406 ? (crtl->outgoing_args_size \
1407 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1408 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1409 : 0) + (STACK_POINTER_OFFSET))
1410 #else
1411 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1412 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1413 + (STACK_POINTER_OFFSET))
1414 #endif
1415 #endif
1418 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1419 is a virtual register, return the equivalent hard register and set the
1420 offset indirectly through the pointer. Otherwise, return 0. */
1422 static rtx
1423 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1425 rtx new_rtx;
1426 HOST_WIDE_INT offset;
1428 if (x == virtual_incoming_args_rtx)
1430 if (stack_realign_drap)
1432 /* Replace virtual_incoming_args_rtx with internal arg
1433 pointer if DRAP is used to realign stack. */
1434 new_rtx = crtl->args.internal_arg_pointer;
1435 offset = 0;
1437 else
1438 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1440 else if (x == virtual_stack_vars_rtx)
1441 new_rtx = frame_pointer_rtx, offset = var_offset;
1442 else if (x == virtual_stack_dynamic_rtx)
1443 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1444 else if (x == virtual_outgoing_args_rtx)
1445 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1446 else if (x == virtual_cfa_rtx)
1448 #ifdef FRAME_POINTER_CFA_OFFSET
1449 new_rtx = frame_pointer_rtx;
1450 #else
1451 new_rtx = arg_pointer_rtx;
1452 #endif
1453 offset = cfa_offset;
1455 else if (x == virtual_preferred_stack_boundary_rtx)
1457 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1458 offset = 0;
1460 else
1461 return NULL_RTX;
1463 *poffset = offset;
1464 return new_rtx;
1467 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1468 registers present inside of *LOC. The expression is simplified,
1469 as much as possible, but is not to be considered "valid" in any sense
1470 implied by the target. Return true if any change is made. */
1472 static bool
1473 instantiate_virtual_regs_in_rtx (rtx *loc)
1475 if (!*loc)
1476 return false;
1477 bool changed = false;
1478 subrtx_ptr_iterator::array_type array;
1479 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1481 rtx *loc = *iter;
1482 if (rtx x = *loc)
1484 rtx new_rtx;
1485 HOST_WIDE_INT offset;
1486 switch (GET_CODE (x))
1488 case REG:
1489 new_rtx = instantiate_new_reg (x, &offset);
1490 if (new_rtx)
1492 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1493 changed = true;
1495 iter.skip_subrtxes ();
1496 break;
1498 case PLUS:
1499 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1500 if (new_rtx)
1502 XEXP (x, 0) = new_rtx;
1503 *loc = plus_constant (GET_MODE (x), x, offset, true);
1504 changed = true;
1505 iter.skip_subrtxes ();
1506 break;
1509 /* FIXME -- from old code */
1510 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1511 we can commute the PLUS and SUBREG because pointers into the
1512 frame are well-behaved. */
1513 break;
1515 default:
1516 break;
1520 return changed;
1523 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1524 matches the predicate for insn CODE operand OPERAND. */
1526 static int
1527 safe_insn_predicate (int code, int operand, rtx x)
1529 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1532 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1533 registers present inside of insn. The result will be a valid insn. */
1535 static void
1536 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1538 HOST_WIDE_INT offset;
1539 int insn_code, i;
1540 bool any_change = false;
1541 rtx set, new_rtx, x;
1542 rtx_insn *seq;
1544 /* There are some special cases to be handled first. */
1545 set = single_set (insn);
1546 if (set)
1548 /* We're allowed to assign to a virtual register. This is interpreted
1549 to mean that the underlying register gets assigned the inverse
1550 transformation. This is used, for example, in the handling of
1551 non-local gotos. */
1552 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1553 if (new_rtx)
1555 start_sequence ();
1557 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1558 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1559 gen_int_mode (-offset, GET_MODE (new_rtx)));
1560 x = force_operand (x, new_rtx);
1561 if (x != new_rtx)
1562 emit_move_insn (new_rtx, x);
1564 seq = get_insns ();
1565 end_sequence ();
1567 emit_insn_before (seq, insn);
1568 delete_insn (insn);
1569 return;
1572 /* Handle a straight copy from a virtual register by generating a
1573 new add insn. The difference between this and falling through
1574 to the generic case is avoiding a new pseudo and eliminating a
1575 move insn in the initial rtl stream. */
1576 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1577 if (new_rtx && offset != 0
1578 && REG_P (SET_DEST (set))
1579 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1581 start_sequence ();
1583 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1584 gen_int_mode (offset,
1585 GET_MODE (SET_DEST (set))),
1586 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1587 if (x != SET_DEST (set))
1588 emit_move_insn (SET_DEST (set), x);
1590 seq = get_insns ();
1591 end_sequence ();
1593 emit_insn_before (seq, insn);
1594 delete_insn (insn);
1595 return;
1598 extract_insn (insn);
1599 insn_code = INSN_CODE (insn);
1601 /* Handle a plus involving a virtual register by determining if the
1602 operands remain valid if they're modified in place. */
1603 if (GET_CODE (SET_SRC (set)) == PLUS
1604 && recog_data.n_operands >= 3
1605 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1606 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1607 && CONST_INT_P (recog_data.operand[2])
1608 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1610 offset += INTVAL (recog_data.operand[2]);
1612 /* If the sum is zero, then replace with a plain move. */
1613 if (offset == 0
1614 && REG_P (SET_DEST (set))
1615 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1617 start_sequence ();
1618 emit_move_insn (SET_DEST (set), new_rtx);
1619 seq = get_insns ();
1620 end_sequence ();
1622 emit_insn_before (seq, insn);
1623 delete_insn (insn);
1624 return;
1627 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1629 /* Using validate_change and apply_change_group here leaves
1630 recog_data in an invalid state. Since we know exactly what
1631 we want to check, do those two by hand. */
1632 if (safe_insn_predicate (insn_code, 1, new_rtx)
1633 && safe_insn_predicate (insn_code, 2, x))
1635 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1636 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1637 any_change = true;
1639 /* Fall through into the regular operand fixup loop in
1640 order to take care of operands other than 1 and 2. */
1644 else
1646 extract_insn (insn);
1647 insn_code = INSN_CODE (insn);
1650 /* In the general case, we expect virtual registers to appear only in
1651 operands, and then only as either bare registers or inside memories. */
1652 for (i = 0; i < recog_data.n_operands; ++i)
1654 x = recog_data.operand[i];
1655 switch (GET_CODE (x))
1657 case MEM:
1659 rtx addr = XEXP (x, 0);
1661 if (!instantiate_virtual_regs_in_rtx (&addr))
1662 continue;
1664 start_sequence ();
1665 x = replace_equiv_address (x, addr, true);
1666 /* It may happen that the address with the virtual reg
1667 was valid (e.g. based on the virtual stack reg, which might
1668 be acceptable to the predicates with all offsets), whereas
1669 the address now isn't anymore, for instance when the address
1670 is still offsetted, but the base reg isn't virtual-stack-reg
1671 anymore. Below we would do a force_reg on the whole operand,
1672 but this insn might actually only accept memory. Hence,
1673 before doing that last resort, try to reload the address into
1674 a register, so this operand stays a MEM. */
1675 if (!safe_insn_predicate (insn_code, i, x))
1677 addr = force_reg (GET_MODE (addr), addr);
1678 x = replace_equiv_address (x, addr, true);
1680 seq = get_insns ();
1681 end_sequence ();
1682 if (seq)
1683 emit_insn_before (seq, insn);
1685 break;
1687 case REG:
1688 new_rtx = instantiate_new_reg (x, &offset);
1689 if (new_rtx == NULL)
1690 continue;
1691 if (offset == 0)
1692 x = new_rtx;
1693 else
1695 start_sequence ();
1697 /* Careful, special mode predicates may have stuff in
1698 insn_data[insn_code].operand[i].mode that isn't useful
1699 to us for computing a new value. */
1700 /* ??? Recognize address_operand and/or "p" constraints
1701 to see if (plus new offset) is a valid before we put
1702 this through expand_simple_binop. */
1703 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1704 gen_int_mode (offset, GET_MODE (x)),
1705 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1706 seq = get_insns ();
1707 end_sequence ();
1708 emit_insn_before (seq, insn);
1710 break;
1712 case SUBREG:
1713 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1714 if (new_rtx == NULL)
1715 continue;
1716 if (offset != 0)
1718 start_sequence ();
1719 new_rtx = expand_simple_binop
1720 (GET_MODE (new_rtx), PLUS, new_rtx,
1721 gen_int_mode (offset, GET_MODE (new_rtx)),
1722 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1723 seq = get_insns ();
1724 end_sequence ();
1725 emit_insn_before (seq, insn);
1727 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1728 GET_MODE (new_rtx), SUBREG_BYTE (x));
1729 gcc_assert (x);
1730 break;
1732 default:
1733 continue;
1736 /* At this point, X contains the new value for the operand.
1737 Validate the new value vs the insn predicate. Note that
1738 asm insns will have insn_code -1 here. */
1739 if (!safe_insn_predicate (insn_code, i, x))
1741 start_sequence ();
1742 if (REG_P (x))
1744 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1745 x = copy_to_reg (x);
1747 else
1748 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1749 seq = get_insns ();
1750 end_sequence ();
1751 if (seq)
1752 emit_insn_before (seq, insn);
1755 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1756 any_change = true;
1759 if (any_change)
1761 /* Propagate operand changes into the duplicates. */
1762 for (i = 0; i < recog_data.n_dups; ++i)
1763 *recog_data.dup_loc[i]
1764 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1766 /* Force re-recognition of the instruction for validation. */
1767 INSN_CODE (insn) = -1;
1770 if (asm_noperands (PATTERN (insn)) >= 0)
1772 if (!check_asm_operands (PATTERN (insn)))
1774 error_for_asm (insn, "impossible constraint in %<asm%>");
1775 /* For asm goto, instead of fixing up all the edges
1776 just clear the template and clear input operands
1777 (asm goto doesn't have any output operands). */
1778 if (JUMP_P (insn))
1780 rtx asm_op = extract_asm_operands (PATTERN (insn));
1781 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1782 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1783 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1785 else
1786 delete_insn (insn);
1789 else
1791 if (recog_memoized (insn) < 0)
1792 fatal_insn_not_found (insn);
1796 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1797 do any instantiation required. */
1799 void
1800 instantiate_decl_rtl (rtx x)
1802 rtx addr;
1804 if (x == 0)
1805 return;
1807 /* If this is a CONCAT, recurse for the pieces. */
1808 if (GET_CODE (x) == CONCAT)
1810 instantiate_decl_rtl (XEXP (x, 0));
1811 instantiate_decl_rtl (XEXP (x, 1));
1812 return;
1815 /* If this is not a MEM, no need to do anything. Similarly if the
1816 address is a constant or a register that is not a virtual register. */
1817 if (!MEM_P (x))
1818 return;
1820 addr = XEXP (x, 0);
1821 if (CONSTANT_P (addr)
1822 || (REG_P (addr)
1823 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1824 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1825 return;
1827 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1830 /* Helper for instantiate_decls called via walk_tree: Process all decls
1831 in the given DECL_VALUE_EXPR. */
1833 static tree
1834 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1836 tree t = *tp;
1837 if (! EXPR_P (t))
1839 *walk_subtrees = 0;
1840 if (DECL_P (t))
1842 if (DECL_RTL_SET_P (t))
1843 instantiate_decl_rtl (DECL_RTL (t));
1844 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1845 && DECL_INCOMING_RTL (t))
1846 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1847 if ((TREE_CODE (t) == VAR_DECL
1848 || TREE_CODE (t) == RESULT_DECL)
1849 && DECL_HAS_VALUE_EXPR_P (t))
1851 tree v = DECL_VALUE_EXPR (t);
1852 walk_tree (&v, instantiate_expr, NULL, NULL);
1856 return NULL;
1859 /* Subroutine of instantiate_decls: Process all decls in the given
1860 BLOCK node and all its subblocks. */
1862 static void
1863 instantiate_decls_1 (tree let)
1865 tree t;
1867 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1869 if (DECL_RTL_SET_P (t))
1870 instantiate_decl_rtl (DECL_RTL (t));
1871 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1873 tree v = DECL_VALUE_EXPR (t);
1874 walk_tree (&v, instantiate_expr, NULL, NULL);
1878 /* Process all subblocks. */
1879 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1880 instantiate_decls_1 (t);
1883 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1884 all virtual registers in their DECL_RTL's. */
1886 static void
1887 instantiate_decls (tree fndecl)
1889 tree decl;
1890 unsigned ix;
1892 /* Process all parameters of the function. */
1893 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1895 instantiate_decl_rtl (DECL_RTL (decl));
1896 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1897 if (DECL_HAS_VALUE_EXPR_P (decl))
1899 tree v = DECL_VALUE_EXPR (decl);
1900 walk_tree (&v, instantiate_expr, NULL, NULL);
1904 if ((decl = DECL_RESULT (fndecl))
1905 && TREE_CODE (decl) == RESULT_DECL)
1907 if (DECL_RTL_SET_P (decl))
1908 instantiate_decl_rtl (DECL_RTL (decl));
1909 if (DECL_HAS_VALUE_EXPR_P (decl))
1911 tree v = DECL_VALUE_EXPR (decl);
1912 walk_tree (&v, instantiate_expr, NULL, NULL);
1916 /* Process the saved static chain if it exists. */
1917 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1918 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1919 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1921 /* Now process all variables defined in the function or its subblocks. */
1922 instantiate_decls_1 (DECL_INITIAL (fndecl));
1924 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1925 if (DECL_RTL_SET_P (decl))
1926 instantiate_decl_rtl (DECL_RTL (decl));
1927 vec_free (cfun->local_decls);
1930 /* Pass through the INSNS of function FNDECL and convert virtual register
1931 references to hard register references. */
1933 static unsigned int
1934 instantiate_virtual_regs (void)
1936 rtx_insn *insn;
1938 /* Compute the offsets to use for this function. */
1939 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1940 var_offset = STARTING_FRAME_OFFSET;
1941 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1942 out_arg_offset = STACK_POINTER_OFFSET;
1943 #ifdef FRAME_POINTER_CFA_OFFSET
1944 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1945 #else
1946 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1947 #endif
1949 /* Initialize recognition, indicating that volatile is OK. */
1950 init_recog ();
1952 /* Scan through all the insns, instantiating every virtual register still
1953 present. */
1954 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1955 if (INSN_P (insn))
1957 /* These patterns in the instruction stream can never be recognized.
1958 Fortunately, they shouldn't contain virtual registers either. */
1959 if (GET_CODE (PATTERN (insn)) == USE
1960 || GET_CODE (PATTERN (insn)) == CLOBBER
1961 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1962 continue;
1963 else if (DEBUG_INSN_P (insn))
1964 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1965 else
1966 instantiate_virtual_regs_in_insn (insn);
1968 if (insn->deleted ())
1969 continue;
1971 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1973 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1974 if (CALL_P (insn))
1975 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1978 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1979 instantiate_decls (current_function_decl);
1981 targetm.instantiate_decls ();
1983 /* Indicate that, from now on, assign_stack_local should use
1984 frame_pointer_rtx. */
1985 virtuals_instantiated = 1;
1987 return 0;
1990 namespace {
1992 const pass_data pass_data_instantiate_virtual_regs =
1994 RTL_PASS, /* type */
1995 "vregs", /* name */
1996 OPTGROUP_NONE, /* optinfo_flags */
1997 TV_NONE, /* tv_id */
1998 0, /* properties_required */
1999 0, /* properties_provided */
2000 0, /* properties_destroyed */
2001 0, /* todo_flags_start */
2002 0, /* todo_flags_finish */
2005 class pass_instantiate_virtual_regs : public rtl_opt_pass
2007 public:
2008 pass_instantiate_virtual_regs (gcc::context *ctxt)
2009 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2012 /* opt_pass methods: */
2013 virtual unsigned int execute (function *)
2015 return instantiate_virtual_regs ();
2018 }; // class pass_instantiate_virtual_regs
2020 } // anon namespace
2022 rtl_opt_pass *
2023 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2025 return new pass_instantiate_virtual_regs (ctxt);
2029 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2030 This means a type for which function calls must pass an address to the
2031 function or get an address back from the function.
2032 EXP may be a type node or an expression (whose type is tested). */
2035 aggregate_value_p (const_tree exp, const_tree fntype)
2037 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2038 int i, regno, nregs;
2039 rtx reg;
2041 if (fntype)
2042 switch (TREE_CODE (fntype))
2044 case CALL_EXPR:
2046 tree fndecl = get_callee_fndecl (fntype);
2047 if (fndecl)
2048 fntype = TREE_TYPE (fndecl);
2049 else if (CALL_EXPR_FN (fntype))
2050 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2051 else
2052 /* For internal functions, assume nothing needs to be
2053 returned in memory. */
2054 return 0;
2056 break;
2057 case FUNCTION_DECL:
2058 fntype = TREE_TYPE (fntype);
2059 break;
2060 case FUNCTION_TYPE:
2061 case METHOD_TYPE:
2062 break;
2063 case IDENTIFIER_NODE:
2064 fntype = NULL_TREE;
2065 break;
2066 default:
2067 /* We don't expect other tree types here. */
2068 gcc_unreachable ();
2071 if (VOID_TYPE_P (type))
2072 return 0;
2074 /* If a record should be passed the same as its first (and only) member
2075 don't pass it as an aggregate. */
2076 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2077 return aggregate_value_p (first_field (type), fntype);
2079 /* If the front end has decided that this needs to be passed by
2080 reference, do so. */
2081 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2082 && DECL_BY_REFERENCE (exp))
2083 return 1;
2085 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2086 if (fntype && TREE_ADDRESSABLE (fntype))
2087 return 1;
2089 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2090 and thus can't be returned in registers. */
2091 if (TREE_ADDRESSABLE (type))
2092 return 1;
2094 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2095 return 1;
2097 if (targetm.calls.return_in_memory (type, fntype))
2098 return 1;
2100 /* Make sure we have suitable call-clobbered regs to return
2101 the value in; if not, we must return it in memory. */
2102 reg = hard_function_value (type, 0, fntype, 0);
2104 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2105 it is OK. */
2106 if (!REG_P (reg))
2107 return 0;
2109 regno = REGNO (reg);
2110 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2111 for (i = 0; i < nregs; i++)
2112 if (! call_used_regs[regno + i])
2113 return 1;
2115 return 0;
2118 /* Return true if we should assign DECL a pseudo register; false if it
2119 should live on the local stack. */
2121 bool
2122 use_register_for_decl (const_tree decl)
2124 if (!targetm.calls.allocate_stack_slots_for_args ())
2125 return true;
2127 /* Honor volatile. */
2128 if (TREE_SIDE_EFFECTS (decl))
2129 return false;
2131 /* Honor addressability. */
2132 if (TREE_ADDRESSABLE (decl))
2133 return false;
2135 /* Decl is implicitly addressible by bound stores and loads
2136 if it is an aggregate holding bounds. */
2137 if (chkp_function_instrumented_p (current_function_decl)
2138 && TREE_TYPE (decl)
2139 && !BOUNDED_P (decl)
2140 && chkp_type_has_pointer (TREE_TYPE (decl)))
2141 return false;
2143 /* Only register-like things go in registers. */
2144 if (DECL_MODE (decl) == BLKmode)
2145 return false;
2147 /* If -ffloat-store specified, don't put explicit float variables
2148 into registers. */
2149 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2150 propagates values across these stores, and it probably shouldn't. */
2151 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2152 return false;
2154 /* If we're not interested in tracking debugging information for
2155 this decl, then we can certainly put it in a register. */
2156 if (DECL_IGNORED_P (decl))
2157 return true;
2159 if (optimize)
2160 return true;
2162 if (!DECL_REGISTER (decl))
2163 return false;
2165 switch (TREE_CODE (TREE_TYPE (decl)))
2167 case RECORD_TYPE:
2168 case UNION_TYPE:
2169 case QUAL_UNION_TYPE:
2170 /* When not optimizing, disregard register keyword for variables with
2171 types containing methods, otherwise the methods won't be callable
2172 from the debugger. */
2173 if (TYPE_METHODS (TREE_TYPE (decl)))
2174 return false;
2175 break;
2176 default:
2177 break;
2180 return true;
2183 /* Return true if TYPE should be passed by invisible reference. */
2185 bool
2186 pass_by_reference (CUMULATIVE_ARGS *ca, machine_mode mode,
2187 tree type, bool named_arg)
2189 if (type)
2191 /* If this type contains non-trivial constructors, then it is
2192 forbidden for the middle-end to create any new copies. */
2193 if (TREE_ADDRESSABLE (type))
2194 return true;
2196 /* GCC post 3.4 passes *all* variable sized types by reference. */
2197 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2198 return true;
2200 /* If a record type should be passed the same as its first (and only)
2201 member, use the type and mode of that member. */
2202 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2204 type = TREE_TYPE (first_field (type));
2205 mode = TYPE_MODE (type);
2209 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2210 type, named_arg);
2213 /* Return true if TYPE, which is passed by reference, should be callee
2214 copied instead of caller copied. */
2216 bool
2217 reference_callee_copied (CUMULATIVE_ARGS *ca, machine_mode mode,
2218 tree type, bool named_arg)
2220 if (type && TREE_ADDRESSABLE (type))
2221 return false;
2222 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2223 named_arg);
2226 /* Structures to communicate between the subroutines of assign_parms.
2227 The first holds data persistent across all parameters, the second
2228 is cleared out for each parameter. */
2230 struct assign_parm_data_all
2232 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2233 should become a job of the target or otherwise encapsulated. */
2234 CUMULATIVE_ARGS args_so_far_v;
2235 cumulative_args_t args_so_far;
2236 struct args_size stack_args_size;
2237 tree function_result_decl;
2238 tree orig_fnargs;
2239 rtx_insn *first_conversion_insn;
2240 rtx_insn *last_conversion_insn;
2241 HOST_WIDE_INT pretend_args_size;
2242 HOST_WIDE_INT extra_pretend_bytes;
2243 int reg_parm_stack_space;
2246 struct assign_parm_data_one
2248 tree nominal_type;
2249 tree passed_type;
2250 rtx entry_parm;
2251 rtx stack_parm;
2252 machine_mode nominal_mode;
2253 machine_mode passed_mode;
2254 machine_mode promoted_mode;
2255 struct locate_and_pad_arg_data locate;
2256 int partial;
2257 BOOL_BITFIELD named_arg : 1;
2258 BOOL_BITFIELD passed_pointer : 1;
2259 BOOL_BITFIELD on_stack : 1;
2260 BOOL_BITFIELD loaded_in_reg : 1;
2263 struct bounds_parm_data
2265 assign_parm_data_one parm_data;
2266 tree bounds_parm;
2267 tree ptr_parm;
2268 rtx ptr_entry;
2269 int bound_no;
2272 /* A subroutine of assign_parms. Initialize ALL. */
2274 static void
2275 assign_parms_initialize_all (struct assign_parm_data_all *all)
2277 tree fntype ATTRIBUTE_UNUSED;
2279 memset (all, 0, sizeof (*all));
2281 fntype = TREE_TYPE (current_function_decl);
2283 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2284 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2285 #else
2286 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2287 current_function_decl, -1);
2288 #endif
2289 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2291 #ifdef INCOMING_REG_PARM_STACK_SPACE
2292 all->reg_parm_stack_space
2293 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2294 #endif
2297 /* If ARGS contains entries with complex types, split the entry into two
2298 entries of the component type. Return a new list of substitutions are
2299 needed, else the old list. */
2301 static void
2302 split_complex_args (vec<tree> *args)
2304 unsigned i;
2305 tree p;
2307 FOR_EACH_VEC_ELT (*args, i, p)
2309 tree type = TREE_TYPE (p);
2310 if (TREE_CODE (type) == COMPLEX_TYPE
2311 && targetm.calls.split_complex_arg (type))
2313 tree decl;
2314 tree subtype = TREE_TYPE (type);
2315 bool addressable = TREE_ADDRESSABLE (p);
2317 /* Rewrite the PARM_DECL's type with its component. */
2318 p = copy_node (p);
2319 TREE_TYPE (p) = subtype;
2320 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2321 DECL_MODE (p) = VOIDmode;
2322 DECL_SIZE (p) = NULL;
2323 DECL_SIZE_UNIT (p) = NULL;
2324 /* If this arg must go in memory, put it in a pseudo here.
2325 We can't allow it to go in memory as per normal parms,
2326 because the usual place might not have the imag part
2327 adjacent to the real part. */
2328 DECL_ARTIFICIAL (p) = addressable;
2329 DECL_IGNORED_P (p) = addressable;
2330 TREE_ADDRESSABLE (p) = 0;
2331 layout_decl (p, 0);
2332 (*args)[i] = p;
2334 /* Build a second synthetic decl. */
2335 decl = build_decl (EXPR_LOCATION (p),
2336 PARM_DECL, NULL_TREE, subtype);
2337 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2338 DECL_ARTIFICIAL (decl) = addressable;
2339 DECL_IGNORED_P (decl) = addressable;
2340 layout_decl (decl, 0);
2341 args->safe_insert (++i, decl);
2346 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2347 the hidden struct return argument, and (abi willing) complex args.
2348 Return the new parameter list. */
2350 static vec<tree>
2351 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2353 tree fndecl = current_function_decl;
2354 tree fntype = TREE_TYPE (fndecl);
2355 vec<tree> fnargs = vNULL;
2356 tree arg;
2358 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2359 fnargs.safe_push (arg);
2361 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2363 /* If struct value address is treated as the first argument, make it so. */
2364 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2365 && ! cfun->returns_pcc_struct
2366 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2368 tree type = build_pointer_type (TREE_TYPE (fntype));
2369 tree decl;
2371 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2372 PARM_DECL, get_identifier (".result_ptr"), type);
2373 DECL_ARG_TYPE (decl) = type;
2374 DECL_ARTIFICIAL (decl) = 1;
2375 DECL_NAMELESS (decl) = 1;
2376 TREE_CONSTANT (decl) = 1;
2378 DECL_CHAIN (decl) = all->orig_fnargs;
2379 all->orig_fnargs = decl;
2380 fnargs.safe_insert (0, decl);
2382 all->function_result_decl = decl;
2384 /* If function is instrumented then bounds of the
2385 passed structure address is the second argument. */
2386 if (chkp_function_instrumented_p (fndecl))
2388 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2389 PARM_DECL, get_identifier (".result_bnd"),
2390 pointer_bounds_type_node);
2391 DECL_ARG_TYPE (decl) = pointer_bounds_type_node;
2392 DECL_ARTIFICIAL (decl) = 1;
2393 DECL_NAMELESS (decl) = 1;
2394 TREE_CONSTANT (decl) = 1;
2396 DECL_CHAIN (decl) = DECL_CHAIN (all->orig_fnargs);
2397 DECL_CHAIN (all->orig_fnargs) = decl;
2398 fnargs.safe_insert (1, decl);
2402 /* If the target wants to split complex arguments into scalars, do so. */
2403 if (targetm.calls.split_complex_arg)
2404 split_complex_args (&fnargs);
2406 return fnargs;
2409 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2410 data for the parameter. Incorporate ABI specifics such as pass-by-
2411 reference and type promotion. */
2413 static void
2414 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2415 struct assign_parm_data_one *data)
2417 tree nominal_type, passed_type;
2418 machine_mode nominal_mode, passed_mode, promoted_mode;
2419 int unsignedp;
2421 memset (data, 0, sizeof (*data));
2423 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2424 if (!cfun->stdarg)
2425 data->named_arg = 1; /* No variadic parms. */
2426 else if (DECL_CHAIN (parm))
2427 data->named_arg = 1; /* Not the last non-variadic parm. */
2428 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2429 data->named_arg = 1; /* Only variadic ones are unnamed. */
2430 else
2431 data->named_arg = 0; /* Treat as variadic. */
2433 nominal_type = TREE_TYPE (parm);
2434 passed_type = DECL_ARG_TYPE (parm);
2436 /* Look out for errors propagating this far. Also, if the parameter's
2437 type is void then its value doesn't matter. */
2438 if (TREE_TYPE (parm) == error_mark_node
2439 /* This can happen after weird syntax errors
2440 or if an enum type is defined among the parms. */
2441 || TREE_CODE (parm) != PARM_DECL
2442 || passed_type == NULL
2443 || VOID_TYPE_P (nominal_type))
2445 nominal_type = passed_type = void_type_node;
2446 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2447 goto egress;
2450 /* Find mode of arg as it is passed, and mode of arg as it should be
2451 during execution of this function. */
2452 passed_mode = TYPE_MODE (passed_type);
2453 nominal_mode = TYPE_MODE (nominal_type);
2455 /* If the parm is to be passed as a transparent union or record, use the
2456 type of the first field for the tests below. We have already verified
2457 that the modes are the same. */
2458 if ((TREE_CODE (passed_type) == UNION_TYPE
2459 || TREE_CODE (passed_type) == RECORD_TYPE)
2460 && TYPE_TRANSPARENT_AGGR (passed_type))
2461 passed_type = TREE_TYPE (first_field (passed_type));
2463 /* See if this arg was passed by invisible reference. */
2464 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2465 passed_type, data->named_arg))
2467 passed_type = nominal_type = build_pointer_type (passed_type);
2468 data->passed_pointer = true;
2469 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2472 /* Find mode as it is passed by the ABI. */
2473 unsignedp = TYPE_UNSIGNED (passed_type);
2474 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2475 TREE_TYPE (current_function_decl), 0);
2477 egress:
2478 data->nominal_type = nominal_type;
2479 data->passed_type = passed_type;
2480 data->nominal_mode = nominal_mode;
2481 data->passed_mode = passed_mode;
2482 data->promoted_mode = promoted_mode;
2485 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2487 static void
2488 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2489 struct assign_parm_data_one *data, bool no_rtl)
2491 int varargs_pretend_bytes = 0;
2493 targetm.calls.setup_incoming_varargs (all->args_so_far,
2494 data->promoted_mode,
2495 data->passed_type,
2496 &varargs_pretend_bytes, no_rtl);
2498 /* If the back-end has requested extra stack space, record how much is
2499 needed. Do not change pretend_args_size otherwise since it may be
2500 nonzero from an earlier partial argument. */
2501 if (varargs_pretend_bytes > 0)
2502 all->pretend_args_size = varargs_pretend_bytes;
2505 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2506 the incoming location of the current parameter. */
2508 static void
2509 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2510 struct assign_parm_data_one *data)
2512 HOST_WIDE_INT pretend_bytes = 0;
2513 rtx entry_parm;
2514 bool in_regs;
2516 if (data->promoted_mode == VOIDmode)
2518 data->entry_parm = data->stack_parm = const0_rtx;
2519 return;
2522 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2523 data->promoted_mode,
2524 data->passed_type,
2525 data->named_arg);
2527 if (entry_parm == 0)
2528 data->promoted_mode = data->passed_mode;
2530 /* Determine parm's home in the stack, in case it arrives in the stack
2531 or we should pretend it did. Compute the stack position and rtx where
2532 the argument arrives and its size.
2534 There is one complexity here: If this was a parameter that would
2535 have been passed in registers, but wasn't only because it is
2536 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2537 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2538 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2539 as it was the previous time. */
2540 in_regs = (entry_parm != 0) || POINTER_BOUNDS_TYPE_P (data->passed_type);
2541 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2542 in_regs = true;
2543 #endif
2544 if (!in_regs && !data->named_arg)
2546 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2548 rtx tem;
2549 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2550 data->promoted_mode,
2551 data->passed_type, true);
2552 in_regs = tem != NULL;
2556 /* If this parameter was passed both in registers and in the stack, use
2557 the copy on the stack. */
2558 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2559 data->passed_type))
2560 entry_parm = 0;
2562 if (entry_parm)
2564 int partial;
2566 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2567 data->promoted_mode,
2568 data->passed_type,
2569 data->named_arg);
2570 data->partial = partial;
2572 /* The caller might already have allocated stack space for the
2573 register parameters. */
2574 if (partial != 0 && all->reg_parm_stack_space == 0)
2576 /* Part of this argument is passed in registers and part
2577 is passed on the stack. Ask the prologue code to extend
2578 the stack part so that we can recreate the full value.
2580 PRETEND_BYTES is the size of the registers we need to store.
2581 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2582 stack space that the prologue should allocate.
2584 Internally, gcc assumes that the argument pointer is aligned
2585 to STACK_BOUNDARY bits. This is used both for alignment
2586 optimizations (see init_emit) and to locate arguments that are
2587 aligned to more than PARM_BOUNDARY bits. We must preserve this
2588 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2589 a stack boundary. */
2591 /* We assume at most one partial arg, and it must be the first
2592 argument on the stack. */
2593 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2595 pretend_bytes = partial;
2596 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2598 /* We want to align relative to the actual stack pointer, so
2599 don't include this in the stack size until later. */
2600 all->extra_pretend_bytes = all->pretend_args_size;
2604 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2605 all->reg_parm_stack_space,
2606 entry_parm ? data->partial : 0, current_function_decl,
2607 &all->stack_args_size, &data->locate);
2609 /* Update parm_stack_boundary if this parameter is passed in the
2610 stack. */
2611 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2612 crtl->parm_stack_boundary = data->locate.boundary;
2614 /* Adjust offsets to include the pretend args. */
2615 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2616 data->locate.slot_offset.constant += pretend_bytes;
2617 data->locate.offset.constant += pretend_bytes;
2619 data->entry_parm = entry_parm;
2622 /* A subroutine of assign_parms. If there is actually space on the stack
2623 for this parm, count it in stack_args_size and return true. */
2625 static bool
2626 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2627 struct assign_parm_data_one *data)
2629 /* Bounds are never passed on the stack to keep compatibility
2630 with not instrumented code. */
2631 if (POINTER_BOUNDS_TYPE_P (data->passed_type))
2632 return false;
2633 /* Trivially true if we've no incoming register. */
2634 else if (data->entry_parm == NULL)
2636 /* Also true if we're partially in registers and partially not,
2637 since we've arranged to drop the entire argument on the stack. */
2638 else if (data->partial != 0)
2640 /* Also true if the target says that it's passed in both registers
2641 and on the stack. */
2642 else if (GET_CODE (data->entry_parm) == PARALLEL
2643 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2645 /* Also true if the target says that there's stack allocated for
2646 all register parameters. */
2647 else if (all->reg_parm_stack_space > 0)
2649 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2650 else
2651 return false;
2653 all->stack_args_size.constant += data->locate.size.constant;
2654 if (data->locate.size.var)
2655 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2657 return true;
2660 /* A subroutine of assign_parms. Given that this parameter is allocated
2661 stack space by the ABI, find it. */
2663 static void
2664 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2666 rtx offset_rtx, stack_parm;
2667 unsigned int align, boundary;
2669 /* If we're passing this arg using a reg, make its stack home the
2670 aligned stack slot. */
2671 if (data->entry_parm)
2672 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2673 else
2674 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2676 stack_parm = crtl->args.internal_arg_pointer;
2677 if (offset_rtx != const0_rtx)
2678 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2679 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2681 if (!data->passed_pointer)
2683 set_mem_attributes (stack_parm, parm, 1);
2684 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2685 while promoted mode's size is needed. */
2686 if (data->promoted_mode != BLKmode
2687 && data->promoted_mode != DECL_MODE (parm))
2689 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2690 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2692 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2693 data->promoted_mode);
2694 if (offset)
2695 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2700 boundary = data->locate.boundary;
2701 align = BITS_PER_UNIT;
2703 /* If we're padding upward, we know that the alignment of the slot
2704 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2705 intentionally forcing upward padding. Otherwise we have to come
2706 up with a guess at the alignment based on OFFSET_RTX. */
2707 if (data->locate.where_pad != downward || data->entry_parm)
2708 align = boundary;
2709 else if (CONST_INT_P (offset_rtx))
2711 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2712 align = align & -align;
2714 set_mem_align (stack_parm, align);
2716 if (data->entry_parm)
2717 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2719 data->stack_parm = stack_parm;
2722 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2723 always valid and contiguous. */
2725 static void
2726 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2728 rtx entry_parm = data->entry_parm;
2729 rtx stack_parm = data->stack_parm;
2731 /* If this parm was passed part in regs and part in memory, pretend it
2732 arrived entirely in memory by pushing the register-part onto the stack.
2733 In the special case of a DImode or DFmode that is split, we could put
2734 it together in a pseudoreg directly, but for now that's not worth
2735 bothering with. */
2736 if (data->partial != 0)
2738 /* Handle calls that pass values in multiple non-contiguous
2739 locations. The Irix 6 ABI has examples of this. */
2740 if (GET_CODE (entry_parm) == PARALLEL)
2741 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2742 data->passed_type,
2743 int_size_in_bytes (data->passed_type));
2744 else
2746 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2747 move_block_from_reg (REGNO (entry_parm),
2748 validize_mem (copy_rtx (stack_parm)),
2749 data->partial / UNITS_PER_WORD);
2752 entry_parm = stack_parm;
2755 /* If we didn't decide this parm came in a register, by default it came
2756 on the stack. */
2757 else if (entry_parm == NULL)
2758 entry_parm = stack_parm;
2760 /* When an argument is passed in multiple locations, we can't make use
2761 of this information, but we can save some copying if the whole argument
2762 is passed in a single register. */
2763 else if (GET_CODE (entry_parm) == PARALLEL
2764 && data->nominal_mode != BLKmode
2765 && data->passed_mode != BLKmode)
2767 size_t i, len = XVECLEN (entry_parm, 0);
2769 for (i = 0; i < len; i++)
2770 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2771 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2772 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2773 == data->passed_mode)
2774 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2776 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2777 break;
2781 data->entry_parm = entry_parm;
2784 /* A subroutine of assign_parms. Reconstitute any values which were
2785 passed in multiple registers and would fit in a single register. */
2787 static void
2788 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2790 rtx entry_parm = data->entry_parm;
2792 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2793 This can be done with register operations rather than on the
2794 stack, even if we will store the reconstituted parameter on the
2795 stack later. */
2796 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2798 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2799 emit_group_store (parmreg, entry_parm, data->passed_type,
2800 GET_MODE_SIZE (GET_MODE (entry_parm)));
2801 entry_parm = parmreg;
2804 data->entry_parm = entry_parm;
2807 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2808 always valid and properly aligned. */
2810 static void
2811 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2813 rtx stack_parm = data->stack_parm;
2815 /* If we can't trust the parm stack slot to be aligned enough for its
2816 ultimate type, don't use that slot after entry. We'll make another
2817 stack slot, if we need one. */
2818 if (stack_parm
2819 && ((STRICT_ALIGNMENT
2820 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2821 || (data->nominal_type
2822 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2823 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2824 stack_parm = NULL;
2826 /* If parm was passed in memory, and we need to convert it on entry,
2827 don't store it back in that same slot. */
2828 else if (data->entry_parm == stack_parm
2829 && data->nominal_mode != BLKmode
2830 && data->nominal_mode != data->passed_mode)
2831 stack_parm = NULL;
2833 /* If stack protection is in effect for this function, don't leave any
2834 pointers in their passed stack slots. */
2835 else if (crtl->stack_protect_guard
2836 && (flag_stack_protect == 2
2837 || data->passed_pointer
2838 || POINTER_TYPE_P (data->nominal_type)))
2839 stack_parm = NULL;
2841 data->stack_parm = stack_parm;
2844 /* A subroutine of assign_parms. Return true if the current parameter
2845 should be stored as a BLKmode in the current frame. */
2847 static bool
2848 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2850 if (data->nominal_mode == BLKmode)
2851 return true;
2852 if (GET_MODE (data->entry_parm) == BLKmode)
2853 return true;
2855 #ifdef BLOCK_REG_PADDING
2856 /* Only assign_parm_setup_block knows how to deal with register arguments
2857 that are padded at the least significant end. */
2858 if (REG_P (data->entry_parm)
2859 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2860 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2861 == (BYTES_BIG_ENDIAN ? upward : downward)))
2862 return true;
2863 #endif
2865 return false;
2868 /* A subroutine of assign_parms. Arrange for the parameter to be
2869 present and valid in DATA->STACK_RTL. */
2871 static void
2872 assign_parm_setup_block (struct assign_parm_data_all *all,
2873 tree parm, struct assign_parm_data_one *data)
2875 rtx entry_parm = data->entry_parm;
2876 rtx stack_parm = data->stack_parm;
2877 HOST_WIDE_INT size;
2878 HOST_WIDE_INT size_stored;
2880 if (GET_CODE (entry_parm) == PARALLEL)
2881 entry_parm = emit_group_move_into_temps (entry_parm);
2883 size = int_size_in_bytes (data->passed_type);
2884 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2885 if (stack_parm == 0)
2887 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2888 stack_parm = assign_stack_local (BLKmode, size_stored,
2889 DECL_ALIGN (parm));
2890 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2891 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2892 set_mem_attributes (stack_parm, parm, 1);
2895 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2896 calls that pass values in multiple non-contiguous locations. */
2897 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2899 rtx mem;
2901 /* Note that we will be storing an integral number of words.
2902 So we have to be careful to ensure that we allocate an
2903 integral number of words. We do this above when we call
2904 assign_stack_local if space was not allocated in the argument
2905 list. If it was, this will not work if PARM_BOUNDARY is not
2906 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2907 if it becomes a problem. Exception is when BLKmode arrives
2908 with arguments not conforming to word_mode. */
2910 if (data->stack_parm == 0)
2912 else if (GET_CODE (entry_parm) == PARALLEL)
2914 else
2915 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2917 mem = validize_mem (copy_rtx (stack_parm));
2919 /* Handle values in multiple non-contiguous locations. */
2920 if (GET_CODE (entry_parm) == PARALLEL)
2922 push_to_sequence2 (all->first_conversion_insn,
2923 all->last_conversion_insn);
2924 emit_group_store (mem, entry_parm, data->passed_type, size);
2925 all->first_conversion_insn = get_insns ();
2926 all->last_conversion_insn = get_last_insn ();
2927 end_sequence ();
2930 else if (size == 0)
2933 /* If SIZE is that of a mode no bigger than a word, just use
2934 that mode's store operation. */
2935 else if (size <= UNITS_PER_WORD)
2937 machine_mode mode
2938 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2940 if (mode != BLKmode
2941 #ifdef BLOCK_REG_PADDING
2942 && (size == UNITS_PER_WORD
2943 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2944 != (BYTES_BIG_ENDIAN ? upward : downward)))
2945 #endif
2948 rtx reg;
2950 /* We are really truncating a word_mode value containing
2951 SIZE bytes into a value of mode MODE. If such an
2952 operation requires no actual instructions, we can refer
2953 to the value directly in mode MODE, otherwise we must
2954 start with the register in word_mode and explicitly
2955 convert it. */
2956 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2957 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2958 else
2960 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2961 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2963 emit_move_insn (change_address (mem, mode, 0), reg);
2966 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2967 machine must be aligned to the left before storing
2968 to memory. Note that the previous test doesn't
2969 handle all cases (e.g. SIZE == 3). */
2970 else if (size != UNITS_PER_WORD
2971 #ifdef BLOCK_REG_PADDING
2972 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2973 == downward)
2974 #else
2975 && BYTES_BIG_ENDIAN
2976 #endif
2979 rtx tem, x;
2980 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2981 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2983 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2984 tem = change_address (mem, word_mode, 0);
2985 emit_move_insn (tem, x);
2987 else
2988 move_block_from_reg (REGNO (entry_parm), mem,
2989 size_stored / UNITS_PER_WORD);
2991 else
2992 move_block_from_reg (REGNO (entry_parm), mem,
2993 size_stored / UNITS_PER_WORD);
2995 else if (data->stack_parm == 0)
2997 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2998 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2999 BLOCK_OP_NORMAL);
3000 all->first_conversion_insn = get_insns ();
3001 all->last_conversion_insn = get_last_insn ();
3002 end_sequence ();
3005 data->stack_parm = stack_parm;
3006 SET_DECL_RTL (parm, stack_parm);
3009 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3010 parameter. Get it there. Perform all ABI specified conversions. */
3012 static void
3013 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3014 struct assign_parm_data_one *data)
3016 rtx parmreg, validated_mem;
3017 rtx equiv_stack_parm;
3018 machine_mode promoted_nominal_mode;
3019 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3020 bool did_conversion = false;
3021 bool need_conversion, moved;
3023 /* Store the parm in a pseudoregister during the function, but we may
3024 need to do it in a wider mode. Using 2 here makes the result
3025 consistent with promote_decl_mode and thus expand_expr_real_1. */
3026 promoted_nominal_mode
3027 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3028 TREE_TYPE (current_function_decl), 2);
3030 parmreg = gen_reg_rtx (promoted_nominal_mode);
3032 if (!DECL_ARTIFICIAL (parm))
3033 mark_user_reg (parmreg);
3035 /* If this was an item that we received a pointer to,
3036 set DECL_RTL appropriately. */
3037 if (data->passed_pointer)
3039 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
3040 set_mem_attributes (x, parm, 1);
3041 SET_DECL_RTL (parm, x);
3043 else
3044 SET_DECL_RTL (parm, parmreg);
3046 assign_parm_remove_parallels (data);
3048 /* Copy the value into the register, thus bridging between
3049 assign_parm_find_data_types and expand_expr_real_1. */
3051 equiv_stack_parm = data->stack_parm;
3052 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3054 need_conversion = (data->nominal_mode != data->passed_mode
3055 || promoted_nominal_mode != data->promoted_mode);
3056 moved = false;
3058 if (need_conversion
3059 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3060 && data->nominal_mode == data->passed_mode
3061 && data->nominal_mode == GET_MODE (data->entry_parm))
3063 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3064 mode, by the caller. We now have to convert it to
3065 NOMINAL_MODE, if different. However, PARMREG may be in
3066 a different mode than NOMINAL_MODE if it is being stored
3067 promoted.
3069 If ENTRY_PARM is a hard register, it might be in a register
3070 not valid for operating in its mode (e.g., an odd-numbered
3071 register for a DFmode). In that case, moves are the only
3072 thing valid, so we can't do a convert from there. This
3073 occurs when the calling sequence allow such misaligned
3074 usages.
3076 In addition, the conversion may involve a call, which could
3077 clobber parameters which haven't been copied to pseudo
3078 registers yet.
3080 First, we try to emit an insn which performs the necessary
3081 conversion. We verify that this insn does not clobber any
3082 hard registers. */
3084 enum insn_code icode;
3085 rtx op0, op1;
3087 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3088 unsignedp);
3090 op0 = parmreg;
3091 op1 = validated_mem;
3092 if (icode != CODE_FOR_nothing
3093 && insn_operand_matches (icode, 0, op0)
3094 && insn_operand_matches (icode, 1, op1))
3096 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3097 rtx_insn *insn, *insns;
3098 rtx t = op1;
3099 HARD_REG_SET hardregs;
3101 start_sequence ();
3102 /* If op1 is a hard register that is likely spilled, first
3103 force it into a pseudo, otherwise combiner might extend
3104 its lifetime too much. */
3105 if (GET_CODE (t) == SUBREG)
3106 t = SUBREG_REG (t);
3107 if (REG_P (t)
3108 && HARD_REGISTER_P (t)
3109 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3110 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3112 t = gen_reg_rtx (GET_MODE (op1));
3113 emit_move_insn (t, op1);
3115 else
3116 t = op1;
3117 rtx pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3118 data->passed_mode, unsignedp);
3119 emit_insn (pat);
3120 insns = get_insns ();
3122 moved = true;
3123 CLEAR_HARD_REG_SET (hardregs);
3124 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3126 if (INSN_P (insn))
3127 note_stores (PATTERN (insn), record_hard_reg_sets,
3128 &hardregs);
3129 if (!hard_reg_set_empty_p (hardregs))
3130 moved = false;
3133 end_sequence ();
3135 if (moved)
3137 emit_insn (insns);
3138 if (equiv_stack_parm != NULL_RTX)
3139 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3140 equiv_stack_parm);
3145 if (moved)
3146 /* Nothing to do. */
3148 else if (need_conversion)
3150 /* We did not have an insn to convert directly, or the sequence
3151 generated appeared unsafe. We must first copy the parm to a
3152 pseudo reg, and save the conversion until after all
3153 parameters have been moved. */
3155 int save_tree_used;
3156 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3158 emit_move_insn (tempreg, validated_mem);
3160 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3161 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3163 if (GET_CODE (tempreg) == SUBREG
3164 && GET_MODE (tempreg) == data->nominal_mode
3165 && REG_P (SUBREG_REG (tempreg))
3166 && data->nominal_mode == data->passed_mode
3167 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3168 && GET_MODE_SIZE (GET_MODE (tempreg))
3169 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3171 /* The argument is already sign/zero extended, so note it
3172 into the subreg. */
3173 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3174 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3177 /* TREE_USED gets set erroneously during expand_assignment. */
3178 save_tree_used = TREE_USED (parm);
3179 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3180 TREE_USED (parm) = save_tree_used;
3181 all->first_conversion_insn = get_insns ();
3182 all->last_conversion_insn = get_last_insn ();
3183 end_sequence ();
3185 did_conversion = true;
3187 else
3188 emit_move_insn (parmreg, validated_mem);
3190 /* If we were passed a pointer but the actual value can safely live
3191 in a register, retrieve it and use it directly. */
3192 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3194 /* We can't use nominal_mode, because it will have been set to
3195 Pmode above. We must use the actual mode of the parm. */
3196 if (use_register_for_decl (parm))
3198 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3199 mark_user_reg (parmreg);
3201 else
3203 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3204 TYPE_MODE (TREE_TYPE (parm)),
3205 TYPE_ALIGN (TREE_TYPE (parm)));
3206 parmreg
3207 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3208 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3209 align);
3210 set_mem_attributes (parmreg, parm, 1);
3213 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3215 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3216 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3218 push_to_sequence2 (all->first_conversion_insn,
3219 all->last_conversion_insn);
3220 emit_move_insn (tempreg, DECL_RTL (parm));
3221 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3222 emit_move_insn (parmreg, tempreg);
3223 all->first_conversion_insn = get_insns ();
3224 all->last_conversion_insn = get_last_insn ();
3225 end_sequence ();
3227 did_conversion = true;
3229 else
3230 emit_move_insn (parmreg, DECL_RTL (parm));
3232 SET_DECL_RTL (parm, parmreg);
3234 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3235 now the parm. */
3236 data->stack_parm = NULL;
3239 /* Mark the register as eliminable if we did no conversion and it was
3240 copied from memory at a fixed offset, and the arg pointer was not
3241 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3242 offset formed an invalid address, such memory-equivalences as we
3243 make here would screw up life analysis for it. */
3244 if (data->nominal_mode == data->passed_mode
3245 && !did_conversion
3246 && data->stack_parm != 0
3247 && MEM_P (data->stack_parm)
3248 && data->locate.offset.var == 0
3249 && reg_mentioned_p (virtual_incoming_args_rtx,
3250 XEXP (data->stack_parm, 0)))
3252 rtx_insn *linsn = get_last_insn ();
3253 rtx_insn *sinsn;
3254 rtx set;
3256 /* Mark complex types separately. */
3257 if (GET_CODE (parmreg) == CONCAT)
3259 machine_mode submode
3260 = GET_MODE_INNER (GET_MODE (parmreg));
3261 int regnor = REGNO (XEXP (parmreg, 0));
3262 int regnoi = REGNO (XEXP (parmreg, 1));
3263 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3264 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3265 GET_MODE_SIZE (submode));
3267 /* Scan backwards for the set of the real and
3268 imaginary parts. */
3269 for (sinsn = linsn; sinsn != 0;
3270 sinsn = prev_nonnote_insn (sinsn))
3272 set = single_set (sinsn);
3273 if (set == 0)
3274 continue;
3276 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3277 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3278 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3279 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3282 else
3283 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3286 /* For pointer data type, suggest pointer register. */
3287 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3288 mark_reg_pointer (parmreg,
3289 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3292 /* A subroutine of assign_parms. Allocate stack space to hold the current
3293 parameter. Get it there. Perform all ABI specified conversions. */
3295 static void
3296 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3297 struct assign_parm_data_one *data)
3299 /* Value must be stored in the stack slot STACK_PARM during function
3300 execution. */
3301 bool to_conversion = false;
3303 assign_parm_remove_parallels (data);
3305 if (data->promoted_mode != data->nominal_mode)
3307 /* Conversion is required. */
3308 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3310 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3312 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3313 to_conversion = true;
3315 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3316 TYPE_UNSIGNED (TREE_TYPE (parm)));
3318 if (data->stack_parm)
3320 int offset = subreg_lowpart_offset (data->nominal_mode,
3321 GET_MODE (data->stack_parm));
3322 /* ??? This may need a big-endian conversion on sparc64. */
3323 data->stack_parm
3324 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3325 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3326 set_mem_offset (data->stack_parm,
3327 MEM_OFFSET (data->stack_parm) + offset);
3331 if (data->entry_parm != data->stack_parm)
3333 rtx src, dest;
3335 if (data->stack_parm == 0)
3337 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3338 GET_MODE (data->entry_parm),
3339 TYPE_ALIGN (data->passed_type));
3340 data->stack_parm
3341 = assign_stack_local (GET_MODE (data->entry_parm),
3342 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3343 align);
3344 set_mem_attributes (data->stack_parm, parm, 1);
3347 dest = validize_mem (copy_rtx (data->stack_parm));
3348 src = validize_mem (copy_rtx (data->entry_parm));
3350 if (MEM_P (src))
3352 /* Use a block move to handle potentially misaligned entry_parm. */
3353 if (!to_conversion)
3354 push_to_sequence2 (all->first_conversion_insn,
3355 all->last_conversion_insn);
3356 to_conversion = true;
3358 emit_block_move (dest, src,
3359 GEN_INT (int_size_in_bytes (data->passed_type)),
3360 BLOCK_OP_NORMAL);
3362 else
3363 emit_move_insn (dest, src);
3366 if (to_conversion)
3368 all->first_conversion_insn = get_insns ();
3369 all->last_conversion_insn = get_last_insn ();
3370 end_sequence ();
3373 SET_DECL_RTL (parm, data->stack_parm);
3376 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3377 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3379 static void
3380 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3381 vec<tree> fnargs)
3383 tree parm;
3384 tree orig_fnargs = all->orig_fnargs;
3385 unsigned i = 0;
3387 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3389 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3390 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3392 rtx tmp, real, imag;
3393 machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3395 real = DECL_RTL (fnargs[i]);
3396 imag = DECL_RTL (fnargs[i + 1]);
3397 if (inner != GET_MODE (real))
3399 real = gen_lowpart_SUBREG (inner, real);
3400 imag = gen_lowpart_SUBREG (inner, imag);
3403 if (TREE_ADDRESSABLE (parm))
3405 rtx rmem, imem;
3406 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3407 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3408 DECL_MODE (parm),
3409 TYPE_ALIGN (TREE_TYPE (parm)));
3411 /* split_complex_arg put the real and imag parts in
3412 pseudos. Move them to memory. */
3413 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3414 set_mem_attributes (tmp, parm, 1);
3415 rmem = adjust_address_nv (tmp, inner, 0);
3416 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3417 push_to_sequence2 (all->first_conversion_insn,
3418 all->last_conversion_insn);
3419 emit_move_insn (rmem, real);
3420 emit_move_insn (imem, imag);
3421 all->first_conversion_insn = get_insns ();
3422 all->last_conversion_insn = get_last_insn ();
3423 end_sequence ();
3425 else
3426 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3427 SET_DECL_RTL (parm, tmp);
3429 real = DECL_INCOMING_RTL (fnargs[i]);
3430 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3431 if (inner != GET_MODE (real))
3433 real = gen_lowpart_SUBREG (inner, real);
3434 imag = gen_lowpart_SUBREG (inner, imag);
3436 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3437 set_decl_incoming_rtl (parm, tmp, false);
3438 i++;
3443 /* Load bounds of PARM from bounds table. */
3444 static void
3445 assign_parm_load_bounds (struct assign_parm_data_one *data,
3446 tree parm,
3447 rtx entry,
3448 unsigned bound_no)
3450 bitmap_iterator bi;
3451 unsigned i, offs = 0;
3452 int bnd_no = -1;
3453 rtx slot = NULL, ptr = NULL;
3455 if (parm)
3457 bitmap slots;
3458 bitmap_obstack_initialize (NULL);
3459 slots = BITMAP_ALLOC (NULL);
3460 chkp_find_bound_slots (TREE_TYPE (parm), slots);
3461 EXECUTE_IF_SET_IN_BITMAP (slots, 0, i, bi)
3463 if (bound_no)
3464 bound_no--;
3465 else
3467 bnd_no = i;
3468 break;
3471 BITMAP_FREE (slots);
3472 bitmap_obstack_release (NULL);
3475 /* We may have bounds not associated with any pointer. */
3476 if (bnd_no != -1)
3477 offs = bnd_no * POINTER_SIZE / BITS_PER_UNIT;
3479 /* Find associated pointer. */
3480 if (bnd_no == -1)
3482 /* If bounds are not associated with any bounds,
3483 then it is passed in a register or special slot. */
3484 gcc_assert (data->entry_parm);
3485 ptr = const0_rtx;
3487 else if (MEM_P (entry))
3488 slot = adjust_address (entry, Pmode, offs);
3489 else if (REG_P (entry))
3490 ptr = gen_rtx_REG (Pmode, REGNO (entry) + bnd_no);
3491 else if (GET_CODE (entry) == PARALLEL)
3492 ptr = chkp_get_value_with_offs (entry, GEN_INT (offs));
3493 else
3494 gcc_unreachable ();
3495 data->entry_parm = targetm.calls.load_bounds_for_arg (slot, ptr,
3496 data->entry_parm);
3499 /* Assign RTL expressions to the function's bounds parameters BNDARGS. */
3501 static void
3502 assign_bounds (vec<bounds_parm_data> &bndargs,
3503 struct assign_parm_data_all &all)
3505 unsigned i, pass, handled = 0;
3506 bounds_parm_data *pbdata;
3508 if (!bndargs.exists ())
3509 return;
3511 /* We make few passes to store input bounds. Firstly handle bounds
3512 passed in registers. After that we load bounds passed in special
3513 slots. Finally we load bounds from Bounds Table. */
3514 for (pass = 0; pass < 3; pass++)
3515 FOR_EACH_VEC_ELT (bndargs, i, pbdata)
3517 /* Pass 0 => regs only. */
3518 if (pass == 0
3519 && (!pbdata->parm_data.entry_parm
3520 || GET_CODE (pbdata->parm_data.entry_parm) != REG))
3521 continue;
3522 /* Pass 1 => slots only. */
3523 else if (pass == 1
3524 && (!pbdata->parm_data.entry_parm
3525 || GET_CODE (pbdata->parm_data.entry_parm) == REG))
3526 continue;
3527 /* Pass 2 => BT only. */
3528 else if (pass == 2
3529 && pbdata->parm_data.entry_parm)
3530 continue;
3532 if (!pbdata->parm_data.entry_parm
3533 || GET_CODE (pbdata->parm_data.entry_parm) != REG)
3534 assign_parm_load_bounds (&pbdata->parm_data, pbdata->ptr_parm,
3535 pbdata->ptr_entry, pbdata->bound_no);
3537 set_decl_incoming_rtl (pbdata->bounds_parm,
3538 pbdata->parm_data.entry_parm, false);
3540 if (assign_parm_setup_block_p (&pbdata->parm_data))
3541 assign_parm_setup_block (&all, pbdata->bounds_parm,
3542 &pbdata->parm_data);
3543 else if (pbdata->parm_data.passed_pointer
3544 || use_register_for_decl (pbdata->bounds_parm))
3545 assign_parm_setup_reg (&all, pbdata->bounds_parm,
3546 &pbdata->parm_data);
3547 else
3548 assign_parm_setup_stack (&all, pbdata->bounds_parm,
3549 &pbdata->parm_data);
3551 /* Count handled bounds to make sure we miss nothing. */
3552 handled++;
3555 gcc_assert (handled == bndargs.length ());
3557 bndargs.release ();
3560 /* Assign RTL expressions to the function's parameters. This may involve
3561 copying them into registers and using those registers as the DECL_RTL. */
3563 static void
3564 assign_parms (tree fndecl)
3566 struct assign_parm_data_all all;
3567 tree parm;
3568 vec<tree> fnargs;
3569 unsigned i, bound_no = 0;
3570 tree last_arg = NULL;
3571 rtx last_arg_entry = NULL;
3572 vec<bounds_parm_data> bndargs = vNULL;
3573 bounds_parm_data bdata;
3575 crtl->args.internal_arg_pointer
3576 = targetm.calls.internal_arg_pointer ();
3578 assign_parms_initialize_all (&all);
3579 fnargs = assign_parms_augmented_arg_list (&all);
3581 FOR_EACH_VEC_ELT (fnargs, i, parm)
3583 struct assign_parm_data_one data;
3585 /* Extract the type of PARM; adjust it according to ABI. */
3586 assign_parm_find_data_types (&all, parm, &data);
3588 /* Early out for errors and void parameters. */
3589 if (data.passed_mode == VOIDmode)
3591 SET_DECL_RTL (parm, const0_rtx);
3592 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3593 continue;
3596 /* Estimate stack alignment from parameter alignment. */
3597 if (SUPPORTS_STACK_ALIGNMENT)
3599 unsigned int align
3600 = targetm.calls.function_arg_boundary (data.promoted_mode,
3601 data.passed_type);
3602 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3603 align);
3604 if (TYPE_ALIGN (data.nominal_type) > align)
3605 align = MINIMUM_ALIGNMENT (data.nominal_type,
3606 TYPE_MODE (data.nominal_type),
3607 TYPE_ALIGN (data.nominal_type));
3608 if (crtl->stack_alignment_estimated < align)
3610 gcc_assert (!crtl->stack_realign_processed);
3611 crtl->stack_alignment_estimated = align;
3615 /* Find out where the parameter arrives in this function. */
3616 assign_parm_find_entry_rtl (&all, &data);
3618 /* Find out where stack space for this parameter might be. */
3619 if (assign_parm_is_stack_parm (&all, &data))
3621 assign_parm_find_stack_rtl (parm, &data);
3622 assign_parm_adjust_entry_rtl (&data);
3624 if (!POINTER_BOUNDS_TYPE_P (data.passed_type))
3626 /* Remember where last non bounds arg was passed in case
3627 we have to load associated bounds for it from Bounds
3628 Table. */
3629 last_arg = parm;
3630 last_arg_entry = data.entry_parm;
3631 bound_no = 0;
3633 /* Record permanently how this parm was passed. */
3634 if (data.passed_pointer)
3636 rtx incoming_rtl
3637 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3638 data.entry_parm);
3639 set_decl_incoming_rtl (parm, incoming_rtl, true);
3641 else
3642 set_decl_incoming_rtl (parm, data.entry_parm, false);
3644 /* Boudns should be loaded in the particular order to
3645 have registers allocated correctly. Collect info about
3646 input bounds and load them later. */
3647 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3649 /* Expect bounds in instrumented functions only. */
3650 gcc_assert (chkp_function_instrumented_p (fndecl));
3652 bdata.parm_data = data;
3653 bdata.bounds_parm = parm;
3654 bdata.ptr_parm = last_arg;
3655 bdata.ptr_entry = last_arg_entry;
3656 bdata.bound_no = bound_no;
3657 bndargs.safe_push (bdata);
3659 else
3661 assign_parm_adjust_stack_rtl (&data);
3663 if (assign_parm_setup_block_p (&data))
3664 assign_parm_setup_block (&all, parm, &data);
3665 else if (data.passed_pointer || use_register_for_decl (parm))
3666 assign_parm_setup_reg (&all, parm, &data);
3667 else
3668 assign_parm_setup_stack (&all, parm, &data);
3671 if (cfun->stdarg && !DECL_CHAIN (parm))
3673 int pretend_bytes = 0;
3675 assign_parms_setup_varargs (&all, &data, false);
3677 if (chkp_function_instrumented_p (fndecl))
3679 /* We expect this is the last parm. Otherwise it is wrong
3680 to assign bounds right now. */
3681 gcc_assert (i == (fnargs.length () - 1));
3682 assign_bounds (bndargs, all);
3683 targetm.calls.setup_incoming_vararg_bounds (all.args_so_far,
3684 data.promoted_mode,
3685 data.passed_type,
3686 &pretend_bytes,
3687 false);
3691 /* Update info on where next arg arrives in registers. */
3692 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3693 data.passed_type, data.named_arg);
3695 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3696 bound_no++;
3699 assign_bounds (bndargs, all);
3701 if (targetm.calls.split_complex_arg)
3702 assign_parms_unsplit_complex (&all, fnargs);
3704 fnargs.release ();
3706 /* Output all parameter conversion instructions (possibly including calls)
3707 now that all parameters have been copied out of hard registers. */
3708 emit_insn (all.first_conversion_insn);
3710 /* Estimate reload stack alignment from scalar return mode. */
3711 if (SUPPORTS_STACK_ALIGNMENT)
3713 if (DECL_RESULT (fndecl))
3715 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3716 machine_mode mode = TYPE_MODE (type);
3718 if (mode != BLKmode
3719 && mode != VOIDmode
3720 && !AGGREGATE_TYPE_P (type))
3722 unsigned int align = GET_MODE_ALIGNMENT (mode);
3723 if (crtl->stack_alignment_estimated < align)
3725 gcc_assert (!crtl->stack_realign_processed);
3726 crtl->stack_alignment_estimated = align;
3732 /* If we are receiving a struct value address as the first argument, set up
3733 the RTL for the function result. As this might require code to convert
3734 the transmitted address to Pmode, we do this here to ensure that possible
3735 preliminary conversions of the address have been emitted already. */
3736 if (all.function_result_decl)
3738 tree result = DECL_RESULT (current_function_decl);
3739 rtx addr = DECL_RTL (all.function_result_decl);
3740 rtx x;
3742 if (DECL_BY_REFERENCE (result))
3744 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3745 x = addr;
3747 else
3749 SET_DECL_VALUE_EXPR (result,
3750 build1 (INDIRECT_REF, TREE_TYPE (result),
3751 all.function_result_decl));
3752 addr = convert_memory_address (Pmode, addr);
3753 x = gen_rtx_MEM (DECL_MODE (result), addr);
3754 set_mem_attributes (x, result, 1);
3757 DECL_HAS_VALUE_EXPR_P (result) = 1;
3759 SET_DECL_RTL (result, x);
3762 /* We have aligned all the args, so add space for the pretend args. */
3763 crtl->args.pretend_args_size = all.pretend_args_size;
3764 all.stack_args_size.constant += all.extra_pretend_bytes;
3765 crtl->args.size = all.stack_args_size.constant;
3767 /* Adjust function incoming argument size for alignment and
3768 minimum length. */
3770 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3771 crtl->args.size = CEIL_ROUND (crtl->args.size,
3772 PARM_BOUNDARY / BITS_PER_UNIT);
3774 #ifdef ARGS_GROW_DOWNWARD
3775 crtl->args.arg_offset_rtx
3776 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3777 : expand_expr (size_diffop (all.stack_args_size.var,
3778 size_int (-all.stack_args_size.constant)),
3779 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3780 #else
3781 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3782 #endif
3784 /* See how many bytes, if any, of its args a function should try to pop
3785 on return. */
3787 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3788 TREE_TYPE (fndecl),
3789 crtl->args.size);
3791 /* For stdarg.h function, save info about
3792 regs and stack space used by the named args. */
3794 crtl->args.info = all.args_so_far_v;
3796 /* Set the rtx used for the function return value. Put this in its
3797 own variable so any optimizers that need this information don't have
3798 to include tree.h. Do this here so it gets done when an inlined
3799 function gets output. */
3801 crtl->return_rtx
3802 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3803 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3805 /* If scalar return value was computed in a pseudo-reg, or was a named
3806 return value that got dumped to the stack, copy that to the hard
3807 return register. */
3808 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3810 tree decl_result = DECL_RESULT (fndecl);
3811 rtx decl_rtl = DECL_RTL (decl_result);
3813 if (REG_P (decl_rtl)
3814 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3815 : DECL_REGISTER (decl_result))
3817 rtx real_decl_rtl;
3819 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3820 fndecl, true);
3821 if (chkp_function_instrumented_p (fndecl))
3822 crtl->return_bnd
3823 = targetm.calls.chkp_function_value_bounds (TREE_TYPE (decl_result),
3824 fndecl, true);
3825 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3826 /* The delay slot scheduler assumes that crtl->return_rtx
3827 holds the hard register containing the return value, not a
3828 temporary pseudo. */
3829 crtl->return_rtx = real_decl_rtl;
3834 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3835 For all seen types, gimplify their sizes. */
3837 static tree
3838 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3840 tree t = *tp;
3842 *walk_subtrees = 0;
3843 if (TYPE_P (t))
3845 if (POINTER_TYPE_P (t))
3846 *walk_subtrees = 1;
3847 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3848 && !TYPE_SIZES_GIMPLIFIED (t))
3850 gimplify_type_sizes (t, (gimple_seq *) data);
3851 *walk_subtrees = 1;
3855 return NULL;
3858 /* Gimplify the parameter list for current_function_decl. This involves
3859 evaluating SAVE_EXPRs of variable sized parameters and generating code
3860 to implement callee-copies reference parameters. Returns a sequence of
3861 statements to add to the beginning of the function. */
3863 gimple_seq
3864 gimplify_parameters (void)
3866 struct assign_parm_data_all all;
3867 tree parm;
3868 gimple_seq stmts = NULL;
3869 vec<tree> fnargs;
3870 unsigned i;
3872 assign_parms_initialize_all (&all);
3873 fnargs = assign_parms_augmented_arg_list (&all);
3875 FOR_EACH_VEC_ELT (fnargs, i, parm)
3877 struct assign_parm_data_one data;
3879 /* Extract the type of PARM; adjust it according to ABI. */
3880 assign_parm_find_data_types (&all, parm, &data);
3882 /* Early out for errors and void parameters. */
3883 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3884 continue;
3886 /* Update info on where next arg arrives in registers. */
3887 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3888 data.passed_type, data.named_arg);
3890 /* ??? Once upon a time variable_size stuffed parameter list
3891 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3892 turned out to be less than manageable in the gimple world.
3893 Now we have to hunt them down ourselves. */
3894 walk_tree_without_duplicates (&data.passed_type,
3895 gimplify_parm_type, &stmts);
3897 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3899 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3900 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3903 if (data.passed_pointer)
3905 tree type = TREE_TYPE (data.passed_type);
3906 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3907 type, data.named_arg))
3909 tree local, t;
3911 /* For constant-sized objects, this is trivial; for
3912 variable-sized objects, we have to play games. */
3913 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3914 && !(flag_stack_check == GENERIC_STACK_CHECK
3915 && compare_tree_int (DECL_SIZE_UNIT (parm),
3916 STACK_CHECK_MAX_VAR_SIZE) > 0))
3918 local = create_tmp_var (type, get_name (parm));
3919 DECL_IGNORED_P (local) = 0;
3920 /* If PARM was addressable, move that flag over
3921 to the local copy, as its address will be taken,
3922 not the PARMs. Keep the parms address taken
3923 as we'll query that flag during gimplification. */
3924 if (TREE_ADDRESSABLE (parm))
3925 TREE_ADDRESSABLE (local) = 1;
3926 else if (TREE_CODE (type) == COMPLEX_TYPE
3927 || TREE_CODE (type) == VECTOR_TYPE)
3928 DECL_GIMPLE_REG_P (local) = 1;
3930 else
3932 tree ptr_type, addr;
3934 ptr_type = build_pointer_type (type);
3935 addr = create_tmp_reg (ptr_type, get_name (parm));
3936 DECL_IGNORED_P (addr) = 0;
3937 local = build_fold_indirect_ref (addr);
3939 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3940 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3941 size_int (DECL_ALIGN (parm)));
3943 /* The call has been built for a variable-sized object. */
3944 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3945 t = fold_convert (ptr_type, t);
3946 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3947 gimplify_and_add (t, &stmts);
3950 gimplify_assign (local, parm, &stmts);
3952 SET_DECL_VALUE_EXPR (parm, local);
3953 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3958 fnargs.release ();
3960 return stmts;
3963 /* Compute the size and offset from the start of the stacked arguments for a
3964 parm passed in mode PASSED_MODE and with type TYPE.
3966 INITIAL_OFFSET_PTR points to the current offset into the stacked
3967 arguments.
3969 The starting offset and size for this parm are returned in
3970 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3971 nonzero, the offset is that of stack slot, which is returned in
3972 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3973 padding required from the initial offset ptr to the stack slot.
3975 IN_REGS is nonzero if the argument will be passed in registers. It will
3976 never be set if REG_PARM_STACK_SPACE is not defined.
3978 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3979 for arguments which are passed in registers.
3981 FNDECL is the function in which the argument was defined.
3983 There are two types of rounding that are done. The first, controlled by
3984 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3985 argument list to be aligned to the specific boundary (in bits). This
3986 rounding affects the initial and starting offsets, but not the argument
3987 size.
3989 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3990 optionally rounds the size of the parm to PARM_BOUNDARY. The
3991 initial offset is not affected by this rounding, while the size always
3992 is and the starting offset may be. */
3994 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3995 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3996 callers pass in the total size of args so far as
3997 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3999 void
4000 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4001 int reg_parm_stack_space, int partial,
4002 tree fndecl ATTRIBUTE_UNUSED,
4003 struct args_size *initial_offset_ptr,
4004 struct locate_and_pad_arg_data *locate)
4006 tree sizetree;
4007 enum direction where_pad;
4008 unsigned int boundary, round_boundary;
4009 int part_size_in_regs;
4011 /* If we have found a stack parm before we reach the end of the
4012 area reserved for registers, skip that area. */
4013 if (! in_regs)
4015 if (reg_parm_stack_space > 0)
4017 if (initial_offset_ptr->var)
4019 initial_offset_ptr->var
4020 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4021 ssize_int (reg_parm_stack_space));
4022 initial_offset_ptr->constant = 0;
4024 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4025 initial_offset_ptr->constant = reg_parm_stack_space;
4029 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4031 sizetree
4032 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4033 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4034 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4035 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4036 type);
4037 locate->where_pad = where_pad;
4039 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4040 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4041 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4043 locate->boundary = boundary;
4045 if (SUPPORTS_STACK_ALIGNMENT)
4047 /* stack_alignment_estimated can't change after stack has been
4048 realigned. */
4049 if (crtl->stack_alignment_estimated < boundary)
4051 if (!crtl->stack_realign_processed)
4052 crtl->stack_alignment_estimated = boundary;
4053 else
4055 /* If stack is realigned and stack alignment value
4056 hasn't been finalized, it is OK not to increase
4057 stack_alignment_estimated. The bigger alignment
4058 requirement is recorded in stack_alignment_needed
4059 below. */
4060 gcc_assert (!crtl->stack_realign_finalized
4061 && crtl->stack_realign_needed);
4066 /* Remember if the outgoing parameter requires extra alignment on the
4067 calling function side. */
4068 if (crtl->stack_alignment_needed < boundary)
4069 crtl->stack_alignment_needed = boundary;
4070 if (crtl->preferred_stack_boundary < boundary)
4071 crtl->preferred_stack_boundary = boundary;
4073 #ifdef ARGS_GROW_DOWNWARD
4074 locate->slot_offset.constant = -initial_offset_ptr->constant;
4075 if (initial_offset_ptr->var)
4076 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4077 initial_offset_ptr->var);
4080 tree s2 = sizetree;
4081 if (where_pad != none
4082 && (!tree_fits_uhwi_p (sizetree)
4083 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4084 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4085 SUB_PARM_SIZE (locate->slot_offset, s2);
4088 locate->slot_offset.constant += part_size_in_regs;
4090 if (!in_regs || reg_parm_stack_space > 0)
4091 pad_to_arg_alignment (&locate->slot_offset, boundary,
4092 &locate->alignment_pad);
4094 locate->size.constant = (-initial_offset_ptr->constant
4095 - locate->slot_offset.constant);
4096 if (initial_offset_ptr->var)
4097 locate->size.var = size_binop (MINUS_EXPR,
4098 size_binop (MINUS_EXPR,
4099 ssize_int (0),
4100 initial_offset_ptr->var),
4101 locate->slot_offset.var);
4103 /* Pad_below needs the pre-rounded size to know how much to pad
4104 below. */
4105 locate->offset = locate->slot_offset;
4106 if (where_pad == downward)
4107 pad_below (&locate->offset, passed_mode, sizetree);
4109 #else /* !ARGS_GROW_DOWNWARD */
4110 if (!in_regs || reg_parm_stack_space > 0)
4111 pad_to_arg_alignment (initial_offset_ptr, boundary,
4112 &locate->alignment_pad);
4113 locate->slot_offset = *initial_offset_ptr;
4115 #ifdef PUSH_ROUNDING
4116 if (passed_mode != BLKmode)
4117 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4118 #endif
4120 /* Pad_below needs the pre-rounded size to know how much to pad below
4121 so this must be done before rounding up. */
4122 locate->offset = locate->slot_offset;
4123 if (where_pad == downward)
4124 pad_below (&locate->offset, passed_mode, sizetree);
4126 if (where_pad != none
4127 && (!tree_fits_uhwi_p (sizetree)
4128 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4129 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4131 ADD_PARM_SIZE (locate->size, sizetree);
4133 locate->size.constant -= part_size_in_regs;
4134 #endif /* ARGS_GROW_DOWNWARD */
4136 #ifdef FUNCTION_ARG_OFFSET
4137 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
4138 #endif
4141 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4142 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4144 static void
4145 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4146 struct args_size *alignment_pad)
4148 tree save_var = NULL_TREE;
4149 HOST_WIDE_INT save_constant = 0;
4150 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4151 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
4153 #ifdef SPARC_STACK_BOUNDARY_HACK
4154 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4155 the real alignment of %sp. However, when it does this, the
4156 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4157 if (SPARC_STACK_BOUNDARY_HACK)
4158 sp_offset = 0;
4159 #endif
4161 if (boundary > PARM_BOUNDARY)
4163 save_var = offset_ptr->var;
4164 save_constant = offset_ptr->constant;
4167 alignment_pad->var = NULL_TREE;
4168 alignment_pad->constant = 0;
4170 if (boundary > BITS_PER_UNIT)
4172 if (offset_ptr->var)
4174 tree sp_offset_tree = ssize_int (sp_offset);
4175 tree offset = size_binop (PLUS_EXPR,
4176 ARGS_SIZE_TREE (*offset_ptr),
4177 sp_offset_tree);
4178 #ifdef ARGS_GROW_DOWNWARD
4179 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
4180 #else
4181 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
4182 #endif
4184 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4185 /* ARGS_SIZE_TREE includes constant term. */
4186 offset_ptr->constant = 0;
4187 if (boundary > PARM_BOUNDARY)
4188 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4189 save_var);
4191 else
4193 offset_ptr->constant = -sp_offset +
4194 #ifdef ARGS_GROW_DOWNWARD
4195 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
4196 #else
4197 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
4198 #endif
4199 if (boundary > PARM_BOUNDARY)
4200 alignment_pad->constant = offset_ptr->constant - save_constant;
4205 static void
4206 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4208 if (passed_mode != BLKmode)
4210 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
4211 offset_ptr->constant
4212 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
4213 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
4214 - GET_MODE_SIZE (passed_mode));
4216 else
4218 if (TREE_CODE (sizetree) != INTEGER_CST
4219 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
4221 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4222 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4223 /* Add it in. */
4224 ADD_PARM_SIZE (*offset_ptr, s2);
4225 SUB_PARM_SIZE (*offset_ptr, sizetree);
4231 /* True if register REGNO was alive at a place where `setjmp' was
4232 called and was set more than once or is an argument. Such regs may
4233 be clobbered by `longjmp'. */
4235 static bool
4236 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4238 /* There appear to be cases where some local vars never reach the
4239 backend but have bogus regnos. */
4240 if (regno >= max_reg_num ())
4241 return false;
4243 return ((REG_N_SETS (regno) > 1
4244 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4245 regno))
4246 && REGNO_REG_SET_P (setjmp_crosses, regno));
4249 /* Walk the tree of blocks describing the binding levels within a
4250 function and warn about variables the might be killed by setjmp or
4251 vfork. This is done after calling flow_analysis before register
4252 allocation since that will clobber the pseudo-regs to hard
4253 regs. */
4255 static void
4256 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4258 tree decl, sub;
4260 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4262 if (TREE_CODE (decl) == VAR_DECL
4263 && DECL_RTL_SET_P (decl)
4264 && REG_P (DECL_RTL (decl))
4265 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4266 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4267 " %<longjmp%> or %<vfork%>", decl);
4270 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4271 setjmp_vars_warning (setjmp_crosses, sub);
4274 /* Do the appropriate part of setjmp_vars_warning
4275 but for arguments instead of local variables. */
4277 static void
4278 setjmp_args_warning (bitmap setjmp_crosses)
4280 tree decl;
4281 for (decl = DECL_ARGUMENTS (current_function_decl);
4282 decl; decl = DECL_CHAIN (decl))
4283 if (DECL_RTL (decl) != 0
4284 && REG_P (DECL_RTL (decl))
4285 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4286 warning (OPT_Wclobbered,
4287 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4288 decl);
4291 /* Generate warning messages for variables live across setjmp. */
4293 void
4294 generate_setjmp_warnings (void)
4296 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4298 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4299 || bitmap_empty_p (setjmp_crosses))
4300 return;
4302 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4303 setjmp_args_warning (setjmp_crosses);
4307 /* Reverse the order of elements in the fragment chain T of blocks,
4308 and return the new head of the chain (old last element).
4309 In addition to that clear BLOCK_SAME_RANGE flags when needed
4310 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4311 its super fragment origin. */
4313 static tree
4314 block_fragments_nreverse (tree t)
4316 tree prev = 0, block, next, prev_super = 0;
4317 tree super = BLOCK_SUPERCONTEXT (t);
4318 if (BLOCK_FRAGMENT_ORIGIN (super))
4319 super = BLOCK_FRAGMENT_ORIGIN (super);
4320 for (block = t; block; block = next)
4322 next = BLOCK_FRAGMENT_CHAIN (block);
4323 BLOCK_FRAGMENT_CHAIN (block) = prev;
4324 if ((prev && !BLOCK_SAME_RANGE (prev))
4325 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4326 != prev_super))
4327 BLOCK_SAME_RANGE (block) = 0;
4328 prev_super = BLOCK_SUPERCONTEXT (block);
4329 BLOCK_SUPERCONTEXT (block) = super;
4330 prev = block;
4332 t = BLOCK_FRAGMENT_ORIGIN (t);
4333 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4334 != prev_super)
4335 BLOCK_SAME_RANGE (t) = 0;
4336 BLOCK_SUPERCONTEXT (t) = super;
4337 return prev;
4340 /* Reverse the order of elements in the chain T of blocks,
4341 and return the new head of the chain (old last element).
4342 Also do the same on subblocks and reverse the order of elements
4343 in BLOCK_FRAGMENT_CHAIN as well. */
4345 static tree
4346 blocks_nreverse_all (tree t)
4348 tree prev = 0, block, next;
4349 for (block = t; block; block = next)
4351 next = BLOCK_CHAIN (block);
4352 BLOCK_CHAIN (block) = prev;
4353 if (BLOCK_FRAGMENT_CHAIN (block)
4354 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4356 BLOCK_FRAGMENT_CHAIN (block)
4357 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4358 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4359 BLOCK_SAME_RANGE (block) = 0;
4361 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4362 prev = block;
4364 return prev;
4368 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4369 and create duplicate blocks. */
4370 /* ??? Need an option to either create block fragments or to create
4371 abstract origin duplicates of a source block. It really depends
4372 on what optimization has been performed. */
4374 void
4375 reorder_blocks (void)
4377 tree block = DECL_INITIAL (current_function_decl);
4379 if (block == NULL_TREE)
4380 return;
4382 auto_vec<tree, 10> block_stack;
4384 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4385 clear_block_marks (block);
4387 /* Prune the old trees away, so that they don't get in the way. */
4388 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4389 BLOCK_CHAIN (block) = NULL_TREE;
4391 /* Recreate the block tree from the note nesting. */
4392 reorder_blocks_1 (get_insns (), block, &block_stack);
4393 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4396 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4398 void
4399 clear_block_marks (tree block)
4401 while (block)
4403 TREE_ASM_WRITTEN (block) = 0;
4404 clear_block_marks (BLOCK_SUBBLOCKS (block));
4405 block = BLOCK_CHAIN (block);
4409 static void
4410 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4411 vec<tree> *p_block_stack)
4413 rtx_insn *insn;
4414 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4416 for (insn = insns; insn; insn = NEXT_INSN (insn))
4418 if (NOTE_P (insn))
4420 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4422 tree block = NOTE_BLOCK (insn);
4423 tree origin;
4425 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4426 origin = block;
4428 if (prev_end)
4429 BLOCK_SAME_RANGE (prev_end) = 0;
4430 prev_end = NULL_TREE;
4432 /* If we have seen this block before, that means it now
4433 spans multiple address regions. Create a new fragment. */
4434 if (TREE_ASM_WRITTEN (block))
4436 tree new_block = copy_node (block);
4438 BLOCK_SAME_RANGE (new_block) = 0;
4439 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4440 BLOCK_FRAGMENT_CHAIN (new_block)
4441 = BLOCK_FRAGMENT_CHAIN (origin);
4442 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4444 NOTE_BLOCK (insn) = new_block;
4445 block = new_block;
4448 if (prev_beg == current_block && prev_beg)
4449 BLOCK_SAME_RANGE (block) = 1;
4451 prev_beg = origin;
4453 BLOCK_SUBBLOCKS (block) = 0;
4454 TREE_ASM_WRITTEN (block) = 1;
4455 /* When there's only one block for the entire function,
4456 current_block == block and we mustn't do this, it
4457 will cause infinite recursion. */
4458 if (block != current_block)
4460 tree super;
4461 if (block != origin)
4462 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4463 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4464 (origin))
4465 == current_block);
4466 if (p_block_stack->is_empty ())
4467 super = current_block;
4468 else
4470 super = p_block_stack->last ();
4471 gcc_assert (super == current_block
4472 || BLOCK_FRAGMENT_ORIGIN (super)
4473 == current_block);
4475 BLOCK_SUPERCONTEXT (block) = super;
4476 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4477 BLOCK_SUBBLOCKS (current_block) = block;
4478 current_block = origin;
4480 p_block_stack->safe_push (block);
4482 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4484 NOTE_BLOCK (insn) = p_block_stack->pop ();
4485 current_block = BLOCK_SUPERCONTEXT (current_block);
4486 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4487 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4488 prev_beg = NULL_TREE;
4489 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4490 ? NOTE_BLOCK (insn) : NULL_TREE;
4493 else
4495 prev_beg = NULL_TREE;
4496 if (prev_end)
4497 BLOCK_SAME_RANGE (prev_end) = 0;
4498 prev_end = NULL_TREE;
4503 /* Reverse the order of elements in the chain T of blocks,
4504 and return the new head of the chain (old last element). */
4506 tree
4507 blocks_nreverse (tree t)
4509 tree prev = 0, block, next;
4510 for (block = t; block; block = next)
4512 next = BLOCK_CHAIN (block);
4513 BLOCK_CHAIN (block) = prev;
4514 prev = block;
4516 return prev;
4519 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4520 by modifying the last node in chain 1 to point to chain 2. */
4522 tree
4523 block_chainon (tree op1, tree op2)
4525 tree t1;
4527 if (!op1)
4528 return op2;
4529 if (!op2)
4530 return op1;
4532 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4533 continue;
4534 BLOCK_CHAIN (t1) = op2;
4536 #ifdef ENABLE_TREE_CHECKING
4538 tree t2;
4539 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4540 gcc_assert (t2 != t1);
4542 #endif
4544 return op1;
4547 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4548 non-NULL, list them all into VECTOR, in a depth-first preorder
4549 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4550 blocks. */
4552 static int
4553 all_blocks (tree block, tree *vector)
4555 int n_blocks = 0;
4557 while (block)
4559 TREE_ASM_WRITTEN (block) = 0;
4561 /* Record this block. */
4562 if (vector)
4563 vector[n_blocks] = block;
4565 ++n_blocks;
4567 /* Record the subblocks, and their subblocks... */
4568 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4569 vector ? vector + n_blocks : 0);
4570 block = BLOCK_CHAIN (block);
4573 return n_blocks;
4576 /* Return a vector containing all the blocks rooted at BLOCK. The
4577 number of elements in the vector is stored in N_BLOCKS_P. The
4578 vector is dynamically allocated; it is the caller's responsibility
4579 to call `free' on the pointer returned. */
4581 static tree *
4582 get_block_vector (tree block, int *n_blocks_p)
4584 tree *block_vector;
4586 *n_blocks_p = all_blocks (block, NULL);
4587 block_vector = XNEWVEC (tree, *n_blocks_p);
4588 all_blocks (block, block_vector);
4590 return block_vector;
4593 static GTY(()) int next_block_index = 2;
4595 /* Set BLOCK_NUMBER for all the blocks in FN. */
4597 void
4598 number_blocks (tree fn)
4600 int i;
4601 int n_blocks;
4602 tree *block_vector;
4604 /* For SDB and XCOFF debugging output, we start numbering the blocks
4605 from 1 within each function, rather than keeping a running
4606 count. */
4607 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4608 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4609 next_block_index = 1;
4610 #endif
4612 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4614 /* The top-level BLOCK isn't numbered at all. */
4615 for (i = 1; i < n_blocks; ++i)
4616 /* We number the blocks from two. */
4617 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4619 free (block_vector);
4621 return;
4624 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4626 DEBUG_FUNCTION tree
4627 debug_find_var_in_block_tree (tree var, tree block)
4629 tree t;
4631 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4632 if (t == var)
4633 return block;
4635 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4637 tree ret = debug_find_var_in_block_tree (var, t);
4638 if (ret)
4639 return ret;
4642 return NULL_TREE;
4645 /* Keep track of whether we're in a dummy function context. If we are,
4646 we don't want to invoke the set_current_function hook, because we'll
4647 get into trouble if the hook calls target_reinit () recursively or
4648 when the initial initialization is not yet complete. */
4650 static bool in_dummy_function;
4652 /* Invoke the target hook when setting cfun. Update the optimization options
4653 if the function uses different options than the default. */
4655 static void
4656 invoke_set_current_function_hook (tree fndecl)
4658 if (!in_dummy_function)
4660 tree opts = ((fndecl)
4661 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4662 : optimization_default_node);
4664 if (!opts)
4665 opts = optimization_default_node;
4667 /* Change optimization options if needed. */
4668 if (optimization_current_node != opts)
4670 optimization_current_node = opts;
4671 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4674 targetm.set_current_function (fndecl);
4675 this_fn_optabs = this_target_optabs;
4677 if (opts != optimization_default_node)
4679 init_tree_optimization_optabs (opts);
4680 if (TREE_OPTIMIZATION_OPTABS (opts))
4681 this_fn_optabs = (struct target_optabs *)
4682 TREE_OPTIMIZATION_OPTABS (opts);
4687 /* cfun should never be set directly; use this function. */
4689 void
4690 set_cfun (struct function *new_cfun)
4692 if (cfun != new_cfun)
4694 cfun = new_cfun;
4695 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4699 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4701 static vec<function_p> cfun_stack;
4703 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4704 current_function_decl accordingly. */
4706 void
4707 push_cfun (struct function *new_cfun)
4709 gcc_assert ((!cfun && !current_function_decl)
4710 || (cfun && current_function_decl == cfun->decl));
4711 cfun_stack.safe_push (cfun);
4712 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4713 set_cfun (new_cfun);
4716 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4718 void
4719 pop_cfun (void)
4721 struct function *new_cfun = cfun_stack.pop ();
4722 /* When in_dummy_function, we do have a cfun but current_function_decl is
4723 NULL. We also allow pushing NULL cfun and subsequently changing
4724 current_function_decl to something else and have both restored by
4725 pop_cfun. */
4726 gcc_checking_assert (in_dummy_function
4727 || !cfun
4728 || current_function_decl == cfun->decl);
4729 set_cfun (new_cfun);
4730 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4733 /* Return value of funcdef and increase it. */
4735 get_next_funcdef_no (void)
4737 return funcdef_no++;
4740 /* Return value of funcdef. */
4742 get_last_funcdef_no (void)
4744 return funcdef_no;
4747 /* Allocate a function structure for FNDECL and set its contents
4748 to the defaults. Set cfun to the newly-allocated object.
4749 Some of the helper functions invoked during initialization assume
4750 that cfun has already been set. Therefore, assign the new object
4751 directly into cfun and invoke the back end hook explicitly at the
4752 very end, rather than initializing a temporary and calling set_cfun
4753 on it.
4755 ABSTRACT_P is true if this is a function that will never be seen by
4756 the middle-end. Such functions are front-end concepts (like C++
4757 function templates) that do not correspond directly to functions
4758 placed in object files. */
4760 void
4761 allocate_struct_function (tree fndecl, bool abstract_p)
4763 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4765 cfun = ggc_cleared_alloc<function> ();
4767 init_eh_for_function ();
4769 if (init_machine_status)
4770 cfun->machine = (*init_machine_status) ();
4772 #ifdef OVERRIDE_ABI_FORMAT
4773 OVERRIDE_ABI_FORMAT (fndecl);
4774 #endif
4776 if (fndecl != NULL_TREE)
4778 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4779 cfun->decl = fndecl;
4780 current_function_funcdef_no = get_next_funcdef_no ();
4783 invoke_set_current_function_hook (fndecl);
4785 if (fndecl != NULL_TREE)
4787 tree result = DECL_RESULT (fndecl);
4788 if (!abstract_p && aggregate_value_p (result, fndecl))
4790 #ifdef PCC_STATIC_STRUCT_RETURN
4791 cfun->returns_pcc_struct = 1;
4792 #endif
4793 cfun->returns_struct = 1;
4796 cfun->stdarg = stdarg_p (fntype);
4798 /* Assume all registers in stdarg functions need to be saved. */
4799 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4800 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4802 /* ??? This could be set on a per-function basis by the front-end
4803 but is this worth the hassle? */
4804 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4805 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4807 if (!profile_flag && !flag_instrument_function_entry_exit)
4808 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4812 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4813 instead of just setting it. */
4815 void
4816 push_struct_function (tree fndecl)
4818 /* When in_dummy_function we might be in the middle of a pop_cfun and
4819 current_function_decl and cfun may not match. */
4820 gcc_assert (in_dummy_function
4821 || (!cfun && !current_function_decl)
4822 || (cfun && current_function_decl == cfun->decl));
4823 cfun_stack.safe_push (cfun);
4824 current_function_decl = fndecl;
4825 allocate_struct_function (fndecl, false);
4828 /* Reset crtl and other non-struct-function variables to defaults as
4829 appropriate for emitting rtl at the start of a function. */
4831 static void
4832 prepare_function_start (void)
4834 gcc_assert (!crtl->emit.x_last_insn);
4835 init_temp_slots ();
4836 init_emit ();
4837 init_varasm_status ();
4838 init_expr ();
4839 default_rtl_profile ();
4841 if (flag_stack_usage_info)
4843 cfun->su = ggc_cleared_alloc<stack_usage> ();
4844 cfun->su->static_stack_size = -1;
4847 cse_not_expected = ! optimize;
4849 /* Caller save not needed yet. */
4850 caller_save_needed = 0;
4852 /* We haven't done register allocation yet. */
4853 reg_renumber = 0;
4855 /* Indicate that we have not instantiated virtual registers yet. */
4856 virtuals_instantiated = 0;
4858 /* Indicate that we want CONCATs now. */
4859 generating_concat_p = 1;
4861 /* Indicate we have no need of a frame pointer yet. */
4862 frame_pointer_needed = 0;
4865 /* Initialize the rtl expansion mechanism so that we can do simple things
4866 like generate sequences. This is used to provide a context during global
4867 initialization of some passes. You must call expand_dummy_function_end
4868 to exit this context. */
4870 void
4871 init_dummy_function_start (void)
4873 gcc_assert (!in_dummy_function);
4874 in_dummy_function = true;
4875 push_struct_function (NULL_TREE);
4876 prepare_function_start ();
4879 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4880 and initialize static variables for generating RTL for the statements
4881 of the function. */
4883 void
4884 init_function_start (tree subr)
4886 if (subr && DECL_STRUCT_FUNCTION (subr))
4887 set_cfun (DECL_STRUCT_FUNCTION (subr));
4888 else
4889 allocate_struct_function (subr, false);
4891 /* Initialize backend, if needed. */
4892 initialize_rtl ();
4894 prepare_function_start ();
4895 decide_function_section (subr);
4897 /* Warn if this value is an aggregate type,
4898 regardless of which calling convention we are using for it. */
4899 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4900 warning (OPT_Waggregate_return, "function returns an aggregate");
4903 /* Expand code to verify the stack_protect_guard. This is invoked at
4904 the end of a function to be protected. */
4906 #ifndef HAVE_stack_protect_test
4907 # define HAVE_stack_protect_test 0
4908 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4909 #endif
4911 void
4912 stack_protect_epilogue (void)
4914 tree guard_decl = targetm.stack_protect_guard ();
4915 rtx_code_label *label = gen_label_rtx ();
4916 rtx x, y, tmp;
4918 x = expand_normal (crtl->stack_protect_guard);
4919 y = expand_normal (guard_decl);
4921 /* Allow the target to compare Y with X without leaking either into
4922 a register. */
4923 switch ((int) (HAVE_stack_protect_test != 0))
4925 case 1:
4926 tmp = gen_stack_protect_test (x, y, label);
4927 if (tmp)
4929 emit_insn (tmp);
4930 break;
4932 /* FALLTHRU */
4934 default:
4935 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4936 break;
4939 /* The noreturn predictor has been moved to the tree level. The rtl-level
4940 predictors estimate this branch about 20%, which isn't enough to get
4941 things moved out of line. Since this is the only extant case of adding
4942 a noreturn function at the rtl level, it doesn't seem worth doing ought
4943 except adding the prediction by hand. */
4944 tmp = get_last_insn ();
4945 if (JUMP_P (tmp))
4946 predict_insn_def (as_a <rtx_insn *> (tmp), PRED_NORETURN, TAKEN);
4948 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4949 free_temp_slots ();
4950 emit_label (label);
4953 /* Start the RTL for a new function, and set variables used for
4954 emitting RTL.
4955 SUBR is the FUNCTION_DECL node.
4956 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4957 the function's parameters, which must be run at any return statement. */
4959 void
4960 expand_function_start (tree subr)
4962 /* Make sure volatile mem refs aren't considered
4963 valid operands of arithmetic insns. */
4964 init_recog_no_volatile ();
4966 crtl->profile
4967 = (profile_flag
4968 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4970 crtl->limit_stack
4971 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4973 /* Make the label for return statements to jump to. Do not special
4974 case machines with special return instructions -- they will be
4975 handled later during jump, ifcvt, or epilogue creation. */
4976 return_label = gen_label_rtx ();
4978 /* Initialize rtx used to return the value. */
4979 /* Do this before assign_parms so that we copy the struct value address
4980 before any library calls that assign parms might generate. */
4982 /* Decide whether to return the value in memory or in a register. */
4983 if (aggregate_value_p (DECL_RESULT (subr), subr))
4985 /* Returning something that won't go in a register. */
4986 rtx value_address = 0;
4988 #ifdef PCC_STATIC_STRUCT_RETURN
4989 if (cfun->returns_pcc_struct)
4991 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4992 value_address = assemble_static_space (size);
4994 else
4995 #endif
4997 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4998 /* Expect to be passed the address of a place to store the value.
4999 If it is passed as an argument, assign_parms will take care of
5000 it. */
5001 if (sv)
5003 value_address = gen_reg_rtx (Pmode);
5004 emit_move_insn (value_address, sv);
5007 if (value_address)
5009 rtx x = value_address;
5010 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
5012 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
5013 set_mem_attributes (x, DECL_RESULT (subr), 1);
5015 SET_DECL_RTL (DECL_RESULT (subr), x);
5018 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
5019 /* If return mode is void, this decl rtl should not be used. */
5020 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
5021 else
5023 /* Compute the return values into a pseudo reg, which we will copy
5024 into the true return register after the cleanups are done. */
5025 tree return_type = TREE_TYPE (DECL_RESULT (subr));
5026 if (TYPE_MODE (return_type) != BLKmode
5027 && targetm.calls.return_in_msb (return_type))
5028 /* expand_function_end will insert the appropriate padding in
5029 this case. Use the return value's natural (unpadded) mode
5030 within the function proper. */
5031 SET_DECL_RTL (DECL_RESULT (subr),
5032 gen_reg_rtx (TYPE_MODE (return_type)));
5033 else
5035 /* In order to figure out what mode to use for the pseudo, we
5036 figure out what the mode of the eventual return register will
5037 actually be, and use that. */
5038 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5040 /* Structures that are returned in registers are not
5041 aggregate_value_p, so we may see a PARALLEL or a REG. */
5042 if (REG_P (hard_reg))
5043 SET_DECL_RTL (DECL_RESULT (subr),
5044 gen_reg_rtx (GET_MODE (hard_reg)));
5045 else
5047 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5048 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
5052 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5053 result to the real return register(s). */
5054 DECL_REGISTER (DECL_RESULT (subr)) = 1;
5056 if (chkp_function_instrumented_p (current_function_decl))
5058 tree return_type = TREE_TYPE (DECL_RESULT (subr));
5059 rtx bounds = targetm.calls.chkp_function_value_bounds (return_type,
5060 subr, 1);
5061 SET_DECL_BOUNDS_RTL (DECL_RESULT (subr), bounds);
5065 /* Initialize rtx for parameters and local variables.
5066 In some cases this requires emitting insns. */
5067 assign_parms (subr);
5069 /* If function gets a static chain arg, store it. */
5070 if (cfun->static_chain_decl)
5072 tree parm = cfun->static_chain_decl;
5073 rtx local, chain, insn;
5075 local = gen_reg_rtx (Pmode);
5076 chain = targetm.calls.static_chain (current_function_decl, true);
5078 set_decl_incoming_rtl (parm, chain, false);
5079 SET_DECL_RTL (parm, local);
5080 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5082 insn = emit_move_insn (local, chain);
5084 /* Mark the register as eliminable, similar to parameters. */
5085 if (MEM_P (chain)
5086 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5087 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5089 /* If we aren't optimizing, save the static chain onto the stack. */
5090 if (!optimize)
5092 tree saved_static_chain_decl
5093 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5094 DECL_NAME (parm), TREE_TYPE (parm));
5095 rtx saved_static_chain_rtx
5096 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5097 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5098 emit_move_insn (saved_static_chain_rtx, chain);
5099 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5100 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5104 /* If the function receives a non-local goto, then store the
5105 bits we need to restore the frame pointer. */
5106 if (cfun->nonlocal_goto_save_area)
5108 tree t_save;
5109 rtx r_save;
5111 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5112 gcc_assert (DECL_RTL_SET_P (var));
5114 t_save = build4 (ARRAY_REF,
5115 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5116 cfun->nonlocal_goto_save_area,
5117 integer_zero_node, NULL_TREE, NULL_TREE);
5118 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5119 gcc_assert (GET_MODE (r_save) == Pmode);
5121 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
5122 update_nonlocal_goto_save_area ();
5125 /* The following was moved from init_function_start.
5126 The move is supposed to make sdb output more accurate. */
5127 /* Indicate the beginning of the function body,
5128 as opposed to parm setup. */
5129 emit_note (NOTE_INSN_FUNCTION_BEG);
5131 gcc_assert (NOTE_P (get_last_insn ()));
5133 parm_birth_insn = get_last_insn ();
5135 if (crtl->profile)
5137 #ifdef PROFILE_HOOK
5138 PROFILE_HOOK (current_function_funcdef_no);
5139 #endif
5142 /* If we are doing generic stack checking, the probe should go here. */
5143 if (flag_stack_check == GENERIC_STACK_CHECK)
5144 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5147 /* Undo the effects of init_dummy_function_start. */
5148 void
5149 expand_dummy_function_end (void)
5151 gcc_assert (in_dummy_function);
5153 /* End any sequences that failed to be closed due to syntax errors. */
5154 while (in_sequence_p ())
5155 end_sequence ();
5157 /* Outside function body, can't compute type's actual size
5158 until next function's body starts. */
5160 free_after_parsing (cfun);
5161 free_after_compilation (cfun);
5162 pop_cfun ();
5163 in_dummy_function = false;
5166 /* Helper for diddle_return_value. */
5168 void
5169 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5171 if (! outgoing)
5172 return;
5174 if (REG_P (outgoing))
5175 (*doit) (outgoing, arg);
5176 else if (GET_CODE (outgoing) == PARALLEL)
5178 int i;
5180 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5182 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5184 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5185 (*doit) (x, arg);
5190 /* Call DOIT for each hard register used as a return value from
5191 the current function. */
5193 void
5194 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5196 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5197 diddle_return_value_1 (doit, arg, crtl->return_bnd);
5200 static void
5201 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5203 emit_clobber (reg);
5206 void
5207 clobber_return_register (void)
5209 diddle_return_value (do_clobber_return_reg, NULL);
5211 /* In case we do use pseudo to return value, clobber it too. */
5212 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5214 tree decl_result = DECL_RESULT (current_function_decl);
5215 rtx decl_rtl = DECL_RTL (decl_result);
5216 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5218 do_clobber_return_reg (decl_rtl, NULL);
5223 static void
5224 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5226 emit_use (reg);
5229 static void
5230 use_return_register (void)
5232 diddle_return_value (do_use_return_reg, NULL);
5235 /* Possibly warn about unused parameters. */
5236 void
5237 do_warn_unused_parameter (tree fn)
5239 tree decl;
5241 for (decl = DECL_ARGUMENTS (fn);
5242 decl; decl = DECL_CHAIN (decl))
5243 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
5244 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
5245 && !TREE_NO_WARNING (decl))
5246 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
5249 /* Set the location of the insn chain starting at INSN to LOC. */
5251 static void
5252 set_insn_locations (rtx_insn *insn, int loc)
5254 while (insn != NULL)
5256 if (INSN_P (insn))
5257 INSN_LOCATION (insn) = loc;
5258 insn = NEXT_INSN (insn);
5262 /* Generate RTL for the end of the current function. */
5264 void
5265 expand_function_end (void)
5267 rtx clobber_after;
5269 /* If arg_pointer_save_area was referenced only from a nested
5270 function, we will not have initialized it yet. Do that now. */
5271 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5272 get_arg_pointer_save_area ();
5274 /* If we are doing generic stack checking and this function makes calls,
5275 do a stack probe at the start of the function to ensure we have enough
5276 space for another stack frame. */
5277 if (flag_stack_check == GENERIC_STACK_CHECK)
5279 rtx_insn *insn, *seq;
5281 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5282 if (CALL_P (insn))
5284 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5285 start_sequence ();
5286 if (STACK_CHECK_MOVING_SP)
5287 anti_adjust_stack_and_probe (max_frame_size, true);
5288 else
5289 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5290 seq = get_insns ();
5291 end_sequence ();
5292 set_insn_locations (seq, prologue_location);
5293 emit_insn_before (seq, stack_check_probe_note);
5294 break;
5298 /* End any sequences that failed to be closed due to syntax errors. */
5299 while (in_sequence_p ())
5300 end_sequence ();
5302 clear_pending_stack_adjust ();
5303 do_pending_stack_adjust ();
5305 /* Output a linenumber for the end of the function.
5306 SDB depends on this. */
5307 set_curr_insn_location (input_location);
5309 /* Before the return label (if any), clobber the return
5310 registers so that they are not propagated live to the rest of
5311 the function. This can only happen with functions that drop
5312 through; if there had been a return statement, there would
5313 have either been a return rtx, or a jump to the return label.
5315 We delay actual code generation after the current_function_value_rtx
5316 is computed. */
5317 clobber_after = get_last_insn ();
5319 /* Output the label for the actual return from the function. */
5320 emit_label (return_label);
5322 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5324 /* Let except.c know where it should emit the call to unregister
5325 the function context for sjlj exceptions. */
5326 if (flag_exceptions)
5327 sjlj_emit_function_exit_after (get_last_insn ());
5329 else
5331 /* We want to ensure that instructions that may trap are not
5332 moved into the epilogue by scheduling, because we don't
5333 always emit unwind information for the epilogue. */
5334 if (cfun->can_throw_non_call_exceptions)
5335 emit_insn (gen_blockage ());
5338 /* If this is an implementation of throw, do what's necessary to
5339 communicate between __builtin_eh_return and the epilogue. */
5340 expand_eh_return ();
5342 /* If scalar return value was computed in a pseudo-reg, or was a named
5343 return value that got dumped to the stack, copy that to the hard
5344 return register. */
5345 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5347 tree decl_result = DECL_RESULT (current_function_decl);
5348 rtx decl_rtl = DECL_RTL (decl_result);
5350 if (REG_P (decl_rtl)
5351 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5352 : DECL_REGISTER (decl_result))
5354 rtx real_decl_rtl = crtl->return_rtx;
5356 /* This should be set in assign_parms. */
5357 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5359 /* If this is a BLKmode structure being returned in registers,
5360 then use the mode computed in expand_return. Note that if
5361 decl_rtl is memory, then its mode may have been changed,
5362 but that crtl->return_rtx has not. */
5363 if (GET_MODE (real_decl_rtl) == BLKmode)
5364 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5366 /* If a non-BLKmode return value should be padded at the least
5367 significant end of the register, shift it left by the appropriate
5368 amount. BLKmode results are handled using the group load/store
5369 machinery. */
5370 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5371 && REG_P (real_decl_rtl)
5372 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5374 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5375 REGNO (real_decl_rtl)),
5376 decl_rtl);
5377 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5379 /* If a named return value dumped decl_return to memory, then
5380 we may need to re-do the PROMOTE_MODE signed/unsigned
5381 extension. */
5382 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5384 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5385 promote_function_mode (TREE_TYPE (decl_result),
5386 GET_MODE (decl_rtl), &unsignedp,
5387 TREE_TYPE (current_function_decl), 1);
5389 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5391 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5393 /* If expand_function_start has created a PARALLEL for decl_rtl,
5394 move the result to the real return registers. Otherwise, do
5395 a group load from decl_rtl for a named return. */
5396 if (GET_CODE (decl_rtl) == PARALLEL)
5397 emit_group_move (real_decl_rtl, decl_rtl);
5398 else
5399 emit_group_load (real_decl_rtl, decl_rtl,
5400 TREE_TYPE (decl_result),
5401 int_size_in_bytes (TREE_TYPE (decl_result)));
5403 /* In the case of complex integer modes smaller than a word, we'll
5404 need to generate some non-trivial bitfield insertions. Do that
5405 on a pseudo and not the hard register. */
5406 else if (GET_CODE (decl_rtl) == CONCAT
5407 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5408 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5410 int old_generating_concat_p;
5411 rtx tmp;
5413 old_generating_concat_p = generating_concat_p;
5414 generating_concat_p = 0;
5415 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5416 generating_concat_p = old_generating_concat_p;
5418 emit_move_insn (tmp, decl_rtl);
5419 emit_move_insn (real_decl_rtl, tmp);
5421 else
5422 emit_move_insn (real_decl_rtl, decl_rtl);
5426 /* If returning a structure, arrange to return the address of the value
5427 in a place where debuggers expect to find it.
5429 If returning a structure PCC style,
5430 the caller also depends on this value.
5431 And cfun->returns_pcc_struct is not necessarily set. */
5432 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5433 && !targetm.calls.omit_struct_return_reg)
5435 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5436 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5437 rtx outgoing;
5439 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5440 type = TREE_TYPE (type);
5441 else
5442 value_address = XEXP (value_address, 0);
5444 outgoing = targetm.calls.function_value (build_pointer_type (type),
5445 current_function_decl, true);
5447 /* Mark this as a function return value so integrate will delete the
5448 assignment and USE below when inlining this function. */
5449 REG_FUNCTION_VALUE_P (outgoing) = 1;
5451 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5452 value_address = convert_memory_address (GET_MODE (outgoing),
5453 value_address);
5455 emit_move_insn (outgoing, value_address);
5457 /* Show return register used to hold result (in this case the address
5458 of the result. */
5459 crtl->return_rtx = outgoing;
5462 /* Emit the actual code to clobber return register. Don't emit
5463 it if clobber_after is a barrier, then the previous basic block
5464 certainly doesn't fall thru into the exit block. */
5465 if (!BARRIER_P (clobber_after))
5467 rtx seq;
5469 start_sequence ();
5470 clobber_return_register ();
5471 seq = get_insns ();
5472 end_sequence ();
5474 emit_insn_after (seq, clobber_after);
5477 /* Output the label for the naked return from the function. */
5478 if (naked_return_label)
5479 emit_label (naked_return_label);
5481 /* @@@ This is a kludge. We want to ensure that instructions that
5482 may trap are not moved into the epilogue by scheduling, because
5483 we don't always emit unwind information for the epilogue. */
5484 if (cfun->can_throw_non_call_exceptions
5485 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5486 emit_insn (gen_blockage ());
5488 /* If stack protection is enabled for this function, check the guard. */
5489 if (crtl->stack_protect_guard)
5490 stack_protect_epilogue ();
5492 /* If we had calls to alloca, and this machine needs
5493 an accurate stack pointer to exit the function,
5494 insert some code to save and restore the stack pointer. */
5495 if (! EXIT_IGNORE_STACK
5496 && cfun->calls_alloca)
5498 rtx tem = 0, seq;
5500 start_sequence ();
5501 emit_stack_save (SAVE_FUNCTION, &tem);
5502 seq = get_insns ();
5503 end_sequence ();
5504 emit_insn_before (seq, parm_birth_insn);
5506 emit_stack_restore (SAVE_FUNCTION, tem);
5509 /* ??? This should no longer be necessary since stupid is no longer with
5510 us, but there are some parts of the compiler (eg reload_combine, and
5511 sh mach_dep_reorg) that still try and compute their own lifetime info
5512 instead of using the general framework. */
5513 use_return_register ();
5517 get_arg_pointer_save_area (void)
5519 rtx ret = arg_pointer_save_area;
5521 if (! ret)
5523 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5524 arg_pointer_save_area = ret;
5527 if (! crtl->arg_pointer_save_area_init)
5529 rtx seq;
5531 /* Save the arg pointer at the beginning of the function. The
5532 generated stack slot may not be a valid memory address, so we
5533 have to check it and fix it if necessary. */
5534 start_sequence ();
5535 emit_move_insn (validize_mem (copy_rtx (ret)),
5536 crtl->args.internal_arg_pointer);
5537 seq = get_insns ();
5538 end_sequence ();
5540 push_topmost_sequence ();
5541 emit_insn_after (seq, entry_of_function ());
5542 pop_topmost_sequence ();
5544 crtl->arg_pointer_save_area_init = true;
5547 return ret;
5550 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5551 for the first time. */
5553 static void
5554 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5556 rtx_insn *tmp;
5557 hash_table<insn_cache_hasher> *hash = *hashp;
5559 if (hash == NULL)
5560 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5562 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5564 rtx *slot = hash->find_slot (tmp, INSERT);
5565 gcc_assert (*slot == NULL);
5566 *slot = tmp;
5570 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5571 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5572 insn, then record COPY as well. */
5574 void
5575 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5577 hash_table<insn_cache_hasher> *hash;
5578 rtx *slot;
5580 hash = epilogue_insn_hash;
5581 if (!hash || !hash->find (insn))
5583 hash = prologue_insn_hash;
5584 if (!hash || !hash->find (insn))
5585 return;
5588 slot = hash->find_slot (copy, INSERT);
5589 gcc_assert (*slot == NULL);
5590 *slot = copy;
5593 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5594 we can be running after reorg, SEQUENCE rtl is possible. */
5596 static bool
5597 contains (const_rtx insn, hash_table<insn_cache_hasher> *hash)
5599 if (hash == NULL)
5600 return false;
5602 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5604 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5605 int i;
5606 for (i = seq->len () - 1; i >= 0; i--)
5607 if (hash->find (seq->element (i)))
5608 return true;
5609 return false;
5612 return hash->find (const_cast<rtx> (insn)) != NULL;
5616 prologue_epilogue_contains (const_rtx insn)
5618 if (contains (insn, prologue_insn_hash))
5619 return 1;
5620 if (contains (insn, epilogue_insn_hash))
5621 return 1;
5622 return 0;
5625 #ifdef HAVE_return
5626 /* Insert use of return register before the end of BB. */
5628 static void
5629 emit_use_return_register_into_block (basic_block bb)
5631 rtx seq, insn;
5632 start_sequence ();
5633 use_return_register ();
5634 seq = get_insns ();
5635 end_sequence ();
5636 insn = BB_END (bb);
5637 #ifdef HAVE_cc0
5638 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5639 insn = prev_cc0_setter (insn);
5640 #endif
5641 emit_insn_before (seq, insn);
5645 /* Create a return pattern, either simple_return or return, depending on
5646 simple_p. */
5648 static rtx
5649 gen_return_pattern (bool simple_p)
5651 #ifdef HAVE_simple_return
5652 return simple_p ? gen_simple_return () : gen_return ();
5653 #else
5654 gcc_assert (!simple_p);
5655 return gen_return ();
5656 #endif
5659 /* Insert an appropriate return pattern at the end of block BB. This
5660 also means updating block_for_insn appropriately. SIMPLE_P is
5661 the same as in gen_return_pattern and passed to it. */
5663 void
5664 emit_return_into_block (bool simple_p, basic_block bb)
5666 rtx jump, pat;
5667 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5668 pat = PATTERN (jump);
5669 if (GET_CODE (pat) == PARALLEL)
5670 pat = XVECEXP (pat, 0, 0);
5671 gcc_assert (ANY_RETURN_P (pat));
5672 JUMP_LABEL (jump) = pat;
5674 #endif
5676 /* Set JUMP_LABEL for a return insn. */
5678 void
5679 set_return_jump_label (rtx returnjump)
5681 rtx pat = PATTERN (returnjump);
5682 if (GET_CODE (pat) == PARALLEL)
5683 pat = XVECEXP (pat, 0, 0);
5684 if (ANY_RETURN_P (pat))
5685 JUMP_LABEL (returnjump) = pat;
5686 else
5687 JUMP_LABEL (returnjump) = ret_rtx;
5690 #if defined (HAVE_return) || defined (HAVE_simple_return)
5691 /* Return true if there are any active insns between HEAD and TAIL. */
5692 bool
5693 active_insn_between (rtx_insn *head, rtx_insn *tail)
5695 while (tail)
5697 if (active_insn_p (tail))
5698 return true;
5699 if (tail == head)
5700 return false;
5701 tail = PREV_INSN (tail);
5703 return false;
5706 /* LAST_BB is a block that exits, and empty of active instructions.
5707 Examine its predecessors for jumps that can be converted to
5708 (conditional) returns. */
5709 vec<edge>
5710 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5711 vec<edge> unconverted ATTRIBUTE_UNUSED)
5713 int i;
5714 basic_block bb;
5715 rtx label;
5716 edge_iterator ei;
5717 edge e;
5718 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5720 FOR_EACH_EDGE (e, ei, last_bb->preds)
5721 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5722 src_bbs.quick_push (e->src);
5724 label = BB_HEAD (last_bb);
5726 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5728 rtx_insn *jump = BB_END (bb);
5730 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5731 continue;
5733 e = find_edge (bb, last_bb);
5735 /* If we have an unconditional jump, we can replace that
5736 with a simple return instruction. */
5737 if (simplejump_p (jump))
5739 /* The use of the return register might be present in the exit
5740 fallthru block. Either:
5741 - removing the use is safe, and we should remove the use in
5742 the exit fallthru block, or
5743 - removing the use is not safe, and we should add it here.
5744 For now, we conservatively choose the latter. Either of the
5745 2 helps in crossjumping. */
5746 emit_use_return_register_into_block (bb);
5748 emit_return_into_block (simple_p, bb);
5749 delete_insn (jump);
5752 /* If we have a conditional jump branching to the last
5753 block, we can try to replace that with a conditional
5754 return instruction. */
5755 else if (condjump_p (jump))
5757 rtx dest;
5759 if (simple_p)
5760 dest = simple_return_rtx;
5761 else
5762 dest = ret_rtx;
5763 if (!redirect_jump (jump, dest, 0))
5765 #ifdef HAVE_simple_return
5766 if (simple_p)
5768 if (dump_file)
5769 fprintf (dump_file,
5770 "Failed to redirect bb %d branch.\n", bb->index);
5771 unconverted.safe_push (e);
5773 #endif
5774 continue;
5777 /* See comment in simplejump_p case above. */
5778 emit_use_return_register_into_block (bb);
5780 /* If this block has only one successor, it both jumps
5781 and falls through to the fallthru block, so we can't
5782 delete the edge. */
5783 if (single_succ_p (bb))
5784 continue;
5786 else
5788 #ifdef HAVE_simple_return
5789 if (simple_p)
5791 if (dump_file)
5792 fprintf (dump_file,
5793 "Failed to redirect bb %d branch.\n", bb->index);
5794 unconverted.safe_push (e);
5796 #endif
5797 continue;
5800 /* Fix up the CFG for the successful change we just made. */
5801 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5802 e->flags &= ~EDGE_CROSSING;
5804 src_bbs.release ();
5805 return unconverted;
5808 /* Emit a return insn for the exit fallthru block. */
5809 basic_block
5810 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5812 basic_block last_bb = exit_fallthru_edge->src;
5814 if (JUMP_P (BB_END (last_bb)))
5816 last_bb = split_edge (exit_fallthru_edge);
5817 exit_fallthru_edge = single_succ_edge (last_bb);
5819 emit_barrier_after (BB_END (last_bb));
5820 emit_return_into_block (simple_p, last_bb);
5821 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5822 return last_bb;
5824 #endif
5827 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5828 this into place with notes indicating where the prologue ends and where
5829 the epilogue begins. Update the basic block information when possible.
5831 Notes on epilogue placement:
5832 There are several kinds of edges to the exit block:
5833 * a single fallthru edge from LAST_BB
5834 * possibly, edges from blocks containing sibcalls
5835 * possibly, fake edges from infinite loops
5837 The epilogue is always emitted on the fallthru edge from the last basic
5838 block in the function, LAST_BB, into the exit block.
5840 If LAST_BB is empty except for a label, it is the target of every
5841 other basic block in the function that ends in a return. If a
5842 target has a return or simple_return pattern (possibly with
5843 conditional variants), these basic blocks can be changed so that a
5844 return insn is emitted into them, and their target is adjusted to
5845 the real exit block.
5847 Notes on shrink wrapping: We implement a fairly conservative
5848 version of shrink-wrapping rather than the textbook one. We only
5849 generate a single prologue and a single epilogue. This is
5850 sufficient to catch a number of interesting cases involving early
5851 exits.
5853 First, we identify the blocks that require the prologue to occur before
5854 them. These are the ones that modify a call-saved register, or reference
5855 any of the stack or frame pointer registers. To simplify things, we then
5856 mark everything reachable from these blocks as also requiring a prologue.
5857 This takes care of loops automatically, and avoids the need to examine
5858 whether MEMs reference the frame, since it is sufficient to check for
5859 occurrences of the stack or frame pointer.
5861 We then compute the set of blocks for which the need for a prologue
5862 is anticipatable (borrowing terminology from the shrink-wrapping
5863 description in Muchnick's book). These are the blocks which either
5864 require a prologue themselves, or those that have only successors
5865 where the prologue is anticipatable. The prologue needs to be
5866 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5867 is not. For the moment, we ensure that only one such edge exists.
5869 The epilogue is placed as described above, but we make a
5870 distinction between inserting return and simple_return patterns
5871 when modifying other blocks that end in a return. Blocks that end
5872 in a sibcall omit the sibcall_epilogue if the block is not in
5873 ANTIC. */
5875 void
5876 thread_prologue_and_epilogue_insns (void)
5878 bool inserted;
5879 #ifdef HAVE_simple_return
5880 vec<edge> unconverted_simple_returns = vNULL;
5881 bitmap_head bb_flags;
5882 #endif
5883 rtx_insn *returnjump;
5884 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
5885 rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED;
5886 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5887 edge_iterator ei;
5889 df_analyze ();
5891 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5893 inserted = false;
5894 epilogue_end = NULL;
5895 returnjump = NULL;
5897 /* Can't deal with multiple successors of the entry block at the
5898 moment. Function should always have at least one entry
5899 point. */
5900 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5901 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5902 orig_entry_edge = entry_edge;
5904 split_prologue_seq = NULL;
5905 if (flag_split_stack
5906 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5907 == NULL))
5909 #ifndef HAVE_split_stack_prologue
5910 gcc_unreachable ();
5911 #else
5912 gcc_assert (HAVE_split_stack_prologue);
5914 start_sequence ();
5915 emit_insn (gen_split_stack_prologue ());
5916 split_prologue_seq = get_insns ();
5917 end_sequence ();
5919 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5920 set_insn_locations (split_prologue_seq, prologue_location);
5921 #endif
5924 prologue_seq = NULL;
5925 #ifdef HAVE_prologue
5926 if (HAVE_prologue)
5928 start_sequence ();
5929 rtx_insn *seq = safe_as_a <rtx_insn *> (gen_prologue ());
5930 emit_insn (seq);
5932 /* Insert an explicit USE for the frame pointer
5933 if the profiling is on and the frame pointer is required. */
5934 if (crtl->profile && frame_pointer_needed)
5935 emit_use (hard_frame_pointer_rtx);
5937 /* Retain a map of the prologue insns. */
5938 record_insns (seq, NULL, &prologue_insn_hash);
5939 emit_note (NOTE_INSN_PROLOGUE_END);
5941 /* Ensure that instructions are not moved into the prologue when
5942 profiling is on. The call to the profiling routine can be
5943 emitted within the live range of a call-clobbered register. */
5944 if (!targetm.profile_before_prologue () && crtl->profile)
5945 emit_insn (gen_blockage ());
5947 prologue_seq = get_insns ();
5948 end_sequence ();
5949 set_insn_locations (prologue_seq, prologue_location);
5951 #endif
5953 #ifdef HAVE_simple_return
5954 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5956 /* Try to perform a kind of shrink-wrapping, making sure the
5957 prologue/epilogue is emitted only around those parts of the
5958 function that require it. */
5960 try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq);
5961 #endif
5963 if (split_prologue_seq != NULL_RTX)
5965 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5966 inserted = true;
5968 if (prologue_seq != NULL_RTX)
5970 insert_insn_on_edge (prologue_seq, entry_edge);
5971 inserted = true;
5974 /* If the exit block has no non-fake predecessors, we don't need
5975 an epilogue. */
5976 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5977 if ((e->flags & EDGE_FAKE) == 0)
5978 break;
5979 if (e == NULL)
5980 goto epilogue_done;
5982 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5984 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5986 #ifdef HAVE_simple_return
5987 if (entry_edge != orig_entry_edge)
5988 exit_fallthru_edge
5989 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
5990 &unconverted_simple_returns,
5991 &returnjump);
5992 #endif
5993 #ifdef HAVE_return
5994 if (HAVE_return)
5996 if (exit_fallthru_edge == NULL)
5997 goto epilogue_done;
5999 if (optimize)
6001 basic_block last_bb = exit_fallthru_edge->src;
6003 if (LABEL_P (BB_HEAD (last_bb))
6004 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6005 convert_jumps_to_returns (last_bb, false, vNULL);
6007 if (EDGE_COUNT (last_bb->preds) != 0
6008 && single_succ_p (last_bb))
6010 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6011 epilogue_end = returnjump = BB_END (last_bb);
6012 #ifdef HAVE_simple_return
6013 /* Emitting the return may add a basic block.
6014 Fix bb_flags for the added block. */
6015 if (last_bb != exit_fallthru_edge->src)
6016 bitmap_set_bit (&bb_flags, last_bb->index);
6017 #endif
6018 goto epilogue_done;
6022 #endif
6024 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6025 this marker for the splits of EH_RETURN patterns, and nothing else
6026 uses the flag in the meantime. */
6027 epilogue_completed = 1;
6029 #ifdef HAVE_eh_return
6030 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6031 some targets, these get split to a special version of the epilogue
6032 code. In order to be able to properly annotate these with unwind
6033 info, try to split them now. If we get a valid split, drop an
6034 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6035 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6037 rtx_insn *prev, *last, *trial;
6039 if (e->flags & EDGE_FALLTHRU)
6040 continue;
6041 last = BB_END (e->src);
6042 if (!eh_returnjump_p (last))
6043 continue;
6045 prev = PREV_INSN (last);
6046 trial = try_split (PATTERN (last), last, 1);
6047 if (trial == last)
6048 continue;
6050 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6051 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6053 #endif
6055 /* If nothing falls through into the exit block, we don't need an
6056 epilogue. */
6058 if (exit_fallthru_edge == NULL)
6059 goto epilogue_done;
6061 #ifdef HAVE_epilogue
6062 if (HAVE_epilogue)
6064 start_sequence ();
6065 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6066 rtx_insn *seq = as_a <rtx_insn *> (gen_epilogue ());
6067 if (seq)
6068 emit_jump_insn (seq);
6070 /* Retain a map of the epilogue insns. */
6071 record_insns (seq, NULL, &epilogue_insn_hash);
6072 set_insn_locations (seq, epilogue_location);
6074 seq = get_insns ();
6075 returnjump = get_last_insn ();
6076 end_sequence ();
6078 insert_insn_on_edge (seq, exit_fallthru_edge);
6079 inserted = true;
6081 if (JUMP_P (returnjump))
6082 set_return_jump_label (returnjump);
6084 else
6085 #endif
6087 basic_block cur_bb;
6089 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6090 goto epilogue_done;
6091 /* We have a fall-through edge to the exit block, the source is not
6092 at the end of the function, and there will be an assembler epilogue
6093 at the end of the function.
6094 We can't use force_nonfallthru here, because that would try to
6095 use return. Inserting a jump 'by hand' is extremely messy, so
6096 we take advantage of cfg_layout_finalize using
6097 fixup_fallthru_exit_predecessor. */
6098 cfg_layout_initialize (0);
6099 FOR_EACH_BB_FN (cur_bb, cfun)
6100 if (cur_bb->index >= NUM_FIXED_BLOCKS
6101 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6102 cur_bb->aux = cur_bb->next_bb;
6103 cfg_layout_finalize ();
6106 epilogue_done:
6108 default_rtl_profile ();
6110 if (inserted)
6112 sbitmap blocks;
6114 commit_edge_insertions ();
6116 /* Look for basic blocks within the prologue insns. */
6117 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6118 bitmap_clear (blocks);
6119 bitmap_set_bit (blocks, entry_edge->dest->index);
6120 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6121 find_many_sub_basic_blocks (blocks);
6122 sbitmap_free (blocks);
6124 /* The epilogue insns we inserted may cause the exit edge to no longer
6125 be fallthru. */
6126 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6128 if (((e->flags & EDGE_FALLTHRU) != 0)
6129 && returnjump_p (BB_END (e->src)))
6130 e->flags &= ~EDGE_FALLTHRU;
6134 #ifdef HAVE_simple_return
6135 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags, returnjump,
6136 unconverted_simple_returns);
6137 #endif
6139 #ifdef HAVE_sibcall_epilogue
6140 /* Emit sibling epilogues before any sibling call sites. */
6141 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
6142 ei_safe_edge (ei));
6145 basic_block bb = e->src;
6146 rtx_insn *insn = BB_END (bb);
6147 rtx ep_seq;
6149 if (!CALL_P (insn)
6150 || ! SIBLING_CALL_P (insn)
6151 #ifdef HAVE_simple_return
6152 || (entry_edge != orig_entry_edge
6153 && !bitmap_bit_p (&bb_flags, bb->index))
6154 #endif
6157 ei_next (&ei);
6158 continue;
6161 ep_seq = gen_sibcall_epilogue ();
6162 if (ep_seq)
6164 start_sequence ();
6165 emit_note (NOTE_INSN_EPILOGUE_BEG);
6166 emit_insn (ep_seq);
6167 rtx_insn *seq = get_insns ();
6168 end_sequence ();
6170 /* Retain a map of the epilogue insns. Used in life analysis to
6171 avoid getting rid of sibcall epilogue insns. Do this before we
6172 actually emit the sequence. */
6173 record_insns (seq, NULL, &epilogue_insn_hash);
6174 set_insn_locations (seq, epilogue_location);
6176 emit_insn_before (seq, insn);
6178 ei_next (&ei);
6180 #endif
6182 #ifdef HAVE_epilogue
6183 if (epilogue_end)
6185 rtx_insn *insn, *next;
6187 /* Similarly, move any line notes that appear after the epilogue.
6188 There is no need, however, to be quite so anal about the existence
6189 of such a note. Also possibly move
6190 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6191 info generation. */
6192 for (insn = epilogue_end; insn; insn = next)
6194 next = NEXT_INSN (insn);
6195 if (NOTE_P (insn)
6196 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6197 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6200 #endif
6202 #ifdef HAVE_simple_return
6203 bitmap_clear (&bb_flags);
6204 #endif
6206 /* Threading the prologue and epilogue changes the artificial refs
6207 in the entry and exit blocks. */
6208 epilogue_completed = 1;
6209 df_update_entry_exit_and_calls ();
6212 /* Reposition the prologue-end and epilogue-begin notes after
6213 instruction scheduling. */
6215 void
6216 reposition_prologue_and_epilogue_notes (void)
6218 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6219 || defined (HAVE_sibcall_epilogue)
6220 /* Since the hash table is created on demand, the fact that it is
6221 non-null is a signal that it is non-empty. */
6222 if (prologue_insn_hash != NULL)
6224 size_t len = prologue_insn_hash->elements ();
6225 rtx_insn *insn, *last = NULL, *note = NULL;
6227 /* Scan from the beginning until we reach the last prologue insn. */
6228 /* ??? While we do have the CFG intact, there are two problems:
6229 (1) The prologue can contain loops (typically probing the stack),
6230 which means that the end of the prologue isn't in the first bb.
6231 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6232 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6234 if (NOTE_P (insn))
6236 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6237 note = insn;
6239 else if (contains (insn, prologue_insn_hash))
6241 last = insn;
6242 if (--len == 0)
6243 break;
6247 if (last)
6249 if (note == NULL)
6251 /* Scan forward looking for the PROLOGUE_END note. It should
6252 be right at the beginning of the block, possibly with other
6253 insn notes that got moved there. */
6254 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6256 if (NOTE_P (note)
6257 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6258 break;
6262 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6263 if (LABEL_P (last))
6264 last = NEXT_INSN (last);
6265 reorder_insns (note, note, last);
6269 if (epilogue_insn_hash != NULL)
6271 edge_iterator ei;
6272 edge e;
6274 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6276 rtx_insn *insn, *first = NULL, *note = NULL;
6277 basic_block bb = e->src;
6279 /* Scan from the beginning until we reach the first epilogue insn. */
6280 FOR_BB_INSNS (bb, insn)
6282 if (NOTE_P (insn))
6284 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6286 note = insn;
6287 if (first != NULL)
6288 break;
6291 else if (first == NULL && contains (insn, epilogue_insn_hash))
6293 first = insn;
6294 if (note != NULL)
6295 break;
6299 if (note)
6301 /* If the function has a single basic block, and no real
6302 epilogue insns (e.g. sibcall with no cleanup), the
6303 epilogue note can get scheduled before the prologue
6304 note. If we have frame related prologue insns, having
6305 them scanned during the epilogue will result in a crash.
6306 In this case re-order the epilogue note to just before
6307 the last insn in the block. */
6308 if (first == NULL)
6309 first = BB_END (bb);
6311 if (PREV_INSN (first) != note)
6312 reorder_insns (note, note, PREV_INSN (first));
6316 #endif /* HAVE_prologue or HAVE_epilogue */
6319 /* Returns the name of function declared by FNDECL. */
6320 const char *
6321 fndecl_name (tree fndecl)
6323 if (fndecl == NULL)
6324 return "(nofn)";
6325 return lang_hooks.decl_printable_name (fndecl, 2);
6328 /* Returns the name of function FN. */
6329 const char *
6330 function_name (struct function *fn)
6332 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6333 return fndecl_name (fndecl);
6336 /* Returns the name of the current function. */
6337 const char *
6338 current_function_name (void)
6340 return function_name (cfun);
6344 static unsigned int
6345 rest_of_handle_check_leaf_regs (void)
6347 #ifdef LEAF_REGISTERS
6348 crtl->uses_only_leaf_regs
6349 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6350 #endif
6351 return 0;
6354 /* Insert a TYPE into the used types hash table of CFUN. */
6356 static void
6357 used_types_insert_helper (tree type, struct function *func)
6359 if (type != NULL && func != NULL)
6361 if (func->used_types_hash == NULL)
6362 func->used_types_hash = hash_set<tree>::create_ggc (37);
6364 func->used_types_hash->add (type);
6368 /* Given a type, insert it into the used hash table in cfun. */
6369 void
6370 used_types_insert (tree t)
6372 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6373 if (TYPE_NAME (t))
6374 break;
6375 else
6376 t = TREE_TYPE (t);
6377 if (TREE_CODE (t) == ERROR_MARK)
6378 return;
6379 if (TYPE_NAME (t) == NULL_TREE
6380 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6381 t = TYPE_MAIN_VARIANT (t);
6382 if (debug_info_level > DINFO_LEVEL_NONE)
6384 if (cfun)
6385 used_types_insert_helper (t, cfun);
6386 else
6388 /* So this might be a type referenced by a global variable.
6389 Record that type so that we can later decide to emit its
6390 debug information. */
6391 vec_safe_push (types_used_by_cur_var_decl, t);
6396 /* Helper to Hash a struct types_used_by_vars_entry. */
6398 static hashval_t
6399 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6401 gcc_assert (entry && entry->var_decl && entry->type);
6403 return iterative_hash_object (entry->type,
6404 iterative_hash_object (entry->var_decl, 0));
6407 /* Hash function of the types_used_by_vars_entry hash table. */
6409 hashval_t
6410 used_type_hasher::hash (types_used_by_vars_entry *entry)
6412 return hash_types_used_by_vars_entry (entry);
6415 /*Equality function of the types_used_by_vars_entry hash table. */
6417 bool
6418 used_type_hasher::equal (types_used_by_vars_entry *e1,
6419 types_used_by_vars_entry *e2)
6421 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6424 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6426 void
6427 types_used_by_var_decl_insert (tree type, tree var_decl)
6429 if (type != NULL && var_decl != NULL)
6431 types_used_by_vars_entry **slot;
6432 struct types_used_by_vars_entry e;
6433 e.var_decl = var_decl;
6434 e.type = type;
6435 if (types_used_by_vars_hash == NULL)
6436 types_used_by_vars_hash
6437 = hash_table<used_type_hasher>::create_ggc (37);
6439 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6440 if (*slot == NULL)
6442 struct types_used_by_vars_entry *entry;
6443 entry = ggc_alloc<types_used_by_vars_entry> ();
6444 entry->type = type;
6445 entry->var_decl = var_decl;
6446 *slot = entry;
6451 namespace {
6453 const pass_data pass_data_leaf_regs =
6455 RTL_PASS, /* type */
6456 "*leaf_regs", /* name */
6457 OPTGROUP_NONE, /* optinfo_flags */
6458 TV_NONE, /* tv_id */
6459 0, /* properties_required */
6460 0, /* properties_provided */
6461 0, /* properties_destroyed */
6462 0, /* todo_flags_start */
6463 0, /* todo_flags_finish */
6466 class pass_leaf_regs : public rtl_opt_pass
6468 public:
6469 pass_leaf_regs (gcc::context *ctxt)
6470 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6473 /* opt_pass methods: */
6474 virtual unsigned int execute (function *)
6476 return rest_of_handle_check_leaf_regs ();
6479 }; // class pass_leaf_regs
6481 } // anon namespace
6483 rtl_opt_pass *
6484 make_pass_leaf_regs (gcc::context *ctxt)
6486 return new pass_leaf_regs (ctxt);
6489 static unsigned int
6490 rest_of_handle_thread_prologue_and_epilogue (void)
6492 if (optimize)
6493 cleanup_cfg (CLEANUP_EXPENSIVE);
6495 /* On some machines, the prologue and epilogue code, or parts thereof,
6496 can be represented as RTL. Doing so lets us schedule insns between
6497 it and the rest of the code and also allows delayed branch
6498 scheduling to operate in the epilogue. */
6499 thread_prologue_and_epilogue_insns ();
6501 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6502 see PR57320. */
6503 cleanup_cfg (0);
6505 /* The stack usage info is finalized during prologue expansion. */
6506 if (flag_stack_usage_info)
6507 output_stack_usage ();
6509 return 0;
6512 namespace {
6514 const pass_data pass_data_thread_prologue_and_epilogue =
6516 RTL_PASS, /* type */
6517 "pro_and_epilogue", /* name */
6518 OPTGROUP_NONE, /* optinfo_flags */
6519 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6520 0, /* properties_required */
6521 0, /* properties_provided */
6522 0, /* properties_destroyed */
6523 0, /* todo_flags_start */
6524 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6527 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6529 public:
6530 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6531 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6534 /* opt_pass methods: */
6535 virtual unsigned int execute (function *)
6537 return rest_of_handle_thread_prologue_and_epilogue ();
6540 }; // class pass_thread_prologue_and_epilogue
6542 } // anon namespace
6544 rtl_opt_pass *
6545 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6547 return new pass_thread_prologue_and_epilogue (ctxt);
6551 /* This mini-pass fixes fall-out from SSA in asm statements that have
6552 in-out constraints. Say you start with
6554 orig = inout;
6555 asm ("": "+mr" (inout));
6556 use (orig);
6558 which is transformed very early to use explicit output and match operands:
6560 orig = inout;
6561 asm ("": "=mr" (inout) : "0" (inout));
6562 use (orig);
6564 Or, after SSA and copyprop,
6566 asm ("": "=mr" (inout_2) : "0" (inout_1));
6567 use (inout_1);
6569 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6570 they represent two separate values, so they will get different pseudo
6571 registers during expansion. Then, since the two operands need to match
6572 per the constraints, but use different pseudo registers, reload can
6573 only register a reload for these operands. But reloads can only be
6574 satisfied by hardregs, not by memory, so we need a register for this
6575 reload, just because we are presented with non-matching operands.
6576 So, even though we allow memory for this operand, no memory can be
6577 used for it, just because the two operands don't match. This can
6578 cause reload failures on register-starved targets.
6580 So it's a symptom of reload not being able to use memory for reloads
6581 or, alternatively it's also a symptom of both operands not coming into
6582 reload as matching (in which case the pseudo could go to memory just
6583 fine, as the alternative allows it, and no reload would be necessary).
6584 We fix the latter problem here, by transforming
6586 asm ("": "=mr" (inout_2) : "0" (inout_1));
6588 back to
6590 inout_2 = inout_1;
6591 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6593 static void
6594 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6596 int i;
6597 bool changed = false;
6598 rtx op = SET_SRC (p_sets[0]);
6599 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6600 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6601 bool *output_matched = XALLOCAVEC (bool, noutputs);
6603 memset (output_matched, 0, noutputs * sizeof (bool));
6604 for (i = 0; i < ninputs; i++)
6606 rtx input, output;
6607 rtx_insn *insns;
6608 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6609 char *end;
6610 int match, j;
6612 if (*constraint == '%')
6613 constraint++;
6615 match = strtoul (constraint, &end, 10);
6616 if (end == constraint)
6617 continue;
6619 gcc_assert (match < noutputs);
6620 output = SET_DEST (p_sets[match]);
6621 input = RTVEC_ELT (inputs, i);
6622 /* Only do the transformation for pseudos. */
6623 if (! REG_P (output)
6624 || rtx_equal_p (output, input)
6625 || (GET_MODE (input) != VOIDmode
6626 && GET_MODE (input) != GET_MODE (output)))
6627 continue;
6629 /* We can't do anything if the output is also used as input,
6630 as we're going to overwrite it. */
6631 for (j = 0; j < ninputs; j++)
6632 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6633 break;
6634 if (j != ninputs)
6635 continue;
6637 /* Avoid changing the same input several times. For
6638 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6639 only change in once (to out1), rather than changing it
6640 first to out1 and afterwards to out2. */
6641 if (i > 0)
6643 for (j = 0; j < noutputs; j++)
6644 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6645 break;
6646 if (j != noutputs)
6647 continue;
6649 output_matched[match] = true;
6651 start_sequence ();
6652 emit_move_insn (output, input);
6653 insns = get_insns ();
6654 end_sequence ();
6655 emit_insn_before (insns, insn);
6657 /* Now replace all mentions of the input with output. We can't
6658 just replace the occurrence in inputs[i], as the register might
6659 also be used in some other input (or even in an address of an
6660 output), which would mean possibly increasing the number of
6661 inputs by one (namely 'output' in addition), which might pose
6662 a too complicated problem for reload to solve. E.g. this situation:
6664 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6666 Here 'input' is used in two occurrences as input (once for the
6667 input operand, once for the address in the second output operand).
6668 If we would replace only the occurrence of the input operand (to
6669 make the matching) we would be left with this:
6671 output = input
6672 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6674 Now we suddenly have two different input values (containing the same
6675 value, but different pseudos) where we formerly had only one.
6676 With more complicated asms this might lead to reload failures
6677 which wouldn't have happen without this pass. So, iterate over
6678 all operands and replace all occurrences of the register used. */
6679 for (j = 0; j < noutputs; j++)
6680 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6681 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6682 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6683 input, output);
6684 for (j = 0; j < ninputs; j++)
6685 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6686 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6687 input, output);
6689 changed = true;
6692 if (changed)
6693 df_insn_rescan (insn);
6696 /* Add the decl D to the local_decls list of FUN. */
6698 void
6699 add_local_decl (struct function *fun, tree d)
6701 gcc_assert (TREE_CODE (d) == VAR_DECL);
6702 vec_safe_push (fun->local_decls, d);
6705 namespace {
6707 const pass_data pass_data_match_asm_constraints =
6709 RTL_PASS, /* type */
6710 "asmcons", /* name */
6711 OPTGROUP_NONE, /* optinfo_flags */
6712 TV_NONE, /* tv_id */
6713 0, /* properties_required */
6714 0, /* properties_provided */
6715 0, /* properties_destroyed */
6716 0, /* todo_flags_start */
6717 0, /* todo_flags_finish */
6720 class pass_match_asm_constraints : public rtl_opt_pass
6722 public:
6723 pass_match_asm_constraints (gcc::context *ctxt)
6724 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6727 /* opt_pass methods: */
6728 virtual unsigned int execute (function *);
6730 }; // class pass_match_asm_constraints
6732 unsigned
6733 pass_match_asm_constraints::execute (function *fun)
6735 basic_block bb;
6736 rtx_insn *insn;
6737 rtx pat, *p_sets;
6738 int noutputs;
6740 if (!crtl->has_asm_statement)
6741 return 0;
6743 df_set_flags (DF_DEFER_INSN_RESCAN);
6744 FOR_EACH_BB_FN (bb, fun)
6746 FOR_BB_INSNS (bb, insn)
6748 if (!INSN_P (insn))
6749 continue;
6751 pat = PATTERN (insn);
6752 if (GET_CODE (pat) == PARALLEL)
6753 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6754 else if (GET_CODE (pat) == SET)
6755 p_sets = &PATTERN (insn), noutputs = 1;
6756 else
6757 continue;
6759 if (GET_CODE (*p_sets) == SET
6760 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6761 match_asm_constraints_1 (insn, p_sets, noutputs);
6765 return TODO_df_finish;
6768 } // anon namespace
6770 rtl_opt_pass *
6771 make_pass_match_asm_constraints (gcc::context *ctxt)
6773 return new pass_match_asm_constraints (ctxt);
6777 #include "gt-function.h"