* tree-flow-inline.h (op_iter_init): Reject GIMPLE_PHI stmts.
[official-gcc.git] / gcc / sel-sched-ir.c
blobde7629afa06c495fd8c0f89a113f8c9174ffc9cd
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "regs.h"
30 #include "function.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 #include "except.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "sched-int.h"
41 #include "ggc.h"
42 #include "tree.h"
43 #include "vec.h"
44 #include "langhooks.h"
45 #include "rtlhooks-def.h"
46 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
48 #ifdef INSN_SCHEDULING
49 #include "sel-sched-ir.h"
50 /* We don't have to use it except for sel_print_insn. */
51 #include "sel-sched-dump.h"
53 /* A vector holding bb info for whole scheduling pass. */
54 VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
56 /* A vector holding bb info. */
57 VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
59 /* A pool for allocating all lists. */
60 alloc_pool sched_lists_pool;
62 /* This contains information about successors for compute_av_set. */
63 struct succs_info current_succs;
65 /* Data structure to describe interaction with the generic scheduler utils. */
66 static struct common_sched_info_def sel_common_sched_info;
68 /* The loop nest being pipelined. */
69 struct loop *current_loop_nest;
71 /* LOOP_NESTS is a vector containing the corresponding loop nest for
72 each region. */
73 static VEC(loop_p, heap) *loop_nests = NULL;
75 /* Saves blocks already in loop regions, indexed by bb->index. */
76 static sbitmap bbs_in_loop_rgns = NULL;
78 /* CFG hooks that are saved before changing create_basic_block hook. */
79 static struct cfg_hooks orig_cfg_hooks;
82 /* Array containing reverse topological index of function basic blocks,
83 indexed by BB->INDEX. */
84 static int *rev_top_order_index = NULL;
86 /* Length of the above array. */
87 static int rev_top_order_index_len = -1;
89 /* A regset pool structure. */
90 static struct
92 /* The stack to which regsets are returned. */
93 regset *v;
95 /* Its pointer. */
96 int n;
98 /* Its size. */
99 int s;
101 /* In VV we save all generated regsets so that, when destructing the
102 pool, we can compare it with V and check that every regset was returned
103 back to pool. */
104 regset *vv;
106 /* The pointer of VV stack. */
107 int nn;
109 /* Its size. */
110 int ss;
112 /* The difference between allocated and returned regsets. */
113 int diff;
114 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
116 /* This represents the nop pool. */
117 static struct
119 /* The vector which holds previously emitted nops. */
120 insn_t *v;
122 /* Its pointer. */
123 int n;
125 /* Its size. */
126 int s;
127 } nop_pool = { NULL, 0, 0 };
129 /* The pool for basic block notes. */
130 static rtx_vec_t bb_note_pool;
132 /* A NOP pattern used to emit placeholder insns. */
133 rtx nop_pattern = NULL_RTX;
134 /* A special instruction that resides in EXIT_BLOCK.
135 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
136 rtx exit_insn = NULL_RTX;
138 /* TRUE if while scheduling current region, which is loop, its preheader
139 was removed. */
140 bool preheader_removed = false;
143 /* Forward static declarations. */
144 static void fence_clear (fence_t);
146 static void deps_init_id (idata_t, insn_t, bool);
147 static void init_id_from_df (idata_t, insn_t, bool);
148 static expr_t set_insn_init (expr_t, vinsn_t, int);
150 static void cfg_preds (basic_block, insn_t **, int *);
151 static void prepare_insn_expr (insn_t, int);
152 static void free_history_vect (VEC (expr_history_def, heap) **);
154 static void move_bb_info (basic_block, basic_block);
155 static void remove_empty_bb (basic_block, bool);
156 static void sel_merge_blocks (basic_block, basic_block);
157 static void sel_remove_loop_preheader (void);
158 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
160 static bool insn_is_the_only_one_in_bb_p (insn_t);
161 static void create_initial_data_sets (basic_block);
163 static void free_av_set (basic_block);
164 static void invalidate_av_set (basic_block);
165 static void extend_insn_data (void);
166 static void sel_init_new_insn (insn_t, int);
167 static void finish_insns (void);
169 /* Various list functions. */
171 /* Copy an instruction list L. */
172 ilist_t
173 ilist_copy (ilist_t l)
175 ilist_t head = NULL, *tailp = &head;
177 while (l)
179 ilist_add (tailp, ILIST_INSN (l));
180 tailp = &ILIST_NEXT (*tailp);
181 l = ILIST_NEXT (l);
184 return head;
187 /* Invert an instruction list L. */
188 ilist_t
189 ilist_invert (ilist_t l)
191 ilist_t res = NULL;
193 while (l)
195 ilist_add (&res, ILIST_INSN (l));
196 l = ILIST_NEXT (l);
199 return res;
202 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
203 void
204 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
206 bnd_t bnd;
208 _list_add (lp);
209 bnd = BLIST_BND (*lp);
211 BND_TO (bnd) = to;
212 BND_PTR (bnd) = ptr;
213 BND_AV (bnd) = NULL;
214 BND_AV1 (bnd) = NULL;
215 BND_DC (bnd) = dc;
218 /* Remove the list note pointed to by LP. */
219 void
220 blist_remove (blist_t *lp)
222 bnd_t b = BLIST_BND (*lp);
224 av_set_clear (&BND_AV (b));
225 av_set_clear (&BND_AV1 (b));
226 ilist_clear (&BND_PTR (b));
228 _list_remove (lp);
231 /* Init a fence tail L. */
232 void
233 flist_tail_init (flist_tail_t l)
235 FLIST_TAIL_HEAD (l) = NULL;
236 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
239 /* Try to find fence corresponding to INSN in L. */
240 fence_t
241 flist_lookup (flist_t l, insn_t insn)
243 while (l)
245 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
246 return FLIST_FENCE (l);
248 l = FLIST_NEXT (l);
251 return NULL;
254 /* Init the fields of F before running fill_insns. */
255 static void
256 init_fence_for_scheduling (fence_t f)
258 FENCE_BNDS (f) = NULL;
259 FENCE_PROCESSED_P (f) = false;
260 FENCE_SCHEDULED_P (f) = false;
263 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
264 static void
265 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
266 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
267 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
268 int cycle, int cycle_issued_insns, int issue_more,
269 bool starts_cycle_p, bool after_stall_p)
271 fence_t f;
273 _list_add (lp);
274 f = FLIST_FENCE (*lp);
276 FENCE_INSN (f) = insn;
278 gcc_assert (state != NULL);
279 FENCE_STATE (f) = state;
281 FENCE_CYCLE (f) = cycle;
282 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
283 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
284 FENCE_AFTER_STALL_P (f) = after_stall_p;
286 gcc_assert (dc != NULL);
287 FENCE_DC (f) = dc;
289 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
290 FENCE_TC (f) = tc;
292 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
293 FENCE_ISSUE_MORE (f) = issue_more;
294 FENCE_EXECUTING_INSNS (f) = executing_insns;
295 FENCE_READY_TICKS (f) = ready_ticks;
296 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
297 FENCE_SCHED_NEXT (f) = sched_next;
299 init_fence_for_scheduling (f);
302 /* Remove the head node of the list pointed to by LP. */
303 static void
304 flist_remove (flist_t *lp)
306 if (FENCE_INSN (FLIST_FENCE (*lp)))
307 fence_clear (FLIST_FENCE (*lp));
308 _list_remove (lp);
311 /* Clear the fence list pointed to by LP. */
312 void
313 flist_clear (flist_t *lp)
315 while (*lp)
316 flist_remove (lp);
319 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
320 void
321 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
323 def_t d;
325 _list_add (dl);
326 d = DEF_LIST_DEF (*dl);
328 d->orig_insn = original_insn;
329 d->crosses_call = crosses_call;
333 /* Functions to work with target contexts. */
335 /* Bulk target context. It is convenient for debugging purposes to ensure
336 that there are no uninitialized (null) target contexts. */
337 static tc_t bulk_tc = (tc_t) 1;
339 /* Target hooks wrappers. In the future we can provide some default
340 implementations for them. */
342 /* Allocate a store for the target context. */
343 static tc_t
344 alloc_target_context (void)
346 return (targetm.sched.alloc_sched_context
347 ? targetm.sched.alloc_sched_context () : bulk_tc);
350 /* Init target context TC.
351 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
352 Overwise, copy current backend context to TC. */
353 static void
354 init_target_context (tc_t tc, bool clean_p)
356 if (targetm.sched.init_sched_context)
357 targetm.sched.init_sched_context (tc, clean_p);
360 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
361 int init_target_context (). */
362 tc_t
363 create_target_context (bool clean_p)
365 tc_t tc = alloc_target_context ();
367 init_target_context (tc, clean_p);
368 return tc;
371 /* Copy TC to the current backend context. */
372 void
373 set_target_context (tc_t tc)
375 if (targetm.sched.set_sched_context)
376 targetm.sched.set_sched_context (tc);
379 /* TC is about to be destroyed. Free any internal data. */
380 static void
381 clear_target_context (tc_t tc)
383 if (targetm.sched.clear_sched_context)
384 targetm.sched.clear_sched_context (tc);
387 /* Clear and free it. */
388 static void
389 delete_target_context (tc_t tc)
391 clear_target_context (tc);
393 if (targetm.sched.free_sched_context)
394 targetm.sched.free_sched_context (tc);
397 /* Make a copy of FROM in TO.
398 NB: May be this should be a hook. */
399 static void
400 copy_target_context (tc_t to, tc_t from)
402 tc_t tmp = create_target_context (false);
404 set_target_context (from);
405 init_target_context (to, false);
407 set_target_context (tmp);
408 delete_target_context (tmp);
411 /* Create a copy of TC. */
412 static tc_t
413 create_copy_of_target_context (tc_t tc)
415 tc_t copy = alloc_target_context ();
417 copy_target_context (copy, tc);
419 return copy;
422 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
423 is the same as in init_target_context (). */
424 void
425 reset_target_context (tc_t tc, bool clean_p)
427 clear_target_context (tc);
428 init_target_context (tc, clean_p);
431 /* Functions to work with dependence contexts.
432 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
433 context. It accumulates information about processed insns to decide if
434 current insn is dependent on the processed ones. */
436 /* Make a copy of FROM in TO. */
437 static void
438 copy_deps_context (deps_t to, deps_t from)
440 init_deps (to, false);
441 deps_join (to, from);
444 /* Allocate store for dep context. */
445 static deps_t
446 alloc_deps_context (void)
448 return XNEW (struct deps_desc);
451 /* Allocate and initialize dep context. */
452 static deps_t
453 create_deps_context (void)
455 deps_t dc = alloc_deps_context ();
457 init_deps (dc, false);
458 return dc;
461 /* Create a copy of FROM. */
462 static deps_t
463 create_copy_of_deps_context (deps_t from)
465 deps_t to = alloc_deps_context ();
467 copy_deps_context (to, from);
468 return to;
471 /* Clean up internal data of DC. */
472 static void
473 clear_deps_context (deps_t dc)
475 free_deps (dc);
478 /* Clear and free DC. */
479 static void
480 delete_deps_context (deps_t dc)
482 clear_deps_context (dc);
483 free (dc);
486 /* Clear and init DC. */
487 static void
488 reset_deps_context (deps_t dc)
490 clear_deps_context (dc);
491 init_deps (dc, false);
494 /* This structure describes the dependence analysis hooks for advancing
495 dependence context. */
496 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
498 NULL,
500 NULL, /* start_insn */
501 NULL, /* finish_insn */
502 NULL, /* start_lhs */
503 NULL, /* finish_lhs */
504 NULL, /* start_rhs */
505 NULL, /* finish_rhs */
506 haifa_note_reg_set,
507 haifa_note_reg_clobber,
508 haifa_note_reg_use,
509 NULL, /* note_mem_dep */
510 NULL, /* note_dep */
512 0, 0, 0
515 /* Process INSN and add its impact on DC. */
516 void
517 advance_deps_context (deps_t dc, insn_t insn)
519 sched_deps_info = &advance_deps_context_sched_deps_info;
520 deps_analyze_insn (dc, insn);
524 /* Functions to work with DFA states. */
526 /* Allocate store for a DFA state. */
527 static state_t
528 state_alloc (void)
530 return xmalloc (dfa_state_size);
533 /* Allocate and initialize DFA state. */
534 static state_t
535 state_create (void)
537 state_t state = state_alloc ();
539 state_reset (state);
540 advance_state (state);
541 return state;
544 /* Free DFA state. */
545 static void
546 state_free (state_t state)
548 free (state);
551 /* Make a copy of FROM in TO. */
552 static void
553 state_copy (state_t to, state_t from)
555 memcpy (to, from, dfa_state_size);
558 /* Create a copy of FROM. */
559 static state_t
560 state_create_copy (state_t from)
562 state_t to = state_alloc ();
564 state_copy (to, from);
565 return to;
569 /* Functions to work with fences. */
571 /* Clear the fence. */
572 static void
573 fence_clear (fence_t f)
575 state_t s = FENCE_STATE (f);
576 deps_t dc = FENCE_DC (f);
577 void *tc = FENCE_TC (f);
579 ilist_clear (&FENCE_BNDS (f));
581 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
582 || (s == NULL && dc == NULL && tc == NULL));
584 free (s);
586 if (dc != NULL)
587 delete_deps_context (dc);
589 if (tc != NULL)
590 delete_target_context (tc);
591 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
592 free (FENCE_READY_TICKS (f));
593 FENCE_READY_TICKS (f) = NULL;
596 /* Init a list of fences with successors of OLD_FENCE. */
597 void
598 init_fences (insn_t old_fence)
600 insn_t succ;
601 succ_iterator si;
602 bool first = true;
603 int ready_ticks_size = get_max_uid () + 1;
605 FOR_EACH_SUCC_1 (succ, si, old_fence,
606 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
609 if (first)
610 first = false;
611 else
612 gcc_assert (flag_sel_sched_pipelining_outer_loops);
614 flist_add (&fences, succ,
615 state_create (),
616 create_deps_context () /* dc */,
617 create_target_context (true) /* tc */,
618 NULL_RTX /* last_scheduled_insn */,
619 NULL, /* executing_insns */
620 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
621 ready_ticks_size,
622 NULL_RTX /* sched_next */,
623 1 /* cycle */, 0 /* cycle_issued_insns */,
624 issue_rate, /* issue_more */
625 1 /* starts_cycle_p */, 0 /* after_stall_p */);
629 /* Merges two fences (filling fields of fence F with resulting values) by
630 following rules: 1) state, target context and last scheduled insn are
631 propagated from fallthrough edge if it is available;
632 2) deps context and cycle is propagated from more probable edge;
633 3) all other fields are set to corresponding constant values.
635 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
636 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
637 and AFTER_STALL_P are the corresponding fields of the second fence. */
638 static void
639 merge_fences (fence_t f, insn_t insn,
640 state_t state, deps_t dc, void *tc,
641 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
642 int *ready_ticks, int ready_ticks_size,
643 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
645 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
647 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
648 && !sched_next && !FENCE_SCHED_NEXT (f));
650 /* Check if we can decide which path fences came.
651 If we can't (or don't want to) - reset all. */
652 if (last_scheduled_insn == NULL
653 || last_scheduled_insn_old == NULL
654 /* This is a case when INSN is reachable on several paths from
655 one insn (this can happen when pipelining of outer loops is on and
656 there are two edges: one going around of inner loop and the other -
657 right through it; in such case just reset everything). */
658 || last_scheduled_insn == last_scheduled_insn_old)
660 state_reset (FENCE_STATE (f));
661 state_free (state);
663 reset_deps_context (FENCE_DC (f));
664 delete_deps_context (dc);
666 reset_target_context (FENCE_TC (f), true);
667 delete_target_context (tc);
669 if (cycle > FENCE_CYCLE (f))
670 FENCE_CYCLE (f) = cycle;
672 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
673 FENCE_ISSUE_MORE (f) = issue_rate;
674 VEC_free (rtx, gc, executing_insns);
675 free (ready_ticks);
676 if (FENCE_EXECUTING_INSNS (f))
677 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
678 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
679 if (FENCE_READY_TICKS (f))
680 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
682 else
684 edge edge_old = NULL, edge_new = NULL;
685 edge candidate;
686 succ_iterator si;
687 insn_t succ;
689 /* Find fallthrough edge. */
690 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
691 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
693 if (!candidate
694 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
695 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
697 /* No fallthrough edge leading to basic block of INSN. */
698 state_reset (FENCE_STATE (f));
699 state_free (state);
701 reset_target_context (FENCE_TC (f), true);
702 delete_target_context (tc);
704 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
705 FENCE_ISSUE_MORE (f) = issue_rate;
707 else
708 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
710 /* Would be weird if same insn is successor of several fallthrough
711 edges. */
712 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
713 != BLOCK_FOR_INSN (last_scheduled_insn_old));
715 state_free (FENCE_STATE (f));
716 FENCE_STATE (f) = state;
718 delete_target_context (FENCE_TC (f));
719 FENCE_TC (f) = tc;
721 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
722 FENCE_ISSUE_MORE (f) = issue_more;
724 else
726 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
727 state_free (state);
728 delete_target_context (tc);
730 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
731 != BLOCK_FOR_INSN (last_scheduled_insn));
734 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
735 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
736 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
738 if (succ == insn)
740 /* No same successor allowed from several edges. */
741 gcc_assert (!edge_old);
742 edge_old = si.e1;
745 /* Find edge of second predecessor (last_scheduled_insn->insn). */
746 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
747 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
749 if (succ == insn)
751 /* No same successor allowed from several edges. */
752 gcc_assert (!edge_new);
753 edge_new = si.e1;
757 /* Check if we can choose most probable predecessor. */
758 if (edge_old == NULL || edge_new == NULL)
760 reset_deps_context (FENCE_DC (f));
761 delete_deps_context (dc);
762 VEC_free (rtx, gc, executing_insns);
763 free (ready_ticks);
765 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
766 if (FENCE_EXECUTING_INSNS (f))
767 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
768 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
769 if (FENCE_READY_TICKS (f))
770 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
772 else
773 if (edge_new->probability > edge_old->probability)
775 delete_deps_context (FENCE_DC (f));
776 FENCE_DC (f) = dc;
777 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
778 FENCE_EXECUTING_INSNS (f) = executing_insns;
779 free (FENCE_READY_TICKS (f));
780 FENCE_READY_TICKS (f) = ready_ticks;
781 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
782 FENCE_CYCLE (f) = cycle;
784 else
786 /* Leave DC and CYCLE untouched. */
787 delete_deps_context (dc);
788 VEC_free (rtx, gc, executing_insns);
789 free (ready_ticks);
793 /* Fill remaining invariant fields. */
794 if (after_stall_p)
795 FENCE_AFTER_STALL_P (f) = 1;
797 FENCE_ISSUED_INSNS (f) = 0;
798 FENCE_STARTS_CYCLE_P (f) = 1;
799 FENCE_SCHED_NEXT (f) = NULL;
802 /* Add a new fence to NEW_FENCES list, initializing it from all
803 other parameters. */
804 static void
805 add_to_fences (flist_tail_t new_fences, insn_t insn,
806 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
807 VEC(rtx, gc) *executing_insns, int *ready_ticks,
808 int ready_ticks_size, rtx sched_next, int cycle,
809 int cycle_issued_insns, int issue_rate,
810 bool starts_cycle_p, bool after_stall_p)
812 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
814 if (! f)
816 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
817 last_scheduled_insn, executing_insns, ready_ticks,
818 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
819 issue_rate, starts_cycle_p, after_stall_p);
821 FLIST_TAIL_TAILP (new_fences)
822 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
824 else
826 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
827 executing_insns, ready_ticks, ready_ticks_size,
828 sched_next, cycle, issue_rate, after_stall_p);
832 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
833 void
834 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
836 fence_t f, old;
837 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
839 old = FLIST_FENCE (old_fences);
840 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
841 FENCE_INSN (FLIST_FENCE (old_fences)));
842 if (f)
844 merge_fences (f, old->insn, old->state, old->dc, old->tc,
845 old->last_scheduled_insn, old->executing_insns,
846 old->ready_ticks, old->ready_ticks_size,
847 old->sched_next, old->cycle, old->issue_more,
848 old->after_stall_p);
850 else
852 _list_add (tailp);
853 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
854 *FLIST_FENCE (*tailp) = *old;
855 init_fence_for_scheduling (FLIST_FENCE (*tailp));
857 FENCE_INSN (old) = NULL;
860 /* Add a new fence to NEW_FENCES list and initialize most of its data
861 as a clean one. */
862 void
863 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
865 int ready_ticks_size = get_max_uid () + 1;
867 add_to_fences (new_fences,
868 succ, state_create (), create_deps_context (),
869 create_target_context (true),
870 NULL_RTX, NULL,
871 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
872 NULL_RTX, FENCE_CYCLE (fence) + 1,
873 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
876 /* Add a new fence to NEW_FENCES list and initialize all of its data
877 from FENCE and SUCC. */
878 void
879 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
881 int * new_ready_ticks
882 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
884 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
885 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
886 add_to_fences (new_fences,
887 succ, state_create_copy (FENCE_STATE (fence)),
888 create_copy_of_deps_context (FENCE_DC (fence)),
889 create_copy_of_target_context (FENCE_TC (fence)),
890 FENCE_LAST_SCHEDULED_INSN (fence),
891 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
892 new_ready_ticks,
893 FENCE_READY_TICKS_SIZE (fence),
894 FENCE_SCHED_NEXT (fence),
895 FENCE_CYCLE (fence),
896 FENCE_ISSUED_INSNS (fence),
897 FENCE_ISSUE_MORE (fence),
898 FENCE_STARTS_CYCLE_P (fence),
899 FENCE_AFTER_STALL_P (fence));
903 /* Functions to work with regset and nop pools. */
905 /* Returns the new regset from pool. It might have some of the bits set
906 from the previous usage. */
907 regset
908 get_regset_from_pool (void)
910 regset rs;
912 if (regset_pool.n != 0)
913 rs = regset_pool.v[--regset_pool.n];
914 else
915 /* We need to create the regset. */
917 rs = ALLOC_REG_SET (&reg_obstack);
919 if (regset_pool.nn == regset_pool.ss)
920 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
921 (regset_pool.ss = 2 * regset_pool.ss + 1));
922 regset_pool.vv[regset_pool.nn++] = rs;
925 regset_pool.diff++;
927 return rs;
930 /* Same as above, but returns the empty regset. */
931 regset
932 get_clear_regset_from_pool (void)
934 regset rs = get_regset_from_pool ();
936 CLEAR_REG_SET (rs);
937 return rs;
940 /* Return regset RS to the pool for future use. */
941 void
942 return_regset_to_pool (regset rs)
944 gcc_assert (rs);
945 regset_pool.diff--;
947 if (regset_pool.n == regset_pool.s)
948 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
949 (regset_pool.s = 2 * regset_pool.s + 1));
950 regset_pool.v[regset_pool.n++] = rs;
953 #ifdef ENABLE_CHECKING
954 /* This is used as a qsort callback for sorting regset pool stacks.
955 X and XX are addresses of two regsets. They are never equal. */
956 static int
957 cmp_v_in_regset_pool (const void *x, const void *xx)
959 return *((const regset *) x) - *((const regset *) xx);
961 #endif
963 /* Free the regset pool possibly checking for memory leaks. */
964 void
965 free_regset_pool (void)
967 #ifdef ENABLE_CHECKING
969 regset *v = regset_pool.v;
970 int i = 0;
971 int n = regset_pool.n;
973 regset *vv = regset_pool.vv;
974 int ii = 0;
975 int nn = regset_pool.nn;
977 int diff = 0;
979 gcc_assert (n <= nn);
981 /* Sort both vectors so it will be possible to compare them. */
982 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
983 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
985 while (ii < nn)
987 if (v[i] == vv[ii])
988 i++;
989 else
990 /* VV[II] was lost. */
991 diff++;
993 ii++;
996 gcc_assert (diff == regset_pool.diff);
998 #endif
1000 /* If not true - we have a memory leak. */
1001 gcc_assert (regset_pool.diff == 0);
1003 while (regset_pool.n)
1005 --regset_pool.n;
1006 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1009 free (regset_pool.v);
1010 regset_pool.v = NULL;
1011 regset_pool.s = 0;
1013 free (regset_pool.vv);
1014 regset_pool.vv = NULL;
1015 regset_pool.nn = 0;
1016 regset_pool.ss = 0;
1018 regset_pool.diff = 0;
1022 /* Functions to work with nop pools. NOP insns are used as temporary
1023 placeholders of the insns being scheduled to allow correct update of
1024 the data sets. When update is finished, NOPs are deleted. */
1026 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1027 nops sel-sched generates. */
1028 static vinsn_t nop_vinsn = NULL;
1030 /* Emit a nop before INSN, taking it from pool. */
1031 insn_t
1032 get_nop_from_pool (insn_t insn)
1034 insn_t nop;
1035 bool old_p = nop_pool.n != 0;
1036 int flags;
1038 if (old_p)
1039 nop = nop_pool.v[--nop_pool.n];
1040 else
1041 nop = nop_pattern;
1043 nop = emit_insn_before (nop, insn);
1045 if (old_p)
1046 flags = INSN_INIT_TODO_SSID;
1047 else
1048 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1050 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1051 sel_init_new_insn (nop, flags);
1053 return nop;
1056 /* Remove NOP from the instruction stream and return it to the pool. */
1057 void
1058 return_nop_to_pool (insn_t nop, bool full_tidying)
1060 gcc_assert (INSN_IN_STREAM_P (nop));
1061 sel_remove_insn (nop, false, full_tidying);
1063 if (nop_pool.n == nop_pool.s)
1064 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1065 (nop_pool.s = 2 * nop_pool.s + 1));
1066 nop_pool.v[nop_pool.n++] = nop;
1069 /* Free the nop pool. */
1070 void
1071 free_nop_pool (void)
1073 nop_pool.n = 0;
1074 nop_pool.s = 0;
1075 free (nop_pool.v);
1076 nop_pool.v = NULL;
1080 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1081 The callback is given two rtxes XX and YY and writes the new rtxes
1082 to NX and NY in case some needs to be skipped. */
1083 static int
1084 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1086 const_rtx x = *xx;
1087 const_rtx y = *yy;
1089 if (GET_CODE (x) == UNSPEC
1090 && (targetm.sched.skip_rtx_p == NULL
1091 || targetm.sched.skip_rtx_p (x)))
1093 *nx = XVECEXP (x, 0, 0);
1094 *ny = CONST_CAST_RTX (y);
1095 return 1;
1098 if (GET_CODE (y) == UNSPEC
1099 && (targetm.sched.skip_rtx_p == NULL
1100 || targetm.sched.skip_rtx_p (y)))
1102 *nx = CONST_CAST_RTX (x);
1103 *ny = XVECEXP (y, 0, 0);
1104 return 1;
1107 return 0;
1110 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1111 to support ia64 speculation. When changes are needed, new rtx X and new mode
1112 NMODE are written, and the callback returns true. */
1113 static int
1114 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1115 rtx *nx, enum machine_mode* nmode)
1117 if (GET_CODE (x) == UNSPEC
1118 && targetm.sched.skip_rtx_p
1119 && targetm.sched.skip_rtx_p (x))
1121 *nx = XVECEXP (x, 0 ,0);
1122 *nmode = VOIDmode;
1123 return 1;
1126 return 0;
1129 /* Returns LHS and RHS are ok to be scheduled separately. */
1130 static bool
1131 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1133 if (lhs == NULL || rhs == NULL)
1134 return false;
1136 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1137 to use reg, if const can be used. Moreover, scheduling const as rhs may
1138 lead to mode mismatch cause consts don't have modes but they could be
1139 merged from branches where the same const used in different modes. */
1140 if (CONSTANT_P (rhs))
1141 return false;
1143 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1144 if (COMPARISON_P (rhs))
1145 return false;
1147 /* Do not allow single REG to be an rhs. */
1148 if (REG_P (rhs))
1149 return false;
1151 /* See comment at find_used_regs_1 (*1) for explanation of this
1152 restriction. */
1153 /* FIXME: remove this later. */
1154 if (MEM_P (lhs))
1155 return false;
1157 /* This will filter all tricky things like ZERO_EXTRACT etc.
1158 For now we don't handle it. */
1159 if (!REG_P (lhs) && !MEM_P (lhs))
1160 return false;
1162 return true;
1165 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1166 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1167 used e.g. for insns from recovery blocks. */
1168 static void
1169 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1171 hash_rtx_callback_function hrcf;
1172 int insn_class;
1174 VINSN_INSN_RTX (vi) = insn;
1175 VINSN_COUNT (vi) = 0;
1176 vi->cost = -1;
1178 if (INSN_NOP_P (insn))
1179 return;
1181 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1182 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1183 else
1184 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1186 /* Hash vinsn depending on whether it is separable or not. */
1187 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1188 if (VINSN_SEPARABLE_P (vi))
1190 rtx rhs = VINSN_RHS (vi);
1192 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1193 NULL, NULL, false, hrcf);
1194 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1195 VOIDmode, NULL, NULL,
1196 false, hrcf);
1198 else
1200 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1201 NULL, NULL, false, hrcf);
1202 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1205 insn_class = haifa_classify_insn (insn);
1206 if (insn_class >= 2
1207 && (!targetm.sched.get_insn_spec_ds
1208 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1209 == 0)))
1210 VINSN_MAY_TRAP_P (vi) = true;
1211 else
1212 VINSN_MAY_TRAP_P (vi) = false;
1215 /* Indicate that VI has become the part of an rtx object. */
1216 void
1217 vinsn_attach (vinsn_t vi)
1219 /* Assert that VI is not pending for deletion. */
1220 gcc_assert (VINSN_INSN_RTX (vi));
1222 VINSN_COUNT (vi)++;
1225 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1226 VINSN_TYPE (VI). */
1227 static vinsn_t
1228 vinsn_create (insn_t insn, bool force_unique_p)
1230 vinsn_t vi = XCNEW (struct vinsn_def);
1232 vinsn_init (vi, insn, force_unique_p);
1233 return vi;
1236 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1237 the copy. */
1238 vinsn_t
1239 vinsn_copy (vinsn_t vi, bool reattach_p)
1241 rtx copy;
1242 bool unique = VINSN_UNIQUE_P (vi);
1243 vinsn_t new_vi;
1245 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1246 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1247 if (reattach_p)
1249 vinsn_detach (vi);
1250 vinsn_attach (new_vi);
1253 return new_vi;
1256 /* Delete the VI vinsn and free its data. */
1257 static void
1258 vinsn_delete (vinsn_t vi)
1260 gcc_assert (VINSN_COUNT (vi) == 0);
1262 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1264 return_regset_to_pool (VINSN_REG_SETS (vi));
1265 return_regset_to_pool (VINSN_REG_USES (vi));
1266 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1269 free (vi);
1272 /* Indicate that VI is no longer a part of some rtx object.
1273 Remove VI if it is no longer needed. */
1274 void
1275 vinsn_detach (vinsn_t vi)
1277 gcc_assert (VINSN_COUNT (vi) > 0);
1279 if (--VINSN_COUNT (vi) == 0)
1280 vinsn_delete (vi);
1283 /* Returns TRUE if VI is a branch. */
1284 bool
1285 vinsn_cond_branch_p (vinsn_t vi)
1287 insn_t insn;
1289 if (!VINSN_UNIQUE_P (vi))
1290 return false;
1292 insn = VINSN_INSN_RTX (vi);
1293 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1294 return false;
1296 return control_flow_insn_p (insn);
1299 /* Return latency of INSN. */
1300 static int
1301 sel_insn_rtx_cost (rtx insn)
1303 int cost;
1305 /* A USE insn, or something else we don't need to
1306 understand. We can't pass these directly to
1307 result_ready_cost or insn_default_latency because it will
1308 trigger a fatal error for unrecognizable insns. */
1309 if (recog_memoized (insn) < 0)
1310 cost = 0;
1311 else
1313 cost = insn_default_latency (insn);
1315 if (cost < 0)
1316 cost = 0;
1319 return cost;
1322 /* Return the cost of the VI.
1323 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1325 sel_vinsn_cost (vinsn_t vi)
1327 int cost = vi->cost;
1329 if (cost < 0)
1331 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1332 vi->cost = cost;
1335 return cost;
1339 /* Functions for insn emitting. */
1341 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1342 EXPR and SEQNO. */
1343 insn_t
1344 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1346 insn_t new_insn;
1348 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1350 new_insn = emit_insn_after (pattern, after);
1351 set_insn_init (expr, NULL, seqno);
1352 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1354 return new_insn;
1357 /* Force newly generated vinsns to be unique. */
1358 static bool init_insn_force_unique_p = false;
1360 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1361 initialize its data from EXPR and SEQNO. */
1362 insn_t
1363 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1364 insn_t after)
1366 insn_t insn;
1368 gcc_assert (!init_insn_force_unique_p);
1370 init_insn_force_unique_p = true;
1371 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1372 CANT_MOVE (insn) = 1;
1373 init_insn_force_unique_p = false;
1375 return insn;
1378 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1379 take it as a new vinsn instead of EXPR's vinsn.
1380 We simplify insns later, after scheduling region in
1381 simplify_changed_insns. */
1382 insn_t
1383 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1384 insn_t after)
1386 expr_t emit_expr;
1387 insn_t insn;
1388 int flags;
1390 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1391 seqno);
1392 insn = EXPR_INSN_RTX (emit_expr);
1393 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1395 flags = INSN_INIT_TODO_SSID;
1396 if (INSN_LUID (insn) == 0)
1397 flags |= INSN_INIT_TODO_LUID;
1398 sel_init_new_insn (insn, flags);
1400 return insn;
1403 /* Move insn from EXPR after AFTER. */
1404 insn_t
1405 sel_move_insn (expr_t expr, int seqno, insn_t after)
1407 insn_t insn = EXPR_INSN_RTX (expr);
1408 basic_block bb = BLOCK_FOR_INSN (after);
1409 insn_t next = NEXT_INSN (after);
1411 /* Assert that in move_op we disconnected this insn properly. */
1412 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1413 PREV_INSN (insn) = after;
1414 NEXT_INSN (insn) = next;
1416 NEXT_INSN (after) = insn;
1417 PREV_INSN (next) = insn;
1419 /* Update links from insn to bb and vice versa. */
1420 df_insn_change_bb (insn, bb);
1421 if (BB_END (bb) == after)
1422 BB_END (bb) = insn;
1424 prepare_insn_expr (insn, seqno);
1425 return insn;
1429 /* Functions to work with right-hand sides. */
1431 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1432 VECT and return true when found. Use NEW_VINSN for comparison only when
1433 COMPARE_VINSNS is true. Write to INDP the index on which
1434 the search has stopped, such that inserting the new element at INDP will
1435 retain VECT's sort order. */
1436 static bool
1437 find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1438 unsigned uid, vinsn_t new_vinsn,
1439 bool compare_vinsns, int *indp)
1441 expr_history_def *arr;
1442 int i, j, len = VEC_length (expr_history_def, vect);
1444 if (len == 0)
1446 *indp = 0;
1447 return false;
1450 arr = VEC_address (expr_history_def, vect);
1451 i = 0, j = len - 1;
1453 while (i <= j)
1455 unsigned auid = arr[i].uid;
1456 vinsn_t avinsn = arr[i].new_expr_vinsn;
1458 if (auid == uid
1459 /* When undoing transformation on a bookkeeping copy, the new vinsn
1460 may not be exactly equal to the one that is saved in the vector.
1461 This is because the insn whose copy we're checking was possibly
1462 substituted itself. */
1463 && (! compare_vinsns
1464 || vinsn_equal_p (avinsn, new_vinsn)))
1466 *indp = i;
1467 return true;
1469 else if (auid > uid)
1470 break;
1471 i++;
1474 *indp = i;
1475 return false;
1478 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1479 the position found or -1, if no such value is in vector.
1480 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1482 find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1483 vinsn_t new_vinsn, bool originators_p)
1485 int ind;
1487 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1488 false, &ind))
1489 return ind;
1491 if (INSN_ORIGINATORS (insn) && originators_p)
1493 unsigned uid;
1494 bitmap_iterator bi;
1496 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1497 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1498 return ind;
1501 return -1;
1504 /* Insert new element in a sorted history vector pointed to by PVECT,
1505 if it is not there already. The element is searched using
1506 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1507 the history of a transformation. */
1508 void
1509 insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1510 unsigned uid, enum local_trans_type type,
1511 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1512 ds_t spec_ds)
1514 VEC(expr_history_def, heap) *vect = *pvect;
1515 expr_history_def temp;
1516 bool res;
1517 int ind;
1519 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1521 if (res)
1523 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1525 /* It is possible that speculation types of expressions that were
1526 propagated through different paths will be different here. In this
1527 case, merge the status to get the correct check later. */
1528 if (phist->spec_ds != spec_ds)
1529 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1530 return;
1533 temp.uid = uid;
1534 temp.old_expr_vinsn = old_expr_vinsn;
1535 temp.new_expr_vinsn = new_expr_vinsn;
1536 temp.spec_ds = spec_ds;
1537 temp.type = type;
1539 vinsn_attach (old_expr_vinsn);
1540 vinsn_attach (new_expr_vinsn);
1541 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1542 *pvect = vect;
1545 /* Free history vector PVECT. */
1546 static void
1547 free_history_vect (VEC (expr_history_def, heap) **pvect)
1549 unsigned i;
1550 expr_history_def *phist;
1552 if (! *pvect)
1553 return;
1555 for (i = 0;
1556 VEC_iterate (expr_history_def, *pvect, i, phist);
1557 i++)
1559 vinsn_detach (phist->old_expr_vinsn);
1560 vinsn_detach (phist->new_expr_vinsn);
1563 VEC_free (expr_history_def, heap, *pvect);
1564 *pvect = NULL;
1567 /* Merge vector FROM to PVECT. */
1568 static void
1569 merge_history_vect (VEC (expr_history_def, heap) **pvect,
1570 VEC (expr_history_def, heap) *from)
1572 expr_history_def *phist;
1573 int i;
1575 /* We keep this vector sorted. */
1576 for (i = 0; VEC_iterate (expr_history_def, from, i, phist); i++)
1577 insert_in_history_vect (pvect, phist->uid, phist->type,
1578 phist->old_expr_vinsn, phist->new_expr_vinsn,
1579 phist->spec_ds);
1582 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1583 bool
1584 vinsn_equal_p (vinsn_t x, vinsn_t y)
1586 rtx_equal_p_callback_function repcf;
1588 if (x == y)
1589 return true;
1591 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1592 return false;
1594 if (VINSN_HASH (x) != VINSN_HASH (y))
1595 return false;
1597 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1598 if (VINSN_SEPARABLE_P (x))
1600 /* Compare RHSes of VINSNs. */
1601 gcc_assert (VINSN_RHS (x));
1602 gcc_assert (VINSN_RHS (y));
1604 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1607 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1611 /* Functions for working with expressions. */
1613 /* Initialize EXPR. */
1614 static void
1615 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1616 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1617 ds_t spec_to_check_ds, int orig_sched_cycle,
1618 VEC(expr_history_def, heap) *history, signed char target_available,
1619 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1620 bool cant_move)
1622 vinsn_attach (vi);
1624 EXPR_VINSN (expr) = vi;
1625 EXPR_SPEC (expr) = spec;
1626 EXPR_USEFULNESS (expr) = use;
1627 EXPR_PRIORITY (expr) = priority;
1628 EXPR_PRIORITY_ADJ (expr) = 0;
1629 EXPR_SCHED_TIMES (expr) = sched_times;
1630 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1631 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1632 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1633 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1635 if (history)
1636 EXPR_HISTORY_OF_CHANGES (expr) = history;
1637 else
1638 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1640 EXPR_TARGET_AVAILABLE (expr) = target_available;
1641 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1642 EXPR_WAS_RENAMED (expr) = was_renamed;
1643 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1644 EXPR_CANT_MOVE (expr) = cant_move;
1647 /* Make a copy of the expr FROM into the expr TO. */
1648 void
1649 copy_expr (expr_t to, expr_t from)
1651 VEC(expr_history_def, heap) *temp = NULL;
1653 if (EXPR_HISTORY_OF_CHANGES (from))
1655 unsigned i;
1656 expr_history_def *phist;
1658 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1659 for (i = 0;
1660 VEC_iterate (expr_history_def, temp, i, phist);
1661 i++)
1663 vinsn_attach (phist->old_expr_vinsn);
1664 vinsn_attach (phist->new_expr_vinsn);
1668 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1669 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1670 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1671 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1672 EXPR_ORIG_SCHED_CYCLE (from), temp,
1673 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1674 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1675 EXPR_CANT_MOVE (from));
1678 /* Same, but the final expr will not ever be in av sets, so don't copy
1679 "uninteresting" data such as bitmap cache. */
1680 void
1681 copy_expr_onside (expr_t to, expr_t from)
1683 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1684 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1685 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1686 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1687 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1688 EXPR_CANT_MOVE (from));
1691 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1692 initializing new insns. */
1693 static void
1694 prepare_insn_expr (insn_t insn, int seqno)
1696 expr_t expr = INSN_EXPR (insn);
1697 ds_t ds;
1699 INSN_SEQNO (insn) = seqno;
1700 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1701 EXPR_SPEC (expr) = 0;
1702 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1703 EXPR_WAS_SUBSTITUTED (expr) = 0;
1704 EXPR_WAS_RENAMED (expr) = 0;
1705 EXPR_TARGET_AVAILABLE (expr) = 1;
1706 INSN_LIVE_VALID_P (insn) = false;
1708 /* ??? If this expression is speculative, make its dependence
1709 as weak as possible. We can filter this expression later
1710 in process_spec_exprs, because we do not distinguish
1711 between the status we got during compute_av_set and the
1712 existing status. To be fixed. */
1713 ds = EXPR_SPEC_DONE_DS (expr);
1714 if (ds)
1715 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1717 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1720 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1721 is non-null when expressions are merged from different successors at
1722 a split point. */
1723 static void
1724 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1726 if (EXPR_TARGET_AVAILABLE (to) < 0
1727 || EXPR_TARGET_AVAILABLE (from) < 0)
1728 EXPR_TARGET_AVAILABLE (to) = -1;
1729 else
1731 /* We try to detect the case when one of the expressions
1732 can only be reached through another one. In this case,
1733 we can do better. */
1734 if (split_point == NULL)
1736 int toind, fromind;
1738 toind = EXPR_ORIG_BB_INDEX (to);
1739 fromind = EXPR_ORIG_BB_INDEX (from);
1741 if (toind && toind == fromind)
1742 /* Do nothing -- everything is done in
1743 merge_with_other_exprs. */
1745 else
1746 EXPR_TARGET_AVAILABLE (to) = -1;
1748 else
1749 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1753 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1754 is non-null when expressions are merged from different successors at
1755 a split point. */
1756 static void
1757 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1759 ds_t old_to_ds, old_from_ds;
1761 old_to_ds = EXPR_SPEC_DONE_DS (to);
1762 old_from_ds = EXPR_SPEC_DONE_DS (from);
1764 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1765 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1766 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1768 /* When merging e.g. control & data speculative exprs, or a control
1769 speculative with a control&data speculative one, we really have
1770 to change vinsn too. Also, when speculative status is changed,
1771 we also need to record this as a transformation in expr's history. */
1772 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1774 old_to_ds = ds_get_speculation_types (old_to_ds);
1775 old_from_ds = ds_get_speculation_types (old_from_ds);
1777 if (old_to_ds != old_from_ds)
1779 ds_t record_ds;
1781 /* When both expressions are speculative, we need to change
1782 the vinsn first. */
1783 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1785 int res;
1787 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1788 gcc_assert (res >= 0);
1791 if (split_point != NULL)
1793 /* Record the change with proper status. */
1794 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1795 record_ds &= ~(old_to_ds & SPECULATIVE);
1796 record_ds &= ~(old_from_ds & SPECULATIVE);
1798 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1799 INSN_UID (split_point), TRANS_SPECULATION,
1800 EXPR_VINSN (from), EXPR_VINSN (to),
1801 record_ds);
1808 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1809 this is done along different paths. */
1810 void
1811 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1813 /* For now, we just set the spec of resulting expr to be minimum of the specs
1814 of merged exprs. */
1815 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1816 EXPR_SPEC (to) = EXPR_SPEC (from);
1818 if (split_point)
1819 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1820 else
1821 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1822 EXPR_USEFULNESS (from));
1824 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1825 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1827 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1828 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1830 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1831 EXPR_ORIG_BB_INDEX (to) = 0;
1833 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1834 EXPR_ORIG_SCHED_CYCLE (from));
1836 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1837 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1838 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1840 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1841 EXPR_HISTORY_OF_CHANGES (from));
1842 update_target_availability (to, from, split_point);
1843 update_speculative_bits (to, from, split_point);
1846 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1847 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1848 are merged from different successors at a split point. */
1849 void
1850 merge_expr (expr_t to, expr_t from, insn_t split_point)
1852 vinsn_t to_vi = EXPR_VINSN (to);
1853 vinsn_t from_vi = EXPR_VINSN (from);
1855 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1857 /* Make sure that speculative pattern is propagated into exprs that
1858 have non-speculative one. This will provide us with consistent
1859 speculative bits and speculative patterns inside expr. */
1860 if (EXPR_SPEC_DONE_DS (to) == 0
1861 && EXPR_SPEC_DONE_DS (from) != 0)
1862 change_vinsn_in_expr (to, EXPR_VINSN (from));
1864 merge_expr_data (to, from, split_point);
1865 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1868 /* Clear the information of this EXPR. */
1869 void
1870 clear_expr (expr_t expr)
1873 vinsn_detach (EXPR_VINSN (expr));
1874 EXPR_VINSN (expr) = NULL;
1876 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1879 /* For a given LV_SET, mark EXPR having unavailable target register. */
1880 static void
1881 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1883 if (EXPR_SEPARABLE_P (expr))
1885 if (REG_P (EXPR_LHS (expr))
1886 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1888 /* If it's an insn like r1 = use (r1, ...), and it exists in
1889 different forms in each of the av_sets being merged, we can't say
1890 whether original destination register is available or not.
1891 However, this still works if destination register is not used
1892 in the original expression: if the branch at which LV_SET we're
1893 looking here is not actually 'other branch' in sense that same
1894 expression is available through it (but it can't be determined
1895 at computation stage because of transformations on one of the
1896 branches), it still won't affect the availability.
1897 Liveness of a register somewhere on a code motion path means
1898 it's either read somewhere on a codemotion path, live on
1899 'other' branch, live at the point immediately following
1900 the original operation, or is read by the original operation.
1901 The latter case is filtered out in the condition below.
1902 It still doesn't cover the case when register is defined and used
1903 somewhere within the code motion path, and in this case we could
1904 miss a unifying code motion along both branches using a renamed
1905 register, but it won't affect a code correctness since upon
1906 an actual code motion a bookkeeping code would be generated. */
1907 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1908 REGNO (EXPR_LHS (expr))))
1909 EXPR_TARGET_AVAILABLE (expr) = -1;
1910 else
1911 EXPR_TARGET_AVAILABLE (expr) = false;
1914 else
1916 unsigned regno;
1917 reg_set_iterator rsi;
1919 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1920 0, regno, rsi)
1921 if (bitmap_bit_p (lv_set, regno))
1923 EXPR_TARGET_AVAILABLE (expr) = false;
1924 break;
1927 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1928 0, regno, rsi)
1929 if (bitmap_bit_p (lv_set, regno))
1931 EXPR_TARGET_AVAILABLE (expr) = false;
1932 break;
1937 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1938 or dependence status have changed, 2 when also the target register
1939 became unavailable, 0 if nothing had to be changed. */
1941 speculate_expr (expr_t expr, ds_t ds)
1943 int res;
1944 rtx orig_insn_rtx;
1945 rtx spec_pat;
1946 ds_t target_ds, current_ds;
1948 /* Obtain the status we need to put on EXPR. */
1949 target_ds = (ds & SPECULATIVE);
1950 current_ds = EXPR_SPEC_DONE_DS (expr);
1951 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1953 orig_insn_rtx = EXPR_INSN_RTX (expr);
1955 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1957 switch (res)
1959 case 0:
1960 EXPR_SPEC_DONE_DS (expr) = ds;
1961 return current_ds != ds ? 1 : 0;
1963 case 1:
1965 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1966 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1968 change_vinsn_in_expr (expr, spec_vinsn);
1969 EXPR_SPEC_DONE_DS (expr) = ds;
1970 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1972 /* Do not allow clobbering the address register of speculative
1973 insns. */
1974 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1975 expr_dest_regno (expr)))
1977 EXPR_TARGET_AVAILABLE (expr) = false;
1978 return 2;
1981 return 1;
1984 case -1:
1985 return -1;
1987 default:
1988 gcc_unreachable ();
1989 return -1;
1993 /* Return a destination register, if any, of EXPR. */
1995 expr_dest_reg (expr_t expr)
1997 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
1999 if (dest != NULL_RTX && REG_P (dest))
2000 return dest;
2002 return NULL_RTX;
2005 /* Returns the REGNO of the R's destination. */
2006 unsigned
2007 expr_dest_regno (expr_t expr)
2009 rtx dest = expr_dest_reg (expr);
2011 gcc_assert (dest != NULL_RTX);
2012 return REGNO (dest);
2015 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2016 AV_SET having unavailable target register. */
2017 void
2018 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2020 expr_t expr;
2021 av_set_iterator avi;
2023 FOR_EACH_EXPR (expr, avi, join_set)
2024 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2025 set_unavailable_target_for_expr (expr, lv_set);
2029 /* Av set functions. */
2031 /* Add a new element to av set SETP.
2032 Return the element added. */
2033 static av_set_t
2034 av_set_add_element (av_set_t *setp)
2036 /* Insert at the beginning of the list. */
2037 _list_add (setp);
2038 return *setp;
2041 /* Add EXPR to SETP. */
2042 void
2043 av_set_add (av_set_t *setp, expr_t expr)
2045 av_set_t elem;
2047 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2048 elem = av_set_add_element (setp);
2049 copy_expr (_AV_SET_EXPR (elem), expr);
2052 /* Same, but do not copy EXPR. */
2053 static void
2054 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2056 av_set_t elem;
2058 elem = av_set_add_element (setp);
2059 *_AV_SET_EXPR (elem) = *expr;
2062 /* Remove expr pointed to by IP from the av_set. */
2063 void
2064 av_set_iter_remove (av_set_iterator *ip)
2066 clear_expr (_AV_SET_EXPR (*ip->lp));
2067 _list_iter_remove (ip);
2070 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2071 sense of vinsn_equal_p function. Return NULL if no such expr is
2072 in SET was found. */
2073 expr_t
2074 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2076 expr_t expr;
2077 av_set_iterator i;
2079 FOR_EACH_EXPR (expr, i, set)
2080 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2081 return expr;
2082 return NULL;
2085 /* Same, but also remove the EXPR found. */
2086 static expr_t
2087 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2089 expr_t expr;
2090 av_set_iterator i;
2092 FOR_EACH_EXPR_1 (expr, i, setp)
2093 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2095 _list_iter_remove_nofree (&i);
2096 return expr;
2098 return NULL;
2101 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2102 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2103 Returns NULL if no such expr is in SET was found. */
2104 static expr_t
2105 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2107 expr_t cur_expr;
2108 av_set_iterator i;
2110 FOR_EACH_EXPR (cur_expr, i, set)
2112 if (cur_expr == expr)
2113 continue;
2114 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2115 return cur_expr;
2118 return NULL;
2121 /* If other expression is already in AVP, remove one of them. */
2122 expr_t
2123 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2125 expr_t expr2;
2127 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2128 if (expr2 != NULL)
2130 /* Reset target availability on merge, since taking it only from one
2131 of the exprs would be controversial for different code. */
2132 EXPR_TARGET_AVAILABLE (expr2) = -1;
2133 EXPR_USEFULNESS (expr2) = 0;
2135 merge_expr (expr2, expr, NULL);
2137 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2138 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2140 av_set_iter_remove (ip);
2141 return expr2;
2144 return expr;
2147 /* Return true if there is an expr that correlates to VI in SET. */
2148 bool
2149 av_set_is_in_p (av_set_t set, vinsn_t vi)
2151 return av_set_lookup (set, vi) != NULL;
2154 /* Return a copy of SET. */
2155 av_set_t
2156 av_set_copy (av_set_t set)
2158 expr_t expr;
2159 av_set_iterator i;
2160 av_set_t res = NULL;
2162 FOR_EACH_EXPR (expr, i, set)
2163 av_set_add (&res, expr);
2165 return res;
2168 /* Join two av sets that do not have common elements by attaching second set
2169 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2170 _AV_SET_NEXT of first set's last element). */
2171 static void
2172 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2174 gcc_assert (*to_tailp == NULL);
2175 *to_tailp = *fromp;
2176 *fromp = NULL;
2179 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2180 pointed to by FROMP afterwards. */
2181 void
2182 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2184 expr_t expr1;
2185 av_set_iterator i;
2187 /* Delete from TOP all exprs, that present in FROMP. */
2188 FOR_EACH_EXPR_1 (expr1, i, top)
2190 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2192 if (expr2)
2194 merge_expr (expr2, expr1, insn);
2195 av_set_iter_remove (&i);
2199 join_distinct_sets (i.lp, fromp);
2202 /* Same as above, but also update availability of target register in
2203 TOP judging by TO_LV_SET and FROM_LV_SET. */
2204 void
2205 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2206 regset from_lv_set, insn_t insn)
2208 expr_t expr1;
2209 av_set_iterator i;
2210 av_set_t *to_tailp, in_both_set = NULL;
2212 /* Delete from TOP all expres, that present in FROMP. */
2213 FOR_EACH_EXPR_1 (expr1, i, top)
2215 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2217 if (expr2)
2219 /* It may be that the expressions have different destination
2220 registers, in which case we need to check liveness here. */
2221 if (EXPR_SEPARABLE_P (expr1))
2223 int regno1 = (REG_P (EXPR_LHS (expr1))
2224 ? (int) expr_dest_regno (expr1) : -1);
2225 int regno2 = (REG_P (EXPR_LHS (expr2))
2226 ? (int) expr_dest_regno (expr2) : -1);
2228 /* ??? We don't have a way to check restrictions for
2229 *other* register on the current path, we did it only
2230 for the current target register. Give up. */
2231 if (regno1 != regno2)
2232 EXPR_TARGET_AVAILABLE (expr2) = -1;
2234 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2235 EXPR_TARGET_AVAILABLE (expr2) = -1;
2237 merge_expr (expr2, expr1, insn);
2238 av_set_add_nocopy (&in_both_set, expr2);
2239 av_set_iter_remove (&i);
2241 else
2242 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2243 FROM_LV_SET. */
2244 set_unavailable_target_for_expr (expr1, from_lv_set);
2246 to_tailp = i.lp;
2248 /* These expressions are not present in TOP. Check liveness
2249 restrictions on TO_LV_SET. */
2250 FOR_EACH_EXPR (expr1, i, *fromp)
2251 set_unavailable_target_for_expr (expr1, to_lv_set);
2253 join_distinct_sets (i.lp, &in_both_set);
2254 join_distinct_sets (to_tailp, fromp);
2257 /* Clear av_set pointed to by SETP. */
2258 void
2259 av_set_clear (av_set_t *setp)
2261 expr_t expr;
2262 av_set_iterator i;
2264 FOR_EACH_EXPR_1 (expr, i, setp)
2265 av_set_iter_remove (&i);
2267 gcc_assert (*setp == NULL);
2270 /* Leave only one non-speculative element in the SETP. */
2271 void
2272 av_set_leave_one_nonspec (av_set_t *setp)
2274 expr_t expr;
2275 av_set_iterator i;
2276 bool has_one_nonspec = false;
2278 /* Keep all speculative exprs, and leave one non-speculative
2279 (the first one). */
2280 FOR_EACH_EXPR_1 (expr, i, setp)
2282 if (!EXPR_SPEC_DONE_DS (expr))
2284 if (has_one_nonspec)
2285 av_set_iter_remove (&i);
2286 else
2287 has_one_nonspec = true;
2292 /* Return the N'th element of the SET. */
2293 expr_t
2294 av_set_element (av_set_t set, int n)
2296 expr_t expr;
2297 av_set_iterator i;
2299 FOR_EACH_EXPR (expr, i, set)
2300 if (n-- == 0)
2301 return expr;
2303 gcc_unreachable ();
2304 return NULL;
2307 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2308 void
2309 av_set_substract_cond_branches (av_set_t *avp)
2311 av_set_iterator i;
2312 expr_t expr;
2314 FOR_EACH_EXPR_1 (expr, i, avp)
2315 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2316 av_set_iter_remove (&i);
2319 /* Multiplies usefulness attribute of each member of av-set *AVP by
2320 value PROB / ALL_PROB. */
2321 void
2322 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2324 av_set_iterator i;
2325 expr_t expr;
2327 FOR_EACH_EXPR (expr, i, av)
2328 EXPR_USEFULNESS (expr) = (all_prob
2329 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2330 : 0);
2333 /* Leave in AVP only those expressions, which are present in AV,
2334 and return it, merging history expressions. */
2335 void
2336 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2338 av_set_iterator i;
2339 expr_t expr, expr2;
2341 FOR_EACH_EXPR_1 (expr, i, avp)
2342 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2343 av_set_iter_remove (&i);
2344 else
2345 /* When updating av sets in bookkeeping blocks, we can add more insns
2346 there which will be transformed but the upper av sets will not
2347 reflect those transformations. We then fail to undo those
2348 when searching for such insns. So merge the history saved
2349 in the av set of the block we are processing. */
2350 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2351 EXPR_HISTORY_OF_CHANGES (expr2));
2356 /* Dependence hooks to initialize insn data. */
2358 /* This is used in hooks callable from dependence analysis when initializing
2359 instruction's data. */
2360 static struct
2362 /* Where the dependence was found (lhs/rhs). */
2363 deps_where_t where;
2365 /* The actual data object to initialize. */
2366 idata_t id;
2368 /* True when the insn should not be made clonable. */
2369 bool force_unique_p;
2371 /* True when insn should be treated as of type USE, i.e. never renamed. */
2372 bool force_use_p;
2373 } deps_init_id_data;
2376 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2377 clonable. */
2378 static void
2379 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2381 int type;
2383 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2384 That clonable insns which can be separated into lhs and rhs have type SET.
2385 Other clonable insns have type USE. */
2386 type = GET_CODE (insn);
2388 /* Only regular insns could be cloned. */
2389 if (type == INSN && !force_unique_p)
2390 type = SET;
2391 else if (type == JUMP_INSN && simplejump_p (insn))
2392 type = PC;
2393 else if (type == DEBUG_INSN)
2394 type = !force_unique_p ? USE : INSN;
2396 IDATA_TYPE (id) = type;
2397 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2398 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2399 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2402 /* Start initializing insn data. */
2403 static void
2404 deps_init_id_start_insn (insn_t insn)
2406 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2408 setup_id_for_insn (deps_init_id_data.id, insn,
2409 deps_init_id_data.force_unique_p);
2410 deps_init_id_data.where = DEPS_IN_INSN;
2413 /* Start initializing lhs data. */
2414 static void
2415 deps_init_id_start_lhs (rtx lhs)
2417 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2418 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2420 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2422 IDATA_LHS (deps_init_id_data.id) = lhs;
2423 deps_init_id_data.where = DEPS_IN_LHS;
2427 /* Finish initializing lhs data. */
2428 static void
2429 deps_init_id_finish_lhs (void)
2431 deps_init_id_data.where = DEPS_IN_INSN;
2434 /* Note a set of REGNO. */
2435 static void
2436 deps_init_id_note_reg_set (int regno)
2438 haifa_note_reg_set (regno);
2440 if (deps_init_id_data.where == DEPS_IN_RHS)
2441 deps_init_id_data.force_use_p = true;
2443 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2444 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2446 #ifdef STACK_REGS
2447 /* Make instructions that set stack registers to be ineligible for
2448 renaming to avoid issues with find_used_regs. */
2449 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2450 deps_init_id_data.force_use_p = true;
2451 #endif
2454 /* Note a clobber of REGNO. */
2455 static void
2456 deps_init_id_note_reg_clobber (int regno)
2458 haifa_note_reg_clobber (regno);
2460 if (deps_init_id_data.where == DEPS_IN_RHS)
2461 deps_init_id_data.force_use_p = true;
2463 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2464 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2467 /* Note a use of REGNO. */
2468 static void
2469 deps_init_id_note_reg_use (int regno)
2471 haifa_note_reg_use (regno);
2473 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2474 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2477 /* Start initializing rhs data. */
2478 static void
2479 deps_init_id_start_rhs (rtx rhs)
2481 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2483 /* And there was no sel_deps_reset_to_insn (). */
2484 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2486 IDATA_RHS (deps_init_id_data.id) = rhs;
2487 deps_init_id_data.where = DEPS_IN_RHS;
2491 /* Finish initializing rhs data. */
2492 static void
2493 deps_init_id_finish_rhs (void)
2495 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2496 || deps_init_id_data.where == DEPS_IN_INSN);
2497 deps_init_id_data.where = DEPS_IN_INSN;
2500 /* Finish initializing insn data. */
2501 static void
2502 deps_init_id_finish_insn (void)
2504 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2506 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2508 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2509 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2511 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2512 || deps_init_id_data.force_use_p)
2514 /* This should be a USE, as we don't want to schedule its RHS
2515 separately. However, we still want to have them recorded
2516 for the purposes of substitution. That's why we don't
2517 simply call downgrade_to_use () here. */
2518 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2519 gcc_assert (!lhs == !rhs);
2521 IDATA_TYPE (deps_init_id_data.id) = USE;
2525 deps_init_id_data.where = DEPS_IN_NOWHERE;
2528 /* This is dependence info used for initializing insn's data. */
2529 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2531 /* This initializes most of the static part of the above structure. */
2532 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2534 NULL,
2536 deps_init_id_start_insn,
2537 deps_init_id_finish_insn,
2538 deps_init_id_start_lhs,
2539 deps_init_id_finish_lhs,
2540 deps_init_id_start_rhs,
2541 deps_init_id_finish_rhs,
2542 deps_init_id_note_reg_set,
2543 deps_init_id_note_reg_clobber,
2544 deps_init_id_note_reg_use,
2545 NULL, /* note_mem_dep */
2546 NULL, /* note_dep */
2548 0, /* use_cselib */
2549 0, /* use_deps_list */
2550 0 /* generate_spec_deps */
2553 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2554 we don't actually need information about lhs and rhs. */
2555 static void
2556 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2558 rtx pat = PATTERN (insn);
2560 if (NONJUMP_INSN_P (insn)
2561 && GET_CODE (pat) == SET
2562 && !force_unique_p)
2564 IDATA_RHS (id) = SET_SRC (pat);
2565 IDATA_LHS (id) = SET_DEST (pat);
2567 else
2568 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2571 /* Possibly downgrade INSN to USE. */
2572 static void
2573 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2575 bool must_be_use = false;
2576 unsigned uid = INSN_UID (insn);
2577 df_ref *rec;
2578 rtx lhs = IDATA_LHS (id);
2579 rtx rhs = IDATA_RHS (id);
2581 /* We downgrade only SETs. */
2582 if (IDATA_TYPE (id) != SET)
2583 return;
2585 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2587 IDATA_TYPE (id) = USE;
2588 return;
2591 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2593 df_ref def = *rec;
2595 if (DF_REF_INSN (def)
2596 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2597 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2599 must_be_use = true;
2600 break;
2603 #ifdef STACK_REGS
2604 /* Make instructions that set stack registers to be ineligible for
2605 renaming to avoid issues with find_used_regs. */
2606 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2608 must_be_use = true;
2609 break;
2611 #endif
2614 if (must_be_use)
2615 IDATA_TYPE (id) = USE;
2618 /* Setup register sets describing INSN in ID. */
2619 static void
2620 setup_id_reg_sets (idata_t id, insn_t insn)
2622 unsigned uid = INSN_UID (insn);
2623 df_ref *rec;
2624 regset tmp = get_clear_regset_from_pool ();
2626 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2628 df_ref def = *rec;
2629 unsigned int regno = DF_REF_REGNO (def);
2631 /* Post modifies are treated like clobbers by sched-deps.c. */
2632 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2633 | DF_REF_PRE_POST_MODIFY)))
2634 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2635 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2637 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2639 #ifdef STACK_REGS
2640 /* For stack registers, treat writes to them as writes
2641 to the first one to be consistent with sched-deps.c. */
2642 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2643 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2644 #endif
2646 /* Mark special refs that generate read/write def pair. */
2647 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2648 || regno == STACK_POINTER_REGNUM)
2649 bitmap_set_bit (tmp, regno);
2652 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2654 df_ref use = *rec;
2655 unsigned int regno = DF_REF_REGNO (use);
2657 /* When these refs are met for the first time, skip them, as
2658 these uses are just counterparts of some defs. */
2659 if (bitmap_bit_p (tmp, regno))
2660 bitmap_clear_bit (tmp, regno);
2661 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2663 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2665 #ifdef STACK_REGS
2666 /* For stack registers, treat reads from them as reads from
2667 the first one to be consistent with sched-deps.c. */
2668 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2669 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2670 #endif
2674 return_regset_to_pool (tmp);
2677 /* Initialize instruction data for INSN in ID using DF's data. */
2678 static void
2679 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2681 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2683 setup_id_for_insn (id, insn, force_unique_p);
2684 setup_id_lhs_rhs (id, insn, force_unique_p);
2686 if (INSN_NOP_P (insn))
2687 return;
2689 maybe_downgrade_id_to_use (id, insn);
2690 setup_id_reg_sets (id, insn);
2693 /* Initialize instruction data for INSN in ID. */
2694 static void
2695 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2697 struct deps_desc _dc, *dc = &_dc;
2699 deps_init_id_data.where = DEPS_IN_NOWHERE;
2700 deps_init_id_data.id = id;
2701 deps_init_id_data.force_unique_p = force_unique_p;
2702 deps_init_id_data.force_use_p = false;
2704 init_deps (dc, false);
2706 memcpy (&deps_init_id_sched_deps_info,
2707 &const_deps_init_id_sched_deps_info,
2708 sizeof (deps_init_id_sched_deps_info));
2710 if (spec_info != NULL)
2711 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2713 sched_deps_info = &deps_init_id_sched_deps_info;
2715 deps_analyze_insn (dc, insn);
2717 free_deps (dc);
2719 deps_init_id_data.id = NULL;
2723 struct sched_scan_info_def
2725 /* This hook notifies scheduler frontend to extend its internal per basic
2726 block data structures. This hook should be called once before a series of
2727 calls to bb_init (). */
2728 void (*extend_bb) (void);
2730 /* This hook makes scheduler frontend to initialize its internal data
2731 structures for the passed basic block. */
2732 void (*init_bb) (basic_block);
2734 /* This hook notifies scheduler frontend to extend its internal per insn data
2735 structures. This hook should be called once before a series of calls to
2736 insn_init (). */
2737 void (*extend_insn) (void);
2739 /* This hook makes scheduler frontend to initialize its internal data
2740 structures for the passed insn. */
2741 void (*init_insn) (rtx);
2744 /* A driver function to add a set of basic blocks (BBS) to the
2745 scheduling region. */
2746 static void
2747 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2749 unsigned i;
2750 basic_block bb;
2752 if (ssi->extend_bb)
2753 ssi->extend_bb ();
2755 if (ssi->init_bb)
2756 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
2757 ssi->init_bb (bb);
2759 if (ssi->extend_insn)
2760 ssi->extend_insn ();
2762 if (ssi->init_insn)
2763 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
2765 rtx insn;
2767 FOR_BB_INSNS (bb, insn)
2768 ssi->init_insn (insn);
2772 /* Implement hooks for collecting fundamental insn properties like if insn is
2773 an ASM or is within a SCHED_GROUP. */
2775 /* True when a "one-time init" data for INSN was already inited. */
2776 static bool
2777 first_time_insn_init (insn_t insn)
2779 return INSN_LIVE (insn) == NULL;
2782 /* Hash an entry in a transformed_insns hashtable. */
2783 static hashval_t
2784 hash_transformed_insns (const void *p)
2786 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2789 /* Compare the entries in a transformed_insns hashtable. */
2790 static int
2791 eq_transformed_insns (const void *p, const void *q)
2793 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2794 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2796 if (INSN_UID (i1) == INSN_UID (i2))
2797 return 1;
2798 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2801 /* Free an entry in a transformed_insns hashtable. */
2802 static void
2803 free_transformed_insns (void *p)
2805 struct transformed_insns *pti = (struct transformed_insns *) p;
2807 vinsn_detach (pti->vinsn_old);
2808 vinsn_detach (pti->vinsn_new);
2809 free (pti);
2812 /* Init the s_i_d data for INSN which should be inited just once, when
2813 we first see the insn. */
2814 static void
2815 init_first_time_insn_data (insn_t insn)
2817 /* This should not be set if this is the first time we init data for
2818 insn. */
2819 gcc_assert (first_time_insn_init (insn));
2821 /* These are needed for nops too. */
2822 INSN_LIVE (insn) = get_regset_from_pool ();
2823 INSN_LIVE_VALID_P (insn) = false;
2825 if (!INSN_NOP_P (insn))
2827 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2828 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2829 INSN_TRANSFORMED_INSNS (insn)
2830 = htab_create (16, hash_transformed_insns,
2831 eq_transformed_insns, free_transformed_insns);
2832 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2836 /* Free almost all above data for INSN that is scheduled already.
2837 Used for extra-large basic blocks. */
2838 void
2839 free_data_for_scheduled_insn (insn_t insn)
2841 gcc_assert (! first_time_insn_init (insn));
2843 if (! INSN_ANALYZED_DEPS (insn))
2844 return;
2846 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2847 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2848 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2850 /* This is allocated only for bookkeeping insns. */
2851 if (INSN_ORIGINATORS (insn))
2852 BITMAP_FREE (INSN_ORIGINATORS (insn));
2853 free_deps (&INSN_DEPS_CONTEXT (insn));
2855 INSN_ANALYZED_DEPS (insn) = NULL;
2857 /* Clear the readonly flag so we would ICE when trying to recalculate
2858 the deps context (as we believe that it should not happen). */
2859 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2862 /* Free the same data as above for INSN. */
2863 static void
2864 free_first_time_insn_data (insn_t insn)
2866 gcc_assert (! first_time_insn_init (insn));
2868 free_data_for_scheduled_insn (insn);
2869 return_regset_to_pool (INSN_LIVE (insn));
2870 INSN_LIVE (insn) = NULL;
2871 INSN_LIVE_VALID_P (insn) = false;
2874 /* Initialize region-scope data structures for basic blocks. */
2875 static void
2876 init_global_and_expr_for_bb (basic_block bb)
2878 if (sel_bb_empty_p (bb))
2879 return;
2881 invalidate_av_set (bb);
2884 /* Data for global dependency analysis (to initialize CANT_MOVE and
2885 SCHED_GROUP_P). */
2886 static struct
2888 /* Previous insn. */
2889 insn_t prev_insn;
2890 } init_global_data;
2892 /* Determine if INSN is in the sched_group, is an asm or should not be
2893 cloned. After that initialize its expr. */
2894 static void
2895 init_global_and_expr_for_insn (insn_t insn)
2897 if (LABEL_P (insn))
2898 return;
2900 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2902 init_global_data.prev_insn = NULL_RTX;
2903 return;
2906 gcc_assert (INSN_P (insn));
2908 if (SCHED_GROUP_P (insn))
2909 /* Setup a sched_group. */
2911 insn_t prev_insn = init_global_data.prev_insn;
2913 if (prev_insn)
2914 INSN_SCHED_NEXT (prev_insn) = insn;
2916 init_global_data.prev_insn = insn;
2918 else
2919 init_global_data.prev_insn = NULL_RTX;
2921 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2922 || asm_noperands (PATTERN (insn)) >= 0)
2923 /* Mark INSN as an asm. */
2924 INSN_ASM_P (insn) = true;
2927 bool force_unique_p;
2928 ds_t spec_done_ds;
2930 /* Certain instructions cannot be cloned, and frame related insns and
2931 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2932 their block. */
2933 if (prologue_epilogue_contains (insn))
2935 if (RTX_FRAME_RELATED_P (insn))
2936 CANT_MOVE (insn) = 1;
2937 else
2939 rtx note;
2940 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2941 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2942 && ((enum insn_note) INTVAL (XEXP (note, 0))
2943 == NOTE_INSN_EPILOGUE_BEG))
2945 CANT_MOVE (insn) = 1;
2946 break;
2949 force_unique_p = true;
2951 else
2952 if (CANT_MOVE (insn)
2953 || INSN_ASM_P (insn)
2954 || SCHED_GROUP_P (insn)
2955 || CALL_P (insn)
2956 /* Exception handling insns are always unique. */
2957 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2958 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2959 || control_flow_insn_p (insn))
2960 force_unique_p = true;
2961 else
2962 force_unique_p = false;
2964 if (targetm.sched.get_insn_spec_ds)
2966 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2967 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2969 else
2970 spec_done_ds = 0;
2972 /* Initialize INSN's expr. */
2973 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2974 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
2975 spec_done_ds, 0, 0, NULL, true, false, false, false,
2976 CANT_MOVE (insn));
2979 init_first_time_insn_data (insn);
2982 /* Scan the region and initialize instruction data for basic blocks BBS. */
2983 void
2984 sel_init_global_and_expr (bb_vec_t bbs)
2986 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
2987 const struct sched_scan_info_def ssi =
2989 NULL, /* extend_bb */
2990 init_global_and_expr_for_bb, /* init_bb */
2991 extend_insn_data, /* extend_insn */
2992 init_global_and_expr_for_insn /* init_insn */
2995 sched_scan (&ssi, bbs);
2998 /* Finalize region-scope data structures for basic blocks. */
2999 static void
3000 finish_global_and_expr_for_bb (basic_block bb)
3002 av_set_clear (&BB_AV_SET (bb));
3003 BB_AV_LEVEL (bb) = 0;
3006 /* Finalize INSN's data. */
3007 static void
3008 finish_global_and_expr_insn (insn_t insn)
3010 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3011 return;
3013 gcc_assert (INSN_P (insn));
3015 if (INSN_LUID (insn) > 0)
3017 free_first_time_insn_data (insn);
3018 INSN_WS_LEVEL (insn) = 0;
3019 CANT_MOVE (insn) = 0;
3021 /* We can no longer assert this, as vinsns of this insn could be
3022 easily live in other insn's caches. This should be changed to
3023 a counter-like approach among all vinsns. */
3024 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3025 clear_expr (INSN_EXPR (insn));
3029 /* Finalize per instruction data for the whole region. */
3030 void
3031 sel_finish_global_and_expr (void)
3034 bb_vec_t bbs;
3035 int i;
3037 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
3039 for (i = 0; i < current_nr_blocks; i++)
3040 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
3042 /* Clear AV_SETs and INSN_EXPRs. */
3044 const struct sched_scan_info_def ssi =
3046 NULL, /* extend_bb */
3047 finish_global_and_expr_for_bb, /* init_bb */
3048 NULL, /* extend_insn */
3049 finish_global_and_expr_insn /* init_insn */
3052 sched_scan (&ssi, bbs);
3055 VEC_free (basic_block, heap, bbs);
3058 finish_insns ();
3062 /* In the below hooks, we merely calculate whether or not a dependence
3063 exists, and in what part of insn. However, we will need more data
3064 when we'll start caching dependence requests. */
3066 /* Container to hold information for dependency analysis. */
3067 static struct
3069 deps_t dc;
3071 /* A variable to track which part of rtx we are scanning in
3072 sched-deps.c: sched_analyze_insn (). */
3073 deps_where_t where;
3075 /* Current producer. */
3076 insn_t pro;
3078 /* Current consumer. */
3079 vinsn_t con;
3081 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3082 X is from { INSN, LHS, RHS }. */
3083 ds_t has_dep_p[DEPS_IN_NOWHERE];
3084 } has_dependence_data;
3086 /* Start analyzing dependencies of INSN. */
3087 static void
3088 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3090 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3092 has_dependence_data.where = DEPS_IN_INSN;
3095 /* Finish analyzing dependencies of an insn. */
3096 static void
3097 has_dependence_finish_insn (void)
3099 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3101 has_dependence_data.where = DEPS_IN_NOWHERE;
3104 /* Start analyzing dependencies of LHS. */
3105 static void
3106 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3108 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3110 if (VINSN_LHS (has_dependence_data.con) != NULL)
3111 has_dependence_data.where = DEPS_IN_LHS;
3114 /* Finish analyzing dependencies of an lhs. */
3115 static void
3116 has_dependence_finish_lhs (void)
3118 has_dependence_data.where = DEPS_IN_INSN;
3121 /* Start analyzing dependencies of RHS. */
3122 static void
3123 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3125 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3127 if (VINSN_RHS (has_dependence_data.con) != NULL)
3128 has_dependence_data.where = DEPS_IN_RHS;
3131 /* Start analyzing dependencies of an rhs. */
3132 static void
3133 has_dependence_finish_rhs (void)
3135 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3136 || has_dependence_data.where == DEPS_IN_INSN);
3138 has_dependence_data.where = DEPS_IN_INSN;
3141 /* Note a set of REGNO. */
3142 static void
3143 has_dependence_note_reg_set (int regno)
3145 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3147 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3148 VINSN_INSN_RTX
3149 (has_dependence_data.con)))
3151 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3153 if (reg_last->sets != NULL
3154 || reg_last->clobbers != NULL)
3155 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3157 if (reg_last->uses)
3158 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3162 /* Note a clobber of REGNO. */
3163 static void
3164 has_dependence_note_reg_clobber (int regno)
3166 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3168 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3169 VINSN_INSN_RTX
3170 (has_dependence_data.con)))
3172 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3174 if (reg_last->sets)
3175 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3177 if (reg_last->uses)
3178 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3182 /* Note a use of REGNO. */
3183 static void
3184 has_dependence_note_reg_use (int regno)
3186 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3188 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3189 VINSN_INSN_RTX
3190 (has_dependence_data.con)))
3192 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3194 if (reg_last->sets)
3195 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3197 if (reg_last->clobbers)
3198 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3200 /* Handle BE_IN_SPEC. */
3201 if (reg_last->uses)
3203 ds_t pro_spec_checked_ds;
3205 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3206 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3208 if (pro_spec_checked_ds != 0)
3209 /* Merge BE_IN_SPEC bits into *DSP. */
3210 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3211 NULL_RTX, NULL_RTX);
3216 /* Note a memory dependence. */
3217 static void
3218 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3219 rtx pending_mem ATTRIBUTE_UNUSED,
3220 insn_t pending_insn ATTRIBUTE_UNUSED,
3221 ds_t ds ATTRIBUTE_UNUSED)
3223 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3224 VINSN_INSN_RTX (has_dependence_data.con)))
3226 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3228 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3232 /* Note a dependence. */
3233 static void
3234 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3235 ds_t ds ATTRIBUTE_UNUSED)
3237 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3238 VINSN_INSN_RTX (has_dependence_data.con)))
3240 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3242 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3246 /* Mark the insn as having a hard dependence that prevents speculation. */
3247 void
3248 sel_mark_hard_insn (rtx insn)
3250 int i;
3252 /* Only work when we're in has_dependence_p mode.
3253 ??? This is a hack, this should actually be a hook. */
3254 if (!has_dependence_data.dc || !has_dependence_data.pro)
3255 return;
3257 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3258 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3260 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3261 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3264 /* This structure holds the hooks for the dependency analysis used when
3265 actually processing dependencies in the scheduler. */
3266 static struct sched_deps_info_def has_dependence_sched_deps_info;
3268 /* This initializes most of the fields of the above structure. */
3269 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3271 NULL,
3273 has_dependence_start_insn,
3274 has_dependence_finish_insn,
3275 has_dependence_start_lhs,
3276 has_dependence_finish_lhs,
3277 has_dependence_start_rhs,
3278 has_dependence_finish_rhs,
3279 has_dependence_note_reg_set,
3280 has_dependence_note_reg_clobber,
3281 has_dependence_note_reg_use,
3282 has_dependence_note_mem_dep,
3283 has_dependence_note_dep,
3285 0, /* use_cselib */
3286 0, /* use_deps_list */
3287 0 /* generate_spec_deps */
3290 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3291 static void
3292 setup_has_dependence_sched_deps_info (void)
3294 memcpy (&has_dependence_sched_deps_info,
3295 &const_has_dependence_sched_deps_info,
3296 sizeof (has_dependence_sched_deps_info));
3298 if (spec_info != NULL)
3299 has_dependence_sched_deps_info.generate_spec_deps = 1;
3301 sched_deps_info = &has_dependence_sched_deps_info;
3304 /* Remove all dependences found and recorded in has_dependence_data array. */
3305 void
3306 sel_clear_has_dependence (void)
3308 int i;
3310 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3311 has_dependence_data.has_dep_p[i] = 0;
3314 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3315 to the dependence information array in HAS_DEP_PP. */
3316 ds_t
3317 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3319 int i;
3320 ds_t ds;
3321 struct deps_desc *dc;
3323 if (INSN_SIMPLEJUMP_P (pred))
3324 /* Unconditional jump is just a transfer of control flow.
3325 Ignore it. */
3326 return false;
3328 dc = &INSN_DEPS_CONTEXT (pred);
3330 /* We init this field lazily. */
3331 if (dc->reg_last == NULL)
3332 init_deps_reg_last (dc);
3334 if (!dc->readonly)
3336 has_dependence_data.pro = NULL;
3337 /* Initialize empty dep context with information about PRED. */
3338 advance_deps_context (dc, pred);
3339 dc->readonly = 1;
3342 has_dependence_data.where = DEPS_IN_NOWHERE;
3343 has_dependence_data.pro = pred;
3344 has_dependence_data.con = EXPR_VINSN (expr);
3345 has_dependence_data.dc = dc;
3347 sel_clear_has_dependence ();
3349 /* Now catch all dependencies that would be generated between PRED and
3350 INSN. */
3351 setup_has_dependence_sched_deps_info ();
3352 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3353 has_dependence_data.dc = NULL;
3355 /* When a barrier was found, set DEPS_IN_INSN bits. */
3356 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3357 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3358 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3359 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3361 /* Do not allow stores to memory to move through checks. Currently
3362 we don't move this to sched-deps.c as the check doesn't have
3363 obvious places to which this dependence can be attached.
3364 FIMXE: this should go to a hook. */
3365 if (EXPR_LHS (expr)
3366 && MEM_P (EXPR_LHS (expr))
3367 && sel_insn_is_speculation_check (pred))
3368 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3370 *has_dep_pp = has_dependence_data.has_dep_p;
3371 ds = 0;
3372 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3373 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3374 NULL_RTX, NULL_RTX);
3376 return ds;
3380 /* Dependence hooks implementation that checks dependence latency constraints
3381 on the insns being scheduled. The entry point for these routines is
3382 tick_check_p predicate. */
3384 static struct
3386 /* An expr we are currently checking. */
3387 expr_t expr;
3389 /* A minimal cycle for its scheduling. */
3390 int cycle;
3392 /* Whether we have seen a true dependence while checking. */
3393 bool seen_true_dep_p;
3394 } tick_check_data;
3396 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3397 on PRO with status DS and weight DW. */
3398 static void
3399 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3401 expr_t con_expr = tick_check_data.expr;
3402 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3404 if (con_insn != pro_insn)
3406 enum reg_note dt;
3407 int tick;
3409 if (/* PROducer was removed from above due to pipelining. */
3410 !INSN_IN_STREAM_P (pro_insn)
3411 /* Or PROducer was originally on the next iteration regarding the
3412 CONsumer. */
3413 || (INSN_SCHED_TIMES (pro_insn)
3414 - EXPR_SCHED_TIMES (con_expr)) > 1)
3415 /* Don't count this dependence. */
3416 return;
3418 dt = ds_to_dt (ds);
3419 if (dt == REG_DEP_TRUE)
3420 tick_check_data.seen_true_dep_p = true;
3422 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3425 dep_def _dep, *dep = &_dep;
3427 init_dep (dep, pro_insn, con_insn, dt);
3429 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3432 /* When there are several kinds of dependencies between pro and con,
3433 only REG_DEP_TRUE should be taken into account. */
3434 if (tick > tick_check_data.cycle
3435 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3436 tick_check_data.cycle = tick;
3440 /* An implementation of note_dep hook. */
3441 static void
3442 tick_check_note_dep (insn_t pro, ds_t ds)
3444 tick_check_dep_with_dw (pro, ds, 0);
3447 /* An implementation of note_mem_dep hook. */
3448 static void
3449 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3451 dw_t dw;
3453 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3454 ? estimate_dep_weak (mem1, mem2)
3455 : 0);
3457 tick_check_dep_with_dw (pro, ds, dw);
3460 /* This structure contains hooks for dependence analysis used when determining
3461 whether an insn is ready for scheduling. */
3462 static struct sched_deps_info_def tick_check_sched_deps_info =
3464 NULL,
3466 NULL,
3467 NULL,
3468 NULL,
3469 NULL,
3470 NULL,
3471 NULL,
3472 haifa_note_reg_set,
3473 haifa_note_reg_clobber,
3474 haifa_note_reg_use,
3475 tick_check_note_mem_dep,
3476 tick_check_note_dep,
3478 0, 0, 0
3481 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3482 scheduled. Return 0 if all data from producers in DC is ready. */
3484 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3486 int cycles_left;
3487 /* Initialize variables. */
3488 tick_check_data.expr = expr;
3489 tick_check_data.cycle = 0;
3490 tick_check_data.seen_true_dep_p = false;
3491 sched_deps_info = &tick_check_sched_deps_info;
3493 gcc_assert (!dc->readonly);
3494 dc->readonly = 1;
3495 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3496 dc->readonly = 0;
3498 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3500 return cycles_left >= 0 ? cycles_left : 0;
3504 /* Functions to work with insns. */
3506 /* Returns true if LHS of INSN is the same as DEST of an insn
3507 being moved. */
3508 bool
3509 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3511 rtx lhs = INSN_LHS (insn);
3513 if (lhs == NULL || dest == NULL)
3514 return false;
3516 return rtx_equal_p (lhs, dest);
3519 /* Return s_i_d entry of INSN. Callable from debugger. */
3520 sel_insn_data_def
3521 insn_sid (insn_t insn)
3523 return *SID (insn);
3526 /* True when INSN is a speculative check. We can tell this by looking
3527 at the data structures of the selective scheduler, not by examining
3528 the pattern. */
3529 bool
3530 sel_insn_is_speculation_check (rtx insn)
3532 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3535 /* Extracts machine mode MODE and destination location DST_LOC
3536 for given INSN. */
3537 void
3538 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3540 rtx pat = PATTERN (insn);
3542 gcc_assert (dst_loc);
3543 gcc_assert (GET_CODE (pat) == SET);
3545 *dst_loc = SET_DEST (pat);
3547 gcc_assert (*dst_loc);
3548 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3550 if (mode)
3551 *mode = GET_MODE (*dst_loc);
3554 /* Returns true when moving through JUMP will result in bookkeeping
3555 creation. */
3556 bool
3557 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3559 insn_t succ;
3560 succ_iterator si;
3562 FOR_EACH_SUCC (succ, si, jump)
3563 if (sel_num_cfg_preds_gt_1 (succ))
3564 return true;
3566 return false;
3569 /* Return 'true' if INSN is the only one in its basic block. */
3570 static bool
3571 insn_is_the_only_one_in_bb_p (insn_t insn)
3573 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3576 #ifdef ENABLE_CHECKING
3577 /* Check that the region we're scheduling still has at most one
3578 backedge. */
3579 static void
3580 verify_backedges (void)
3582 if (pipelining_p)
3584 int i, n = 0;
3585 edge e;
3586 edge_iterator ei;
3588 for (i = 0; i < current_nr_blocks; i++)
3589 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3590 if (in_current_region_p (e->dest)
3591 && BLOCK_TO_BB (e->dest->index) < i)
3592 n++;
3594 gcc_assert (n <= 1);
3597 #endif
3600 /* Functions to work with control flow. */
3602 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3603 are sorted in topological order (it might have been invalidated by
3604 redirecting an edge). */
3605 static void
3606 sel_recompute_toporder (void)
3608 int i, n, rgn;
3609 int *postorder, n_blocks;
3611 postorder = XALLOCAVEC (int, n_basic_blocks);
3612 n_blocks = post_order_compute (postorder, false, false);
3614 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3615 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3616 if (CONTAINING_RGN (postorder[i]) == rgn)
3618 BLOCK_TO_BB (postorder[i]) = n;
3619 BB_TO_BLOCK (n) = postorder[i];
3620 n++;
3623 /* Assert that we updated info for all blocks. We may miss some blocks if
3624 this function is called when redirecting an edge made a block
3625 unreachable, but that block is not deleted yet. */
3626 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3629 /* Tidy the possibly empty block BB. */
3630 static bool
3631 maybe_tidy_empty_bb (basic_block bb)
3633 basic_block succ_bb, pred_bb;
3634 VEC (basic_block, heap) *dom_bbs;
3635 edge e;
3636 edge_iterator ei;
3637 bool rescan_p;
3639 /* Keep empty bb only if this block immediately precedes EXIT and
3640 has incoming non-fallthrough edge, or it has no predecessors or
3641 successors. Otherwise remove it. */
3642 if (!sel_bb_empty_p (bb)
3643 || (single_succ_p (bb)
3644 && single_succ (bb) == EXIT_BLOCK_PTR
3645 && (!single_pred_p (bb)
3646 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3647 || EDGE_COUNT (bb->preds) == 0
3648 || EDGE_COUNT (bb->succs) == 0)
3649 return false;
3651 /* Do not attempt to redirect complex edges. */
3652 FOR_EACH_EDGE (e, ei, bb->preds)
3653 if (e->flags & EDGE_COMPLEX)
3654 return false;
3656 free_data_sets (bb);
3658 /* Do not delete BB if it has more than one successor.
3659 That can occur when we moving a jump. */
3660 if (!single_succ_p (bb))
3662 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3663 sel_merge_blocks (bb->prev_bb, bb);
3664 return true;
3667 succ_bb = single_succ (bb);
3668 rescan_p = true;
3669 pred_bb = NULL;
3670 dom_bbs = NULL;
3672 /* Redirect all non-fallthru edges to the next bb. */
3673 while (rescan_p)
3675 rescan_p = false;
3677 FOR_EACH_EDGE (e, ei, bb->preds)
3679 pred_bb = e->src;
3681 if (!(e->flags & EDGE_FALLTHRU))
3683 /* We can not invalidate computed topological order by moving
3684 the edge destination block (E->SUCC) along a fallthru edge.
3686 We will update dominators here only when we'll get
3687 an unreachable block when redirecting, otherwise
3688 sel_redirect_edge_and_branch will take care of it. */
3689 if (e->dest != bb
3690 && single_pred_p (e->dest))
3691 VEC_safe_push (basic_block, heap, dom_bbs, e->dest);
3692 sel_redirect_edge_and_branch (e, succ_bb);
3693 rescan_p = true;
3694 break;
3696 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3697 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3698 still have to adjust it. */
3699 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3701 /* If possible, try to remove the unneeded conditional jump. */
3702 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3703 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3705 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3706 tidy_fallthru_edge (e);
3708 else
3709 sel_redirect_edge_and_branch (e, succ_bb);
3710 rescan_p = true;
3711 break;
3716 if (can_merge_blocks_p (bb->prev_bb, bb))
3717 sel_merge_blocks (bb->prev_bb, bb);
3718 else
3720 /* This is a block without fallthru predecessor. Just delete it. */
3721 gcc_assert (pred_bb != NULL);
3723 if (in_current_region_p (pred_bb))
3724 move_bb_info (pred_bb, bb);
3725 remove_empty_bb (bb, true);
3728 if (!VEC_empty (basic_block, dom_bbs))
3730 VEC_safe_push (basic_block, heap, dom_bbs, succ_bb);
3731 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3732 VEC_free (basic_block, heap, dom_bbs);
3735 return true;
3738 /* Tidy the control flow after we have removed original insn from
3739 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3740 is true, also try to optimize control flow on non-empty blocks. */
3741 bool
3742 tidy_control_flow (basic_block xbb, bool full_tidying)
3744 bool changed = true;
3745 insn_t first, last;
3747 /* First check whether XBB is empty. */
3748 changed = maybe_tidy_empty_bb (xbb);
3749 if (changed || !full_tidying)
3750 return changed;
3752 /* Check if there is a unnecessary jump after insn left. */
3753 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3754 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3755 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3757 if (sel_remove_insn (BB_END (xbb), false, false))
3758 return true;
3759 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3762 first = sel_bb_head (xbb);
3763 last = sel_bb_end (xbb);
3764 if (MAY_HAVE_DEBUG_INSNS)
3766 if (first != last && DEBUG_INSN_P (first))
3768 first = NEXT_INSN (first);
3769 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3771 if (first != last && DEBUG_INSN_P (last))
3773 last = PREV_INSN (last);
3774 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3776 /* Check if there is an unnecessary jump in previous basic block leading
3777 to next basic block left after removing INSN from stream.
3778 If it is so, remove that jump and redirect edge to current
3779 basic block (where there was INSN before deletion). This way
3780 when NOP will be deleted several instructions later with its
3781 basic block we will not get a jump to next instruction, which
3782 can be harmful. */
3783 if (first == last
3784 && !sel_bb_empty_p (xbb)
3785 && INSN_NOP_P (last)
3786 /* Flow goes fallthru from current block to the next. */
3787 && EDGE_COUNT (xbb->succs) == 1
3788 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3789 /* When successor is an EXIT block, it may not be the next block. */
3790 && single_succ (xbb) != EXIT_BLOCK_PTR
3791 /* And unconditional jump in previous basic block leads to
3792 next basic block of XBB and this jump can be safely removed. */
3793 && in_current_region_p (xbb->prev_bb)
3794 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3795 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3796 /* Also this jump is not at the scheduling boundary. */
3797 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3799 bool recompute_toporder_p;
3800 /* Clear data structures of jump - jump itself will be removed
3801 by sel_redirect_edge_and_branch. */
3802 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3803 recompute_toporder_p
3804 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3806 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3808 /* It can turn out that after removing unused jump, basic block
3809 that contained that jump, becomes empty too. In such case
3810 remove it too. */
3811 if (sel_bb_empty_p (xbb->prev_bb))
3812 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3813 if (recompute_toporder_p)
3814 sel_recompute_toporder ();
3817 #ifdef ENABLE_CHECKING
3818 verify_backedges ();
3819 verify_dominators (CDI_DOMINATORS);
3820 #endif
3822 return changed;
3825 /* Purge meaningless empty blocks in the middle of a region. */
3826 void
3827 purge_empty_blocks (void)
3829 int i;
3831 /* Do not attempt to delete the first basic block in the region. */
3832 for (i = 1; i < current_nr_blocks; )
3834 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3836 if (maybe_tidy_empty_bb (b))
3837 continue;
3839 i++;
3843 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3844 do not delete insn's data, because it will be later re-emitted.
3845 Return true if we have removed some blocks afterwards. */
3846 bool
3847 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3849 basic_block bb = BLOCK_FOR_INSN (insn);
3851 gcc_assert (INSN_IN_STREAM_P (insn));
3853 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3855 expr_t expr;
3856 av_set_iterator i;
3858 /* When we remove a debug insn that is head of a BB, it remains
3859 in the AV_SET of the block, but it shouldn't. */
3860 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3861 if (EXPR_INSN_RTX (expr) == insn)
3863 av_set_iter_remove (&i);
3864 break;
3868 if (only_disconnect)
3870 insn_t prev = PREV_INSN (insn);
3871 insn_t next = NEXT_INSN (insn);
3872 basic_block bb = BLOCK_FOR_INSN (insn);
3874 NEXT_INSN (prev) = next;
3875 PREV_INSN (next) = prev;
3877 if (BB_HEAD (bb) == insn)
3879 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3880 BB_HEAD (bb) = prev;
3882 if (BB_END (bb) == insn)
3883 BB_END (bb) = prev;
3885 else
3887 remove_insn (insn);
3888 clear_expr (INSN_EXPR (insn));
3891 /* It is necessary to null this fields before calling add_insn (). */
3892 PREV_INSN (insn) = NULL_RTX;
3893 NEXT_INSN (insn) = NULL_RTX;
3895 return tidy_control_flow (bb, full_tidying);
3898 /* Estimate number of the insns in BB. */
3899 static int
3900 sel_estimate_number_of_insns (basic_block bb)
3902 int res = 0;
3903 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3905 for (; insn != next_tail; insn = NEXT_INSN (insn))
3906 if (NONDEBUG_INSN_P (insn))
3907 res++;
3909 return res;
3912 /* We don't need separate luids for notes or labels. */
3913 static int
3914 sel_luid_for_non_insn (rtx x)
3916 gcc_assert (NOTE_P (x) || LABEL_P (x));
3918 return -1;
3921 /* Return seqno of the only predecessor of INSN. */
3922 static int
3923 get_seqno_of_a_pred (insn_t insn)
3925 int seqno;
3927 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3929 if (!sel_bb_head_p (insn))
3930 seqno = INSN_SEQNO (PREV_INSN (insn));
3931 else
3933 basic_block bb = BLOCK_FOR_INSN (insn);
3935 if (single_pred_p (bb)
3936 && !in_current_region_p (single_pred (bb)))
3938 /* We can have preds outside a region when splitting edges
3939 for pipelining of an outer loop. Use succ instead.
3940 There should be only one of them. */
3941 insn_t succ = NULL;
3942 succ_iterator si;
3943 bool first = true;
3945 gcc_assert (flag_sel_sched_pipelining_outer_loops
3946 && current_loop_nest);
3947 FOR_EACH_SUCC_1 (succ, si, insn,
3948 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3950 gcc_assert (first);
3951 first = false;
3954 gcc_assert (succ != NULL);
3955 seqno = INSN_SEQNO (succ);
3957 else
3959 insn_t *preds;
3960 int n;
3962 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3963 gcc_assert (n == 1);
3965 seqno = INSN_SEQNO (preds[0]);
3967 free (preds);
3971 return seqno;
3974 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
3975 with positive seqno exist. */
3977 get_seqno_by_preds (rtx insn)
3979 basic_block bb = BLOCK_FOR_INSN (insn);
3980 rtx tmp = insn, head = BB_HEAD (bb);
3981 insn_t *preds;
3982 int n, i, seqno;
3984 while (tmp != head)
3985 if (INSN_P (tmp))
3986 return INSN_SEQNO (tmp);
3987 else
3988 tmp = PREV_INSN (tmp);
3990 cfg_preds (bb, &preds, &n);
3991 for (i = 0, seqno = -1; i < n; i++)
3992 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3994 return seqno;
3999 /* Extend pass-scope data structures for basic blocks. */
4000 void
4001 sel_extend_global_bb_info (void)
4003 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
4004 last_basic_block);
4007 /* Extend region-scope data structures for basic blocks. */
4008 static void
4009 extend_region_bb_info (void)
4011 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
4012 last_basic_block);
4015 /* Extend all data structures to fit for all basic blocks. */
4016 static void
4017 extend_bb_info (void)
4019 sel_extend_global_bb_info ();
4020 extend_region_bb_info ();
4023 /* Finalize pass-scope data structures for basic blocks. */
4024 void
4025 sel_finish_global_bb_info (void)
4027 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
4030 /* Finalize region-scope data structures for basic blocks. */
4031 static void
4032 finish_region_bb_info (void)
4034 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
4038 /* Data for each insn in current region. */
4039 VEC (sel_insn_data_def, heap) *s_i_d = NULL;
4041 /* Extend data structures for insns from current region. */
4042 static void
4043 extend_insn_data (void)
4045 int reserve;
4047 sched_extend_target ();
4048 sched_deps_init (false);
4050 /* Extend data structures for insns from current region. */
4051 reserve = (sched_max_luid + 1
4052 - VEC_length (sel_insn_data_def, s_i_d));
4053 if (reserve > 0
4054 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
4056 int size;
4058 if (sched_max_luid / 2 > 1024)
4059 size = sched_max_luid + 1024;
4060 else
4061 size = 3 * sched_max_luid / 2;
4064 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
4068 /* Finalize data structures for insns from current region. */
4069 static void
4070 finish_insns (void)
4072 unsigned i;
4074 /* Clear here all dependence contexts that may have left from insns that were
4075 removed during the scheduling. */
4076 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
4078 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
4080 if (sid_entry->live)
4081 return_regset_to_pool (sid_entry->live);
4082 if (sid_entry->analyzed_deps)
4084 BITMAP_FREE (sid_entry->analyzed_deps);
4085 BITMAP_FREE (sid_entry->found_deps);
4086 htab_delete (sid_entry->transformed_insns);
4087 free_deps (&sid_entry->deps_context);
4089 if (EXPR_VINSN (&sid_entry->expr))
4091 clear_expr (&sid_entry->expr);
4093 /* Also, clear CANT_MOVE bit here, because we really don't want it
4094 to be passed to the next region. */
4095 CANT_MOVE_BY_LUID (i) = 0;
4099 VEC_free (sel_insn_data_def, heap, s_i_d);
4102 /* A proxy to pass initialization data to init_insn (). */
4103 static sel_insn_data_def _insn_init_ssid;
4104 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4106 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4107 static bool insn_init_create_new_vinsn_p;
4109 /* Set all necessary data for initialization of the new insn[s]. */
4110 static expr_t
4111 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4113 expr_t x = &insn_init_ssid->expr;
4115 copy_expr_onside (x, expr);
4116 if (vi != NULL)
4118 insn_init_create_new_vinsn_p = false;
4119 change_vinsn_in_expr (x, vi);
4121 else
4122 insn_init_create_new_vinsn_p = true;
4124 insn_init_ssid->seqno = seqno;
4125 return x;
4128 /* Init data for INSN. */
4129 static void
4130 init_insn_data (insn_t insn)
4132 expr_t expr;
4133 sel_insn_data_t ssid = insn_init_ssid;
4135 /* The fields mentioned below are special and hence are not being
4136 propagated to the new insns. */
4137 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4138 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4139 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4141 expr = INSN_EXPR (insn);
4142 copy_expr (expr, &ssid->expr);
4143 prepare_insn_expr (insn, ssid->seqno);
4145 if (insn_init_create_new_vinsn_p)
4146 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4148 if (first_time_insn_init (insn))
4149 init_first_time_insn_data (insn);
4152 /* This is used to initialize spurious jumps generated by
4153 sel_redirect_edge (). */
4154 static void
4155 init_simplejump_data (insn_t insn)
4157 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4158 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
4159 false, true);
4160 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
4161 init_first_time_insn_data (insn);
4164 /* Perform deferred initialization of insns. This is used to process
4165 a new jump that may be created by redirect_edge. */
4166 void
4167 sel_init_new_insn (insn_t insn, int flags)
4169 /* We create data structures for bb when the first insn is emitted in it. */
4170 if (INSN_P (insn)
4171 && INSN_IN_STREAM_P (insn)
4172 && insn_is_the_only_one_in_bb_p (insn))
4174 extend_bb_info ();
4175 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4178 if (flags & INSN_INIT_TODO_LUID)
4180 sched_extend_luids ();
4181 sched_init_insn_luid (insn);
4184 if (flags & INSN_INIT_TODO_SSID)
4186 extend_insn_data ();
4187 init_insn_data (insn);
4188 clear_expr (&insn_init_ssid->expr);
4191 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4193 extend_insn_data ();
4194 init_simplejump_data (insn);
4197 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4198 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4202 /* Functions to init/finish work with lv sets. */
4204 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4205 static void
4206 init_lv_set (basic_block bb)
4208 gcc_assert (!BB_LV_SET_VALID_P (bb));
4210 BB_LV_SET (bb) = get_regset_from_pool ();
4211 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4212 BB_LV_SET_VALID_P (bb) = true;
4215 /* Copy liveness information to BB from FROM_BB. */
4216 static void
4217 copy_lv_set_from (basic_block bb, basic_block from_bb)
4219 gcc_assert (!BB_LV_SET_VALID_P (bb));
4221 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4222 BB_LV_SET_VALID_P (bb) = true;
4225 /* Initialize lv set of all bb headers. */
4226 void
4227 init_lv_sets (void)
4229 basic_block bb;
4231 /* Initialize of LV sets. */
4232 FOR_EACH_BB (bb)
4233 init_lv_set (bb);
4235 /* Don't forget EXIT_BLOCK. */
4236 init_lv_set (EXIT_BLOCK_PTR);
4239 /* Release lv set of HEAD. */
4240 static void
4241 free_lv_set (basic_block bb)
4243 gcc_assert (BB_LV_SET (bb) != NULL);
4245 return_regset_to_pool (BB_LV_SET (bb));
4246 BB_LV_SET (bb) = NULL;
4247 BB_LV_SET_VALID_P (bb) = false;
4250 /* Finalize lv sets of all bb headers. */
4251 void
4252 free_lv_sets (void)
4254 basic_block bb;
4256 /* Don't forget EXIT_BLOCK. */
4257 free_lv_set (EXIT_BLOCK_PTR);
4259 /* Free LV sets. */
4260 FOR_EACH_BB (bb)
4261 if (BB_LV_SET (bb))
4262 free_lv_set (bb);
4265 /* Initialize an invalid AV_SET for BB.
4266 This set will be updated next time compute_av () process BB. */
4267 static void
4268 invalidate_av_set (basic_block bb)
4270 gcc_assert (BB_AV_LEVEL (bb) <= 0
4271 && BB_AV_SET (bb) == NULL);
4273 BB_AV_LEVEL (bb) = -1;
4276 /* Create initial data sets for BB (they will be invalid). */
4277 static void
4278 create_initial_data_sets (basic_block bb)
4280 if (BB_LV_SET (bb))
4281 BB_LV_SET_VALID_P (bb) = false;
4282 else
4283 BB_LV_SET (bb) = get_regset_from_pool ();
4284 invalidate_av_set (bb);
4287 /* Free av set of BB. */
4288 static void
4289 free_av_set (basic_block bb)
4291 av_set_clear (&BB_AV_SET (bb));
4292 BB_AV_LEVEL (bb) = 0;
4295 /* Free data sets of BB. */
4296 void
4297 free_data_sets (basic_block bb)
4299 free_lv_set (bb);
4300 free_av_set (bb);
4303 /* Exchange lv sets of TO and FROM. */
4304 static void
4305 exchange_lv_sets (basic_block to, basic_block from)
4308 regset to_lv_set = BB_LV_SET (to);
4310 BB_LV_SET (to) = BB_LV_SET (from);
4311 BB_LV_SET (from) = to_lv_set;
4315 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4317 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4318 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4323 /* Exchange av sets of TO and FROM. */
4324 static void
4325 exchange_av_sets (basic_block to, basic_block from)
4328 av_set_t to_av_set = BB_AV_SET (to);
4330 BB_AV_SET (to) = BB_AV_SET (from);
4331 BB_AV_SET (from) = to_av_set;
4335 int to_av_level = BB_AV_LEVEL (to);
4337 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4338 BB_AV_LEVEL (from) = to_av_level;
4342 /* Exchange data sets of TO and FROM. */
4343 void
4344 exchange_data_sets (basic_block to, basic_block from)
4346 exchange_lv_sets (to, from);
4347 exchange_av_sets (to, from);
4350 /* Copy data sets of FROM to TO. */
4351 void
4352 copy_data_sets (basic_block to, basic_block from)
4354 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4355 gcc_assert (BB_AV_SET (to) == NULL);
4357 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4358 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4360 if (BB_AV_SET_VALID_P (from))
4362 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4364 if (BB_LV_SET_VALID_P (from))
4366 gcc_assert (BB_LV_SET (to) != NULL);
4367 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4371 /* Return an av set for INSN, if any. */
4372 av_set_t
4373 get_av_set (insn_t insn)
4375 av_set_t av_set;
4377 gcc_assert (AV_SET_VALID_P (insn));
4379 if (sel_bb_head_p (insn))
4380 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4381 else
4382 av_set = NULL;
4384 return av_set;
4387 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4389 get_av_level (insn_t insn)
4391 int av_level;
4393 gcc_assert (INSN_P (insn));
4395 if (sel_bb_head_p (insn))
4396 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4397 else
4398 av_level = INSN_WS_LEVEL (insn);
4400 return av_level;
4405 /* Variables to work with control-flow graph. */
4407 /* The basic block that already has been processed by the sched_data_update (),
4408 but hasn't been in sel_add_bb () yet. */
4409 static VEC (basic_block, heap) *last_added_blocks = NULL;
4411 /* A pool for allocating successor infos. */
4412 static struct
4414 /* A stack for saving succs_info structures. */
4415 struct succs_info *stack;
4417 /* Its size. */
4418 int size;
4420 /* Top of the stack. */
4421 int top;
4423 /* Maximal value of the top. */
4424 int max_top;
4425 } succs_info_pool;
4427 /* Functions to work with control-flow graph. */
4429 /* Return basic block note of BB. */
4430 insn_t
4431 sel_bb_head (basic_block bb)
4433 insn_t head;
4435 if (bb == EXIT_BLOCK_PTR)
4437 gcc_assert (exit_insn != NULL_RTX);
4438 head = exit_insn;
4440 else
4442 insn_t note;
4444 note = bb_note (bb);
4445 head = next_nonnote_insn (note);
4447 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4448 head = NULL_RTX;
4451 return head;
4454 /* Return true if INSN is a basic block header. */
4455 bool
4456 sel_bb_head_p (insn_t insn)
4458 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4461 /* Return last insn of BB. */
4462 insn_t
4463 sel_bb_end (basic_block bb)
4465 if (sel_bb_empty_p (bb))
4466 return NULL_RTX;
4468 gcc_assert (bb != EXIT_BLOCK_PTR);
4470 return BB_END (bb);
4473 /* Return true if INSN is the last insn in its basic block. */
4474 bool
4475 sel_bb_end_p (insn_t insn)
4477 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4480 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4481 bool
4482 sel_bb_empty_p (basic_block bb)
4484 return sel_bb_head (bb) == NULL;
4487 /* True when BB belongs to the current scheduling region. */
4488 bool
4489 in_current_region_p (basic_block bb)
4491 if (bb->index < NUM_FIXED_BLOCKS)
4492 return false;
4494 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4497 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4498 basic_block
4499 fallthru_bb_of_jump (rtx jump)
4501 if (!JUMP_P (jump))
4502 return NULL;
4504 if (!any_condjump_p (jump))
4505 return NULL;
4507 /* A basic block that ends with a conditional jump may still have one successor
4508 (and be followed by a barrier), we are not interested. */
4509 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4510 return NULL;
4512 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4515 /* Remove all notes from BB. */
4516 static void
4517 init_bb (basic_block bb)
4519 remove_notes (bb_note (bb), BB_END (bb));
4520 BB_NOTE_LIST (bb) = note_list;
4523 void
4524 sel_init_bbs (bb_vec_t bbs)
4526 const struct sched_scan_info_def ssi =
4528 extend_bb_info, /* extend_bb */
4529 init_bb, /* init_bb */
4530 NULL, /* extend_insn */
4531 NULL /* init_insn */
4534 sched_scan (&ssi, bbs);
4537 /* Restore notes for the whole region. */
4538 static void
4539 sel_restore_notes (void)
4541 int bb;
4542 insn_t insn;
4544 for (bb = 0; bb < current_nr_blocks; bb++)
4546 basic_block first, last;
4548 first = EBB_FIRST_BB (bb);
4549 last = EBB_LAST_BB (bb)->next_bb;
4553 note_list = BB_NOTE_LIST (first);
4554 restore_other_notes (NULL, first);
4555 BB_NOTE_LIST (first) = NULL_RTX;
4557 FOR_BB_INSNS (first, insn)
4558 if (NONDEBUG_INSN_P (insn))
4559 reemit_notes (insn);
4561 first = first->next_bb;
4563 while (first != last);
4567 /* Free per-bb data structures. */
4568 void
4569 sel_finish_bbs (void)
4571 sel_restore_notes ();
4573 /* Remove current loop preheader from this loop. */
4574 if (current_loop_nest)
4575 sel_remove_loop_preheader ();
4577 finish_region_bb_info ();
4580 /* Return true if INSN has a single successor of type FLAGS. */
4581 bool
4582 sel_insn_has_single_succ_p (insn_t insn, int flags)
4584 insn_t succ;
4585 succ_iterator si;
4586 bool first_p = true;
4588 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4590 if (first_p)
4591 first_p = false;
4592 else
4593 return false;
4596 return true;
4599 /* Allocate successor's info. */
4600 static struct succs_info *
4601 alloc_succs_info (void)
4603 if (succs_info_pool.top == succs_info_pool.max_top)
4605 int i;
4607 if (++succs_info_pool.max_top >= succs_info_pool.size)
4608 gcc_unreachable ();
4610 i = ++succs_info_pool.top;
4611 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4612 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4613 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4615 else
4616 succs_info_pool.top++;
4618 return &succs_info_pool.stack[succs_info_pool.top];
4621 /* Free successor's info. */
4622 void
4623 free_succs_info (struct succs_info * sinfo)
4625 gcc_assert (succs_info_pool.top >= 0
4626 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4627 succs_info_pool.top--;
4629 /* Clear stale info. */
4630 VEC_block_remove (rtx, sinfo->succs_ok,
4631 0, VEC_length (rtx, sinfo->succs_ok));
4632 VEC_block_remove (rtx, sinfo->succs_other,
4633 0, VEC_length (rtx, sinfo->succs_other));
4634 VEC_block_remove (int, sinfo->probs_ok,
4635 0, VEC_length (int, sinfo->probs_ok));
4636 sinfo->all_prob = 0;
4637 sinfo->succs_ok_n = 0;
4638 sinfo->all_succs_n = 0;
4641 /* Compute successor info for INSN. FLAGS are the flags passed
4642 to the FOR_EACH_SUCC_1 iterator. */
4643 struct succs_info *
4644 compute_succs_info (insn_t insn, short flags)
4646 succ_iterator si;
4647 insn_t succ;
4648 struct succs_info *sinfo = alloc_succs_info ();
4650 /* Traverse *all* successors and decide what to do with each. */
4651 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4653 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4654 perform code motion through inner loops. */
4655 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4657 if (current_flags & flags)
4659 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4660 VEC_safe_push (int, heap, sinfo->probs_ok,
4661 /* FIXME: Improve calculation when skipping
4662 inner loop to exits. */
4663 (si.bb_end
4664 ? si.e1->probability
4665 : REG_BR_PROB_BASE));
4666 sinfo->succs_ok_n++;
4668 else
4669 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4671 /* Compute all_prob. */
4672 if (!si.bb_end)
4673 sinfo->all_prob = REG_BR_PROB_BASE;
4674 else
4675 sinfo->all_prob += si.e1->probability;
4677 sinfo->all_succs_n++;
4680 return sinfo;
4683 /* Return the predecessors of BB in PREDS and their number in N.
4684 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4685 static void
4686 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4688 edge e;
4689 edge_iterator ei;
4691 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4693 FOR_EACH_EDGE (e, ei, bb->preds)
4695 basic_block pred_bb = e->src;
4696 insn_t bb_end = BB_END (pred_bb);
4698 if (!in_current_region_p (pred_bb))
4700 gcc_assert (flag_sel_sched_pipelining_outer_loops
4701 && current_loop_nest);
4702 continue;
4705 if (sel_bb_empty_p (pred_bb))
4706 cfg_preds_1 (pred_bb, preds, n, size);
4707 else
4709 if (*n == *size)
4710 *preds = XRESIZEVEC (insn_t, *preds,
4711 (*size = 2 * *size + 1));
4712 (*preds)[(*n)++] = bb_end;
4716 gcc_assert (*n != 0
4717 || (flag_sel_sched_pipelining_outer_loops
4718 && current_loop_nest));
4721 /* Find all predecessors of BB and record them in PREDS and their number
4722 in N. Empty blocks are skipped, and only normal (forward in-region)
4723 edges are processed. */
4724 static void
4725 cfg_preds (basic_block bb, insn_t **preds, int *n)
4727 int size = 0;
4729 *preds = NULL;
4730 *n = 0;
4731 cfg_preds_1 (bb, preds, n, &size);
4734 /* Returns true if we are moving INSN through join point. */
4735 bool
4736 sel_num_cfg_preds_gt_1 (insn_t insn)
4738 basic_block bb;
4740 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4741 return false;
4743 bb = BLOCK_FOR_INSN (insn);
4745 while (1)
4747 if (EDGE_COUNT (bb->preds) > 1)
4748 return true;
4750 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4751 bb = EDGE_PRED (bb, 0)->src;
4753 if (!sel_bb_empty_p (bb))
4754 break;
4757 return false;
4760 /* Returns true when BB should be the end of an ebb. Adapted from the
4761 code in sched-ebb.c. */
4762 bool
4763 bb_ends_ebb_p (basic_block bb)
4765 basic_block next_bb = bb_next_bb (bb);
4766 edge e;
4768 if (next_bb == EXIT_BLOCK_PTR
4769 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4770 || (LABEL_P (BB_HEAD (next_bb))
4771 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4772 Work around that. */
4773 && !single_pred_p (next_bb)))
4774 return true;
4776 if (!in_current_region_p (next_bb))
4777 return true;
4779 e = find_fallthru_edge (bb->succs);
4780 if (e)
4782 gcc_assert (e->dest == next_bb);
4784 return false;
4787 return true;
4790 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4791 successor of INSN. */
4792 bool
4793 in_same_ebb_p (insn_t insn, insn_t succ)
4795 basic_block ptr = BLOCK_FOR_INSN (insn);
4797 for(;;)
4799 if (ptr == BLOCK_FOR_INSN (succ))
4800 return true;
4802 if (bb_ends_ebb_p (ptr))
4803 return false;
4805 ptr = bb_next_bb (ptr);
4808 gcc_unreachable ();
4809 return false;
4812 /* Recomputes the reverse topological order for the function and
4813 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4814 modified appropriately. */
4815 static void
4816 recompute_rev_top_order (void)
4818 int *postorder;
4819 int n_blocks, i;
4821 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4823 rev_top_order_index_len = last_basic_block;
4824 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4825 rev_top_order_index_len);
4828 postorder = XNEWVEC (int, n_basic_blocks);
4830 n_blocks = post_order_compute (postorder, true, false);
4831 gcc_assert (n_basic_blocks == n_blocks);
4833 /* Build reverse function: for each basic block with BB->INDEX == K
4834 rev_top_order_index[K] is it's reverse topological sort number. */
4835 for (i = 0; i < n_blocks; i++)
4837 gcc_assert (postorder[i] < rev_top_order_index_len);
4838 rev_top_order_index[postorder[i]] = i;
4841 free (postorder);
4844 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4845 void
4846 clear_outdated_rtx_info (basic_block bb)
4848 rtx insn;
4850 FOR_BB_INSNS (bb, insn)
4851 if (INSN_P (insn))
4853 SCHED_GROUP_P (insn) = 0;
4854 INSN_AFTER_STALL_P (insn) = 0;
4855 INSN_SCHED_TIMES (insn) = 0;
4856 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4858 /* We cannot use the changed caches, as previously we could ignore
4859 the LHS dependence due to enabled renaming and transform
4860 the expression, and currently we'll be unable to do this. */
4861 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4865 /* Add BB_NOTE to the pool of available basic block notes. */
4866 static void
4867 return_bb_to_pool (basic_block bb)
4869 rtx note = bb_note (bb);
4871 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4872 && bb->aux == NULL);
4874 /* It turns out that current cfg infrastructure does not support
4875 reuse of basic blocks. Don't bother for now. */
4876 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4879 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4880 static rtx
4881 get_bb_note_from_pool (void)
4883 if (VEC_empty (rtx, bb_note_pool))
4884 return NULL_RTX;
4885 else
4887 rtx note = VEC_pop (rtx, bb_note_pool);
4889 PREV_INSN (note) = NULL_RTX;
4890 NEXT_INSN (note) = NULL_RTX;
4892 return note;
4896 /* Free bb_note_pool. */
4897 void
4898 free_bb_note_pool (void)
4900 VEC_free (rtx, heap, bb_note_pool);
4903 /* Setup scheduler pool and successor structure. */
4904 void
4905 alloc_sched_pools (void)
4907 int succs_size;
4909 succs_size = MAX_WS + 1;
4910 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4911 succs_info_pool.size = succs_size;
4912 succs_info_pool.top = -1;
4913 succs_info_pool.max_top = -1;
4915 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
4916 sizeof (struct _list_node), 500);
4919 /* Free the pools. */
4920 void
4921 free_sched_pools (void)
4923 int i;
4925 free_alloc_pool (sched_lists_pool);
4926 gcc_assert (succs_info_pool.top == -1);
4927 for (i = 0; i < succs_info_pool.max_top; i++)
4929 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4930 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4931 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4933 free (succs_info_pool.stack);
4937 /* Returns a position in RGN where BB can be inserted retaining
4938 topological order. */
4939 static int
4940 find_place_to_insert_bb (basic_block bb, int rgn)
4942 bool has_preds_outside_rgn = false;
4943 edge e;
4944 edge_iterator ei;
4946 /* Find whether we have preds outside the region. */
4947 FOR_EACH_EDGE (e, ei, bb->preds)
4948 if (!in_current_region_p (e->src))
4950 has_preds_outside_rgn = true;
4951 break;
4954 /* Recompute the top order -- needed when we have > 1 pred
4955 and in case we don't have preds outside. */
4956 if (flag_sel_sched_pipelining_outer_loops
4957 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4959 int i, bbi = bb->index, cur_bbi;
4961 recompute_rev_top_order ();
4962 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4964 cur_bbi = BB_TO_BLOCK (i);
4965 if (rev_top_order_index[bbi]
4966 < rev_top_order_index[cur_bbi])
4967 break;
4970 /* We skipped the right block, so we increase i. We accomodate
4971 it for increasing by step later, so we decrease i. */
4972 return (i + 1) - 1;
4974 else if (has_preds_outside_rgn)
4976 /* This is the case when we generate an extra empty block
4977 to serve as region head during pipelining. */
4978 e = EDGE_SUCC (bb, 0);
4979 gcc_assert (EDGE_COUNT (bb->succs) == 1
4980 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4981 && (BLOCK_TO_BB (e->dest->index) == 0));
4982 return -1;
4985 /* We don't have preds outside the region. We should have
4986 the only pred, because the multiple preds case comes from
4987 the pipelining of outer loops, and that is handled above.
4988 Just take the bbi of this single pred. */
4989 if (EDGE_COUNT (bb->succs) > 0)
4991 int pred_bbi;
4993 gcc_assert (EDGE_COUNT (bb->preds) == 1);
4995 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4996 return BLOCK_TO_BB (pred_bbi);
4998 else
4999 /* BB has no successors. It is safe to put it in the end. */
5000 return current_nr_blocks - 1;
5003 /* Deletes an empty basic block freeing its data. */
5004 static void
5005 delete_and_free_basic_block (basic_block bb)
5007 gcc_assert (sel_bb_empty_p (bb));
5009 if (BB_LV_SET (bb))
5010 free_lv_set (bb);
5012 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5014 /* Can't assert av_set properties because we use sel_aremove_bb
5015 when removing loop preheader from the region. At the point of
5016 removing the preheader we already have deallocated sel_region_bb_info. */
5017 gcc_assert (BB_LV_SET (bb) == NULL
5018 && !BB_LV_SET_VALID_P (bb)
5019 && BB_AV_LEVEL (bb) == 0
5020 && BB_AV_SET (bb) == NULL);
5022 delete_basic_block (bb);
5025 /* Add BB to the current region and update the region data. */
5026 static void
5027 add_block_to_current_region (basic_block bb)
5029 int i, pos, bbi = -2, rgn;
5031 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5032 bbi = find_place_to_insert_bb (bb, rgn);
5033 bbi += 1;
5034 pos = RGN_BLOCKS (rgn) + bbi;
5036 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5037 && ebb_head[bbi] == pos);
5039 /* Make a place for the new block. */
5040 extend_regions ();
5042 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5043 BLOCK_TO_BB (rgn_bb_table[i])++;
5045 memmove (rgn_bb_table + pos + 1,
5046 rgn_bb_table + pos,
5047 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5049 /* Initialize data for BB. */
5050 rgn_bb_table[pos] = bb->index;
5051 BLOCK_TO_BB (bb->index) = bbi;
5052 CONTAINING_RGN (bb->index) = rgn;
5054 RGN_NR_BLOCKS (rgn)++;
5056 for (i = rgn + 1; i <= nr_regions; i++)
5057 RGN_BLOCKS (i)++;
5060 /* Remove BB from the current region and update the region data. */
5061 static void
5062 remove_bb_from_region (basic_block bb)
5064 int i, pos, bbi = -2, rgn;
5066 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5067 bbi = BLOCK_TO_BB (bb->index);
5068 pos = RGN_BLOCKS (rgn) + bbi;
5070 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5071 && ebb_head[bbi] == pos);
5073 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5074 BLOCK_TO_BB (rgn_bb_table[i])--;
5076 memmove (rgn_bb_table + pos,
5077 rgn_bb_table + pos + 1,
5078 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5080 RGN_NR_BLOCKS (rgn)--;
5081 for (i = rgn + 1; i <= nr_regions; i++)
5082 RGN_BLOCKS (i)--;
5085 /* Add BB to the current region and update all data. If BB is NULL, add all
5086 blocks from last_added_blocks vector. */
5087 static void
5088 sel_add_bb (basic_block bb)
5090 /* Extend luids so that new notes will receive zero luids. */
5091 sched_extend_luids ();
5092 sched_init_bbs ();
5093 sel_init_bbs (last_added_blocks);
5095 /* When bb is passed explicitly, the vector should contain
5096 the only element that equals to bb; otherwise, the vector
5097 should not be NULL. */
5098 gcc_assert (last_added_blocks != NULL);
5100 if (bb != NULL)
5102 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5103 && VEC_index (basic_block,
5104 last_added_blocks, 0) == bb);
5105 add_block_to_current_region (bb);
5107 /* We associate creating/deleting data sets with the first insn
5108 appearing / disappearing in the bb. */
5109 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5110 create_initial_data_sets (bb);
5112 VEC_free (basic_block, heap, last_added_blocks);
5114 else
5115 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5117 int i;
5118 basic_block temp_bb = NULL;
5120 for (i = 0;
5121 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5123 add_block_to_current_region (bb);
5124 temp_bb = bb;
5127 /* We need to fetch at least one bb so we know the region
5128 to update. */
5129 gcc_assert (temp_bb != NULL);
5130 bb = temp_bb;
5132 VEC_free (basic_block, heap, last_added_blocks);
5135 rgn_setup_region (CONTAINING_RGN (bb->index));
5138 /* Remove BB from the current region and update all data.
5139 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5140 static void
5141 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5143 unsigned idx = bb->index;
5145 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5147 remove_bb_from_region (bb);
5148 return_bb_to_pool (bb);
5149 bitmap_clear_bit (blocks_to_reschedule, idx);
5151 if (remove_from_cfg_p)
5153 basic_block succ = single_succ (bb);
5154 delete_and_free_basic_block (bb);
5155 set_immediate_dominator (CDI_DOMINATORS, succ,
5156 recompute_dominator (CDI_DOMINATORS, succ));
5159 rgn_setup_region (CONTAINING_RGN (idx));
5162 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5163 static void
5164 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5166 gcc_assert (in_current_region_p (merge_bb));
5168 concat_note_lists (BB_NOTE_LIST (empty_bb),
5169 &BB_NOTE_LIST (merge_bb));
5170 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5174 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5175 region, but keep it in CFG. */
5176 static void
5177 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5179 /* The block should contain just a note or a label.
5180 We try to check whether it is unused below. */
5181 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5182 || LABEL_P (BB_HEAD (empty_bb)));
5184 /* If basic block has predecessors or successors, redirect them. */
5185 if (remove_from_cfg_p
5186 && (EDGE_COUNT (empty_bb->preds) > 0
5187 || EDGE_COUNT (empty_bb->succs) > 0))
5189 basic_block pred;
5190 basic_block succ;
5192 /* We need to init PRED and SUCC before redirecting edges. */
5193 if (EDGE_COUNT (empty_bb->preds) > 0)
5195 edge e;
5197 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5199 e = EDGE_PRED (empty_bb, 0);
5200 gcc_assert (e->src == empty_bb->prev_bb
5201 && (e->flags & EDGE_FALLTHRU));
5203 pred = empty_bb->prev_bb;
5205 else
5206 pred = NULL;
5208 if (EDGE_COUNT (empty_bb->succs) > 0)
5210 /* We do not check fallthruness here as above, because
5211 after removing a jump the edge may actually be not fallthru. */
5212 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5213 succ = EDGE_SUCC (empty_bb, 0)->dest;
5215 else
5216 succ = NULL;
5218 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5220 edge e = EDGE_PRED (empty_bb, 0);
5222 if (e->flags & EDGE_FALLTHRU)
5223 redirect_edge_succ_nodup (e, succ);
5224 else
5225 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5228 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5230 edge e = EDGE_SUCC (empty_bb, 0);
5232 if (find_edge (pred, e->dest) == NULL)
5233 redirect_edge_pred (e, pred);
5237 /* Finish removing. */
5238 sel_remove_bb (empty_bb, remove_from_cfg_p);
5241 /* An implementation of create_basic_block hook, which additionally updates
5242 per-bb data structures. */
5243 static basic_block
5244 sel_create_basic_block (void *headp, void *endp, basic_block after)
5246 basic_block new_bb;
5247 insn_t new_bb_note;
5249 gcc_assert (flag_sel_sched_pipelining_outer_loops
5250 || last_added_blocks == NULL);
5252 new_bb_note = get_bb_note_from_pool ();
5254 if (new_bb_note == NULL_RTX)
5255 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5256 else
5258 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5259 new_bb_note, after);
5260 new_bb->aux = NULL;
5263 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5265 return new_bb;
5268 /* Implement sched_init_only_bb (). */
5269 static void
5270 sel_init_only_bb (basic_block bb, basic_block after)
5272 gcc_assert (after == NULL);
5274 extend_regions ();
5275 rgn_make_new_region_out_of_new_block (bb);
5278 /* Update the latch when we've splitted or merged it from FROM block to TO.
5279 This should be checked for all outer loops, too. */
5280 static void
5281 change_loops_latches (basic_block from, basic_block to)
5283 gcc_assert (from != to);
5285 if (current_loop_nest)
5287 struct loop *loop;
5289 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5290 if (considered_for_pipelining_p (loop) && loop->latch == from)
5292 gcc_assert (loop == current_loop_nest);
5293 loop->latch = to;
5294 gcc_assert (loop_latch_edge (loop));
5299 /* Splits BB on two basic blocks, adding it to the region and extending
5300 per-bb data structures. Returns the newly created bb. */
5301 static basic_block
5302 sel_split_block (basic_block bb, rtx after)
5304 basic_block new_bb;
5305 insn_t insn;
5307 new_bb = sched_split_block_1 (bb, after);
5308 sel_add_bb (new_bb);
5310 /* This should be called after sel_add_bb, because this uses
5311 CONTAINING_RGN for the new block, which is not yet initialized.
5312 FIXME: this function may be a no-op now. */
5313 change_loops_latches (bb, new_bb);
5315 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5316 FOR_BB_INSNS (new_bb, insn)
5317 if (INSN_P (insn))
5318 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5320 if (sel_bb_empty_p (bb))
5322 gcc_assert (!sel_bb_empty_p (new_bb));
5324 /* NEW_BB has data sets that need to be updated and BB holds
5325 data sets that should be removed. Exchange these data sets
5326 so that we won't lose BB's valid data sets. */
5327 exchange_data_sets (new_bb, bb);
5328 free_data_sets (bb);
5331 if (!sel_bb_empty_p (new_bb)
5332 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5333 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5335 return new_bb;
5338 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5339 Otherwise returns NULL. */
5340 static rtx
5341 check_for_new_jump (basic_block bb, int prev_max_uid)
5343 rtx end;
5345 end = sel_bb_end (bb);
5346 if (end && INSN_UID (end) >= prev_max_uid)
5347 return end;
5348 return NULL;
5351 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5352 New means having UID at least equal to PREV_MAX_UID. */
5353 static rtx
5354 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5356 rtx jump;
5358 /* Return immediately if no new insns were emitted. */
5359 if (get_max_uid () == prev_max_uid)
5360 return NULL;
5362 /* Now check both blocks for new jumps. It will ever be only one. */
5363 if ((jump = check_for_new_jump (from, prev_max_uid)))
5364 return jump;
5366 if (jump_bb != NULL
5367 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5368 return jump;
5369 return NULL;
5372 /* Splits E and adds the newly created basic block to the current region.
5373 Returns this basic block. */
5374 basic_block
5375 sel_split_edge (edge e)
5377 basic_block new_bb, src, other_bb = NULL;
5378 int prev_max_uid;
5379 rtx jump;
5381 src = e->src;
5382 prev_max_uid = get_max_uid ();
5383 new_bb = split_edge (e);
5385 if (flag_sel_sched_pipelining_outer_loops
5386 && current_loop_nest)
5388 int i;
5389 basic_block bb;
5391 /* Some of the basic blocks might not have been added to the loop.
5392 Add them here, until this is fixed in force_fallthru. */
5393 for (i = 0;
5394 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5395 if (!bb->loop_father)
5397 add_bb_to_loop (bb, e->dest->loop_father);
5399 gcc_assert (!other_bb && (new_bb->index != bb->index));
5400 other_bb = bb;
5404 /* Add all last_added_blocks to the region. */
5405 sel_add_bb (NULL);
5407 jump = find_new_jump (src, new_bb, prev_max_uid);
5408 if (jump)
5409 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5411 /* Put the correct lv set on this block. */
5412 if (other_bb && !sel_bb_empty_p (other_bb))
5413 compute_live (sel_bb_head (other_bb));
5415 return new_bb;
5418 /* Implement sched_create_empty_bb (). */
5419 static basic_block
5420 sel_create_empty_bb (basic_block after)
5422 basic_block new_bb;
5424 new_bb = sched_create_empty_bb_1 (after);
5426 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5427 later. */
5428 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5429 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5431 VEC_free (basic_block, heap, last_added_blocks);
5432 return new_bb;
5435 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5436 will be splitted to insert a check. */
5437 basic_block
5438 sel_create_recovery_block (insn_t orig_insn)
5440 basic_block first_bb, second_bb, recovery_block;
5441 basic_block before_recovery = NULL;
5442 rtx jump;
5444 first_bb = BLOCK_FOR_INSN (orig_insn);
5445 if (sel_bb_end_p (orig_insn))
5447 /* Avoid introducing an empty block while splitting. */
5448 gcc_assert (single_succ_p (first_bb));
5449 second_bb = single_succ (first_bb);
5451 else
5452 second_bb = sched_split_block (first_bb, orig_insn);
5454 recovery_block = sched_create_recovery_block (&before_recovery);
5455 if (before_recovery)
5456 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5458 gcc_assert (sel_bb_empty_p (recovery_block));
5459 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5460 if (current_loops != NULL)
5461 add_bb_to_loop (recovery_block, first_bb->loop_father);
5463 sel_add_bb (recovery_block);
5465 jump = BB_END (recovery_block);
5466 gcc_assert (sel_bb_head (recovery_block) == jump);
5467 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5469 return recovery_block;
5472 /* Merge basic block B into basic block A. */
5473 static void
5474 sel_merge_blocks (basic_block a, basic_block b)
5476 gcc_assert (sel_bb_empty_p (b)
5477 && EDGE_COUNT (b->preds) == 1
5478 && EDGE_PRED (b, 0)->src == b->prev_bb);
5480 move_bb_info (b->prev_bb, b);
5481 remove_empty_bb (b, false);
5482 merge_blocks (a, b);
5483 change_loops_latches (b, a);
5486 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5487 data structures for possibly created bb and insns. Returns the newly
5488 added bb or NULL, when a bb was not needed. */
5489 void
5490 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5492 basic_block jump_bb, src, orig_dest = e->dest;
5493 int prev_max_uid;
5494 rtx jump;
5496 /* This function is now used only for bookkeeping code creation, where
5497 we'll never get the single pred of orig_dest block and thus will not
5498 hit unreachable blocks when updating dominator info. */
5499 gcc_assert (!sel_bb_empty_p (e->src)
5500 && !single_pred_p (orig_dest));
5501 src = e->src;
5502 prev_max_uid = get_max_uid ();
5503 jump_bb = redirect_edge_and_branch_force (e, to);
5505 if (jump_bb != NULL)
5506 sel_add_bb (jump_bb);
5508 /* This function could not be used to spoil the loop structure by now,
5509 thus we don't care to update anything. But check it to be sure. */
5510 if (current_loop_nest
5511 && pipelining_p)
5512 gcc_assert (loop_latch_edge (current_loop_nest));
5514 jump = find_new_jump (src, jump_bb, prev_max_uid);
5515 if (jump)
5516 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5517 set_immediate_dominator (CDI_DOMINATORS, to,
5518 recompute_dominator (CDI_DOMINATORS, to));
5519 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5520 recompute_dominator (CDI_DOMINATORS, orig_dest));
5523 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5524 redirected edge are in reverse topological order. */
5525 bool
5526 sel_redirect_edge_and_branch (edge e, basic_block to)
5528 bool latch_edge_p;
5529 basic_block src, orig_dest = e->dest;
5530 int prev_max_uid;
5531 rtx jump;
5532 edge redirected;
5533 bool recompute_toporder_p = false;
5534 bool maybe_unreachable = single_pred_p (orig_dest);
5536 latch_edge_p = (pipelining_p
5537 && current_loop_nest
5538 && e == loop_latch_edge (current_loop_nest));
5540 src = e->src;
5541 prev_max_uid = get_max_uid ();
5543 redirected = redirect_edge_and_branch (e, to);
5545 gcc_assert (redirected && last_added_blocks == NULL);
5547 /* When we've redirected a latch edge, update the header. */
5548 if (latch_edge_p)
5550 current_loop_nest->header = to;
5551 gcc_assert (loop_latch_edge (current_loop_nest));
5554 /* In rare situations, the topological relation between the blocks connected
5555 by the redirected edge can change (see PR42245 for an example). Update
5556 block_to_bb/bb_to_block. */
5557 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5558 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5559 recompute_toporder_p = true;
5561 jump = find_new_jump (src, NULL, prev_max_uid);
5562 if (jump)
5563 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5565 /* Only update dominator info when we don't have unreachable blocks.
5566 Otherwise we'll update in maybe_tidy_empty_bb. */
5567 if (!maybe_unreachable)
5569 set_immediate_dominator (CDI_DOMINATORS, to,
5570 recompute_dominator (CDI_DOMINATORS, to));
5571 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5572 recompute_dominator (CDI_DOMINATORS, orig_dest));
5574 return recompute_toporder_p;
5577 /* This variable holds the cfg hooks used by the selective scheduler. */
5578 static struct cfg_hooks sel_cfg_hooks;
5580 /* Register sel-sched cfg hooks. */
5581 void
5582 sel_register_cfg_hooks (void)
5584 sched_split_block = sel_split_block;
5586 orig_cfg_hooks = get_cfg_hooks ();
5587 sel_cfg_hooks = orig_cfg_hooks;
5589 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5591 set_cfg_hooks (sel_cfg_hooks);
5593 sched_init_only_bb = sel_init_only_bb;
5594 sched_split_block = sel_split_block;
5595 sched_create_empty_bb = sel_create_empty_bb;
5598 /* Unregister sel-sched cfg hooks. */
5599 void
5600 sel_unregister_cfg_hooks (void)
5602 sched_create_empty_bb = NULL;
5603 sched_split_block = NULL;
5604 sched_init_only_bb = NULL;
5606 set_cfg_hooks (orig_cfg_hooks);
5610 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5611 LABEL is where this jump should be directed. */
5613 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5615 rtx insn_rtx;
5617 gcc_assert (!INSN_P (pattern));
5619 start_sequence ();
5621 if (label == NULL_RTX)
5622 insn_rtx = emit_insn (pattern);
5623 else if (DEBUG_INSN_P (label))
5624 insn_rtx = emit_debug_insn (pattern);
5625 else
5627 insn_rtx = emit_jump_insn (pattern);
5628 JUMP_LABEL (insn_rtx) = label;
5629 ++LABEL_NUSES (label);
5632 end_sequence ();
5634 sched_extend_luids ();
5635 sched_extend_target ();
5636 sched_deps_init (false);
5638 /* Initialize INSN_CODE now. */
5639 recog_memoized (insn_rtx);
5640 return insn_rtx;
5643 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5644 must not be clonable. */
5645 vinsn_t
5646 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5648 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5650 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5651 return vinsn_create (insn_rtx, force_unique_p);
5654 /* Create a copy of INSN_RTX. */
5656 create_copy_of_insn_rtx (rtx insn_rtx)
5658 rtx res;
5660 if (DEBUG_INSN_P (insn_rtx))
5661 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5662 insn_rtx);
5664 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5666 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5667 NULL_RTX);
5668 return res;
5671 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5672 void
5673 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5675 vinsn_detach (EXPR_VINSN (expr));
5677 EXPR_VINSN (expr) = new_vinsn;
5678 vinsn_attach (new_vinsn);
5681 /* Helpers for global init. */
5682 /* This structure is used to be able to call existing bundling mechanism
5683 and calculate insn priorities. */
5684 static struct haifa_sched_info sched_sel_haifa_sched_info =
5686 NULL, /* init_ready_list */
5687 NULL, /* can_schedule_ready_p */
5688 NULL, /* schedule_more_p */
5689 NULL, /* new_ready */
5690 NULL, /* rgn_rank */
5691 sel_print_insn, /* rgn_print_insn */
5692 contributes_to_priority,
5693 NULL, /* insn_finishes_block_p */
5695 NULL, NULL,
5696 NULL, NULL,
5697 0, 0,
5699 NULL, /* add_remove_insn */
5700 NULL, /* begin_schedule_ready */
5701 NULL, /* begin_move_insn */
5702 NULL, /* advance_target_bb */
5703 SEL_SCHED | NEW_BBS
5706 /* Setup special insns used in the scheduler. */
5707 void
5708 setup_nop_and_exit_insns (void)
5710 gcc_assert (nop_pattern == NULL_RTX
5711 && exit_insn == NULL_RTX);
5713 nop_pattern = constm1_rtx;
5715 start_sequence ();
5716 emit_insn (nop_pattern);
5717 exit_insn = get_insns ();
5718 end_sequence ();
5719 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5722 /* Free special insns used in the scheduler. */
5723 void
5724 free_nop_and_exit_insns (void)
5726 exit_insn = NULL_RTX;
5727 nop_pattern = NULL_RTX;
5730 /* Setup a special vinsn used in new insns initialization. */
5731 void
5732 setup_nop_vinsn (void)
5734 nop_vinsn = vinsn_create (exit_insn, false);
5735 vinsn_attach (nop_vinsn);
5738 /* Free a special vinsn used in new insns initialization. */
5739 void
5740 free_nop_vinsn (void)
5742 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5743 vinsn_detach (nop_vinsn);
5744 nop_vinsn = NULL;
5747 /* Call a set_sched_flags hook. */
5748 void
5749 sel_set_sched_flags (void)
5751 /* ??? This means that set_sched_flags were called, and we decided to
5752 support speculation. However, set_sched_flags also modifies flags
5753 on current_sched_info, doing this only at global init. And we
5754 sometimes change c_s_i later. So put the correct flags again. */
5755 if (spec_info && targetm.sched.set_sched_flags)
5756 targetm.sched.set_sched_flags (spec_info);
5759 /* Setup pointers to global sched info structures. */
5760 void
5761 sel_setup_sched_infos (void)
5763 rgn_setup_common_sched_info ();
5765 memcpy (&sel_common_sched_info, common_sched_info,
5766 sizeof (sel_common_sched_info));
5768 sel_common_sched_info.fix_recovery_cfg = NULL;
5769 sel_common_sched_info.add_block = NULL;
5770 sel_common_sched_info.estimate_number_of_insns
5771 = sel_estimate_number_of_insns;
5772 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5773 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5775 common_sched_info = &sel_common_sched_info;
5777 current_sched_info = &sched_sel_haifa_sched_info;
5778 current_sched_info->sched_max_insns_priority =
5779 get_rgn_sched_max_insns_priority ();
5781 sel_set_sched_flags ();
5785 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5786 *BB_ORD_INDEX after that is increased. */
5787 static void
5788 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5790 RGN_NR_BLOCKS (rgn) += 1;
5791 RGN_DONT_CALC_DEPS (rgn) = 0;
5792 RGN_HAS_REAL_EBB (rgn) = 0;
5793 CONTAINING_RGN (bb->index) = rgn;
5794 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5795 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5796 (*bb_ord_index)++;
5798 /* FIXME: it is true only when not scheduling ebbs. */
5799 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5802 /* Functions to support pipelining of outer loops. */
5804 /* Creates a new empty region and returns it's number. */
5805 static int
5806 sel_create_new_region (void)
5808 int new_rgn_number = nr_regions;
5810 RGN_NR_BLOCKS (new_rgn_number) = 0;
5812 /* FIXME: This will work only when EBBs are not created. */
5813 if (new_rgn_number != 0)
5814 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5815 RGN_NR_BLOCKS (new_rgn_number - 1);
5816 else
5817 RGN_BLOCKS (new_rgn_number) = 0;
5819 /* Set the blocks of the next region so the other functions may
5820 calculate the number of blocks in the region. */
5821 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5822 RGN_NR_BLOCKS (new_rgn_number);
5824 nr_regions++;
5826 return new_rgn_number;
5829 /* If X has a smaller topological sort number than Y, returns -1;
5830 if greater, returns 1. */
5831 static int
5832 bb_top_order_comparator (const void *x, const void *y)
5834 basic_block bb1 = *(const basic_block *) x;
5835 basic_block bb2 = *(const basic_block *) y;
5837 gcc_assert (bb1 == bb2
5838 || rev_top_order_index[bb1->index]
5839 != rev_top_order_index[bb2->index]);
5841 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5842 bbs with greater number should go earlier. */
5843 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5844 return -1;
5845 else
5846 return 1;
5849 /* Create a region for LOOP and return its number. If we don't want
5850 to pipeline LOOP, return -1. */
5851 static int
5852 make_region_from_loop (struct loop *loop)
5854 unsigned int i;
5855 int new_rgn_number = -1;
5856 struct loop *inner;
5858 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5859 int bb_ord_index = 0;
5860 basic_block *loop_blocks;
5861 basic_block preheader_block;
5863 if (loop->num_nodes
5864 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5865 return -1;
5867 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5868 for (inner = loop->inner; inner; inner = inner->inner)
5869 if (flow_bb_inside_loop_p (inner, loop->latch))
5870 return -1;
5872 loop->ninsns = num_loop_insns (loop);
5873 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5874 return -1;
5876 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5878 for (i = 0; i < loop->num_nodes; i++)
5879 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5881 free (loop_blocks);
5882 return -1;
5885 preheader_block = loop_preheader_edge (loop)->src;
5886 gcc_assert (preheader_block);
5887 gcc_assert (loop_blocks[0] == loop->header);
5889 new_rgn_number = sel_create_new_region ();
5891 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5892 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5894 for (i = 0; i < loop->num_nodes; i++)
5896 /* Add only those blocks that haven't been scheduled in the inner loop.
5897 The exception is the basic blocks with bookkeeping code - they should
5898 be added to the region (and they actually don't belong to the loop
5899 body, but to the region containing that loop body). */
5901 gcc_assert (new_rgn_number >= 0);
5903 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5905 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
5906 new_rgn_number);
5907 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5911 free (loop_blocks);
5912 MARK_LOOP_FOR_PIPELINING (loop);
5914 return new_rgn_number;
5917 /* Create a new region from preheader blocks LOOP_BLOCKS. */
5918 void
5919 make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5921 unsigned int i;
5922 int new_rgn_number = -1;
5923 basic_block bb;
5925 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5926 int bb_ord_index = 0;
5928 new_rgn_number = sel_create_new_region ();
5930 FOR_EACH_VEC_ELT (basic_block, *loop_blocks, i, bb)
5932 gcc_assert (new_rgn_number >= 0);
5934 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5937 VEC_free (basic_block, heap, *loop_blocks);
5938 gcc_assert (*loop_blocks == NULL);
5942 /* Create region(s) from loop nest LOOP, such that inner loops will be
5943 pipelined before outer loops. Returns true when a region for LOOP
5944 is created. */
5945 static bool
5946 make_regions_from_loop_nest (struct loop *loop)
5948 struct loop *cur_loop;
5949 int rgn_number;
5951 /* Traverse all inner nodes of the loop. */
5952 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5953 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5954 return false;
5956 /* At this moment all regular inner loops should have been pipelined.
5957 Try to create a region from this loop. */
5958 rgn_number = make_region_from_loop (loop);
5960 if (rgn_number < 0)
5961 return false;
5963 VEC_safe_push (loop_p, heap, loop_nests, loop);
5964 return true;
5967 /* Initalize data structures needed. */
5968 void
5969 sel_init_pipelining (void)
5971 /* Collect loop information to be used in outer loops pipelining. */
5972 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5973 | LOOPS_HAVE_FALLTHRU_PREHEADERS
5974 | LOOPS_HAVE_RECORDED_EXITS
5975 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5976 current_loop_nest = NULL;
5978 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5979 sbitmap_zero (bbs_in_loop_rgns);
5981 recompute_rev_top_order ();
5984 /* Returns a struct loop for region RGN. */
5985 loop_p
5986 get_loop_nest_for_rgn (unsigned int rgn)
5988 /* Regions created with extend_rgns don't have corresponding loop nests,
5989 because they don't represent loops. */
5990 if (rgn < VEC_length (loop_p, loop_nests))
5991 return VEC_index (loop_p, loop_nests, rgn);
5992 else
5993 return NULL;
5996 /* True when LOOP was included into pipelining regions. */
5997 bool
5998 considered_for_pipelining_p (struct loop *loop)
6000 if (loop_depth (loop) == 0)
6001 return false;
6003 /* Now, the loop could be too large or irreducible. Check whether its
6004 region is in LOOP_NESTS.
6005 We determine the region number of LOOP as the region number of its
6006 latch. We can't use header here, because this header could be
6007 just removed preheader and it will give us the wrong region number.
6008 Latch can't be used because it could be in the inner loop too. */
6009 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6011 int rgn = CONTAINING_RGN (loop->latch->index);
6013 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
6014 return true;
6017 return false;
6020 /* Makes regions from the rest of the blocks, after loops are chosen
6021 for pipelining. */
6022 static void
6023 make_regions_from_the_rest (void)
6025 int cur_rgn_blocks;
6026 int *loop_hdr;
6027 int i;
6029 basic_block bb;
6030 edge e;
6031 edge_iterator ei;
6032 int *degree;
6034 /* Index in rgn_bb_table where to start allocating new regions. */
6035 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6037 /* Make regions from all the rest basic blocks - those that don't belong to
6038 any loop or belong to irreducible loops. Prepare the data structures
6039 for extend_rgns. */
6041 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6042 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6043 loop. */
6044 loop_hdr = XNEWVEC (int, last_basic_block);
6045 degree = XCNEWVEC (int, last_basic_block);
6048 /* For each basic block that belongs to some loop assign the number
6049 of innermost loop it belongs to. */
6050 for (i = 0; i < last_basic_block; i++)
6051 loop_hdr[i] = -1;
6053 FOR_EACH_BB (bb)
6055 if (bb->loop_father && !bb->loop_father->num == 0
6056 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6057 loop_hdr[bb->index] = bb->loop_father->num;
6060 /* For each basic block degree is calculated as the number of incoming
6061 edges, that are going out of bbs that are not yet scheduled.
6062 The basic blocks that are scheduled have degree value of zero. */
6063 FOR_EACH_BB (bb)
6065 degree[bb->index] = 0;
6067 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
6069 FOR_EACH_EDGE (e, ei, bb->preds)
6070 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
6071 degree[bb->index]++;
6073 else
6074 degree[bb->index] = -1;
6077 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6079 /* Any block that did not end up in a region is placed into a region
6080 by itself. */
6081 FOR_EACH_BB (bb)
6082 if (degree[bb->index] >= 0)
6084 rgn_bb_table[cur_rgn_blocks] = bb->index;
6085 RGN_NR_BLOCKS (nr_regions) = 1;
6086 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6087 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6088 RGN_HAS_REAL_EBB (nr_regions) = 0;
6089 CONTAINING_RGN (bb->index) = nr_regions++;
6090 BLOCK_TO_BB (bb->index) = 0;
6093 free (degree);
6094 free (loop_hdr);
6097 /* Free data structures used in pipelining of loops. */
6098 void sel_finish_pipelining (void)
6100 loop_iterator li;
6101 struct loop *loop;
6103 /* Release aux fields so we don't free them later by mistake. */
6104 FOR_EACH_LOOP (li, loop, 0)
6105 loop->aux = NULL;
6107 loop_optimizer_finalize ();
6109 VEC_free (loop_p, heap, loop_nests);
6111 free (rev_top_order_index);
6112 rev_top_order_index = NULL;
6115 /* This function replaces the find_rgns when
6116 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6117 void
6118 sel_find_rgns (void)
6120 sel_init_pipelining ();
6121 extend_regions ();
6123 if (current_loops)
6125 loop_p loop;
6126 loop_iterator li;
6128 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6129 ? LI_FROM_INNERMOST
6130 : LI_ONLY_INNERMOST))
6131 make_regions_from_loop_nest (loop);
6134 /* Make regions from all the rest basic blocks and schedule them.
6135 These blocks include blocks that don't belong to any loop or belong
6136 to irreducible loops. */
6137 make_regions_from_the_rest ();
6139 /* We don't need bbs_in_loop_rgns anymore. */
6140 sbitmap_free (bbs_in_loop_rgns);
6141 bbs_in_loop_rgns = NULL;
6144 /* Add the preheader blocks from previous loop to current region taking
6145 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6146 This function is only used with -fsel-sched-pipelining-outer-loops. */
6147 void
6148 sel_add_loop_preheaders (bb_vec_t *bbs)
6150 int i;
6151 basic_block bb;
6152 VEC(basic_block, heap) *preheader_blocks
6153 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6155 for (i = 0;
6156 VEC_iterate (basic_block, preheader_blocks, i, bb);
6157 i++)
6159 VEC_safe_push (basic_block, heap, *bbs, bb);
6160 VEC_safe_push (basic_block, heap, last_added_blocks, bb);
6161 sel_add_bb (bb);
6164 VEC_free (basic_block, heap, preheader_blocks);
6167 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6168 Please note that the function should also work when pipelining_p is
6169 false, because it is used when deciding whether we should or should
6170 not reschedule pipelined code. */
6171 bool
6172 sel_is_loop_preheader_p (basic_block bb)
6174 if (current_loop_nest)
6176 struct loop *outer;
6178 if (preheader_removed)
6179 return false;
6181 /* Preheader is the first block in the region. */
6182 if (BLOCK_TO_BB (bb->index) == 0)
6183 return true;
6185 /* We used to find a preheader with the topological information.
6186 Check that the above code is equivalent to what we did before. */
6188 if (in_current_region_p (current_loop_nest->header))
6189 gcc_assert (!(BLOCK_TO_BB (bb->index)
6190 < BLOCK_TO_BB (current_loop_nest->header->index)));
6192 /* Support the situation when the latch block of outer loop
6193 could be from here. */
6194 for (outer = loop_outer (current_loop_nest);
6195 outer;
6196 outer = loop_outer (outer))
6197 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6198 gcc_unreachable ();
6201 return false;
6204 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6205 can be removed, making the corresponding edge fallthrough (assuming that
6206 all basic blocks between JUMP_BB and DEST_BB are empty). */
6207 static bool
6208 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6210 if (!onlyjump_p (BB_END (jump_bb))
6211 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6212 return false;
6214 /* Several outgoing edges, abnormal edge or destination of jump is
6215 not DEST_BB. */
6216 if (EDGE_COUNT (jump_bb->succs) != 1
6217 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6218 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6219 return false;
6221 /* If not anything of the upper. */
6222 return true;
6225 /* Removes the loop preheader from the current region and saves it in
6226 PREHEADER_BLOCKS of the father loop, so they will be added later to
6227 region that represents an outer loop. */
6228 static void
6229 sel_remove_loop_preheader (void)
6231 int i, old_len;
6232 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6233 basic_block bb;
6234 bool all_empty_p = true;
6235 VEC(basic_block, heap) *preheader_blocks
6236 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6238 gcc_assert (current_loop_nest);
6239 old_len = VEC_length (basic_block, preheader_blocks);
6241 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6242 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6244 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6246 /* If the basic block belongs to region, but doesn't belong to
6247 corresponding loop, then it should be a preheader. */
6248 if (sel_is_loop_preheader_p (bb))
6250 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6251 if (BB_END (bb) != bb_note (bb))
6252 all_empty_p = false;
6256 /* Remove these blocks only after iterating over the whole region. */
6257 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6258 i >= old_len;
6259 i--)
6261 bb = VEC_index (basic_block, preheader_blocks, i);
6262 sel_remove_bb (bb, false);
6265 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6267 if (!all_empty_p)
6268 /* Immediately create new region from preheader. */
6269 make_region_from_loop_preheader (&preheader_blocks);
6270 else
6272 /* If all preheader blocks are empty - dont create new empty region.
6273 Instead, remove them completely. */
6274 FOR_EACH_VEC_ELT (basic_block, preheader_blocks, i, bb)
6276 edge e;
6277 edge_iterator ei;
6278 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6280 /* Redirect all incoming edges to next basic block. */
6281 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6283 if (! (e->flags & EDGE_FALLTHRU))
6284 redirect_edge_and_branch (e, bb->next_bb);
6285 else
6286 redirect_edge_succ (e, bb->next_bb);
6288 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6289 delete_and_free_basic_block (bb);
6291 /* Check if after deleting preheader there is a nonconditional
6292 jump in PREV_BB that leads to the next basic block NEXT_BB.
6293 If it is so - delete this jump and clear data sets of its
6294 basic block if it becomes empty. */
6295 if (next_bb->prev_bb == prev_bb
6296 && prev_bb != ENTRY_BLOCK_PTR
6297 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6299 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6300 if (BB_END (prev_bb) == bb_note (prev_bb))
6301 free_data_sets (prev_bb);
6304 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6305 recompute_dominator (CDI_DOMINATORS,
6306 next_bb));
6309 VEC_free (basic_block, heap, preheader_blocks);
6311 else
6312 /* Store preheader within the father's loop structure. */
6313 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6314 preheader_blocks);
6316 #endif