2015-03-02 Gary Dismukes <dismukes@adacore.com>
[official-gcc.git] / gcc / simplify-rtx.c
bloba003b4179aa692700237448367955e13da3766e6
1 /* RTL simplification functions for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hash-set.h"
27 #include "machmode.h"
28 #include "vec.h"
29 #include "double-int.h"
30 #include "input.h"
31 #include "alias.h"
32 #include "symtab.h"
33 #include "wide-int.h"
34 #include "inchash.h"
35 #include "tree.h"
36 #include "fold-const.h"
37 #include "varasm.h"
38 #include "tm_p.h"
39 #include "regs.h"
40 #include "hard-reg-set.h"
41 #include "flags.h"
42 #include "insn-config.h"
43 #include "recog.h"
44 #include "function.h"
45 #include "insn-codes.h"
46 #include "optabs.h"
47 #include "hashtab.h"
48 #include "statistics.h"
49 #include "real.h"
50 #include "fixed-value.h"
51 #include "expmed.h"
52 #include "dojump.h"
53 #include "explow.h"
54 #include "calls.h"
55 #include "emit-rtl.h"
56 #include "stmt.h"
57 #include "expr.h"
58 #include "diagnostic-core.h"
59 #include "ggc.h"
60 #include "target.h"
61 #include "predict.h"
63 /* Simplification and canonicalization of RTL. */
65 /* Much code operates on (low, high) pairs; the low value is an
66 unsigned wide int, the high value a signed wide int. We
67 occasionally need to sign extend from low to high as if low were a
68 signed wide int. */
69 #define HWI_SIGN_EXTEND(low) \
70 ((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
72 static rtx neg_const_int (machine_mode, const_rtx);
73 static bool plus_minus_operand_p (const_rtx);
74 static bool simplify_plus_minus_op_data_cmp (rtx, rtx);
75 static rtx simplify_plus_minus (enum rtx_code, machine_mode, rtx, rtx);
76 static rtx simplify_immed_subreg (machine_mode, rtx, machine_mode,
77 unsigned int);
78 static rtx simplify_associative_operation (enum rtx_code, machine_mode,
79 rtx, rtx);
80 static rtx simplify_relational_operation_1 (enum rtx_code, machine_mode,
81 machine_mode, rtx, rtx);
82 static rtx simplify_unary_operation_1 (enum rtx_code, machine_mode, rtx);
83 static rtx simplify_binary_operation_1 (enum rtx_code, machine_mode,
84 rtx, rtx, rtx, rtx);
86 /* Negate a CONST_INT rtx, truncating (because a conversion from a
87 maximally negative number can overflow). */
88 static rtx
89 neg_const_int (machine_mode mode, const_rtx i)
91 return gen_int_mode (-(unsigned HOST_WIDE_INT) INTVAL (i), mode);
94 /* Test whether expression, X, is an immediate constant that represents
95 the most significant bit of machine mode MODE. */
97 bool
98 mode_signbit_p (machine_mode mode, const_rtx x)
100 unsigned HOST_WIDE_INT val;
101 unsigned int width;
103 if (GET_MODE_CLASS (mode) != MODE_INT)
104 return false;
106 width = GET_MODE_PRECISION (mode);
107 if (width == 0)
108 return false;
110 if (width <= HOST_BITS_PER_WIDE_INT
111 && CONST_INT_P (x))
112 val = INTVAL (x);
113 #if TARGET_SUPPORTS_WIDE_INT
114 else if (CONST_WIDE_INT_P (x))
116 unsigned int i;
117 unsigned int elts = CONST_WIDE_INT_NUNITS (x);
118 if (elts != (width + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT)
119 return false;
120 for (i = 0; i < elts - 1; i++)
121 if (CONST_WIDE_INT_ELT (x, i) != 0)
122 return false;
123 val = CONST_WIDE_INT_ELT (x, elts - 1);
124 width %= HOST_BITS_PER_WIDE_INT;
125 if (width == 0)
126 width = HOST_BITS_PER_WIDE_INT;
128 #else
129 else if (width <= HOST_BITS_PER_DOUBLE_INT
130 && CONST_DOUBLE_AS_INT_P (x)
131 && CONST_DOUBLE_LOW (x) == 0)
133 val = CONST_DOUBLE_HIGH (x);
134 width -= HOST_BITS_PER_WIDE_INT;
136 #endif
137 else
138 /* X is not an integer constant. */
139 return false;
141 if (width < HOST_BITS_PER_WIDE_INT)
142 val &= ((unsigned HOST_WIDE_INT) 1 << width) - 1;
143 return val == ((unsigned HOST_WIDE_INT) 1 << (width - 1));
146 /* Test whether VAL is equal to the most significant bit of mode MODE
147 (after masking with the mode mask of MODE). Returns false if the
148 precision of MODE is too large to handle. */
150 bool
151 val_signbit_p (machine_mode mode, unsigned HOST_WIDE_INT val)
153 unsigned int width;
155 if (GET_MODE_CLASS (mode) != MODE_INT)
156 return false;
158 width = GET_MODE_PRECISION (mode);
159 if (width == 0 || width > HOST_BITS_PER_WIDE_INT)
160 return false;
162 val &= GET_MODE_MASK (mode);
163 return val == ((unsigned HOST_WIDE_INT) 1 << (width - 1));
166 /* Test whether the most significant bit of mode MODE is set in VAL.
167 Returns false if the precision of MODE is too large to handle. */
168 bool
169 val_signbit_known_set_p (machine_mode mode, unsigned HOST_WIDE_INT val)
171 unsigned int width;
173 if (GET_MODE_CLASS (mode) != MODE_INT)
174 return false;
176 width = GET_MODE_PRECISION (mode);
177 if (width == 0 || width > HOST_BITS_PER_WIDE_INT)
178 return false;
180 val &= (unsigned HOST_WIDE_INT) 1 << (width - 1);
181 return val != 0;
184 /* Test whether the most significant bit of mode MODE is clear in VAL.
185 Returns false if the precision of MODE is too large to handle. */
186 bool
187 val_signbit_known_clear_p (machine_mode mode, unsigned HOST_WIDE_INT val)
189 unsigned int width;
191 if (GET_MODE_CLASS (mode) != MODE_INT)
192 return false;
194 width = GET_MODE_PRECISION (mode);
195 if (width == 0 || width > HOST_BITS_PER_WIDE_INT)
196 return false;
198 val &= (unsigned HOST_WIDE_INT) 1 << (width - 1);
199 return val == 0;
202 /* Make a binary operation by properly ordering the operands and
203 seeing if the expression folds. */
206 simplify_gen_binary (enum rtx_code code, machine_mode mode, rtx op0,
207 rtx op1)
209 rtx tem;
211 /* If this simplifies, do it. */
212 tem = simplify_binary_operation (code, mode, op0, op1);
213 if (tem)
214 return tem;
216 /* Put complex operands first and constants second if commutative. */
217 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
218 && swap_commutative_operands_p (op0, op1))
219 tem = op0, op0 = op1, op1 = tem;
221 return gen_rtx_fmt_ee (code, mode, op0, op1);
224 /* If X is a MEM referencing the constant pool, return the real value.
225 Otherwise return X. */
227 avoid_constant_pool_reference (rtx x)
229 rtx c, tmp, addr;
230 machine_mode cmode;
231 HOST_WIDE_INT offset = 0;
233 switch (GET_CODE (x))
235 case MEM:
236 break;
238 case FLOAT_EXTEND:
239 /* Handle float extensions of constant pool references. */
240 tmp = XEXP (x, 0);
241 c = avoid_constant_pool_reference (tmp);
242 if (c != tmp && CONST_DOUBLE_AS_FLOAT_P (c))
244 REAL_VALUE_TYPE d;
246 REAL_VALUE_FROM_CONST_DOUBLE (d, c);
247 return CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (x));
249 return x;
251 default:
252 return x;
255 if (GET_MODE (x) == BLKmode)
256 return x;
258 addr = XEXP (x, 0);
260 /* Call target hook to avoid the effects of -fpic etc.... */
261 addr = targetm.delegitimize_address (addr);
263 /* Split the address into a base and integer offset. */
264 if (GET_CODE (addr) == CONST
265 && GET_CODE (XEXP (addr, 0)) == PLUS
266 && CONST_INT_P (XEXP (XEXP (addr, 0), 1)))
268 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
269 addr = XEXP (XEXP (addr, 0), 0);
272 if (GET_CODE (addr) == LO_SUM)
273 addr = XEXP (addr, 1);
275 /* If this is a constant pool reference, we can turn it into its
276 constant and hope that simplifications happen. */
277 if (GET_CODE (addr) == SYMBOL_REF
278 && CONSTANT_POOL_ADDRESS_P (addr))
280 c = get_pool_constant (addr);
281 cmode = get_pool_mode (addr);
283 /* If we're accessing the constant in a different mode than it was
284 originally stored, attempt to fix that up via subreg simplifications.
285 If that fails we have no choice but to return the original memory. */
286 if ((offset != 0 || cmode != GET_MODE (x))
287 && offset >= 0 && offset < GET_MODE_SIZE (cmode))
289 rtx tem = simplify_subreg (GET_MODE (x), c, cmode, offset);
290 if (tem && CONSTANT_P (tem))
291 return tem;
293 else
294 return c;
297 return x;
300 /* Simplify a MEM based on its attributes. This is the default
301 delegitimize_address target hook, and it's recommended that every
302 overrider call it. */
305 delegitimize_mem_from_attrs (rtx x)
307 /* MEMs without MEM_OFFSETs may have been offset, so we can't just
308 use their base addresses as equivalent. */
309 if (MEM_P (x)
310 && MEM_EXPR (x)
311 && MEM_OFFSET_KNOWN_P (x))
313 tree decl = MEM_EXPR (x);
314 machine_mode mode = GET_MODE (x);
315 HOST_WIDE_INT offset = 0;
317 switch (TREE_CODE (decl))
319 default:
320 decl = NULL;
321 break;
323 case VAR_DECL:
324 break;
326 case ARRAY_REF:
327 case ARRAY_RANGE_REF:
328 case COMPONENT_REF:
329 case BIT_FIELD_REF:
330 case REALPART_EXPR:
331 case IMAGPART_EXPR:
332 case VIEW_CONVERT_EXPR:
334 HOST_WIDE_INT bitsize, bitpos;
335 tree toffset;
336 int unsignedp, volatilep = 0;
338 decl = get_inner_reference (decl, &bitsize, &bitpos, &toffset,
339 &mode, &unsignedp, &volatilep, false);
340 if (bitsize != GET_MODE_BITSIZE (mode)
341 || (bitpos % BITS_PER_UNIT)
342 || (toffset && !tree_fits_shwi_p (toffset)))
343 decl = NULL;
344 else
346 offset += bitpos / BITS_PER_UNIT;
347 if (toffset)
348 offset += tree_to_shwi (toffset);
350 break;
354 if (decl
355 && mode == GET_MODE (x)
356 && TREE_CODE (decl) == VAR_DECL
357 && (TREE_STATIC (decl)
358 || DECL_THREAD_LOCAL_P (decl))
359 && DECL_RTL_SET_P (decl)
360 && MEM_P (DECL_RTL (decl)))
362 rtx newx;
364 offset += MEM_OFFSET (x);
366 newx = DECL_RTL (decl);
368 if (MEM_P (newx))
370 rtx n = XEXP (newx, 0), o = XEXP (x, 0);
372 /* Avoid creating a new MEM needlessly if we already had
373 the same address. We do if there's no OFFSET and the
374 old address X is identical to NEWX, or if X is of the
375 form (plus NEWX OFFSET), or the NEWX is of the form
376 (plus Y (const_int Z)) and X is that with the offset
377 added: (plus Y (const_int Z+OFFSET)). */
378 if (!((offset == 0
379 || (GET_CODE (o) == PLUS
380 && GET_CODE (XEXP (o, 1)) == CONST_INT
381 && (offset == INTVAL (XEXP (o, 1))
382 || (GET_CODE (n) == PLUS
383 && GET_CODE (XEXP (n, 1)) == CONST_INT
384 && (INTVAL (XEXP (n, 1)) + offset
385 == INTVAL (XEXP (o, 1)))
386 && (n = XEXP (n, 0))))
387 && (o = XEXP (o, 0))))
388 && rtx_equal_p (o, n)))
389 x = adjust_address_nv (newx, mode, offset);
391 else if (GET_MODE (x) == GET_MODE (newx)
392 && offset == 0)
393 x = newx;
397 return x;
400 /* Make a unary operation by first seeing if it folds and otherwise making
401 the specified operation. */
404 simplify_gen_unary (enum rtx_code code, machine_mode mode, rtx op,
405 machine_mode op_mode)
407 rtx tem;
409 /* If this simplifies, use it. */
410 if ((tem = simplify_unary_operation (code, mode, op, op_mode)) != 0)
411 return tem;
413 return gen_rtx_fmt_e (code, mode, op);
416 /* Likewise for ternary operations. */
419 simplify_gen_ternary (enum rtx_code code, machine_mode mode,
420 machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
422 rtx tem;
424 /* If this simplifies, use it. */
425 if (0 != (tem = simplify_ternary_operation (code, mode, op0_mode,
426 op0, op1, op2)))
427 return tem;
429 return gen_rtx_fmt_eee (code, mode, op0, op1, op2);
432 /* Likewise, for relational operations.
433 CMP_MODE specifies mode comparison is done in. */
436 simplify_gen_relational (enum rtx_code code, machine_mode mode,
437 machine_mode cmp_mode, rtx op0, rtx op1)
439 rtx tem;
441 if (0 != (tem = simplify_relational_operation (code, mode, cmp_mode,
442 op0, op1)))
443 return tem;
445 return gen_rtx_fmt_ee (code, mode, op0, op1);
448 /* If FN is NULL, replace all occurrences of OLD_RTX in X with copy_rtx (DATA)
449 and simplify the result. If FN is non-NULL, call this callback on each
450 X, if it returns non-NULL, replace X with its return value and simplify the
451 result. */
454 simplify_replace_fn_rtx (rtx x, const_rtx old_rtx,
455 rtx (*fn) (rtx, const_rtx, void *), void *data)
457 enum rtx_code code = GET_CODE (x);
458 machine_mode mode = GET_MODE (x);
459 machine_mode op_mode;
460 const char *fmt;
461 rtx op0, op1, op2, newx, op;
462 rtvec vec, newvec;
463 int i, j;
465 if (__builtin_expect (fn != NULL, 0))
467 newx = fn (x, old_rtx, data);
468 if (newx)
469 return newx;
471 else if (rtx_equal_p (x, old_rtx))
472 return copy_rtx ((rtx) data);
474 switch (GET_RTX_CLASS (code))
476 case RTX_UNARY:
477 op0 = XEXP (x, 0);
478 op_mode = GET_MODE (op0);
479 op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
480 if (op0 == XEXP (x, 0))
481 return x;
482 return simplify_gen_unary (code, mode, op0, op_mode);
484 case RTX_BIN_ARITH:
485 case RTX_COMM_ARITH:
486 op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
487 op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
488 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
489 return x;
490 return simplify_gen_binary (code, mode, op0, op1);
492 case RTX_COMPARE:
493 case RTX_COMM_COMPARE:
494 op0 = XEXP (x, 0);
495 op1 = XEXP (x, 1);
496 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
497 op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
498 op1 = simplify_replace_fn_rtx (op1, old_rtx, fn, data);
499 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
500 return x;
501 return simplify_gen_relational (code, mode, op_mode, op0, op1);
503 case RTX_TERNARY:
504 case RTX_BITFIELD_OPS:
505 op0 = XEXP (x, 0);
506 op_mode = GET_MODE (op0);
507 op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
508 op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
509 op2 = simplify_replace_fn_rtx (XEXP (x, 2), old_rtx, fn, data);
510 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
511 return x;
512 if (op_mode == VOIDmode)
513 op_mode = GET_MODE (op0);
514 return simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
516 case RTX_EXTRA:
517 if (code == SUBREG)
519 op0 = simplify_replace_fn_rtx (SUBREG_REG (x), old_rtx, fn, data);
520 if (op0 == SUBREG_REG (x))
521 return x;
522 op0 = simplify_gen_subreg (GET_MODE (x), op0,
523 GET_MODE (SUBREG_REG (x)),
524 SUBREG_BYTE (x));
525 return op0 ? op0 : x;
527 break;
529 case RTX_OBJ:
530 if (code == MEM)
532 op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
533 if (op0 == XEXP (x, 0))
534 return x;
535 return replace_equiv_address_nv (x, op0);
537 else if (code == LO_SUM)
539 op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
540 op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
542 /* (lo_sum (high x) y) -> y where x and y have the same base. */
543 if (GET_CODE (op0) == HIGH)
545 rtx base0, base1, offset0, offset1;
546 split_const (XEXP (op0, 0), &base0, &offset0);
547 split_const (op1, &base1, &offset1);
548 if (rtx_equal_p (base0, base1))
549 return op1;
552 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
553 return x;
554 return gen_rtx_LO_SUM (mode, op0, op1);
556 break;
558 default:
559 break;
562 newx = x;
563 fmt = GET_RTX_FORMAT (code);
564 for (i = 0; fmt[i]; i++)
565 switch (fmt[i])
567 case 'E':
568 vec = XVEC (x, i);
569 newvec = XVEC (newx, i);
570 for (j = 0; j < GET_NUM_ELEM (vec); j++)
572 op = simplify_replace_fn_rtx (RTVEC_ELT (vec, j),
573 old_rtx, fn, data);
574 if (op != RTVEC_ELT (vec, j))
576 if (newvec == vec)
578 newvec = shallow_copy_rtvec (vec);
579 if (x == newx)
580 newx = shallow_copy_rtx (x);
581 XVEC (newx, i) = newvec;
583 RTVEC_ELT (newvec, j) = op;
586 break;
588 case 'e':
589 if (XEXP (x, i))
591 op = simplify_replace_fn_rtx (XEXP (x, i), old_rtx, fn, data);
592 if (op != XEXP (x, i))
594 if (x == newx)
595 newx = shallow_copy_rtx (x);
596 XEXP (newx, i) = op;
599 break;
601 return newx;
604 /* Replace all occurrences of OLD_RTX in X with NEW_RTX and try to simplify the
605 resulting RTX. Return a new RTX which is as simplified as possible. */
608 simplify_replace_rtx (rtx x, const_rtx old_rtx, rtx new_rtx)
610 return simplify_replace_fn_rtx (x, old_rtx, 0, new_rtx);
613 /* Try to simplify a MODE truncation of OP, which has OP_MODE.
614 Only handle cases where the truncated value is inherently an rvalue.
616 RTL provides two ways of truncating a value:
618 1. a lowpart subreg. This form is only a truncation when both
619 the outer and inner modes (here MODE and OP_MODE respectively)
620 are scalar integers, and only then when the subreg is used as
621 an rvalue.
623 It is only valid to form such truncating subregs if the
624 truncation requires no action by the target. The onus for
625 proving this is on the creator of the subreg -- e.g. the
626 caller to simplify_subreg or simplify_gen_subreg -- and typically
627 involves either TRULY_NOOP_TRUNCATION_MODES_P or truncated_to_mode.
629 2. a TRUNCATE. This form handles both scalar and compound integers.
631 The first form is preferred where valid. However, the TRUNCATE
632 handling in simplify_unary_operation turns the second form into the
633 first form when TRULY_NOOP_TRUNCATION_MODES_P or truncated_to_mode allow,
634 so it is generally safe to form rvalue truncations using:
636 simplify_gen_unary (TRUNCATE, ...)
638 and leave simplify_unary_operation to work out which representation
639 should be used.
641 Because of the proof requirements on (1), simplify_truncation must
642 also use simplify_gen_unary (TRUNCATE, ...) to truncate parts of OP,
643 regardless of whether the outer truncation came from a SUBREG or a
644 TRUNCATE. For example, if the caller has proven that an SImode
645 truncation of:
647 (and:DI X Y)
649 is a no-op and can be represented as a subreg, it does not follow
650 that SImode truncations of X and Y are also no-ops. On a target
651 like 64-bit MIPS that requires SImode values to be stored in
652 sign-extended form, an SImode truncation of:
654 (and:DI (reg:DI X) (const_int 63))
656 is trivially a no-op because only the lower 6 bits can be set.
657 However, X is still an arbitrary 64-bit number and so we cannot
658 assume that truncating it too is a no-op. */
660 static rtx
661 simplify_truncation (machine_mode mode, rtx op,
662 machine_mode op_mode)
664 unsigned int precision = GET_MODE_UNIT_PRECISION (mode);
665 unsigned int op_precision = GET_MODE_UNIT_PRECISION (op_mode);
666 gcc_assert (precision <= op_precision);
668 /* Optimize truncations of zero and sign extended values. */
669 if (GET_CODE (op) == ZERO_EXTEND
670 || GET_CODE (op) == SIGN_EXTEND)
672 /* There are three possibilities. If MODE is the same as the
673 origmode, we can omit both the extension and the subreg.
674 If MODE is not larger than the origmode, we can apply the
675 truncation without the extension. Finally, if the outermode
676 is larger than the origmode, we can just extend to the appropriate
677 mode. */
678 machine_mode origmode = GET_MODE (XEXP (op, 0));
679 if (mode == origmode)
680 return XEXP (op, 0);
681 else if (precision <= GET_MODE_UNIT_PRECISION (origmode))
682 return simplify_gen_unary (TRUNCATE, mode,
683 XEXP (op, 0), origmode);
684 else
685 return simplify_gen_unary (GET_CODE (op), mode,
686 XEXP (op, 0), origmode);
689 /* If the machine can perform operations in the truncated mode, distribute
690 the truncation, i.e. simplify (truncate:QI (op:SI (x:SI) (y:SI))) into
691 (op:QI (truncate:QI (x:SI)) (truncate:QI (y:SI))). */
692 if (1
693 #ifdef WORD_REGISTER_OPERATIONS
694 && precision >= BITS_PER_WORD
695 #endif
696 && (GET_CODE (op) == PLUS
697 || GET_CODE (op) == MINUS
698 || GET_CODE (op) == MULT))
700 rtx op0 = simplify_gen_unary (TRUNCATE, mode, XEXP (op, 0), op_mode);
701 if (op0)
703 rtx op1 = simplify_gen_unary (TRUNCATE, mode, XEXP (op, 1), op_mode);
704 if (op1)
705 return simplify_gen_binary (GET_CODE (op), mode, op0, op1);
709 /* Simplify (truncate:QI (lshiftrt:SI (sign_extend:SI (x:QI)) C)) into
710 to (ashiftrt:QI (x:QI) C), where C is a suitable small constant and
711 the outer subreg is effectively a truncation to the original mode. */
712 if ((GET_CODE (op) == LSHIFTRT
713 || GET_CODE (op) == ASHIFTRT)
714 /* Ensure that OP_MODE is at least twice as wide as MODE
715 to avoid the possibility that an outer LSHIFTRT shifts by more
716 than the sign extension's sign_bit_copies and introduces zeros
717 into the high bits of the result. */
718 && 2 * precision <= op_precision
719 && CONST_INT_P (XEXP (op, 1))
720 && GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
721 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode
722 && UINTVAL (XEXP (op, 1)) < precision)
723 return simplify_gen_binary (ASHIFTRT, mode,
724 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
726 /* Likewise (truncate:QI (lshiftrt:SI (zero_extend:SI (x:QI)) C)) into
727 to (lshiftrt:QI (x:QI) C), where C is a suitable small constant and
728 the outer subreg is effectively a truncation to the original mode. */
729 if ((GET_CODE (op) == LSHIFTRT
730 || GET_CODE (op) == ASHIFTRT)
731 && CONST_INT_P (XEXP (op, 1))
732 && GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
733 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode
734 && UINTVAL (XEXP (op, 1)) < precision)
735 return simplify_gen_binary (LSHIFTRT, mode,
736 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
738 /* Likewise (truncate:QI (ashift:SI (zero_extend:SI (x:QI)) C)) into
739 to (ashift:QI (x:QI) C), where C is a suitable small constant and
740 the outer subreg is effectively a truncation to the original mode. */
741 if (GET_CODE (op) == ASHIFT
742 && CONST_INT_P (XEXP (op, 1))
743 && (GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
744 || GET_CODE (XEXP (op, 0)) == SIGN_EXTEND)
745 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode
746 && UINTVAL (XEXP (op, 1)) < precision)
747 return simplify_gen_binary (ASHIFT, mode,
748 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
750 /* Recognize a word extraction from a multi-word subreg. */
751 if ((GET_CODE (op) == LSHIFTRT
752 || GET_CODE (op) == ASHIFTRT)
753 && SCALAR_INT_MODE_P (mode)
754 && SCALAR_INT_MODE_P (op_mode)
755 && precision >= BITS_PER_WORD
756 && 2 * precision <= op_precision
757 && CONST_INT_P (XEXP (op, 1))
758 && (INTVAL (XEXP (op, 1)) & (precision - 1)) == 0
759 && UINTVAL (XEXP (op, 1)) < op_precision)
761 int byte = subreg_lowpart_offset (mode, op_mode);
762 int shifted_bytes = INTVAL (XEXP (op, 1)) / BITS_PER_UNIT;
763 return simplify_gen_subreg (mode, XEXP (op, 0), op_mode,
764 (WORDS_BIG_ENDIAN
765 ? byte - shifted_bytes
766 : byte + shifted_bytes));
769 /* If we have a TRUNCATE of a right shift of MEM, make a new MEM
770 and try replacing the TRUNCATE and shift with it. Don't do this
771 if the MEM has a mode-dependent address. */
772 if ((GET_CODE (op) == LSHIFTRT
773 || GET_CODE (op) == ASHIFTRT)
774 && SCALAR_INT_MODE_P (op_mode)
775 && MEM_P (XEXP (op, 0))
776 && CONST_INT_P (XEXP (op, 1))
777 && (INTVAL (XEXP (op, 1)) % GET_MODE_BITSIZE (mode)) == 0
778 && INTVAL (XEXP (op, 1)) > 0
779 && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (op_mode)
780 && ! mode_dependent_address_p (XEXP (XEXP (op, 0), 0),
781 MEM_ADDR_SPACE (XEXP (op, 0)))
782 && ! MEM_VOLATILE_P (XEXP (op, 0))
783 && (GET_MODE_SIZE (mode) >= UNITS_PER_WORD
784 || WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN))
786 int byte = subreg_lowpart_offset (mode, op_mode);
787 int shifted_bytes = INTVAL (XEXP (op, 1)) / BITS_PER_UNIT;
788 return adjust_address_nv (XEXP (op, 0), mode,
789 (WORDS_BIG_ENDIAN
790 ? byte - shifted_bytes
791 : byte + shifted_bytes));
794 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
795 (OP:SI foo:SI) if OP is NEG or ABS. */
796 if ((GET_CODE (op) == ABS
797 || GET_CODE (op) == NEG)
798 && (GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
799 || GET_CODE (XEXP (op, 0)) == ZERO_EXTEND)
800 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
801 return simplify_gen_unary (GET_CODE (op), mode,
802 XEXP (XEXP (op, 0), 0), mode);
804 /* (truncate:A (subreg:B (truncate:C X) 0)) is
805 (truncate:A X). */
806 if (GET_CODE (op) == SUBREG
807 && SCALAR_INT_MODE_P (mode)
808 && SCALAR_INT_MODE_P (op_mode)
809 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op)))
810 && GET_CODE (SUBREG_REG (op)) == TRUNCATE
811 && subreg_lowpart_p (op))
813 rtx inner = XEXP (SUBREG_REG (op), 0);
814 if (GET_MODE_PRECISION (mode)
815 <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op))))
816 return simplify_gen_unary (TRUNCATE, mode, inner, GET_MODE (inner));
817 else
818 /* If subreg above is paradoxical and C is narrower
819 than A, return (subreg:A (truncate:C X) 0). */
820 return simplify_gen_subreg (mode, SUBREG_REG (op),
821 GET_MODE (SUBREG_REG (op)), 0);
824 /* (truncate:A (truncate:B X)) is (truncate:A X). */
825 if (GET_CODE (op) == TRUNCATE)
826 return simplify_gen_unary (TRUNCATE, mode, XEXP (op, 0),
827 GET_MODE (XEXP (op, 0)));
829 return NULL_RTX;
832 /* Try to simplify a unary operation CODE whose output mode is to be
833 MODE with input operand OP whose mode was originally OP_MODE.
834 Return zero if no simplification can be made. */
836 simplify_unary_operation (enum rtx_code code, machine_mode mode,
837 rtx op, machine_mode op_mode)
839 rtx trueop, tem;
841 trueop = avoid_constant_pool_reference (op);
843 tem = simplify_const_unary_operation (code, mode, trueop, op_mode);
844 if (tem)
845 return tem;
847 return simplify_unary_operation_1 (code, mode, op);
850 /* Perform some simplifications we can do even if the operands
851 aren't constant. */
852 static rtx
853 simplify_unary_operation_1 (enum rtx_code code, machine_mode mode, rtx op)
855 enum rtx_code reversed;
856 rtx temp;
858 switch (code)
860 case NOT:
861 /* (not (not X)) == X. */
862 if (GET_CODE (op) == NOT)
863 return XEXP (op, 0);
865 /* (not (eq X Y)) == (ne X Y), etc. if BImode or the result of the
866 comparison is all ones. */
867 if (COMPARISON_P (op)
868 && (mode == BImode || STORE_FLAG_VALUE == -1)
869 && ((reversed = reversed_comparison_code (op, NULL_RTX)) != UNKNOWN))
870 return simplify_gen_relational (reversed, mode, VOIDmode,
871 XEXP (op, 0), XEXP (op, 1));
873 /* (not (plus X -1)) can become (neg X). */
874 if (GET_CODE (op) == PLUS
875 && XEXP (op, 1) == constm1_rtx)
876 return simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
878 /* Similarly, (not (neg X)) is (plus X -1). */
879 if (GET_CODE (op) == NEG)
880 return simplify_gen_binary (PLUS, mode, XEXP (op, 0),
881 CONSTM1_RTX (mode));
883 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
884 if (GET_CODE (op) == XOR
885 && CONST_INT_P (XEXP (op, 1))
886 && (temp = simplify_unary_operation (NOT, mode,
887 XEXP (op, 1), mode)) != 0)
888 return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
890 /* (not (plus X C)) for signbit C is (xor X D) with D = ~C. */
891 if (GET_CODE (op) == PLUS
892 && CONST_INT_P (XEXP (op, 1))
893 && mode_signbit_p (mode, XEXP (op, 1))
894 && (temp = simplify_unary_operation (NOT, mode,
895 XEXP (op, 1), mode)) != 0)
896 return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
899 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for
900 operands other than 1, but that is not valid. We could do a
901 similar simplification for (not (lshiftrt C X)) where C is
902 just the sign bit, but this doesn't seem common enough to
903 bother with. */
904 if (GET_CODE (op) == ASHIFT
905 && XEXP (op, 0) == const1_rtx)
907 temp = simplify_gen_unary (NOT, mode, const1_rtx, mode);
908 return simplify_gen_binary (ROTATE, mode, temp, XEXP (op, 1));
911 /* (not (ashiftrt foo C)) where C is the number of bits in FOO
912 minus 1 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1,
913 so we can perform the above simplification. */
914 if (STORE_FLAG_VALUE == -1
915 && GET_CODE (op) == ASHIFTRT
916 && CONST_INT_P (XEXP (op, 1))
917 && INTVAL (XEXP (op, 1)) == GET_MODE_PRECISION (mode) - 1)
918 return simplify_gen_relational (GE, mode, VOIDmode,
919 XEXP (op, 0), const0_rtx);
922 if (GET_CODE (op) == SUBREG
923 && subreg_lowpart_p (op)
924 && (GET_MODE_SIZE (GET_MODE (op))
925 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
926 && GET_CODE (SUBREG_REG (op)) == ASHIFT
927 && XEXP (SUBREG_REG (op), 0) == const1_rtx)
929 machine_mode inner_mode = GET_MODE (SUBREG_REG (op));
930 rtx x;
932 x = gen_rtx_ROTATE (inner_mode,
933 simplify_gen_unary (NOT, inner_mode, const1_rtx,
934 inner_mode),
935 XEXP (SUBREG_REG (op), 1));
936 temp = rtl_hooks.gen_lowpart_no_emit (mode, x);
937 if (temp)
938 return temp;
941 /* Apply De Morgan's laws to reduce number of patterns for machines
942 with negating logical insns (and-not, nand, etc.). If result has
943 only one NOT, put it first, since that is how the patterns are
944 coded. */
945 if (GET_CODE (op) == IOR || GET_CODE (op) == AND)
947 rtx in1 = XEXP (op, 0), in2 = XEXP (op, 1);
948 machine_mode op_mode;
950 op_mode = GET_MODE (in1);
951 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
953 op_mode = GET_MODE (in2);
954 if (op_mode == VOIDmode)
955 op_mode = mode;
956 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
958 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
960 rtx tem = in2;
961 in2 = in1; in1 = tem;
964 return gen_rtx_fmt_ee (GET_CODE (op) == IOR ? AND : IOR,
965 mode, in1, in2);
968 /* (not (bswap x)) -> (bswap (not x)). */
969 if (GET_CODE (op) == BSWAP)
971 rtx x = simplify_gen_unary (NOT, mode, XEXP (op, 0), mode);
972 return simplify_gen_unary (BSWAP, mode, x, mode);
974 break;
976 case NEG:
977 /* (neg (neg X)) == X. */
978 if (GET_CODE (op) == NEG)
979 return XEXP (op, 0);
981 /* (neg (plus X 1)) can become (not X). */
982 if (GET_CODE (op) == PLUS
983 && XEXP (op, 1) == const1_rtx)
984 return simplify_gen_unary (NOT, mode, XEXP (op, 0), mode);
986 /* Similarly, (neg (not X)) is (plus X 1). */
987 if (GET_CODE (op) == NOT)
988 return simplify_gen_binary (PLUS, mode, XEXP (op, 0),
989 CONST1_RTX (mode));
991 /* (neg (minus X Y)) can become (minus Y X). This transformation
992 isn't safe for modes with signed zeros, since if X and Y are
993 both +0, (minus Y X) is the same as (minus X Y). If the
994 rounding mode is towards +infinity (or -infinity) then the two
995 expressions will be rounded differently. */
996 if (GET_CODE (op) == MINUS
997 && !HONOR_SIGNED_ZEROS (mode)
998 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
999 return simplify_gen_binary (MINUS, mode, XEXP (op, 1), XEXP (op, 0));
1001 if (GET_CODE (op) == PLUS
1002 && !HONOR_SIGNED_ZEROS (mode)
1003 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
1005 /* (neg (plus A C)) is simplified to (minus -C A). */
1006 if (CONST_SCALAR_INT_P (XEXP (op, 1))
1007 || CONST_DOUBLE_AS_FLOAT_P (XEXP (op, 1)))
1009 temp = simplify_unary_operation (NEG, mode, XEXP (op, 1), mode);
1010 if (temp)
1011 return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 0));
1014 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
1015 temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
1016 return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 1));
1019 /* (neg (mult A B)) becomes (mult A (neg B)).
1020 This works even for floating-point values. */
1021 if (GET_CODE (op) == MULT
1022 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
1024 temp = simplify_gen_unary (NEG, mode, XEXP (op, 1), mode);
1025 return simplify_gen_binary (MULT, mode, XEXP (op, 0), temp);
1028 /* NEG commutes with ASHIFT since it is multiplication. Only do
1029 this if we can then eliminate the NEG (e.g., if the operand
1030 is a constant). */
1031 if (GET_CODE (op) == ASHIFT)
1033 temp = simplify_unary_operation (NEG, mode, XEXP (op, 0), mode);
1034 if (temp)
1035 return simplify_gen_binary (ASHIFT, mode, temp, XEXP (op, 1));
1038 /* (neg (ashiftrt X C)) can be replaced by (lshiftrt X C) when
1039 C is equal to the width of MODE minus 1. */
1040 if (GET_CODE (op) == ASHIFTRT
1041 && CONST_INT_P (XEXP (op, 1))
1042 && INTVAL (XEXP (op, 1)) == GET_MODE_PRECISION (mode) - 1)
1043 return simplify_gen_binary (LSHIFTRT, mode,
1044 XEXP (op, 0), XEXP (op, 1));
1046 /* (neg (lshiftrt X C)) can be replaced by (ashiftrt X C) when
1047 C is equal to the width of MODE minus 1. */
1048 if (GET_CODE (op) == LSHIFTRT
1049 && CONST_INT_P (XEXP (op, 1))
1050 && INTVAL (XEXP (op, 1)) == GET_MODE_PRECISION (mode) - 1)
1051 return simplify_gen_binary (ASHIFTRT, mode,
1052 XEXP (op, 0), XEXP (op, 1));
1054 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
1055 if (GET_CODE (op) == XOR
1056 && XEXP (op, 1) == const1_rtx
1057 && nonzero_bits (XEXP (op, 0), mode) == 1)
1058 return plus_constant (mode, XEXP (op, 0), -1);
1060 /* (neg (lt x 0)) is (ashiftrt X C) if STORE_FLAG_VALUE is 1. */
1061 /* (neg (lt x 0)) is (lshiftrt X C) if STORE_FLAG_VALUE is -1. */
1062 if (GET_CODE (op) == LT
1063 && XEXP (op, 1) == const0_rtx
1064 && SCALAR_INT_MODE_P (GET_MODE (XEXP (op, 0))))
1066 machine_mode inner = GET_MODE (XEXP (op, 0));
1067 int isize = GET_MODE_PRECISION (inner);
1068 if (STORE_FLAG_VALUE == 1)
1070 temp = simplify_gen_binary (ASHIFTRT, inner, XEXP (op, 0),
1071 GEN_INT (isize - 1));
1072 if (mode == inner)
1073 return temp;
1074 if (GET_MODE_PRECISION (mode) > isize)
1075 return simplify_gen_unary (SIGN_EXTEND, mode, temp, inner);
1076 return simplify_gen_unary (TRUNCATE, mode, temp, inner);
1078 else if (STORE_FLAG_VALUE == -1)
1080 temp = simplify_gen_binary (LSHIFTRT, inner, XEXP (op, 0),
1081 GEN_INT (isize - 1));
1082 if (mode == inner)
1083 return temp;
1084 if (GET_MODE_PRECISION (mode) > isize)
1085 return simplify_gen_unary (ZERO_EXTEND, mode, temp, inner);
1086 return simplify_gen_unary (TRUNCATE, mode, temp, inner);
1089 break;
1091 case TRUNCATE:
1092 /* Don't optimize (lshiftrt (mult ...)) as it would interfere
1093 with the umulXi3_highpart patterns. */
1094 if (GET_CODE (op) == LSHIFTRT
1095 && GET_CODE (XEXP (op, 0)) == MULT)
1096 break;
1098 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1100 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op)))
1102 temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
1103 if (temp)
1104 return temp;
1106 /* We can't handle truncation to a partial integer mode here
1107 because we don't know the real bitsize of the partial
1108 integer mode. */
1109 break;
1112 if (GET_MODE (op) != VOIDmode)
1114 temp = simplify_truncation (mode, op, GET_MODE (op));
1115 if (temp)
1116 return temp;
1119 /* If we know that the value is already truncated, we can
1120 replace the TRUNCATE with a SUBREG. */
1121 if (GET_MODE_NUNITS (mode) == 1
1122 && (TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op))
1123 || truncated_to_mode (mode, op)))
1125 temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
1126 if (temp)
1127 return temp;
1130 /* A truncate of a comparison can be replaced with a subreg if
1131 STORE_FLAG_VALUE permits. This is like the previous test,
1132 but it works even if the comparison is done in a mode larger
1133 than HOST_BITS_PER_WIDE_INT. */
1134 if (HWI_COMPUTABLE_MODE_P (mode)
1135 && COMPARISON_P (op)
1136 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
1138 temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
1139 if (temp)
1140 return temp;
1143 /* A truncate of a memory is just loading the low part of the memory
1144 if we are not changing the meaning of the address. */
1145 if (GET_CODE (op) == MEM
1146 && !VECTOR_MODE_P (mode)
1147 && !MEM_VOLATILE_P (op)
1148 && !mode_dependent_address_p (XEXP (op, 0), MEM_ADDR_SPACE (op)))
1150 temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
1151 if (temp)
1152 return temp;
1155 break;
1157 case FLOAT_TRUNCATE:
1158 if (DECIMAL_FLOAT_MODE_P (mode))
1159 break;
1161 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
1162 if (GET_CODE (op) == FLOAT_EXTEND
1163 && GET_MODE (XEXP (op, 0)) == mode)
1164 return XEXP (op, 0);
1166 /* (float_truncate:SF (float_truncate:DF foo:XF))
1167 = (float_truncate:SF foo:XF).
1168 This may eliminate double rounding, so it is unsafe.
1170 (float_truncate:SF (float_extend:XF foo:DF))
1171 = (float_truncate:SF foo:DF).
1173 (float_truncate:DF (float_extend:XF foo:SF))
1174 = (float_extend:SF foo:DF). */
1175 if ((GET_CODE (op) == FLOAT_TRUNCATE
1176 && flag_unsafe_math_optimizations)
1177 || GET_CODE (op) == FLOAT_EXTEND)
1178 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (op,
1179 0)))
1180 > GET_MODE_SIZE (mode)
1181 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
1182 mode,
1183 XEXP (op, 0), mode);
1185 /* (float_truncate (float x)) is (float x) */
1186 if (GET_CODE (op) == FLOAT
1187 && (flag_unsafe_math_optimizations
1188 || (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1189 && ((unsigned)significand_size (GET_MODE (op))
1190 >= (GET_MODE_PRECISION (GET_MODE (XEXP (op, 0)))
1191 - num_sign_bit_copies (XEXP (op, 0),
1192 GET_MODE (XEXP (op, 0))))))))
1193 return simplify_gen_unary (FLOAT, mode,
1194 XEXP (op, 0),
1195 GET_MODE (XEXP (op, 0)));
1197 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
1198 (OP:SF foo:SF) if OP is NEG or ABS. */
1199 if ((GET_CODE (op) == ABS
1200 || GET_CODE (op) == NEG)
1201 && GET_CODE (XEXP (op, 0)) == FLOAT_EXTEND
1202 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
1203 return simplify_gen_unary (GET_CODE (op), mode,
1204 XEXP (XEXP (op, 0), 0), mode);
1206 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
1207 is (float_truncate:SF x). */
1208 if (GET_CODE (op) == SUBREG
1209 && subreg_lowpart_p (op)
1210 && GET_CODE (SUBREG_REG (op)) == FLOAT_TRUNCATE)
1211 return SUBREG_REG (op);
1212 break;
1214 case FLOAT_EXTEND:
1215 if (DECIMAL_FLOAT_MODE_P (mode))
1216 break;
1218 /* (float_extend (float_extend x)) is (float_extend x)
1220 (float_extend (float x)) is (float x) assuming that double
1221 rounding can't happen.
1223 if (GET_CODE (op) == FLOAT_EXTEND
1224 || (GET_CODE (op) == FLOAT
1225 && SCALAR_FLOAT_MODE_P (GET_MODE (op))
1226 && ((unsigned)significand_size (GET_MODE (op))
1227 >= (GET_MODE_PRECISION (GET_MODE (XEXP (op, 0)))
1228 - num_sign_bit_copies (XEXP (op, 0),
1229 GET_MODE (XEXP (op, 0)))))))
1230 return simplify_gen_unary (GET_CODE (op), mode,
1231 XEXP (op, 0),
1232 GET_MODE (XEXP (op, 0)));
1234 break;
1236 case ABS:
1237 /* (abs (neg <foo>)) -> (abs <foo>) */
1238 if (GET_CODE (op) == NEG)
1239 return simplify_gen_unary (ABS, mode, XEXP (op, 0),
1240 GET_MODE (XEXP (op, 0)));
1242 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
1243 do nothing. */
1244 if (GET_MODE (op) == VOIDmode)
1245 break;
1247 /* If operand is something known to be positive, ignore the ABS. */
1248 if (GET_CODE (op) == FFS || GET_CODE (op) == ABS
1249 || val_signbit_known_clear_p (GET_MODE (op),
1250 nonzero_bits (op, GET_MODE (op))))
1251 return op;
1253 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
1254 if (num_sign_bit_copies (op, mode) == GET_MODE_PRECISION (mode))
1255 return gen_rtx_NEG (mode, op);
1257 break;
1259 case FFS:
1260 /* (ffs (*_extend <X>)) = (ffs <X>) */
1261 if (GET_CODE (op) == SIGN_EXTEND
1262 || GET_CODE (op) == ZERO_EXTEND)
1263 return simplify_gen_unary (FFS, mode, XEXP (op, 0),
1264 GET_MODE (XEXP (op, 0)));
1265 break;
1267 case POPCOUNT:
1268 switch (GET_CODE (op))
1270 case BSWAP:
1271 case ZERO_EXTEND:
1272 /* (popcount (zero_extend <X>)) = (popcount <X>) */
1273 return simplify_gen_unary (POPCOUNT, mode, XEXP (op, 0),
1274 GET_MODE (XEXP (op, 0)));
1276 case ROTATE:
1277 case ROTATERT:
1278 /* Rotations don't affect popcount. */
1279 if (!side_effects_p (XEXP (op, 1)))
1280 return simplify_gen_unary (POPCOUNT, mode, XEXP (op, 0),
1281 GET_MODE (XEXP (op, 0)));
1282 break;
1284 default:
1285 break;
1287 break;
1289 case PARITY:
1290 switch (GET_CODE (op))
1292 case NOT:
1293 case BSWAP:
1294 case ZERO_EXTEND:
1295 case SIGN_EXTEND:
1296 return simplify_gen_unary (PARITY, mode, XEXP (op, 0),
1297 GET_MODE (XEXP (op, 0)));
1299 case ROTATE:
1300 case ROTATERT:
1301 /* Rotations don't affect parity. */
1302 if (!side_effects_p (XEXP (op, 1)))
1303 return simplify_gen_unary (PARITY, mode, XEXP (op, 0),
1304 GET_MODE (XEXP (op, 0)));
1305 break;
1307 default:
1308 break;
1310 break;
1312 case BSWAP:
1313 /* (bswap (bswap x)) -> x. */
1314 if (GET_CODE (op) == BSWAP)
1315 return XEXP (op, 0);
1316 break;
1318 case FLOAT:
1319 /* (float (sign_extend <X>)) = (float <X>). */
1320 if (GET_CODE (op) == SIGN_EXTEND)
1321 return simplify_gen_unary (FLOAT, mode, XEXP (op, 0),
1322 GET_MODE (XEXP (op, 0)));
1323 break;
1325 case SIGN_EXTEND:
1326 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
1327 becomes just the MINUS if its mode is MODE. This allows
1328 folding switch statements on machines using casesi (such as
1329 the VAX). */
1330 if (GET_CODE (op) == TRUNCATE
1331 && GET_MODE (XEXP (op, 0)) == mode
1332 && GET_CODE (XEXP (op, 0)) == MINUS
1333 && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
1334 && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
1335 return XEXP (op, 0);
1337 /* Extending a widening multiplication should be canonicalized to
1338 a wider widening multiplication. */
1339 if (GET_CODE (op) == MULT)
1341 rtx lhs = XEXP (op, 0);
1342 rtx rhs = XEXP (op, 1);
1343 enum rtx_code lcode = GET_CODE (lhs);
1344 enum rtx_code rcode = GET_CODE (rhs);
1346 /* Widening multiplies usually extend both operands, but sometimes
1347 they use a shift to extract a portion of a register. */
1348 if ((lcode == SIGN_EXTEND
1349 || (lcode == ASHIFTRT && CONST_INT_P (XEXP (lhs, 1))))
1350 && (rcode == SIGN_EXTEND
1351 || (rcode == ASHIFTRT && CONST_INT_P (XEXP (rhs, 1)))))
1353 machine_mode lmode = GET_MODE (lhs);
1354 machine_mode rmode = GET_MODE (rhs);
1355 int bits;
1357 if (lcode == ASHIFTRT)
1358 /* Number of bits not shifted off the end. */
1359 bits = GET_MODE_PRECISION (lmode) - INTVAL (XEXP (lhs, 1));
1360 else /* lcode == SIGN_EXTEND */
1361 /* Size of inner mode. */
1362 bits = GET_MODE_PRECISION (GET_MODE (XEXP (lhs, 0)));
1364 if (rcode == ASHIFTRT)
1365 bits += GET_MODE_PRECISION (rmode) - INTVAL (XEXP (rhs, 1));
1366 else /* rcode == SIGN_EXTEND */
1367 bits += GET_MODE_PRECISION (GET_MODE (XEXP (rhs, 0)));
1369 /* We can only widen multiplies if the result is mathematiclly
1370 equivalent. I.e. if overflow was impossible. */
1371 if (bits <= GET_MODE_PRECISION (GET_MODE (op)))
1372 return simplify_gen_binary
1373 (MULT, mode,
1374 simplify_gen_unary (SIGN_EXTEND, mode, lhs, lmode),
1375 simplify_gen_unary (SIGN_EXTEND, mode, rhs, rmode));
1379 /* Check for a sign extension of a subreg of a promoted
1380 variable, where the promotion is sign-extended, and the
1381 target mode is the same as the variable's promotion. */
1382 if (GET_CODE (op) == SUBREG
1383 && SUBREG_PROMOTED_VAR_P (op)
1384 && SUBREG_PROMOTED_SIGNED_P (op)
1385 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (XEXP (op, 0))))
1387 temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
1388 if (temp)
1389 return temp;
1392 /* (sign_extend:M (sign_extend:N <X>)) is (sign_extend:M <X>).
1393 (sign_extend:M (zero_extend:N <X>)) is (zero_extend:M <X>). */
1394 if (GET_CODE (op) == SIGN_EXTEND || GET_CODE (op) == ZERO_EXTEND)
1396 gcc_assert (GET_MODE_PRECISION (mode)
1397 > GET_MODE_PRECISION (GET_MODE (op)));
1398 return simplify_gen_unary (GET_CODE (op), mode, XEXP (op, 0),
1399 GET_MODE (XEXP (op, 0)));
1402 /* (sign_extend:M (ashiftrt:N (ashift <X> (const_int I)) (const_int I)))
1403 is (sign_extend:M (subreg:O <X>)) if there is mode with
1404 GET_MODE_BITSIZE (N) - I bits.
1405 (sign_extend:M (lshiftrt:N (ashift <X> (const_int I)) (const_int I)))
1406 is similarly (zero_extend:M (subreg:O <X>)). */
1407 if ((GET_CODE (op) == ASHIFTRT || GET_CODE (op) == LSHIFTRT)
1408 && GET_CODE (XEXP (op, 0)) == ASHIFT
1409 && CONST_INT_P (XEXP (op, 1))
1410 && XEXP (XEXP (op, 0), 1) == XEXP (op, 1)
1411 && GET_MODE_BITSIZE (GET_MODE (op)) > INTVAL (XEXP (op, 1)))
1413 machine_mode tmode
1414 = mode_for_size (GET_MODE_BITSIZE (GET_MODE (op))
1415 - INTVAL (XEXP (op, 1)), MODE_INT, 1);
1416 gcc_assert (GET_MODE_BITSIZE (mode)
1417 > GET_MODE_BITSIZE (GET_MODE (op)));
1418 if (tmode != BLKmode)
1420 rtx inner =
1421 rtl_hooks.gen_lowpart_no_emit (tmode, XEXP (XEXP (op, 0), 0));
1422 if (inner)
1423 return simplify_gen_unary (GET_CODE (op) == ASHIFTRT
1424 ? SIGN_EXTEND : ZERO_EXTEND,
1425 mode, inner, tmode);
1429 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1430 /* As we do not know which address space the pointer is referring to,
1431 we can do this only if the target does not support different pointer
1432 or address modes depending on the address space. */
1433 if (target_default_pointer_address_modes_p ()
1434 && ! POINTERS_EXTEND_UNSIGNED
1435 && mode == Pmode && GET_MODE (op) == ptr_mode
1436 && (CONSTANT_P (op)
1437 || (GET_CODE (op) == SUBREG
1438 && REG_P (SUBREG_REG (op))
1439 && REG_POINTER (SUBREG_REG (op))
1440 && GET_MODE (SUBREG_REG (op)) == Pmode)))
1441 return convert_memory_address (Pmode, op);
1442 #endif
1443 break;
1445 case ZERO_EXTEND:
1446 /* Check for a zero extension of a subreg of a promoted
1447 variable, where the promotion is zero-extended, and the
1448 target mode is the same as the variable's promotion. */
1449 if (GET_CODE (op) == SUBREG
1450 && SUBREG_PROMOTED_VAR_P (op)
1451 && SUBREG_PROMOTED_UNSIGNED_P (op)
1452 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (XEXP (op, 0))))
1454 temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
1455 if (temp)
1456 return temp;
1459 /* Extending a widening multiplication should be canonicalized to
1460 a wider widening multiplication. */
1461 if (GET_CODE (op) == MULT)
1463 rtx lhs = XEXP (op, 0);
1464 rtx rhs = XEXP (op, 1);
1465 enum rtx_code lcode = GET_CODE (lhs);
1466 enum rtx_code rcode = GET_CODE (rhs);
1468 /* Widening multiplies usually extend both operands, but sometimes
1469 they use a shift to extract a portion of a register. */
1470 if ((lcode == ZERO_EXTEND
1471 || (lcode == LSHIFTRT && CONST_INT_P (XEXP (lhs, 1))))
1472 && (rcode == ZERO_EXTEND
1473 || (rcode == LSHIFTRT && CONST_INT_P (XEXP (rhs, 1)))))
1475 machine_mode lmode = GET_MODE (lhs);
1476 machine_mode rmode = GET_MODE (rhs);
1477 int bits;
1479 if (lcode == LSHIFTRT)
1480 /* Number of bits not shifted off the end. */
1481 bits = GET_MODE_PRECISION (lmode) - INTVAL (XEXP (lhs, 1));
1482 else /* lcode == ZERO_EXTEND */
1483 /* Size of inner mode. */
1484 bits = GET_MODE_PRECISION (GET_MODE (XEXP (lhs, 0)));
1486 if (rcode == LSHIFTRT)
1487 bits += GET_MODE_PRECISION (rmode) - INTVAL (XEXP (rhs, 1));
1488 else /* rcode == ZERO_EXTEND */
1489 bits += GET_MODE_PRECISION (GET_MODE (XEXP (rhs, 0)));
1491 /* We can only widen multiplies if the result is mathematiclly
1492 equivalent. I.e. if overflow was impossible. */
1493 if (bits <= GET_MODE_PRECISION (GET_MODE (op)))
1494 return simplify_gen_binary
1495 (MULT, mode,
1496 simplify_gen_unary (ZERO_EXTEND, mode, lhs, lmode),
1497 simplify_gen_unary (ZERO_EXTEND, mode, rhs, rmode));
1501 /* (zero_extend:M (zero_extend:N <X>)) is (zero_extend:M <X>). */
1502 if (GET_CODE (op) == ZERO_EXTEND)
1503 return simplify_gen_unary (ZERO_EXTEND, mode, XEXP (op, 0),
1504 GET_MODE (XEXP (op, 0)));
1506 /* (zero_extend:M (lshiftrt:N (ashift <X> (const_int I)) (const_int I)))
1507 is (zero_extend:M (subreg:O <X>)) if there is mode with
1508 GET_MODE_PRECISION (N) - I bits. */
1509 if (GET_CODE (op) == LSHIFTRT
1510 && GET_CODE (XEXP (op, 0)) == ASHIFT
1511 && CONST_INT_P (XEXP (op, 1))
1512 && XEXP (XEXP (op, 0), 1) == XEXP (op, 1)
1513 && GET_MODE_PRECISION (GET_MODE (op)) > INTVAL (XEXP (op, 1)))
1515 machine_mode tmode
1516 = mode_for_size (GET_MODE_PRECISION (GET_MODE (op))
1517 - INTVAL (XEXP (op, 1)), MODE_INT, 1);
1518 if (tmode != BLKmode)
1520 rtx inner =
1521 rtl_hooks.gen_lowpart_no_emit (tmode, XEXP (XEXP (op, 0), 0));
1522 if (inner)
1523 return simplify_gen_unary (ZERO_EXTEND, mode, inner, tmode);
1527 /* (zero_extend:M (subreg:N <X:O>)) is <X:O> (for M == O) or
1528 (zero_extend:M <X:O>), if X doesn't have any non-zero bits outside
1529 of mode N. E.g.
1530 (zero_extend:SI (subreg:QI (and:SI (reg:SI) (const_int 63)) 0)) is
1531 (and:SI (reg:SI) (const_int 63)). */
1532 if (GET_CODE (op) == SUBREG
1533 && GET_MODE_PRECISION (GET_MODE (op))
1534 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op)))
1535 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op)))
1536 <= HOST_BITS_PER_WIDE_INT
1537 && GET_MODE_PRECISION (mode)
1538 >= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op)))
1539 && subreg_lowpart_p (op)
1540 && (nonzero_bits (SUBREG_REG (op), GET_MODE (SUBREG_REG (op)))
1541 & ~GET_MODE_MASK (GET_MODE (op))) == 0)
1543 if (GET_MODE_PRECISION (mode)
1544 == GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op))))
1545 return SUBREG_REG (op);
1546 return simplify_gen_unary (ZERO_EXTEND, mode, SUBREG_REG (op),
1547 GET_MODE (SUBREG_REG (op)));
1550 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1551 /* As we do not know which address space the pointer is referring to,
1552 we can do this only if the target does not support different pointer
1553 or address modes depending on the address space. */
1554 if (target_default_pointer_address_modes_p ()
1555 && POINTERS_EXTEND_UNSIGNED > 0
1556 && mode == Pmode && GET_MODE (op) == ptr_mode
1557 && (CONSTANT_P (op)
1558 || (GET_CODE (op) == SUBREG
1559 && REG_P (SUBREG_REG (op))
1560 && REG_POINTER (SUBREG_REG (op))
1561 && GET_MODE (SUBREG_REG (op)) == Pmode)))
1562 return convert_memory_address (Pmode, op);
1563 #endif
1564 break;
1566 default:
1567 break;
1570 return 0;
1573 /* Try to compute the value of a unary operation CODE whose output mode is to
1574 be MODE with input operand OP whose mode was originally OP_MODE.
1575 Return zero if the value cannot be computed. */
1577 simplify_const_unary_operation (enum rtx_code code, machine_mode mode,
1578 rtx op, machine_mode op_mode)
1580 unsigned int width = GET_MODE_PRECISION (mode);
1582 if (code == VEC_DUPLICATE)
1584 gcc_assert (VECTOR_MODE_P (mode));
1585 if (GET_MODE (op) != VOIDmode)
1587 if (!VECTOR_MODE_P (GET_MODE (op)))
1588 gcc_assert (GET_MODE_INNER (mode) == GET_MODE (op));
1589 else
1590 gcc_assert (GET_MODE_INNER (mode) == GET_MODE_INNER
1591 (GET_MODE (op)));
1593 if (CONST_SCALAR_INT_P (op) || CONST_DOUBLE_AS_FLOAT_P (op)
1594 || GET_CODE (op) == CONST_VECTOR)
1596 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
1597 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
1598 rtvec v = rtvec_alloc (n_elts);
1599 unsigned int i;
1601 if (GET_CODE (op) != CONST_VECTOR)
1602 for (i = 0; i < n_elts; i++)
1603 RTVEC_ELT (v, i) = op;
1604 else
1606 machine_mode inmode = GET_MODE (op);
1607 int in_elt_size = GET_MODE_SIZE (GET_MODE_INNER (inmode));
1608 unsigned in_n_elts = (GET_MODE_SIZE (inmode) / in_elt_size);
1610 gcc_assert (in_n_elts < n_elts);
1611 gcc_assert ((n_elts % in_n_elts) == 0);
1612 for (i = 0; i < n_elts; i++)
1613 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (op, i % in_n_elts);
1615 return gen_rtx_CONST_VECTOR (mode, v);
1619 if (VECTOR_MODE_P (mode) && GET_CODE (op) == CONST_VECTOR)
1621 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
1622 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
1623 machine_mode opmode = GET_MODE (op);
1624 int op_elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
1625 unsigned op_n_elts = (GET_MODE_SIZE (opmode) / op_elt_size);
1626 rtvec v = rtvec_alloc (n_elts);
1627 unsigned int i;
1629 gcc_assert (op_n_elts == n_elts);
1630 for (i = 0; i < n_elts; i++)
1632 rtx x = simplify_unary_operation (code, GET_MODE_INNER (mode),
1633 CONST_VECTOR_ELT (op, i),
1634 GET_MODE_INNER (opmode));
1635 if (!x)
1636 return 0;
1637 RTVEC_ELT (v, i) = x;
1639 return gen_rtx_CONST_VECTOR (mode, v);
1642 /* The order of these tests is critical so that, for example, we don't
1643 check the wrong mode (input vs. output) for a conversion operation,
1644 such as FIX. At some point, this should be simplified. */
1646 if (code == FLOAT && CONST_SCALAR_INT_P (op))
1648 REAL_VALUE_TYPE d;
1650 if (op_mode == VOIDmode)
1652 /* CONST_INT have VOIDmode as the mode. We assume that all
1653 the bits of the constant are significant, though, this is
1654 a dangerous assumption as many times CONST_INTs are
1655 created and used with garbage in the bits outside of the
1656 precision of the implied mode of the const_int. */
1657 op_mode = MAX_MODE_INT;
1660 real_from_integer (&d, mode, std::make_pair (op, op_mode), SIGNED);
1661 d = real_value_truncate (mode, d);
1662 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
1664 else if (code == UNSIGNED_FLOAT && CONST_SCALAR_INT_P (op))
1666 REAL_VALUE_TYPE d;
1668 if (op_mode == VOIDmode)
1670 /* CONST_INT have VOIDmode as the mode. We assume that all
1671 the bits of the constant are significant, though, this is
1672 a dangerous assumption as many times CONST_INTs are
1673 created and used with garbage in the bits outside of the
1674 precision of the implied mode of the const_int. */
1675 op_mode = MAX_MODE_INT;
1678 real_from_integer (&d, mode, std::make_pair (op, op_mode), UNSIGNED);
1679 d = real_value_truncate (mode, d);
1680 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
1683 if (CONST_SCALAR_INT_P (op) && width > 0)
1685 wide_int result;
1686 machine_mode imode = op_mode == VOIDmode ? mode : op_mode;
1687 rtx_mode_t op0 = std::make_pair (op, imode);
1688 int int_value;
1690 #if TARGET_SUPPORTS_WIDE_INT == 0
1691 /* This assert keeps the simplification from producing a result
1692 that cannot be represented in a CONST_DOUBLE but a lot of
1693 upstream callers expect that this function never fails to
1694 simplify something and so you if you added this to the test
1695 above the code would die later anyway. If this assert
1696 happens, you just need to make the port support wide int. */
1697 gcc_assert (width <= HOST_BITS_PER_DOUBLE_INT);
1698 #endif
1700 switch (code)
1702 case NOT:
1703 result = wi::bit_not (op0);
1704 break;
1706 case NEG:
1707 result = wi::neg (op0);
1708 break;
1710 case ABS:
1711 result = wi::abs (op0);
1712 break;
1714 case FFS:
1715 result = wi::shwi (wi::ffs (op0), mode);
1716 break;
1718 case CLZ:
1719 if (wi::ne_p (op0, 0))
1720 int_value = wi::clz (op0);
1721 else if (! CLZ_DEFINED_VALUE_AT_ZERO (mode, int_value))
1722 int_value = GET_MODE_PRECISION (mode);
1723 result = wi::shwi (int_value, mode);
1724 break;
1726 case CLRSB:
1727 result = wi::shwi (wi::clrsb (op0), mode);
1728 break;
1730 case CTZ:
1731 if (wi::ne_p (op0, 0))
1732 int_value = wi::ctz (op0);
1733 else if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, int_value))
1734 int_value = GET_MODE_PRECISION (mode);
1735 result = wi::shwi (int_value, mode);
1736 break;
1738 case POPCOUNT:
1739 result = wi::shwi (wi::popcount (op0), mode);
1740 break;
1742 case PARITY:
1743 result = wi::shwi (wi::parity (op0), mode);
1744 break;
1746 case BSWAP:
1747 result = wide_int (op0).bswap ();
1748 break;
1750 case TRUNCATE:
1751 case ZERO_EXTEND:
1752 result = wide_int::from (op0, width, UNSIGNED);
1753 break;
1755 case SIGN_EXTEND:
1756 result = wide_int::from (op0, width, SIGNED);
1757 break;
1759 case SQRT:
1760 default:
1761 return 0;
1764 return immed_wide_int_const (result, mode);
1767 else if (CONST_DOUBLE_AS_FLOAT_P (op)
1768 && SCALAR_FLOAT_MODE_P (mode)
1769 && SCALAR_FLOAT_MODE_P (GET_MODE (op)))
1771 REAL_VALUE_TYPE d;
1772 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1774 switch (code)
1776 case SQRT:
1777 return 0;
1778 case ABS:
1779 d = real_value_abs (&d);
1780 break;
1781 case NEG:
1782 d = real_value_negate (&d);
1783 break;
1784 case FLOAT_TRUNCATE:
1785 d = real_value_truncate (mode, d);
1786 break;
1787 case FLOAT_EXTEND:
1788 /* All this does is change the mode, unless changing
1789 mode class. */
1790 if (GET_MODE_CLASS (mode) != GET_MODE_CLASS (GET_MODE (op)))
1791 real_convert (&d, mode, &d);
1792 break;
1793 case FIX:
1794 real_arithmetic (&d, FIX_TRUNC_EXPR, &d, NULL);
1795 break;
1796 case NOT:
1798 long tmp[4];
1799 int i;
1801 real_to_target (tmp, &d, GET_MODE (op));
1802 for (i = 0; i < 4; i++)
1803 tmp[i] = ~tmp[i];
1804 real_from_target (&d, tmp, mode);
1805 break;
1807 default:
1808 gcc_unreachable ();
1810 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
1812 else if (CONST_DOUBLE_AS_FLOAT_P (op)
1813 && SCALAR_FLOAT_MODE_P (GET_MODE (op))
1814 && GET_MODE_CLASS (mode) == MODE_INT
1815 && width > 0)
1817 /* Although the overflow semantics of RTL's FIX and UNSIGNED_FIX
1818 operators are intentionally left unspecified (to ease implementation
1819 by target backends), for consistency, this routine implements the
1820 same semantics for constant folding as used by the middle-end. */
1822 /* This was formerly used only for non-IEEE float.
1823 eggert@twinsun.com says it is safe for IEEE also. */
1824 REAL_VALUE_TYPE x, t;
1825 REAL_VALUE_FROM_CONST_DOUBLE (x, op);
1826 wide_int wmax, wmin;
1827 /* This is part of the abi to real_to_integer, but we check
1828 things before making this call. */
1829 bool fail;
1831 switch (code)
1833 case FIX:
1834 if (REAL_VALUE_ISNAN (x))
1835 return const0_rtx;
1837 /* Test against the signed upper bound. */
1838 wmax = wi::max_value (width, SIGNED);
1839 real_from_integer (&t, VOIDmode, wmax, SIGNED);
1840 if (REAL_VALUES_LESS (t, x))
1841 return immed_wide_int_const (wmax, mode);
1843 /* Test against the signed lower bound. */
1844 wmin = wi::min_value (width, SIGNED);
1845 real_from_integer (&t, VOIDmode, wmin, SIGNED);
1846 if (REAL_VALUES_LESS (x, t))
1847 return immed_wide_int_const (wmin, mode);
1849 return immed_wide_int_const (real_to_integer (&x, &fail, width), mode);
1850 break;
1852 case UNSIGNED_FIX:
1853 if (REAL_VALUE_ISNAN (x) || REAL_VALUE_NEGATIVE (x))
1854 return const0_rtx;
1856 /* Test against the unsigned upper bound. */
1857 wmax = wi::max_value (width, UNSIGNED);
1858 real_from_integer (&t, VOIDmode, wmax, UNSIGNED);
1859 if (REAL_VALUES_LESS (t, x))
1860 return immed_wide_int_const (wmax, mode);
1862 return immed_wide_int_const (real_to_integer (&x, &fail, width),
1863 mode);
1864 break;
1866 default:
1867 gcc_unreachable ();
1871 return NULL_RTX;
1874 /* Subroutine of simplify_binary_operation to simplify a binary operation
1875 CODE that can commute with byte swapping, with result mode MODE and
1876 operating on OP0 and OP1. CODE is currently one of AND, IOR or XOR.
1877 Return zero if no simplification or canonicalization is possible. */
1879 static rtx
1880 simplify_byte_swapping_operation (enum rtx_code code, machine_mode mode,
1881 rtx op0, rtx op1)
1883 rtx tem;
1885 /* (op (bswap x) C1)) -> (bswap (op x C2)) with C2 swapped. */
1886 if (GET_CODE (op0) == BSWAP && CONST_SCALAR_INT_P (op1))
1888 tem = simplify_gen_binary (code, mode, XEXP (op0, 0),
1889 simplify_gen_unary (BSWAP, mode, op1, mode));
1890 return simplify_gen_unary (BSWAP, mode, tem, mode);
1893 /* (op (bswap x) (bswap y)) -> (bswap (op x y)). */
1894 if (GET_CODE (op0) == BSWAP && GET_CODE (op1) == BSWAP)
1896 tem = simplify_gen_binary (code, mode, XEXP (op0, 0), XEXP (op1, 0));
1897 return simplify_gen_unary (BSWAP, mode, tem, mode);
1900 return NULL_RTX;
1903 /* Subroutine of simplify_binary_operation to simplify a commutative,
1904 associative binary operation CODE with result mode MODE, operating
1905 on OP0 and OP1. CODE is currently one of PLUS, MULT, AND, IOR, XOR,
1906 SMIN, SMAX, UMIN or UMAX. Return zero if no simplification or
1907 canonicalization is possible. */
1909 static rtx
1910 simplify_associative_operation (enum rtx_code code, machine_mode mode,
1911 rtx op0, rtx op1)
1913 rtx tem;
1915 /* Linearize the operator to the left. */
1916 if (GET_CODE (op1) == code)
1918 /* "(a op b) op (c op d)" becomes "((a op b) op c) op d)". */
1919 if (GET_CODE (op0) == code)
1921 tem = simplify_gen_binary (code, mode, op0, XEXP (op1, 0));
1922 return simplify_gen_binary (code, mode, tem, XEXP (op1, 1));
1925 /* "a op (b op c)" becomes "(b op c) op a". */
1926 if (! swap_commutative_operands_p (op1, op0))
1927 return simplify_gen_binary (code, mode, op1, op0);
1929 tem = op0;
1930 op0 = op1;
1931 op1 = tem;
1934 if (GET_CODE (op0) == code)
1936 /* Canonicalize "(x op c) op y" as "(x op y) op c". */
1937 if (swap_commutative_operands_p (XEXP (op0, 1), op1))
1939 tem = simplify_gen_binary (code, mode, XEXP (op0, 0), op1);
1940 return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
1943 /* Attempt to simplify "(a op b) op c" as "a op (b op c)". */
1944 tem = simplify_binary_operation (code, mode, XEXP (op0, 1), op1);
1945 if (tem != 0)
1946 return simplify_gen_binary (code, mode, XEXP (op0, 0), tem);
1948 /* Attempt to simplify "(a op b) op c" as "(a op c) op b". */
1949 tem = simplify_binary_operation (code, mode, XEXP (op0, 0), op1);
1950 if (tem != 0)
1951 return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
1954 return 0;
1958 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
1959 and OP1. Return 0 if no simplification is possible.
1961 Don't use this for relational operations such as EQ or LT.
1962 Use simplify_relational_operation instead. */
1964 simplify_binary_operation (enum rtx_code code, machine_mode mode,
1965 rtx op0, rtx op1)
1967 rtx trueop0, trueop1;
1968 rtx tem;
1970 /* Relational operations don't work here. We must know the mode
1971 of the operands in order to do the comparison correctly.
1972 Assuming a full word can give incorrect results.
1973 Consider comparing 128 with -128 in QImode. */
1974 gcc_assert (GET_RTX_CLASS (code) != RTX_COMPARE);
1975 gcc_assert (GET_RTX_CLASS (code) != RTX_COMM_COMPARE);
1977 /* Make sure the constant is second. */
1978 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
1979 && swap_commutative_operands_p (op0, op1))
1981 tem = op0, op0 = op1, op1 = tem;
1984 trueop0 = avoid_constant_pool_reference (op0);
1985 trueop1 = avoid_constant_pool_reference (op1);
1987 tem = simplify_const_binary_operation (code, mode, trueop0, trueop1);
1988 if (tem)
1989 return tem;
1990 return simplify_binary_operation_1 (code, mode, op0, op1, trueop0, trueop1);
1993 /* Subroutine of simplify_binary_operation. Simplify a binary operation
1994 CODE with result mode MODE, operating on OP0 and OP1. If OP0 and/or
1995 OP1 are constant pool references, TRUEOP0 and TRUEOP1 represent the
1996 actual constants. */
1998 static rtx
1999 simplify_binary_operation_1 (enum rtx_code code, machine_mode mode,
2000 rtx op0, rtx op1, rtx trueop0, rtx trueop1)
2002 rtx tem, reversed, opleft, opright;
2003 HOST_WIDE_INT val;
2004 unsigned int width = GET_MODE_PRECISION (mode);
2006 /* Even if we can't compute a constant result,
2007 there are some cases worth simplifying. */
2009 switch (code)
2011 case PLUS:
2012 /* Maybe simplify x + 0 to x. The two expressions are equivalent
2013 when x is NaN, infinite, or finite and nonzero. They aren't
2014 when x is -0 and the rounding mode is not towards -infinity,
2015 since (-0) + 0 is then 0. */
2016 if (!HONOR_SIGNED_ZEROS (mode) && trueop1 == CONST0_RTX (mode))
2017 return op0;
2019 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)). These
2020 transformations are safe even for IEEE. */
2021 if (GET_CODE (op0) == NEG)
2022 return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
2023 else if (GET_CODE (op1) == NEG)
2024 return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
2026 /* (~a) + 1 -> -a */
2027 if (INTEGRAL_MODE_P (mode)
2028 && GET_CODE (op0) == NOT
2029 && trueop1 == const1_rtx)
2030 return simplify_gen_unary (NEG, mode, XEXP (op0, 0), mode);
2032 /* Handle both-operands-constant cases. We can only add
2033 CONST_INTs to constants since the sum of relocatable symbols
2034 can't be handled by most assemblers. Don't add CONST_INT
2035 to CONST_INT since overflow won't be computed properly if wider
2036 than HOST_BITS_PER_WIDE_INT. */
2038 if ((GET_CODE (op0) == CONST
2039 || GET_CODE (op0) == SYMBOL_REF
2040 || GET_CODE (op0) == LABEL_REF)
2041 && CONST_INT_P (op1))
2042 return plus_constant (mode, op0, INTVAL (op1));
2043 else if ((GET_CODE (op1) == CONST
2044 || GET_CODE (op1) == SYMBOL_REF
2045 || GET_CODE (op1) == LABEL_REF)
2046 && CONST_INT_P (op0))
2047 return plus_constant (mode, op1, INTVAL (op0));
2049 /* See if this is something like X * C - X or vice versa or
2050 if the multiplication is written as a shift. If so, we can
2051 distribute and make a new multiply, shift, or maybe just
2052 have X (if C is 2 in the example above). But don't make
2053 something more expensive than we had before. */
2055 if (SCALAR_INT_MODE_P (mode))
2057 rtx lhs = op0, rhs = op1;
2059 wide_int coeff0 = wi::one (GET_MODE_PRECISION (mode));
2060 wide_int coeff1 = wi::one (GET_MODE_PRECISION (mode));
2062 if (GET_CODE (lhs) == NEG)
2064 coeff0 = wi::minus_one (GET_MODE_PRECISION (mode));
2065 lhs = XEXP (lhs, 0);
2067 else if (GET_CODE (lhs) == MULT
2068 && CONST_SCALAR_INT_P (XEXP (lhs, 1)))
2070 coeff0 = std::make_pair (XEXP (lhs, 1), mode);
2071 lhs = XEXP (lhs, 0);
2073 else if (GET_CODE (lhs) == ASHIFT
2074 && CONST_INT_P (XEXP (lhs, 1))
2075 && INTVAL (XEXP (lhs, 1)) >= 0
2076 && INTVAL (XEXP (lhs, 1)) < GET_MODE_PRECISION (mode))
2078 coeff0 = wi::set_bit_in_zero (INTVAL (XEXP (lhs, 1)),
2079 GET_MODE_PRECISION (mode));
2080 lhs = XEXP (lhs, 0);
2083 if (GET_CODE (rhs) == NEG)
2085 coeff1 = wi::minus_one (GET_MODE_PRECISION (mode));
2086 rhs = XEXP (rhs, 0);
2088 else if (GET_CODE (rhs) == MULT
2089 && CONST_INT_P (XEXP (rhs, 1)))
2091 coeff1 = std::make_pair (XEXP (rhs, 1), mode);
2092 rhs = XEXP (rhs, 0);
2094 else if (GET_CODE (rhs) == ASHIFT
2095 && CONST_INT_P (XEXP (rhs, 1))
2096 && INTVAL (XEXP (rhs, 1)) >= 0
2097 && INTVAL (XEXP (rhs, 1)) < GET_MODE_PRECISION (mode))
2099 coeff1 = wi::set_bit_in_zero (INTVAL (XEXP (rhs, 1)),
2100 GET_MODE_PRECISION (mode));
2101 rhs = XEXP (rhs, 0);
2104 if (rtx_equal_p (lhs, rhs))
2106 rtx orig = gen_rtx_PLUS (mode, op0, op1);
2107 rtx coeff;
2108 bool speed = optimize_function_for_speed_p (cfun);
2110 coeff = immed_wide_int_const (coeff0 + coeff1, mode);
2112 tem = simplify_gen_binary (MULT, mode, lhs, coeff);
2113 return set_src_cost (tem, speed) <= set_src_cost (orig, speed)
2114 ? tem : 0;
2118 /* (plus (xor X C1) C2) is (xor X (C1^C2)) if C2 is signbit. */
2119 if (CONST_SCALAR_INT_P (op1)
2120 && GET_CODE (op0) == XOR
2121 && CONST_SCALAR_INT_P (XEXP (op0, 1))
2122 && mode_signbit_p (mode, op1))
2123 return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
2124 simplify_gen_binary (XOR, mode, op1,
2125 XEXP (op0, 1)));
2127 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)). */
2128 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
2129 && GET_CODE (op0) == MULT
2130 && GET_CODE (XEXP (op0, 0)) == NEG)
2132 rtx in1, in2;
2134 in1 = XEXP (XEXP (op0, 0), 0);
2135 in2 = XEXP (op0, 1);
2136 return simplify_gen_binary (MINUS, mode, op1,
2137 simplify_gen_binary (MULT, mode,
2138 in1, in2));
2141 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
2142 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
2143 is 1. */
2144 if (COMPARISON_P (op0)
2145 && ((STORE_FLAG_VALUE == -1 && trueop1 == const1_rtx)
2146 || (STORE_FLAG_VALUE == 1 && trueop1 == constm1_rtx))
2147 && (reversed = reversed_comparison (op0, mode)))
2148 return
2149 simplify_gen_unary (NEG, mode, reversed, mode);
2151 /* If one of the operands is a PLUS or a MINUS, see if we can
2152 simplify this by the associative law.
2153 Don't use the associative law for floating point.
2154 The inaccuracy makes it nonassociative,
2155 and subtle programs can break if operations are associated. */
2157 if (INTEGRAL_MODE_P (mode)
2158 && (plus_minus_operand_p (op0)
2159 || plus_minus_operand_p (op1))
2160 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
2161 return tem;
2163 /* Reassociate floating point addition only when the user
2164 specifies associative math operations. */
2165 if (FLOAT_MODE_P (mode)
2166 && flag_associative_math)
2168 tem = simplify_associative_operation (code, mode, op0, op1);
2169 if (tem)
2170 return tem;
2172 break;
2174 case COMPARE:
2175 /* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
2176 if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
2177 || (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
2178 && XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
2180 rtx xop00 = XEXP (op0, 0);
2181 rtx xop10 = XEXP (op1, 0);
2183 #ifdef HAVE_cc0
2184 if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
2185 #else
2186 if (REG_P (xop00) && REG_P (xop10)
2187 && GET_MODE (xop00) == GET_MODE (xop10)
2188 && REGNO (xop00) == REGNO (xop10)
2189 && GET_MODE_CLASS (GET_MODE (xop00)) == MODE_CC
2190 && GET_MODE_CLASS (GET_MODE (xop10)) == MODE_CC)
2191 #endif
2192 return xop00;
2194 break;
2196 case MINUS:
2197 /* We can't assume x-x is 0 even with non-IEEE floating point,
2198 but since it is zero except in very strange circumstances, we
2199 will treat it as zero with -ffinite-math-only. */
2200 if (rtx_equal_p (trueop0, trueop1)
2201 && ! side_effects_p (op0)
2202 && (!FLOAT_MODE_P (mode) || !HONOR_NANS (mode)))
2203 return CONST0_RTX (mode);
2205 /* Change subtraction from zero into negation. (0 - x) is the
2206 same as -x when x is NaN, infinite, or finite and nonzero.
2207 But if the mode has signed zeros, and does not round towards
2208 -infinity, then 0 - 0 is 0, not -0. */
2209 if (!HONOR_SIGNED_ZEROS (mode) && trueop0 == CONST0_RTX (mode))
2210 return simplify_gen_unary (NEG, mode, op1, mode);
2212 /* (-1 - a) is ~a. */
2213 if (trueop0 == constm1_rtx)
2214 return simplify_gen_unary (NOT, mode, op1, mode);
2216 /* Subtracting 0 has no effect unless the mode has signed zeros
2217 and supports rounding towards -infinity. In such a case,
2218 0 - 0 is -0. */
2219 if (!(HONOR_SIGNED_ZEROS (mode)
2220 && HONOR_SIGN_DEPENDENT_ROUNDING (mode))
2221 && trueop1 == CONST0_RTX (mode))
2222 return op0;
2224 /* See if this is something like X * C - X or vice versa or
2225 if the multiplication is written as a shift. If so, we can
2226 distribute and make a new multiply, shift, or maybe just
2227 have X (if C is 2 in the example above). But don't make
2228 something more expensive than we had before. */
2230 if (SCALAR_INT_MODE_P (mode))
2232 rtx lhs = op0, rhs = op1;
2234 wide_int coeff0 = wi::one (GET_MODE_PRECISION (mode));
2235 wide_int negcoeff1 = wi::minus_one (GET_MODE_PRECISION (mode));
2237 if (GET_CODE (lhs) == NEG)
2239 coeff0 = wi::minus_one (GET_MODE_PRECISION (mode));
2240 lhs = XEXP (lhs, 0);
2242 else if (GET_CODE (lhs) == MULT
2243 && CONST_SCALAR_INT_P (XEXP (lhs, 1)))
2245 coeff0 = std::make_pair (XEXP (lhs, 1), mode);
2246 lhs = XEXP (lhs, 0);
2248 else if (GET_CODE (lhs) == ASHIFT
2249 && CONST_INT_P (XEXP (lhs, 1))
2250 && INTVAL (XEXP (lhs, 1)) >= 0
2251 && INTVAL (XEXP (lhs, 1)) < GET_MODE_PRECISION (mode))
2253 coeff0 = wi::set_bit_in_zero (INTVAL (XEXP (lhs, 1)),
2254 GET_MODE_PRECISION (mode));
2255 lhs = XEXP (lhs, 0);
2258 if (GET_CODE (rhs) == NEG)
2260 negcoeff1 = wi::one (GET_MODE_PRECISION (mode));
2261 rhs = XEXP (rhs, 0);
2263 else if (GET_CODE (rhs) == MULT
2264 && CONST_INT_P (XEXP (rhs, 1)))
2266 negcoeff1 = wi::neg (std::make_pair (XEXP (rhs, 1), mode));
2267 rhs = XEXP (rhs, 0);
2269 else if (GET_CODE (rhs) == ASHIFT
2270 && CONST_INT_P (XEXP (rhs, 1))
2271 && INTVAL (XEXP (rhs, 1)) >= 0
2272 && INTVAL (XEXP (rhs, 1)) < GET_MODE_PRECISION (mode))
2274 negcoeff1 = wi::set_bit_in_zero (INTVAL (XEXP (rhs, 1)),
2275 GET_MODE_PRECISION (mode));
2276 negcoeff1 = -negcoeff1;
2277 rhs = XEXP (rhs, 0);
2280 if (rtx_equal_p (lhs, rhs))
2282 rtx orig = gen_rtx_MINUS (mode, op0, op1);
2283 rtx coeff;
2284 bool speed = optimize_function_for_speed_p (cfun);
2286 coeff = immed_wide_int_const (coeff0 + negcoeff1, mode);
2288 tem = simplify_gen_binary (MULT, mode, lhs, coeff);
2289 return set_src_cost (tem, speed) <= set_src_cost (orig, speed)
2290 ? tem : 0;
2294 /* (a - (-b)) -> (a + b). True even for IEEE. */
2295 if (GET_CODE (op1) == NEG)
2296 return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
2298 /* (-x - c) may be simplified as (-c - x). */
2299 if (GET_CODE (op0) == NEG
2300 && (CONST_SCALAR_INT_P (op1) || CONST_DOUBLE_AS_FLOAT_P (op1)))
2302 tem = simplify_unary_operation (NEG, mode, op1, mode);
2303 if (tem)
2304 return simplify_gen_binary (MINUS, mode, tem, XEXP (op0, 0));
2307 /* Don't let a relocatable value get a negative coeff. */
2308 if (CONST_INT_P (op1) && GET_MODE (op0) != VOIDmode)
2309 return simplify_gen_binary (PLUS, mode,
2310 op0,
2311 neg_const_int (mode, op1));
2313 /* (x - (x & y)) -> (x & ~y) */
2314 if (INTEGRAL_MODE_P (mode) && GET_CODE (op1) == AND)
2316 if (rtx_equal_p (op0, XEXP (op1, 0)))
2318 tem = simplify_gen_unary (NOT, mode, XEXP (op1, 1),
2319 GET_MODE (XEXP (op1, 1)));
2320 return simplify_gen_binary (AND, mode, op0, tem);
2322 if (rtx_equal_p (op0, XEXP (op1, 1)))
2324 tem = simplify_gen_unary (NOT, mode, XEXP (op1, 0),
2325 GET_MODE (XEXP (op1, 0)));
2326 return simplify_gen_binary (AND, mode, op0, tem);
2330 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
2331 by reversing the comparison code if valid. */
2332 if (STORE_FLAG_VALUE == 1
2333 && trueop0 == const1_rtx
2334 && COMPARISON_P (op1)
2335 && (reversed = reversed_comparison (op1, mode)))
2336 return reversed;
2338 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A). */
2339 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
2340 && GET_CODE (op1) == MULT
2341 && GET_CODE (XEXP (op1, 0)) == NEG)
2343 rtx in1, in2;
2345 in1 = XEXP (XEXP (op1, 0), 0);
2346 in2 = XEXP (op1, 1);
2347 return simplify_gen_binary (PLUS, mode,
2348 simplify_gen_binary (MULT, mode,
2349 in1, in2),
2350 op0);
2353 /* Canonicalize (minus (neg A) (mult B C)) to
2354 (minus (mult (neg B) C) A). */
2355 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
2356 && GET_CODE (op1) == MULT
2357 && GET_CODE (op0) == NEG)
2359 rtx in1, in2;
2361 in1 = simplify_gen_unary (NEG, mode, XEXP (op1, 0), mode);
2362 in2 = XEXP (op1, 1);
2363 return simplify_gen_binary (MINUS, mode,
2364 simplify_gen_binary (MULT, mode,
2365 in1, in2),
2366 XEXP (op0, 0));
2369 /* If one of the operands is a PLUS or a MINUS, see if we can
2370 simplify this by the associative law. This will, for example,
2371 canonicalize (minus A (plus B C)) to (minus (minus A B) C).
2372 Don't use the associative law for floating point.
2373 The inaccuracy makes it nonassociative,
2374 and subtle programs can break if operations are associated. */
2376 if (INTEGRAL_MODE_P (mode)
2377 && (plus_minus_operand_p (op0)
2378 || plus_minus_operand_p (op1))
2379 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
2380 return tem;
2381 break;
2383 case MULT:
2384 if (trueop1 == constm1_rtx)
2385 return simplify_gen_unary (NEG, mode, op0, mode);
2387 if (GET_CODE (op0) == NEG)
2389 rtx temp = simplify_unary_operation (NEG, mode, op1, mode);
2390 /* If op1 is a MULT as well and simplify_unary_operation
2391 just moved the NEG to the second operand, simplify_gen_binary
2392 below could through simplify_associative_operation move
2393 the NEG around again and recurse endlessly. */
2394 if (temp
2395 && GET_CODE (op1) == MULT
2396 && GET_CODE (temp) == MULT
2397 && XEXP (op1, 0) == XEXP (temp, 0)
2398 && GET_CODE (XEXP (temp, 1)) == NEG
2399 && XEXP (op1, 1) == XEXP (XEXP (temp, 1), 0))
2400 temp = NULL_RTX;
2401 if (temp)
2402 return simplify_gen_binary (MULT, mode, XEXP (op0, 0), temp);
2404 if (GET_CODE (op1) == NEG)
2406 rtx temp = simplify_unary_operation (NEG, mode, op0, mode);
2407 /* If op0 is a MULT as well and simplify_unary_operation
2408 just moved the NEG to the second operand, simplify_gen_binary
2409 below could through simplify_associative_operation move
2410 the NEG around again and recurse endlessly. */
2411 if (temp
2412 && GET_CODE (op0) == MULT
2413 && GET_CODE (temp) == MULT
2414 && XEXP (op0, 0) == XEXP (temp, 0)
2415 && GET_CODE (XEXP (temp, 1)) == NEG
2416 && XEXP (op0, 1) == XEXP (XEXP (temp, 1), 0))
2417 temp = NULL_RTX;
2418 if (temp)
2419 return simplify_gen_binary (MULT, mode, temp, XEXP (op1, 0));
2422 /* Maybe simplify x * 0 to 0. The reduction is not valid if
2423 x is NaN, since x * 0 is then also NaN. Nor is it valid
2424 when the mode has signed zeros, since multiplying a negative
2425 number by 0 will give -0, not 0. */
2426 if (!HONOR_NANS (mode)
2427 && !HONOR_SIGNED_ZEROS (mode)
2428 && trueop1 == CONST0_RTX (mode)
2429 && ! side_effects_p (op0))
2430 return op1;
2432 /* In IEEE floating point, x*1 is not equivalent to x for
2433 signalling NaNs. */
2434 if (!HONOR_SNANS (mode)
2435 && trueop1 == CONST1_RTX (mode))
2436 return op0;
2438 /* Convert multiply by constant power of two into shift. */
2439 if (CONST_SCALAR_INT_P (trueop1))
2441 val = wi::exact_log2 (std::make_pair (trueop1, mode));
2442 if (val >= 0)
2443 return simplify_gen_binary (ASHIFT, mode, op0, GEN_INT (val));
2446 /* x*2 is x+x and x*(-1) is -x */
2447 if (CONST_DOUBLE_AS_FLOAT_P (trueop1)
2448 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop1))
2449 && !DECIMAL_FLOAT_MODE_P (GET_MODE (trueop1))
2450 && GET_MODE (op0) == mode)
2452 REAL_VALUE_TYPE d;
2453 REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
2455 if (REAL_VALUES_EQUAL (d, dconst2))
2456 return simplify_gen_binary (PLUS, mode, op0, copy_rtx (op0));
2458 if (!HONOR_SNANS (mode)
2459 && REAL_VALUES_EQUAL (d, dconstm1))
2460 return simplify_gen_unary (NEG, mode, op0, mode);
2463 /* Optimize -x * -x as x * x. */
2464 if (FLOAT_MODE_P (mode)
2465 && GET_CODE (op0) == NEG
2466 && GET_CODE (op1) == NEG
2467 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
2468 && !side_effects_p (XEXP (op0, 0)))
2469 return simplify_gen_binary (MULT, mode, XEXP (op0, 0), XEXP (op1, 0));
2471 /* Likewise, optimize abs(x) * abs(x) as x * x. */
2472 if (SCALAR_FLOAT_MODE_P (mode)
2473 && GET_CODE (op0) == ABS
2474 && GET_CODE (op1) == ABS
2475 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
2476 && !side_effects_p (XEXP (op0, 0)))
2477 return simplify_gen_binary (MULT, mode, XEXP (op0, 0), XEXP (op1, 0));
2479 /* Reassociate multiplication, but for floating point MULTs
2480 only when the user specifies unsafe math optimizations. */
2481 if (! FLOAT_MODE_P (mode)
2482 || flag_unsafe_math_optimizations)
2484 tem = simplify_associative_operation (code, mode, op0, op1);
2485 if (tem)
2486 return tem;
2488 break;
2490 case IOR:
2491 if (trueop1 == CONST0_RTX (mode))
2492 return op0;
2493 if (INTEGRAL_MODE_P (mode)
2494 && trueop1 == CONSTM1_RTX (mode)
2495 && !side_effects_p (op0))
2496 return op1;
2497 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2498 return op0;
2499 /* A | (~A) -> -1 */
2500 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
2501 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
2502 && ! side_effects_p (op0)
2503 && SCALAR_INT_MODE_P (mode))
2504 return constm1_rtx;
2506 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
2507 if (CONST_INT_P (op1)
2508 && HWI_COMPUTABLE_MODE_P (mode)
2509 && (nonzero_bits (op0, mode) & ~UINTVAL (op1)) == 0
2510 && !side_effects_p (op0))
2511 return op1;
2513 /* Canonicalize (X & C1) | C2. */
2514 if (GET_CODE (op0) == AND
2515 && CONST_INT_P (trueop1)
2516 && CONST_INT_P (XEXP (op0, 1)))
2518 HOST_WIDE_INT mask = GET_MODE_MASK (mode);
2519 HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
2520 HOST_WIDE_INT c2 = INTVAL (trueop1);
2522 /* If (C1&C2) == C1, then (X&C1)|C2 becomes X. */
2523 if ((c1 & c2) == c1
2524 && !side_effects_p (XEXP (op0, 0)))
2525 return trueop1;
2527 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
2528 if (((c1|c2) & mask) == mask)
2529 return simplify_gen_binary (IOR, mode, XEXP (op0, 0), op1);
2531 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2. */
2532 if (((c1 & ~c2) & mask) != (c1 & mask))
2534 tem = simplify_gen_binary (AND, mode, XEXP (op0, 0),
2535 gen_int_mode (c1 & ~c2, mode));
2536 return simplify_gen_binary (IOR, mode, tem, op1);
2540 /* Convert (A & B) | A to A. */
2541 if (GET_CODE (op0) == AND
2542 && (rtx_equal_p (XEXP (op0, 0), op1)
2543 || rtx_equal_p (XEXP (op0, 1), op1))
2544 && ! side_effects_p (XEXP (op0, 0))
2545 && ! side_effects_p (XEXP (op0, 1)))
2546 return op1;
2548 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
2549 mode size to (rotate A CX). */
2551 if (GET_CODE (op1) == ASHIFT
2552 || GET_CODE (op1) == SUBREG)
2554 opleft = op1;
2555 opright = op0;
2557 else
2559 opright = op1;
2560 opleft = op0;
2563 if (GET_CODE (opleft) == ASHIFT && GET_CODE (opright) == LSHIFTRT
2564 && rtx_equal_p (XEXP (opleft, 0), XEXP (opright, 0))
2565 && CONST_INT_P (XEXP (opleft, 1))
2566 && CONST_INT_P (XEXP (opright, 1))
2567 && (INTVAL (XEXP (opleft, 1)) + INTVAL (XEXP (opright, 1))
2568 == GET_MODE_PRECISION (mode)))
2569 return gen_rtx_ROTATE (mode, XEXP (opright, 0), XEXP (opleft, 1));
2571 /* Same, but for ashift that has been "simplified" to a wider mode
2572 by simplify_shift_const. */
2574 if (GET_CODE (opleft) == SUBREG
2575 && GET_CODE (SUBREG_REG (opleft)) == ASHIFT
2576 && GET_CODE (opright) == LSHIFTRT
2577 && GET_CODE (XEXP (opright, 0)) == SUBREG
2578 && GET_MODE (opleft) == GET_MODE (XEXP (opright, 0))
2579 && SUBREG_BYTE (opleft) == SUBREG_BYTE (XEXP (opright, 0))
2580 && (GET_MODE_SIZE (GET_MODE (opleft))
2581 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (opleft))))
2582 && rtx_equal_p (XEXP (SUBREG_REG (opleft), 0),
2583 SUBREG_REG (XEXP (opright, 0)))
2584 && CONST_INT_P (XEXP (SUBREG_REG (opleft), 1))
2585 && CONST_INT_P (XEXP (opright, 1))
2586 && (INTVAL (XEXP (SUBREG_REG (opleft), 1)) + INTVAL (XEXP (opright, 1))
2587 == GET_MODE_PRECISION (mode)))
2588 return gen_rtx_ROTATE (mode, XEXP (opright, 0),
2589 XEXP (SUBREG_REG (opleft), 1));
2591 /* If we have (ior (and (X C1) C2)), simplify this by making
2592 C1 as small as possible if C1 actually changes. */
2593 if (CONST_INT_P (op1)
2594 && (HWI_COMPUTABLE_MODE_P (mode)
2595 || INTVAL (op1) > 0)
2596 && GET_CODE (op0) == AND
2597 && CONST_INT_P (XEXP (op0, 1))
2598 && CONST_INT_P (op1)
2599 && (UINTVAL (XEXP (op0, 1)) & UINTVAL (op1)) != 0)
2601 rtx tmp = simplify_gen_binary (AND, mode, XEXP (op0, 0),
2602 gen_int_mode (UINTVAL (XEXP (op0, 1))
2603 & ~UINTVAL (op1),
2604 mode));
2605 return simplify_gen_binary (IOR, mode, tmp, op1);
2608 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
2609 a (sign_extend (plus ...)). Then check if OP1 is a CONST_INT and
2610 the PLUS does not affect any of the bits in OP1: then we can do
2611 the IOR as a PLUS and we can associate. This is valid if OP1
2612 can be safely shifted left C bits. */
2613 if (CONST_INT_P (trueop1) && GET_CODE (op0) == ASHIFTRT
2614 && GET_CODE (XEXP (op0, 0)) == PLUS
2615 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
2616 && CONST_INT_P (XEXP (op0, 1))
2617 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
2619 int count = INTVAL (XEXP (op0, 1));
2620 HOST_WIDE_INT mask = INTVAL (trueop1) << count;
2622 if (mask >> count == INTVAL (trueop1)
2623 && trunc_int_for_mode (mask, mode) == mask
2624 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
2625 return simplify_gen_binary (ASHIFTRT, mode,
2626 plus_constant (mode, XEXP (op0, 0),
2627 mask),
2628 XEXP (op0, 1));
2631 tem = simplify_byte_swapping_operation (code, mode, op0, op1);
2632 if (tem)
2633 return tem;
2635 tem = simplify_associative_operation (code, mode, op0, op1);
2636 if (tem)
2637 return tem;
2638 break;
2640 case XOR:
2641 if (trueop1 == CONST0_RTX (mode))
2642 return op0;
2643 if (INTEGRAL_MODE_P (mode) && trueop1 == CONSTM1_RTX (mode))
2644 return simplify_gen_unary (NOT, mode, op0, mode);
2645 if (rtx_equal_p (trueop0, trueop1)
2646 && ! side_effects_p (op0)
2647 && GET_MODE_CLASS (mode) != MODE_CC)
2648 return CONST0_RTX (mode);
2650 /* Canonicalize XOR of the most significant bit to PLUS. */
2651 if (CONST_SCALAR_INT_P (op1)
2652 && mode_signbit_p (mode, op1))
2653 return simplify_gen_binary (PLUS, mode, op0, op1);
2654 /* (xor (plus X C1) C2) is (xor X (C1^C2)) if C1 is signbit. */
2655 if (CONST_SCALAR_INT_P (op1)
2656 && GET_CODE (op0) == PLUS
2657 && CONST_SCALAR_INT_P (XEXP (op0, 1))
2658 && mode_signbit_p (mode, XEXP (op0, 1)))
2659 return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
2660 simplify_gen_binary (XOR, mode, op1,
2661 XEXP (op0, 1)));
2663 /* If we are XORing two things that have no bits in common,
2664 convert them into an IOR. This helps to detect rotation encoded
2665 using those methods and possibly other simplifications. */
2667 if (HWI_COMPUTABLE_MODE_P (mode)
2668 && (nonzero_bits (op0, mode)
2669 & nonzero_bits (op1, mode)) == 0)
2670 return (simplify_gen_binary (IOR, mode, op0, op1));
2672 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
2673 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
2674 (NOT y). */
2676 int num_negated = 0;
2678 if (GET_CODE (op0) == NOT)
2679 num_negated++, op0 = XEXP (op0, 0);
2680 if (GET_CODE (op1) == NOT)
2681 num_negated++, op1 = XEXP (op1, 0);
2683 if (num_negated == 2)
2684 return simplify_gen_binary (XOR, mode, op0, op1);
2685 else if (num_negated == 1)
2686 return simplify_gen_unary (NOT, mode,
2687 simplify_gen_binary (XOR, mode, op0, op1),
2688 mode);
2691 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
2692 correspond to a machine insn or result in further simplifications
2693 if B is a constant. */
2695 if (GET_CODE (op0) == AND
2696 && rtx_equal_p (XEXP (op0, 1), op1)
2697 && ! side_effects_p (op1))
2698 return simplify_gen_binary (AND, mode,
2699 simplify_gen_unary (NOT, mode,
2700 XEXP (op0, 0), mode),
2701 op1);
2703 else if (GET_CODE (op0) == AND
2704 && rtx_equal_p (XEXP (op0, 0), op1)
2705 && ! side_effects_p (op1))
2706 return simplify_gen_binary (AND, mode,
2707 simplify_gen_unary (NOT, mode,
2708 XEXP (op0, 1), mode),
2709 op1);
2711 /* Given (xor (ior (xor A B) C) D), where B, C and D are
2712 constants, simplify to (xor (ior A C) (B&~C)^D), canceling
2713 out bits inverted twice and not set by C. Similarly, given
2714 (xor (and (xor A B) C) D), simplify without inverting C in
2715 the xor operand: (xor (and A C) (B&C)^D).
2717 else if ((GET_CODE (op0) == IOR || GET_CODE (op0) == AND)
2718 && GET_CODE (XEXP (op0, 0)) == XOR
2719 && CONST_INT_P (op1)
2720 && CONST_INT_P (XEXP (op0, 1))
2721 && CONST_INT_P (XEXP (XEXP (op0, 0), 1)))
2723 enum rtx_code op = GET_CODE (op0);
2724 rtx a = XEXP (XEXP (op0, 0), 0);
2725 rtx b = XEXP (XEXP (op0, 0), 1);
2726 rtx c = XEXP (op0, 1);
2727 rtx d = op1;
2728 HOST_WIDE_INT bval = INTVAL (b);
2729 HOST_WIDE_INT cval = INTVAL (c);
2730 HOST_WIDE_INT dval = INTVAL (d);
2731 HOST_WIDE_INT xcval;
2733 if (op == IOR)
2734 xcval = ~cval;
2735 else
2736 xcval = cval;
2738 return simplify_gen_binary (XOR, mode,
2739 simplify_gen_binary (op, mode, a, c),
2740 gen_int_mode ((bval & xcval) ^ dval,
2741 mode));
2744 /* Given (xor (and A B) C), using P^Q == (~P&Q) | (~Q&P),
2745 we can transform like this:
2746 (A&B)^C == ~(A&B)&C | ~C&(A&B)
2747 == (~A|~B)&C | ~C&(A&B) * DeMorgan's Law
2748 == ~A&C | ~B&C | A&(~C&B) * Distribute and re-order
2749 Attempt a few simplifications when B and C are both constants. */
2750 if (GET_CODE (op0) == AND
2751 && CONST_INT_P (op1)
2752 && CONST_INT_P (XEXP (op0, 1)))
2754 rtx a = XEXP (op0, 0);
2755 rtx b = XEXP (op0, 1);
2756 rtx c = op1;
2757 HOST_WIDE_INT bval = INTVAL (b);
2758 HOST_WIDE_INT cval = INTVAL (c);
2760 /* Instead of computing ~A&C, we compute its negated value,
2761 ~(A|~C). If it yields -1, ~A&C is zero, so we can
2762 optimize for sure. If it does not simplify, we still try
2763 to compute ~A&C below, but since that always allocates
2764 RTL, we don't try that before committing to returning a
2765 simplified expression. */
2766 rtx n_na_c = simplify_binary_operation (IOR, mode, a,
2767 GEN_INT (~cval));
2769 if ((~cval & bval) == 0)
2771 rtx na_c = NULL_RTX;
2772 if (n_na_c)
2773 na_c = simplify_gen_unary (NOT, mode, n_na_c, mode);
2774 else
2776 /* If ~A does not simplify, don't bother: we don't
2777 want to simplify 2 operations into 3, and if na_c
2778 were to simplify with na, n_na_c would have
2779 simplified as well. */
2780 rtx na = simplify_unary_operation (NOT, mode, a, mode);
2781 if (na)
2782 na_c = simplify_gen_binary (AND, mode, na, c);
2785 /* Try to simplify ~A&C | ~B&C. */
2786 if (na_c != NULL_RTX)
2787 return simplify_gen_binary (IOR, mode, na_c,
2788 gen_int_mode (~bval & cval, mode));
2790 else
2792 /* If ~A&C is zero, simplify A&(~C&B) | ~B&C. */
2793 if (n_na_c == CONSTM1_RTX (mode))
2795 rtx a_nc_b = simplify_gen_binary (AND, mode, a,
2796 gen_int_mode (~cval & bval,
2797 mode));
2798 return simplify_gen_binary (IOR, mode, a_nc_b,
2799 gen_int_mode (~bval & cval,
2800 mode));
2805 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
2806 comparison if STORE_FLAG_VALUE is 1. */
2807 if (STORE_FLAG_VALUE == 1
2808 && trueop1 == const1_rtx
2809 && COMPARISON_P (op0)
2810 && (reversed = reversed_comparison (op0, mode)))
2811 return reversed;
2813 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
2814 is (lt foo (const_int 0)), so we can perform the above
2815 simplification if STORE_FLAG_VALUE is 1. */
2817 if (STORE_FLAG_VALUE == 1
2818 && trueop1 == const1_rtx
2819 && GET_CODE (op0) == LSHIFTRT
2820 && CONST_INT_P (XEXP (op0, 1))
2821 && INTVAL (XEXP (op0, 1)) == GET_MODE_PRECISION (mode) - 1)
2822 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
2824 /* (xor (comparison foo bar) (const_int sign-bit))
2825 when STORE_FLAG_VALUE is the sign bit. */
2826 if (val_signbit_p (mode, STORE_FLAG_VALUE)
2827 && trueop1 == const_true_rtx
2828 && COMPARISON_P (op0)
2829 && (reversed = reversed_comparison (op0, mode)))
2830 return reversed;
2832 tem = simplify_byte_swapping_operation (code, mode, op0, op1);
2833 if (tem)
2834 return tem;
2836 tem = simplify_associative_operation (code, mode, op0, op1);
2837 if (tem)
2838 return tem;
2839 break;
2841 case AND:
2842 if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
2843 return trueop1;
2844 if (INTEGRAL_MODE_P (mode) && trueop1 == CONSTM1_RTX (mode))
2845 return op0;
2846 if (HWI_COMPUTABLE_MODE_P (mode))
2848 HOST_WIDE_INT nzop0 = nonzero_bits (trueop0, mode);
2849 HOST_WIDE_INT nzop1;
2850 if (CONST_INT_P (trueop1))
2852 HOST_WIDE_INT val1 = INTVAL (trueop1);
2853 /* If we are turning off bits already known off in OP0, we need
2854 not do an AND. */
2855 if ((nzop0 & ~val1) == 0)
2856 return op0;
2858 nzop1 = nonzero_bits (trueop1, mode);
2859 /* If we are clearing all the nonzero bits, the result is zero. */
2860 if ((nzop1 & nzop0) == 0
2861 && !side_effects_p (op0) && !side_effects_p (op1))
2862 return CONST0_RTX (mode);
2864 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0)
2865 && GET_MODE_CLASS (mode) != MODE_CC)
2866 return op0;
2867 /* A & (~A) -> 0 */
2868 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
2869 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
2870 && ! side_effects_p (op0)
2871 && GET_MODE_CLASS (mode) != MODE_CC)
2872 return CONST0_RTX (mode);
2874 /* Transform (and (extend X) C) into (zero_extend (and X C)) if
2875 there are no nonzero bits of C outside of X's mode. */
2876 if ((GET_CODE (op0) == SIGN_EXTEND
2877 || GET_CODE (op0) == ZERO_EXTEND)
2878 && CONST_INT_P (trueop1)
2879 && HWI_COMPUTABLE_MODE_P (mode)
2880 && (~GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))
2881 & UINTVAL (trueop1)) == 0)
2883 machine_mode imode = GET_MODE (XEXP (op0, 0));
2884 tem = simplify_gen_binary (AND, imode, XEXP (op0, 0),
2885 gen_int_mode (INTVAL (trueop1),
2886 imode));
2887 return simplify_gen_unary (ZERO_EXTEND, mode, tem, imode);
2890 /* Transform (and (truncate X) C) into (truncate (and X C)). This way
2891 we might be able to further simplify the AND with X and potentially
2892 remove the truncation altogether. */
2893 if (GET_CODE (op0) == TRUNCATE && CONST_INT_P (trueop1))
2895 rtx x = XEXP (op0, 0);
2896 machine_mode xmode = GET_MODE (x);
2897 tem = simplify_gen_binary (AND, xmode, x,
2898 gen_int_mode (INTVAL (trueop1), xmode));
2899 return simplify_gen_unary (TRUNCATE, mode, tem, xmode);
2902 /* Canonicalize (A | C1) & C2 as (A & C2) | (C1 & C2). */
2903 if (GET_CODE (op0) == IOR
2904 && CONST_INT_P (trueop1)
2905 && CONST_INT_P (XEXP (op0, 1)))
2907 HOST_WIDE_INT tmp = INTVAL (trueop1) & INTVAL (XEXP (op0, 1));
2908 return simplify_gen_binary (IOR, mode,
2909 simplify_gen_binary (AND, mode,
2910 XEXP (op0, 0), op1),
2911 gen_int_mode (tmp, mode));
2914 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
2915 insn (and may simplify more). */
2916 if (GET_CODE (op0) == XOR
2917 && rtx_equal_p (XEXP (op0, 0), op1)
2918 && ! side_effects_p (op1))
2919 return simplify_gen_binary (AND, mode,
2920 simplify_gen_unary (NOT, mode,
2921 XEXP (op0, 1), mode),
2922 op1);
2924 if (GET_CODE (op0) == XOR
2925 && rtx_equal_p (XEXP (op0, 1), op1)
2926 && ! side_effects_p (op1))
2927 return simplify_gen_binary (AND, mode,
2928 simplify_gen_unary (NOT, mode,
2929 XEXP (op0, 0), mode),
2930 op1);
2932 /* Similarly for (~(A ^ B)) & A. */
2933 if (GET_CODE (op0) == NOT
2934 && GET_CODE (XEXP (op0, 0)) == XOR
2935 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
2936 && ! side_effects_p (op1))
2937 return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
2939 if (GET_CODE (op0) == NOT
2940 && GET_CODE (XEXP (op0, 0)) == XOR
2941 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
2942 && ! side_effects_p (op1))
2943 return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
2945 /* Convert (A | B) & A to A. */
2946 if (GET_CODE (op0) == IOR
2947 && (rtx_equal_p (XEXP (op0, 0), op1)
2948 || rtx_equal_p (XEXP (op0, 1), op1))
2949 && ! side_effects_p (XEXP (op0, 0))
2950 && ! side_effects_p (XEXP (op0, 1)))
2951 return op1;
2953 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
2954 ((A & N) + B) & M -> (A + B) & M
2955 Similarly if (N & M) == 0,
2956 ((A | N) + B) & M -> (A + B) & M
2957 and for - instead of + and/or ^ instead of |.
2958 Also, if (N & M) == 0, then
2959 (A +- N) & M -> A & M. */
2960 if (CONST_INT_P (trueop1)
2961 && HWI_COMPUTABLE_MODE_P (mode)
2962 && ~UINTVAL (trueop1)
2963 && (UINTVAL (trueop1) & (UINTVAL (trueop1) + 1)) == 0
2964 && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS))
2966 rtx pmop[2];
2967 int which;
2969 pmop[0] = XEXP (op0, 0);
2970 pmop[1] = XEXP (op0, 1);
2972 if (CONST_INT_P (pmop[1])
2973 && (UINTVAL (pmop[1]) & UINTVAL (trueop1)) == 0)
2974 return simplify_gen_binary (AND, mode, pmop[0], op1);
2976 for (which = 0; which < 2; which++)
2978 tem = pmop[which];
2979 switch (GET_CODE (tem))
2981 case AND:
2982 if (CONST_INT_P (XEXP (tem, 1))
2983 && (UINTVAL (XEXP (tem, 1)) & UINTVAL (trueop1))
2984 == UINTVAL (trueop1))
2985 pmop[which] = XEXP (tem, 0);
2986 break;
2987 case IOR:
2988 case XOR:
2989 if (CONST_INT_P (XEXP (tem, 1))
2990 && (UINTVAL (XEXP (tem, 1)) & UINTVAL (trueop1)) == 0)
2991 pmop[which] = XEXP (tem, 0);
2992 break;
2993 default:
2994 break;
2998 if (pmop[0] != XEXP (op0, 0) || pmop[1] != XEXP (op0, 1))
3000 tem = simplify_gen_binary (GET_CODE (op0), mode,
3001 pmop[0], pmop[1]);
3002 return simplify_gen_binary (code, mode, tem, op1);
3006 /* (and X (ior (not X) Y) -> (and X Y) */
3007 if (GET_CODE (op1) == IOR
3008 && GET_CODE (XEXP (op1, 0)) == NOT
3009 && rtx_equal_p (op0, XEXP (XEXP (op1, 0), 0)))
3010 return simplify_gen_binary (AND, mode, op0, XEXP (op1, 1));
3012 /* (and (ior (not X) Y) X) -> (and X Y) */
3013 if (GET_CODE (op0) == IOR
3014 && GET_CODE (XEXP (op0, 0)) == NOT
3015 && rtx_equal_p (op1, XEXP (XEXP (op0, 0), 0)))
3016 return simplify_gen_binary (AND, mode, op1, XEXP (op0, 1));
3018 /* (and X (ior Y (not X)) -> (and X Y) */
3019 if (GET_CODE (op1) == IOR
3020 && GET_CODE (XEXP (op1, 1)) == NOT
3021 && rtx_equal_p (op0, XEXP (XEXP (op1, 1), 0)))
3022 return simplify_gen_binary (AND, mode, op0, XEXP (op1, 0));
3024 /* (and (ior Y (not X)) X) -> (and X Y) */
3025 if (GET_CODE (op0) == IOR
3026 && GET_CODE (XEXP (op0, 1)) == NOT
3027 && rtx_equal_p (op1, XEXP (XEXP (op0, 1), 0)))
3028 return simplify_gen_binary (AND, mode, op1, XEXP (op0, 0));
3030 tem = simplify_byte_swapping_operation (code, mode, op0, op1);
3031 if (tem)
3032 return tem;
3034 tem = simplify_associative_operation (code, mode, op0, op1);
3035 if (tem)
3036 return tem;
3037 break;
3039 case UDIV:
3040 /* 0/x is 0 (or x&0 if x has side-effects). */
3041 if (trueop0 == CONST0_RTX (mode))
3043 if (side_effects_p (op1))
3044 return simplify_gen_binary (AND, mode, op1, trueop0);
3045 return trueop0;
3047 /* x/1 is x. */
3048 if (trueop1 == CONST1_RTX (mode))
3050 tem = rtl_hooks.gen_lowpart_no_emit (mode, op0);
3051 if (tem)
3052 return tem;
3054 /* Convert divide by power of two into shift. */
3055 if (CONST_INT_P (trueop1)
3056 && (val = exact_log2 (UINTVAL (trueop1))) > 0)
3057 return simplify_gen_binary (LSHIFTRT, mode, op0, GEN_INT (val));
3058 break;
3060 case DIV:
3061 /* Handle floating point and integers separately. */
3062 if (SCALAR_FLOAT_MODE_P (mode))
3064 /* Maybe change 0.0 / x to 0.0. This transformation isn't
3065 safe for modes with NaNs, since 0.0 / 0.0 will then be
3066 NaN rather than 0.0. Nor is it safe for modes with signed
3067 zeros, since dividing 0 by a negative number gives -0.0 */
3068 if (trueop0 == CONST0_RTX (mode)
3069 && !HONOR_NANS (mode)
3070 && !HONOR_SIGNED_ZEROS (mode)
3071 && ! side_effects_p (op1))
3072 return op0;
3073 /* x/1.0 is x. */
3074 if (trueop1 == CONST1_RTX (mode)
3075 && !HONOR_SNANS (mode))
3076 return op0;
3078 if (CONST_DOUBLE_AS_FLOAT_P (trueop1)
3079 && trueop1 != CONST0_RTX (mode))
3081 REAL_VALUE_TYPE d;
3082 REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
3084 /* x/-1.0 is -x. */
3085 if (REAL_VALUES_EQUAL (d, dconstm1)
3086 && !HONOR_SNANS (mode))
3087 return simplify_gen_unary (NEG, mode, op0, mode);
3089 /* Change FP division by a constant into multiplication.
3090 Only do this with -freciprocal-math. */
3091 if (flag_reciprocal_math
3092 && !REAL_VALUES_EQUAL (d, dconst0))
3094 REAL_ARITHMETIC (d, RDIV_EXPR, dconst1, d);
3095 tem = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
3096 return simplify_gen_binary (MULT, mode, op0, tem);
3100 else if (SCALAR_INT_MODE_P (mode))
3102 /* 0/x is 0 (or x&0 if x has side-effects). */
3103 if (trueop0 == CONST0_RTX (mode)
3104 && !cfun->can_throw_non_call_exceptions)
3106 if (side_effects_p (op1))
3107 return simplify_gen_binary (AND, mode, op1, trueop0);
3108 return trueop0;
3110 /* x/1 is x. */
3111 if (trueop1 == CONST1_RTX (mode))
3113 tem = rtl_hooks.gen_lowpart_no_emit (mode, op0);
3114 if (tem)
3115 return tem;
3117 /* x/-1 is -x. */
3118 if (trueop1 == constm1_rtx)
3120 rtx x = rtl_hooks.gen_lowpart_no_emit (mode, op0);
3121 if (x)
3122 return simplify_gen_unary (NEG, mode, x, mode);
3125 break;
3127 case UMOD:
3128 /* 0%x is 0 (or x&0 if x has side-effects). */
3129 if (trueop0 == CONST0_RTX (mode))
3131 if (side_effects_p (op1))
3132 return simplify_gen_binary (AND, mode, op1, trueop0);
3133 return trueop0;
3135 /* x%1 is 0 (of x&0 if x has side-effects). */
3136 if (trueop1 == CONST1_RTX (mode))
3138 if (side_effects_p (op0))
3139 return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
3140 return CONST0_RTX (mode);
3142 /* Implement modulus by power of two as AND. */
3143 if (CONST_INT_P (trueop1)
3144 && exact_log2 (UINTVAL (trueop1)) > 0)
3145 return simplify_gen_binary (AND, mode, op0,
3146 gen_int_mode (INTVAL (op1) - 1, mode));
3147 break;
3149 case MOD:
3150 /* 0%x is 0 (or x&0 if x has side-effects). */
3151 if (trueop0 == CONST0_RTX (mode))
3153 if (side_effects_p (op1))
3154 return simplify_gen_binary (AND, mode, op1, trueop0);
3155 return trueop0;
3157 /* x%1 and x%-1 is 0 (or x&0 if x has side-effects). */
3158 if (trueop1 == CONST1_RTX (mode) || trueop1 == constm1_rtx)
3160 if (side_effects_p (op0))
3161 return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
3162 return CONST0_RTX (mode);
3164 break;
3166 case ROTATERT:
3167 case ROTATE:
3168 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
3169 prefer left rotation, if op1 is from bitsize / 2 + 1 to
3170 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
3171 amount instead. */
3172 #if defined(HAVE_rotate) && defined(HAVE_rotatert)
3173 if (CONST_INT_P (trueop1)
3174 && IN_RANGE (INTVAL (trueop1),
3175 GET_MODE_PRECISION (mode) / 2 + (code == ROTATE),
3176 GET_MODE_PRECISION (mode) - 1))
3177 return simplify_gen_binary (code == ROTATE ? ROTATERT : ROTATE,
3178 mode, op0, GEN_INT (GET_MODE_PRECISION (mode)
3179 - INTVAL (trueop1)));
3180 #endif
3181 /* FALLTHRU */
3182 case ASHIFTRT:
3183 if (trueop1 == CONST0_RTX (mode))
3184 return op0;
3185 if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
3186 return op0;
3187 /* Rotating ~0 always results in ~0. */
3188 if (CONST_INT_P (trueop0) && width <= HOST_BITS_PER_WIDE_INT
3189 && UINTVAL (trueop0) == GET_MODE_MASK (mode)
3190 && ! side_effects_p (op1))
3191 return op0;
3192 /* Given:
3193 scalar modes M1, M2
3194 scalar constants c1, c2
3195 size (M2) > size (M1)
3196 c1 == size (M2) - size (M1)
3197 optimize:
3198 (ashiftrt:M1 (subreg:M1 (lshiftrt:M2 (reg:M2) (const_int <c1>))
3199 <low_part>)
3200 (const_int <c2>))
3202 (subreg:M1 (ashiftrt:M2 (reg:M2) (const_int <c1 + c2>))
3203 <low_part>). */
3204 if (code == ASHIFTRT
3205 && !VECTOR_MODE_P (mode)
3206 && SUBREG_P (op0)
3207 && CONST_INT_P (op1)
3208 && GET_CODE (SUBREG_REG (op0)) == LSHIFTRT
3209 && !VECTOR_MODE_P (GET_MODE (SUBREG_REG (op0)))
3210 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1))
3211 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
3212 > GET_MODE_BITSIZE (mode))
3213 && (INTVAL (XEXP (SUBREG_REG (op0), 1))
3214 == (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
3215 - GET_MODE_BITSIZE (mode)))
3216 && subreg_lowpart_p (op0))
3218 rtx tmp = GEN_INT (INTVAL (XEXP (SUBREG_REG (op0), 1))
3219 + INTVAL (op1));
3220 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3221 tmp = simplify_gen_binary (ASHIFTRT,
3222 GET_MODE (SUBREG_REG (op0)),
3223 XEXP (SUBREG_REG (op0), 0),
3224 tmp);
3225 return simplify_gen_subreg (mode, tmp, inner_mode,
3226 subreg_lowpart_offset (mode,
3227 inner_mode));
3229 canonicalize_shift:
3230 if (SHIFT_COUNT_TRUNCATED && CONST_INT_P (op1))
3232 val = INTVAL (op1) & (GET_MODE_PRECISION (mode) - 1);
3233 if (val != INTVAL (op1))
3234 return simplify_gen_binary (code, mode, op0, GEN_INT (val));
3236 break;
3238 case ASHIFT:
3239 case SS_ASHIFT:
3240 case US_ASHIFT:
3241 if (trueop1 == CONST0_RTX (mode))
3242 return op0;
3243 if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
3244 return op0;
3245 goto canonicalize_shift;
3247 case LSHIFTRT:
3248 if (trueop1 == CONST0_RTX (mode))
3249 return op0;
3250 if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
3251 return op0;
3252 /* Optimize (lshiftrt (clz X) C) as (eq X 0). */
3253 if (GET_CODE (op0) == CLZ
3254 && CONST_INT_P (trueop1)
3255 && STORE_FLAG_VALUE == 1
3256 && INTVAL (trueop1) < (HOST_WIDE_INT)width)
3258 machine_mode imode = GET_MODE (XEXP (op0, 0));
3259 unsigned HOST_WIDE_INT zero_val = 0;
3261 if (CLZ_DEFINED_VALUE_AT_ZERO (imode, zero_val)
3262 && zero_val == GET_MODE_PRECISION (imode)
3263 && INTVAL (trueop1) == exact_log2 (zero_val))
3264 return simplify_gen_relational (EQ, mode, imode,
3265 XEXP (op0, 0), const0_rtx);
3267 goto canonicalize_shift;
3269 case SMIN:
3270 if (width <= HOST_BITS_PER_WIDE_INT
3271 && mode_signbit_p (mode, trueop1)
3272 && ! side_effects_p (op0))
3273 return op1;
3274 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
3275 return op0;
3276 tem = simplify_associative_operation (code, mode, op0, op1);
3277 if (tem)
3278 return tem;
3279 break;
3281 case SMAX:
3282 if (width <= HOST_BITS_PER_WIDE_INT
3283 && CONST_INT_P (trueop1)
3284 && (UINTVAL (trueop1) == GET_MODE_MASK (mode) >> 1)
3285 && ! side_effects_p (op0))
3286 return op1;
3287 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
3288 return op0;
3289 tem = simplify_associative_operation (code, mode, op0, op1);
3290 if (tem)
3291 return tem;
3292 break;
3294 case UMIN:
3295 if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
3296 return op1;
3297 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
3298 return op0;
3299 tem = simplify_associative_operation (code, mode, op0, op1);
3300 if (tem)
3301 return tem;
3302 break;
3304 case UMAX:
3305 if (trueop1 == constm1_rtx && ! side_effects_p (op0))
3306 return op1;
3307 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
3308 return op0;
3309 tem = simplify_associative_operation (code, mode, op0, op1);
3310 if (tem)
3311 return tem;
3312 break;
3314 case SS_PLUS:
3315 case US_PLUS:
3316 case SS_MINUS:
3317 case US_MINUS:
3318 case SS_MULT:
3319 case US_MULT:
3320 case SS_DIV:
3321 case US_DIV:
3322 /* ??? There are simplifications that can be done. */
3323 return 0;
3325 case VEC_SELECT:
3326 if (!VECTOR_MODE_P (mode))
3328 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
3329 gcc_assert (mode == GET_MODE_INNER (GET_MODE (trueop0)));
3330 gcc_assert (GET_CODE (trueop1) == PARALLEL);
3331 gcc_assert (XVECLEN (trueop1, 0) == 1);
3332 gcc_assert (CONST_INT_P (XVECEXP (trueop1, 0, 0)));
3334 if (GET_CODE (trueop0) == CONST_VECTOR)
3335 return CONST_VECTOR_ELT (trueop0, INTVAL (XVECEXP
3336 (trueop1, 0, 0)));
3338 /* Extract a scalar element from a nested VEC_SELECT expression
3339 (with optional nested VEC_CONCAT expression). Some targets
3340 (i386) extract scalar element from a vector using chain of
3341 nested VEC_SELECT expressions. When input operand is a memory
3342 operand, this operation can be simplified to a simple scalar
3343 load from an offseted memory address. */
3344 if (GET_CODE (trueop0) == VEC_SELECT)
3346 rtx op0 = XEXP (trueop0, 0);
3347 rtx op1 = XEXP (trueop0, 1);
3349 machine_mode opmode = GET_MODE (op0);
3350 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
3351 int n_elts = GET_MODE_SIZE (opmode) / elt_size;
3353 int i = INTVAL (XVECEXP (trueop1, 0, 0));
3354 int elem;
3356 rtvec vec;
3357 rtx tmp_op, tmp;
3359 gcc_assert (GET_CODE (op1) == PARALLEL);
3360 gcc_assert (i < n_elts);
3362 /* Select element, pointed by nested selector. */
3363 elem = INTVAL (XVECEXP (op1, 0, i));
3365 /* Handle the case when nested VEC_SELECT wraps VEC_CONCAT. */
3366 if (GET_CODE (op0) == VEC_CONCAT)
3368 rtx op00 = XEXP (op0, 0);
3369 rtx op01 = XEXP (op0, 1);
3371 machine_mode mode00, mode01;
3372 int n_elts00, n_elts01;
3374 mode00 = GET_MODE (op00);
3375 mode01 = GET_MODE (op01);
3377 /* Find out number of elements of each operand. */
3378 if (VECTOR_MODE_P (mode00))
3380 elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode00));
3381 n_elts00 = GET_MODE_SIZE (mode00) / elt_size;
3383 else
3384 n_elts00 = 1;
3386 if (VECTOR_MODE_P (mode01))
3388 elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode01));
3389 n_elts01 = GET_MODE_SIZE (mode01) / elt_size;
3391 else
3392 n_elts01 = 1;
3394 gcc_assert (n_elts == n_elts00 + n_elts01);
3396 /* Select correct operand of VEC_CONCAT
3397 and adjust selector. */
3398 if (elem < n_elts01)
3399 tmp_op = op00;
3400 else
3402 tmp_op = op01;
3403 elem -= n_elts00;
3406 else
3407 tmp_op = op0;
3409 vec = rtvec_alloc (1);
3410 RTVEC_ELT (vec, 0) = GEN_INT (elem);
3412 tmp = gen_rtx_fmt_ee (code, mode,
3413 tmp_op, gen_rtx_PARALLEL (VOIDmode, vec));
3414 return tmp;
3416 if (GET_CODE (trueop0) == VEC_DUPLICATE
3417 && GET_MODE (XEXP (trueop0, 0)) == mode)
3418 return XEXP (trueop0, 0);
3420 else
3422 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
3423 gcc_assert (GET_MODE_INNER (mode)
3424 == GET_MODE_INNER (GET_MODE (trueop0)));
3425 gcc_assert (GET_CODE (trueop1) == PARALLEL);
3427 if (GET_CODE (trueop0) == CONST_VECTOR)
3429 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
3430 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
3431 rtvec v = rtvec_alloc (n_elts);
3432 unsigned int i;
3434 gcc_assert (XVECLEN (trueop1, 0) == (int) n_elts);
3435 for (i = 0; i < n_elts; i++)
3437 rtx x = XVECEXP (trueop1, 0, i);
3439 gcc_assert (CONST_INT_P (x));
3440 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0,
3441 INTVAL (x));
3444 return gen_rtx_CONST_VECTOR (mode, v);
3447 /* Recognize the identity. */
3448 if (GET_MODE (trueop0) == mode)
3450 bool maybe_ident = true;
3451 for (int i = 0; i < XVECLEN (trueop1, 0); i++)
3453 rtx j = XVECEXP (trueop1, 0, i);
3454 if (!CONST_INT_P (j) || INTVAL (j) != i)
3456 maybe_ident = false;
3457 break;
3460 if (maybe_ident)
3461 return trueop0;
3464 /* If we build {a,b} then permute it, build the result directly. */
3465 if (XVECLEN (trueop1, 0) == 2
3466 && CONST_INT_P (XVECEXP (trueop1, 0, 0))
3467 && CONST_INT_P (XVECEXP (trueop1, 0, 1))
3468 && GET_CODE (trueop0) == VEC_CONCAT
3469 && GET_CODE (XEXP (trueop0, 0)) == VEC_CONCAT
3470 && GET_MODE (XEXP (trueop0, 0)) == mode
3471 && GET_CODE (XEXP (trueop0, 1)) == VEC_CONCAT
3472 && GET_MODE (XEXP (trueop0, 1)) == mode)
3474 unsigned int i0 = INTVAL (XVECEXP (trueop1, 0, 0));
3475 unsigned int i1 = INTVAL (XVECEXP (trueop1, 0, 1));
3476 rtx subop0, subop1;
3478 gcc_assert (i0 < 4 && i1 < 4);
3479 subop0 = XEXP (XEXP (trueop0, i0 / 2), i0 % 2);
3480 subop1 = XEXP (XEXP (trueop0, i1 / 2), i1 % 2);
3482 return simplify_gen_binary (VEC_CONCAT, mode, subop0, subop1);
3485 if (XVECLEN (trueop1, 0) == 2
3486 && CONST_INT_P (XVECEXP (trueop1, 0, 0))
3487 && CONST_INT_P (XVECEXP (trueop1, 0, 1))
3488 && GET_CODE (trueop0) == VEC_CONCAT
3489 && GET_MODE (trueop0) == mode)
3491 unsigned int i0 = INTVAL (XVECEXP (trueop1, 0, 0));
3492 unsigned int i1 = INTVAL (XVECEXP (trueop1, 0, 1));
3493 rtx subop0, subop1;
3495 gcc_assert (i0 < 2 && i1 < 2);
3496 subop0 = XEXP (trueop0, i0);
3497 subop1 = XEXP (trueop0, i1);
3499 return simplify_gen_binary (VEC_CONCAT, mode, subop0, subop1);
3502 /* If we select one half of a vec_concat, return that. */
3503 if (GET_CODE (trueop0) == VEC_CONCAT
3504 && CONST_INT_P (XVECEXP (trueop1, 0, 0)))
3506 rtx subop0 = XEXP (trueop0, 0);
3507 rtx subop1 = XEXP (trueop0, 1);
3508 machine_mode mode0 = GET_MODE (subop0);
3509 machine_mode mode1 = GET_MODE (subop1);
3510 int li = GET_MODE_SIZE (GET_MODE_INNER (mode0));
3511 int l0 = GET_MODE_SIZE (mode0) / li;
3512 int l1 = GET_MODE_SIZE (mode1) / li;
3513 int i0 = INTVAL (XVECEXP (trueop1, 0, 0));
3514 if (i0 == 0 && !side_effects_p (op1) && mode == mode0)
3516 bool success = true;
3517 for (int i = 1; i < l0; ++i)
3519 rtx j = XVECEXP (trueop1, 0, i);
3520 if (!CONST_INT_P (j) || INTVAL (j) != i)
3522 success = false;
3523 break;
3526 if (success)
3527 return subop0;
3529 if (i0 == l0 && !side_effects_p (op0) && mode == mode1)
3531 bool success = true;
3532 for (int i = 1; i < l1; ++i)
3534 rtx j = XVECEXP (trueop1, 0, i);
3535 if (!CONST_INT_P (j) || INTVAL (j) != i0 + i)
3537 success = false;
3538 break;
3541 if (success)
3542 return subop1;
3547 if (XVECLEN (trueop1, 0) == 1
3548 && CONST_INT_P (XVECEXP (trueop1, 0, 0))
3549 && GET_CODE (trueop0) == VEC_CONCAT)
3551 rtx vec = trueop0;
3552 int offset = INTVAL (XVECEXP (trueop1, 0, 0)) * GET_MODE_SIZE (mode);
3554 /* Try to find the element in the VEC_CONCAT. */
3555 while (GET_MODE (vec) != mode
3556 && GET_CODE (vec) == VEC_CONCAT)
3558 HOST_WIDE_INT vec_size = GET_MODE_SIZE (GET_MODE (XEXP (vec, 0)));
3559 if (offset < vec_size)
3560 vec = XEXP (vec, 0);
3561 else
3563 offset -= vec_size;
3564 vec = XEXP (vec, 1);
3566 vec = avoid_constant_pool_reference (vec);
3569 if (GET_MODE (vec) == mode)
3570 return vec;
3573 /* If we select elements in a vec_merge that all come from the same
3574 operand, select from that operand directly. */
3575 if (GET_CODE (op0) == VEC_MERGE)
3577 rtx trueop02 = avoid_constant_pool_reference (XEXP (op0, 2));
3578 if (CONST_INT_P (trueop02))
3580 unsigned HOST_WIDE_INT sel = UINTVAL (trueop02);
3581 bool all_operand0 = true;
3582 bool all_operand1 = true;
3583 for (int i = 0; i < XVECLEN (trueop1, 0); i++)
3585 rtx j = XVECEXP (trueop1, 0, i);
3586 if (sel & (1 << UINTVAL (j)))
3587 all_operand1 = false;
3588 else
3589 all_operand0 = false;
3591 if (all_operand0 && !side_effects_p (XEXP (op0, 1)))
3592 return simplify_gen_binary (VEC_SELECT, mode, XEXP (op0, 0), op1);
3593 if (all_operand1 && !side_effects_p (XEXP (op0, 0)))
3594 return simplify_gen_binary (VEC_SELECT, mode, XEXP (op0, 1), op1);
3598 /* If we have two nested selects that are inverses of each
3599 other, replace them with the source operand. */
3600 if (GET_CODE (trueop0) == VEC_SELECT
3601 && GET_MODE (XEXP (trueop0, 0)) == mode)
3603 rtx op0_subop1 = XEXP (trueop0, 1);
3604 gcc_assert (GET_CODE (op0_subop1) == PARALLEL);
3605 gcc_assert (XVECLEN (trueop1, 0) == GET_MODE_NUNITS (mode));
3607 /* Apply the outer ordering vector to the inner one. (The inner
3608 ordering vector is expressly permitted to be of a different
3609 length than the outer one.) If the result is { 0, 1, ..., n-1 }
3610 then the two VEC_SELECTs cancel. */
3611 for (int i = 0; i < XVECLEN (trueop1, 0); ++i)
3613 rtx x = XVECEXP (trueop1, 0, i);
3614 if (!CONST_INT_P (x))
3615 return 0;
3616 rtx y = XVECEXP (op0_subop1, 0, INTVAL (x));
3617 if (!CONST_INT_P (y) || i != INTVAL (y))
3618 return 0;
3620 return XEXP (trueop0, 0);
3623 return 0;
3624 case VEC_CONCAT:
3626 machine_mode op0_mode = (GET_MODE (trueop0) != VOIDmode
3627 ? GET_MODE (trueop0)
3628 : GET_MODE_INNER (mode));
3629 machine_mode op1_mode = (GET_MODE (trueop1) != VOIDmode
3630 ? GET_MODE (trueop1)
3631 : GET_MODE_INNER (mode));
3633 gcc_assert (VECTOR_MODE_P (mode));
3634 gcc_assert (GET_MODE_SIZE (op0_mode) + GET_MODE_SIZE (op1_mode)
3635 == GET_MODE_SIZE (mode));
3637 if (VECTOR_MODE_P (op0_mode))
3638 gcc_assert (GET_MODE_INNER (mode)
3639 == GET_MODE_INNER (op0_mode));
3640 else
3641 gcc_assert (GET_MODE_INNER (mode) == op0_mode);
3643 if (VECTOR_MODE_P (op1_mode))
3644 gcc_assert (GET_MODE_INNER (mode)
3645 == GET_MODE_INNER (op1_mode));
3646 else
3647 gcc_assert (GET_MODE_INNER (mode) == op1_mode);
3649 if ((GET_CODE (trueop0) == CONST_VECTOR
3650 || CONST_SCALAR_INT_P (trueop0)
3651 || CONST_DOUBLE_AS_FLOAT_P (trueop0))
3652 && (GET_CODE (trueop1) == CONST_VECTOR
3653 || CONST_SCALAR_INT_P (trueop1)
3654 || CONST_DOUBLE_AS_FLOAT_P (trueop1)))
3656 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
3657 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
3658 rtvec v = rtvec_alloc (n_elts);
3659 unsigned int i;
3660 unsigned in_n_elts = 1;
3662 if (VECTOR_MODE_P (op0_mode))
3663 in_n_elts = (GET_MODE_SIZE (op0_mode) / elt_size);
3664 for (i = 0; i < n_elts; i++)
3666 if (i < in_n_elts)
3668 if (!VECTOR_MODE_P (op0_mode))
3669 RTVEC_ELT (v, i) = trueop0;
3670 else
3671 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0, i);
3673 else
3675 if (!VECTOR_MODE_P (op1_mode))
3676 RTVEC_ELT (v, i) = trueop1;
3677 else
3678 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop1,
3679 i - in_n_elts);
3683 return gen_rtx_CONST_VECTOR (mode, v);
3686 /* Try to merge two VEC_SELECTs from the same vector into a single one.
3687 Restrict the transformation to avoid generating a VEC_SELECT with a
3688 mode unrelated to its operand. */
3689 if (GET_CODE (trueop0) == VEC_SELECT
3690 && GET_CODE (trueop1) == VEC_SELECT
3691 && rtx_equal_p (XEXP (trueop0, 0), XEXP (trueop1, 0))
3692 && GET_MODE (XEXP (trueop0, 0)) == mode)
3694 rtx par0 = XEXP (trueop0, 1);
3695 rtx par1 = XEXP (trueop1, 1);
3696 int len0 = XVECLEN (par0, 0);
3697 int len1 = XVECLEN (par1, 0);
3698 rtvec vec = rtvec_alloc (len0 + len1);
3699 for (int i = 0; i < len0; i++)
3700 RTVEC_ELT (vec, i) = XVECEXP (par0, 0, i);
3701 for (int i = 0; i < len1; i++)
3702 RTVEC_ELT (vec, len0 + i) = XVECEXP (par1, 0, i);
3703 return simplify_gen_binary (VEC_SELECT, mode, XEXP (trueop0, 0),
3704 gen_rtx_PARALLEL (VOIDmode, vec));
3707 return 0;
3709 default:
3710 gcc_unreachable ();
3713 return 0;
3717 simplify_const_binary_operation (enum rtx_code code, machine_mode mode,
3718 rtx op0, rtx op1)
3720 unsigned int width = GET_MODE_PRECISION (mode);
3722 if (VECTOR_MODE_P (mode)
3723 && code != VEC_CONCAT
3724 && GET_CODE (op0) == CONST_VECTOR
3725 && GET_CODE (op1) == CONST_VECTOR)
3727 unsigned n_elts = GET_MODE_NUNITS (mode);
3728 machine_mode op0mode = GET_MODE (op0);
3729 unsigned op0_n_elts = GET_MODE_NUNITS (op0mode);
3730 machine_mode op1mode = GET_MODE (op1);
3731 unsigned op1_n_elts = GET_MODE_NUNITS (op1mode);
3732 rtvec v = rtvec_alloc (n_elts);
3733 unsigned int i;
3735 gcc_assert (op0_n_elts == n_elts);
3736 gcc_assert (op1_n_elts == n_elts);
3737 for (i = 0; i < n_elts; i++)
3739 rtx x = simplify_binary_operation (code, GET_MODE_INNER (mode),
3740 CONST_VECTOR_ELT (op0, i),
3741 CONST_VECTOR_ELT (op1, i));
3742 if (!x)
3743 return 0;
3744 RTVEC_ELT (v, i) = x;
3747 return gen_rtx_CONST_VECTOR (mode, v);
3750 if (VECTOR_MODE_P (mode)
3751 && code == VEC_CONCAT
3752 && (CONST_SCALAR_INT_P (op0)
3753 || GET_CODE (op0) == CONST_FIXED
3754 || CONST_DOUBLE_AS_FLOAT_P (op0))
3755 && (CONST_SCALAR_INT_P (op1)
3756 || CONST_DOUBLE_AS_FLOAT_P (op1)
3757 || GET_CODE (op1) == CONST_FIXED))
3759 unsigned n_elts = GET_MODE_NUNITS (mode);
3760 rtvec v = rtvec_alloc (n_elts);
3762 gcc_assert (n_elts >= 2);
3763 if (n_elts == 2)
3765 gcc_assert (GET_CODE (op0) != CONST_VECTOR);
3766 gcc_assert (GET_CODE (op1) != CONST_VECTOR);
3768 RTVEC_ELT (v, 0) = op0;
3769 RTVEC_ELT (v, 1) = op1;
3771 else
3773 unsigned op0_n_elts = GET_MODE_NUNITS (GET_MODE (op0));
3774 unsigned op1_n_elts = GET_MODE_NUNITS (GET_MODE (op1));
3775 unsigned i;
3777 gcc_assert (GET_CODE (op0) == CONST_VECTOR);
3778 gcc_assert (GET_CODE (op1) == CONST_VECTOR);
3779 gcc_assert (op0_n_elts + op1_n_elts == n_elts);
3781 for (i = 0; i < op0_n_elts; ++i)
3782 RTVEC_ELT (v, i) = XVECEXP (op0, 0, i);
3783 for (i = 0; i < op1_n_elts; ++i)
3784 RTVEC_ELT (v, op0_n_elts+i) = XVECEXP (op1, 0, i);
3787 return gen_rtx_CONST_VECTOR (mode, v);
3790 if (SCALAR_FLOAT_MODE_P (mode)
3791 && CONST_DOUBLE_AS_FLOAT_P (op0)
3792 && CONST_DOUBLE_AS_FLOAT_P (op1)
3793 && mode == GET_MODE (op0) && mode == GET_MODE (op1))
3795 if (code == AND
3796 || code == IOR
3797 || code == XOR)
3799 long tmp0[4];
3800 long tmp1[4];
3801 REAL_VALUE_TYPE r;
3802 int i;
3804 real_to_target (tmp0, CONST_DOUBLE_REAL_VALUE (op0),
3805 GET_MODE (op0));
3806 real_to_target (tmp1, CONST_DOUBLE_REAL_VALUE (op1),
3807 GET_MODE (op1));
3808 for (i = 0; i < 4; i++)
3810 switch (code)
3812 case AND:
3813 tmp0[i] &= tmp1[i];
3814 break;
3815 case IOR:
3816 tmp0[i] |= tmp1[i];
3817 break;
3818 case XOR:
3819 tmp0[i] ^= tmp1[i];
3820 break;
3821 default:
3822 gcc_unreachable ();
3825 real_from_target (&r, tmp0, mode);
3826 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
3828 else
3830 REAL_VALUE_TYPE f0, f1, value, result;
3831 bool inexact;
3833 REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
3834 REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
3835 real_convert (&f0, mode, &f0);
3836 real_convert (&f1, mode, &f1);
3838 if (HONOR_SNANS (mode)
3839 && (REAL_VALUE_ISNAN (f0) || REAL_VALUE_ISNAN (f1)))
3840 return 0;
3842 if (code == DIV
3843 && REAL_VALUES_EQUAL (f1, dconst0)
3844 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
3845 return 0;
3847 if (MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
3848 && flag_trapping_math
3849 && REAL_VALUE_ISINF (f0) && REAL_VALUE_ISINF (f1))
3851 int s0 = REAL_VALUE_NEGATIVE (f0);
3852 int s1 = REAL_VALUE_NEGATIVE (f1);
3854 switch (code)
3856 case PLUS:
3857 /* Inf + -Inf = NaN plus exception. */
3858 if (s0 != s1)
3859 return 0;
3860 break;
3861 case MINUS:
3862 /* Inf - Inf = NaN plus exception. */
3863 if (s0 == s1)
3864 return 0;
3865 break;
3866 case DIV:
3867 /* Inf / Inf = NaN plus exception. */
3868 return 0;
3869 default:
3870 break;
3874 if (code == MULT && MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
3875 && flag_trapping_math
3876 && ((REAL_VALUE_ISINF (f0) && REAL_VALUES_EQUAL (f1, dconst0))
3877 || (REAL_VALUE_ISINF (f1)
3878 && REAL_VALUES_EQUAL (f0, dconst0))))
3879 /* Inf * 0 = NaN plus exception. */
3880 return 0;
3882 inexact = real_arithmetic (&value, rtx_to_tree_code (code),
3883 &f0, &f1);
3884 real_convert (&result, mode, &value);
3886 /* Don't constant fold this floating point operation if
3887 the result has overflowed and flag_trapping_math. */
3889 if (flag_trapping_math
3890 && MODE_HAS_INFINITIES (mode)
3891 && REAL_VALUE_ISINF (result)
3892 && !REAL_VALUE_ISINF (f0)
3893 && !REAL_VALUE_ISINF (f1))
3894 /* Overflow plus exception. */
3895 return 0;
3897 /* Don't constant fold this floating point operation if the
3898 result may dependent upon the run-time rounding mode and
3899 flag_rounding_math is set, or if GCC's software emulation
3900 is unable to accurately represent the result. */
3902 if ((flag_rounding_math
3903 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
3904 && (inexact || !real_identical (&result, &value)))
3905 return NULL_RTX;
3907 return CONST_DOUBLE_FROM_REAL_VALUE (result, mode);
3911 /* We can fold some multi-word operations. */
3912 if ((GET_MODE_CLASS (mode) == MODE_INT
3913 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3914 && CONST_SCALAR_INT_P (op0)
3915 && CONST_SCALAR_INT_P (op1))
3917 wide_int result;
3918 bool overflow;
3919 rtx_mode_t pop0 = std::make_pair (op0, mode);
3920 rtx_mode_t pop1 = std::make_pair (op1, mode);
3922 #if TARGET_SUPPORTS_WIDE_INT == 0
3923 /* This assert keeps the simplification from producing a result
3924 that cannot be represented in a CONST_DOUBLE but a lot of
3925 upstream callers expect that this function never fails to
3926 simplify something and so you if you added this to the test
3927 above the code would die later anyway. If this assert
3928 happens, you just need to make the port support wide int. */
3929 gcc_assert (width <= HOST_BITS_PER_DOUBLE_INT);
3930 #endif
3931 switch (code)
3933 case MINUS:
3934 result = wi::sub (pop0, pop1);
3935 break;
3937 case PLUS:
3938 result = wi::add (pop0, pop1);
3939 break;
3941 case MULT:
3942 result = wi::mul (pop0, pop1);
3943 break;
3945 case DIV:
3946 result = wi::div_trunc (pop0, pop1, SIGNED, &overflow);
3947 if (overflow)
3948 return NULL_RTX;
3949 break;
3951 case MOD:
3952 result = wi::mod_trunc (pop0, pop1, SIGNED, &overflow);
3953 if (overflow)
3954 return NULL_RTX;
3955 break;
3957 case UDIV:
3958 result = wi::div_trunc (pop0, pop1, UNSIGNED, &overflow);
3959 if (overflow)
3960 return NULL_RTX;
3961 break;
3963 case UMOD:
3964 result = wi::mod_trunc (pop0, pop1, UNSIGNED, &overflow);
3965 if (overflow)
3966 return NULL_RTX;
3967 break;
3969 case AND:
3970 result = wi::bit_and (pop0, pop1);
3971 break;
3973 case IOR:
3974 result = wi::bit_or (pop0, pop1);
3975 break;
3977 case XOR:
3978 result = wi::bit_xor (pop0, pop1);
3979 break;
3981 case SMIN:
3982 result = wi::smin (pop0, pop1);
3983 break;
3985 case SMAX:
3986 result = wi::smax (pop0, pop1);
3987 break;
3989 case UMIN:
3990 result = wi::umin (pop0, pop1);
3991 break;
3993 case UMAX:
3994 result = wi::umax (pop0, pop1);
3995 break;
3997 case LSHIFTRT:
3998 case ASHIFTRT:
3999 case ASHIFT:
4001 wide_int wop1 = pop1;
4002 if (SHIFT_COUNT_TRUNCATED)
4003 wop1 = wi::umod_trunc (wop1, width);
4004 else if (wi::geu_p (wop1, width))
4005 return NULL_RTX;
4007 switch (code)
4009 case LSHIFTRT:
4010 result = wi::lrshift (pop0, wop1);
4011 break;
4013 case ASHIFTRT:
4014 result = wi::arshift (pop0, wop1);
4015 break;
4017 case ASHIFT:
4018 result = wi::lshift (pop0, wop1);
4019 break;
4021 default:
4022 gcc_unreachable ();
4024 break;
4026 case ROTATE:
4027 case ROTATERT:
4029 if (wi::neg_p (pop1))
4030 return NULL_RTX;
4032 switch (code)
4034 case ROTATE:
4035 result = wi::lrotate (pop0, pop1);
4036 break;
4038 case ROTATERT:
4039 result = wi::rrotate (pop0, pop1);
4040 break;
4042 default:
4043 gcc_unreachable ();
4045 break;
4047 default:
4048 return NULL_RTX;
4050 return immed_wide_int_const (result, mode);
4053 return NULL_RTX;
4058 /* Simplify a PLUS or MINUS, at least one of whose operands may be another
4059 PLUS or MINUS.
4061 Rather than test for specific case, we do this by a brute-force method
4062 and do all possible simplifications until no more changes occur. Then
4063 we rebuild the operation. */
4065 struct simplify_plus_minus_op_data
4067 rtx op;
4068 short neg;
4071 static bool
4072 simplify_plus_minus_op_data_cmp (rtx x, rtx y)
4074 int result;
4076 result = (commutative_operand_precedence (y)
4077 - commutative_operand_precedence (x));
4078 if (result)
4079 return result > 0;
4081 /* Group together equal REGs to do more simplification. */
4082 if (REG_P (x) && REG_P (y))
4083 return REGNO (x) > REGNO (y);
4084 else
4085 return false;
4088 static rtx
4089 simplify_plus_minus (enum rtx_code code, machine_mode mode, rtx op0,
4090 rtx op1)
4092 struct simplify_plus_minus_op_data ops[16];
4093 rtx result, tem;
4094 int n_ops = 2;
4095 int changed, n_constants, canonicalized = 0;
4096 int i, j;
4098 memset (ops, 0, sizeof ops);
4100 /* Set up the two operands and then expand them until nothing has been
4101 changed. If we run out of room in our array, give up; this should
4102 almost never happen. */
4104 ops[0].op = op0;
4105 ops[0].neg = 0;
4106 ops[1].op = op1;
4107 ops[1].neg = (code == MINUS);
4111 changed = 0;
4112 n_constants = 0;
4114 for (i = 0; i < n_ops; i++)
4116 rtx this_op = ops[i].op;
4117 int this_neg = ops[i].neg;
4118 enum rtx_code this_code = GET_CODE (this_op);
4120 switch (this_code)
4122 case PLUS:
4123 case MINUS:
4124 if (n_ops == ARRAY_SIZE (ops))
4125 return NULL_RTX;
4127 ops[n_ops].op = XEXP (this_op, 1);
4128 ops[n_ops].neg = (this_code == MINUS) ^ this_neg;
4129 n_ops++;
4131 ops[i].op = XEXP (this_op, 0);
4132 changed = 1;
4133 canonicalized |= this_neg || i != n_ops - 2;
4134 break;
4136 case NEG:
4137 ops[i].op = XEXP (this_op, 0);
4138 ops[i].neg = ! this_neg;
4139 changed = 1;
4140 canonicalized = 1;
4141 break;
4143 case CONST:
4144 if (n_ops != ARRAY_SIZE (ops)
4145 && GET_CODE (XEXP (this_op, 0)) == PLUS
4146 && CONSTANT_P (XEXP (XEXP (this_op, 0), 0))
4147 && CONSTANT_P (XEXP (XEXP (this_op, 0), 1)))
4149 ops[i].op = XEXP (XEXP (this_op, 0), 0);
4150 ops[n_ops].op = XEXP (XEXP (this_op, 0), 1);
4151 ops[n_ops].neg = this_neg;
4152 n_ops++;
4153 changed = 1;
4154 canonicalized = 1;
4156 break;
4158 case NOT:
4159 /* ~a -> (-a - 1) */
4160 if (n_ops != ARRAY_SIZE (ops))
4162 ops[n_ops].op = CONSTM1_RTX (mode);
4163 ops[n_ops++].neg = this_neg;
4164 ops[i].op = XEXP (this_op, 0);
4165 ops[i].neg = !this_neg;
4166 changed = 1;
4167 canonicalized = 1;
4169 break;
4171 case CONST_INT:
4172 n_constants++;
4173 if (this_neg)
4175 ops[i].op = neg_const_int (mode, this_op);
4176 ops[i].neg = 0;
4177 changed = 1;
4178 canonicalized = 1;
4180 break;
4182 default:
4183 break;
4187 while (changed);
4189 if (n_constants > 1)
4190 canonicalized = 1;
4192 gcc_assert (n_ops >= 2);
4194 /* If we only have two operands, we can avoid the loops. */
4195 if (n_ops == 2)
4197 enum rtx_code code = ops[0].neg || ops[1].neg ? MINUS : PLUS;
4198 rtx lhs, rhs;
4200 /* Get the two operands. Be careful with the order, especially for
4201 the cases where code == MINUS. */
4202 if (ops[0].neg && ops[1].neg)
4204 lhs = gen_rtx_NEG (mode, ops[0].op);
4205 rhs = ops[1].op;
4207 else if (ops[0].neg)
4209 lhs = ops[1].op;
4210 rhs = ops[0].op;
4212 else
4214 lhs = ops[0].op;
4215 rhs = ops[1].op;
4218 return simplify_const_binary_operation (code, mode, lhs, rhs);
4221 /* Now simplify each pair of operands until nothing changes. */
4224 /* Insertion sort is good enough for a small array. */
4225 for (i = 1; i < n_ops; i++)
4227 struct simplify_plus_minus_op_data save;
4228 j = i - 1;
4229 if (!simplify_plus_minus_op_data_cmp (ops[j].op, ops[i].op))
4230 continue;
4232 canonicalized = 1;
4233 save = ops[i];
4235 ops[j + 1] = ops[j];
4236 while (j-- && simplify_plus_minus_op_data_cmp (ops[j].op, save.op));
4237 ops[j + 1] = save;
4240 changed = 0;
4241 for (i = n_ops - 1; i > 0; i--)
4242 for (j = i - 1; j >= 0; j--)
4244 rtx lhs = ops[j].op, rhs = ops[i].op;
4245 int lneg = ops[j].neg, rneg = ops[i].neg;
4247 if (lhs != 0 && rhs != 0)
4249 enum rtx_code ncode = PLUS;
4251 if (lneg != rneg)
4253 ncode = MINUS;
4254 if (lneg)
4255 tem = lhs, lhs = rhs, rhs = tem;
4257 else if (swap_commutative_operands_p (lhs, rhs))
4258 tem = lhs, lhs = rhs, rhs = tem;
4260 if ((GET_CODE (lhs) == CONST || CONST_INT_P (lhs))
4261 && (GET_CODE (rhs) == CONST || CONST_INT_P (rhs)))
4263 rtx tem_lhs, tem_rhs;
4265 tem_lhs = GET_CODE (lhs) == CONST ? XEXP (lhs, 0) : lhs;
4266 tem_rhs = GET_CODE (rhs) == CONST ? XEXP (rhs, 0) : rhs;
4267 tem = simplify_binary_operation (ncode, mode, tem_lhs, tem_rhs);
4269 if (tem && !CONSTANT_P (tem))
4270 tem = gen_rtx_CONST (GET_MODE (tem), tem);
4272 else
4273 tem = simplify_binary_operation (ncode, mode, lhs, rhs);
4275 if (tem)
4277 /* Reject "simplifications" that just wrap the two
4278 arguments in a CONST. Failure to do so can result
4279 in infinite recursion with simplify_binary_operation
4280 when it calls us to simplify CONST operations.
4281 Also, if we find such a simplification, don't try
4282 any more combinations with this rhs: We must have
4283 something like symbol+offset, ie. one of the
4284 trivial CONST expressions we handle later. */
4285 if (GET_CODE (tem) == CONST
4286 && GET_CODE (XEXP (tem, 0)) == ncode
4287 && XEXP (XEXP (tem, 0), 0) == lhs
4288 && XEXP (XEXP (tem, 0), 1) == rhs)
4289 break;
4290 lneg &= rneg;
4291 if (GET_CODE (tem) == NEG)
4292 tem = XEXP (tem, 0), lneg = !lneg;
4293 if (CONST_INT_P (tem) && lneg)
4294 tem = neg_const_int (mode, tem), lneg = 0;
4296 ops[i].op = tem;
4297 ops[i].neg = lneg;
4298 ops[j].op = NULL_RTX;
4299 changed = 1;
4300 canonicalized = 1;
4305 /* If nothing changed, fail. */
4306 if (!canonicalized)
4307 return NULL_RTX;
4309 /* Pack all the operands to the lower-numbered entries. */
4310 for (i = 0, j = 0; j < n_ops; j++)
4311 if (ops[j].op)
4313 ops[i] = ops[j];
4314 i++;
4316 n_ops = i;
4318 while (changed);
4320 /* Create (minus -C X) instead of (neg (const (plus X C))). */
4321 if (n_ops == 2
4322 && CONST_INT_P (ops[1].op)
4323 && CONSTANT_P (ops[0].op)
4324 && ops[0].neg)
4325 return gen_rtx_fmt_ee (MINUS, mode, ops[1].op, ops[0].op);
4327 /* We suppressed creation of trivial CONST expressions in the
4328 combination loop to avoid recursion. Create one manually now.
4329 The combination loop should have ensured that there is exactly
4330 one CONST_INT, and the sort will have ensured that it is last
4331 in the array and that any other constant will be next-to-last. */
4333 if (n_ops > 1
4334 && CONST_INT_P (ops[n_ops - 1].op)
4335 && CONSTANT_P (ops[n_ops - 2].op))
4337 rtx value = ops[n_ops - 1].op;
4338 if (ops[n_ops - 1].neg ^ ops[n_ops - 2].neg)
4339 value = neg_const_int (mode, value);
4340 ops[n_ops - 2].op = plus_constant (mode, ops[n_ops - 2].op,
4341 INTVAL (value));
4342 n_ops--;
4345 /* Put a non-negated operand first, if possible. */
4347 for (i = 0; i < n_ops && ops[i].neg; i++)
4348 continue;
4349 if (i == n_ops)
4350 ops[0].op = gen_rtx_NEG (mode, ops[0].op);
4351 else if (i != 0)
4353 tem = ops[0].op;
4354 ops[0] = ops[i];
4355 ops[i].op = tem;
4356 ops[i].neg = 1;
4359 /* Now make the result by performing the requested operations. */
4360 result = ops[0].op;
4361 for (i = 1; i < n_ops; i++)
4362 result = gen_rtx_fmt_ee (ops[i].neg ? MINUS : PLUS,
4363 mode, result, ops[i].op);
4365 return result;
4368 /* Check whether an operand is suitable for calling simplify_plus_minus. */
4369 static bool
4370 plus_minus_operand_p (const_rtx x)
4372 return GET_CODE (x) == PLUS
4373 || GET_CODE (x) == MINUS
4374 || (GET_CODE (x) == CONST
4375 && GET_CODE (XEXP (x, 0)) == PLUS
4376 && CONSTANT_P (XEXP (XEXP (x, 0), 0))
4377 && CONSTANT_P (XEXP (XEXP (x, 0), 1)));
4380 /* Like simplify_binary_operation except used for relational operators.
4381 MODE is the mode of the result. If MODE is VOIDmode, both operands must
4382 not also be VOIDmode.
4384 CMP_MODE specifies in which mode the comparison is done in, so it is
4385 the mode of the operands. If CMP_MODE is VOIDmode, it is taken from
4386 the operands or, if both are VOIDmode, the operands are compared in
4387 "infinite precision". */
4389 simplify_relational_operation (enum rtx_code code, machine_mode mode,
4390 machine_mode cmp_mode, rtx op0, rtx op1)
4392 rtx tem, trueop0, trueop1;
4394 if (cmp_mode == VOIDmode)
4395 cmp_mode = GET_MODE (op0);
4396 if (cmp_mode == VOIDmode)
4397 cmp_mode = GET_MODE (op1);
4399 tem = simplify_const_relational_operation (code, cmp_mode, op0, op1);
4400 if (tem)
4402 if (SCALAR_FLOAT_MODE_P (mode))
4404 if (tem == const0_rtx)
4405 return CONST0_RTX (mode);
4406 #ifdef FLOAT_STORE_FLAG_VALUE
4408 REAL_VALUE_TYPE val;
4409 val = FLOAT_STORE_FLAG_VALUE (mode);
4410 return CONST_DOUBLE_FROM_REAL_VALUE (val, mode);
4412 #else
4413 return NULL_RTX;
4414 #endif
4416 if (VECTOR_MODE_P (mode))
4418 if (tem == const0_rtx)
4419 return CONST0_RTX (mode);
4420 #ifdef VECTOR_STORE_FLAG_VALUE
4422 int i, units;
4423 rtvec v;
4425 rtx val = VECTOR_STORE_FLAG_VALUE (mode);
4426 if (val == NULL_RTX)
4427 return NULL_RTX;
4428 if (val == const1_rtx)
4429 return CONST1_RTX (mode);
4431 units = GET_MODE_NUNITS (mode);
4432 v = rtvec_alloc (units);
4433 for (i = 0; i < units; i++)
4434 RTVEC_ELT (v, i) = val;
4435 return gen_rtx_raw_CONST_VECTOR (mode, v);
4437 #else
4438 return NULL_RTX;
4439 #endif
4442 return tem;
4445 /* For the following tests, ensure const0_rtx is op1. */
4446 if (swap_commutative_operands_p (op0, op1)
4447 || (op0 == const0_rtx && op1 != const0_rtx))
4448 tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
4450 /* If op0 is a compare, extract the comparison arguments from it. */
4451 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
4452 return simplify_gen_relational (code, mode, VOIDmode,
4453 XEXP (op0, 0), XEXP (op0, 1));
4455 if (GET_MODE_CLASS (cmp_mode) == MODE_CC
4456 || CC0_P (op0))
4457 return NULL_RTX;
4459 trueop0 = avoid_constant_pool_reference (op0);
4460 trueop1 = avoid_constant_pool_reference (op1);
4461 return simplify_relational_operation_1 (code, mode, cmp_mode,
4462 trueop0, trueop1);
4465 /* This part of simplify_relational_operation is only used when CMP_MODE
4466 is not in class MODE_CC (i.e. it is a real comparison).
4468 MODE is the mode of the result, while CMP_MODE specifies in which
4469 mode the comparison is done in, so it is the mode of the operands. */
4471 static rtx
4472 simplify_relational_operation_1 (enum rtx_code code, machine_mode mode,
4473 machine_mode cmp_mode, rtx op0, rtx op1)
4475 enum rtx_code op0code = GET_CODE (op0);
4477 if (op1 == const0_rtx && COMPARISON_P (op0))
4479 /* If op0 is a comparison, extract the comparison arguments
4480 from it. */
4481 if (code == NE)
4483 if (GET_MODE (op0) == mode)
4484 return simplify_rtx (op0);
4485 else
4486 return simplify_gen_relational (GET_CODE (op0), mode, VOIDmode,
4487 XEXP (op0, 0), XEXP (op0, 1));
4489 else if (code == EQ)
4491 enum rtx_code new_code = reversed_comparison_code (op0, NULL_RTX);
4492 if (new_code != UNKNOWN)
4493 return simplify_gen_relational (new_code, mode, VOIDmode,
4494 XEXP (op0, 0), XEXP (op0, 1));
4498 /* (LTU/GEU (PLUS a C) C), where C is constant, can be simplified to
4499 (GEU/LTU a -C). Likewise for (LTU/GEU (PLUS a C) a). */
4500 if ((code == LTU || code == GEU)
4501 && GET_CODE (op0) == PLUS
4502 && CONST_INT_P (XEXP (op0, 1))
4503 && (rtx_equal_p (op1, XEXP (op0, 0))
4504 || rtx_equal_p (op1, XEXP (op0, 1)))
4505 /* (LTU/GEU (PLUS a 0) 0) is not the same as (GEU/LTU a 0). */
4506 && XEXP (op0, 1) != const0_rtx)
4508 rtx new_cmp
4509 = simplify_gen_unary (NEG, cmp_mode, XEXP (op0, 1), cmp_mode);
4510 return simplify_gen_relational ((code == LTU ? GEU : LTU), mode,
4511 cmp_mode, XEXP (op0, 0), new_cmp);
4514 /* Canonicalize (LTU/GEU (PLUS a b) b) as (LTU/GEU (PLUS a b) a). */
4515 if ((code == LTU || code == GEU)
4516 && GET_CODE (op0) == PLUS
4517 && rtx_equal_p (op1, XEXP (op0, 1))
4518 /* Don't recurse "infinitely" for (LTU/GEU (PLUS b b) b). */
4519 && !rtx_equal_p (op1, XEXP (op0, 0)))
4520 return simplify_gen_relational (code, mode, cmp_mode, op0,
4521 copy_rtx (XEXP (op0, 0)));
4523 if (op1 == const0_rtx)
4525 /* Canonicalize (GTU x 0) as (NE x 0). */
4526 if (code == GTU)
4527 return simplify_gen_relational (NE, mode, cmp_mode, op0, op1);
4528 /* Canonicalize (LEU x 0) as (EQ x 0). */
4529 if (code == LEU)
4530 return simplify_gen_relational (EQ, mode, cmp_mode, op0, op1);
4532 else if (op1 == const1_rtx)
4534 switch (code)
4536 case GE:
4537 /* Canonicalize (GE x 1) as (GT x 0). */
4538 return simplify_gen_relational (GT, mode, cmp_mode,
4539 op0, const0_rtx);
4540 case GEU:
4541 /* Canonicalize (GEU x 1) as (NE x 0). */
4542 return simplify_gen_relational (NE, mode, cmp_mode,
4543 op0, const0_rtx);
4544 case LT:
4545 /* Canonicalize (LT x 1) as (LE x 0). */
4546 return simplify_gen_relational (LE, mode, cmp_mode,
4547 op0, const0_rtx);
4548 case LTU:
4549 /* Canonicalize (LTU x 1) as (EQ x 0). */
4550 return simplify_gen_relational (EQ, mode, cmp_mode,
4551 op0, const0_rtx);
4552 default:
4553 break;
4556 else if (op1 == constm1_rtx)
4558 /* Canonicalize (LE x -1) as (LT x 0). */
4559 if (code == LE)
4560 return simplify_gen_relational (LT, mode, cmp_mode, op0, const0_rtx);
4561 /* Canonicalize (GT x -1) as (GE x 0). */
4562 if (code == GT)
4563 return simplify_gen_relational (GE, mode, cmp_mode, op0, const0_rtx);
4566 /* (eq/ne (plus x cst1) cst2) simplifies to (eq/ne x (cst2 - cst1)) */
4567 if ((code == EQ || code == NE)
4568 && (op0code == PLUS || op0code == MINUS)
4569 && CONSTANT_P (op1)
4570 && CONSTANT_P (XEXP (op0, 1))
4571 && (INTEGRAL_MODE_P (cmp_mode) || flag_unsafe_math_optimizations))
4573 rtx x = XEXP (op0, 0);
4574 rtx c = XEXP (op0, 1);
4575 enum rtx_code invcode = op0code == PLUS ? MINUS : PLUS;
4576 rtx tem = simplify_gen_binary (invcode, cmp_mode, op1, c);
4578 /* Detect an infinite recursive condition, where we oscillate at this
4579 simplification case between:
4580 A + B == C <---> C - B == A,
4581 where A, B, and C are all constants with non-simplifiable expressions,
4582 usually SYMBOL_REFs. */
4583 if (GET_CODE (tem) == invcode
4584 && CONSTANT_P (x)
4585 && rtx_equal_p (c, XEXP (tem, 1)))
4586 return NULL_RTX;
4588 return simplify_gen_relational (code, mode, cmp_mode, x, tem);
4591 /* (ne:SI (zero_extract:SI FOO (const_int 1) BAR) (const_int 0))) is
4592 the same as (zero_extract:SI FOO (const_int 1) BAR). */
4593 if (code == NE
4594 && op1 == const0_rtx
4595 && GET_MODE_CLASS (mode) == MODE_INT
4596 && cmp_mode != VOIDmode
4597 /* ??? Work-around BImode bugs in the ia64 backend. */
4598 && mode != BImode
4599 && cmp_mode != BImode
4600 && nonzero_bits (op0, cmp_mode) == 1
4601 && STORE_FLAG_VALUE == 1)
4602 return GET_MODE_SIZE (mode) > GET_MODE_SIZE (cmp_mode)
4603 ? simplify_gen_unary (ZERO_EXTEND, mode, op0, cmp_mode)
4604 : lowpart_subreg (mode, op0, cmp_mode);
4606 /* (eq/ne (xor x y) 0) simplifies to (eq/ne x y). */
4607 if ((code == EQ || code == NE)
4608 && op1 == const0_rtx
4609 && op0code == XOR)
4610 return simplify_gen_relational (code, mode, cmp_mode,
4611 XEXP (op0, 0), XEXP (op0, 1));
4613 /* (eq/ne (xor x y) x) simplifies to (eq/ne y 0). */
4614 if ((code == EQ || code == NE)
4615 && op0code == XOR
4616 && rtx_equal_p (XEXP (op0, 0), op1)
4617 && !side_effects_p (XEXP (op0, 0)))
4618 return simplify_gen_relational (code, mode, cmp_mode, XEXP (op0, 1),
4619 CONST0_RTX (mode));
4621 /* Likewise (eq/ne (xor x y) y) simplifies to (eq/ne x 0). */
4622 if ((code == EQ || code == NE)
4623 && op0code == XOR
4624 && rtx_equal_p (XEXP (op0, 1), op1)
4625 && !side_effects_p (XEXP (op0, 1)))
4626 return simplify_gen_relational (code, mode, cmp_mode, XEXP (op0, 0),
4627 CONST0_RTX (mode));
4629 /* (eq/ne (xor x C1) C2) simplifies to (eq/ne x (C1^C2)). */
4630 if ((code == EQ || code == NE)
4631 && op0code == XOR
4632 && CONST_SCALAR_INT_P (op1)
4633 && CONST_SCALAR_INT_P (XEXP (op0, 1)))
4634 return simplify_gen_relational (code, mode, cmp_mode, XEXP (op0, 0),
4635 simplify_gen_binary (XOR, cmp_mode,
4636 XEXP (op0, 1), op1));
4638 /* (eq/ne (and x y) x) simplifies to (eq/ne (and (not y) x) 0), which
4639 can be implemented with a BICS instruction on some targets, or
4640 constant-folded if y is a constant. */
4641 if ((code == EQ || code == NE)
4642 && op0code == AND
4643 && rtx_equal_p (XEXP (op0, 0), op1)
4644 && !side_effects_p (op1)
4645 && op1 != CONST0_RTX (cmp_mode))
4647 rtx not_y = simplify_gen_unary (NOT, cmp_mode, XEXP (op0, 1), cmp_mode);
4648 rtx lhs = simplify_gen_binary (AND, cmp_mode, not_y, XEXP (op0, 0));
4650 return simplify_gen_relational (code, mode, cmp_mode, lhs,
4651 CONST0_RTX (cmp_mode));
4654 /* Likewise for (eq/ne (and x y) y). */
4655 if ((code == EQ || code == NE)
4656 && op0code == AND
4657 && rtx_equal_p (XEXP (op0, 1), op1)
4658 && !side_effects_p (op1)
4659 && op1 != CONST0_RTX (cmp_mode))
4661 rtx not_x = simplify_gen_unary (NOT, cmp_mode, XEXP (op0, 0), cmp_mode);
4662 rtx lhs = simplify_gen_binary (AND, cmp_mode, not_x, XEXP (op0, 1));
4664 return simplify_gen_relational (code, mode, cmp_mode, lhs,
4665 CONST0_RTX (cmp_mode));
4668 /* (eq/ne (bswap x) C1) simplifies to (eq/ne x C2) with C2 swapped. */
4669 if ((code == EQ || code == NE)
4670 && GET_CODE (op0) == BSWAP
4671 && CONST_SCALAR_INT_P (op1))
4672 return simplify_gen_relational (code, mode, cmp_mode, XEXP (op0, 0),
4673 simplify_gen_unary (BSWAP, cmp_mode,
4674 op1, cmp_mode));
4676 /* (eq/ne (bswap x) (bswap y)) simplifies to (eq/ne x y). */
4677 if ((code == EQ || code == NE)
4678 && GET_CODE (op0) == BSWAP
4679 && GET_CODE (op1) == BSWAP)
4680 return simplify_gen_relational (code, mode, cmp_mode,
4681 XEXP (op0, 0), XEXP (op1, 0));
4683 if (op0code == POPCOUNT && op1 == const0_rtx)
4684 switch (code)
4686 case EQ:
4687 case LE:
4688 case LEU:
4689 /* (eq (popcount x) (const_int 0)) -> (eq x (const_int 0)). */
4690 return simplify_gen_relational (EQ, mode, GET_MODE (XEXP (op0, 0)),
4691 XEXP (op0, 0), const0_rtx);
4693 case NE:
4694 case GT:
4695 case GTU:
4696 /* (ne (popcount x) (const_int 0)) -> (ne x (const_int 0)). */
4697 return simplify_gen_relational (NE, mode, GET_MODE (XEXP (op0, 0)),
4698 XEXP (op0, 0), const0_rtx);
4700 default:
4701 break;
4704 return NULL_RTX;
4707 enum
4709 CMP_EQ = 1,
4710 CMP_LT = 2,
4711 CMP_GT = 4,
4712 CMP_LTU = 8,
4713 CMP_GTU = 16
4717 /* Convert the known results for EQ, LT, GT, LTU, GTU contained in
4718 KNOWN_RESULT to a CONST_INT, based on the requested comparison CODE
4719 For KNOWN_RESULT to make sense it should be either CMP_EQ, or the
4720 logical OR of one of (CMP_LT, CMP_GT) and one of (CMP_LTU, CMP_GTU).
4721 For floating-point comparisons, assume that the operands were ordered. */
4723 static rtx
4724 comparison_result (enum rtx_code code, int known_results)
4726 switch (code)
4728 case EQ:
4729 case UNEQ:
4730 return (known_results & CMP_EQ) ? const_true_rtx : const0_rtx;
4731 case NE:
4732 case LTGT:
4733 return (known_results & CMP_EQ) ? const0_rtx : const_true_rtx;
4735 case LT:
4736 case UNLT:
4737 return (known_results & CMP_LT) ? const_true_rtx : const0_rtx;
4738 case GE:
4739 case UNGE:
4740 return (known_results & CMP_LT) ? const0_rtx : const_true_rtx;
4742 case GT:
4743 case UNGT:
4744 return (known_results & CMP_GT) ? const_true_rtx : const0_rtx;
4745 case LE:
4746 case UNLE:
4747 return (known_results & CMP_GT) ? const0_rtx : const_true_rtx;
4749 case LTU:
4750 return (known_results & CMP_LTU) ? const_true_rtx : const0_rtx;
4751 case GEU:
4752 return (known_results & CMP_LTU) ? const0_rtx : const_true_rtx;
4754 case GTU:
4755 return (known_results & CMP_GTU) ? const_true_rtx : const0_rtx;
4756 case LEU:
4757 return (known_results & CMP_GTU) ? const0_rtx : const_true_rtx;
4759 case ORDERED:
4760 return const_true_rtx;
4761 case UNORDERED:
4762 return const0_rtx;
4763 default:
4764 gcc_unreachable ();
4768 /* Check if the given comparison (done in the given MODE) is actually
4769 a tautology or a contradiction. If the mode is VOID_mode, the
4770 comparison is done in "infinite precision". If no simplification
4771 is possible, this function returns zero. Otherwise, it returns
4772 either const_true_rtx or const0_rtx. */
4775 simplify_const_relational_operation (enum rtx_code code,
4776 machine_mode mode,
4777 rtx op0, rtx op1)
4779 rtx tem;
4780 rtx trueop0;
4781 rtx trueop1;
4783 gcc_assert (mode != VOIDmode
4784 || (GET_MODE (op0) == VOIDmode
4785 && GET_MODE (op1) == VOIDmode));
4787 /* If op0 is a compare, extract the comparison arguments from it. */
4788 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
4790 op1 = XEXP (op0, 1);
4791 op0 = XEXP (op0, 0);
4793 if (GET_MODE (op0) != VOIDmode)
4794 mode = GET_MODE (op0);
4795 else if (GET_MODE (op1) != VOIDmode)
4796 mode = GET_MODE (op1);
4797 else
4798 return 0;
4801 /* We can't simplify MODE_CC values since we don't know what the
4802 actual comparison is. */
4803 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC || CC0_P (op0))
4804 return 0;
4806 /* Make sure the constant is second. */
4807 if (swap_commutative_operands_p (op0, op1))
4809 tem = op0, op0 = op1, op1 = tem;
4810 code = swap_condition (code);
4813 trueop0 = avoid_constant_pool_reference (op0);
4814 trueop1 = avoid_constant_pool_reference (op1);
4816 /* For integer comparisons of A and B maybe we can simplify A - B and can
4817 then simplify a comparison of that with zero. If A and B are both either
4818 a register or a CONST_INT, this can't help; testing for these cases will
4819 prevent infinite recursion here and speed things up.
4821 We can only do this for EQ and NE comparisons as otherwise we may
4822 lose or introduce overflow which we cannot disregard as undefined as
4823 we do not know the signedness of the operation on either the left or
4824 the right hand side of the comparison. */
4826 if (INTEGRAL_MODE_P (mode) && trueop1 != const0_rtx
4827 && (code == EQ || code == NE)
4828 && ! ((REG_P (op0) || CONST_INT_P (trueop0))
4829 && (REG_P (op1) || CONST_INT_P (trueop1)))
4830 && 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
4831 /* We cannot do this if tem is a nonzero address. */
4832 && ! nonzero_address_p (tem))
4833 return simplify_const_relational_operation (signed_condition (code),
4834 mode, tem, const0_rtx);
4836 if (! HONOR_NANS (mode) && code == ORDERED)
4837 return const_true_rtx;
4839 if (! HONOR_NANS (mode) && code == UNORDERED)
4840 return const0_rtx;
4842 /* For modes without NaNs, if the two operands are equal, we know the
4843 result except if they have side-effects. Even with NaNs we know
4844 the result of unordered comparisons and, if signaling NaNs are
4845 irrelevant, also the result of LT/GT/LTGT. */
4846 if ((! HONOR_NANS (trueop0)
4847 || code == UNEQ || code == UNLE || code == UNGE
4848 || ((code == LT || code == GT || code == LTGT)
4849 && ! HONOR_SNANS (trueop0)))
4850 && rtx_equal_p (trueop0, trueop1)
4851 && ! side_effects_p (trueop0))
4852 return comparison_result (code, CMP_EQ);
4854 /* If the operands are floating-point constants, see if we can fold
4855 the result. */
4856 if (CONST_DOUBLE_AS_FLOAT_P (trueop0)
4857 && CONST_DOUBLE_AS_FLOAT_P (trueop1)
4858 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop0)))
4860 REAL_VALUE_TYPE d0, d1;
4862 REAL_VALUE_FROM_CONST_DOUBLE (d0, trueop0);
4863 REAL_VALUE_FROM_CONST_DOUBLE (d1, trueop1);
4865 /* Comparisons are unordered iff at least one of the values is NaN. */
4866 if (REAL_VALUE_ISNAN (d0) || REAL_VALUE_ISNAN (d1))
4867 switch (code)
4869 case UNEQ:
4870 case UNLT:
4871 case UNGT:
4872 case UNLE:
4873 case UNGE:
4874 case NE:
4875 case UNORDERED:
4876 return const_true_rtx;
4877 case EQ:
4878 case LT:
4879 case GT:
4880 case LE:
4881 case GE:
4882 case LTGT:
4883 case ORDERED:
4884 return const0_rtx;
4885 default:
4886 return 0;
4889 return comparison_result (code,
4890 (REAL_VALUES_EQUAL (d0, d1) ? CMP_EQ :
4891 REAL_VALUES_LESS (d0, d1) ? CMP_LT : CMP_GT));
4894 /* Otherwise, see if the operands are both integers. */
4895 if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
4896 && CONST_SCALAR_INT_P (trueop0) && CONST_SCALAR_INT_P (trueop1))
4898 /* It would be nice if we really had a mode here. However, the
4899 largest int representable on the target is as good as
4900 infinite. */
4901 machine_mode cmode = (mode == VOIDmode) ? MAX_MODE_INT : mode;
4902 rtx_mode_t ptrueop0 = std::make_pair (trueop0, cmode);
4903 rtx_mode_t ptrueop1 = std::make_pair (trueop1, cmode);
4905 if (wi::eq_p (ptrueop0, ptrueop1))
4906 return comparison_result (code, CMP_EQ);
4907 else
4909 int cr = wi::lts_p (ptrueop0, ptrueop1) ? CMP_LT : CMP_GT;
4910 cr |= wi::ltu_p (ptrueop0, ptrueop1) ? CMP_LTU : CMP_GTU;
4911 return comparison_result (code, cr);
4915 /* Optimize comparisons with upper and lower bounds. */
4916 if (HWI_COMPUTABLE_MODE_P (mode)
4917 && CONST_INT_P (trueop1))
4919 int sign;
4920 unsigned HOST_WIDE_INT nonzero = nonzero_bits (trueop0, mode);
4921 HOST_WIDE_INT val = INTVAL (trueop1);
4922 HOST_WIDE_INT mmin, mmax;
4924 if (code == GEU
4925 || code == LEU
4926 || code == GTU
4927 || code == LTU)
4928 sign = 0;
4929 else
4930 sign = 1;
4932 /* Get a reduced range if the sign bit is zero. */
4933 if (nonzero <= (GET_MODE_MASK (mode) >> 1))
4935 mmin = 0;
4936 mmax = nonzero;
4938 else
4940 rtx mmin_rtx, mmax_rtx;
4941 get_mode_bounds (mode, sign, mode, &mmin_rtx, &mmax_rtx);
4943 mmin = INTVAL (mmin_rtx);
4944 mmax = INTVAL (mmax_rtx);
4945 if (sign)
4947 unsigned int sign_copies = num_sign_bit_copies (trueop0, mode);
4949 mmin >>= (sign_copies - 1);
4950 mmax >>= (sign_copies - 1);
4954 switch (code)
4956 /* x >= y is always true for y <= mmin, always false for y > mmax. */
4957 case GEU:
4958 if ((unsigned HOST_WIDE_INT) val <= (unsigned HOST_WIDE_INT) mmin)
4959 return const_true_rtx;
4960 if ((unsigned HOST_WIDE_INT) val > (unsigned HOST_WIDE_INT) mmax)
4961 return const0_rtx;
4962 break;
4963 case GE:
4964 if (val <= mmin)
4965 return const_true_rtx;
4966 if (val > mmax)
4967 return const0_rtx;
4968 break;
4970 /* x <= y is always true for y >= mmax, always false for y < mmin. */
4971 case LEU:
4972 if ((unsigned HOST_WIDE_INT) val >= (unsigned HOST_WIDE_INT) mmax)
4973 return const_true_rtx;
4974 if ((unsigned HOST_WIDE_INT) val < (unsigned HOST_WIDE_INT) mmin)
4975 return const0_rtx;
4976 break;
4977 case LE:
4978 if (val >= mmax)
4979 return const_true_rtx;
4980 if (val < mmin)
4981 return const0_rtx;
4982 break;
4984 case EQ:
4985 /* x == y is always false for y out of range. */
4986 if (val < mmin || val > mmax)
4987 return const0_rtx;
4988 break;
4990 /* x > y is always false for y >= mmax, always true for y < mmin. */
4991 case GTU:
4992 if ((unsigned HOST_WIDE_INT) val >= (unsigned HOST_WIDE_INT) mmax)
4993 return const0_rtx;
4994 if ((unsigned HOST_WIDE_INT) val < (unsigned HOST_WIDE_INT) mmin)
4995 return const_true_rtx;
4996 break;
4997 case GT:
4998 if (val >= mmax)
4999 return const0_rtx;
5000 if (val < mmin)
5001 return const_true_rtx;
5002 break;
5004 /* x < y is always false for y <= mmin, always true for y > mmax. */
5005 case LTU:
5006 if ((unsigned HOST_WIDE_INT) val <= (unsigned HOST_WIDE_INT) mmin)
5007 return const0_rtx;
5008 if ((unsigned HOST_WIDE_INT) val > (unsigned HOST_WIDE_INT) mmax)
5009 return const_true_rtx;
5010 break;
5011 case LT:
5012 if (val <= mmin)
5013 return const0_rtx;
5014 if (val > mmax)
5015 return const_true_rtx;
5016 break;
5018 case NE:
5019 /* x != y is always true for y out of range. */
5020 if (val < mmin || val > mmax)
5021 return const_true_rtx;
5022 break;
5024 default:
5025 break;
5029 /* Optimize integer comparisons with zero. */
5030 if (trueop1 == const0_rtx)
5032 /* Some addresses are known to be nonzero. We don't know
5033 their sign, but equality comparisons are known. */
5034 if (nonzero_address_p (trueop0))
5036 if (code == EQ || code == LEU)
5037 return const0_rtx;
5038 if (code == NE || code == GTU)
5039 return const_true_rtx;
5042 /* See if the first operand is an IOR with a constant. If so, we
5043 may be able to determine the result of this comparison. */
5044 if (GET_CODE (op0) == IOR)
5046 rtx inner_const = avoid_constant_pool_reference (XEXP (op0, 1));
5047 if (CONST_INT_P (inner_const) && inner_const != const0_rtx)
5049 int sign_bitnum = GET_MODE_PRECISION (mode) - 1;
5050 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
5051 && (UINTVAL (inner_const)
5052 & ((unsigned HOST_WIDE_INT) 1
5053 << sign_bitnum)));
5055 switch (code)
5057 case EQ:
5058 case LEU:
5059 return const0_rtx;
5060 case NE:
5061 case GTU:
5062 return const_true_rtx;
5063 case LT:
5064 case LE:
5065 if (has_sign)
5066 return const_true_rtx;
5067 break;
5068 case GT:
5069 case GE:
5070 if (has_sign)
5071 return const0_rtx;
5072 break;
5073 default:
5074 break;
5080 /* Optimize comparison of ABS with zero. */
5081 if (trueop1 == CONST0_RTX (mode)
5082 && (GET_CODE (trueop0) == ABS
5083 || (GET_CODE (trueop0) == FLOAT_EXTEND
5084 && GET_CODE (XEXP (trueop0, 0)) == ABS)))
5086 switch (code)
5088 case LT:
5089 /* Optimize abs(x) < 0.0. */
5090 if (!HONOR_SNANS (mode)
5091 && (!INTEGRAL_MODE_P (mode)
5092 || (!flag_wrapv && !flag_trapv && flag_strict_overflow)))
5094 if (INTEGRAL_MODE_P (mode)
5095 && (issue_strict_overflow_warning
5096 (WARN_STRICT_OVERFLOW_CONDITIONAL)))
5097 warning (OPT_Wstrict_overflow,
5098 ("assuming signed overflow does not occur when "
5099 "assuming abs (x) < 0 is false"));
5100 return const0_rtx;
5102 break;
5104 case GE:
5105 /* Optimize abs(x) >= 0.0. */
5106 if (!HONOR_NANS (mode)
5107 && (!INTEGRAL_MODE_P (mode)
5108 || (!flag_wrapv && !flag_trapv && flag_strict_overflow)))
5110 if (INTEGRAL_MODE_P (mode)
5111 && (issue_strict_overflow_warning
5112 (WARN_STRICT_OVERFLOW_CONDITIONAL)))
5113 warning (OPT_Wstrict_overflow,
5114 ("assuming signed overflow does not occur when "
5115 "assuming abs (x) >= 0 is true"));
5116 return const_true_rtx;
5118 break;
5120 case UNGE:
5121 /* Optimize ! (abs(x) < 0.0). */
5122 return const_true_rtx;
5124 default:
5125 break;
5129 return 0;
5132 /* Simplify CODE, an operation with result mode MODE and three operands,
5133 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
5134 a constant. Return 0 if no simplifications is possible. */
5137 simplify_ternary_operation (enum rtx_code code, machine_mode mode,
5138 machine_mode op0_mode, rtx op0, rtx op1,
5139 rtx op2)
5141 unsigned int width = GET_MODE_PRECISION (mode);
5142 bool any_change = false;
5143 rtx tem, trueop2;
5145 /* VOIDmode means "infinite" precision. */
5146 if (width == 0)
5147 width = HOST_BITS_PER_WIDE_INT;
5149 switch (code)
5151 case FMA:
5152 /* Simplify negations around the multiplication. */
5153 /* -a * -b + c => a * b + c. */
5154 if (GET_CODE (op0) == NEG)
5156 tem = simplify_unary_operation (NEG, mode, op1, mode);
5157 if (tem)
5158 op1 = tem, op0 = XEXP (op0, 0), any_change = true;
5160 else if (GET_CODE (op1) == NEG)
5162 tem = simplify_unary_operation (NEG, mode, op0, mode);
5163 if (tem)
5164 op0 = tem, op1 = XEXP (op1, 0), any_change = true;
5167 /* Canonicalize the two multiplication operands. */
5168 /* a * -b + c => -b * a + c. */
5169 if (swap_commutative_operands_p (op0, op1))
5170 tem = op0, op0 = op1, op1 = tem, any_change = true;
5172 if (any_change)
5173 return gen_rtx_FMA (mode, op0, op1, op2);
5174 return NULL_RTX;
5176 case SIGN_EXTRACT:
5177 case ZERO_EXTRACT:
5178 if (CONST_INT_P (op0)
5179 && CONST_INT_P (op1)
5180 && CONST_INT_P (op2)
5181 && ((unsigned) INTVAL (op1) + (unsigned) INTVAL (op2) <= width)
5182 && width <= (unsigned) HOST_BITS_PER_WIDE_INT)
5184 /* Extracting a bit-field from a constant */
5185 unsigned HOST_WIDE_INT val = UINTVAL (op0);
5186 HOST_WIDE_INT op1val = INTVAL (op1);
5187 HOST_WIDE_INT op2val = INTVAL (op2);
5188 if (BITS_BIG_ENDIAN)
5189 val >>= GET_MODE_PRECISION (op0_mode) - op2val - op1val;
5190 else
5191 val >>= op2val;
5193 if (HOST_BITS_PER_WIDE_INT != op1val)
5195 /* First zero-extend. */
5196 val &= ((unsigned HOST_WIDE_INT) 1 << op1val) - 1;
5197 /* If desired, propagate sign bit. */
5198 if (code == SIGN_EXTRACT
5199 && (val & ((unsigned HOST_WIDE_INT) 1 << (op1val - 1)))
5200 != 0)
5201 val |= ~ (((unsigned HOST_WIDE_INT) 1 << op1val) - 1);
5204 return gen_int_mode (val, mode);
5206 break;
5208 case IF_THEN_ELSE:
5209 if (CONST_INT_P (op0))
5210 return op0 != const0_rtx ? op1 : op2;
5212 /* Convert c ? a : a into "a". */
5213 if (rtx_equal_p (op1, op2) && ! side_effects_p (op0))
5214 return op1;
5216 /* Convert a != b ? a : b into "a". */
5217 if (GET_CODE (op0) == NE
5218 && ! side_effects_p (op0)
5219 && ! HONOR_NANS (mode)
5220 && ! HONOR_SIGNED_ZEROS (mode)
5221 && ((rtx_equal_p (XEXP (op0, 0), op1)
5222 && rtx_equal_p (XEXP (op0, 1), op2))
5223 || (rtx_equal_p (XEXP (op0, 0), op2)
5224 && rtx_equal_p (XEXP (op0, 1), op1))))
5225 return op1;
5227 /* Convert a == b ? a : b into "b". */
5228 if (GET_CODE (op0) == EQ
5229 && ! side_effects_p (op0)
5230 && ! HONOR_NANS (mode)
5231 && ! HONOR_SIGNED_ZEROS (mode)
5232 && ((rtx_equal_p (XEXP (op0, 0), op1)
5233 && rtx_equal_p (XEXP (op0, 1), op2))
5234 || (rtx_equal_p (XEXP (op0, 0), op2)
5235 && rtx_equal_p (XEXP (op0, 1), op1))))
5236 return op2;
5238 if (COMPARISON_P (op0) && ! side_effects_p (op0))
5240 machine_mode cmp_mode = (GET_MODE (XEXP (op0, 0)) == VOIDmode
5241 ? GET_MODE (XEXP (op0, 1))
5242 : GET_MODE (XEXP (op0, 0)));
5243 rtx temp;
5245 /* Look for happy constants in op1 and op2. */
5246 if (CONST_INT_P (op1) && CONST_INT_P (op2))
5248 HOST_WIDE_INT t = INTVAL (op1);
5249 HOST_WIDE_INT f = INTVAL (op2);
5251 if (t == STORE_FLAG_VALUE && f == 0)
5252 code = GET_CODE (op0);
5253 else if (t == 0 && f == STORE_FLAG_VALUE)
5255 enum rtx_code tmp;
5256 tmp = reversed_comparison_code (op0, NULL_RTX);
5257 if (tmp == UNKNOWN)
5258 break;
5259 code = tmp;
5261 else
5262 break;
5264 return simplify_gen_relational (code, mode, cmp_mode,
5265 XEXP (op0, 0), XEXP (op0, 1));
5268 if (cmp_mode == VOIDmode)
5269 cmp_mode = op0_mode;
5270 temp = simplify_relational_operation (GET_CODE (op0), op0_mode,
5271 cmp_mode, XEXP (op0, 0),
5272 XEXP (op0, 1));
5274 /* See if any simplifications were possible. */
5275 if (temp)
5277 if (CONST_INT_P (temp))
5278 return temp == const0_rtx ? op2 : op1;
5279 else if (temp)
5280 return gen_rtx_IF_THEN_ELSE (mode, temp, op1, op2);
5283 break;
5285 case VEC_MERGE:
5286 gcc_assert (GET_MODE (op0) == mode);
5287 gcc_assert (GET_MODE (op1) == mode);
5288 gcc_assert (VECTOR_MODE_P (mode));
5289 trueop2 = avoid_constant_pool_reference (op2);
5290 if (CONST_INT_P (trueop2))
5292 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
5293 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
5294 unsigned HOST_WIDE_INT sel = UINTVAL (trueop2);
5295 unsigned HOST_WIDE_INT mask;
5296 if (n_elts == HOST_BITS_PER_WIDE_INT)
5297 mask = -1;
5298 else
5299 mask = ((unsigned HOST_WIDE_INT) 1 << n_elts) - 1;
5301 if (!(sel & mask) && !side_effects_p (op0))
5302 return op1;
5303 if ((sel & mask) == mask && !side_effects_p (op1))
5304 return op0;
5306 rtx trueop0 = avoid_constant_pool_reference (op0);
5307 rtx trueop1 = avoid_constant_pool_reference (op1);
5308 if (GET_CODE (trueop0) == CONST_VECTOR
5309 && GET_CODE (trueop1) == CONST_VECTOR)
5311 rtvec v = rtvec_alloc (n_elts);
5312 unsigned int i;
5314 for (i = 0; i < n_elts; i++)
5315 RTVEC_ELT (v, i) = ((sel & ((unsigned HOST_WIDE_INT) 1 << i))
5316 ? CONST_VECTOR_ELT (trueop0, i)
5317 : CONST_VECTOR_ELT (trueop1, i));
5318 return gen_rtx_CONST_VECTOR (mode, v);
5321 /* Replace (vec_merge (vec_merge a b m) c n) with (vec_merge b c n)
5322 if no element from a appears in the result. */
5323 if (GET_CODE (op0) == VEC_MERGE)
5325 tem = avoid_constant_pool_reference (XEXP (op0, 2));
5326 if (CONST_INT_P (tem))
5328 unsigned HOST_WIDE_INT sel0 = UINTVAL (tem);
5329 if (!(sel & sel0 & mask) && !side_effects_p (XEXP (op0, 0)))
5330 return simplify_gen_ternary (code, mode, mode,
5331 XEXP (op0, 1), op1, op2);
5332 if (!(sel & ~sel0 & mask) && !side_effects_p (XEXP (op0, 1)))
5333 return simplify_gen_ternary (code, mode, mode,
5334 XEXP (op0, 0), op1, op2);
5337 if (GET_CODE (op1) == VEC_MERGE)
5339 tem = avoid_constant_pool_reference (XEXP (op1, 2));
5340 if (CONST_INT_P (tem))
5342 unsigned HOST_WIDE_INT sel1 = UINTVAL (tem);
5343 if (!(~sel & sel1 & mask) && !side_effects_p (XEXP (op1, 0)))
5344 return simplify_gen_ternary (code, mode, mode,
5345 op0, XEXP (op1, 1), op2);
5346 if (!(~sel & ~sel1 & mask) && !side_effects_p (XEXP (op1, 1)))
5347 return simplify_gen_ternary (code, mode, mode,
5348 op0, XEXP (op1, 0), op2);
5352 /* Replace (vec_merge (vec_duplicate (vec_select a parallel (i))) a 1 << i)
5353 with a. */
5354 if (GET_CODE (op0) == VEC_DUPLICATE
5355 && GET_CODE (XEXP (op0, 0)) == VEC_SELECT
5356 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == PARALLEL
5357 && mode_nunits[GET_MODE (XEXP (op0, 0))] == 1)
5359 tem = XVECEXP ((XEXP (XEXP (op0, 0), 1)), 0, 0);
5360 if (CONST_INT_P (tem) && CONST_INT_P (op2))
5362 if (XEXP (XEXP (op0, 0), 0) == op1
5363 && UINTVAL (op2) == HOST_WIDE_INT_1U << UINTVAL (tem))
5364 return op1;
5369 if (rtx_equal_p (op0, op1)
5370 && !side_effects_p (op2) && !side_effects_p (op1))
5371 return op0;
5373 break;
5375 default:
5376 gcc_unreachable ();
5379 return 0;
5382 /* Evaluate a SUBREG of a CONST_INT or CONST_WIDE_INT or CONST_DOUBLE
5383 or CONST_FIXED or CONST_VECTOR, returning another CONST_INT or
5384 CONST_WIDE_INT or CONST_DOUBLE or CONST_FIXED or CONST_VECTOR.
5386 Works by unpacking OP into a collection of 8-bit values
5387 represented as a little-endian array of 'unsigned char', selecting by BYTE,
5388 and then repacking them again for OUTERMODE. */
5390 static rtx
5391 simplify_immed_subreg (machine_mode outermode, rtx op,
5392 machine_mode innermode, unsigned int byte)
5394 enum {
5395 value_bit = 8,
5396 value_mask = (1 << value_bit) - 1
5398 unsigned char value[MAX_BITSIZE_MODE_ANY_MODE / value_bit];
5399 int value_start;
5400 int i;
5401 int elem;
5403 int num_elem;
5404 rtx * elems;
5405 int elem_bitsize;
5406 rtx result_s;
5407 rtvec result_v = NULL;
5408 enum mode_class outer_class;
5409 machine_mode outer_submode;
5410 int max_bitsize;
5412 /* Some ports misuse CCmode. */
5413 if (GET_MODE_CLASS (outermode) == MODE_CC && CONST_INT_P (op))
5414 return op;
5416 /* We have no way to represent a complex constant at the rtl level. */
5417 if (COMPLEX_MODE_P (outermode))
5418 return NULL_RTX;
5420 /* We support any size mode. */
5421 max_bitsize = MAX (GET_MODE_BITSIZE (outermode),
5422 GET_MODE_BITSIZE (innermode));
5424 /* Unpack the value. */
5426 if (GET_CODE (op) == CONST_VECTOR)
5428 num_elem = CONST_VECTOR_NUNITS (op);
5429 elems = &CONST_VECTOR_ELT (op, 0);
5430 elem_bitsize = GET_MODE_BITSIZE (GET_MODE_INNER (innermode));
5432 else
5434 num_elem = 1;
5435 elems = &op;
5436 elem_bitsize = max_bitsize;
5438 /* If this asserts, it is too complicated; reducing value_bit may help. */
5439 gcc_assert (BITS_PER_UNIT % value_bit == 0);
5440 /* I don't know how to handle endianness of sub-units. */
5441 gcc_assert (elem_bitsize % BITS_PER_UNIT == 0);
5443 for (elem = 0; elem < num_elem; elem++)
5445 unsigned char * vp;
5446 rtx el = elems[elem];
5448 /* Vectors are kept in target memory order. (This is probably
5449 a mistake.) */
5451 unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
5452 unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
5453 / BITS_PER_UNIT);
5454 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
5455 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
5456 unsigned bytele = (subword_byte % UNITS_PER_WORD
5457 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
5458 vp = value + (bytele * BITS_PER_UNIT) / value_bit;
5461 switch (GET_CODE (el))
5463 case CONST_INT:
5464 for (i = 0;
5465 i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
5466 i += value_bit)
5467 *vp++ = INTVAL (el) >> i;
5468 /* CONST_INTs are always logically sign-extended. */
5469 for (; i < elem_bitsize; i += value_bit)
5470 *vp++ = INTVAL (el) < 0 ? -1 : 0;
5471 break;
5473 case CONST_WIDE_INT:
5475 rtx_mode_t val = std::make_pair (el, innermode);
5476 unsigned char extend = wi::sign_mask (val);
5478 for (i = 0; i < elem_bitsize; i += value_bit)
5479 *vp++ = wi::extract_uhwi (val, i, value_bit);
5480 for (; i < elem_bitsize; i += value_bit)
5481 *vp++ = extend;
5483 break;
5485 case CONST_DOUBLE:
5486 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (el) == VOIDmode)
5488 unsigned char extend = 0;
5489 /* If this triggers, someone should have generated a
5490 CONST_INT instead. */
5491 gcc_assert (elem_bitsize > HOST_BITS_PER_WIDE_INT);
5493 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
5494 *vp++ = CONST_DOUBLE_LOW (el) >> i;
5495 while (i < HOST_BITS_PER_DOUBLE_INT && i < elem_bitsize)
5497 *vp++
5498 = CONST_DOUBLE_HIGH (el) >> (i - HOST_BITS_PER_WIDE_INT);
5499 i += value_bit;
5502 if (CONST_DOUBLE_HIGH (el) >> (HOST_BITS_PER_WIDE_INT - 1))
5503 extend = -1;
5504 for (; i < elem_bitsize; i += value_bit)
5505 *vp++ = extend;
5507 else
5509 /* This is big enough for anything on the platform. */
5510 long tmp[MAX_BITSIZE_MODE_ANY_MODE / 32];
5511 int bitsize = GET_MODE_BITSIZE (GET_MODE (el));
5513 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (el)));
5514 gcc_assert (bitsize <= elem_bitsize);
5515 gcc_assert (bitsize % value_bit == 0);
5517 real_to_target (tmp, CONST_DOUBLE_REAL_VALUE (el),
5518 GET_MODE (el));
5520 /* real_to_target produces its result in words affected by
5521 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
5522 and use WORDS_BIG_ENDIAN instead; see the documentation
5523 of SUBREG in rtl.texi. */
5524 for (i = 0; i < bitsize; i += value_bit)
5526 int ibase;
5527 if (WORDS_BIG_ENDIAN)
5528 ibase = bitsize - 1 - i;
5529 else
5530 ibase = i;
5531 *vp++ = tmp[ibase / 32] >> i % 32;
5534 /* It shouldn't matter what's done here, so fill it with
5535 zero. */
5536 for (; i < elem_bitsize; i += value_bit)
5537 *vp++ = 0;
5539 break;
5541 case CONST_FIXED:
5542 if (elem_bitsize <= HOST_BITS_PER_WIDE_INT)
5544 for (i = 0; i < elem_bitsize; i += value_bit)
5545 *vp++ = CONST_FIXED_VALUE_LOW (el) >> i;
5547 else
5549 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
5550 *vp++ = CONST_FIXED_VALUE_LOW (el) >> i;
5551 for (; i < HOST_BITS_PER_DOUBLE_INT && i < elem_bitsize;
5552 i += value_bit)
5553 *vp++ = CONST_FIXED_VALUE_HIGH (el)
5554 >> (i - HOST_BITS_PER_WIDE_INT);
5555 for (; i < elem_bitsize; i += value_bit)
5556 *vp++ = 0;
5558 break;
5560 default:
5561 gcc_unreachable ();
5565 /* Now, pick the right byte to start with. */
5566 /* Renumber BYTE so that the least-significant byte is byte 0. A special
5567 case is paradoxical SUBREGs, which shouldn't be adjusted since they
5568 will already have offset 0. */
5569 if (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode))
5571 unsigned ibyte = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode)
5572 - byte);
5573 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
5574 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
5575 byte = (subword_byte % UNITS_PER_WORD
5576 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
5579 /* BYTE should still be inside OP. (Note that BYTE is unsigned,
5580 so if it's become negative it will instead be very large.) */
5581 gcc_assert (byte < GET_MODE_SIZE (innermode));
5583 /* Convert from bytes to chunks of size value_bit. */
5584 value_start = byte * (BITS_PER_UNIT / value_bit);
5586 /* Re-pack the value. */
5588 if (VECTOR_MODE_P (outermode))
5590 num_elem = GET_MODE_NUNITS (outermode);
5591 result_v = rtvec_alloc (num_elem);
5592 elems = &RTVEC_ELT (result_v, 0);
5593 outer_submode = GET_MODE_INNER (outermode);
5595 else
5597 num_elem = 1;
5598 elems = &result_s;
5599 outer_submode = outermode;
5602 outer_class = GET_MODE_CLASS (outer_submode);
5603 elem_bitsize = GET_MODE_BITSIZE (outer_submode);
5605 gcc_assert (elem_bitsize % value_bit == 0);
5606 gcc_assert (elem_bitsize + value_start * value_bit <= max_bitsize);
5608 for (elem = 0; elem < num_elem; elem++)
5610 unsigned char *vp;
5612 /* Vectors are stored in target memory order. (This is probably
5613 a mistake.) */
5615 unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
5616 unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
5617 / BITS_PER_UNIT);
5618 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
5619 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
5620 unsigned bytele = (subword_byte % UNITS_PER_WORD
5621 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
5622 vp = value + value_start + (bytele * BITS_PER_UNIT) / value_bit;
5625 switch (outer_class)
5627 case MODE_INT:
5628 case MODE_PARTIAL_INT:
5630 int u;
5631 int base = 0;
5632 int units
5633 = (GET_MODE_BITSIZE (outer_submode) + HOST_BITS_PER_WIDE_INT - 1)
5634 / HOST_BITS_PER_WIDE_INT;
5635 HOST_WIDE_INT tmp[MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_WIDE_INT];
5636 wide_int r;
5638 if (GET_MODE_PRECISION (outer_submode) > MAX_BITSIZE_MODE_ANY_INT)
5639 return NULL_RTX;
5640 for (u = 0; u < units; u++)
5642 unsigned HOST_WIDE_INT buf = 0;
5643 for (i = 0;
5644 i < HOST_BITS_PER_WIDE_INT && base + i < elem_bitsize;
5645 i += value_bit)
5646 buf |= (unsigned HOST_WIDE_INT)(*vp++ & value_mask) << i;
5648 tmp[u] = buf;
5649 base += HOST_BITS_PER_WIDE_INT;
5651 r = wide_int::from_array (tmp, units,
5652 GET_MODE_PRECISION (outer_submode));
5653 #if TARGET_SUPPORTS_WIDE_INT == 0
5654 /* Make sure r will fit into CONST_INT or CONST_DOUBLE. */
5655 if (wi::min_precision (r, SIGNED) > HOST_BITS_PER_DOUBLE_INT)
5656 return NULL_RTX;
5657 #endif
5658 elems[elem] = immed_wide_int_const (r, outer_submode);
5660 break;
5662 case MODE_FLOAT:
5663 case MODE_DECIMAL_FLOAT:
5665 REAL_VALUE_TYPE r;
5666 long tmp[MAX_BITSIZE_MODE_ANY_MODE / 32];
5668 /* real_from_target wants its input in words affected by
5669 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
5670 and use WORDS_BIG_ENDIAN instead; see the documentation
5671 of SUBREG in rtl.texi. */
5672 for (i = 0; i < max_bitsize / 32; i++)
5673 tmp[i] = 0;
5674 for (i = 0; i < elem_bitsize; i += value_bit)
5676 int ibase;
5677 if (WORDS_BIG_ENDIAN)
5678 ibase = elem_bitsize - 1 - i;
5679 else
5680 ibase = i;
5681 tmp[ibase / 32] |= (*vp++ & value_mask) << i % 32;
5684 real_from_target (&r, tmp, outer_submode);
5685 elems[elem] = CONST_DOUBLE_FROM_REAL_VALUE (r, outer_submode);
5687 break;
5689 case MODE_FRACT:
5690 case MODE_UFRACT:
5691 case MODE_ACCUM:
5692 case MODE_UACCUM:
5694 FIXED_VALUE_TYPE f;
5695 f.data.low = 0;
5696 f.data.high = 0;
5697 f.mode = outer_submode;
5699 for (i = 0;
5700 i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
5701 i += value_bit)
5702 f.data.low |= (unsigned HOST_WIDE_INT)(*vp++ & value_mask) << i;
5703 for (; i < elem_bitsize; i += value_bit)
5704 f.data.high |= ((unsigned HOST_WIDE_INT)(*vp++ & value_mask)
5705 << (i - HOST_BITS_PER_WIDE_INT));
5707 elems[elem] = CONST_FIXED_FROM_FIXED_VALUE (f, outer_submode);
5709 break;
5711 default:
5712 gcc_unreachable ();
5715 if (VECTOR_MODE_P (outermode))
5716 return gen_rtx_CONST_VECTOR (outermode, result_v);
5717 else
5718 return result_s;
5721 /* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
5722 Return 0 if no simplifications are possible. */
5724 simplify_subreg (machine_mode outermode, rtx op,
5725 machine_mode innermode, unsigned int byte)
5727 /* Little bit of sanity checking. */
5728 gcc_assert (innermode != VOIDmode);
5729 gcc_assert (outermode != VOIDmode);
5730 gcc_assert (innermode != BLKmode);
5731 gcc_assert (outermode != BLKmode);
5733 gcc_assert (GET_MODE (op) == innermode
5734 || GET_MODE (op) == VOIDmode);
5736 if ((byte % GET_MODE_SIZE (outermode)) != 0)
5737 return NULL_RTX;
5739 if (byte >= GET_MODE_SIZE (innermode))
5740 return NULL_RTX;
5742 if (outermode == innermode && !byte)
5743 return op;
5745 if (CONST_SCALAR_INT_P (op)
5746 || CONST_DOUBLE_AS_FLOAT_P (op)
5747 || GET_CODE (op) == CONST_FIXED
5748 || GET_CODE (op) == CONST_VECTOR)
5749 return simplify_immed_subreg (outermode, op, innermode, byte);
5751 /* Changing mode twice with SUBREG => just change it once,
5752 or not at all if changing back op starting mode. */
5753 if (GET_CODE (op) == SUBREG)
5755 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
5756 int final_offset = byte + SUBREG_BYTE (op);
5757 rtx newx;
5759 if (outermode == innermostmode
5760 && byte == 0 && SUBREG_BYTE (op) == 0)
5761 return SUBREG_REG (op);
5763 /* The SUBREG_BYTE represents offset, as if the value were stored
5764 in memory. Irritating exception is paradoxical subreg, where
5765 we define SUBREG_BYTE to be 0. On big endian machines, this
5766 value should be negative. For a moment, undo this exception. */
5767 if (byte == 0 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
5769 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
5770 if (WORDS_BIG_ENDIAN)
5771 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
5772 if (BYTES_BIG_ENDIAN)
5773 final_offset += difference % UNITS_PER_WORD;
5775 if (SUBREG_BYTE (op) == 0
5776 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
5778 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
5779 if (WORDS_BIG_ENDIAN)
5780 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
5781 if (BYTES_BIG_ENDIAN)
5782 final_offset += difference % UNITS_PER_WORD;
5785 /* See whether resulting subreg will be paradoxical. */
5786 if (GET_MODE_SIZE (innermostmode) > GET_MODE_SIZE (outermode))
5788 /* In nonparadoxical subregs we can't handle negative offsets. */
5789 if (final_offset < 0)
5790 return NULL_RTX;
5791 /* Bail out in case resulting subreg would be incorrect. */
5792 if (final_offset % GET_MODE_SIZE (outermode)
5793 || (unsigned) final_offset >= GET_MODE_SIZE (innermostmode))
5794 return NULL_RTX;
5796 else
5798 int offset = 0;
5799 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (outermode));
5801 /* In paradoxical subreg, see if we are still looking on lower part.
5802 If so, our SUBREG_BYTE will be 0. */
5803 if (WORDS_BIG_ENDIAN)
5804 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
5805 if (BYTES_BIG_ENDIAN)
5806 offset += difference % UNITS_PER_WORD;
5807 if (offset == final_offset)
5808 final_offset = 0;
5809 else
5810 return NULL_RTX;
5813 /* Recurse for further possible simplifications. */
5814 newx = simplify_subreg (outermode, SUBREG_REG (op), innermostmode,
5815 final_offset);
5816 if (newx)
5817 return newx;
5818 if (validate_subreg (outermode, innermostmode,
5819 SUBREG_REG (op), final_offset))
5821 newx = gen_rtx_SUBREG (outermode, SUBREG_REG (op), final_offset);
5822 if (SUBREG_PROMOTED_VAR_P (op)
5823 && SUBREG_PROMOTED_SIGN (op) >= 0
5824 && GET_MODE_CLASS (outermode) == MODE_INT
5825 && IN_RANGE (GET_MODE_SIZE (outermode),
5826 GET_MODE_SIZE (innermode),
5827 GET_MODE_SIZE (innermostmode))
5828 && subreg_lowpart_p (newx))
5830 SUBREG_PROMOTED_VAR_P (newx) = 1;
5831 SUBREG_PROMOTED_SET (newx, SUBREG_PROMOTED_GET (op));
5833 return newx;
5835 return NULL_RTX;
5838 /* SUBREG of a hard register => just change the register number
5839 and/or mode. If the hard register is not valid in that mode,
5840 suppress this simplification. If the hard register is the stack,
5841 frame, or argument pointer, leave this as a SUBREG. */
5843 if (REG_P (op) && HARD_REGISTER_P (op))
5845 unsigned int regno, final_regno;
5847 regno = REGNO (op);
5848 final_regno = simplify_subreg_regno (regno, innermode, byte, outermode);
5849 if (HARD_REGISTER_NUM_P (final_regno))
5851 rtx x;
5852 int final_offset = byte;
5854 /* Adjust offset for paradoxical subregs. */
5855 if (byte == 0
5856 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
5858 int difference = (GET_MODE_SIZE (innermode)
5859 - GET_MODE_SIZE (outermode));
5860 if (WORDS_BIG_ENDIAN)
5861 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
5862 if (BYTES_BIG_ENDIAN)
5863 final_offset += difference % UNITS_PER_WORD;
5866 x = gen_rtx_REG_offset (op, outermode, final_regno, final_offset);
5868 /* Propagate original regno. We don't have any way to specify
5869 the offset inside original regno, so do so only for lowpart.
5870 The information is used only by alias analysis that can not
5871 grog partial register anyway. */
5873 if (subreg_lowpart_offset (outermode, innermode) == byte)
5874 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (op);
5875 return x;
5879 /* If we have a SUBREG of a register that we are replacing and we are
5880 replacing it with a MEM, make a new MEM and try replacing the
5881 SUBREG with it. Don't do this if the MEM has a mode-dependent address
5882 or if we would be widening it. */
5884 if (MEM_P (op)
5885 && ! mode_dependent_address_p (XEXP (op, 0), MEM_ADDR_SPACE (op))
5886 /* Allow splitting of volatile memory references in case we don't
5887 have instruction to move the whole thing. */
5888 && (! MEM_VOLATILE_P (op)
5889 || ! have_insn_for (SET, innermode))
5890 && GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (GET_MODE (op)))
5891 return adjust_address_nv (op, outermode, byte);
5893 /* Handle complex values represented as CONCAT
5894 of real and imaginary part. */
5895 if (GET_CODE (op) == CONCAT)
5897 unsigned int part_size, final_offset;
5898 rtx part, res;
5900 part_size = GET_MODE_UNIT_SIZE (GET_MODE (XEXP (op, 0)));
5901 if (byte < part_size)
5903 part = XEXP (op, 0);
5904 final_offset = byte;
5906 else
5908 part = XEXP (op, 1);
5909 final_offset = byte - part_size;
5912 if (final_offset + GET_MODE_SIZE (outermode) > part_size)
5913 return NULL_RTX;
5915 res = simplify_subreg (outermode, part, GET_MODE (part), final_offset);
5916 if (res)
5917 return res;
5918 if (validate_subreg (outermode, GET_MODE (part), part, final_offset))
5919 return gen_rtx_SUBREG (outermode, part, final_offset);
5920 return NULL_RTX;
5923 /* A SUBREG resulting from a zero extension may fold to zero if
5924 it extracts higher bits that the ZERO_EXTEND's source bits. */
5925 if (GET_CODE (op) == ZERO_EXTEND && SCALAR_INT_MODE_P (innermode))
5927 unsigned int bitpos = subreg_lsb_1 (outermode, innermode, byte);
5928 if (bitpos >= GET_MODE_PRECISION (GET_MODE (XEXP (op, 0))))
5929 return CONST0_RTX (outermode);
5932 if (SCALAR_INT_MODE_P (outermode)
5933 && SCALAR_INT_MODE_P (innermode)
5934 && GET_MODE_PRECISION (outermode) < GET_MODE_PRECISION (innermode)
5935 && byte == subreg_lowpart_offset (outermode, innermode))
5937 rtx tem = simplify_truncation (outermode, op, innermode);
5938 if (tem)
5939 return tem;
5942 return NULL_RTX;
5945 /* Make a SUBREG operation or equivalent if it folds. */
5948 simplify_gen_subreg (machine_mode outermode, rtx op,
5949 machine_mode innermode, unsigned int byte)
5951 rtx newx;
5953 newx = simplify_subreg (outermode, op, innermode, byte);
5954 if (newx)
5955 return newx;
5957 if (GET_CODE (op) == SUBREG
5958 || GET_CODE (op) == CONCAT
5959 || GET_MODE (op) == VOIDmode)
5960 return NULL_RTX;
5962 if (validate_subreg (outermode, innermode, op, byte))
5963 return gen_rtx_SUBREG (outermode, op, byte);
5965 return NULL_RTX;
5968 /* Simplify X, an rtx expression.
5970 Return the simplified expression or NULL if no simplifications
5971 were possible.
5973 This is the preferred entry point into the simplification routines;
5974 however, we still allow passes to call the more specific routines.
5976 Right now GCC has three (yes, three) major bodies of RTL simplification
5977 code that need to be unified.
5979 1. fold_rtx in cse.c. This code uses various CSE specific
5980 information to aid in RTL simplification.
5982 2. simplify_rtx in combine.c. Similar to fold_rtx, except that
5983 it uses combine specific information to aid in RTL
5984 simplification.
5986 3. The routines in this file.
5989 Long term we want to only have one body of simplification code; to
5990 get to that state I recommend the following steps:
5992 1. Pour over fold_rtx & simplify_rtx and move any simplifications
5993 which are not pass dependent state into these routines.
5995 2. As code is moved by #1, change fold_rtx & simplify_rtx to
5996 use this routine whenever possible.
5998 3. Allow for pass dependent state to be provided to these
5999 routines and add simplifications based on the pass dependent
6000 state. Remove code from cse.c & combine.c that becomes
6001 redundant/dead.
6003 It will take time, but ultimately the compiler will be easier to
6004 maintain and improve. It's totally silly that when we add a
6005 simplification that it needs to be added to 4 places (3 for RTL
6006 simplification and 1 for tree simplification. */
6009 simplify_rtx (const_rtx x)
6011 const enum rtx_code code = GET_CODE (x);
6012 const machine_mode mode = GET_MODE (x);
6014 switch (GET_RTX_CLASS (code))
6016 case RTX_UNARY:
6017 return simplify_unary_operation (code, mode,
6018 XEXP (x, 0), GET_MODE (XEXP (x, 0)));
6019 case RTX_COMM_ARITH:
6020 if (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
6021 return simplify_gen_binary (code, mode, XEXP (x, 1), XEXP (x, 0));
6023 /* Fall through.... */
6025 case RTX_BIN_ARITH:
6026 return simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
6028 case RTX_TERNARY:
6029 case RTX_BITFIELD_OPS:
6030 return simplify_ternary_operation (code, mode, GET_MODE (XEXP (x, 0)),
6031 XEXP (x, 0), XEXP (x, 1),
6032 XEXP (x, 2));
6034 case RTX_COMPARE:
6035 case RTX_COMM_COMPARE:
6036 return simplify_relational_operation (code, mode,
6037 ((GET_MODE (XEXP (x, 0))
6038 != VOIDmode)
6039 ? GET_MODE (XEXP (x, 0))
6040 : GET_MODE (XEXP (x, 1))),
6041 XEXP (x, 0),
6042 XEXP (x, 1));
6044 case RTX_EXTRA:
6045 if (code == SUBREG)
6046 return simplify_subreg (mode, SUBREG_REG (x),
6047 GET_MODE (SUBREG_REG (x)),
6048 SUBREG_BYTE (x));
6049 break;
6051 case RTX_OBJ:
6052 if (code == LO_SUM)
6054 /* Convert (lo_sum (high FOO) FOO) to FOO. */
6055 if (GET_CODE (XEXP (x, 0)) == HIGH
6056 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6057 return XEXP (x, 1);
6059 break;
6061 default:
6062 break;
6064 return NULL;