* config/i386/netbsd-elf.h (LINK_SPEC): Define as
[official-gcc.git] / gcc / regclass.c
blob84c7ba330bbe058af3745232c2951c956aac04d2
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
27 #include "config.h"
28 #include "system.h"
29 #include "rtl.h"
30 #include "expr.h"
31 #include "tm_p.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "basic-block.h"
35 #include "regs.h"
36 #include "function.h"
37 #include "insn-config.h"
38 #include "recog.h"
39 #include "reload.h"
40 #include "real.h"
41 #include "toplev.h"
42 #include "output.h"
43 #include "ggc.h"
45 #ifndef REGISTER_MOVE_COST
46 #define REGISTER_MOVE_COST(m, x, y) 2
47 #endif
49 static void init_reg_sets_1 PARAMS ((void));
50 static void init_reg_modes PARAMS ((void));
52 /* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
54 reloads for pseudos auto-incremented since reload can't handle it. */
56 #ifdef AUTO_INC_DEC
57 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
58 #define FORBIDDEN_INC_DEC_CLASSES
59 #endif
60 #endif
62 /* Register tables used by many passes. */
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
69 char fixed_regs[FIRST_PSEUDO_REGISTER];
71 /* Same info as a HARD_REG_SET. */
73 HARD_REG_SET fixed_reg_set;
75 /* Data for initializing the above. */
77 static const char initial_fixed_regs[] = FIXED_REGISTERS;
79 /* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
85 char call_used_regs[FIRST_PSEUDO_REGISTER];
87 /* Same info as a HARD_REG_SET. */
89 HARD_REG_SET call_used_reg_set;
91 /* HARD_REG_SET of registers we want to avoid caller saving. */
92 HARD_REG_SET losing_caller_save_reg_set;
94 /* Data for initializing the above. */
96 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
98 /* This is much like call_used_regs, except it doesn't have to
99 be a superset of FIXED_REGISTERS. This vector indicates
100 what is really call clobbered, and is used when defining
101 regs_invalidated_by_call. */
103 #ifdef CALL_REALLY_USED_REGISTERS
104 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
105 #endif
107 /* Indexed by hard register number, contains 1 for registers that are
108 fixed use or call used registers that cannot hold quantities across
109 calls even if we are willing to save and restore them. call fixed
110 registers are a subset of call used registers. */
112 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
114 /* The same info as a HARD_REG_SET. */
116 HARD_REG_SET call_fixed_reg_set;
118 /* Number of non-fixed registers. */
120 int n_non_fixed_regs;
122 /* Indexed by hard register number, contains 1 for registers
123 that are being used for global register decls.
124 These must be exempt from ordinary flow analysis
125 and are also considered fixed. */
127 char global_regs[FIRST_PSEUDO_REGISTER];
129 /* Contains 1 for registers that are set or clobbered by calls. */
130 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
131 for someone's bright idea to have call_used_regs strictly include
132 fixed_regs. Which leaves us guessing as to the set of fixed_regs
133 that are actually preserved. We know for sure that those associated
134 with the local stack frame are safe, but scant others. */
136 HARD_REG_SET regs_invalidated_by_call;
138 /* Table of register numbers in the order in which to try to use them. */
139 #ifdef REG_ALLOC_ORDER
140 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
142 /* The inverse of reg_alloc_order. */
143 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
144 #endif
146 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
148 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
150 /* The same information, but as an array of unsigned ints. We copy from
151 these unsigned ints to the table above. We do this so the tm.h files
152 do not have to be aware of the wordsize for machines with <= 64 regs.
153 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
155 #define N_REG_INTS \
156 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
158 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
159 = REG_CLASS_CONTENTS;
161 /* For each reg class, number of regs it contains. */
163 unsigned int reg_class_size[N_REG_CLASSES];
165 /* For each reg class, table listing all the containing classes. */
167 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
169 /* For each reg class, table listing all the classes contained in it. */
171 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
173 /* For each pair of reg classes,
174 a largest reg class contained in their union. */
176 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
178 /* For each pair of reg classes,
179 the smallest reg class containing their union. */
181 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
183 /* Array containing all of the register names. Unless
184 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
186 #ifdef DEBUG_REGISTER_NAMES
187 const char * reg_names[] = REGISTER_NAMES;
188 #endif
190 /* For each hard register, the widest mode object that it can contain.
191 This will be a MODE_INT mode if the register can hold integers. Otherwise
192 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
193 register. */
195 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
197 /* 1 if class does contain register of given mode. */
199 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
201 /* Maximum cost of moving from a register in one class to a register in
202 another class. Based on REGISTER_MOVE_COST. */
204 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
206 /* Similar, but here we don't have to move if the first index is a subset
207 of the second so in that case the cost is zero. */
209 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
211 /* Similar, but here we don't have to move if the first index is a superset
212 of the second so in that case the cost is zero. */
214 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
216 #ifdef FORBIDDEN_INC_DEC_CLASSES
218 /* These are the classes that regs which are auto-incremented or decremented
219 cannot be put in. */
221 static int forbidden_inc_dec_class[N_REG_CLASSES];
223 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
224 context. */
226 static char *in_inc_dec;
228 #endif /* FORBIDDEN_INC_DEC_CLASSES */
230 #ifdef CLASS_CANNOT_CHANGE_MODE
232 /* These are the classes containing only registers that can be used in
233 a SUBREG expression that changes the mode of the register in some
234 way that is illegal. */
236 static int class_can_change_mode[N_REG_CLASSES];
238 /* Registers, including pseudos, which change modes in some way that
239 is illegal. */
241 static regset reg_changes_mode;
243 #endif /* CLASS_CANNOT_CHANGE_MODE */
245 /* Sample MEM values for use by memory_move_secondary_cost. */
247 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
249 /* Linked list of reg_info structures allocated for reg_n_info array.
250 Grouping all of the allocated structures together in one lump
251 means only one call to bzero to clear them, rather than n smaller
252 calls. */
253 struct reg_info_data {
254 struct reg_info_data *next; /* next set of reg_info structures */
255 size_t min_index; /* minimum index # */
256 size_t max_index; /* maximum index # */
257 char used_p; /* non-zero if this has been used previously */
258 reg_info data[1]; /* beginning of the reg_info data */
261 static struct reg_info_data *reg_info_head;
263 /* No more global register variables may be declared; true once
264 regclass has been initialized. */
266 static int no_global_reg_vars = 0;
269 /* Function called only once to initialize the above data on reg usage.
270 Once this is done, various switches may override. */
272 void
273 init_reg_sets ()
275 int i, j;
277 /* First copy the register information from the initial int form into
278 the regsets. */
280 for (i = 0; i < N_REG_CLASSES; i++)
282 CLEAR_HARD_REG_SET (reg_class_contents[i]);
284 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
285 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
286 if (int_reg_class_contents[i][j / 32]
287 & ((unsigned) 1 << (j % 32)))
288 SET_HARD_REG_BIT (reg_class_contents[i], j);
291 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
292 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
293 memset (global_regs, 0, sizeof global_regs);
295 /* Do any additional initialization regsets may need */
296 INIT_ONCE_REG_SET ();
298 #ifdef REG_ALLOC_ORDER
299 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
300 inv_reg_alloc_order[reg_alloc_order[i]] = i;
301 #endif
304 /* After switches have been processed, which perhaps alter
305 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
307 static void
308 init_reg_sets_1 ()
310 unsigned int i, j;
311 unsigned int /* enum machine_mode */ m;
312 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
314 /* This macro allows the fixed or call-used registers
315 and the register classes to depend on target flags. */
317 #ifdef CONDITIONAL_REGISTER_USAGE
318 CONDITIONAL_REGISTER_USAGE;
319 #endif
321 /* Compute number of hard regs in each class. */
323 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
324 for (i = 0; i < N_REG_CLASSES; i++)
325 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
326 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
327 reg_class_size[i]++;
329 /* Initialize the table of subunions.
330 reg_class_subunion[I][J] gets the largest-numbered reg-class
331 that is contained in the union of classes I and J. */
333 for (i = 0; i < N_REG_CLASSES; i++)
335 for (j = 0; j < N_REG_CLASSES; j++)
337 #ifdef HARD_REG_SET
338 register /* Declare it register if it's a scalar. */
339 #endif
340 HARD_REG_SET c;
341 int k;
343 COPY_HARD_REG_SET (c, reg_class_contents[i]);
344 IOR_HARD_REG_SET (c, reg_class_contents[j]);
345 for (k = 0; k < N_REG_CLASSES; k++)
347 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
348 subclass1);
349 continue;
351 subclass1:
352 /* keep the largest subclass */ /* SPEE 900308 */
353 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
354 reg_class_contents[(int) reg_class_subunion[i][j]],
355 subclass2);
356 reg_class_subunion[i][j] = (enum reg_class) k;
357 subclass2:
363 /* Initialize the table of superunions.
364 reg_class_superunion[I][J] gets the smallest-numbered reg-class
365 containing the union of classes I and J. */
367 for (i = 0; i < N_REG_CLASSES; i++)
369 for (j = 0; j < N_REG_CLASSES; j++)
371 #ifdef HARD_REG_SET
372 register /* Declare it register if it's a scalar. */
373 #endif
374 HARD_REG_SET c;
375 int k;
377 COPY_HARD_REG_SET (c, reg_class_contents[i]);
378 IOR_HARD_REG_SET (c, reg_class_contents[j]);
379 for (k = 0; k < N_REG_CLASSES; k++)
380 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
382 superclass:
383 reg_class_superunion[i][j] = (enum reg_class) k;
387 /* Initialize the tables of subclasses and superclasses of each reg class.
388 First clear the whole table, then add the elements as they are found. */
390 for (i = 0; i < N_REG_CLASSES; i++)
392 for (j = 0; j < N_REG_CLASSES; j++)
394 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
395 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
399 for (i = 0; i < N_REG_CLASSES; i++)
401 if (i == (int) NO_REGS)
402 continue;
404 for (j = i + 1; j < N_REG_CLASSES; j++)
406 enum reg_class *p;
408 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
409 subclass);
410 continue;
411 subclass:
412 /* Reg class I is a subclass of J.
413 Add J to the table of superclasses of I. */
414 p = &reg_class_superclasses[i][0];
415 while (*p != LIM_REG_CLASSES) p++;
416 *p = (enum reg_class) j;
417 /* Add I to the table of superclasses of J. */
418 p = &reg_class_subclasses[j][0];
419 while (*p != LIM_REG_CLASSES) p++;
420 *p = (enum reg_class) i;
424 /* Initialize "constant" tables. */
426 CLEAR_HARD_REG_SET (fixed_reg_set);
427 CLEAR_HARD_REG_SET (call_used_reg_set);
428 CLEAR_HARD_REG_SET (call_fixed_reg_set);
429 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
431 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
433 n_non_fixed_regs = 0;
435 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
437 if (fixed_regs[i])
438 SET_HARD_REG_BIT (fixed_reg_set, i);
439 else
440 n_non_fixed_regs++;
442 if (call_used_regs[i])
443 SET_HARD_REG_BIT (call_used_reg_set, i);
444 if (call_fixed_regs[i])
445 SET_HARD_REG_BIT (call_fixed_reg_set, i);
446 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
447 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
449 /* There are a couple of fixed registers that we know are safe to
450 exclude from being clobbered by calls:
452 The frame pointer is always preserved across calls. The arg pointer
453 is if it is fixed. The stack pointer usually is, unless
454 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
455 If we are generating PIC code, the PIC offset table register is
456 preserved across calls, though the target can override that. */
458 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
460 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
461 else if (i == HARD_FRAME_POINTER_REGNUM)
463 #endif
464 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
465 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
467 #endif
468 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
469 else if (i == PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
471 #endif
472 else if (0
473 #ifdef CALL_REALLY_USED_REGISTERS
474 || call_really_used_regs[i]
475 #else
476 || call_used_regs[i]
477 #endif
478 || global_regs[i])
479 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
482 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
483 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
484 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
485 for (i = 0; i < N_REG_CLASSES; i++)
486 if (CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
487 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
488 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
489 && HARD_REGNO_MODE_OK (j, m))
491 contains_reg_of_mode [i][m] = 1;
492 allocatable_regs_of_mode [m] = 1;
493 break;
496 /* Initialize the move cost table. Find every subset of each class
497 and take the maximum cost of moving any subset to any other. */
499 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
500 if (allocatable_regs_of_mode [m])
502 for (i = 0; i < N_REG_CLASSES; i++)
503 if (contains_reg_of_mode [i][m])
504 for (j = 0; j < N_REG_CLASSES; j++)
506 int cost;
507 enum reg_class *p1, *p2;
509 if (!contains_reg_of_mode [j][m])
511 move_cost[m][i][j] = 65536;
512 may_move_in_cost[m][i][j] = 65536;
513 may_move_out_cost[m][i][j] = 65536;
515 else
517 cost = REGISTER_MOVE_COST (m, i, j);
519 for (p2 = &reg_class_subclasses[j][0];
520 *p2 != LIM_REG_CLASSES;
521 p2++)
522 if (*p2 != i && contains_reg_of_mode [*p2][m])
523 cost = MAX (cost, move_cost [m][i][*p2]);
525 for (p1 = &reg_class_subclasses[i][0];
526 *p1 != LIM_REG_CLASSES;
527 p1++)
528 if (*p1 != j && contains_reg_of_mode [*p1][m])
529 cost = MAX (cost, move_cost [m][*p1][j]);
531 move_cost[m][i][j] = cost;
533 if (reg_class_subset_p (i, j))
534 may_move_in_cost[m][i][j] = 0;
535 else
536 may_move_in_cost[m][i][j] = cost;
538 if (reg_class_subset_p (j, i))
539 may_move_out_cost[m][i][j] = 0;
540 else
541 may_move_out_cost[m][i][j] = cost;
544 else
545 for (j = 0; j < N_REG_CLASSES; j++)
547 move_cost[m][i][j] = 65536;
548 may_move_in_cost[m][i][j] = 65536;
549 may_move_out_cost[m][i][j] = 65536;
553 #ifdef CLASS_CANNOT_CHANGE_MODE
555 HARD_REG_SET c;
556 COMPL_HARD_REG_SET (c, reg_class_contents[CLASS_CANNOT_CHANGE_MODE]);
558 for (i = 0; i < N_REG_CLASSES; i++)
560 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], c, ok_class);
561 class_can_change_mode [i] = 0;
562 continue;
563 ok_class:
564 class_can_change_mode [i] = 1;
567 #endif /* CLASS_CANNOT_CHANGE_MODE */
570 /* Compute the table of register modes.
571 These values are used to record death information for individual registers
572 (as opposed to a multi-register mode). */
574 static void
575 init_reg_modes ()
577 int i;
579 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
581 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
583 /* If we couldn't find a valid mode, just use the previous mode.
584 ??? One situation in which we need to do this is on the mips where
585 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
586 to use DF mode for the even registers and VOIDmode for the odd
587 (for the cpu models where the odd ones are inaccessible). */
588 if (reg_raw_mode[i] == VOIDmode)
589 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
593 /* Finish initializing the register sets and
594 initialize the register modes. */
596 void
597 init_regs ()
599 /* This finishes what was started by init_reg_sets, but couldn't be done
600 until after register usage was specified. */
601 init_reg_sets_1 ();
603 init_reg_modes ();
605 #ifdef HAVE_SECONDARY_RELOADS
607 /* Make some fake stack-frame MEM references for use in
608 memory_move_secondary_cost. */
609 int i;
611 for (i = 0; i < MAX_MACHINE_MODE; i++)
612 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
614 #endif
617 #ifdef HAVE_SECONDARY_RELOADS
619 /* Compute extra cost of moving registers to/from memory due to reloads.
620 Only needed if secondary reloads are required for memory moves. */
623 memory_move_secondary_cost (mode, class, in)
624 enum machine_mode mode;
625 enum reg_class class;
626 int in;
628 enum reg_class altclass;
629 int partial_cost = 0;
630 /* We need a memory reference to feed to SECONDARY... macros. */
631 /* mem may be unused even if the SECONDARY_ macros are defined. */
632 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
635 if (in)
637 #ifdef SECONDARY_INPUT_RELOAD_CLASS
638 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
639 #else
640 altclass = NO_REGS;
641 #endif
643 else
645 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
646 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
647 #else
648 altclass = NO_REGS;
649 #endif
652 if (altclass == NO_REGS)
653 return 0;
655 if (in)
656 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
657 else
658 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
660 if (class == altclass)
661 /* This isn't simply a copy-to-temporary situation. Can't guess
662 what it is, so MEMORY_MOVE_COST really ought not to be calling
663 here in that case.
665 I'm tempted to put in an abort here, but returning this will
666 probably only give poor estimates, which is what we would've
667 had before this code anyways. */
668 return partial_cost;
670 /* Check if the secondary reload register will also need a
671 secondary reload. */
672 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
674 #endif
676 /* Return a machine mode that is legitimate for hard reg REGNO and large
677 enough to save nregs. If we can't find one, return VOIDmode. */
679 enum machine_mode
680 choose_hard_reg_mode (regno, nregs)
681 unsigned int regno ATTRIBUTE_UNUSED;
682 unsigned int nregs;
684 unsigned int /* enum machine_mode */ m;
685 enum machine_mode found_mode = VOIDmode, mode;
687 /* We first look for the largest integer mode that can be validly
688 held in REGNO. If none, we look for the largest floating-point mode.
689 If we still didn't find a valid mode, try CCmode. */
691 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
692 mode != VOIDmode;
693 mode = GET_MODE_WIDER_MODE (mode))
694 if (HARD_REGNO_NREGS (regno, mode) == nregs
695 && HARD_REGNO_MODE_OK (regno, mode))
696 found_mode = mode;
698 if (found_mode != VOIDmode)
699 return found_mode;
701 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
702 mode != VOIDmode;
703 mode = GET_MODE_WIDER_MODE (mode))
704 if (HARD_REGNO_NREGS (regno, mode) == nregs
705 && HARD_REGNO_MODE_OK (regno, mode))
706 found_mode = mode;
708 if (found_mode != VOIDmode)
709 return found_mode;
711 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
712 mode != VOIDmode;
713 mode = GET_MODE_WIDER_MODE (mode))
714 if (HARD_REGNO_NREGS (regno, mode) == nregs
715 && HARD_REGNO_MODE_OK (regno, mode))
716 found_mode = mode;
718 if (found_mode != VOIDmode)
719 return found_mode;
721 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
722 mode != VOIDmode;
723 mode = GET_MODE_WIDER_MODE (mode))
724 if (HARD_REGNO_NREGS (regno, mode) == nregs
725 && HARD_REGNO_MODE_OK (regno, mode))
726 found_mode = mode;
728 if (found_mode != VOIDmode)
729 return found_mode;
731 /* Iterate over all of the CCmodes. */
732 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
734 mode = (enum machine_mode) m;
735 if (HARD_REGNO_NREGS (regno, mode) == nregs
736 && HARD_REGNO_MODE_OK (regno, mode))
737 return mode;
740 /* We can't find a mode valid for this register. */
741 return VOIDmode;
744 /* Specify the usage characteristics of the register named NAME.
745 It should be a fixed register if FIXED and a
746 call-used register if CALL_USED. */
748 void
749 fix_register (name, fixed, call_used)
750 const char *name;
751 int fixed, call_used;
753 int i;
755 /* Decode the name and update the primary form of
756 the register info. */
758 if ((i = decode_reg_name (name)) >= 0)
760 if ((i == STACK_POINTER_REGNUM
761 #ifdef HARD_FRAME_POINTER_REGNUM
762 || i == HARD_FRAME_POINTER_REGNUM
763 #else
764 || i == FRAME_POINTER_REGNUM
765 #endif
767 && (fixed == 0 || call_used == 0))
769 static const char * const what_option[2][2] = {
770 { "call-saved", "call-used" },
771 { "no-such-option", "fixed" }};
773 error ("can't use '%s' as a %s register", name,
774 what_option[fixed][call_used]);
776 else
778 fixed_regs[i] = fixed;
779 call_used_regs[i] = call_used;
780 #ifdef CALL_REALLY_USED_REGISTERS
781 if (fixed == 0)
782 call_really_used_regs[i] = call_used;
783 #endif
786 else
788 warning ("unknown register name: %s", name);
792 /* Mark register number I as global. */
794 void
795 globalize_reg (i)
796 int i;
798 if (fixed_regs[i] == 0 && no_global_reg_vars)
799 error ("global register variable follows a function definition");
801 if (global_regs[i])
803 warning ("register used for two global register variables");
804 return;
807 if (call_used_regs[i] && ! fixed_regs[i])
808 warning ("call-clobbered register used for global register variable");
810 global_regs[i] = 1;
812 /* If already fixed, nothing else to do. */
813 if (fixed_regs[i])
814 return;
816 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
817 n_non_fixed_regs--;
819 SET_HARD_REG_BIT (fixed_reg_set, i);
820 SET_HARD_REG_BIT (call_used_reg_set, i);
821 SET_HARD_REG_BIT (call_fixed_reg_set, i);
824 /* Now the data and code for the `regclass' pass, which happens
825 just before local-alloc. */
827 /* The `costs' struct records the cost of using a hard register of each class
828 and of using memory for each pseudo. We use this data to set up
829 register class preferences. */
831 struct costs
833 int cost[N_REG_CLASSES];
834 int mem_cost;
837 /* Structure used to record preferrences of given pseudo. */
838 struct reg_pref
840 /* (enum reg_class) prefclass is the preferred class. */
841 char prefclass;
843 /* altclass is a register class that we should use for allocating
844 pseudo if no register in the preferred class is available.
845 If no register in this class is available, memory is preferred.
847 It might appear to be more general to have a bitmask of classes here,
848 but since it is recommended that there be a class corresponding to the
849 union of most major pair of classes, that generality is not required. */
850 char altclass;
853 /* Record the cost of each class for each pseudo. */
855 static struct costs *costs;
857 /* Initialized once, and used to initialize cost values for each insn. */
859 static struct costs init_cost;
861 /* Record preferrences of each pseudo.
862 This is available after `regclass' is run. */
864 static struct reg_pref *reg_pref;
866 /* Allocated buffers for reg_pref. */
868 static struct reg_pref *reg_pref_buffer;
870 /* Frequency of executions of current insn. */
872 static int frequency;
874 static rtx scan_one_insn PARAMS ((rtx, int));
875 static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
876 static void dump_regclass PARAMS ((FILE *));
877 static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
878 const char **, rtx,
879 struct costs *, struct reg_pref *));
880 static int copy_cost PARAMS ((rtx, enum machine_mode,
881 enum reg_class, int));
882 static void record_address_regs PARAMS ((rtx, enum reg_class, int));
883 #ifdef FORBIDDEN_INC_DEC_CLASSES
884 static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
885 #endif
886 static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
888 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
889 This function is sometimes called before the info has been computed.
890 When that happens, just return GENERAL_REGS, which is innocuous. */
892 enum reg_class
893 reg_preferred_class (regno)
894 int regno;
896 if (reg_pref == 0)
897 return GENERAL_REGS;
898 return (enum reg_class) reg_pref[regno].prefclass;
901 enum reg_class
902 reg_alternate_class (regno)
903 int regno;
905 if (reg_pref == 0)
906 return ALL_REGS;
908 return (enum reg_class) reg_pref[regno].altclass;
911 /* Initialize some global data for this pass. */
913 void
914 regclass_init ()
916 int i;
918 init_cost.mem_cost = 10000;
919 for (i = 0; i < N_REG_CLASSES; i++)
920 init_cost.cost[i] = 10000;
922 /* This prevents dump_flow_info from losing if called
923 before regclass is run. */
924 reg_pref = NULL;
926 /* No more global register variables may be declared. */
927 no_global_reg_vars = 1;
930 /* Dump register costs. */
931 static void
932 dump_regclass (dump)
933 FILE *dump;
935 static const char *const reg_class_names[] = REG_CLASS_NAMES;
936 int i;
937 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
939 int /* enum reg_class */ class;
940 if (REG_N_REFS (i))
942 fprintf (dump, " Register %i costs:", i);
943 for (class = 0; class < (int) N_REG_CLASSES; class++)
944 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
945 #ifdef FORBIDDEN_INC_DEC_CLASSES
946 && (!in_inc_dec[i]
947 || !forbidden_inc_dec_class[(enum reg_class) class])
948 #endif
949 #ifdef CLASS_CANNOT_CHANGE_MODE
950 && (!REGNO_REG_SET_P (reg_changes_mode, i)
951 || class_can_change_mode [(enum reg_class) class])
952 #endif
954 fprintf (dump, " %s:%i", reg_class_names[class],
955 costs[i].cost[(enum reg_class) class]);
956 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
962 /* Calculate the costs of insn operands. */
964 static void
965 record_operand_costs (insn, op_costs, reg_pref)
966 rtx insn;
967 struct costs *op_costs;
968 struct reg_pref *reg_pref;
970 const char *constraints[MAX_RECOG_OPERANDS];
971 enum machine_mode modes[MAX_RECOG_OPERANDS];
972 int i;
974 for (i = 0; i < recog_data.n_operands; i++)
976 constraints[i] = recog_data.constraints[i];
977 modes[i] = recog_data.operand_mode[i];
980 /* If we get here, we are set up to record the costs of all the
981 operands for this insn. Start by initializing the costs.
982 Then handle any address registers. Finally record the desired
983 classes for any pseudos, doing it twice if some pair of
984 operands are commutative. */
986 for (i = 0; i < recog_data.n_operands; i++)
988 op_costs[i] = init_cost;
990 if (GET_CODE (recog_data.operand[i]) == SUBREG)
992 rtx inner = SUBREG_REG (recog_data.operand[i]);
993 #ifdef CLASS_CANNOT_CHANGE_MODE
994 if (GET_CODE (inner) == REG
995 && CLASS_CANNOT_CHANGE_MODE_P (modes[i], GET_MODE (inner)))
996 SET_REGNO_REG_SET (reg_changes_mode, REGNO (inner));
997 #endif
998 recog_data.operand[i] = inner;
1001 if (GET_CODE (recog_data.operand[i]) == MEM)
1002 record_address_regs (XEXP (recog_data.operand[i], 0),
1003 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
1004 else if (constraints[i][0] == 'p')
1005 record_address_regs (recog_data.operand[i],
1006 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
1009 /* Check for commutative in a separate loop so everything will
1010 have been initialized. We must do this even if one operand
1011 is a constant--see addsi3 in m68k.md. */
1013 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1014 if (constraints[i][0] == '%')
1016 const char *xconstraints[MAX_RECOG_OPERANDS];
1017 int j;
1019 /* Handle commutative operands by swapping the constraints.
1020 We assume the modes are the same. */
1022 for (j = 0; j < recog_data.n_operands; j++)
1023 xconstraints[j] = constraints[j];
1025 xconstraints[i] = constraints[i+1];
1026 xconstraints[i+1] = constraints[i];
1027 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1028 recog_data.operand, modes,
1029 xconstraints, insn, op_costs, reg_pref);
1032 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1033 recog_data.operand, modes,
1034 constraints, insn, op_costs, reg_pref);
1037 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1038 time it would save code to put a certain register in a certain class.
1039 PASS, when nonzero, inhibits some optimizations which need only be done
1040 once.
1041 Return the last insn processed, so that the scan can be continued from
1042 there. */
1044 static rtx
1045 scan_one_insn (insn, pass)
1046 rtx insn;
1047 int pass;
1049 enum rtx_code code = GET_CODE (insn);
1050 enum rtx_code pat_code;
1051 rtx set, note;
1052 int i, j;
1053 struct costs op_costs[MAX_RECOG_OPERANDS];
1055 if (GET_RTX_CLASS (code) != 'i')
1056 return insn;
1058 pat_code = GET_CODE (PATTERN (insn));
1059 if (pat_code == USE
1060 || pat_code == CLOBBER
1061 || pat_code == ASM_INPUT
1062 || pat_code == ADDR_VEC
1063 || pat_code == ADDR_DIFF_VEC)
1064 return insn;
1066 set = single_set (insn);
1067 extract_insn (insn);
1069 /* If this insn loads a parameter from its stack slot, then
1070 it represents a savings, rather than a cost, if the
1071 parameter is stored in memory. Record this fact. */
1073 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1074 && GET_CODE (SET_SRC (set)) == MEM
1075 && (note = find_reg_note (insn, REG_EQUIV,
1076 NULL_RTX)) != 0
1077 && GET_CODE (XEXP (note, 0)) == MEM)
1079 costs[REGNO (SET_DEST (set))].mem_cost
1080 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1081 GENERAL_REGS, 1)
1082 * frequency);
1083 record_address_regs (XEXP (SET_SRC (set), 0),
1084 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1085 return insn;
1088 /* Improve handling of two-address insns such as
1089 (set X (ashift CONST Y)) where CONST must be made to
1090 match X. Change it into two insns: (set X CONST)
1091 (set X (ashift X Y)). If we left this for reloading, it
1092 would probably get three insns because X and Y might go
1093 in the same place. This prevents X and Y from receiving
1094 the same hard reg.
1096 We can only do this if the modes of operands 0 and 1
1097 (which might not be the same) are tieable and we only need
1098 do this during our first pass. */
1100 if (pass == 0 && optimize
1101 && recog_data.n_operands >= 3
1102 && recog_data.constraints[1][0] == '0'
1103 && recog_data.constraints[1][1] == 0
1104 && CONSTANT_P (recog_data.operand[1])
1105 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1106 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1107 && GET_CODE (recog_data.operand[0]) == REG
1108 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1109 recog_data.operand_mode[1]))
1111 rtx previnsn = prev_real_insn (insn);
1112 rtx dest
1113 = gen_lowpart (recog_data.operand_mode[1],
1114 recog_data.operand[0]);
1115 rtx newinsn
1116 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1118 /* If this insn was the start of a basic block,
1119 include the new insn in that block.
1120 We need not check for code_label here;
1121 while a basic block can start with a code_label,
1122 INSN could not be at the beginning of that block. */
1123 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1125 basic_block b;
1126 FOR_EACH_BB (b)
1127 if (insn == b->head)
1128 b->head = newinsn;
1131 /* This makes one more setting of new insns's dest. */
1132 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1133 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1134 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1136 *recog_data.operand_loc[1] = recog_data.operand[0];
1137 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1138 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1139 for (i = recog_data.n_dups - 1; i >= 0; i--)
1140 if (recog_data.dup_num[i] == 1)
1142 *recog_data.dup_loc[i] = recog_data.operand[0];
1143 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1144 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1147 return PREV_INSN (newinsn);
1150 record_operand_costs (insn, op_costs, reg_pref);
1152 /* Now add the cost for each operand to the total costs for
1153 its register. */
1155 for (i = 0; i < recog_data.n_operands; i++)
1156 if (GET_CODE (recog_data.operand[i]) == REG
1157 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1159 int regno = REGNO (recog_data.operand[i]);
1160 struct costs *p = &costs[regno], *q = &op_costs[i];
1162 p->mem_cost += q->mem_cost * frequency;
1163 for (j = 0; j < N_REG_CLASSES; j++)
1164 p->cost[j] += q->cost[j] * frequency;
1167 return insn;
1170 /* This is a pass of the compiler that scans all instructions
1171 and calculates the preferred class for each pseudo-register.
1172 This information can be accessed later by calling `reg_preferred_class'.
1173 This pass comes just before local register allocation. */
1175 void
1176 regclass (f, nregs, dump)
1177 rtx f;
1178 int nregs;
1179 FILE *dump;
1181 rtx insn;
1182 int i;
1183 int pass;
1185 init_recog ();
1187 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1189 #ifdef CLASS_CANNOT_CHANGE_MODE
1190 reg_changes_mode = BITMAP_XMALLOC ();
1191 #endif
1193 #ifdef FORBIDDEN_INC_DEC_CLASSES
1195 in_inc_dec = (char *) xmalloc (nregs);
1197 /* Initialize information about which register classes can be used for
1198 pseudos that are auto-incremented or auto-decremented. It would
1199 seem better to put this in init_reg_sets, but we need to be able
1200 to allocate rtx, which we can't do that early. */
1202 for (i = 0; i < N_REG_CLASSES; i++)
1204 rtx r = gen_rtx_REG (VOIDmode, 0);
1205 enum machine_mode m;
1206 int j;
1208 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1209 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1211 REGNO (r) = j;
1213 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1214 m = (enum machine_mode) ((int) m + 1))
1215 if (HARD_REGNO_MODE_OK (j, m))
1217 PUT_MODE (r, m);
1219 /* If a register is not directly suitable for an
1220 auto-increment or decrement addressing mode and
1221 requires secondary reloads, disallow its class from
1222 being used in such addresses. */
1224 if ((0
1225 #ifdef SECONDARY_RELOAD_CLASS
1226 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1227 != NO_REGS)
1228 #else
1229 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1230 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1231 != NO_REGS)
1232 #endif
1233 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1234 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1235 != NO_REGS)
1236 #endif
1237 #endif
1239 && ! auto_inc_dec_reg_p (r, m))
1240 forbidden_inc_dec_class[i] = 1;
1244 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1246 /* Normally we scan the insns once and determine the best class to use for
1247 each register. However, if -fexpensive_optimizations are on, we do so
1248 twice, the second time using the tentative best classes to guide the
1249 selection. */
1251 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1253 basic_block bb;
1255 if (dump)
1256 fprintf (dump, "\n\nPass %i\n\n",pass);
1257 /* Zero out our accumulation of the cost of each class for each reg. */
1259 memset ((char *) costs, 0, nregs * sizeof (struct costs));
1261 #ifdef FORBIDDEN_INC_DEC_CLASSES
1262 memset (in_inc_dec, 0, nregs);
1263 #endif
1265 /* Scan the instructions and record each time it would
1266 save code to put a certain register in a certain class. */
1268 if (!optimize)
1270 frequency = REG_FREQ_MAX;
1271 for (insn = f; insn; insn = NEXT_INSN (insn))
1272 insn = scan_one_insn (insn, pass);
1274 else
1275 FOR_EACH_BB (bb)
1277 /* Show that an insn inside a loop is likely to be executed three
1278 times more than insns outside a loop. This is much more
1279 aggressive than the assumptions made elsewhere and is being
1280 tried as an experiment. */
1281 frequency = REG_FREQ_FROM_BB (bb);
1282 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1284 insn = scan_one_insn (insn, pass);
1285 if (insn == bb->end)
1286 break;
1290 /* Now for each register look at how desirable each class is
1291 and find which class is preferred. Store that in
1292 `prefclass'. Record in `altclass' the largest register
1293 class any of whose registers is better than memory. */
1295 if (pass == 0)
1296 reg_pref = reg_pref_buffer;
1298 if (dump)
1300 dump_regclass (dump);
1301 fprintf (dump,"\n");
1303 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1305 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1306 enum reg_class best = ALL_REGS, alt = NO_REGS;
1307 /* This is an enum reg_class, but we call it an int
1308 to save lots of casts. */
1309 int class;
1310 struct costs *p = &costs[i];
1312 /* In non-optimizing compilation REG_N_REFS is not initialized
1313 yet. */
1314 if (optimize && !REG_N_REFS (i))
1315 continue;
1317 for (class = (int) ALL_REGS - 1; class > 0; class--)
1319 /* Ignore classes that are too small for this operand or
1320 invalid for an operand that was auto-incremented. */
1321 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1322 #ifdef FORBIDDEN_INC_DEC_CLASSES
1323 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1324 #endif
1325 #ifdef CLASS_CANNOT_CHANGE_MODE
1326 || (REGNO_REG_SET_P (reg_changes_mode, i)
1327 && ! class_can_change_mode [class])
1328 #endif
1331 else if (p->cost[class] < best_cost)
1333 best_cost = p->cost[class];
1334 best = (enum reg_class) class;
1336 else if (p->cost[class] == best_cost)
1337 best = reg_class_subunion[(int) best][class];
1340 /* Record the alternate register class; i.e., a class for which
1341 every register in it is better than using memory. If adding a
1342 class would make a smaller class (i.e., no union of just those
1343 classes exists), skip that class. The major unions of classes
1344 should be provided as a register class. Don't do this if we
1345 will be doing it again later. */
1347 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1348 for (class = 0; class < N_REG_CLASSES; class++)
1349 if (p->cost[class] < p->mem_cost
1350 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1351 > reg_class_size[(int) alt])
1352 #ifdef FORBIDDEN_INC_DEC_CLASSES
1353 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1354 #endif
1355 #ifdef CLASS_CANNOT_CHANGE_MODE
1356 && ! (REGNO_REG_SET_P (reg_changes_mode, i)
1357 && ! class_can_change_mode [class])
1358 #endif
1360 alt = reg_class_subunion[(int) alt][class];
1362 /* If we don't add any classes, nothing to try. */
1363 if (alt == best)
1364 alt = NO_REGS;
1366 if (dump
1367 && (reg_pref[i].prefclass != (int) best
1368 || reg_pref[i].altclass != (int) alt))
1370 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1371 fprintf (dump, " Register %i", i);
1372 if (alt == ALL_REGS || best == ALL_REGS)
1373 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1374 else if (alt == NO_REGS)
1375 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1376 else
1377 fprintf (dump, " pref %s, else %s\n",
1378 reg_class_names[(int) best],
1379 reg_class_names[(int) alt]);
1382 /* We cast to (int) because (char) hits bugs in some compilers. */
1383 reg_pref[i].prefclass = (int) best;
1384 reg_pref[i].altclass = (int) alt;
1388 #ifdef FORBIDDEN_INC_DEC_CLASSES
1389 free (in_inc_dec);
1390 #endif
1391 #ifdef CLASS_CANNOT_CHANGE_MODE
1392 BITMAP_XFREE (reg_changes_mode);
1393 #endif
1394 free (costs);
1397 /* Record the cost of using memory or registers of various classes for
1398 the operands in INSN.
1400 N_ALTS is the number of alternatives.
1402 N_OPS is the number of operands.
1404 OPS is an array of the operands.
1406 MODES are the modes of the operands, in case any are VOIDmode.
1408 CONSTRAINTS are the constraints to use for the operands. This array
1409 is modified by this procedure.
1411 This procedure works alternative by alternative. For each alternative
1412 we assume that we will be able to allocate all pseudos to their ideal
1413 register class and calculate the cost of using that alternative. Then
1414 we compute for each operand that is a pseudo-register, the cost of
1415 having the pseudo allocated to each register class and using it in that
1416 alternative. To this cost is added the cost of the alternative.
1418 The cost of each class for this insn is its lowest cost among all the
1419 alternatives. */
1421 static void
1422 record_reg_classes (n_alts, n_ops, ops, modes,
1423 constraints, insn, op_costs, reg_pref)
1424 int n_alts;
1425 int n_ops;
1426 rtx *ops;
1427 enum machine_mode *modes;
1428 const char **constraints;
1429 rtx insn;
1430 struct costs *op_costs;
1431 struct reg_pref *reg_pref;
1433 int alt;
1434 int i, j;
1435 rtx set;
1437 /* Process each alternative, each time minimizing an operand's cost with
1438 the cost for each operand in that alternative. */
1440 for (alt = 0; alt < n_alts; alt++)
1442 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1443 int alt_fail = 0;
1444 int alt_cost = 0;
1445 enum reg_class classes[MAX_RECOG_OPERANDS];
1446 int allows_mem[MAX_RECOG_OPERANDS];
1447 int class;
1449 for (i = 0; i < n_ops; i++)
1451 const char *p = constraints[i];
1452 rtx op = ops[i];
1453 enum machine_mode mode = modes[i];
1454 int allows_addr = 0;
1455 int win = 0;
1456 unsigned char c;
1458 /* Initially show we know nothing about the register class. */
1459 classes[i] = NO_REGS;
1460 allows_mem[i] = 0;
1462 /* If this operand has no constraints at all, we can conclude
1463 nothing about it since anything is valid. */
1465 if (*p == 0)
1467 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1468 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
1470 continue;
1473 /* If this alternative is only relevant when this operand
1474 matches a previous operand, we do different things depending
1475 on whether this operand is a pseudo-reg or not. We must process
1476 any modifiers for the operand before we can make this test. */
1478 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1479 p++;
1481 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1483 /* Copy class and whether memory is allowed from the matching
1484 alternative. Then perform any needed cost computations
1485 and/or adjustments. */
1486 j = p[0] - '0';
1487 classes[i] = classes[j];
1488 allows_mem[i] = allows_mem[j];
1490 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1492 /* If this matches the other operand, we have no added
1493 cost and we win. */
1494 if (rtx_equal_p (ops[j], op))
1495 win = 1;
1497 /* If we can put the other operand into a register, add to
1498 the cost of this alternative the cost to copy this
1499 operand to the register used for the other operand. */
1501 else if (classes[j] != NO_REGS)
1502 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1504 else if (GET_CODE (ops[j]) != REG
1505 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1507 /* This op is a pseudo but the one it matches is not. */
1509 /* If we can't put the other operand into a register, this
1510 alternative can't be used. */
1512 if (classes[j] == NO_REGS)
1513 alt_fail = 1;
1515 /* Otherwise, add to the cost of this alternative the cost
1516 to copy the other operand to the register used for this
1517 operand. */
1519 else
1520 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1522 else
1524 /* The costs of this operand are not the same as the other
1525 operand since move costs are not symmetric. Moreover,
1526 if we cannot tie them, this alternative needs to do a
1527 copy, which is one instruction. */
1529 struct costs *pp = &this_op_costs[i];
1531 for (class = 0; class < N_REG_CLASSES; class++)
1532 pp->cost[class]
1533 = ((recog_data.operand_type[i] != OP_OUT
1534 ? may_move_in_cost[mode][class][(int) classes[i]]
1535 : 0)
1536 + (recog_data.operand_type[i] != OP_IN
1537 ? may_move_out_cost[mode][(int) classes[i]][class]
1538 : 0));
1540 /* If the alternative actually allows memory, make things
1541 a bit cheaper since we won't need an extra insn to
1542 load it. */
1544 pp->mem_cost
1545 = ((recog_data.operand_type[i] != OP_IN
1546 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1547 : 0)
1548 + (recog_data.operand_type[i] != OP_OUT
1549 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1550 : 0) - allows_mem[i]);
1552 /* If we have assigned a class to this register in our
1553 first pass, add a cost to this alternative corresponding
1554 to what we would add if this register were not in the
1555 appropriate class. */
1557 if (reg_pref)
1558 alt_cost
1559 += (may_move_in_cost[mode]
1560 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1561 [(int) classes[i]]);
1563 if (REGNO (ops[i]) != REGNO (ops[j])
1564 && ! find_reg_note (insn, REG_DEAD, op))
1565 alt_cost += 2;
1567 /* This is in place of ordinary cost computation
1568 for this operand, so skip to the end of the
1569 alternative (should be just one character). */
1570 while (*p && *p++ != ',')
1573 constraints[i] = p;
1574 continue;
1578 /* Scan all the constraint letters. See if the operand matches
1579 any of the constraints. Collect the valid register classes
1580 and see if this operand accepts memory. */
1582 while (*p && (c = *p++) != ',')
1583 switch (c)
1585 case '*':
1586 /* Ignore the next letter for this pass. */
1587 p++;
1588 break;
1590 case '?':
1591 alt_cost += 2;
1592 case '!': case '#': case '&':
1593 case '0': case '1': case '2': case '3': case '4':
1594 case '5': case '6': case '7': case '8': case '9':
1595 break;
1597 case 'p':
1598 allows_addr = 1;
1599 win = address_operand (op, GET_MODE (op));
1600 /* We know this operand is an address, so we want it to be
1601 allocated to a register that can be the base of an
1602 address, ie BASE_REG_CLASS. */
1603 classes[i]
1604 = reg_class_subunion[(int) classes[i]]
1605 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1606 break;
1608 case 'm': case 'o': case 'V':
1609 /* It doesn't seem worth distinguishing between offsettable
1610 and non-offsettable addresses here. */
1611 allows_mem[i] = 1;
1612 if (GET_CODE (op) == MEM)
1613 win = 1;
1614 break;
1616 case '<':
1617 if (GET_CODE (op) == MEM
1618 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1619 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1620 win = 1;
1621 break;
1623 case '>':
1624 if (GET_CODE (op) == MEM
1625 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1626 || GET_CODE (XEXP (op, 0)) == POST_INC))
1627 win = 1;
1628 break;
1630 case 'E':
1631 case 'F':
1632 if (GET_CODE (op) == CONST_DOUBLE)
1633 win = 1;
1634 break;
1636 case 'G':
1637 case 'H':
1638 if (GET_CODE (op) == CONST_DOUBLE
1639 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1640 win = 1;
1641 break;
1643 case 's':
1644 if (GET_CODE (op) == CONST_INT
1645 || (GET_CODE (op) == CONST_DOUBLE
1646 && GET_MODE (op) == VOIDmode))
1647 break;
1648 case 'i':
1649 if (CONSTANT_P (op)
1650 #ifdef LEGITIMATE_PIC_OPERAND_P
1651 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1652 #endif
1654 win = 1;
1655 break;
1657 case 'n':
1658 if (GET_CODE (op) == CONST_INT
1659 || (GET_CODE (op) == CONST_DOUBLE
1660 && GET_MODE (op) == VOIDmode))
1661 win = 1;
1662 break;
1664 case 'I':
1665 case 'J':
1666 case 'K':
1667 case 'L':
1668 case 'M':
1669 case 'N':
1670 case 'O':
1671 case 'P':
1672 if (GET_CODE (op) == CONST_INT
1673 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1674 win = 1;
1675 break;
1677 case 'X':
1678 win = 1;
1679 break;
1681 case 'g':
1682 if (GET_CODE (op) == MEM
1683 || (CONSTANT_P (op)
1684 #ifdef LEGITIMATE_PIC_OPERAND_P
1685 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1686 #endif
1688 win = 1;
1689 allows_mem[i] = 1;
1690 case 'r':
1691 classes[i]
1692 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1693 break;
1695 default:
1696 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1697 classes[i]
1698 = reg_class_subunion[(int) classes[i]]
1699 [(int) REG_CLASS_FROM_LETTER (c)];
1700 #ifdef EXTRA_CONSTRAINT
1701 else if (EXTRA_CONSTRAINT (op, c))
1702 win = 1;
1703 #endif
1704 break;
1707 constraints[i] = p;
1709 /* How we account for this operand now depends on whether it is a
1710 pseudo register or not. If it is, we first check if any
1711 register classes are valid. If not, we ignore this alternative,
1712 since we want to assume that all pseudos get allocated for
1713 register preferencing. If some register class is valid, compute
1714 the costs of moving the pseudo into that class. */
1716 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1718 if (classes[i] == NO_REGS)
1720 /* We must always fail if the operand is a REG, but
1721 we did not find a suitable class.
1723 Otherwise we may perform an uninitialized read
1724 from this_op_costs after the `continue' statement
1725 below. */
1726 alt_fail = 1;
1728 else
1730 struct costs *pp = &this_op_costs[i];
1732 for (class = 0; class < N_REG_CLASSES; class++)
1733 pp->cost[class]
1734 = ((recog_data.operand_type[i] != OP_OUT
1735 ? may_move_in_cost[mode][class][(int) classes[i]]
1736 : 0)
1737 + (recog_data.operand_type[i] != OP_IN
1738 ? may_move_out_cost[mode][(int) classes[i]][class]
1739 : 0));
1741 /* If the alternative actually allows memory, make things
1742 a bit cheaper since we won't need an extra insn to
1743 load it. */
1745 pp->mem_cost
1746 = ((recog_data.operand_type[i] != OP_IN
1747 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1748 : 0)
1749 + (recog_data.operand_type[i] != OP_OUT
1750 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1751 : 0) - allows_mem[i]);
1753 /* If we have assigned a class to this register in our
1754 first pass, add a cost to this alternative corresponding
1755 to what we would add if this register were not in the
1756 appropriate class. */
1758 if (reg_pref)
1759 alt_cost
1760 += (may_move_in_cost[mode]
1761 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1762 [(int) classes[i]]);
1766 /* Otherwise, if this alternative wins, either because we
1767 have already determined that or if we have a hard register of
1768 the proper class, there is no cost for this alternative. */
1770 else if (win
1771 || (GET_CODE (op) == REG
1772 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1775 /* If registers are valid, the cost of this alternative includes
1776 copying the object to and/or from a register. */
1778 else if (classes[i] != NO_REGS)
1780 if (recog_data.operand_type[i] != OP_OUT)
1781 alt_cost += copy_cost (op, mode, classes[i], 1);
1783 if (recog_data.operand_type[i] != OP_IN)
1784 alt_cost += copy_cost (op, mode, classes[i], 0);
1787 /* The only other way this alternative can be used is if this is a
1788 constant that could be placed into memory. */
1790 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1791 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1792 else
1793 alt_fail = 1;
1796 if (alt_fail)
1797 continue;
1799 /* Finally, update the costs with the information we've calculated
1800 about this alternative. */
1802 for (i = 0; i < n_ops; i++)
1803 if (GET_CODE (ops[i]) == REG
1804 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1806 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1807 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1809 pp->mem_cost = MIN (pp->mem_cost,
1810 (qq->mem_cost + alt_cost) * scale);
1812 for (class = 0; class < N_REG_CLASSES; class++)
1813 pp->cost[class] = MIN (pp->cost[class],
1814 (qq->cost[class] + alt_cost) * scale);
1818 /* If this insn is a single set copying operand 1 to operand 0
1819 and one operand is a pseudo with the other a hard reg or a pseudo
1820 that prefers a register that is in its own register class then
1821 we may want to adjust the cost of that register class to -1.
1823 Avoid the adjustment if the source does not die to avoid stressing of
1824 register allocator by preferrencing two coliding registers into single
1825 class.
1827 Also avoid the adjustment if a copy between registers of the class
1828 is expensive (ten times the cost of a default copy is considered
1829 arbitrarily expensive). This avoids losing when the preferred class
1830 is very expensive as the source of a copy instruction. */
1832 if ((set = single_set (insn)) != 0
1833 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1834 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1835 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1836 for (i = 0; i <= 1; i++)
1837 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1839 unsigned int regno = REGNO (ops[!i]);
1840 enum machine_mode mode = GET_MODE (ops[!i]);
1841 int class;
1842 unsigned int nr;
1844 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1846 enum reg_class pref = reg_pref[regno].prefclass;
1848 if ((reg_class_size[(unsigned char) pref]
1849 == CLASS_MAX_NREGS (pref, mode))
1850 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1851 op_costs[i].cost[(unsigned char) pref] = -1;
1853 else if (regno < FIRST_PSEUDO_REGISTER)
1854 for (class = 0; class < N_REG_CLASSES; class++)
1855 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1856 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1858 if (reg_class_size[class] == 1)
1859 op_costs[i].cost[class] = -1;
1860 else
1862 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
1864 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1865 regno + nr))
1866 break;
1869 if (nr == HARD_REGNO_NREGS (regno,mode))
1870 op_costs[i].cost[class] = -1;
1876 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1877 TO_P is zero) a register of class CLASS in mode MODE.
1879 X must not be a pseudo. */
1881 static int
1882 copy_cost (x, mode, class, to_p)
1883 rtx x;
1884 enum machine_mode mode ATTRIBUTE_UNUSED;
1885 enum reg_class class;
1886 int to_p ATTRIBUTE_UNUSED;
1888 #ifdef HAVE_SECONDARY_RELOADS
1889 enum reg_class secondary_class = NO_REGS;
1890 #endif
1892 /* If X is a SCRATCH, there is actually nothing to move since we are
1893 assuming optimal allocation. */
1895 if (GET_CODE (x) == SCRATCH)
1896 return 0;
1898 /* Get the class we will actually use for a reload. */
1899 class = PREFERRED_RELOAD_CLASS (x, class);
1901 #ifdef HAVE_SECONDARY_RELOADS
1902 /* If we need a secondary reload (we assume here that we are using
1903 the secondary reload as an intermediate, not a scratch register), the
1904 cost is that to load the input into the intermediate register, then
1905 to copy them. We use a special value of TO_P to avoid recursion. */
1907 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1908 if (to_p == 1)
1909 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1910 #endif
1912 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1913 if (! to_p)
1914 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1915 #endif
1917 if (secondary_class != NO_REGS)
1918 return (move_cost[mode][(int) secondary_class][(int) class]
1919 + copy_cost (x, mode, secondary_class, 2));
1920 #endif /* HAVE_SECONDARY_RELOADS */
1922 /* For memory, use the memory move cost, for (hard) registers, use the
1923 cost to move between the register classes, and use 2 for everything
1924 else (constants). */
1926 if (GET_CODE (x) == MEM || class == NO_REGS)
1927 return MEMORY_MOVE_COST (mode, class, to_p);
1929 else if (GET_CODE (x) == REG)
1930 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1932 else
1933 /* If this is a constant, we may eventually want to call rtx_cost here. */
1934 return COSTS_N_INSNS (1);
1937 /* Record the pseudo registers we must reload into hard registers
1938 in a subexpression of a memory address, X.
1940 CLASS is the class that the register needs to be in and is either
1941 BASE_REG_CLASS or INDEX_REG_CLASS.
1943 SCALE is twice the amount to multiply the cost by (it is twice so we
1944 can represent half-cost adjustments). */
1946 static void
1947 record_address_regs (x, class, scale)
1948 rtx x;
1949 enum reg_class class;
1950 int scale;
1952 enum rtx_code code = GET_CODE (x);
1954 switch (code)
1956 case CONST_INT:
1957 case CONST:
1958 case CC0:
1959 case PC:
1960 case SYMBOL_REF:
1961 case LABEL_REF:
1962 return;
1964 case PLUS:
1965 /* When we have an address that is a sum,
1966 we must determine whether registers are "base" or "index" regs.
1967 If there is a sum of two registers, we must choose one to be
1968 the "base". Luckily, we can use the REG_POINTER to make a good
1969 choice most of the time. We only need to do this on machines
1970 that can have two registers in an address and where the base
1971 and index register classes are different.
1973 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1974 that seems bogus since it should only be set when we are sure
1975 the register is being used as a pointer. */
1978 rtx arg0 = XEXP (x, 0);
1979 rtx arg1 = XEXP (x, 1);
1980 enum rtx_code code0 = GET_CODE (arg0);
1981 enum rtx_code code1 = GET_CODE (arg1);
1983 /* Look inside subregs. */
1984 if (code0 == SUBREG)
1985 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1986 if (code1 == SUBREG)
1987 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1989 /* If this machine only allows one register per address, it must
1990 be in the first operand. */
1992 if (MAX_REGS_PER_ADDRESS == 1)
1993 record_address_regs (arg0, class, scale);
1995 /* If index and base registers are the same on this machine, just
1996 record registers in any non-constant operands. We assume here,
1997 as well as in the tests below, that all addresses are in
1998 canonical form. */
2000 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
2002 record_address_regs (arg0, class, scale);
2003 if (! CONSTANT_P (arg1))
2004 record_address_regs (arg1, class, scale);
2007 /* If the second operand is a constant integer, it doesn't change
2008 what class the first operand must be. */
2010 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2011 record_address_regs (arg0, class, scale);
2013 /* If the second operand is a symbolic constant, the first operand
2014 must be an index register. */
2016 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2017 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2019 /* If both operands are registers but one is already a hard register
2020 of index or base class, give the other the class that the hard
2021 register is not. */
2023 #ifdef REG_OK_FOR_BASE_P
2024 else if (code0 == REG && code1 == REG
2025 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2026 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2027 record_address_regs (arg1,
2028 REG_OK_FOR_BASE_P (arg0)
2029 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2030 scale);
2031 else if (code0 == REG && code1 == REG
2032 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2033 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2034 record_address_regs (arg0,
2035 REG_OK_FOR_BASE_P (arg1)
2036 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2037 scale);
2038 #endif
2040 /* If one operand is known to be a pointer, it must be the base
2041 with the other operand the index. Likewise if the other operand
2042 is a MULT. */
2044 else if ((code0 == REG && REG_POINTER (arg0))
2045 || code1 == MULT)
2047 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
2048 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2050 else if ((code1 == REG && REG_POINTER (arg1))
2051 || code0 == MULT)
2053 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2054 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
2057 /* Otherwise, count equal chances that each might be a base
2058 or index register. This case should be rare. */
2060 else
2062 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2063 scale / 2);
2064 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2065 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2066 scale / 2);
2067 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2070 break;
2072 /* Double the importance of a pseudo register that is incremented
2073 or decremented, since it would take two extra insns
2074 if it ends up in the wrong place. */
2075 case POST_MODIFY:
2076 case PRE_MODIFY:
2077 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2078 2 * scale);
2079 if (REG_P (XEXP (XEXP (x, 1), 1)))
2080 record_address_regs (XEXP (XEXP (x, 1), 1),
2081 INDEX_REG_CLASS, 2 * scale);
2082 break;
2084 case POST_INC:
2085 case PRE_INC:
2086 case POST_DEC:
2087 case PRE_DEC:
2088 /* Double the importance of a pseudo register that is incremented
2089 or decremented, since it would take two extra insns
2090 if it ends up in the wrong place. If the operand is a pseudo,
2091 show it is being used in an INC_DEC context. */
2093 #ifdef FORBIDDEN_INC_DEC_CLASSES
2094 if (GET_CODE (XEXP (x, 0)) == REG
2095 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2096 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2097 #endif
2099 record_address_regs (XEXP (x, 0), class, 2 * scale);
2100 break;
2102 case REG:
2104 struct costs *pp = &costs[REGNO (x)];
2105 int i;
2107 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2109 for (i = 0; i < N_REG_CLASSES; i++)
2110 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2112 break;
2114 default:
2116 const char *fmt = GET_RTX_FORMAT (code);
2117 int i;
2118 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2119 if (fmt[i] == 'e')
2120 record_address_regs (XEXP (x, i), class, scale);
2125 #ifdef FORBIDDEN_INC_DEC_CLASSES
2127 /* Return 1 if REG is valid as an auto-increment memory reference
2128 to an object of MODE. */
2130 static int
2131 auto_inc_dec_reg_p (reg, mode)
2132 rtx reg;
2133 enum machine_mode mode;
2135 if (HAVE_POST_INCREMENT
2136 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2137 return 1;
2139 if (HAVE_POST_DECREMENT
2140 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2141 return 1;
2143 if (HAVE_PRE_INCREMENT
2144 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2145 return 1;
2147 if (HAVE_PRE_DECREMENT
2148 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2149 return 1;
2151 return 0;
2153 #endif
2155 static short *renumber;
2156 static size_t regno_allocated;
2157 static unsigned int reg_n_max;
2159 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2160 reg_scan and flow_analysis that are indexed by the register number. If
2161 NEW_P is non zero, initialize all of the registers, otherwise only
2162 initialize the new registers allocated. The same table is kept from
2163 function to function, only reallocating it when we need more room. If
2164 RENUMBER_P is non zero, allocate the reg_renumber array also. */
2166 void
2167 allocate_reg_info (num_regs, new_p, renumber_p)
2168 size_t num_regs;
2169 int new_p;
2170 int renumber_p;
2172 size_t size_info;
2173 size_t size_renumber;
2174 size_t min = (new_p) ? 0 : reg_n_max;
2175 struct reg_info_data *reg_data;
2177 if (num_regs > regno_allocated)
2179 size_t old_allocated = regno_allocated;
2181 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
2182 size_renumber = regno_allocated * sizeof (short);
2184 if (!reg_n_info)
2186 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2187 renumber = (short *) xmalloc (size_renumber);
2188 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2189 * sizeof (struct reg_pref));
2192 else
2194 VARRAY_GROW (reg_n_info, regno_allocated);
2196 if (new_p) /* if we're zapping everything, no need to realloc */
2198 free ((char *) renumber);
2199 free ((char *) reg_pref);
2200 renumber = (short *) xmalloc (size_renumber);
2201 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2202 * sizeof (struct reg_pref));
2205 else
2207 renumber = (short *) xrealloc ((char *) renumber, size_renumber);
2208 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *) reg_pref_buffer,
2209 regno_allocated
2210 * sizeof (struct reg_pref));
2214 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2215 + sizeof (struct reg_info_data) - sizeof (reg_info);
2216 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2217 reg_data->min_index = old_allocated;
2218 reg_data->max_index = regno_allocated - 1;
2219 reg_data->next = reg_info_head;
2220 reg_info_head = reg_data;
2223 reg_n_max = num_regs;
2224 if (min < num_regs)
2226 /* Loop through each of the segments allocated for the actual
2227 reg_info pages, and set up the pointers, zero the pages, etc. */
2228 for (reg_data = reg_info_head;
2229 reg_data && reg_data->max_index >= min;
2230 reg_data = reg_data->next)
2232 size_t min_index = reg_data->min_index;
2233 size_t max_index = reg_data->max_index;
2234 size_t max = MIN (max_index, num_regs);
2235 size_t local_min = min - min_index;
2236 size_t i;
2238 if (reg_data->min_index > num_regs)
2239 continue;
2241 if (min < min_index)
2242 local_min = 0;
2243 if (!reg_data->used_p) /* page just allocated with calloc */
2244 reg_data->used_p = 1; /* no need to zero */
2245 else
2246 memset ((char *) &reg_data->data[local_min], 0,
2247 sizeof (reg_info) * (max - min_index - local_min + 1));
2249 for (i = min_index+local_min; i <= max; i++)
2251 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2252 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2253 renumber[i] = -1;
2254 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2255 reg_pref_buffer[i].altclass = (char) NO_REGS;
2260 /* If {pref,alt}class have already been allocated, update the pointers to
2261 the newly realloced ones. */
2262 if (reg_pref)
2263 reg_pref = reg_pref_buffer;
2265 if (renumber_p)
2266 reg_renumber = renumber;
2268 /* Tell the regset code about the new number of registers */
2269 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2272 /* Free up the space allocated by allocate_reg_info. */
2273 void
2274 free_reg_info ()
2276 if (reg_n_info)
2278 struct reg_info_data *reg_data;
2279 struct reg_info_data *reg_next;
2281 VARRAY_FREE (reg_n_info);
2282 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2284 reg_next = reg_data->next;
2285 free ((char *) reg_data);
2288 free (reg_pref_buffer);
2289 reg_pref_buffer = (struct reg_pref *) 0;
2290 reg_info_head = (struct reg_info_data *) 0;
2291 renumber = (short *) 0;
2293 regno_allocated = 0;
2294 reg_n_max = 0;
2297 /* This is the `regscan' pass of the compiler, run just before cse
2298 and again just before loop.
2300 It finds the first and last use of each pseudo-register
2301 and records them in the vectors regno_first_uid, regno_last_uid
2302 and counts the number of sets in the vector reg_n_sets.
2304 REPEAT is nonzero the second time this is called. */
2306 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2307 Always at least 3, since the combiner could put that many together
2308 and we want this to remain correct for all the remaining passes.
2309 This corresponds to the maximum number of times note_stores will call
2310 a function for any insn. */
2312 int max_parallel;
2314 /* Used as a temporary to record the largest number of registers in
2315 PARALLEL in a SET_DEST. This is added to max_parallel. */
2317 static int max_set_parallel;
2319 void
2320 reg_scan (f, nregs, repeat)
2321 rtx f;
2322 unsigned int nregs;
2323 int repeat ATTRIBUTE_UNUSED;
2325 rtx insn;
2327 allocate_reg_info (nregs, TRUE, FALSE);
2328 max_parallel = 3;
2329 max_set_parallel = 0;
2331 for (insn = f; insn; insn = NEXT_INSN (insn))
2332 if (GET_CODE (insn) == INSN
2333 || GET_CODE (insn) == CALL_INSN
2334 || GET_CODE (insn) == JUMP_INSN)
2336 if (GET_CODE (PATTERN (insn)) == PARALLEL
2337 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2338 max_parallel = XVECLEN (PATTERN (insn), 0);
2339 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2341 if (REG_NOTES (insn))
2342 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2345 max_parallel += max_set_parallel;
2348 /* Update 'regscan' information by looking at the insns
2349 from FIRST to LAST. Some new REGs have been created,
2350 and any REG with number greater than OLD_MAX_REGNO is
2351 such a REG. We only update information for those. */
2353 void
2354 reg_scan_update (first, last, old_max_regno)
2355 rtx first;
2356 rtx last;
2357 unsigned int old_max_regno;
2359 rtx insn;
2361 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2363 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2364 if (GET_CODE (insn) == INSN
2365 || GET_CODE (insn) == CALL_INSN
2366 || GET_CODE (insn) == JUMP_INSN)
2368 if (GET_CODE (PATTERN (insn)) == PARALLEL
2369 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2370 max_parallel = XVECLEN (PATTERN (insn), 0);
2371 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2373 if (REG_NOTES (insn))
2374 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2378 /* X is the expression to scan. INSN is the insn it appears in.
2379 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2380 We should only record information for REGs with numbers
2381 greater than or equal to MIN_REGNO. */
2383 static void
2384 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2385 rtx x;
2386 rtx insn;
2387 int note_flag;
2388 unsigned int min_regno;
2390 enum rtx_code code;
2391 rtx dest;
2392 rtx note;
2394 code = GET_CODE (x);
2395 switch (code)
2397 case CONST:
2398 case CONST_INT:
2399 case CONST_DOUBLE:
2400 case CONST_VECTOR:
2401 case CC0:
2402 case PC:
2403 case SYMBOL_REF:
2404 case LABEL_REF:
2405 case ADDR_VEC:
2406 case ADDR_DIFF_VEC:
2407 return;
2409 case REG:
2411 unsigned int regno = REGNO (x);
2413 if (regno >= min_regno)
2415 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2416 if (!note_flag)
2417 REGNO_LAST_UID (regno) = INSN_UID (insn);
2418 if (REGNO_FIRST_UID (regno) == 0)
2419 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2422 break;
2424 case EXPR_LIST:
2425 if (XEXP (x, 0))
2426 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2427 if (XEXP (x, 1))
2428 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2429 break;
2431 case INSN_LIST:
2432 if (XEXP (x, 1))
2433 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2434 break;
2436 case SET:
2437 /* Count a set of the destination if it is a register. */
2438 for (dest = SET_DEST (x);
2439 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2440 || GET_CODE (dest) == ZERO_EXTEND;
2441 dest = XEXP (dest, 0))
2444 /* For a PARALLEL, record the number of things (less the usual one for a
2445 SET) that are set. */
2446 if (GET_CODE (dest) == PARALLEL)
2447 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2449 if (GET_CODE (dest) == REG
2450 && REGNO (dest) >= min_regno)
2452 REG_N_SETS (REGNO (dest))++;
2453 REG_N_REFS (REGNO (dest))++;
2456 /* If this is setting a pseudo from another pseudo or the sum of a
2457 pseudo and a constant integer and the other pseudo is known to be
2458 a pointer, set the destination to be a pointer as well.
2460 Likewise if it is setting the destination from an address or from a
2461 value equivalent to an address or to the sum of an address and
2462 something else.
2464 But don't do any of this if the pseudo corresponds to a user
2465 variable since it should have already been set as a pointer based
2466 on the type. */
2468 if (GET_CODE (SET_DEST (x)) == REG
2469 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2470 && REGNO (SET_DEST (x)) >= min_regno
2471 /* If the destination pseudo is set more than once, then other
2472 sets might not be to a pointer value (consider access to a
2473 union in two threads of control in the presense of global
2474 optimizations). So only set REG_POINTER on the destination
2475 pseudo if this is the only set of that pseudo. */
2476 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2477 && ! REG_USERVAR_P (SET_DEST (x))
2478 && ! REG_POINTER (SET_DEST (x))
2479 && ((GET_CODE (SET_SRC (x)) == REG
2480 && REG_POINTER (SET_SRC (x)))
2481 || ((GET_CODE (SET_SRC (x)) == PLUS
2482 || GET_CODE (SET_SRC (x)) == LO_SUM)
2483 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2484 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2485 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2486 || GET_CODE (SET_SRC (x)) == CONST
2487 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2488 || GET_CODE (SET_SRC (x)) == LABEL_REF
2489 || (GET_CODE (SET_SRC (x)) == HIGH
2490 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2491 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2492 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2493 || ((GET_CODE (SET_SRC (x)) == PLUS
2494 || GET_CODE (SET_SRC (x)) == LO_SUM)
2495 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2496 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2497 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2498 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2499 && (GET_CODE (XEXP (note, 0)) == CONST
2500 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2501 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2502 REG_POINTER (SET_DEST (x)) = 1;
2504 /* If this is setting a register from a register or from a simple
2505 conversion of a register, propagate REG_DECL. */
2506 if (GET_CODE (dest) == REG)
2508 rtx src = SET_SRC (x);
2510 while (GET_CODE (src) == SIGN_EXTEND
2511 || GET_CODE (src) == ZERO_EXTEND
2512 || GET_CODE (src) == TRUNCATE
2513 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2514 src = XEXP (src, 0);
2516 if (GET_CODE (src) == REG && REGNO_DECL (REGNO (src)) == 0)
2517 REGNO_DECL (REGNO (src)) = REGNO_DECL (REGNO (dest));
2518 else if (GET_CODE (src) == REG && REGNO_DECL (REGNO (dest)) == 0)
2519 REGNO_DECL (REGNO (dest)) = REGNO_DECL (REGNO (src));
2522 /* ... fall through ... */
2524 default:
2526 const char *fmt = GET_RTX_FORMAT (code);
2527 int i;
2528 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2530 if (fmt[i] == 'e')
2531 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2532 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2534 int j;
2535 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2536 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2543 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2544 is also in C2. */
2547 reg_class_subset_p (c1, c2)
2548 enum reg_class c1;
2549 enum reg_class c2;
2551 if (c1 == c2) return 1;
2553 if (c2 == ALL_REGS)
2554 win:
2555 return 1;
2556 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2557 reg_class_contents[(int) c2],
2558 win);
2559 return 0;
2562 /* Return nonzero if there is a register that is in both C1 and C2. */
2565 reg_classes_intersect_p (c1, c2)
2566 enum reg_class c1;
2567 enum reg_class c2;
2569 #ifdef HARD_REG_SET
2570 register
2571 #endif
2572 HARD_REG_SET c;
2574 if (c1 == c2) return 1;
2576 if (c1 == ALL_REGS || c2 == ALL_REGS)
2577 return 1;
2579 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2580 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2582 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2583 return 1;
2585 lose:
2586 return 0;
2589 /* Release any memory allocated by register sets. */
2591 void
2592 regset_release_memory ()
2594 bitmap_release_memory ();
2597 #include "gt-regclass.h"