1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, ie, the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
159 #include "function.h"
160 #include "insn-config.h"
162 #include "hard-reg-set.h"
167 #include "basic-block.h"
172 /* We use this array to cache info about insns, because otherwise we
173 spend too much time in stack_regs_mentioned_p.
175 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
176 the insn uses stack registers, two indicates the insn does not use
178 static GTY(()) varray_type stack_regs_mentioned_data
;
182 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
184 /* This is the basic stack record. TOP is an index into REG[] such
185 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
187 If TOP is -2, REG[] is not yet initialized. Stack initialization
188 consists of placing each live reg in array `reg' and setting `top'
191 REG_SET indicates which registers are live. */
193 typedef struct stack_def
195 int top
; /* index to top stack element */
196 HARD_REG_SET reg_set
; /* set of live registers */
197 unsigned char reg
[REG_STACK_SIZE
];/* register - stack mapping */
200 /* This is used to carry information about basic blocks. It is
201 attached to the AUX field of the standard CFG block. */
203 typedef struct block_info_def
205 struct stack_def stack_in
; /* Input stack configuration. */
206 struct stack_def stack_out
; /* Output stack configuration. */
207 HARD_REG_SET out_reg_set
; /* Stack regs live on output. */
208 int done
; /* True if block already converted. */
209 int predecessors
; /* Number of predecessors that needs
213 #define BLOCK_INFO(B) ((block_info) (B)->aux)
215 /* Passed to change_stack to indicate where to emit insns. */
222 /* The block we're currently working on. */
223 static basic_block current_block
;
225 /* This is the register file for all register after conversion */
227 FP_mode_reg
[LAST_STACK_REG
+1-FIRST_STACK_REG
][(int) MAX_MACHINE_MODE
];
229 #define FP_MODE_REG(regno,mode) \
230 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
232 /* Used to initialize uninitialized registers. */
235 /* Forward declarations */
237 static int stack_regs_mentioned_p
PARAMS ((rtx pat
));
238 static void straighten_stack
PARAMS ((rtx
, stack
));
239 static void pop_stack
PARAMS ((stack
, int));
240 static rtx
*get_true_reg
PARAMS ((rtx
*));
242 static int check_asm_stack_operands
PARAMS ((rtx
));
243 static int get_asm_operand_n_inputs
PARAMS ((rtx
));
244 static rtx stack_result
PARAMS ((tree
));
245 static void replace_reg
PARAMS ((rtx
*, int));
246 static void remove_regno_note
PARAMS ((rtx
, enum reg_note
,
248 static int get_hard_regnum
PARAMS ((stack
, rtx
));
249 static rtx emit_pop_insn
PARAMS ((rtx
, stack
, rtx
,
251 static void emit_swap_insn
PARAMS ((rtx
, stack
, rtx
));
252 static void move_for_stack_reg
PARAMS ((rtx
, stack
, rtx
));
253 static int swap_rtx_condition_1
PARAMS ((rtx
));
254 static int swap_rtx_condition
PARAMS ((rtx
));
255 static void compare_for_stack_reg
PARAMS ((rtx
, stack
, rtx
));
256 static void subst_stack_regs_pat
PARAMS ((rtx
, stack
, rtx
));
257 static void subst_asm_stack_regs
PARAMS ((rtx
, stack
));
258 static void subst_stack_regs
PARAMS ((rtx
, stack
));
259 static void change_stack
PARAMS ((rtx
, stack
, stack
,
261 static int convert_regs_entry
PARAMS ((void));
262 static void convert_regs_exit
PARAMS ((void));
263 static int convert_regs_1
PARAMS ((FILE *, basic_block
));
264 static int convert_regs_2
PARAMS ((FILE *, basic_block
));
265 static int convert_regs
PARAMS ((FILE *));
266 static void print_stack
PARAMS ((FILE *, stack
));
267 static rtx next_flags_user
PARAMS ((rtx
));
268 static void record_label_references
PARAMS ((rtx
, rtx
));
269 static bool compensate_edge
PARAMS ((edge
, FILE *));
271 /* Return non-zero if any stack register is mentioned somewhere within PAT. */
274 stack_regs_mentioned_p (pat
)
280 if (STACK_REG_P (pat
))
283 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
284 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
290 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
291 if (stack_regs_mentioned_p (XVECEXP (pat
, i
, j
)))
294 else if (fmt
[i
] == 'e' && stack_regs_mentioned_p (XEXP (pat
, i
)))
301 /* Return nonzero if INSN mentions stacked registers, else return zero. */
304 stack_regs_mentioned (insn
)
307 unsigned int uid
, max
;
310 if (! INSN_P (insn
) || !stack_regs_mentioned_data
)
313 uid
= INSN_UID (insn
);
314 max
= VARRAY_SIZE (stack_regs_mentioned_data
);
317 /* Allocate some extra size to avoid too many reallocs, but
318 do not grow too quickly. */
319 max
= uid
+ uid
/ 20;
320 VARRAY_GROW (stack_regs_mentioned_data
, max
);
323 test
= VARRAY_CHAR (stack_regs_mentioned_data
, uid
);
326 /* This insn has yet to be examined. Do so now. */
327 test
= stack_regs_mentioned_p (PATTERN (insn
)) ? 1 : 2;
328 VARRAY_CHAR (stack_regs_mentioned_data
, uid
) = test
;
334 static rtx ix86_flags_rtx
;
337 next_flags_user (insn
)
340 /* Search forward looking for the first use of this value.
341 Stop at block boundaries. */
343 while (insn
!= current_block
->end
)
345 insn
= NEXT_INSN (insn
);
347 if (INSN_P (insn
) && reg_mentioned_p (ix86_flags_rtx
, PATTERN (insn
)))
350 if (GET_CODE (insn
) == CALL_INSN
)
356 /* Reorganise the stack into ascending numbers,
360 straighten_stack (insn
, regstack
)
364 struct stack_def temp_stack
;
367 /* If there is only a single register on the stack, then the stack is
368 already in increasing order and no reorganization is needed.
370 Similarly if the stack is empty. */
371 if (regstack
->top
<= 0)
374 COPY_HARD_REG_SET (temp_stack
.reg_set
, regstack
->reg_set
);
376 for (top
= temp_stack
.top
= regstack
->top
; top
>= 0; top
--)
377 temp_stack
.reg
[top
] = FIRST_STACK_REG
+ temp_stack
.top
- top
;
379 change_stack (insn
, regstack
, &temp_stack
, EMIT_AFTER
);
382 /* Pop a register from the stack */
385 pop_stack (regstack
, regno
)
389 int top
= regstack
->top
;
391 CLEAR_HARD_REG_BIT (regstack
->reg_set
, regno
);
393 /* If regno was not at the top of stack then adjust stack */
394 if (regstack
->reg
[top
] != regno
)
397 for (i
= regstack
->top
; i
>= 0; i
--)
398 if (regstack
->reg
[i
] == regno
)
401 for (j
= i
; j
< top
; j
++)
402 regstack
->reg
[j
] = regstack
->reg
[j
+ 1];
408 /* Convert register usage from "flat" register file usage to a "stack
409 register file. FIRST is the first insn in the function, FILE is the
412 Construct a CFG and run life analysis. Then convert each insn one
413 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
414 code duplication created when the converter inserts pop insns on
418 reg_to_stack (first
, file
)
426 /* Clean up previous run. */
427 stack_regs_mentioned_data
= 0;
432 /* See if there is something to do. Flow analysis is quite
433 expensive so we might save some compilation time. */
434 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
435 if (regs_ever_live
[i
])
437 if (i
> LAST_STACK_REG
)
440 /* Ok, floating point instructions exist. If not optimizing,
441 build the CFG and run life analysis. */
444 count_or_remove_death_notes (NULL
, 1);
445 life_analysis (first
, file
, PROP_DEATH_NOTES
);
447 mark_dfs_back_edges ();
449 /* Set up block info for each basic block. */
450 alloc_aux_for_blocks (sizeof (struct block_info_def
));
451 FOR_EACH_BB_REVERSE (bb
)
454 for (e
= bb
->pred
; e
; e
=e
->pred_next
)
455 if (!(e
->flags
& EDGE_DFS_BACK
)
456 && e
->src
!= ENTRY_BLOCK_PTR
)
457 BLOCK_INFO (bb
)->predecessors
++;
460 /* Create the replacement registers up front. */
461 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
463 enum machine_mode mode
;
464 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
466 mode
= GET_MODE_WIDER_MODE (mode
))
467 FP_MODE_REG (i
, mode
) = gen_rtx_REG (mode
, i
);
468 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
470 mode
= GET_MODE_WIDER_MODE (mode
))
471 FP_MODE_REG (i
, mode
) = gen_rtx_REG (mode
, i
);
474 ix86_flags_rtx
= gen_rtx_REG (CCmode
, FLAGS_REG
);
476 /* A QNaN for initializing uninitialized variables.
478 ??? We can't load from constant memory in PIC mode, because
479 we're insertting these instructions before the prologue and
480 the PIC register hasn't been set up. In that case, fall back
481 on zero, which we can get from `ldz'. */
484 nan
= CONST0_RTX (SFmode
);
487 nan
= gen_lowpart (SFmode
, GEN_INT (0x7fc00000));
488 nan
= force_const_mem (SFmode
, nan
);
491 /* Allocate a cache for stack_regs_mentioned. */
492 max_uid
= get_max_uid ();
493 VARRAY_CHAR_INIT (stack_regs_mentioned_data
, max_uid
+ 1,
494 "stack_regs_mentioned cache");
498 free_aux_for_blocks ();
501 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
502 label's chain of references, and note which insn contains each
506 record_label_references (insn
, pat
)
509 enum rtx_code code
= GET_CODE (pat
);
513 if (code
== LABEL_REF
)
515 rtx label
= XEXP (pat
, 0);
518 if (GET_CODE (label
) != CODE_LABEL
)
521 /* If this is an undefined label, LABEL_REFS (label) contains
523 if (INSN_UID (label
) == 0)
526 /* Don't make a duplicate in the code_label's chain. */
528 for (ref
= LABEL_REFS (label
);
530 ref
= LABEL_NEXTREF (ref
))
531 if (CONTAINING_INSN (ref
) == insn
)
534 CONTAINING_INSN (pat
) = insn
;
535 LABEL_NEXTREF (pat
) = LABEL_REFS (label
);
536 LABEL_REFS (label
) = pat
;
541 fmt
= GET_RTX_FORMAT (code
);
542 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
545 record_label_references (insn
, XEXP (pat
, i
));
549 for (j
= 0; j
< XVECLEN (pat
, i
); j
++)
550 record_label_references (insn
, XVECEXP (pat
, i
, j
));
555 /* Return a pointer to the REG expression within PAT. If PAT is not a
556 REG, possible enclosed by a conversion rtx, return the inner part of
557 PAT that stopped the search. */
564 switch (GET_CODE (*pat
))
567 /* Eliminate FP subregister accesses in favour of the
568 actual FP register in use. */
571 if (FP_REG_P (subreg
= SUBREG_REG (*pat
)))
573 int regno_off
= subreg_regno_offset (REGNO (subreg
),
577 *pat
= FP_MODE_REG (REGNO (subreg
) + regno_off
,
586 pat
= & XEXP (*pat
, 0);
590 /* There are many rules that an asm statement for stack-like regs must
591 follow. Those rules are explained at the top of this file: the rule
592 numbers below refer to that explanation. */
595 check_asm_stack_operands (insn
)
600 int malformed_asm
= 0;
601 rtx body
= PATTERN (insn
);
603 char reg_used_as_output
[FIRST_PSEUDO_REGISTER
];
604 char implicitly_dies
[FIRST_PSEUDO_REGISTER
];
607 rtx
*clobber_reg
= 0;
608 int n_inputs
, n_outputs
;
610 /* Find out what the constraints require. If no constraint
611 alternative matches, this asm is malformed. */
613 constrain_operands (1);
614 alt
= which_alternative
;
616 preprocess_constraints ();
618 n_inputs
= get_asm_operand_n_inputs (body
);
619 n_outputs
= recog_data
.n_operands
- n_inputs
;
624 /* Avoid further trouble with this insn. */
625 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
629 /* Strip SUBREGs here to make the following code simpler. */
630 for (i
= 0; i
< recog_data
.n_operands
; i
++)
631 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
632 && GET_CODE (SUBREG_REG (recog_data
.operand
[i
])) == REG
)
633 recog_data
.operand
[i
] = SUBREG_REG (recog_data
.operand
[i
]);
635 /* Set up CLOBBER_REG. */
639 if (GET_CODE (body
) == PARALLEL
)
641 clobber_reg
= (rtx
*) alloca (XVECLEN (body
, 0) * sizeof (rtx
));
643 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
644 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
646 rtx clobber
= XVECEXP (body
, 0, i
);
647 rtx reg
= XEXP (clobber
, 0);
649 if (GET_CODE (reg
) == SUBREG
&& GET_CODE (SUBREG_REG (reg
)) == REG
)
650 reg
= SUBREG_REG (reg
);
652 if (STACK_REG_P (reg
))
654 clobber_reg
[n_clobbers
] = reg
;
660 /* Enforce rule #4: Output operands must specifically indicate which
661 reg an output appears in after an asm. "=f" is not allowed: the
662 operand constraints must select a class with a single reg.
664 Also enforce rule #5: Output operands must start at the top of
665 the reg-stack: output operands may not "skip" a reg. */
667 memset (reg_used_as_output
, 0, sizeof (reg_used_as_output
));
668 for (i
= 0; i
< n_outputs
; i
++)
669 if (STACK_REG_P (recog_data
.operand
[i
]))
671 if (reg_class_size
[(int) recog_op_alt
[i
][alt
].class] != 1)
673 error_for_asm (insn
, "output constraint %d must specify a single register", i
);
680 for (j
= 0; j
< n_clobbers
; j
++)
681 if (REGNO (recog_data
.operand
[i
]) == REGNO (clobber_reg
[j
]))
683 error_for_asm (insn
, "output constraint %d cannot be specified together with \"%s\" clobber",
684 i
, reg_names
[REGNO (clobber_reg
[j
])]);
689 reg_used_as_output
[REGNO (recog_data
.operand
[i
])] = 1;
694 /* Search for first non-popped reg. */
695 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
696 if (! reg_used_as_output
[i
])
699 /* If there are any other popped regs, that's an error. */
700 for (; i
< LAST_STACK_REG
+ 1; i
++)
701 if (reg_used_as_output
[i
])
704 if (i
!= LAST_STACK_REG
+ 1)
706 error_for_asm (insn
, "output regs must be grouped at top of stack");
710 /* Enforce rule #2: All implicitly popped input regs must be closer
711 to the top of the reg-stack than any input that is not implicitly
714 memset (implicitly_dies
, 0, sizeof (implicitly_dies
));
715 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
716 if (STACK_REG_P (recog_data
.operand
[i
]))
718 /* An input reg is implicitly popped if it is tied to an
719 output, or if there is a CLOBBER for it. */
722 for (j
= 0; j
< n_clobbers
; j
++)
723 if (operands_match_p (clobber_reg
[j
], recog_data
.operand
[i
]))
726 if (j
< n_clobbers
|| recog_op_alt
[i
][alt
].matches
>= 0)
727 implicitly_dies
[REGNO (recog_data
.operand
[i
])] = 1;
730 /* Search for first non-popped reg. */
731 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
732 if (! implicitly_dies
[i
])
735 /* If there are any other popped regs, that's an error. */
736 for (; i
< LAST_STACK_REG
+ 1; i
++)
737 if (implicitly_dies
[i
])
740 if (i
!= LAST_STACK_REG
+ 1)
743 "implicitly popped regs must be grouped at top of stack");
747 /* Enfore rule #3: If any input operand uses the "f" constraint, all
748 output constraints must use the "&" earlyclobber.
750 ??? Detect this more deterministically by having constrain_asm_operands
751 record any earlyclobber. */
753 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
754 if (recog_op_alt
[i
][alt
].matches
== -1)
758 for (j
= 0; j
< n_outputs
; j
++)
759 if (operands_match_p (recog_data
.operand
[j
], recog_data
.operand
[i
]))
762 "output operand %d must use `&' constraint", j
);
769 /* Avoid further trouble with this insn. */
770 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
777 /* Calculate the number of inputs and outputs in BODY, an
778 asm_operands. N_OPERANDS is the total number of operands, and
779 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
783 get_asm_operand_n_inputs (body
)
786 if (GET_CODE (body
) == SET
&& GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
787 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body
));
789 else if (GET_CODE (body
) == ASM_OPERANDS
)
790 return ASM_OPERANDS_INPUT_LENGTH (body
);
792 else if (GET_CODE (body
) == PARALLEL
793 && GET_CODE (XVECEXP (body
, 0, 0)) == SET
)
794 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body
, 0, 0)));
796 else if (GET_CODE (body
) == PARALLEL
797 && GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
798 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body
, 0, 0));
803 /* If current function returns its result in an fp stack register,
804 return the REG. Otherwise, return 0. */
812 /* If the value is supposed to be returned in memory, then clearly
813 it is not returned in a stack register. */
814 if (aggregate_value_p (DECL_RESULT (decl
)))
817 result
= DECL_RTL_IF_SET (DECL_RESULT (decl
));
820 #ifdef FUNCTION_OUTGOING_VALUE
822 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl
)), decl
);
824 result
= FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl
)), decl
);
828 return result
!= 0 && STACK_REG_P (result
) ? result
: 0;
833 * This section deals with stack register substitution, and forms the second
837 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
838 the desired hard REGNO. */
841 replace_reg (reg
, regno
)
845 if (regno
< FIRST_STACK_REG
|| regno
> LAST_STACK_REG
846 || ! STACK_REG_P (*reg
))
849 switch (GET_MODE_CLASS (GET_MODE (*reg
)))
853 case MODE_COMPLEX_FLOAT
:;
856 *reg
= FP_MODE_REG (regno
, GET_MODE (*reg
));
859 /* Remove a note of type NOTE, which must be found, for register
860 number REGNO from INSN. Remove only one such note. */
863 remove_regno_note (insn
, note
, regno
)
868 rtx
*note_link
, this;
870 note_link
= ®_NOTES (insn
);
871 for (this = *note_link
; this; this = XEXP (this, 1))
872 if (REG_NOTE_KIND (this) == note
873 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno
)
875 *note_link
= XEXP (this, 1);
879 note_link
= &XEXP (this, 1);
884 /* Find the hard register number of virtual register REG in REGSTACK.
885 The hard register number is relative to the top of the stack. -1 is
886 returned if the register is not found. */
889 get_hard_regnum (regstack
, reg
)
895 if (! STACK_REG_P (reg
))
898 for (i
= regstack
->top
; i
>= 0; i
--)
899 if (regstack
->reg
[i
] == REGNO (reg
))
902 return i
>= 0 ? (FIRST_STACK_REG
+ regstack
->top
- i
) : -1;
905 /* Emit an insn to pop virtual register REG before or after INSN.
906 REGSTACK is the stack state after INSN and is updated to reflect this
907 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
908 is represented as a SET whose destination is the register to be popped
909 and source is the top of stack. A death note for the top of stack
910 cases the movdf pattern to pop. */
913 emit_pop_insn (insn
, regstack
, reg
, where
)
917 enum emit_where where
;
919 rtx pop_insn
, pop_rtx
;
922 /* For complex types take care to pop both halves. These may survive in
923 CLOBBER and USE expressions. */
924 if (COMPLEX_MODE_P (GET_MODE (reg
)))
926 rtx reg1
= FP_MODE_REG (REGNO (reg
), DFmode
);
927 rtx reg2
= FP_MODE_REG (REGNO (reg
) + 1, DFmode
);
930 if (get_hard_regnum (regstack
, reg1
) >= 0)
931 pop_insn
= emit_pop_insn (insn
, regstack
, reg1
, where
);
932 if (get_hard_regnum (regstack
, reg2
) >= 0)
933 pop_insn
= emit_pop_insn (insn
, regstack
, reg2
, where
);
939 hard_regno
= get_hard_regnum (regstack
, reg
);
941 if (hard_regno
< FIRST_STACK_REG
)
944 pop_rtx
= gen_rtx_SET (VOIDmode
, FP_MODE_REG (hard_regno
, DFmode
),
945 FP_MODE_REG (FIRST_STACK_REG
, DFmode
));
947 if (where
== EMIT_AFTER
)
948 pop_insn
= emit_insn_after (pop_rtx
, insn
);
950 pop_insn
= emit_insn_before (pop_rtx
, insn
);
953 = gen_rtx_EXPR_LIST (REG_DEAD
, FP_MODE_REG (FIRST_STACK_REG
, DFmode
),
954 REG_NOTES (pop_insn
));
956 regstack
->reg
[regstack
->top
- (hard_regno
- FIRST_STACK_REG
)]
957 = regstack
->reg
[regstack
->top
];
959 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (reg
));
964 /* Emit an insn before or after INSN to swap virtual register REG with
965 the top of stack. REGSTACK is the stack state before the swap, and
966 is updated to reflect the swap. A swap insn is represented as a
967 PARALLEL of two patterns: each pattern moves one reg to the other.
969 If REG is already at the top of the stack, no insn is emitted. */
972 emit_swap_insn (insn
, regstack
, reg
)
979 int tmp
, other_reg
; /* swap regno temps */
980 rtx i1
; /* the stack-reg insn prior to INSN */
981 rtx i1set
= NULL_RTX
; /* the SET rtx within I1 */
983 hard_regno
= get_hard_regnum (regstack
, reg
);
985 if (hard_regno
< FIRST_STACK_REG
)
987 if (hard_regno
== FIRST_STACK_REG
)
990 other_reg
= regstack
->top
- (hard_regno
- FIRST_STACK_REG
);
992 tmp
= regstack
->reg
[other_reg
];
993 regstack
->reg
[other_reg
] = regstack
->reg
[regstack
->top
];
994 regstack
->reg
[regstack
->top
] = tmp
;
996 /* Find the previous insn involving stack regs, but don't pass a
999 if (current_block
&& insn
!= current_block
->head
)
1001 rtx tmp
= PREV_INSN (insn
);
1002 rtx limit
= PREV_INSN (current_block
->head
);
1003 while (tmp
!= limit
)
1005 if (GET_CODE (tmp
) == CODE_LABEL
1006 || GET_CODE (tmp
) == CALL_INSN
1007 || NOTE_INSN_BASIC_BLOCK_P (tmp
)
1008 || (GET_CODE (tmp
) == INSN
1009 && stack_regs_mentioned (tmp
)))
1014 tmp
= PREV_INSN (tmp
);
1019 && (i1set
= single_set (i1
)) != NULL_RTX
)
1021 rtx i1src
= *get_true_reg (&SET_SRC (i1set
));
1022 rtx i1dest
= *get_true_reg (&SET_DEST (i1set
));
1024 /* If the previous register stack push was from the reg we are to
1025 swap with, omit the swap. */
1027 if (GET_CODE (i1dest
) == REG
&& REGNO (i1dest
) == FIRST_STACK_REG
1028 && GET_CODE (i1src
) == REG
1029 && REGNO (i1src
) == (unsigned) hard_regno
- 1
1030 && find_regno_note (i1
, REG_DEAD
, FIRST_STACK_REG
) == NULL_RTX
)
1033 /* If the previous insn wrote to the reg we are to swap with,
1036 if (GET_CODE (i1dest
) == REG
&& REGNO (i1dest
) == (unsigned) hard_regno
1037 && GET_CODE (i1src
) == REG
&& REGNO (i1src
) == FIRST_STACK_REG
1038 && find_regno_note (i1
, REG_DEAD
, FIRST_STACK_REG
) == NULL_RTX
)
1042 swap_rtx
= gen_swapxf (FP_MODE_REG (hard_regno
, XFmode
),
1043 FP_MODE_REG (FIRST_STACK_REG
, XFmode
));
1046 emit_insn_after (swap_rtx
, i1
);
1047 else if (current_block
)
1048 emit_insn_before (swap_rtx
, current_block
->head
);
1050 emit_insn_before (swap_rtx
, insn
);
1053 /* Handle a move to or from a stack register in PAT, which is in INSN.
1054 REGSTACK is the current stack. */
1057 move_for_stack_reg (insn
, regstack
, pat
)
1062 rtx
*psrc
= get_true_reg (&SET_SRC (pat
));
1063 rtx
*pdest
= get_true_reg (&SET_DEST (pat
));
1067 src
= *psrc
; dest
= *pdest
;
1069 if (STACK_REG_P (src
) && STACK_REG_P (dest
))
1071 /* Write from one stack reg to another. If SRC dies here, then
1072 just change the register mapping and delete the insn. */
1074 note
= find_regno_note (insn
, REG_DEAD
, REGNO (src
));
1079 /* If this is a no-op move, there must not be a REG_DEAD note. */
1080 if (REGNO (src
) == REGNO (dest
))
1083 for (i
= regstack
->top
; i
>= 0; i
--)
1084 if (regstack
->reg
[i
] == REGNO (src
))
1087 /* The source must be live, and the dest must be dead. */
1088 if (i
< 0 || get_hard_regnum (regstack
, dest
) >= FIRST_STACK_REG
)
1091 /* It is possible that the dest is unused after this insn.
1092 If so, just pop the src. */
1094 if (find_regno_note (insn
, REG_UNUSED
, REGNO (dest
)))
1096 emit_pop_insn (insn
, regstack
, src
, EMIT_AFTER
);
1102 regstack
->reg
[i
] = REGNO (dest
);
1104 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1105 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (src
));
1112 /* The source reg does not die. */
1114 /* If this appears to be a no-op move, delete it, or else it
1115 will confuse the machine description output patterns. But if
1116 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1117 for REG_UNUSED will not work for deleted insns. */
1119 if (REGNO (src
) == REGNO (dest
))
1121 if (find_regno_note (insn
, REG_UNUSED
, REGNO (dest
)))
1122 emit_pop_insn (insn
, regstack
, dest
, EMIT_AFTER
);
1128 /* The destination ought to be dead */
1129 if (get_hard_regnum (regstack
, dest
) >= FIRST_STACK_REG
)
1132 replace_reg (psrc
, get_hard_regnum (regstack
, src
));
1134 regstack
->reg
[++regstack
->top
] = REGNO (dest
);
1135 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1136 replace_reg (pdest
, FIRST_STACK_REG
);
1138 else if (STACK_REG_P (src
))
1140 /* Save from a stack reg to MEM, or possibly integer reg. Since
1141 only top of stack may be saved, emit an exchange first if
1144 emit_swap_insn (insn
, regstack
, src
);
1146 note
= find_regno_note (insn
, REG_DEAD
, REGNO (src
));
1149 replace_reg (&XEXP (note
, 0), FIRST_STACK_REG
);
1151 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (src
));
1153 else if ((GET_MODE (src
) == XFmode
|| GET_MODE (src
) == TFmode
)
1154 && regstack
->top
< REG_STACK_SIZE
- 1)
1156 /* A 387 cannot write an XFmode value to a MEM without
1157 clobbering the source reg. The output code can handle
1158 this by reading back the value from the MEM.
1159 But it is more efficient to use a temp register if one is
1160 available. Push the source value here if the register
1161 stack is not full, and then write the value to memory via
1163 rtx push_rtx
, push_insn
;
1164 rtx top_stack_reg
= FP_MODE_REG (FIRST_STACK_REG
, GET_MODE (src
));
1166 if (GET_MODE (src
) == TFmode
)
1167 push_rtx
= gen_movtf (top_stack_reg
, top_stack_reg
);
1169 push_rtx
= gen_movxf (top_stack_reg
, top_stack_reg
);
1170 push_insn
= emit_insn_before (push_rtx
, insn
);
1171 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_DEAD
, top_stack_reg
,
1175 replace_reg (psrc
, FIRST_STACK_REG
);
1177 else if (STACK_REG_P (dest
))
1179 /* Load from MEM, or possibly integer REG or constant, into the
1180 stack regs. The actual target is always the top of the
1181 stack. The stack mapping is changed to reflect that DEST is
1182 now at top of stack. */
1184 /* The destination ought to be dead */
1185 if (get_hard_regnum (regstack
, dest
) >= FIRST_STACK_REG
)
1188 if (regstack
->top
>= REG_STACK_SIZE
)
1191 regstack
->reg
[++regstack
->top
] = REGNO (dest
);
1192 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1193 replace_reg (pdest
, FIRST_STACK_REG
);
1199 /* Swap the condition on a branch, if there is one. Return true if we
1200 found a condition to swap. False if the condition was not used as
1204 swap_rtx_condition_1 (pat
)
1210 if (GET_RTX_CLASS (GET_CODE (pat
)) == '<')
1212 PUT_CODE (pat
, swap_condition (GET_CODE (pat
)));
1217 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
1218 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
1224 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
1225 r
|= swap_rtx_condition_1 (XVECEXP (pat
, i
, j
));
1227 else if (fmt
[i
] == 'e')
1228 r
|= swap_rtx_condition_1 (XEXP (pat
, i
));
1236 swap_rtx_condition (insn
)
1239 rtx pat
= PATTERN (insn
);
1241 /* We're looking for a single set to cc0 or an HImode temporary. */
1243 if (GET_CODE (pat
) == SET
1244 && GET_CODE (SET_DEST (pat
)) == REG
1245 && REGNO (SET_DEST (pat
)) == FLAGS_REG
)
1247 insn
= next_flags_user (insn
);
1248 if (insn
== NULL_RTX
)
1250 pat
= PATTERN (insn
);
1253 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1254 not doing anything with the cc value right now. We may be able to
1255 search for one though. */
1257 if (GET_CODE (pat
) == SET
1258 && GET_CODE (SET_SRC (pat
)) == UNSPEC
1259 && XINT (SET_SRC (pat
), 1) == UNSPEC_FNSTSW
)
1261 rtx dest
= SET_DEST (pat
);
1263 /* Search forward looking for the first use of this value.
1264 Stop at block boundaries. */
1265 while (insn
!= current_block
->end
)
1267 insn
= NEXT_INSN (insn
);
1268 if (INSN_P (insn
) && reg_mentioned_p (dest
, insn
))
1270 if (GET_CODE (insn
) == CALL_INSN
)
1274 /* So we've found the insn using this value. If it is anything
1275 other than sahf, aka unspec 10, or the value does not die
1276 (meaning we'd have to search further), then we must give up. */
1277 pat
= PATTERN (insn
);
1278 if (GET_CODE (pat
) != SET
1279 || GET_CODE (SET_SRC (pat
)) != UNSPEC
1280 || XINT (SET_SRC (pat
), 1) != UNSPEC_SAHF
1281 || ! dead_or_set_p (insn
, dest
))
1284 /* Now we are prepared to handle this as a normal cc0 setter. */
1285 insn
= next_flags_user (insn
);
1286 if (insn
== NULL_RTX
)
1288 pat
= PATTERN (insn
);
1291 if (swap_rtx_condition_1 (pat
))
1294 INSN_CODE (insn
) = -1;
1295 if (recog_memoized (insn
) == -1)
1297 /* In case the flags don't die here, recurse to try fix
1298 following user too. */
1299 else if (! dead_or_set_p (insn
, ix86_flags_rtx
))
1301 insn
= next_flags_user (insn
);
1302 if (!insn
|| !swap_rtx_condition (insn
))
1307 swap_rtx_condition_1 (pat
);
1315 /* Handle a comparison. Special care needs to be taken to avoid
1316 causing comparisons that a 387 cannot do correctly, such as EQ.
1318 Also, a pop insn may need to be emitted. The 387 does have an
1319 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1320 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1324 compare_for_stack_reg (insn
, regstack
, pat_src
)
1330 rtx src1_note
, src2_note
;
1333 src1
= get_true_reg (&XEXP (pat_src
, 0));
1334 src2
= get_true_reg (&XEXP (pat_src
, 1));
1335 flags_user
= next_flags_user (insn
);
1337 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1338 registers that die in this insn - move those to stack top first. */
1339 if ((! STACK_REG_P (*src1
)
1340 || (STACK_REG_P (*src2
)
1341 && get_hard_regnum (regstack
, *src2
) == FIRST_STACK_REG
))
1342 && swap_rtx_condition (insn
))
1345 temp
= XEXP (pat_src
, 0);
1346 XEXP (pat_src
, 0) = XEXP (pat_src
, 1);
1347 XEXP (pat_src
, 1) = temp
;
1349 src1
= get_true_reg (&XEXP (pat_src
, 0));
1350 src2
= get_true_reg (&XEXP (pat_src
, 1));
1352 INSN_CODE (insn
) = -1;
1355 /* We will fix any death note later. */
1357 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1359 if (STACK_REG_P (*src2
))
1360 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1362 src2_note
= NULL_RTX
;
1364 emit_swap_insn (insn
, regstack
, *src1
);
1366 replace_reg (src1
, FIRST_STACK_REG
);
1368 if (STACK_REG_P (*src2
))
1369 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1373 pop_stack (regstack
, REGNO (XEXP (src1_note
, 0)));
1374 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1377 /* If the second operand dies, handle that. But if the operands are
1378 the same stack register, don't bother, because only one death is
1379 needed, and it was just handled. */
1382 && ! (STACK_REG_P (*src1
) && STACK_REG_P (*src2
)
1383 && REGNO (*src1
) == REGNO (*src2
)))
1385 /* As a special case, two regs may die in this insn if src2 is
1386 next to top of stack and the top of stack also dies. Since
1387 we have already popped src1, "next to top of stack" is really
1388 at top (FIRST_STACK_REG) now. */
1390 if (get_hard_regnum (regstack
, XEXP (src2_note
, 0)) == FIRST_STACK_REG
1393 pop_stack (regstack
, REGNO (XEXP (src2_note
, 0)));
1394 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
+ 1);
1398 /* The 386 can only represent death of the first operand in
1399 the case handled above. In all other cases, emit a separate
1400 pop and remove the death note from here. */
1402 /* link_cc0_insns (insn); */
1404 remove_regno_note (insn
, REG_DEAD
, REGNO (XEXP (src2_note
, 0)));
1406 emit_pop_insn (insn
, regstack
, XEXP (src2_note
, 0),
1412 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1413 is the current register layout. */
1416 subst_stack_regs_pat (insn
, regstack
, pat
)
1423 switch (GET_CODE (pat
))
1426 /* Deaths in USE insns can happen in non optimizing compilation.
1427 Handle them by popping the dying register. */
1428 src
= get_true_reg (&XEXP (pat
, 0));
1429 if (STACK_REG_P (*src
)
1430 && find_regno_note (insn
, REG_DEAD
, REGNO (*src
)))
1432 emit_pop_insn (insn
, regstack
, *src
, EMIT_AFTER
);
1435 /* ??? Uninitialized USE should not happen. */
1436 else if (get_hard_regnum (regstack
, *src
) == -1)
1444 dest
= get_true_reg (&XEXP (pat
, 0));
1445 if (STACK_REG_P (*dest
))
1447 note
= find_reg_note (insn
, REG_DEAD
, *dest
);
1449 if (pat
!= PATTERN (insn
))
1451 /* The fix_truncdi_1 pattern wants to be able to allocate
1452 it's own scratch register. It does this by clobbering
1453 an fp reg so that it is assured of an empty reg-stack
1454 register. If the register is live, kill it now.
1455 Remove the DEAD/UNUSED note so we don't try to kill it
1459 emit_pop_insn (insn
, regstack
, *dest
, EMIT_BEFORE
);
1462 note
= find_reg_note (insn
, REG_UNUSED
, *dest
);
1466 remove_note (insn
, note
);
1467 replace_reg (dest
, LAST_STACK_REG
);
1471 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1472 indicates an uninitialized value. Because reload removed
1473 all other clobbers, this must be due to a function
1474 returning without a value. Load up a NaN. */
1477 && get_hard_regnum (regstack
, *dest
) == -1)
1479 pat
= gen_rtx_SET (VOIDmode
,
1480 FP_MODE_REG (REGNO (*dest
), SFmode
),
1482 PATTERN (insn
) = pat
;
1483 move_for_stack_reg (insn
, regstack
, pat
);
1485 if (! note
&& COMPLEX_MODE_P (GET_MODE (*dest
))
1486 && get_hard_regnum (regstack
, FP_MODE_REG (REGNO (*dest
), DFmode
)) == -1)
1488 pat
= gen_rtx_SET (VOIDmode
,
1489 FP_MODE_REG (REGNO (*dest
) + 1, SFmode
),
1491 PATTERN (insn
) = pat
;
1492 move_for_stack_reg (insn
, regstack
, pat
);
1501 rtx
*src1
= (rtx
*) 0, *src2
;
1502 rtx src1_note
, src2_note
;
1505 dest
= get_true_reg (&SET_DEST (pat
));
1506 src
= get_true_reg (&SET_SRC (pat
));
1507 pat_src
= SET_SRC (pat
);
1509 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1510 if (STACK_REG_P (*src
)
1511 || (STACK_REG_P (*dest
)
1512 && (GET_CODE (*src
) == REG
|| GET_CODE (*src
) == MEM
1513 || GET_CODE (*src
) == CONST_DOUBLE
)))
1515 move_for_stack_reg (insn
, regstack
, pat
);
1519 switch (GET_CODE (pat_src
))
1522 compare_for_stack_reg (insn
, regstack
, pat_src
);
1528 for (count
= HARD_REGNO_NREGS (REGNO (*dest
), GET_MODE (*dest
));
1531 regstack
->reg
[++regstack
->top
] = REGNO (*dest
) + count
;
1532 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
) + count
);
1535 replace_reg (dest
, FIRST_STACK_REG
);
1539 /* This is a `tstM2' case. */
1540 if (*dest
!= cc0_rtx
)
1546 case FLOAT_TRUNCATE
:
1550 /* These insns only operate on the top of the stack. DEST might
1551 be cc0_rtx if we're processing a tstM pattern. Also, it's
1552 possible that the tstM case results in a REG_DEAD note on the
1556 src1
= get_true_reg (&XEXP (pat_src
, 0));
1558 emit_swap_insn (insn
, regstack
, *src1
);
1560 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1562 if (STACK_REG_P (*dest
))
1563 replace_reg (dest
, FIRST_STACK_REG
);
1567 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1569 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src1
));
1572 replace_reg (src1
, FIRST_STACK_REG
);
1577 /* On i386, reversed forms of subM3 and divM3 exist for
1578 MODE_FLOAT, so the same code that works for addM3 and mulM3
1582 /* These insns can accept the top of stack as a destination
1583 from a stack reg or mem, or can use the top of stack as a
1584 source and some other stack register (possibly top of stack)
1585 as a destination. */
1587 src1
= get_true_reg (&XEXP (pat_src
, 0));
1588 src2
= get_true_reg (&XEXP (pat_src
, 1));
1590 /* We will fix any death note later. */
1592 if (STACK_REG_P (*src1
))
1593 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1595 src1_note
= NULL_RTX
;
1596 if (STACK_REG_P (*src2
))
1597 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1599 src2_note
= NULL_RTX
;
1601 /* If either operand is not a stack register, then the dest
1602 must be top of stack. */
1604 if (! STACK_REG_P (*src1
) || ! STACK_REG_P (*src2
))
1605 emit_swap_insn (insn
, regstack
, *dest
);
1608 /* Both operands are REG. If neither operand is already
1609 at the top of stack, choose to make the one that is the dest
1610 the new top of stack. */
1612 int src1_hard_regnum
, src2_hard_regnum
;
1614 src1_hard_regnum
= get_hard_regnum (regstack
, *src1
);
1615 src2_hard_regnum
= get_hard_regnum (regstack
, *src2
);
1616 if (src1_hard_regnum
== -1 || src2_hard_regnum
== -1)
1619 if (src1_hard_regnum
!= FIRST_STACK_REG
1620 && src2_hard_regnum
!= FIRST_STACK_REG
)
1621 emit_swap_insn (insn
, regstack
, *dest
);
1624 if (STACK_REG_P (*src1
))
1625 replace_reg (src1
, get_hard_regnum (regstack
, *src1
));
1626 if (STACK_REG_P (*src2
))
1627 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1631 rtx src1_reg
= XEXP (src1_note
, 0);
1633 /* If the register that dies is at the top of stack, then
1634 the destination is somewhere else - merely substitute it.
1635 But if the reg that dies is not at top of stack, then
1636 move the top of stack to the dead reg, as though we had
1637 done the insn and then a store-with-pop. */
1639 if (REGNO (src1_reg
) == regstack
->reg
[regstack
->top
])
1641 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1642 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1646 int regno
= get_hard_regnum (regstack
, src1_reg
);
1648 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1649 replace_reg (dest
, regno
);
1651 regstack
->reg
[regstack
->top
- (regno
- FIRST_STACK_REG
)]
1652 = regstack
->reg
[regstack
->top
];
1655 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1656 REGNO (XEXP (src1_note
, 0)));
1657 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1662 rtx src2_reg
= XEXP (src2_note
, 0);
1663 if (REGNO (src2_reg
) == regstack
->reg
[regstack
->top
])
1665 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1666 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1670 int regno
= get_hard_regnum (regstack
, src2_reg
);
1672 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1673 replace_reg (dest
, regno
);
1675 regstack
->reg
[regstack
->top
- (regno
- FIRST_STACK_REG
)]
1676 = regstack
->reg
[regstack
->top
];
1679 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1680 REGNO (XEXP (src2_note
, 0)));
1681 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
);
1686 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1687 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1690 /* Keep operand 1 maching with destination. */
1691 if (GET_RTX_CLASS (GET_CODE (pat_src
)) == 'c'
1692 && REG_P (*src1
) && REG_P (*src2
)
1693 && REGNO (*src1
) != REGNO (*dest
))
1695 int tmp
= REGNO (*src1
);
1696 replace_reg (src1
, REGNO (*src2
));
1697 replace_reg (src2
, tmp
);
1702 switch (XINT (pat_src
, 1))
1706 /* These insns only operate on the top of the stack. */
1708 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1710 emit_swap_insn (insn
, regstack
, *src1
);
1712 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1714 if (STACK_REG_P (*dest
))
1715 replace_reg (dest
, FIRST_STACK_REG
);
1719 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1721 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src1
));
1724 replace_reg (src1
, FIRST_STACK_REG
);
1728 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1729 The combination matches the PPRO fcomi instruction. */
1731 pat_src
= XVECEXP (pat_src
, 0, 0);
1732 if (GET_CODE (pat_src
) != UNSPEC
1733 || XINT (pat_src
, 1) != UNSPEC_FNSTSW
)
1738 /* Combined fcomp+fnstsw generated for doing well with
1739 CSE. When optimizing this would have been broken
1742 pat_src
= XVECEXP (pat_src
, 0, 0);
1743 if (GET_CODE (pat_src
) != COMPARE
)
1746 compare_for_stack_reg (insn
, regstack
, pat_src
);
1755 /* This insn requires the top of stack to be the destination. */
1757 src1
= get_true_reg (&XEXP (pat_src
, 1));
1758 src2
= get_true_reg (&XEXP (pat_src
, 2));
1760 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1761 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1763 /* If the comparison operator is an FP comparison operator,
1764 it is handled correctly by compare_for_stack_reg () who
1765 will move the destination to the top of stack. But if the
1766 comparison operator is not an FP comparison operator, we
1767 have to handle it here. */
1768 if (get_hard_regnum (regstack
, *dest
) >= FIRST_STACK_REG
1769 && REGNO (*dest
) != regstack
->reg
[regstack
->top
])
1771 /* In case one of operands is the top of stack and the operands
1772 dies, it is safe to make it the destination operand by
1773 reversing the direction of cmove and avoid fxch. */
1774 if ((REGNO (*src1
) == regstack
->reg
[regstack
->top
]
1776 || (REGNO (*src2
) == regstack
->reg
[regstack
->top
]
1779 int idx1
= (get_hard_regnum (regstack
, *src1
)
1781 int idx2
= (get_hard_regnum (regstack
, *src2
)
1784 /* Make reg-stack believe that the operands are already
1785 swapped on the stack */
1786 regstack
->reg
[regstack
->top
- idx1
] = REGNO (*src2
);
1787 regstack
->reg
[regstack
->top
- idx2
] = REGNO (*src1
);
1789 /* Reverse condition to compensate the operand swap.
1790 i386 do have comparison always reversible. */
1791 PUT_CODE (XEXP (pat_src
, 0),
1792 reversed_comparison_code (XEXP (pat_src
, 0), insn
));
1795 emit_swap_insn (insn
, regstack
, *dest
);
1803 src_note
[1] = src1_note
;
1804 src_note
[2] = src2_note
;
1806 if (STACK_REG_P (*src1
))
1807 replace_reg (src1
, get_hard_regnum (regstack
, *src1
));
1808 if (STACK_REG_P (*src2
))
1809 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1811 for (i
= 1; i
<= 2; i
++)
1814 int regno
= REGNO (XEXP (src_note
[i
], 0));
1816 /* If the register that dies is not at the top of
1817 stack, then move the top of stack to the dead reg */
1818 if (regno
!= regstack
->reg
[regstack
->top
])
1820 remove_regno_note (insn
, REG_DEAD
, regno
);
1821 emit_pop_insn (insn
, regstack
, XEXP (src_note
[i
], 0),
1825 /* Top of stack never dies, as it is the
1831 /* Make dest the top of stack. Add dest to regstack if
1833 if (get_hard_regnum (regstack
, *dest
) < FIRST_STACK_REG
)
1834 regstack
->reg
[++regstack
->top
] = REGNO (*dest
);
1835 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1836 replace_reg (dest
, FIRST_STACK_REG
);
1850 /* Substitute hard regnums for any stack regs in INSN, which has
1851 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1852 before the insn, and is updated with changes made here.
1854 There are several requirements and assumptions about the use of
1855 stack-like regs in asm statements. These rules are enforced by
1856 record_asm_stack_regs; see comments there for details. Any
1857 asm_operands left in the RTL at this point may be assume to meet the
1858 requirements, since record_asm_stack_regs removes any problem asm. */
1861 subst_asm_stack_regs (insn
, regstack
)
1865 rtx body
= PATTERN (insn
);
1868 rtx
*note_reg
; /* Array of note contents */
1869 rtx
**note_loc
; /* Address of REG field of each note */
1870 enum reg_note
*note_kind
; /* The type of each note */
1872 rtx
*clobber_reg
= 0;
1873 rtx
**clobber_loc
= 0;
1875 struct stack_def temp_stack
;
1880 int n_inputs
, n_outputs
;
1882 if (! check_asm_stack_operands (insn
))
1885 /* Find out what the constraints required. If no constraint
1886 alternative matches, that is a compiler bug: we should have caught
1887 such an insn in check_asm_stack_operands. */
1888 extract_insn (insn
);
1889 constrain_operands (1);
1890 alt
= which_alternative
;
1892 preprocess_constraints ();
1894 n_inputs
= get_asm_operand_n_inputs (body
);
1895 n_outputs
= recog_data
.n_operands
- n_inputs
;
1900 /* Strip SUBREGs here to make the following code simpler. */
1901 for (i
= 0; i
< recog_data
.n_operands
; i
++)
1902 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
1903 && GET_CODE (SUBREG_REG (recog_data
.operand
[i
])) == REG
)
1905 recog_data
.operand_loc
[i
] = & SUBREG_REG (recog_data
.operand
[i
]);
1906 recog_data
.operand
[i
] = SUBREG_REG (recog_data
.operand
[i
]);
1909 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1911 for (i
= 0, note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1914 note_reg
= (rtx
*) alloca (i
* sizeof (rtx
));
1915 note_loc
= (rtx
**) alloca (i
* sizeof (rtx
*));
1916 note_kind
= (enum reg_note
*) alloca (i
* sizeof (enum reg_note
));
1919 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1921 rtx reg
= XEXP (note
, 0);
1922 rtx
*loc
= & XEXP (note
, 0);
1924 if (GET_CODE (reg
) == SUBREG
&& GET_CODE (SUBREG_REG (reg
)) == REG
)
1926 loc
= & SUBREG_REG (reg
);
1927 reg
= SUBREG_REG (reg
);
1930 if (STACK_REG_P (reg
)
1931 && (REG_NOTE_KIND (note
) == REG_DEAD
1932 || REG_NOTE_KIND (note
) == REG_UNUSED
))
1934 note_reg
[n_notes
] = reg
;
1935 note_loc
[n_notes
] = loc
;
1936 note_kind
[n_notes
] = REG_NOTE_KIND (note
);
1941 /* Set up CLOBBER_REG and CLOBBER_LOC. */
1945 if (GET_CODE (body
) == PARALLEL
)
1947 clobber_reg
= (rtx
*) alloca (XVECLEN (body
, 0) * sizeof (rtx
));
1948 clobber_loc
= (rtx
**) alloca (XVECLEN (body
, 0) * sizeof (rtx
*));
1950 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1951 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1953 rtx clobber
= XVECEXP (body
, 0, i
);
1954 rtx reg
= XEXP (clobber
, 0);
1955 rtx
*loc
= & XEXP (clobber
, 0);
1957 if (GET_CODE (reg
) == SUBREG
&& GET_CODE (SUBREG_REG (reg
)) == REG
)
1959 loc
= & SUBREG_REG (reg
);
1960 reg
= SUBREG_REG (reg
);
1963 if (STACK_REG_P (reg
))
1965 clobber_reg
[n_clobbers
] = reg
;
1966 clobber_loc
[n_clobbers
] = loc
;
1972 temp_stack
= *regstack
;
1974 /* Put the input regs into the desired place in TEMP_STACK. */
1976 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
1977 if (STACK_REG_P (recog_data
.operand
[i
])
1978 && reg_class_subset_p (recog_op_alt
[i
][alt
].class,
1980 && recog_op_alt
[i
][alt
].class != FLOAT_REGS
)
1982 /* If an operand needs to be in a particular reg in
1983 FLOAT_REGS, the constraint was either 't' or 'u'. Since
1984 these constraints are for single register classes, and
1985 reload guaranteed that operand[i] is already in that class,
1986 we can just use REGNO (recog_data.operand[i]) to know which
1987 actual reg this operand needs to be in. */
1989 int regno
= get_hard_regnum (&temp_stack
, recog_data
.operand
[i
]);
1994 if ((unsigned int) regno
!= REGNO (recog_data
.operand
[i
]))
1996 /* recog_data.operand[i] is not in the right place. Find
1997 it and swap it with whatever is already in I's place.
1998 K is where recog_data.operand[i] is now. J is where it
2002 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
2004 - (REGNO (recog_data
.operand
[i
]) - FIRST_STACK_REG
));
2006 temp
= temp_stack
.reg
[k
];
2007 temp_stack
.reg
[k
] = temp_stack
.reg
[j
];
2008 temp_stack
.reg
[j
] = temp
;
2012 /* Emit insns before INSN to make sure the reg-stack is in the right
2015 change_stack (insn
, regstack
, &temp_stack
, EMIT_BEFORE
);
2017 /* Make the needed input register substitutions. Do death notes and
2018 clobbers too, because these are for inputs, not outputs. */
2020 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2021 if (STACK_REG_P (recog_data
.operand
[i
]))
2023 int regnum
= get_hard_regnum (regstack
, recog_data
.operand
[i
]);
2028 replace_reg (recog_data
.operand_loc
[i
], regnum
);
2031 for (i
= 0; i
< n_notes
; i
++)
2032 if (note_kind
[i
] == REG_DEAD
)
2034 int regnum
= get_hard_regnum (regstack
, note_reg
[i
]);
2039 replace_reg (note_loc
[i
], regnum
);
2042 for (i
= 0; i
< n_clobbers
; i
++)
2044 /* It's OK for a CLOBBER to reference a reg that is not live.
2045 Don't try to replace it in that case. */
2046 int regnum
= get_hard_regnum (regstack
, clobber_reg
[i
]);
2050 /* Sigh - clobbers always have QImode. But replace_reg knows
2051 that these regs can't be MODE_INT and will abort. Just put
2052 the right reg there without calling replace_reg. */
2054 *clobber_loc
[i
] = FP_MODE_REG (regnum
, DFmode
);
2058 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2060 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2061 if (STACK_REG_P (recog_data
.operand
[i
]))
2063 /* An input reg is implicitly popped if it is tied to an
2064 output, or if there is a CLOBBER for it. */
2067 for (j
= 0; j
< n_clobbers
; j
++)
2068 if (operands_match_p (clobber_reg
[j
], recog_data
.operand
[i
]))
2071 if (j
< n_clobbers
|| recog_op_alt
[i
][alt
].matches
>= 0)
2073 /* recog_data.operand[i] might not be at the top of stack.
2074 But that's OK, because all we need to do is pop the
2075 right number of regs off of the top of the reg-stack.
2076 record_asm_stack_regs guaranteed that all implicitly
2077 popped regs were grouped at the top of the reg-stack. */
2079 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
2080 regstack
->reg
[regstack
->top
]);
2085 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2086 Note that there isn't any need to substitute register numbers.
2087 ??? Explain why this is true. */
2089 for (i
= LAST_STACK_REG
; i
>= FIRST_STACK_REG
; i
--)
2091 /* See if there is an output for this hard reg. */
2094 for (j
= 0; j
< n_outputs
; j
++)
2095 if (STACK_REG_P (recog_data
.operand
[j
])
2096 && REGNO (recog_data
.operand
[j
]) == (unsigned) i
)
2098 regstack
->reg
[++regstack
->top
] = i
;
2099 SET_HARD_REG_BIT (regstack
->reg_set
, i
);
2104 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2105 input that the asm didn't implicitly pop. If the asm didn't
2106 implicitly pop an input reg, that reg will still be live.
2108 Note that we can't use find_regno_note here: the register numbers
2109 in the death notes have already been substituted. */
2111 for (i
= 0; i
< n_outputs
; i
++)
2112 if (STACK_REG_P (recog_data
.operand
[i
]))
2116 for (j
= 0; j
< n_notes
; j
++)
2117 if (REGNO (recog_data
.operand
[i
]) == REGNO (note_reg
[j
])
2118 && note_kind
[j
] == REG_UNUSED
)
2120 insn
= emit_pop_insn (insn
, regstack
, recog_data
.operand
[i
],
2126 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2127 if (STACK_REG_P (recog_data
.operand
[i
]))
2131 for (j
= 0; j
< n_notes
; j
++)
2132 if (REGNO (recog_data
.operand
[i
]) == REGNO (note_reg
[j
])
2133 && note_kind
[j
] == REG_DEAD
2134 && TEST_HARD_REG_BIT (regstack
->reg_set
,
2135 REGNO (recog_data
.operand
[i
])))
2137 insn
= emit_pop_insn (insn
, regstack
, recog_data
.operand
[i
],
2144 /* Substitute stack hard reg numbers for stack virtual registers in
2145 INSN. Non-stack register numbers are not changed. REGSTACK is the
2146 current stack content. Insns may be emitted as needed to arrange the
2147 stack for the 387 based on the contents of the insn. */
2150 subst_stack_regs (insn
, regstack
)
2154 rtx
*note_link
, note
;
2157 if (GET_CODE (insn
) == CALL_INSN
)
2159 int top
= regstack
->top
;
2161 /* If there are any floating point parameters to be passed in
2162 registers for this call, make sure they are in the right
2167 straighten_stack (PREV_INSN (insn
), regstack
);
2169 /* Now mark the arguments as dead after the call. */
2171 while (regstack
->top
>= 0)
2173 CLEAR_HARD_REG_BIT (regstack
->reg_set
, FIRST_STACK_REG
+ regstack
->top
);
2179 /* Do the actual substitution if any stack regs are mentioned.
2180 Since we only record whether entire insn mentions stack regs, and
2181 subst_stack_regs_pat only works for patterns that contain stack regs,
2182 we must check each pattern in a parallel here. A call_value_pop could
2185 if (stack_regs_mentioned (insn
))
2187 int n_operands
= asm_noperands (PATTERN (insn
));
2188 if (n_operands
>= 0)
2190 /* This insn is an `asm' with operands. Decode the operands,
2191 decide how many are inputs, and do register substitution.
2192 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2194 subst_asm_stack_regs (insn
, regstack
);
2198 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
2199 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
2201 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn
), 0, i
)))
2202 subst_stack_regs_pat (insn
, regstack
,
2203 XVECEXP (PATTERN (insn
), 0, i
));
2206 subst_stack_regs_pat (insn
, regstack
, PATTERN (insn
));
2209 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2210 REG_UNUSED will already have been dealt with, so just return. */
2212 if (GET_CODE (insn
) == NOTE
|| INSN_DELETED_P (insn
))
2215 /* If there is a REG_UNUSED note on a stack register on this insn,
2216 the indicated reg must be popped. The REG_UNUSED note is removed,
2217 since the form of the newly emitted pop insn references the reg,
2218 making it no longer `unset'. */
2220 note_link
= ®_NOTES (insn
);
2221 for (note
= *note_link
; note
; note
= XEXP (note
, 1))
2222 if (REG_NOTE_KIND (note
) == REG_UNUSED
&& STACK_REG_P (XEXP (note
, 0)))
2224 *note_link
= XEXP (note
, 1);
2225 insn
= emit_pop_insn (insn
, regstack
, XEXP (note
, 0), EMIT_AFTER
);
2228 note_link
= &XEXP (note
, 1);
2231 /* Change the organization of the stack so that it fits a new basic
2232 block. Some registers might have to be popped, but there can never be
2233 a register live in the new block that is not now live.
2235 Insert any needed insns before or after INSN, as indicated by
2236 WHERE. OLD is the original stack layout, and NEW is the desired
2237 form. OLD is updated to reflect the code emitted, ie, it will be
2238 the same as NEW upon return.
2240 This function will not preserve block_end[]. But that information
2241 is no longer needed once this has executed. */
2244 change_stack (insn
, old
, new, where
)
2248 enum emit_where where
;
2253 /* We will be inserting new insns "backwards". If we are to insert
2254 after INSN, find the next insn, and insert before it. */
2256 if (where
== EMIT_AFTER
)
2258 if (current_block
&& current_block
->end
== insn
)
2260 insn
= NEXT_INSN (insn
);
2263 /* Pop any registers that are not needed in the new block. */
2265 for (reg
= old
->top
; reg
>= 0; reg
--)
2266 if (! TEST_HARD_REG_BIT (new->reg_set
, old
->reg
[reg
]))
2267 emit_pop_insn (insn
, old
, FP_MODE_REG (old
->reg
[reg
], DFmode
),
2272 /* If the new block has never been processed, then it can inherit
2273 the old stack order. */
2275 new->top
= old
->top
;
2276 memcpy (new->reg
, old
->reg
, sizeof (new->reg
));
2280 /* This block has been entered before, and we must match the
2281 previously selected stack order. */
2283 /* By now, the only difference should be the order of the stack,
2284 not their depth or liveliness. */
2286 GO_IF_HARD_REG_EQUAL (old
->reg_set
, new->reg_set
, win
);
2289 if (old
->top
!= new->top
)
2292 /* If the stack is not empty (new->top != -1), loop here emitting
2293 swaps until the stack is correct.
2295 The worst case number of swaps emitted is N + 2, where N is the
2296 depth of the stack. In some cases, the reg at the top of
2297 stack may be correct, but swapped anyway in order to fix
2298 other regs. But since we never swap any other reg away from
2299 its correct slot, this algorithm will converge. */
2304 /* Swap the reg at top of stack into the position it is
2305 supposed to be in, until the correct top of stack appears. */
2307 while (old
->reg
[old
->top
] != new->reg
[new->top
])
2309 for (reg
= new->top
; reg
>= 0; reg
--)
2310 if (new->reg
[reg
] == old
->reg
[old
->top
])
2316 emit_swap_insn (insn
, old
,
2317 FP_MODE_REG (old
->reg
[reg
], DFmode
));
2320 /* See if any regs remain incorrect. If so, bring an
2321 incorrect reg to the top of stack, and let the while loop
2324 for (reg
= new->top
; reg
>= 0; reg
--)
2325 if (new->reg
[reg
] != old
->reg
[reg
])
2327 emit_swap_insn (insn
, old
,
2328 FP_MODE_REG (old
->reg
[reg
], DFmode
));
2333 /* At this point there must be no differences. */
2335 for (reg
= old
->top
; reg
>= 0; reg
--)
2336 if (old
->reg
[reg
] != new->reg
[reg
])
2341 current_block
->end
= PREV_INSN (insn
);
2344 /* Print stack configuration. */
2347 print_stack (file
, s
)
2355 fprintf (file
, "uninitialized\n");
2356 else if (s
->top
== -1)
2357 fprintf (file
, "empty\n");
2362 for (i
= 0; i
<= s
->top
; ++i
)
2363 fprintf (file
, "%d ", s
->reg
[i
]);
2364 fputs ("]\n", file
);
2368 /* This function was doing life analysis. We now let the regular live
2369 code do it's job, so we only need to check some extra invariants
2370 that reg-stack expects. Primary among these being that all registers
2371 are initialized before use.
2373 The function returns true when code was emitted to CFG edges and
2374 commit_edge_insertions needs to be called. */
2377 convert_regs_entry ()
2383 FOR_EACH_BB_REVERSE (block
)
2385 block_info bi
= BLOCK_INFO (block
);
2388 /* Set current register status at last instruction `uninitialized'. */
2389 bi
->stack_in
.top
= -2;
2391 /* Copy live_at_end and live_at_start into temporaries. */
2392 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; reg
++)
2394 if (REGNO_REG_SET_P (block
->global_live_at_end
, reg
))
2395 SET_HARD_REG_BIT (bi
->out_reg_set
, reg
);
2396 if (REGNO_REG_SET_P (block
->global_live_at_start
, reg
))
2397 SET_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
);
2401 /* Load something into each stack register live at function entry.
2402 Such live registers can be caused by uninitialized variables or
2403 functions not returning values on all paths. In order to keep
2404 the push/pop code happy, and to not scrog the register stack, we
2405 must put something in these registers. Use a QNaN.
2407 Note that we are insertting converted code here. This code is
2408 never seen by the convert_regs pass. */
2410 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
2412 basic_block block
= e
->dest
;
2413 block_info bi
= BLOCK_INFO (block
);
2416 for (reg
= LAST_STACK_REG
; reg
>= FIRST_STACK_REG
; --reg
)
2417 if (TEST_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
))
2421 bi
->stack_in
.reg
[++top
] = reg
;
2423 init
= gen_rtx_SET (VOIDmode
,
2424 FP_MODE_REG (FIRST_STACK_REG
, SFmode
),
2426 insert_insn_on_edge (init
, e
);
2430 bi
->stack_in
.top
= top
;
2436 /* Construct the desired stack for function exit. This will either
2437 be `empty', or the function return value at top-of-stack. */
2440 convert_regs_exit ()
2442 int value_reg_low
, value_reg_high
;
2446 retvalue
= stack_result (current_function_decl
);
2447 value_reg_low
= value_reg_high
= -1;
2450 value_reg_low
= REGNO (retvalue
);
2451 value_reg_high
= value_reg_low
2452 + HARD_REGNO_NREGS (value_reg_low
, GET_MODE (retvalue
)) - 1;
2455 output_stack
= &BLOCK_INFO (EXIT_BLOCK_PTR
)->stack_in
;
2456 if (value_reg_low
== -1)
2457 output_stack
->top
= -1;
2462 output_stack
->top
= value_reg_high
- value_reg_low
;
2463 for (reg
= value_reg_low
; reg
<= value_reg_high
; ++reg
)
2465 output_stack
->reg
[reg
- value_reg_low
] = reg
;
2466 SET_HARD_REG_BIT (output_stack
->reg_set
, reg
);
2471 /* Adjust the stack of this block on exit to match the stack of the
2472 target block, or copy stack info into the stack of the successor
2473 of the successor hasn't been processed yet. */
2475 compensate_edge (e
, file
)
2479 basic_block block
= e
->src
, target
= e
->dest
;
2480 block_info bi
= BLOCK_INFO (block
);
2481 struct stack_def regstack
, tmpstack
;
2482 stack target_stack
= &BLOCK_INFO (target
)->stack_in
;
2485 current_block
= block
;
2486 regstack
= bi
->stack_out
;
2488 fprintf (file
, "Edge %d->%d: ", block
->index
, target
->index
);
2490 if (target_stack
->top
== -2)
2492 /* The target block hasn't had a stack order selected.
2493 We need merely ensure that no pops are needed. */
2494 for (reg
= regstack
.top
; reg
>= 0; --reg
)
2495 if (!TEST_HARD_REG_BIT (target_stack
->reg_set
, regstack
.reg
[reg
]))
2501 fprintf (file
, "new block; copying stack position\n");
2503 /* change_stack kills values in regstack. */
2504 tmpstack
= regstack
;
2506 change_stack (block
->end
, &tmpstack
, target_stack
, EMIT_AFTER
);
2511 fprintf (file
, "new block; pops needed\n");
2515 if (target_stack
->top
== regstack
.top
)
2517 for (reg
= target_stack
->top
; reg
>= 0; --reg
)
2518 if (target_stack
->reg
[reg
] != regstack
.reg
[reg
])
2524 fprintf (file
, "no changes needed\n");
2531 fprintf (file
, "correcting stack to ");
2532 print_stack (file
, target_stack
);
2536 /* Care for non-call EH edges specially. The normal return path have
2537 values in registers. These will be popped en masse by the unwind
2539 if ((e
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
)) == EDGE_EH
)
2540 target_stack
->top
= -1;
2542 /* Other calls may appear to have values live in st(0), but the
2543 abnormal return path will not have actually loaded the values. */
2544 else if (e
->flags
& EDGE_ABNORMAL_CALL
)
2546 /* Assert that the lifetimes are as we expect -- one value
2547 live at st(0) on the end of the source block, and no
2548 values live at the beginning of the destination block. */
2551 CLEAR_HARD_REG_SET (tmp
);
2552 GO_IF_HARD_REG_EQUAL (target_stack
->reg_set
, tmp
, eh1
);
2556 SET_HARD_REG_BIT (tmp
, FIRST_STACK_REG
);
2557 GO_IF_HARD_REG_EQUAL (regstack
.reg_set
, tmp
, eh2
);
2561 target_stack
->top
= -1;
2564 /* It is better to output directly to the end of the block
2565 instead of to the edge, because emit_swap can do minimal
2566 insn scheduling. We can do this when there is only one
2567 edge out, and it is not abnormal. */
2568 else if (block
->succ
->succ_next
== NULL
&& !(e
->flags
& EDGE_ABNORMAL
))
2570 /* change_stack kills values in regstack. */
2571 tmpstack
= regstack
;
2573 change_stack (block
->end
, &tmpstack
, target_stack
,
2574 (GET_CODE (block
->end
) == JUMP_INSN
2575 ? EMIT_BEFORE
: EMIT_AFTER
));
2581 /* We don't support abnormal edges. Global takes care to
2582 avoid any live register across them, so we should never
2583 have to insert instructions on such edges. */
2584 if (e
->flags
& EDGE_ABNORMAL
)
2587 current_block
= NULL
;
2590 /* ??? change_stack needs some point to emit insns after.
2591 Also needed to keep gen_sequence from returning a
2592 pattern as opposed to a sequence, which would lose
2594 after
= emit_note (NULL
, NOTE_INSN_DELETED
);
2596 tmpstack
= regstack
;
2597 change_stack (after
, &tmpstack
, target_stack
, EMIT_BEFORE
);
2599 seq
= gen_sequence ();
2602 insert_insn_on_edge (seq
, e
);
2608 /* Convert stack register references in one block. */
2611 convert_regs_1 (file
, block
)
2615 struct stack_def regstack
;
2616 block_info bi
= BLOCK_INFO (block
);
2619 edge e
, beste
= NULL
;
2623 /* Find the edge we will copy stack from. It should be the most frequent
2624 one as it will get cheapest after compensation code is generated,
2625 if multiple such exists, take one with largest count, prefer critical
2626 one (as splitting critical edges is more expensive), or one with lowest
2627 index, to avoid random changes with different orders of the edges. */
2628 for (e
= block
->pred
; e
; e
= e
->pred_next
)
2630 if (e
->flags
& EDGE_DFS_BACK
)
2634 else if (EDGE_FREQUENCY (beste
) < EDGE_FREQUENCY (e
))
2636 else if (EDGE_FREQUENCY (beste
) > EDGE_FREQUENCY (e
))
2638 else if (beste
->count
< e
->count
)
2640 else if (beste
->count
> e
->count
)
2642 else if ((EDGE_CRITICAL_P (e
) != 0)
2643 != (EDGE_CRITICAL_P (beste
) != 0))
2645 if (EDGE_CRITICAL_P (e
))
2648 else if (e
->src
->index
< beste
->src
->index
)
2652 /* Entry block does have stack already initialized. */
2653 if (bi
->stack_in
.top
== -2)
2654 inserted
|= compensate_edge (beste
, file
);
2658 current_block
= block
;
2662 fprintf (file
, "\nBasic block %d\nInput stack: ", block
->index
);
2663 print_stack (file
, &bi
->stack_in
);
2666 /* Process all insns in this block. Keep track of NEXT so that we
2667 don't process insns emitted while substituting in INSN. */
2669 regstack
= bi
->stack_in
;
2673 next
= NEXT_INSN (insn
);
2675 /* Ensure we have not missed a block boundary. */
2678 if (insn
== block
->end
)
2681 /* Don't bother processing unless there is a stack reg
2682 mentioned or if it's a CALL_INSN. */
2683 if (stack_regs_mentioned (insn
)
2684 || GET_CODE (insn
) == CALL_INSN
)
2688 fprintf (file
, " insn %d input stack: ",
2690 print_stack (file
, ®stack
);
2692 subst_stack_regs (insn
, ®stack
);
2699 fprintf (file
, "Expected live registers [");
2700 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; ++reg
)
2701 if (TEST_HARD_REG_BIT (bi
->out_reg_set
, reg
))
2702 fprintf (file
, " %d", reg
);
2703 fprintf (file
, " ]\nOutput stack: ");
2704 print_stack (file
, ®stack
);
2708 if (GET_CODE (insn
) == JUMP_INSN
)
2709 insn
= PREV_INSN (insn
);
2711 /* If the function is declared to return a value, but it returns one
2712 in only some cases, some registers might come live here. Emit
2713 necessary moves for them. */
2715 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; ++reg
)
2717 if (TEST_HARD_REG_BIT (bi
->out_reg_set
, reg
)
2718 && ! TEST_HARD_REG_BIT (regstack
.reg_set
, reg
))
2724 fprintf (file
, "Emitting insn initializing reg %d\n",
2728 set
= gen_rtx_SET (VOIDmode
, FP_MODE_REG (reg
, SFmode
),
2730 insn
= emit_insn_after (set
, insn
);
2731 subst_stack_regs (insn
, ®stack
);
2735 /* Something failed if the stack lives don't match. */
2736 GO_IF_HARD_REG_EQUAL (regstack
.reg_set
, bi
->out_reg_set
, win
);
2739 bi
->stack_out
= regstack
;
2741 /* Compensate the back edges, as those wasn't visited yet. */
2742 for (e
= block
->succ
; e
; e
= e
->succ_next
)
2744 if (e
->flags
& EDGE_DFS_BACK
2745 || (e
->dest
== EXIT_BLOCK_PTR
))
2747 if (!BLOCK_INFO (e
->dest
)->done
2748 && e
->dest
!= block
)
2750 inserted
|= compensate_edge (e
, file
);
2753 for (e
= block
->pred
; e
; e
= e
->pred_next
)
2755 if (e
!= beste
&& !(e
->flags
& EDGE_DFS_BACK
)
2756 && e
->src
!= ENTRY_BLOCK_PTR
)
2758 if (!BLOCK_INFO (e
->src
)->done
)
2760 inserted
|= compensate_edge (e
, file
);
2767 /* Convert registers in all blocks reachable from BLOCK. */
2770 convert_regs_2 (file
, block
)
2774 basic_block
*stack
, *sp
;
2777 stack
= (basic_block
*) xmalloc (sizeof (*stack
) * n_basic_blocks
);
2788 inserted
|= convert_regs_1 (file
, block
);
2789 BLOCK_INFO (block
)->done
= 1;
2791 for (e
= block
->succ
; e
; e
= e
->succ_next
)
2792 if (! (e
->flags
& EDGE_DFS_BACK
))
2794 BLOCK_INFO (e
->dest
)->predecessors
--;
2795 if (!BLOCK_INFO (e
->dest
)->predecessors
)
2799 while (sp
!= stack
);
2804 /* Traverse all basic blocks in a function, converting the register
2805 references in each insn from the "flat" register file that gcc uses,
2806 to the stack-like registers the 387 uses. */
2816 /* Initialize uninitialized registers on function entry. */
2817 inserted
= convert_regs_entry ();
2819 /* Construct the desired stack for function exit. */
2820 convert_regs_exit ();
2821 BLOCK_INFO (EXIT_BLOCK_PTR
)->done
= 1;
2823 /* ??? Future: process inner loops first, and give them arbitrary
2824 initial stacks which emit_swap_insn can modify. This ought to
2825 prevent double fxch that aften appears at the head of a loop. */
2827 /* Process all blocks reachable from all entry points. */
2828 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
2829 inserted
|= convert_regs_2 (file
, e
->dest
);
2831 /* ??? Process all unreachable blocks. Though there's no excuse
2832 for keeping these even when not optimizing. */
2835 block_info bi
= BLOCK_INFO (b
);
2841 /* Create an arbitrary input stack. */
2842 bi
->stack_in
.top
= -1;
2843 for (reg
= LAST_STACK_REG
; reg
>= FIRST_STACK_REG
; --reg
)
2844 if (TEST_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
))
2845 bi
->stack_in
.reg
[++bi
->stack_in
.top
] = reg
;
2847 inserted
|= convert_regs_2 (file
, b
);
2851 fixup_abnormal_edges ();
2853 commit_edge_insertions ();
2860 #endif /* STACK_REGS */
2862 #include "gt-reg-stack.h"