* config/i386/netbsd-elf.h (LINK_SPEC): Define as
[official-gcc.git] / gcc / global.c
blobaaa789607c09a32901c614681a9b910acc871481
1 /* Allocate registers for pseudo-registers that span basic blocks.
2 Copyright (C) 1987, 1988, 1991, 1994, 1996, 1997, 1998,
3 1999, 2000, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
26 #include "machmode.h"
27 #include "hard-reg-set.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "reload.h"
36 #include "output.h"
37 #include "toplev.h"
39 /* This pass of the compiler performs global register allocation.
40 It assigns hard register numbers to all the pseudo registers
41 that were not handled in local_alloc. Assignments are recorded
42 in the vector reg_renumber, not by changing the rtl code.
43 (Such changes are made by final). The entry point is
44 the function global_alloc.
46 After allocation is complete, the reload pass is run as a subroutine
47 of this pass, so that when a pseudo reg loses its hard reg due to
48 spilling it is possible to make a second attempt to find a hard
49 reg for it. The reload pass is independent in other respects
50 and it is run even when stupid register allocation is in use.
52 1. Assign allocation-numbers (allocnos) to the pseudo-registers
53 still needing allocations and to the pseudo-registers currently
54 allocated by local-alloc which may be spilled by reload.
55 Set up tables reg_allocno and allocno_reg to map
56 reg numbers to allocnos and vice versa.
57 max_allocno gets the number of allocnos in use.
59 2. Allocate a max_allocno by max_allocno conflict bit matrix and clear it.
60 Allocate a max_allocno by FIRST_PSEUDO_REGISTER conflict matrix
61 for conflicts between allocnos and explicit hard register use
62 (which includes use of pseudo-registers allocated by local_alloc).
64 3. For each basic block
65 walk forward through the block, recording which
66 pseudo-registers and which hardware registers are live.
67 Build the conflict matrix between the pseudo-registers
68 and another of pseudo-registers versus hardware registers.
69 Also record the preferred hardware registers
70 for each pseudo-register.
72 4. Sort a table of the allocnos into order of
73 desirability of the variables.
75 5. Allocate the variables in that order; each if possible into
76 a preferred register, else into another register. */
78 /* Number of pseudo-registers which are candidates for allocation. */
80 static int max_allocno;
82 /* Indexed by (pseudo) reg number, gives the allocno, or -1
83 for pseudo registers which are not to be allocated. */
85 static int *reg_allocno;
87 struct allocno
89 int reg;
90 /* Gives the number of consecutive hard registers needed by that
91 pseudo reg. */
92 int size;
94 /* Number of calls crossed by each allocno. */
95 int calls_crossed;
97 /* Number of refs to each allocno. */
98 int n_refs;
100 /* Frequency of uses of each allocno. */
101 int freq;
103 /* Guess at live length of each allocno.
104 This is actually the max of the live lengths of the regs. */
105 int live_length;
107 /* Set of hard regs conflicting with allocno N. */
109 HARD_REG_SET hard_reg_conflicts;
111 /* Set of hard regs preferred by allocno N.
112 This is used to make allocnos go into regs that are copied to or from them,
113 when possible, to reduce register shuffling. */
115 HARD_REG_SET hard_reg_preferences;
117 /* Similar, but just counts register preferences made in simple copy
118 operations, rather than arithmetic. These are given priority because
119 we can always eliminate an insn by using these, but using a register
120 in the above list won't always eliminate an insn. */
122 HARD_REG_SET hard_reg_copy_preferences;
124 /* Similar to hard_reg_preferences, but includes bits for subsequent
125 registers when an allocno is multi-word. The above variable is used for
126 allocation while this is used to build reg_someone_prefers, below. */
128 HARD_REG_SET hard_reg_full_preferences;
130 /* Set of hard registers that some later allocno has a preference for. */
132 HARD_REG_SET regs_someone_prefers;
135 static struct allocno *allocno;
137 /* A vector of the integers from 0 to max_allocno-1,
138 sorted in the order of first-to-be-allocated first. */
140 static int *allocno_order;
142 /* Indexed by (pseudo) reg number, gives the number of another
143 lower-numbered pseudo reg which can share a hard reg with this pseudo
144 *even if the two pseudos would otherwise appear to conflict*. */
146 static int *reg_may_share;
148 /* Define the number of bits in each element of `conflicts' and what
149 type that element has. We use the largest integer format on the
150 host machine. */
152 #define INT_BITS HOST_BITS_PER_WIDE_INT
153 #define INT_TYPE HOST_WIDE_INT
155 /* max_allocno by max_allocno array of bits,
156 recording whether two allocno's conflict (can't go in the same
157 hardware register).
159 `conflicts' is symmetric after the call to mirror_conflicts. */
161 static INT_TYPE *conflicts;
163 /* Number of ints require to hold max_allocno bits.
164 This is the length of a row in `conflicts'. */
166 static int allocno_row_words;
168 /* Two macros to test or store 1 in an element of `conflicts'. */
170 #define CONFLICTP(I, J) \
171 (conflicts[(I) * allocno_row_words + (unsigned) (J) / INT_BITS] \
172 & ((INT_TYPE) 1 << ((unsigned) (J) % INT_BITS)))
174 #define SET_CONFLICT(I, J) \
175 (conflicts[(I) * allocno_row_words + (unsigned) (J) / INT_BITS] \
176 |= ((INT_TYPE) 1 << ((unsigned) (J) % INT_BITS)))
178 /* For any allocno set in ALLOCNO_SET, set ALLOCNO to that allocno,
179 and execute CODE. */
180 #define EXECUTE_IF_SET_IN_ALLOCNO_SET(ALLOCNO_SET, ALLOCNO, CODE) \
181 do { \
182 int i_; \
183 int allocno_; \
184 INT_TYPE *p_ = (ALLOCNO_SET); \
186 for (i_ = allocno_row_words - 1, allocno_ = 0; i_ >= 0; \
187 i_--, allocno_ += INT_BITS) \
189 unsigned INT_TYPE word_ = (unsigned INT_TYPE) *p_++; \
191 for ((ALLOCNO) = allocno_; word_; word_ >>= 1, (ALLOCNO)++) \
193 if (word_ & 1) \
194 {CODE;} \
197 } while (0)
199 /* This doesn't work for non-GNU C due to the way CODE is macro expanded. */
200 #if 0
201 /* For any allocno that conflicts with IN_ALLOCNO, set OUT_ALLOCNO to
202 the conflicting allocno, and execute CODE. This macro assumes that
203 mirror_conflicts has been run. */
204 #define EXECUTE_IF_CONFLICT(IN_ALLOCNO, OUT_ALLOCNO, CODE)\
205 EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + (IN_ALLOCNO) * allocno_row_words,\
206 OUT_ALLOCNO, (CODE))
207 #endif
209 /* Set of hard regs currently live (during scan of all insns). */
211 static HARD_REG_SET hard_regs_live;
213 /* Set of registers that global-alloc isn't supposed to use. */
215 static HARD_REG_SET no_global_alloc_regs;
217 /* Set of registers used so far. */
219 static HARD_REG_SET regs_used_so_far;
221 /* Number of refs to each hard reg, as used by local alloc.
222 It is zero for a reg that contains global pseudos or is explicitly used. */
224 static int local_reg_n_refs[FIRST_PSEUDO_REGISTER];
226 /* Frequency of uses of given hard reg. */
227 static int local_reg_freq[FIRST_PSEUDO_REGISTER];
229 /* Guess at live length of each hard reg, as used by local alloc.
230 This is actually the sum of the live lengths of the specific regs. */
232 static int local_reg_live_length[FIRST_PSEUDO_REGISTER];
234 /* Test a bit in TABLE, a vector of HARD_REG_SETs,
235 for vector element I, and hard register number J. */
237 #define REGBITP(TABLE, I, J) TEST_HARD_REG_BIT (allocno[I].TABLE, J)
239 /* Set to 1 a bit in a vector of HARD_REG_SETs. Works like REGBITP. */
241 #define SET_REGBIT(TABLE, I, J) SET_HARD_REG_BIT (allocno[I].TABLE, J)
243 /* Bit mask for allocnos live at current point in the scan. */
245 static INT_TYPE *allocnos_live;
247 /* Test, set or clear bit number I in allocnos_live,
248 a bit vector indexed by allocno. */
250 #define ALLOCNO_LIVE_P(I) \
251 (allocnos_live[(unsigned) (I) / INT_BITS] \
252 & ((INT_TYPE) 1 << ((unsigned) (I) % INT_BITS)))
254 #define SET_ALLOCNO_LIVE(I) \
255 (allocnos_live[(unsigned) (I) / INT_BITS] \
256 |= ((INT_TYPE) 1 << ((unsigned) (I) % INT_BITS)))
258 #define CLEAR_ALLOCNO_LIVE(I) \
259 (allocnos_live[(unsigned) (I) / INT_BITS] \
260 &= ~((INT_TYPE) 1 << ((unsigned) (I) % INT_BITS)))
262 /* This is turned off because it doesn't work right for DImode.
263 (And it is only used for DImode, so the other cases are worthless.)
264 The problem is that it isn't true that there is NO possibility of conflict;
265 only that there is no conflict if the two pseudos get the exact same regs.
266 If they were allocated with a partial overlap, there would be a conflict.
267 We can't safely turn off the conflict unless we have another way to
268 prevent the partial overlap.
270 Idea: change hard_reg_conflicts so that instead of recording which
271 hard regs the allocno may not overlap, it records where the allocno
272 may not start. Change both where it is used and where it is updated.
273 Then there is a way to record that (reg:DI 108) may start at 10
274 but not at 9 or 11. There is still the question of how to record
275 this semi-conflict between two pseudos. */
276 #if 0
277 /* Reg pairs for which conflict after the current insn
278 is inhibited by a REG_NO_CONFLICT note.
279 If the table gets full, we ignore any other notes--that is conservative. */
280 #define NUM_NO_CONFLICT_PAIRS 4
281 /* Number of pairs in use in this insn. */
282 int n_no_conflict_pairs;
283 static struct { int allocno1, allocno2;}
284 no_conflict_pairs[NUM_NO_CONFLICT_PAIRS];
285 #endif /* 0 */
287 /* Record all regs that are set in any one insn.
288 Communication from mark_reg_{store,clobber} and global_conflicts. */
290 static rtx *regs_set;
291 static int n_regs_set;
293 /* All registers that can be eliminated. */
295 static HARD_REG_SET eliminable_regset;
297 static int allocno_compare PARAMS ((const PTR, const PTR));
298 static void global_conflicts PARAMS ((void));
299 static void mirror_conflicts PARAMS ((void));
300 static void expand_preferences PARAMS ((void));
301 static void prune_preferences PARAMS ((void));
302 static void find_reg PARAMS ((int, HARD_REG_SET, int, int, int));
303 static void record_one_conflict PARAMS ((int));
304 static void record_conflicts PARAMS ((int *, int));
305 static void mark_reg_store PARAMS ((rtx, rtx, void *));
306 static void mark_reg_clobber PARAMS ((rtx, rtx, void *));
307 static void mark_reg_conflicts PARAMS ((rtx));
308 static void mark_reg_death PARAMS ((rtx));
309 static void mark_reg_live_nc PARAMS ((int, enum machine_mode));
310 static void set_preference PARAMS ((rtx, rtx));
311 static void dump_conflicts PARAMS ((FILE *));
312 static void reg_becomes_live PARAMS ((rtx, rtx, void *));
313 static void reg_dies PARAMS ((int, enum machine_mode,
314 struct insn_chain *));
316 /* Perform allocation of pseudo-registers not allocated by local_alloc.
317 FILE is a file to output debugging information on,
318 or zero if such output is not desired.
320 Return value is nonzero if reload failed
321 and we must not do any more for this function. */
324 global_alloc (file)
325 FILE *file;
327 int retval;
328 #ifdef ELIMINABLE_REGS
329 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
330 #endif
331 int need_fp
332 = (! flag_omit_frame_pointer
333 #ifdef EXIT_IGNORE_STACK
334 || (current_function_calls_alloca && EXIT_IGNORE_STACK)
335 #endif
336 || FRAME_POINTER_REQUIRED);
338 size_t i;
339 rtx x;
341 max_allocno = 0;
343 /* A machine may have certain hard registers that
344 are safe to use only within a basic block. */
346 CLEAR_HARD_REG_SET (no_global_alloc_regs);
348 /* Build the regset of all eliminable registers and show we can't use those
349 that we already know won't be eliminated. */
350 #ifdef ELIMINABLE_REGS
351 for (i = 0; i < ARRAY_SIZE (eliminables); i++)
353 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
355 if (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
356 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp))
357 SET_HARD_REG_BIT (no_global_alloc_regs, eliminables[i].from);
359 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
360 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
361 if (need_fp)
362 SET_HARD_REG_BIT (no_global_alloc_regs, HARD_FRAME_POINTER_REGNUM);
363 #endif
365 #else
366 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
367 if (need_fp)
368 SET_HARD_REG_BIT (no_global_alloc_regs, FRAME_POINTER_REGNUM);
369 #endif
371 /* Track which registers have already been used. Start with registers
372 explicitly in the rtl, then registers allocated by local register
373 allocation. */
375 CLEAR_HARD_REG_SET (regs_used_so_far);
376 #ifdef LEAF_REGISTERS
377 /* If we are doing the leaf function optimization, and this is a leaf
378 function, it means that the registers that take work to save are those
379 that need a register window. So prefer the ones that can be used in
380 a leaf function. */
382 char *cheap_regs;
383 char *leaf_regs = LEAF_REGISTERS;
385 if (only_leaf_regs_used () && leaf_function_p ())
386 cheap_regs = leaf_regs;
387 else
388 cheap_regs = call_used_regs;
389 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
390 if (regs_ever_live[i] || cheap_regs[i])
391 SET_HARD_REG_BIT (regs_used_so_far, i);
393 #else
394 /* We consider registers that do not have to be saved over calls as if
395 they were already used since there is no cost in using them. */
396 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
397 if (regs_ever_live[i] || call_used_regs[i])
398 SET_HARD_REG_BIT (regs_used_so_far, i);
399 #endif
401 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
402 if (reg_renumber[i] >= 0)
403 SET_HARD_REG_BIT (regs_used_so_far, reg_renumber[i]);
405 /* Establish mappings from register number to allocation number
406 and vice versa. In the process, count the allocnos. */
408 reg_allocno = (int *) xmalloc (max_regno * sizeof (int));
410 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
411 reg_allocno[i] = -1;
413 /* Initialize the shared-hard-reg mapping
414 from the list of pairs that may share. */
415 reg_may_share = (int *) xcalloc (max_regno, sizeof (int));
416 for (x = regs_may_share; x; x = XEXP (XEXP (x, 1), 1))
418 int r1 = REGNO (XEXP (x, 0));
419 int r2 = REGNO (XEXP (XEXP (x, 1), 0));
420 if (r1 > r2)
421 reg_may_share[r1] = r2;
422 else
423 reg_may_share[r2] = r1;
426 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
427 /* Note that reg_live_length[i] < 0 indicates a "constant" reg
428 that we are supposed to refrain from putting in a hard reg.
429 -2 means do make an allocno but don't allocate it. */
430 if (REG_N_REFS (i) != 0 && REG_LIVE_LENGTH (i) != -1
431 /* Don't allocate pseudos that cross calls,
432 if this function receives a nonlocal goto. */
433 && (! current_function_has_nonlocal_label
434 || REG_N_CALLS_CROSSED (i) == 0))
436 if (reg_renumber[i] < 0 && reg_may_share[i] && reg_allocno[reg_may_share[i]] >= 0)
437 reg_allocno[i] = reg_allocno[reg_may_share[i]];
438 else
439 reg_allocno[i] = max_allocno++;
440 if (REG_LIVE_LENGTH (i) == 0)
441 abort ();
443 else
444 reg_allocno[i] = -1;
446 allocno = (struct allocno *) xcalloc (max_allocno, sizeof (struct allocno));
448 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
449 if (reg_allocno[i] >= 0)
451 int num = reg_allocno[i];
452 allocno[num].reg = i;
453 allocno[num].size = PSEUDO_REGNO_SIZE (i);
454 allocno[num].calls_crossed += REG_N_CALLS_CROSSED (i);
455 allocno[num].n_refs += REG_N_REFS (i);
456 allocno[num].freq += REG_FREQ (i);
457 if (allocno[num].live_length < REG_LIVE_LENGTH (i))
458 allocno[num].live_length = REG_LIVE_LENGTH (i);
461 /* Calculate amount of usage of each hard reg by pseudos
462 allocated by local-alloc. This is to see if we want to
463 override it. */
464 memset ((char *) local_reg_live_length, 0, sizeof local_reg_live_length);
465 memset ((char *) local_reg_n_refs, 0, sizeof local_reg_n_refs);
466 memset ((char *) local_reg_freq, 0, sizeof local_reg_freq);
467 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
468 if (reg_renumber[i] >= 0)
470 int regno = reg_renumber[i];
471 int endregno = regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (i));
472 int j;
474 for (j = regno; j < endregno; j++)
476 local_reg_n_refs[j] += REG_N_REFS (i);
477 local_reg_freq[j] += REG_FREQ (i);
478 local_reg_live_length[j] += REG_LIVE_LENGTH (i);
482 /* We can't override local-alloc for a reg used not just by local-alloc. */
483 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
484 if (regs_ever_live[i])
485 local_reg_n_refs[i] = 0, local_reg_freq[i] = 0;
487 allocno_row_words = (max_allocno + INT_BITS - 1) / INT_BITS;
489 /* We used to use alloca here, but the size of what it would try to
490 allocate would occasionally cause it to exceed the stack limit and
491 cause unpredictable core dumps. Some examples were > 2Mb in size. */
492 conflicts = (INT_TYPE *) xcalloc (max_allocno * allocno_row_words,
493 sizeof (INT_TYPE));
495 allocnos_live = (INT_TYPE *) xmalloc (allocno_row_words * sizeof (INT_TYPE));
497 /* If there is work to be done (at least one reg to allocate),
498 perform global conflict analysis and allocate the regs. */
500 if (max_allocno > 0)
502 /* Scan all the insns and compute the conflicts among allocnos
503 and between allocnos and hard regs. */
505 global_conflicts ();
507 mirror_conflicts ();
509 /* Eliminate conflicts between pseudos and eliminable registers. If
510 the register is not eliminated, the pseudo won't really be able to
511 live in the eliminable register, so the conflict doesn't matter.
512 If we do eliminate the register, the conflict will no longer exist.
513 So in either case, we can ignore the conflict. Likewise for
514 preferences. */
516 for (i = 0; i < (size_t) max_allocno; i++)
518 AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_conflicts,
519 eliminable_regset);
520 AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_copy_preferences,
521 eliminable_regset);
522 AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_preferences,
523 eliminable_regset);
526 /* Try to expand the preferences by merging them between allocnos. */
528 expand_preferences ();
530 /* Determine the order to allocate the remaining pseudo registers. */
532 allocno_order = (int *) xmalloc (max_allocno * sizeof (int));
533 for (i = 0; i < (size_t) max_allocno; i++)
534 allocno_order[i] = i;
536 /* Default the size to 1, since allocno_compare uses it to divide by.
537 Also convert allocno_live_length of zero to -1. A length of zero
538 can occur when all the registers for that allocno have reg_live_length
539 equal to -2. In this case, we want to make an allocno, but not
540 allocate it. So avoid the divide-by-zero and set it to a low
541 priority. */
543 for (i = 0; i < (size_t) max_allocno; i++)
545 if (allocno[i].size == 0)
546 allocno[i].size = 1;
547 if (allocno[i].live_length == 0)
548 allocno[i].live_length = -1;
551 qsort (allocno_order, max_allocno, sizeof (int), allocno_compare);
553 prune_preferences ();
555 if (file)
556 dump_conflicts (file);
558 /* Try allocating them, one by one, in that order,
559 except for parameters marked with reg_live_length[regno] == -2. */
561 for (i = 0; i < (size_t) max_allocno; i++)
562 if (reg_renumber[allocno[allocno_order[i]].reg] < 0
563 && REG_LIVE_LENGTH (allocno[allocno_order[i]].reg) >= 0)
565 /* If we have more than one register class,
566 first try allocating in the class that is cheapest
567 for this pseudo-reg. If that fails, try any reg. */
568 if (N_REG_CLASSES > 1)
570 find_reg (allocno_order[i], 0, 0, 0, 0);
571 if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
572 continue;
574 if (reg_alternate_class (allocno[allocno_order[i]].reg) != NO_REGS)
575 find_reg (allocno_order[i], 0, 1, 0, 0);
578 free (allocno_order);
581 /* Do the reloads now while the allocno data still exist, so that we can
582 try to assign new hard regs to any pseudo regs that are spilled. */
584 #if 0 /* We need to eliminate regs even if there is no rtl code,
585 for the sake of debugging information. */
586 if (n_basic_blocks > 0)
587 #endif
589 build_insn_chain (get_insns ());
590 retval = reload (get_insns (), 1);
593 /* Clean up. */
594 free (reg_allocno);
595 free (reg_may_share);
596 free (allocno);
597 free (conflicts);
598 free (allocnos_live);
600 return retval;
603 /* Sort predicate for ordering the allocnos.
604 Returns -1 (1) if *v1 should be allocated before (after) *v2. */
606 static int
607 allocno_compare (v1p, v2p)
608 const PTR v1p;
609 const PTR v2p;
611 int v1 = *(const int *)v1p, v2 = *(const int *)v2p;
612 /* Note that the quotient will never be bigger than
613 the value of floor_log2 times the maximum number of
614 times a register can occur in one insn (surely less than 100)
615 weighted by the frequency (maximally REG_FREQ_MAX).
616 Multiplying this by 10000/REG_FREQ_MAX can't overflow. */
617 int pri1
618 = (((double) (floor_log2 (allocno[v1].n_refs) * allocno[v1].freq)
619 / allocno[v1].live_length)
620 * (10000 / REG_FREQ_MAX) * allocno[v1].size);
621 int pri2
622 = (((double) (floor_log2 (allocno[v2].n_refs) * allocno[v2].freq)
623 / allocno[v2].live_length)
624 * (10000 / REG_FREQ_MAX) * allocno[v2].size);
625 if (pri2 - pri1)
626 return pri2 - pri1;
628 /* If regs are equally good, sort by allocno,
629 so that the results of qsort leave nothing to chance. */
630 return v1 - v2;
633 /* Scan the rtl code and record all conflicts and register preferences in the
634 conflict matrices and preference tables. */
636 static void
637 global_conflicts ()
639 int i;
640 basic_block b;
641 rtx insn;
642 int *block_start_allocnos;
644 /* Make a vector that mark_reg_{store,clobber} will store in. */
645 regs_set = (rtx *) xmalloc (max_parallel * sizeof (rtx) * 2);
647 block_start_allocnos = (int *) xmalloc (max_allocno * sizeof (int));
649 FOR_EACH_BB (b)
651 memset ((char *) allocnos_live, 0, allocno_row_words * sizeof (INT_TYPE));
653 /* Initialize table of registers currently live
654 to the state at the beginning of this basic block.
655 This also marks the conflicts among hard registers
656 and any allocnos that are live.
658 For pseudo-regs, there is only one bit for each one
659 no matter how many hard regs it occupies.
660 This is ok; we know the size from PSEUDO_REGNO_SIZE.
661 For explicit hard regs, we cannot know the size that way
662 since one hard reg can be used with various sizes.
663 Therefore, we must require that all the hard regs
664 implicitly live as part of a multi-word hard reg
665 are explicitly marked in basic_block_live_at_start. */
668 regset old = b->global_live_at_start;
669 int ax = 0;
671 REG_SET_TO_HARD_REG_SET (hard_regs_live, old);
672 EXECUTE_IF_SET_IN_REG_SET (old, FIRST_PSEUDO_REGISTER, i,
674 int a = reg_allocno[i];
675 if (a >= 0)
677 SET_ALLOCNO_LIVE (a);
678 block_start_allocnos[ax++] = a;
680 else if ((a = reg_renumber[i]) >= 0)
681 mark_reg_live_nc
682 (a, PSEUDO_REGNO_MODE (i));
685 /* Record that each allocno now live conflicts with each hard reg
686 now live.
688 It is not necessary to mark any conflicts between pseudos as
689 this point, even for pseudos which are live at the start of
690 the basic block.
692 Given two pseudos X and Y and any point in the CFG P.
694 On any path to point P where X and Y are live one of the
695 following conditions must be true:
697 1. X is live at some instruction on the path that
698 evaluates Y.
700 2. Y is live at some instruction on the path that
701 evaluates X.
703 3. Either X or Y is not evaluted on the path to P
704 (ie it is used uninitialized) and thus the
705 conflict can be ignored.
707 In cases #1 and #2 the conflict will be recorded when we
708 scan the instruction that makes either X or Y become live. */
709 record_conflicts (block_start_allocnos, ax);
711 #ifdef STACK_REGS
713 /* Pseudos can't go in stack regs at the start of a basic block
714 that is reached by an abnormal edge. */
716 edge e;
717 for (e = b->pred; e ; e = e->pred_next)
718 if (e->flags & EDGE_ABNORMAL)
719 break;
720 if (e != NULL)
721 for (ax = FIRST_STACK_REG; ax <= LAST_STACK_REG; ax++)
722 record_one_conflict (ax);
724 #endif
727 insn = b->head;
729 /* Scan the code of this basic block, noting which allocnos
730 and hard regs are born or die. When one is born,
731 record a conflict with all others currently live. */
733 while (1)
735 RTX_CODE code = GET_CODE (insn);
736 rtx link;
738 /* Make regs_set an empty set. */
740 n_regs_set = 0;
742 if (code == INSN || code == CALL_INSN || code == JUMP_INSN)
745 #if 0
746 int i = 0;
747 for (link = REG_NOTES (insn);
748 link && i < NUM_NO_CONFLICT_PAIRS;
749 link = XEXP (link, 1))
750 if (REG_NOTE_KIND (link) == REG_NO_CONFLICT)
752 no_conflict_pairs[i].allocno1
753 = reg_allocno[REGNO (SET_DEST (PATTERN (insn)))];
754 no_conflict_pairs[i].allocno2
755 = reg_allocno[REGNO (XEXP (link, 0))];
756 i++;
758 #endif /* 0 */
760 /* Mark any registers clobbered by INSN as live,
761 so they conflict with the inputs. */
763 note_stores (PATTERN (insn), mark_reg_clobber, NULL);
765 /* Mark any registers dead after INSN as dead now. */
767 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
768 if (REG_NOTE_KIND (link) == REG_DEAD)
769 mark_reg_death (XEXP (link, 0));
771 /* Mark any registers set in INSN as live,
772 and mark them as conflicting with all other live regs.
773 Clobbers are processed again, so they conflict with
774 the registers that are set. */
776 note_stores (PATTERN (insn), mark_reg_store, NULL);
778 #ifdef AUTO_INC_DEC
779 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
780 if (REG_NOTE_KIND (link) == REG_INC)
781 mark_reg_store (XEXP (link, 0), NULL_RTX, NULL);
782 #endif
784 /* If INSN has multiple outputs, then any reg that dies here
785 and is used inside of an output
786 must conflict with the other outputs.
788 It is unsafe to use !single_set here since it will ignore an
789 unused output. Just because an output is unused does not mean
790 the compiler can assume the side effect will not occur.
791 Consider if REG appears in the address of an output and we
792 reload the output. If we allocate REG to the same hard
793 register as an unused output we could set the hard register
794 before the output reload insn. */
795 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
796 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
797 if (REG_NOTE_KIND (link) == REG_DEAD)
799 int used_in_output = 0;
800 int i;
801 rtx reg = XEXP (link, 0);
803 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
805 rtx set = XVECEXP (PATTERN (insn), 0, i);
806 if (GET_CODE (set) == SET
807 && GET_CODE (SET_DEST (set)) != REG
808 && !rtx_equal_p (reg, SET_DEST (set))
809 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
810 used_in_output = 1;
812 if (used_in_output)
813 mark_reg_conflicts (reg);
816 /* Mark any registers set in INSN and then never used. */
818 while (n_regs_set-- > 0)
820 rtx note = find_regno_note (insn, REG_UNUSED,
821 REGNO (regs_set[n_regs_set]));
822 if (note)
823 mark_reg_death (XEXP (note, 0));
827 if (insn == b->end)
828 break;
829 insn = NEXT_INSN (insn);
833 /* Clean up. */
834 free (block_start_allocnos);
835 free (regs_set);
837 /* Expand the preference information by looking for cases where one allocno
838 dies in an insn that sets an allocno. If those two allocnos don't conflict,
839 merge any preferences between those allocnos. */
841 static void
842 expand_preferences ()
844 rtx insn;
845 rtx link;
846 rtx set;
848 /* We only try to handle the most common cases here. Most of the cases
849 where this wins are reg-reg copies. */
851 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
852 if (INSN_P (insn)
853 && (set = single_set (insn)) != 0
854 && GET_CODE (SET_DEST (set)) == REG
855 && reg_allocno[REGNO (SET_DEST (set))] >= 0)
856 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
857 if (REG_NOTE_KIND (link) == REG_DEAD
858 && GET_CODE (XEXP (link, 0)) == REG
859 && reg_allocno[REGNO (XEXP (link, 0))] >= 0
860 && ! CONFLICTP (reg_allocno[REGNO (SET_DEST (set))],
861 reg_allocno[REGNO (XEXP (link, 0))]))
863 int a1 = reg_allocno[REGNO (SET_DEST (set))];
864 int a2 = reg_allocno[REGNO (XEXP (link, 0))];
866 if (XEXP (link, 0) == SET_SRC (set))
868 IOR_HARD_REG_SET (allocno[a1].hard_reg_copy_preferences,
869 allocno[a2].hard_reg_copy_preferences);
870 IOR_HARD_REG_SET (allocno[a2].hard_reg_copy_preferences,
871 allocno[a1].hard_reg_copy_preferences);
874 IOR_HARD_REG_SET (allocno[a1].hard_reg_preferences,
875 allocno[a2].hard_reg_preferences);
876 IOR_HARD_REG_SET (allocno[a2].hard_reg_preferences,
877 allocno[a1].hard_reg_preferences);
878 IOR_HARD_REG_SET (allocno[a1].hard_reg_full_preferences,
879 allocno[a2].hard_reg_full_preferences);
880 IOR_HARD_REG_SET (allocno[a2].hard_reg_full_preferences,
881 allocno[a1].hard_reg_full_preferences);
885 /* Prune the preferences for global registers to exclude registers that cannot
886 be used.
888 Compute `regs_someone_prefers', which is a bitmask of the hard registers
889 that are preferred by conflicting registers of lower priority. If possible,
890 we will avoid using these registers. */
892 static void
893 prune_preferences ()
895 int i;
896 int num;
897 int *allocno_to_order = (int *) xmalloc (max_allocno * sizeof (int));
899 /* Scan least most important to most important.
900 For each allocno, remove from preferences registers that cannot be used,
901 either because of conflicts or register type. Then compute all registers
902 preferred by each lower-priority register that conflicts. */
904 for (i = max_allocno - 1; i >= 0; i--)
906 HARD_REG_SET temp;
908 num = allocno_order[i];
909 allocno_to_order[num] = i;
910 COPY_HARD_REG_SET (temp, allocno[num].hard_reg_conflicts);
912 if (allocno[num].calls_crossed == 0)
913 IOR_HARD_REG_SET (temp, fixed_reg_set);
914 else
915 IOR_HARD_REG_SET (temp, call_used_reg_set);
917 IOR_COMPL_HARD_REG_SET
918 (temp,
919 reg_class_contents[(int) reg_preferred_class (allocno[num].reg)]);
921 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, temp);
922 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, temp);
923 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_full_preferences, temp);
926 for (i = max_allocno - 1; i >= 0; i--)
928 /* Merge in the preferences of lower-priority registers (they have
929 already been pruned). If we also prefer some of those registers,
930 don't exclude them unless we are of a smaller size (in which case
931 we want to give the lower-priority allocno the first chance for
932 these registers). */
933 HARD_REG_SET temp, temp2;
934 int allocno2;
936 num = allocno_order[i];
938 CLEAR_HARD_REG_SET (temp);
939 CLEAR_HARD_REG_SET (temp2);
941 EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + num * allocno_row_words,
942 allocno2,
944 if (allocno_to_order[allocno2] > i)
946 if (allocno[allocno2].size <= allocno[num].size)
947 IOR_HARD_REG_SET (temp,
948 allocno[allocno2].hard_reg_full_preferences);
949 else
950 IOR_HARD_REG_SET (temp2,
951 allocno[allocno2].hard_reg_full_preferences);
955 AND_COMPL_HARD_REG_SET (temp, allocno[num].hard_reg_full_preferences);
956 IOR_HARD_REG_SET (temp, temp2);
957 COPY_HARD_REG_SET (allocno[num].regs_someone_prefers, temp);
959 free (allocno_to_order);
962 /* Assign a hard register to allocno NUM; look for one that is the beginning
963 of a long enough stretch of hard regs none of which conflicts with ALLOCNO.
964 The registers marked in PREFREGS are tried first.
966 LOSERS, if non-zero, is a HARD_REG_SET indicating registers that cannot
967 be used for this allocation.
969 If ALT_REGS_P is zero, consider only the preferred class of ALLOCNO's reg.
970 Otherwise ignore that preferred class and use the alternate class.
972 If ACCEPT_CALL_CLOBBERED is nonzero, accept a call-clobbered hard reg that
973 will have to be saved and restored at calls.
975 RETRYING is nonzero if this is called from retry_global_alloc.
977 If we find one, record it in reg_renumber.
978 If not, do nothing. */
980 static void
981 find_reg (num, losers, alt_regs_p, accept_call_clobbered, retrying)
982 int num;
983 HARD_REG_SET losers;
984 int alt_regs_p;
985 int accept_call_clobbered;
986 int retrying;
988 int i, best_reg, pass;
989 #ifdef HARD_REG_SET
990 register /* Declare it register if it's a scalar. */
991 #endif
992 HARD_REG_SET used, used1, used2;
994 enum reg_class class = (alt_regs_p
995 ? reg_alternate_class (allocno[num].reg)
996 : reg_preferred_class (allocno[num].reg));
997 enum machine_mode mode = PSEUDO_REGNO_MODE (allocno[num].reg);
999 if (accept_call_clobbered)
1000 COPY_HARD_REG_SET (used1, call_fixed_reg_set);
1001 else if (allocno[num].calls_crossed == 0)
1002 COPY_HARD_REG_SET (used1, fixed_reg_set);
1003 else
1004 COPY_HARD_REG_SET (used1, call_used_reg_set);
1006 /* Some registers should not be allocated in global-alloc. */
1007 IOR_HARD_REG_SET (used1, no_global_alloc_regs);
1008 if (losers)
1009 IOR_HARD_REG_SET (used1, losers);
1011 IOR_COMPL_HARD_REG_SET (used1, reg_class_contents[(int) class]);
1012 COPY_HARD_REG_SET (used2, used1);
1014 IOR_HARD_REG_SET (used1, allocno[num].hard_reg_conflicts);
1016 #ifdef CLASS_CANNOT_CHANGE_MODE
1017 if (REG_CHANGES_MODE (allocno[num].reg))
1018 IOR_HARD_REG_SET (used1,
1019 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
1020 #endif
1022 /* Try each hard reg to see if it fits. Do this in two passes.
1023 In the first pass, skip registers that are preferred by some other pseudo
1024 to give it a better chance of getting one of those registers. Only if
1025 we can't get a register when excluding those do we take one of them.
1026 However, we never allocate a register for the first time in pass 0. */
1028 COPY_HARD_REG_SET (used, used1);
1029 IOR_COMPL_HARD_REG_SET (used, regs_used_so_far);
1030 IOR_HARD_REG_SET (used, allocno[num].regs_someone_prefers);
1032 best_reg = -1;
1033 for (i = FIRST_PSEUDO_REGISTER, pass = 0;
1034 pass <= 1 && i >= FIRST_PSEUDO_REGISTER;
1035 pass++)
1037 if (pass == 1)
1038 COPY_HARD_REG_SET (used, used1);
1039 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1041 #ifdef REG_ALLOC_ORDER
1042 int regno = reg_alloc_order[i];
1043 #else
1044 int regno = i;
1045 #endif
1046 if (! TEST_HARD_REG_BIT (used, regno)
1047 && HARD_REGNO_MODE_OK (regno, mode)
1048 && (allocno[num].calls_crossed == 0
1049 || accept_call_clobbered
1050 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
1052 int j;
1053 int lim = regno + HARD_REGNO_NREGS (regno, mode);
1054 for (j = regno + 1;
1055 (j < lim
1056 && ! TEST_HARD_REG_BIT (used, j));
1057 j++);
1058 if (j == lim)
1060 best_reg = regno;
1061 break;
1063 #ifndef REG_ALLOC_ORDER
1064 i = j; /* Skip starting points we know will lose */
1065 #endif
1070 /* See if there is a preferred register with the same class as the register
1071 we allocated above. Making this restriction prevents register
1072 preferencing from creating worse register allocation.
1074 Remove from the preferred registers and conflicting registers. Note that
1075 additional conflicts may have been added after `prune_preferences' was
1076 called.
1078 First do this for those register with copy preferences, then all
1079 preferred registers. */
1081 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, used);
1082 GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_copy_preferences,
1083 reg_class_contents[(int) NO_REGS], no_copy_prefs);
1085 if (best_reg >= 0)
1087 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1088 if (TEST_HARD_REG_BIT (allocno[num].hard_reg_copy_preferences, i)
1089 && HARD_REGNO_MODE_OK (i, mode)
1090 && (allocno[num].calls_crossed == 0
1091 || accept_call_clobbered
1092 || ! HARD_REGNO_CALL_PART_CLOBBERED (i, mode))
1093 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1094 || reg_class_subset_p (REGNO_REG_CLASS (i),
1095 REGNO_REG_CLASS (best_reg))
1096 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1097 REGNO_REG_CLASS (i))))
1099 int j;
1100 int lim = i + HARD_REGNO_NREGS (i, mode);
1101 for (j = i + 1;
1102 (j < lim
1103 && ! TEST_HARD_REG_BIT (used, j)
1104 && (REGNO_REG_CLASS (j)
1105 == REGNO_REG_CLASS (best_reg + (j - i))
1106 || reg_class_subset_p (REGNO_REG_CLASS (j),
1107 REGNO_REG_CLASS (best_reg + (j - i)))
1108 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1109 REGNO_REG_CLASS (j))));
1110 j++);
1111 if (j == lim)
1113 best_reg = i;
1114 goto no_prefs;
1118 no_copy_prefs:
1120 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, used);
1121 GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_preferences,
1122 reg_class_contents[(int) NO_REGS], no_prefs);
1124 if (best_reg >= 0)
1126 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1127 if (TEST_HARD_REG_BIT (allocno[num].hard_reg_preferences, i)
1128 && HARD_REGNO_MODE_OK (i, mode)
1129 && (allocno[num].calls_crossed == 0
1130 || accept_call_clobbered
1131 || ! HARD_REGNO_CALL_PART_CLOBBERED (i, mode))
1132 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1133 || reg_class_subset_p (REGNO_REG_CLASS (i),
1134 REGNO_REG_CLASS (best_reg))
1135 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1136 REGNO_REG_CLASS (i))))
1138 int j;
1139 int lim = i + HARD_REGNO_NREGS (i, mode);
1140 for (j = i + 1;
1141 (j < lim
1142 && ! TEST_HARD_REG_BIT (used, j)
1143 && (REGNO_REG_CLASS (j)
1144 == REGNO_REG_CLASS (best_reg + (j - i))
1145 || reg_class_subset_p (REGNO_REG_CLASS (j),
1146 REGNO_REG_CLASS (best_reg + (j - i)))
1147 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1148 REGNO_REG_CLASS (j))));
1149 j++);
1150 if (j == lim)
1152 best_reg = i;
1153 break;
1157 no_prefs:
1159 /* If we haven't succeeded yet, try with caller-saves.
1160 We need not check to see if the current function has nonlocal
1161 labels because we don't put any pseudos that are live over calls in
1162 registers in that case. */
1164 if (flag_caller_saves && best_reg < 0)
1166 /* Did not find a register. If it would be profitable to
1167 allocate a call-clobbered register and save and restore it
1168 around calls, do that. */
1169 if (! accept_call_clobbered
1170 && allocno[num].calls_crossed != 0
1171 && CALLER_SAVE_PROFITABLE (allocno[num].n_refs,
1172 allocno[num].calls_crossed))
1174 HARD_REG_SET new_losers;
1175 if (! losers)
1176 CLEAR_HARD_REG_SET (new_losers);
1177 else
1178 COPY_HARD_REG_SET (new_losers, losers);
1180 IOR_HARD_REG_SET(new_losers, losing_caller_save_reg_set);
1181 find_reg (num, new_losers, alt_regs_p, 1, retrying);
1182 if (reg_renumber[allocno[num].reg] >= 0)
1184 caller_save_needed = 1;
1185 return;
1190 /* If we haven't succeeded yet,
1191 see if some hard reg that conflicts with us
1192 was utilized poorly by local-alloc.
1193 If so, kick out the regs that were put there by local-alloc
1194 so we can use it instead. */
1195 if (best_reg < 0 && !retrying
1196 /* Let's not bother with multi-reg allocnos. */
1197 && allocno[num].size == 1)
1199 /* Count from the end, to find the least-used ones first. */
1200 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1202 #ifdef REG_ALLOC_ORDER
1203 int regno = reg_alloc_order[i];
1204 #else
1205 int regno = i;
1206 #endif
1208 if (local_reg_n_refs[regno] != 0
1209 /* Don't use a reg no good for this pseudo. */
1210 && ! TEST_HARD_REG_BIT (used2, regno)
1211 && HARD_REGNO_MODE_OK (regno, mode)
1212 && (allocno[num].calls_crossed == 0
1213 || accept_call_clobbered
1214 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1215 #ifdef CLASS_CANNOT_CHANGE_MODE
1216 && ! (REG_CHANGES_MODE (allocno[num].reg)
1217 && (TEST_HARD_REG_BIT
1218 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1219 regno)))
1220 #endif
1223 /* We explicitly evaluate the divide results into temporary
1224 variables so as to avoid excess precision problems that occur
1225 on an i386-unknown-sysv4.2 (unixware) host. */
1227 double tmp1 = ((double) local_reg_freq[regno]
1228 / local_reg_live_length[regno]);
1229 double tmp2 = ((double) allocno[num].freq
1230 / allocno[num].live_length);
1232 if (tmp1 < tmp2)
1234 /* Hard reg REGNO was used less in total by local regs
1235 than it would be used by this one allocno! */
1236 int k;
1237 for (k = 0; k < max_regno; k++)
1238 if (reg_renumber[k] >= 0)
1240 int r = reg_renumber[k];
1241 int endregno
1242 = r + HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (k));
1244 if (regno >= r && regno < endregno)
1245 reg_renumber[k] = -1;
1248 best_reg = regno;
1249 break;
1255 /* Did we find a register? */
1257 if (best_reg >= 0)
1259 int lim, j;
1260 HARD_REG_SET this_reg;
1262 /* Yes. Record it as the hard register of this pseudo-reg. */
1263 reg_renumber[allocno[num].reg] = best_reg;
1264 /* Also of any pseudo-regs that share with it. */
1265 if (reg_may_share[allocno[num].reg])
1266 for (j = FIRST_PSEUDO_REGISTER; j < max_regno; j++)
1267 if (reg_allocno[j] == num)
1268 reg_renumber[j] = best_reg;
1270 /* Make a set of the hard regs being allocated. */
1271 CLEAR_HARD_REG_SET (this_reg);
1272 lim = best_reg + HARD_REGNO_NREGS (best_reg, mode);
1273 for (j = best_reg; j < lim; j++)
1275 SET_HARD_REG_BIT (this_reg, j);
1276 SET_HARD_REG_BIT (regs_used_so_far, j);
1277 /* This is no longer a reg used just by local regs. */
1278 local_reg_n_refs[j] = 0;
1279 local_reg_freq[j] = 0;
1281 /* For each other pseudo-reg conflicting with this one,
1282 mark it as conflicting with the hard regs this one occupies. */
1283 lim = num;
1284 EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + lim * allocno_row_words, j,
1286 IOR_HARD_REG_SET (allocno[j].hard_reg_conflicts, this_reg);
1291 /* Called from `reload' to look for a hard reg to put pseudo reg REGNO in.
1292 Perhaps it had previously seemed not worth a hard reg,
1293 or perhaps its old hard reg has been commandeered for reloads.
1294 FORBIDDEN_REGS indicates certain hard regs that may not be used, even if
1295 they do not appear to be allocated.
1296 If FORBIDDEN_REGS is zero, no regs are forbidden. */
1298 void
1299 retry_global_alloc (regno, forbidden_regs)
1300 int regno;
1301 HARD_REG_SET forbidden_regs;
1303 int alloc_no = reg_allocno[regno];
1304 if (alloc_no >= 0)
1306 /* If we have more than one register class,
1307 first try allocating in the class that is cheapest
1308 for this pseudo-reg. If that fails, try any reg. */
1309 if (N_REG_CLASSES > 1)
1310 find_reg (alloc_no, forbidden_regs, 0, 0, 1);
1311 if (reg_renumber[regno] < 0
1312 && reg_alternate_class (regno) != NO_REGS)
1313 find_reg (alloc_no, forbidden_regs, 1, 0, 1);
1315 /* If we found a register, modify the RTL for the register to
1316 show the hard register, and mark that register live. */
1317 if (reg_renumber[regno] >= 0)
1319 REGNO (regno_reg_rtx[regno]) = reg_renumber[regno];
1320 mark_home_live (regno);
1325 /* Record a conflict between register REGNO
1326 and everything currently live.
1327 REGNO must not be a pseudo reg that was allocated
1328 by local_alloc; such numbers must be translated through
1329 reg_renumber before calling here. */
1331 static void
1332 record_one_conflict (regno)
1333 int regno;
1335 int j;
1337 if (regno < FIRST_PSEUDO_REGISTER)
1338 /* When a hard register becomes live,
1339 record conflicts with live pseudo regs. */
1340 EXECUTE_IF_SET_IN_ALLOCNO_SET (allocnos_live, j,
1342 SET_HARD_REG_BIT (allocno[j].hard_reg_conflicts, regno);
1344 else
1345 /* When a pseudo-register becomes live,
1346 record conflicts first with hard regs,
1347 then with other pseudo regs. */
1349 int ialloc = reg_allocno[regno];
1350 int ialloc_prod = ialloc * allocno_row_words;
1352 IOR_HARD_REG_SET (allocno[ialloc].hard_reg_conflicts, hard_regs_live);
1353 for (j = allocno_row_words - 1; j >= 0; j--)
1355 #if 0
1356 int k;
1357 for (k = 0; k < n_no_conflict_pairs; k++)
1358 if (! ((j == no_conflict_pairs[k].allocno1
1359 && ialloc == no_conflict_pairs[k].allocno2)
1361 (j == no_conflict_pairs[k].allocno2
1362 && ialloc == no_conflict_pairs[k].allocno1)))
1363 #endif /* 0 */
1364 conflicts[ialloc_prod + j] |= allocnos_live[j];
1369 /* Record all allocnos currently live as conflicting
1370 with all hard regs currently live.
1372 ALLOCNO_VEC is a vector of LEN allocnos, all allocnos that
1373 are currently live. Their bits are also flagged in allocnos_live. */
1375 static void
1376 record_conflicts (allocno_vec, len)
1377 int *allocno_vec;
1378 int len;
1380 int num;
1381 int ialloc_prod;
1383 while (--len >= 0)
1385 num = allocno_vec[len];
1386 ialloc_prod = num * allocno_row_words;
1387 IOR_HARD_REG_SET (allocno[num].hard_reg_conflicts, hard_regs_live);
1391 /* If CONFLICTP (i, j) is true, make sure CONFLICTP (j, i) is also true. */
1392 static void
1393 mirror_conflicts ()
1395 int i, j;
1396 int rw = allocno_row_words;
1397 int rwb = rw * INT_BITS;
1398 INT_TYPE *p = conflicts;
1399 INT_TYPE *q0 = conflicts, *q1, *q2;
1400 unsigned INT_TYPE mask;
1402 for (i = max_allocno - 1, mask = 1; i >= 0; i--, mask <<= 1)
1404 if (! mask)
1406 mask = 1;
1407 q0++;
1409 for (j = allocno_row_words - 1, q1 = q0; j >= 0; j--, q1 += rwb)
1411 unsigned INT_TYPE word;
1413 for (word = (unsigned INT_TYPE) *p++, q2 = q1; word;
1414 word >>= 1, q2 += rw)
1416 if (word & 1)
1417 *q2 |= mask;
1423 /* Handle the case where REG is set by the insn being scanned,
1424 during the forward scan to accumulate conflicts.
1425 Store a 1 in regs_live or allocnos_live for this register, record how many
1426 consecutive hardware registers it actually needs,
1427 and record a conflict with all other registers already live.
1429 Note that even if REG does not remain alive after this insn,
1430 we must mark it here as live, to ensure a conflict between
1431 REG and any other regs set in this insn that really do live.
1432 This is because those other regs could be considered after this.
1434 REG might actually be something other than a register;
1435 if so, we do nothing.
1437 SETTER is 0 if this register was modified by an auto-increment (i.e.,
1438 a REG_INC note was found for it). */
1440 static void
1441 mark_reg_store (reg, setter, data)
1442 rtx reg, setter;
1443 void *data ATTRIBUTE_UNUSED;
1445 int regno;
1447 if (GET_CODE (reg) == SUBREG)
1448 reg = SUBREG_REG (reg);
1450 if (GET_CODE (reg) != REG)
1451 return;
1453 regs_set[n_regs_set++] = reg;
1455 if (setter && GET_CODE (setter) != CLOBBER)
1456 set_preference (reg, SET_SRC (setter));
1458 regno = REGNO (reg);
1460 /* Either this is one of the max_allocno pseudo regs not allocated,
1461 or it is or has a hardware reg. First handle the pseudo-regs. */
1462 if (regno >= FIRST_PSEUDO_REGISTER)
1464 if (reg_allocno[regno] >= 0)
1466 SET_ALLOCNO_LIVE (reg_allocno[regno]);
1467 record_one_conflict (regno);
1471 if (reg_renumber[regno] >= 0)
1472 regno = reg_renumber[regno];
1474 /* Handle hardware regs (and pseudos allocated to hard regs). */
1475 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
1477 int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1478 while (regno < last)
1480 record_one_conflict (regno);
1481 SET_HARD_REG_BIT (hard_regs_live, regno);
1482 regno++;
1487 /* Like mark_reg_set except notice just CLOBBERs; ignore SETs. */
1489 static void
1490 mark_reg_clobber (reg, setter, data)
1491 rtx reg, setter;
1492 void *data ATTRIBUTE_UNUSED;
1494 if (GET_CODE (setter) == CLOBBER)
1495 mark_reg_store (reg, setter, data);
1498 /* Record that REG has conflicts with all the regs currently live.
1499 Do not mark REG itself as live. */
1501 static void
1502 mark_reg_conflicts (reg)
1503 rtx reg;
1505 int regno;
1507 if (GET_CODE (reg) == SUBREG)
1508 reg = SUBREG_REG (reg);
1510 if (GET_CODE (reg) != REG)
1511 return;
1513 regno = REGNO (reg);
1515 /* Either this is one of the max_allocno pseudo regs not allocated,
1516 or it is or has a hardware reg. First handle the pseudo-regs. */
1517 if (regno >= FIRST_PSEUDO_REGISTER)
1519 if (reg_allocno[regno] >= 0)
1520 record_one_conflict (regno);
1523 if (reg_renumber[regno] >= 0)
1524 regno = reg_renumber[regno];
1526 /* Handle hardware regs (and pseudos allocated to hard regs). */
1527 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
1529 int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1530 while (regno < last)
1532 record_one_conflict (regno);
1533 regno++;
1538 /* Mark REG as being dead (following the insn being scanned now).
1539 Store a 0 in regs_live or allocnos_live for this register. */
1541 static void
1542 mark_reg_death (reg)
1543 rtx reg;
1545 int regno = REGNO (reg);
1547 /* Either this is one of the max_allocno pseudo regs not allocated,
1548 or it is a hardware reg. First handle the pseudo-regs. */
1549 if (regno >= FIRST_PSEUDO_REGISTER)
1551 if (reg_allocno[regno] >= 0)
1552 CLEAR_ALLOCNO_LIVE (reg_allocno[regno]);
1555 /* For pseudo reg, see if it has been assigned a hardware reg. */
1556 if (reg_renumber[regno] >= 0)
1557 regno = reg_renumber[regno];
1559 /* Handle hardware regs (and pseudos allocated to hard regs). */
1560 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
1562 /* Pseudo regs already assigned hardware regs are treated
1563 almost the same as explicit hardware regs. */
1564 int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1565 while (regno < last)
1567 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
1568 regno++;
1573 /* Mark hard reg REGNO as currently live, assuming machine mode MODE
1574 for the value stored in it. MODE determines how many consecutive
1575 registers are actually in use. Do not record conflicts;
1576 it is assumed that the caller will do that. */
1578 static void
1579 mark_reg_live_nc (regno, mode)
1580 int regno;
1581 enum machine_mode mode;
1583 int last = regno + HARD_REGNO_NREGS (regno, mode);
1584 while (regno < last)
1586 SET_HARD_REG_BIT (hard_regs_live, regno);
1587 regno++;
1591 /* Try to set a preference for an allocno to a hard register.
1592 We are passed DEST and SRC which are the operands of a SET. It is known
1593 that SRC is a register. If SRC or the first operand of SRC is a register,
1594 try to set a preference. If one of the two is a hard register and the other
1595 is a pseudo-register, mark the preference.
1597 Note that we are not as aggressive as local-alloc in trying to tie a
1598 pseudo-register to a hard register. */
1600 static void
1601 set_preference (dest, src)
1602 rtx dest, src;
1604 unsigned int src_regno, dest_regno;
1605 /* Amount to add to the hard regno for SRC, or subtract from that for DEST,
1606 to compensate for subregs in SRC or DEST. */
1607 int offset = 0;
1608 unsigned int i;
1609 int copy = 1;
1611 if (GET_RTX_FORMAT (GET_CODE (src))[0] == 'e')
1612 src = XEXP (src, 0), copy = 0;
1614 /* Get the reg number for both SRC and DEST.
1615 If neither is a reg, give up. */
1617 if (GET_CODE (src) == REG)
1618 src_regno = REGNO (src);
1619 else if (GET_CODE (src) == SUBREG && GET_CODE (SUBREG_REG (src)) == REG)
1621 src_regno = REGNO (SUBREG_REG (src));
1623 if (REGNO (SUBREG_REG (src)) < FIRST_PSEUDO_REGISTER)
1624 offset += subreg_regno_offset (REGNO (SUBREG_REG (src)),
1625 GET_MODE (SUBREG_REG (src)),
1626 SUBREG_BYTE (src),
1627 GET_MODE (src));
1628 else
1629 offset += (SUBREG_BYTE (src)
1630 / REGMODE_NATURAL_SIZE (GET_MODE (src)));
1632 else
1633 return;
1635 if (GET_CODE (dest) == REG)
1636 dest_regno = REGNO (dest);
1637 else if (GET_CODE (dest) == SUBREG && GET_CODE (SUBREG_REG (dest)) == REG)
1639 dest_regno = REGNO (SUBREG_REG (dest));
1641 if (REGNO (SUBREG_REG (dest)) < FIRST_PSEUDO_REGISTER)
1642 offset -= subreg_regno_offset (REGNO (SUBREG_REG (dest)),
1643 GET_MODE (SUBREG_REG (dest)),
1644 SUBREG_BYTE (dest),
1645 GET_MODE (dest));
1646 else
1647 offset -= (SUBREG_BYTE (dest)
1648 / REGMODE_NATURAL_SIZE (GET_MODE (dest)));
1650 else
1651 return;
1653 /* Convert either or both to hard reg numbers. */
1655 if (reg_renumber[src_regno] >= 0)
1656 src_regno = reg_renumber[src_regno];
1658 if (reg_renumber[dest_regno] >= 0)
1659 dest_regno = reg_renumber[dest_regno];
1661 /* Now if one is a hard reg and the other is a global pseudo
1662 then give the other a preference. */
1664 if (dest_regno < FIRST_PSEUDO_REGISTER && src_regno >= FIRST_PSEUDO_REGISTER
1665 && reg_allocno[src_regno] >= 0)
1667 dest_regno -= offset;
1668 if (dest_regno < FIRST_PSEUDO_REGISTER)
1670 if (copy)
1671 SET_REGBIT (hard_reg_copy_preferences,
1672 reg_allocno[src_regno], dest_regno);
1674 SET_REGBIT (hard_reg_preferences,
1675 reg_allocno[src_regno], dest_regno);
1676 for (i = dest_regno;
1677 i < dest_regno + HARD_REGNO_NREGS (dest_regno, GET_MODE (dest));
1678 i++)
1679 SET_REGBIT (hard_reg_full_preferences, reg_allocno[src_regno], i);
1683 if (src_regno < FIRST_PSEUDO_REGISTER && dest_regno >= FIRST_PSEUDO_REGISTER
1684 && reg_allocno[dest_regno] >= 0)
1686 src_regno += offset;
1687 if (src_regno < FIRST_PSEUDO_REGISTER)
1689 if (copy)
1690 SET_REGBIT (hard_reg_copy_preferences,
1691 reg_allocno[dest_regno], src_regno);
1693 SET_REGBIT (hard_reg_preferences,
1694 reg_allocno[dest_regno], src_regno);
1695 for (i = src_regno;
1696 i < src_regno + HARD_REGNO_NREGS (src_regno, GET_MODE (src));
1697 i++)
1698 SET_REGBIT (hard_reg_full_preferences, reg_allocno[dest_regno], i);
1703 /* Indicate that hard register number FROM was eliminated and replaced with
1704 an offset from hard register number TO. The status of hard registers live
1705 at the start of a basic block is updated by replacing a use of FROM with
1706 a use of TO. */
1708 void
1709 mark_elimination (from, to)
1710 int from, to;
1712 basic_block bb;
1714 FOR_EACH_BB (bb)
1716 regset r = bb->global_live_at_start;
1717 if (REGNO_REG_SET_P (r, from))
1719 CLEAR_REGNO_REG_SET (r, from);
1720 SET_REGNO_REG_SET (r, to);
1725 /* Used for communication between the following functions. Holds the
1726 current life information. */
1727 static regset live_relevant_regs;
1729 /* Record in live_relevant_regs and REGS_SET that register REG became live.
1730 This is called via note_stores. */
1731 static void
1732 reg_becomes_live (reg, setter, regs_set)
1733 rtx reg;
1734 rtx setter ATTRIBUTE_UNUSED;
1735 void *regs_set;
1737 int regno;
1739 if (GET_CODE (reg) == SUBREG)
1740 reg = SUBREG_REG (reg);
1742 if (GET_CODE (reg) != REG)
1743 return;
1745 regno = REGNO (reg);
1746 if (regno < FIRST_PSEUDO_REGISTER)
1748 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
1749 while (nregs-- > 0)
1751 SET_REGNO_REG_SET (live_relevant_regs, regno);
1752 if (! fixed_regs[regno])
1753 SET_REGNO_REG_SET ((regset) regs_set, regno);
1754 regno++;
1757 else if (reg_renumber[regno] >= 0)
1759 SET_REGNO_REG_SET (live_relevant_regs, regno);
1760 SET_REGNO_REG_SET ((regset) regs_set, regno);
1764 /* Record in live_relevant_regs that register REGNO died. */
1765 static void
1766 reg_dies (regno, mode, chain)
1767 int regno;
1768 enum machine_mode mode;
1769 struct insn_chain *chain;
1771 if (regno < FIRST_PSEUDO_REGISTER)
1773 int nregs = HARD_REGNO_NREGS (regno, mode);
1774 while (nregs-- > 0)
1776 CLEAR_REGNO_REG_SET (live_relevant_regs, regno);
1777 if (! fixed_regs[regno])
1778 SET_REGNO_REG_SET (&chain->dead_or_set, regno);
1779 regno++;
1782 else
1784 CLEAR_REGNO_REG_SET (live_relevant_regs, regno);
1785 if (reg_renumber[regno] >= 0)
1786 SET_REGNO_REG_SET (&chain->dead_or_set, regno);
1790 /* Walk the insns of the current function and build reload_insn_chain,
1791 and record register life information. */
1792 void
1793 build_insn_chain (first)
1794 rtx first;
1796 struct insn_chain **p = &reload_insn_chain;
1797 struct insn_chain *prev = 0;
1798 basic_block b = ENTRY_BLOCK_PTR->next_bb;
1799 regset_head live_relevant_regs_head;
1801 live_relevant_regs = INITIALIZE_REG_SET (live_relevant_regs_head);
1803 for (; first; first = NEXT_INSN (first))
1805 struct insn_chain *c;
1807 if (first == b->head)
1809 int i;
1811 CLEAR_REG_SET (live_relevant_regs);
1813 EXECUTE_IF_SET_IN_BITMAP
1814 (b->global_live_at_start, 0, i,
1816 if (i < FIRST_PSEUDO_REGISTER
1817 ? ! TEST_HARD_REG_BIT (eliminable_regset, i)
1818 : reg_renumber[i] >= 0)
1819 SET_REGNO_REG_SET (live_relevant_regs, i);
1823 if (GET_CODE (first) != NOTE && GET_CODE (first) != BARRIER)
1825 c = new_insn_chain ();
1826 c->prev = prev;
1827 prev = c;
1828 *p = c;
1829 p = &c->next;
1830 c->insn = first;
1831 c->block = b->index;
1833 if (INSN_P (first))
1835 rtx link;
1837 /* Mark the death of everything that dies in this instruction. */
1839 for (link = REG_NOTES (first); link; link = XEXP (link, 1))
1840 if (REG_NOTE_KIND (link) == REG_DEAD
1841 && GET_CODE (XEXP (link, 0)) == REG)
1842 reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)),
1845 COPY_REG_SET (&c->live_throughout, live_relevant_regs);
1847 /* Mark everything born in this instruction as live. */
1849 note_stores (PATTERN (first), reg_becomes_live,
1850 &c->dead_or_set);
1852 else
1853 COPY_REG_SET (&c->live_throughout, live_relevant_regs);
1855 if (INSN_P (first))
1857 rtx link;
1859 /* Mark anything that is set in this insn and then unused as dying. */
1861 for (link = REG_NOTES (first); link; link = XEXP (link, 1))
1862 if (REG_NOTE_KIND (link) == REG_UNUSED
1863 && GET_CODE (XEXP (link, 0)) == REG)
1864 reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)),
1869 if (first == b->end)
1870 b = b->next_bb;
1872 /* Stop after we pass the end of the last basic block. Verify that
1873 no real insns are after the end of the last basic block.
1875 We may want to reorganize the loop somewhat since this test should
1876 always be the right exit test. Allow an ADDR_VEC or ADDR_DIF_VEC if
1877 the previous real insn is a JUMP_INSN. */
1878 if (b == EXIT_BLOCK_PTR)
1880 for (first = NEXT_INSN (first) ; first; first = NEXT_INSN (first))
1881 if (INSN_P (first)
1882 && GET_CODE (PATTERN (first)) != USE
1883 && ! ((GET_CODE (PATTERN (first)) == ADDR_VEC
1884 || GET_CODE (PATTERN (first)) == ADDR_DIFF_VEC)
1885 && prev_real_insn (first) != 0
1886 && GET_CODE (prev_real_insn (first)) == JUMP_INSN))
1887 abort ();
1888 break;
1891 FREE_REG_SET (live_relevant_regs);
1892 *p = 0;
1895 /* Print debugging trace information if -dg switch is given,
1896 showing the information on which the allocation decisions are based. */
1898 static void
1899 dump_conflicts (file)
1900 FILE *file;
1902 int i;
1903 int has_preferences;
1904 int nregs;
1905 nregs = 0;
1906 for (i = 0; i < max_allocno; i++)
1908 if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
1909 continue;
1910 nregs++;
1912 fprintf (file, ";; %d regs to allocate:", nregs);
1913 for (i = 0; i < max_allocno; i++)
1915 int j;
1916 if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
1917 continue;
1918 fprintf (file, " %d", allocno[allocno_order[i]].reg);
1919 for (j = 0; j < max_regno; j++)
1920 if (reg_allocno[j] == allocno_order[i]
1921 && j != allocno[allocno_order[i]].reg)
1922 fprintf (file, "+%d", j);
1923 if (allocno[allocno_order[i]].size != 1)
1924 fprintf (file, " (%d)", allocno[allocno_order[i]].size);
1926 fprintf (file, "\n");
1928 for (i = 0; i < max_allocno; i++)
1930 int j;
1931 fprintf (file, ";; %d conflicts:", allocno[i].reg);
1932 for (j = 0; j < max_allocno; j++)
1933 if (CONFLICTP (j, i))
1934 fprintf (file, " %d", allocno[j].reg);
1935 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1936 if (TEST_HARD_REG_BIT (allocno[i].hard_reg_conflicts, j))
1937 fprintf (file, " %d", j);
1938 fprintf (file, "\n");
1940 has_preferences = 0;
1941 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1942 if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j))
1943 has_preferences = 1;
1945 if (! has_preferences)
1946 continue;
1947 fprintf (file, ";; %d preferences:", allocno[i].reg);
1948 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1949 if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j))
1950 fprintf (file, " %d", j);
1951 fprintf (file, "\n");
1953 fprintf (file, "\n");
1956 void
1957 dump_global_regs (file)
1958 FILE *file;
1960 int i, j;
1962 fprintf (file, ";; Register dispositions:\n");
1963 for (i = FIRST_PSEUDO_REGISTER, j = 0; i < max_regno; i++)
1964 if (reg_renumber[i] >= 0)
1966 fprintf (file, "%d in %d ", i, reg_renumber[i]);
1967 if (++j % 6 == 0)
1968 fprintf (file, "\n");
1971 fprintf (file, "\n\n;; Hard regs used: ");
1972 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1973 if (regs_ever_live[i])
1974 fprintf (file, " %d", i);
1975 fprintf (file, "\n\n");