1 /* Vector API for GNU compiler.
2 Copyright (C) 2004 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 /* The macros here implement a set of templated vector types and
26 associated interfaces. These templates are implemented with
27 macros, as we're not in C++ land. The interface functions are
28 typesafe and use static inline functions, sometimes backed by
29 out-of-line generic functions. The vectors are designed to
30 interoperate with the GTY machinery.
32 Because of the different behaviour of objects and of pointers to
33 objects, there are two flavours. One to deal with a vector of
34 pointers to objects, and one to deal with a vector of objects
35 themselves. Both of these pass pointers to objects around -- in
36 the former case the pointers are stored into the vector and in the
37 latter case the pointers are dereferenced and the objects copied
38 into the vector. Therefore, when using a vector of pointers, the
39 objects pointed to must be long lived, but when dealing with a
40 vector of objects, the source objects need not be.
42 There are both 'index' and 'iterate' accessors. The iterator
43 returns a boolean iteration condition and updates the iteration
44 variable passed by reference. Because the iterator will be
45 inlined, the address-of can be optimized away.
47 The vectors are implemented using the trailing array idiom, thus
48 they are not resizeable without changing the address of the vector
49 object itself. This means you cannot have variables or fields of
50 vector type -- always use a pointer to a vector. The one exception
51 is the final field of a structure, which could be a vector type.
52 You will have to use the embedded_size & embedded_init calls to
53 create such objects, and they will probably not be resizeable (so
54 don't use the 'safe' allocation variants). The trailing array
55 idiom is used (rather than a pointer to an array of data), because,
56 if we allow NULL to also represent an empty vector, empty vectors
57 occupy minimal space in the structure containing them.
59 Each operation that increases the number of active elements is
60 available in 'quick' and 'safe' variants. The former presumes that
61 there is sufficient allocated space for the operation to succeed
62 (it aborts if there is not). The latter will reallocate the
63 vector, if needed. Reallocation causes an exponential increase in
64 vector size. If you know you will be adding N elements, it would
65 be more efficient to use the reserve operation before adding the
66 elements with the 'quick' operation. You may also use the reserve
67 operation with a -1 operand, to gain control over exactly when
70 You should prefer the push and pop operations, as they append and
71 remove from the end of the vector. If you need to remove several
72 items in one go, use the truncate operation. The insert and remove
73 operations allow you to change elements in the middle of the
74 vector. There are two remove operations, one which preserves the
75 element ordering 'ordered_remove', and one which does not
76 'unordered_remove'. The latter function copies the end element
77 into the removed slot, rather than invoke a memmove operation.
79 If you need to directly manipulate a vector, then the 'address'
80 accessor will return the address of the start of the vector. Also
81 the 'space' predicate will tell you whether there is spare capacity
82 in the vector. You will not normally need to use these two functions.
84 Vector types are defined using a DEF_VEC_{O,P}(TYPEDEF) macro, and
85 variables of vector type are declared using a VEC(TYPEDEF)
86 macro. The characters O and P indicate whether TYPEDEF is a pointer
87 (P) or object (O) type.
89 An example of their use would be,
91 DEF_VEC_P(tree); // define a vector of tree pointers. This must
92 // appear at file scope.
95 VEC(tree) *v; // A (pointer to) a vector of tree pointers.
100 if (VEC_length(tree,s->v)) { we have some contents }
101 VEC_safe_push(tree,s->v,decl); // append some decl onto the end
102 for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
103 { do something with elt }
107 /* Macros to invoke API calls. A single macro works for both pointer
108 and object vectors, but the argument and return types might well be
109 different. In each macro, TDEF is the typedef of the vector
110 elements. Some of these macros pass the vector, V, by reference
111 (by taking its address), this is noted in the descriptions. */
114 unsigned VEC_T_length(const VEC(T) *v);
116 Return the number of active elements in V. V can be NULL, in which
117 case zero is returned. */
119 #define VEC_length(TDEF,V) (VEC_OP(TDEF,length)(V))
121 /* Get the final element of the vector.
122 T VEC_T_last(VEC(T) *v); // Pointer
123 T *VEC_T_last(VEC(T) *v); // Object
125 Return the final element. If V is empty, abort. */
127 #define VEC_last(TDEF,V) (VEC_OP(TDEF,last)(V VEC_CHECK_INFO))
130 T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
131 T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
133 Return the IX'th element. If IX is outside the domain of V,
136 #define VEC_index(TDEF,V,I) (VEC_OP(TDEF,index)(V,I VEC_CHECK_INFO))
138 /* Iterate over vector
139 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
140 int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
142 Return iteration condition and update PTR to point to the IX'th
143 element. At the end of iteration, sets PTR to NULL. Use this to
144 iterate over the elements of a vector as follows,
146 for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
149 #define VEC_iterate(TDEF,V,I,P) (VEC_OP(TDEF,iterate)(V,I,&(P)))
151 /* Allocate new vector.
152 VEC(T) *VEC_T_alloc(int reserve);
154 Allocate a new vector with space for RESERVE objects. If RESERVE
155 is <= 0, a default number of slots are created. */
157 #define VEC_alloc(TDEF,A) (VEC_OP(TDEF,alloc)(A MEM_STAT_INFO))
159 /* Use these to determine the required size and initialization of a
160 vector embedded within another structure (as the final member).
162 size_t VEC_T_embedded_size(int reserve);
163 void VEC_T_embedded_init(VEC(T) *v, int reserve);
165 These allow the caller to perform the memory allocation. */
167 #define VEC_embedded_size(TDEF,A) (VEC_OP(TDEF,embedded_size)(A))
168 #define VEC_embedded_init(TDEF,O,A) (VEC_OP(TDEF,embedded_init)(O,A))
170 /* Determine if a vector has additional capacity.
172 int VEC_T_space (VEC(T) *v,int reserve)
174 If V has space for RESERVE additional entries, return non-zero. If
175 RESERVE is < 0, ensure there is at least one space slot. You
176 usually only need to use this if you are doing your own vector
177 reallocation, for instance on an embedded vector. This returns
178 non-zero in exactly the same circumstances that VEC_T_reserve
181 #define VEC_space(TDEF,V,R) (VEC_OP(TDEF,space)(V,R))
184 int VEC_T_reserve(VEC(T) *&v, int reserve);
186 Ensure that V has at least RESERVE slots available, if RESERVE is
187 >= 0. If RESERVE < 0, ensure that there is at least one spare
188 slot. These differ in their reallocation behaviour, the first will
189 not create additional headroom, but the second mechanism will
190 perform the usual exponential headroom increase. Note this can
191 cause V to be reallocated. Returns non-zero iff reallocation
192 actually occurred. */
194 #define VEC_reserve(TDEF,V,R) (VEC_OP(TDEF,reserve)(&(V),R MEM_STAT_INFO))
196 /* Push object with no reallocation
197 T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
198 T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
200 Push a new element onto the end, returns a pointer to the slot
201 filled in. For object vectors, the new value can be NULL, in which
202 case NO initialization is performed. Aborts if there is
203 insufficient space in the vector. */
205 #define VEC_quick_push(TDEF,V,O) \
206 (VEC_OP(TDEF,quick_push)(V,O VEC_CHECK_INFO))
208 /* Push object with reallocation
209 T *VEC_T_safe_push (VEC(T) *&v, T obj); // Pointer
210 T *VEC_T_safe_push (VEC(T) *&v, T *obj); // Object
212 Push a new element onto the end, returns a pointer to the slot
213 filled in. For object vectors, the new value can be NULL, in which
214 case NO initialization is performed. Reallocates V, if needed. */
216 #define VEC_safe_push(TDEF,V,O) \
217 (VEC_OP(TDEF,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
219 /* Pop element off end
220 T VEC_T_pop (VEC(T) *v); // Pointer
221 void VEC_T_pop (VEC(T) *v); // Object
223 Pop the last element off the end. Returns the element popped, for
226 #define VEC_pop(TDEF,V) (VEC_OP(TDEF,pop)(V VEC_CHECK_INFO))
228 /* Truncate to specific length
229 void VEC_T_truncate (VEC(T) *v, unsigned len);
231 Set the length as specified. This is an O(1) operation. */
233 #define VEC_truncate(TDEF,V,I) \
234 (VEC_OP(TDEF,truncate)(V,I VEC_CHECK_INFO))
237 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
238 T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
240 Replace the IXth element of V with a new value, VAL. For pointer
241 vectors returns the original value. For object vectors returns a
242 pointer to the new value. For object vectors the new value can be
243 NULL, in which case no overwriting of the slot is actually
246 #define VEC_replace(TDEF,V,I,O) \
247 (VEC_OP(TDEF,replace)(V,I,O VEC_CHECK_INFO))
249 /* Insert object with no reallocation
250 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
251 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
253 Insert an element, VAL, at the IXth position of V. Return a pointer
254 to the slot created. For vectors of object, the new value can be
255 NULL, in which case no initialization of the inserted slot takes
256 place. Aborts if there is insufficient space. */
258 #define VEC_quick_insert(TDEF,V,I,O) \
259 (VEC_OP(TDEF,quick_insert)(V,I,O VEC_CHECK_INFO))
261 /* Insert object with reallocation
262 T *VEC_T_safe_insert (VEC(T) *&v, unsigned ix, T val); // Pointer
263 T *VEC_T_safe_insert (VEC(T) *&v, unsigned ix, T *val); // Object
265 Insert an element, VAL, at the IXth position of V. Return a pointer
266 to the slot created. For vectors of object, the new value can be
267 NULL, in which case no initialization of the inserted slot takes
268 place. Reallocate V, if necessary. */
270 #define VEC_safe_insert(TDEF,V,I,O) \
271 (VEC_OP(TDEF,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
273 /* Remove element retaining order
274 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
275 void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
277 Remove an element from the IXth position of V. Ordering of
278 remaining elements is preserverd. For pointer vectors returns the
279 removed object. This is an O(N) operation due to a memmove. */
281 #define VEC_ordered_remove(TDEF,V,I) \
282 (VEC_OP(TDEF,ordered_remove)(V,I VEC_CHECK_INFO))
284 /* Remove element destroying order
285 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
286 void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
288 Remove an element from the IXth position of V. Ordering of
289 remaining elements is destroyed. For pointer vectors returns the
290 removed object. This is an O(1) operation. */
292 #define VEC_unordered_remove(TDEF,V,I) \
293 (VEC_OP(TDEF,unordered_remove)(V,I VEC_CHECK_INFO))
295 /* Get the address of the array of elements
296 T *VEC_T_address (VEC(T) v)
298 If you need to directly manipulate the array (for instance, you
299 want to feed it to qsort), use this accessor. */
301 #define VEC_address(TDEF,V) (VEC_OP(TDEF,address)(V))
304 /* Reallocate an array of elements with prefix. */
305 extern void *vec_p_reserve (void *, int MEM_STAT_DECL
);
306 extern void *vec_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL
);
309 #define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
310 #define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
311 #define VEC_CHECK_PASS ,file_,line_,function_
313 #define VEC_ASSERT(EXPR,OP,TDEF) \
314 (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(TDEF)), 0))
316 extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL
)
318 #define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
320 #define VEC_CHECK_INFO
321 #define VEC_CHECK_DECL
322 #define VEC_CHECK_PASS
323 #define VEC_ASSERT(EXPR,OP,TYPE) (void)(EXPR)
326 #define VEC(TDEF) VEC_##TDEF
327 #define VEC_OP(TDEF,OP) VEC_OP_(VEC(TDEF),OP)
328 #define VEC_OP_(VEC,OP) VEC_OP__(VEC,OP)
329 #define VEC_OP__(VEC,OP) VEC ## _ ## OP
330 #else /* IN_GENGTYPE */
331 #define VEC(TDEF) VEC_ TDEF
332 #define VEC_STRINGIFY(X) VEC_STRINGIFY_(X)
333 #define VEC_STRINGIFY_(X) #X
335 #endif /* IN_GENGTYPE */
337 #define VEC_TDEF(TDEF) \
338 typedef struct VEC (TDEF) GTY(()) \
342 TDEF GTY ((length ("%h.num"))) vec[1]; \
345 /* Vector of pointer to object. */
347 {"DEF_VEC_P", VEC_STRINGIFY (VEC_TDEF (#)) ";", NULL},
350 #define DEF_VEC_P(TDEF) \
353 static inline unsigned VEC_OP (TDEF,length) \
354 (const VEC (TDEF) *vec_) \
356 return vec_ ? vec_->num : 0; \
359 static inline TDEF VEC_OP (TDEF,last) \
360 (const VEC (TDEF) *vec_ VEC_CHECK_DECL) \
362 VEC_ASSERT (vec_ && vec_->num, "last", TDEF); \
364 return vec_->vec[vec_->num - 1]; \
367 static inline TDEF VEC_OP (TDEF,index) \
368 (const VEC (TDEF) *vec_, unsigned ix_ VEC_CHECK_DECL) \
370 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", TDEF); \
372 return vec_->vec[ix_]; \
375 static inline int VEC_OP (TDEF,iterate) \
376 (const VEC (TDEF) *vec_, unsigned ix_, TDEF *ptr) \
378 if (vec_ && ix_ < vec_->num) \
380 *ptr = vec_->vec[ix_]; \
390 static inline VEC (TDEF) *VEC_OP (TDEF,alloc) \
391 (int alloc_ MEM_STAT_DECL) \
393 return (VEC (TDEF) *) vec_p_reserve (NULL, alloc_ - !alloc_ PASS_MEM_STAT);\
396 static inline size_t VEC_OP (TDEF,embedded_size) \
399 return offsetof (VEC(TDEF),vec) + alloc_ * sizeof(TDEF); \
402 static inline void VEC_OP (TDEF,embedded_init) \
403 (VEC (TDEF) *vec_, int alloc_) \
406 vec_->alloc = alloc_; \
409 static inline int VEC_OP (TDEF,space) \
410 (VEC (TDEF) *vec_, int alloc_) \
412 return vec_ ? ((vec_)->alloc - (vec_)->num \
413 < (unsigned)(alloc_ < 0 ? 1 : alloc_)) : alloc_ != 0; \
416 static inline int VEC_OP (TDEF,reserve) \
417 (VEC (TDEF) **vec_, int alloc_ MEM_STAT_DECL) \
419 int extend = VEC_OP (TDEF,space) (*vec_, alloc_); \
422 *vec_ = (VEC (TDEF) *) vec_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
427 static inline TDEF *VEC_OP (TDEF,quick_push) \
428 (VEC (TDEF) *vec_, TDEF obj_ VEC_CHECK_DECL) \
432 VEC_ASSERT (vec_->num < vec_->alloc, "push", TDEF); \
433 slot_ = &vec_->vec[vec_->num++]; \
439 static inline TDEF *VEC_OP (TDEF,safe_push) \
440 (VEC (TDEF) **vec_, TDEF obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
442 VEC_OP (TDEF,reserve) (vec_, -1 PASS_MEM_STAT); \
444 return VEC_OP (TDEF,quick_push) (*vec_, obj_ VEC_CHECK_PASS); \
447 static inline TDEF VEC_OP (TDEF,pop) \
448 (VEC (TDEF) *vec_ VEC_CHECK_DECL) \
452 VEC_ASSERT (vec_->num, "pop", TDEF); \
453 obj_ = vec_->vec[--vec_->num]; \
458 static inline void VEC_OP (TDEF,truncate) \
459 (VEC (TDEF) *vec_, unsigned size_ VEC_CHECK_DECL) \
461 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", TDEF); \
466 static inline TDEF VEC_OP (TDEF,replace) \
467 (VEC (TDEF) *vec_, unsigned ix_, TDEF obj_ VEC_CHECK_DECL) \
471 VEC_ASSERT (ix_ < vec_->num, "replace", TDEF); \
472 old_obj_ = vec_->vec[ix_]; \
473 vec_->vec[ix_] = obj_; \
478 static inline TDEF *VEC_OP (TDEF,quick_insert) \
479 (VEC (TDEF) *vec_, unsigned ix_, TDEF obj_ VEC_CHECK_DECL) \
483 VEC_ASSERT (vec_->num < vec_->alloc, "insert", TDEF); \
484 VEC_ASSERT (ix_ <= vec_->num, "insert", TDEF); \
485 slot_ = &vec_->vec[ix_]; \
486 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (TDEF)); \
492 static inline TDEF *VEC_OP (TDEF,safe_insert) \
493 (VEC (TDEF) **vec_, unsigned ix_, TDEF obj_ \
494 VEC_CHECK_DECL MEM_STAT_DECL) \
496 VEC_OP (TDEF,reserve) (vec_, -1 PASS_MEM_STAT); \
498 return VEC_OP (TDEF,quick_insert) (*vec_, ix_, obj_ VEC_CHECK_PASS); \
501 static inline TDEF VEC_OP (TDEF,ordered_remove) \
502 (VEC (TDEF) *vec_, unsigned ix_ VEC_CHECK_DECL) \
507 VEC_ASSERT (ix_ < vec_->num, "remove", TDEF); \
508 slot_ = &vec_->vec[ix_]; \
510 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (TDEF)); \
515 static inline TDEF VEC_OP (TDEF,unordered_remove) \
516 (VEC (TDEF) *vec_, unsigned ix_ VEC_CHECK_DECL) \
521 VEC_ASSERT (ix_ < vec_->num, "remove", TDEF); \
522 slot_ = &vec_->vec[ix_]; \
524 *slot_ = vec_->vec[--vec_->num]; \
529 static inline TDEF *VEC_OP (TDEF,address) \
532 return vec_ ? vec_->vec : 0; \
535 struct vec_swallow_trailing_semi
538 /* Vector of object. */
540 {"DEF_VEC_O", VEC_STRINGIFY (VEC_TDEF (#)) ";", NULL},
543 #define DEF_VEC_O(TDEF) \
546 static inline unsigned VEC_OP (TDEF,length) \
547 (const VEC (TDEF) *vec_) \
549 return vec_ ? vec_->num : 0; \
552 static inline TDEF *VEC_OP (TDEF,last) \
553 (VEC (TDEF) *vec_ VEC_CHECK_DECL) \
555 VEC_ASSERT (vec_ && vec_->num, "last", TDEF); \
557 return &vec_->vec[vec_->num - 1]; \
560 static inline TDEF *VEC_OP (TDEF,index) \
561 (VEC (TDEF) *vec_, unsigned ix_ VEC_CHECK_DECL) \
563 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", TDEF); \
565 return &vec_->vec[ix_]; \
568 static inline int VEC_OP (TDEF,iterate) \
569 (VEC (TDEF) *vec_, unsigned ix_, TDEF **ptr) \
571 if (vec_ && ix_ < vec_->num) \
573 *ptr = &vec_->vec[ix_]; \
583 static inline VEC (TDEF) *VEC_OP (TDEF,alloc) \
584 (int alloc_ MEM_STAT_DECL) \
586 return (VEC (TDEF) *) vec_o_reserve (NULL, alloc_ - !alloc_, \
587 offsetof (VEC(TDEF),vec), sizeof (TDEF)\
591 static inline size_t VEC_OP (TDEF,embedded_size) \
594 return offsetof (VEC(TDEF),vec) + alloc_ * sizeof(TDEF); \
597 static inline void VEC_OP (TDEF,embedded_init) \
598 (VEC (TDEF) *vec_, int alloc_) \
601 vec_->alloc = alloc_; \
604 static inline int VEC_OP (TDEF,space) \
605 (VEC (TDEF) *vec_, int alloc_) \
607 return vec_ ? ((vec_)->alloc - (vec_)->num \
608 < (unsigned)(alloc_ < 0 ? 1 : alloc_)) : alloc_ != 0; \
611 static inline int VEC_OP (TDEF,reserve) \
612 (VEC (TDEF) **vec_, int alloc_ MEM_STAT_DECL) \
614 int extend = VEC_OP (TDEF,space) (*vec_, alloc_); \
617 *vec_ = (VEC (TDEF) *) vec_o_reserve (*vec_, alloc_, \
618 offsetof (VEC(TDEF),vec), sizeof (TDEF) \
624 static inline TDEF *VEC_OP (TDEF,quick_push) \
625 (VEC (TDEF) *vec_, const TDEF *obj_ VEC_CHECK_DECL) \
629 VEC_ASSERT (vec_->num < vec_->alloc, "push", TDEF); \
630 slot_ = &vec_->vec[vec_->num++]; \
637 static inline TDEF *VEC_OP (TDEF,safe_push) \
638 (VEC (TDEF) **vec_, const TDEF *obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
640 VEC_OP (TDEF,reserve) (vec_, -1 PASS_MEM_STAT); \
642 return VEC_OP (TDEF,quick_push) (*vec_, obj_ VEC_CHECK_PASS); \
645 static inline void VEC_OP (TDEF,pop) \
646 (VEC (TDEF) *vec_ VEC_CHECK_DECL) \
648 VEC_ASSERT (vec_->num, "pop", TDEF); \
652 static inline void VEC_OP (TDEF,truncate) \
653 (VEC (TDEF) *vec_, unsigned size_ VEC_CHECK_DECL) \
655 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", TDEF); \
660 static inline TDEF *VEC_OP (TDEF,replace) \
661 (VEC (TDEF) *vec_, unsigned ix_, const TDEF *obj_ VEC_CHECK_DECL) \
665 VEC_ASSERT (ix_ < vec_->num, "replace", TDEF); \
666 slot_ = &vec_->vec[ix_]; \
673 static inline TDEF *VEC_OP (TDEF,quick_insert) \
674 (VEC (TDEF) *vec_, unsigned ix_, const TDEF *obj_ VEC_CHECK_DECL) \
678 VEC_ASSERT (vec_->num < vec_->alloc, "insert", TDEF); \
679 VEC_ASSERT (ix_ <= vec_->num, "insert", TDEF); \
680 slot_ = &vec_->vec[ix_]; \
681 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (TDEF)); \
688 static inline TDEF *VEC_OP (TDEF,safe_insert) \
689 (VEC (TDEF) **vec_, unsigned ix_, const TDEF *obj_ \
690 VEC_CHECK_DECL MEM_STAT_DECL) \
692 VEC_OP (TDEF,reserve) (vec_, -1 PASS_MEM_STAT); \
694 return VEC_OP (TDEF,quick_insert) (*vec_, ix_, obj_ VEC_CHECK_PASS); \
697 static inline void VEC_OP (TDEF,ordered_remove) \
698 (VEC (TDEF) *vec_, unsigned ix_ VEC_CHECK_DECL) \
702 VEC_ASSERT (ix_ < vec_->num, "remove", TDEF); \
703 slot_ = &vec_->vec[ix_]; \
704 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (TDEF)); \
707 static inline void VEC_OP (TDEF,unordered_remove) \
708 (VEC (TDEF) *vec_, unsigned ix_ VEC_CHECK_DECL) \
710 VEC_ASSERT (ix_ < vec_->num, "remove", TDEF); \
711 vec_->vec[ix_] = vec_->vec[--vec_->num]; \
714 static inline TDEF *VEC_OP (TDEF,address) \
717 return vec_ ? vec_->vec : 0; \
720 struct vec_swallow_trailing_semi
723 #endif /* GCC_VEC_H */