Check for Altivec mode when returning altivec register.
[official-gcc.git] / gcc / function.c
blobde40361410fccdaab117bf87a229c677348e02a9
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
63 #ifndef LOCAL_ALIGNMENT
64 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
65 #endif
67 #ifndef STACK_ALIGNMENT_NEEDED
68 #define STACK_ALIGNMENT_NEEDED 1
69 #endif
71 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
73 /* Some systems use __main in a way incompatible with its use in gcc, in these
74 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
75 give the same symbol without quotes for an alternative entry point. You
76 must define both, or neither. */
77 #ifndef NAME__MAIN
78 #define NAME__MAIN "__main"
79 #endif
81 /* Round a value to the lowest integer less than it that is a multiple of
82 the required alignment. Avoid using division in case the value is
83 negative. Assume the alignment is a power of two. */
84 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
86 /* Similar, but round to the next highest integer that meets the
87 alignment. */
88 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
90 /* Nonzero if function being compiled doesn't contain any calls
91 (ignoring the prologue and epilogue). This is set prior to
92 local register allocation and is valid for the remaining
93 compiler passes. */
94 int current_function_is_leaf;
96 /* Nonzero if function being compiled doesn't modify the stack pointer
97 (ignoring the prologue and epilogue). This is only valid after
98 life_analysis has run. */
99 int current_function_sp_is_unchanging;
101 /* Nonzero if the function being compiled is a leaf function which only
102 uses leaf registers. This is valid after reload (specifically after
103 sched2) and is useful only if the port defines LEAF_REGISTERS. */
104 int current_function_uses_only_leaf_regs;
106 /* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.c:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110 int virtuals_instantiated;
112 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
113 static GTY(()) int funcdef_no;
115 /* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117 struct machine_function * (*init_machine_status) (void);
119 /* The currently compiled function. */
120 struct function *cfun = 0;
122 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
123 static GTY(()) varray_type prologue;
124 static GTY(()) varray_type epilogue;
126 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
127 in this function. */
128 static GTY(()) varray_type sibcall_epilogue;
130 /* In order to evaluate some expressions, such as function calls returning
131 structures in memory, we need to temporarily allocate stack locations.
132 We record each allocated temporary in the following structure.
134 Associated with each temporary slot is a nesting level. When we pop up
135 one level, all temporaries associated with the previous level are freed.
136 Normally, all temporaries are freed after the execution of the statement
137 in which they were created. However, if we are inside a ({...}) grouping,
138 the result may be in a temporary and hence must be preserved. If the
139 result could be in a temporary, we preserve it if we can determine which
140 one it is in. If we cannot determine which temporary may contain the
141 result, all temporaries are preserved. A temporary is preserved by
142 pretending it was allocated at the previous nesting level.
144 Automatic variables are also assigned temporary slots, at the nesting
145 level where they are defined. They are marked a "kept" so that
146 free_temp_slots will not free them. */
148 struct temp_slot GTY(())
150 /* Points to next temporary slot. */
151 struct temp_slot *next;
152 /* Points to previous temporary slot. */
153 struct temp_slot *prev;
155 /* The rtx to used to reference the slot. */
156 rtx slot;
157 /* The rtx used to represent the address if not the address of the
158 slot above. May be an EXPR_LIST if multiple addresses exist. */
159 rtx address;
160 /* The alignment (in bits) of the slot. */
161 unsigned int align;
162 /* The size, in units, of the slot. */
163 HOST_WIDE_INT size;
164 /* The type of the object in the slot, or zero if it doesn't correspond
165 to a type. We use this to determine whether a slot can be reused.
166 It can be reused if objects of the type of the new slot will always
167 conflict with objects of the type of the old slot. */
168 tree type;
169 /* Nonzero if this temporary is currently in use. */
170 char in_use;
171 /* Nonzero if this temporary has its address taken. */
172 char addr_taken;
173 /* Nesting level at which this slot is being used. */
174 int level;
175 /* Nonzero if this should survive a call to free_temp_slots. */
176 int keep;
177 /* The offset of the slot from the frame_pointer, including extra space
178 for alignment. This info is for combine_temp_slots. */
179 HOST_WIDE_INT base_offset;
180 /* The size of the slot, including extra space for alignment. This
181 info is for combine_temp_slots. */
182 HOST_WIDE_INT full_size;
185 /* Forward declarations. */
187 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
188 struct function *);
189 static struct temp_slot *find_temp_slot_from_address (rtx);
190 static void instantiate_decls (tree, int);
191 static void instantiate_decls_1 (tree, int);
192 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
193 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
194 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
195 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
196 static void pad_below (struct args_size *, enum machine_mode, tree);
197 static void reorder_blocks_1 (rtx, tree, varray_type *);
198 static void reorder_fix_fragments (tree);
199 static int all_blocks (tree, tree *);
200 static tree *get_block_vector (tree, int *);
201 extern tree debug_find_var_in_block_tree (tree, tree);
202 /* We always define `record_insns' even if it's not used so that we
203 can always export `prologue_epilogue_contains'. */
204 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
205 static int contains (rtx, varray_type);
206 #ifdef HAVE_return
207 static void emit_return_into_block (basic_block, rtx);
208 #endif
209 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
210 static rtx keep_stack_depressed (rtx);
211 #endif
212 static void prepare_function_start (tree);
213 static void do_clobber_return_reg (rtx, void *);
214 static void do_use_return_reg (rtx, void *);
215 static void instantiate_virtual_regs_lossage (rtx);
216 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
218 /* Pointer to chain of `struct function' for containing functions. */
219 struct function *outer_function_chain;
221 /* Given a function decl for a containing function,
222 return the `struct function' for it. */
224 struct function *
225 find_function_data (tree decl)
227 struct function *p;
229 for (p = outer_function_chain; p; p = p->outer)
230 if (p->decl == decl)
231 return p;
233 abort ();
236 /* Save the current context for compilation of a nested function.
237 This is called from language-specific code. The caller should use
238 the enter_nested langhook to save any language-specific state,
239 since this function knows only about language-independent
240 variables. */
242 void
243 push_function_context_to (tree context)
245 struct function *p;
247 if (context)
249 if (context == current_function_decl)
250 cfun->contains_functions = 1;
251 else
253 struct function *containing = find_function_data (context);
254 containing->contains_functions = 1;
258 if (cfun == 0)
259 init_dummy_function_start ();
260 p = cfun;
262 p->outer = outer_function_chain;
263 outer_function_chain = p;
265 lang_hooks.function.enter_nested (p);
267 cfun = 0;
270 void
271 push_function_context (void)
273 push_function_context_to (current_function_decl);
276 /* Restore the last saved context, at the end of a nested function.
277 This function is called from language-specific code. */
279 void
280 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
282 struct function *p = outer_function_chain;
284 cfun = p;
285 outer_function_chain = p->outer;
287 current_function_decl = p->decl;
288 reg_renumber = 0;
290 restore_emit_status (p);
292 lang_hooks.function.leave_nested (p);
294 /* Reset variables that have known state during rtx generation. */
295 virtuals_instantiated = 0;
296 generating_concat_p = 1;
299 void
300 pop_function_context (void)
302 pop_function_context_from (current_function_decl);
305 /* Clear out all parts of the state in F that can safely be discarded
306 after the function has been parsed, but not compiled, to let
307 garbage collection reclaim the memory. */
309 void
310 free_after_parsing (struct function *f)
312 /* f->expr->forced_labels is used by code generation. */
313 /* f->emit->regno_reg_rtx is used by code generation. */
314 /* f->varasm is used by code generation. */
315 /* f->eh->eh_return_stub_label is used by code generation. */
317 lang_hooks.function.final (f);
320 /* Clear out all parts of the state in F that can safely be discarded
321 after the function has been compiled, to let garbage collection
322 reclaim the memory. */
324 void
325 free_after_compilation (struct function *f)
327 f->eh = NULL;
328 f->expr = NULL;
329 f->emit = NULL;
330 f->varasm = NULL;
331 f->machine = NULL;
333 f->x_avail_temp_slots = NULL;
334 f->x_used_temp_slots = NULL;
335 f->arg_offset_rtx = NULL;
336 f->return_rtx = NULL;
337 f->internal_arg_pointer = NULL;
338 f->x_nonlocal_goto_handler_labels = NULL;
339 f->x_return_label = NULL;
340 f->x_naked_return_label = NULL;
341 f->x_stack_slot_list = NULL;
342 f->x_tail_recursion_reentry = NULL;
343 f->x_arg_pointer_save_area = NULL;
344 f->x_parm_birth_insn = NULL;
345 f->original_arg_vector = NULL;
346 f->original_decl_initial = NULL;
347 f->epilogue_delay_list = NULL;
350 /* Allocate fixed slots in the stack frame of the current function. */
352 /* Return size needed for stack frame based on slots so far allocated in
353 function F.
354 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
355 the caller may have to do that. */
357 HOST_WIDE_INT
358 get_func_frame_size (struct function *f)
360 #ifdef FRAME_GROWS_DOWNWARD
361 return -f->x_frame_offset;
362 #else
363 return f->x_frame_offset;
364 #endif
367 /* Return size needed for stack frame based on slots so far allocated.
368 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
369 the caller may have to do that. */
370 HOST_WIDE_INT
371 get_frame_size (void)
373 return get_func_frame_size (cfun);
376 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
377 with machine mode MODE.
379 ALIGN controls the amount of alignment for the address of the slot:
380 0 means according to MODE,
381 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
382 -2 means use BITS_PER_UNIT,
383 positive specifies alignment boundary in bits.
385 We do not round to stack_boundary here.
387 FUNCTION specifies the function to allocate in. */
389 static rtx
390 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
391 struct function *function)
393 rtx x, addr;
394 int bigend_correction = 0;
395 unsigned int alignment;
396 int frame_off, frame_alignment, frame_phase;
398 if (align == 0)
400 tree type;
402 if (mode == BLKmode)
403 alignment = BIGGEST_ALIGNMENT;
404 else
405 alignment = GET_MODE_ALIGNMENT (mode);
407 /* Allow the target to (possibly) increase the alignment of this
408 stack slot. */
409 type = lang_hooks.types.type_for_mode (mode, 0);
410 if (type)
411 alignment = LOCAL_ALIGNMENT (type, alignment);
413 alignment /= BITS_PER_UNIT;
415 else if (align == -1)
417 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
418 size = CEIL_ROUND (size, alignment);
420 else if (align == -2)
421 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
422 else
423 alignment = align / BITS_PER_UNIT;
425 #ifdef FRAME_GROWS_DOWNWARD
426 function->x_frame_offset -= size;
427 #endif
429 /* Ignore alignment we can't do with expected alignment of the boundary. */
430 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
431 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
433 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
434 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
436 /* Calculate how many bytes the start of local variables is off from
437 stack alignment. */
438 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
439 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
440 frame_phase = frame_off ? frame_alignment - frame_off : 0;
442 /* Round the frame offset to the specified alignment. The default is
443 to always honor requests to align the stack but a port may choose to
444 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
445 if (STACK_ALIGNMENT_NEEDED
446 || mode != BLKmode
447 || size != 0)
449 /* We must be careful here, since FRAME_OFFSET might be negative and
450 division with a negative dividend isn't as well defined as we might
451 like. So we instead assume that ALIGNMENT is a power of two and
452 use logical operations which are unambiguous. */
453 #ifdef FRAME_GROWS_DOWNWARD
454 function->x_frame_offset
455 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
456 (unsigned HOST_WIDE_INT) alignment)
457 + frame_phase);
458 #else
459 function->x_frame_offset
460 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
461 (unsigned HOST_WIDE_INT) alignment)
462 + frame_phase);
463 #endif
466 /* On a big-endian machine, if we are allocating more space than we will use,
467 use the least significant bytes of those that are allocated. */
468 if (BYTES_BIG_ENDIAN && mode != BLKmode)
469 bigend_correction = size - GET_MODE_SIZE (mode);
471 /* If we have already instantiated virtual registers, return the actual
472 address relative to the frame pointer. */
473 if (function == cfun && virtuals_instantiated)
474 addr = plus_constant (frame_pointer_rtx,
475 trunc_int_for_mode
476 (frame_offset + bigend_correction
477 + STARTING_FRAME_OFFSET, Pmode));
478 else
479 addr = plus_constant (virtual_stack_vars_rtx,
480 trunc_int_for_mode
481 (function->x_frame_offset + bigend_correction,
482 Pmode));
484 #ifndef FRAME_GROWS_DOWNWARD
485 function->x_frame_offset += size;
486 #endif
488 x = gen_rtx_MEM (mode, addr);
490 function->x_stack_slot_list
491 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
493 return x;
496 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
497 current function. */
500 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
502 return assign_stack_local_1 (mode, size, align, cfun);
506 /* Removes temporary slot TEMP from LIST. */
508 static void
509 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
511 if (temp->next)
512 temp->next->prev = temp->prev;
513 if (temp->prev)
514 temp->prev->next = temp->next;
515 else
516 *list = temp->next;
518 temp->prev = temp->next = NULL;
521 /* Inserts temporary slot TEMP to LIST. */
523 static void
524 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
526 temp->next = *list;
527 if (*list)
528 (*list)->prev = temp;
529 temp->prev = NULL;
530 *list = temp;
533 /* Returns the list of used temp slots at LEVEL. */
535 static struct temp_slot **
536 temp_slots_at_level (int level)
538 level++;
540 if (!used_temp_slots)
541 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
543 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
544 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
546 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
549 /* Returns the maximal temporary slot level. */
551 static int
552 max_slot_level (void)
554 if (!used_temp_slots)
555 return -1;
557 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
560 /* Moves temporary slot TEMP to LEVEL. */
562 static void
563 move_slot_to_level (struct temp_slot *temp, int level)
565 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
566 insert_slot_to_list (temp, temp_slots_at_level (level));
567 temp->level = level;
570 /* Make temporary slot TEMP available. */
572 static void
573 make_slot_available (struct temp_slot *temp)
575 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
576 insert_slot_to_list (temp, &avail_temp_slots);
577 temp->in_use = 0;
578 temp->level = -1;
581 /* Allocate a temporary stack slot and record it for possible later
582 reuse.
584 MODE is the machine mode to be given to the returned rtx.
586 SIZE is the size in units of the space required. We do no rounding here
587 since assign_stack_local will do any required rounding.
589 KEEP is 1 if this slot is to be retained after a call to
590 free_temp_slots. Automatic variables for a block are allocated
591 with this flag. KEEP values of 2 or 3 were needed respectively
592 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
593 or for SAVE_EXPRs, but they are now unused and will abort.
595 TYPE is the type that will be used for the stack slot. */
598 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
599 tree type)
601 unsigned int align;
602 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
603 rtx slot;
605 /* If SIZE is -1 it means that somebody tried to allocate a temporary
606 of a variable size. */
607 if (size == -1)
608 abort ();
610 /* These are now unused. */
611 if (keep > 1)
612 abort ();
614 if (mode == BLKmode)
615 align = BIGGEST_ALIGNMENT;
616 else
617 align = GET_MODE_ALIGNMENT (mode);
619 if (! type)
620 type = lang_hooks.types.type_for_mode (mode, 0);
622 if (type)
623 align = LOCAL_ALIGNMENT (type, align);
625 /* Try to find an available, already-allocated temporary of the proper
626 mode which meets the size and alignment requirements. Choose the
627 smallest one with the closest alignment. */
628 for (p = avail_temp_slots; p; p = p->next)
630 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
631 && objects_must_conflict_p (p->type, type)
632 && (best_p == 0 || best_p->size > p->size
633 || (best_p->size == p->size && best_p->align > p->align)))
635 if (p->align == align && p->size == size)
637 selected = p;
638 cut_slot_from_list (selected, &avail_temp_slots);
639 best_p = 0;
640 break;
642 best_p = p;
646 /* Make our best, if any, the one to use. */
647 if (best_p)
649 selected = best_p;
650 cut_slot_from_list (selected, &avail_temp_slots);
652 /* If there are enough aligned bytes left over, make them into a new
653 temp_slot so that the extra bytes don't get wasted. Do this only
654 for BLKmode slots, so that we can be sure of the alignment. */
655 if (GET_MODE (best_p->slot) == BLKmode)
657 int alignment = best_p->align / BITS_PER_UNIT;
658 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
660 if (best_p->size - rounded_size >= alignment)
662 p = ggc_alloc (sizeof (struct temp_slot));
663 p->in_use = p->addr_taken = 0;
664 p->size = best_p->size - rounded_size;
665 p->base_offset = best_p->base_offset + rounded_size;
666 p->full_size = best_p->full_size - rounded_size;
667 p->slot = gen_rtx_MEM (BLKmode,
668 plus_constant (XEXP (best_p->slot, 0),
669 rounded_size));
670 p->align = best_p->align;
671 p->address = 0;
672 p->type = best_p->type;
673 insert_slot_to_list (p, &avail_temp_slots);
675 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
676 stack_slot_list);
678 best_p->size = rounded_size;
679 best_p->full_size = rounded_size;
684 /* If we still didn't find one, make a new temporary. */
685 if (selected == 0)
687 HOST_WIDE_INT frame_offset_old = frame_offset;
689 p = ggc_alloc (sizeof (struct temp_slot));
691 /* We are passing an explicit alignment request to assign_stack_local.
692 One side effect of that is assign_stack_local will not round SIZE
693 to ensure the frame offset remains suitably aligned.
695 So for requests which depended on the rounding of SIZE, we go ahead
696 and round it now. We also make sure ALIGNMENT is at least
697 BIGGEST_ALIGNMENT. */
698 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
699 abort ();
700 p->slot = assign_stack_local (mode,
701 (mode == BLKmode
702 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
703 : size),
704 align);
706 p->align = align;
708 /* The following slot size computation is necessary because we don't
709 know the actual size of the temporary slot until assign_stack_local
710 has performed all the frame alignment and size rounding for the
711 requested temporary. Note that extra space added for alignment
712 can be either above or below this stack slot depending on which
713 way the frame grows. We include the extra space if and only if it
714 is above this slot. */
715 #ifdef FRAME_GROWS_DOWNWARD
716 p->size = frame_offset_old - frame_offset;
717 #else
718 p->size = size;
719 #endif
721 /* Now define the fields used by combine_temp_slots. */
722 #ifdef FRAME_GROWS_DOWNWARD
723 p->base_offset = frame_offset;
724 p->full_size = frame_offset_old - frame_offset;
725 #else
726 p->base_offset = frame_offset_old;
727 p->full_size = frame_offset - frame_offset_old;
728 #endif
729 p->address = 0;
731 selected = p;
734 p = selected;
735 p->in_use = 1;
736 p->addr_taken = 0;
737 p->type = type;
738 p->level = temp_slot_level;
739 p->keep = keep;
741 pp = temp_slots_at_level (p->level);
742 insert_slot_to_list (p, pp);
744 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
745 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
746 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
748 /* If we know the alias set for the memory that will be used, use
749 it. If there's no TYPE, then we don't know anything about the
750 alias set for the memory. */
751 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
752 set_mem_align (slot, align);
754 /* If a type is specified, set the relevant flags. */
755 if (type != 0)
757 RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
758 && TYPE_READONLY (type));
759 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
760 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
763 return slot;
766 /* Allocate a temporary stack slot and record it for possible later
767 reuse. First three arguments are same as in preceding function. */
770 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
772 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
775 /* Assign a temporary.
776 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
777 and so that should be used in error messages. In either case, we
778 allocate of the given type.
779 KEEP is as for assign_stack_temp.
780 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
781 it is 0 if a register is OK.
782 DONT_PROMOTE is 1 if we should not promote values in register
783 to wider modes. */
786 assign_temp (tree type_or_decl, int keep, int memory_required,
787 int dont_promote ATTRIBUTE_UNUSED)
789 tree type, decl;
790 enum machine_mode mode;
791 #ifdef PROMOTE_MODE
792 int unsignedp;
793 #endif
795 if (DECL_P (type_or_decl))
796 decl = type_or_decl, type = TREE_TYPE (decl);
797 else
798 decl = NULL, type = type_or_decl;
800 mode = TYPE_MODE (type);
801 #ifdef PROMOTE_MODE
802 unsignedp = TYPE_UNSIGNED (type);
803 #endif
805 if (mode == BLKmode || memory_required)
807 HOST_WIDE_INT size = int_size_in_bytes (type);
808 tree size_tree;
809 rtx tmp;
811 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
812 problems with allocating the stack space. */
813 if (size == 0)
814 size = 1;
816 /* Unfortunately, we don't yet know how to allocate variable-sized
817 temporaries. However, sometimes we have a fixed upper limit on
818 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
819 instead. This is the case for Chill variable-sized strings. */
820 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
821 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
822 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
823 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
825 /* If we still haven't been able to get a size, see if the language
826 can compute a maximum size. */
827 if (size == -1
828 && (size_tree = lang_hooks.types.max_size (type)) != 0
829 && host_integerp (size_tree, 1))
830 size = tree_low_cst (size_tree, 1);
832 /* The size of the temporary may be too large to fit into an integer. */
833 /* ??? Not sure this should happen except for user silliness, so limit
834 this to things that aren't compiler-generated temporaries. The
835 rest of the time we'll abort in assign_stack_temp_for_type. */
836 if (decl && size == -1
837 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
839 error ("%Jsize of variable '%D' is too large", decl, decl);
840 size = 1;
843 tmp = assign_stack_temp_for_type (mode, size, keep, type);
844 return tmp;
847 #ifdef PROMOTE_MODE
848 if (! dont_promote)
849 mode = promote_mode (type, mode, &unsignedp, 0);
850 #endif
852 return gen_reg_rtx (mode);
855 /* Combine temporary stack slots which are adjacent on the stack.
857 This allows for better use of already allocated stack space. This is only
858 done for BLKmode slots because we can be sure that we won't have alignment
859 problems in this case. */
861 void
862 combine_temp_slots (void)
864 struct temp_slot *p, *q, *next, *next_q;
865 int num_slots;
867 /* We can't combine slots, because the information about which slot
868 is in which alias set will be lost. */
869 if (flag_strict_aliasing)
870 return;
872 /* If there are a lot of temp slots, don't do anything unless
873 high levels of optimization. */
874 if (! flag_expensive_optimizations)
875 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
876 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
877 return;
879 for (p = avail_temp_slots; p; p = next)
881 int delete_p = 0;
883 next = p->next;
885 if (GET_MODE (p->slot) != BLKmode)
886 continue;
888 for (q = p->next; q; q = next_q)
890 int delete_q = 0;
892 next_q = q->next;
894 if (GET_MODE (q->slot) != BLKmode)
895 continue;
897 if (p->base_offset + p->full_size == q->base_offset)
899 /* Q comes after P; combine Q into P. */
900 p->size += q->size;
901 p->full_size += q->full_size;
902 delete_q = 1;
904 else if (q->base_offset + q->full_size == p->base_offset)
906 /* P comes after Q; combine P into Q. */
907 q->size += p->size;
908 q->full_size += p->full_size;
909 delete_p = 1;
910 break;
912 if (delete_q)
913 cut_slot_from_list (q, &avail_temp_slots);
916 /* Either delete P or advance past it. */
917 if (delete_p)
918 cut_slot_from_list (p, &avail_temp_slots);
922 /* Find the temp slot corresponding to the object at address X. */
924 static struct temp_slot *
925 find_temp_slot_from_address (rtx x)
927 struct temp_slot *p;
928 rtx next;
929 int i;
931 for (i = max_slot_level (); i >= 0; i--)
932 for (p = *temp_slots_at_level (i); p; p = p->next)
934 if (XEXP (p->slot, 0) == x
935 || p->address == x
936 || (GET_CODE (x) == PLUS
937 && XEXP (x, 0) == virtual_stack_vars_rtx
938 && GET_CODE (XEXP (x, 1)) == CONST_INT
939 && INTVAL (XEXP (x, 1)) >= p->base_offset
940 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
941 return p;
943 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
944 for (next = p->address; next; next = XEXP (next, 1))
945 if (XEXP (next, 0) == x)
946 return p;
949 /* If we have a sum involving a register, see if it points to a temp
950 slot. */
951 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
952 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
953 return p;
954 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
955 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
956 return p;
958 return 0;
961 /* Indicate that NEW is an alternate way of referring to the temp slot
962 that previously was known by OLD. */
964 void
965 update_temp_slot_address (rtx old, rtx new)
967 struct temp_slot *p;
969 if (rtx_equal_p (old, new))
970 return;
972 p = find_temp_slot_from_address (old);
974 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
975 is a register, see if one operand of the PLUS is a temporary
976 location. If so, NEW points into it. Otherwise, if both OLD and
977 NEW are a PLUS and if there is a register in common between them.
978 If so, try a recursive call on those values. */
979 if (p == 0)
981 if (GET_CODE (old) != PLUS)
982 return;
984 if (REG_P (new))
986 update_temp_slot_address (XEXP (old, 0), new);
987 update_temp_slot_address (XEXP (old, 1), new);
988 return;
990 else if (GET_CODE (new) != PLUS)
991 return;
993 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
994 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
995 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
996 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
997 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
998 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
999 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1000 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1002 return;
1005 /* Otherwise add an alias for the temp's address. */
1006 else if (p->address == 0)
1007 p->address = new;
1008 else
1010 if (GET_CODE (p->address) != EXPR_LIST)
1011 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1013 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1017 /* If X could be a reference to a temporary slot, mark the fact that its
1018 address was taken. */
1020 void
1021 mark_temp_addr_taken (rtx x)
1023 struct temp_slot *p;
1025 if (x == 0)
1026 return;
1028 /* If X is not in memory or is at a constant address, it cannot be in
1029 a temporary slot. */
1030 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1031 return;
1033 p = find_temp_slot_from_address (XEXP (x, 0));
1034 if (p != 0)
1035 p->addr_taken = 1;
1038 /* If X could be a reference to a temporary slot, mark that slot as
1039 belonging to the to one level higher than the current level. If X
1040 matched one of our slots, just mark that one. Otherwise, we can't
1041 easily predict which it is, so upgrade all of them. Kept slots
1042 need not be touched.
1044 This is called when an ({...}) construct occurs and a statement
1045 returns a value in memory. */
1047 void
1048 preserve_temp_slots (rtx x)
1050 struct temp_slot *p = 0, *next;
1052 /* If there is no result, we still might have some objects whose address
1053 were taken, so we need to make sure they stay around. */
1054 if (x == 0)
1056 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1058 next = p->next;
1060 if (p->addr_taken)
1061 move_slot_to_level (p, temp_slot_level - 1);
1064 return;
1067 /* If X is a register that is being used as a pointer, see if we have
1068 a temporary slot we know it points to. To be consistent with
1069 the code below, we really should preserve all non-kept slots
1070 if we can't find a match, but that seems to be much too costly. */
1071 if (REG_P (x) && REG_POINTER (x))
1072 p = find_temp_slot_from_address (x);
1074 /* If X is not in memory or is at a constant address, it cannot be in
1075 a temporary slot, but it can contain something whose address was
1076 taken. */
1077 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1079 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1081 next = p->next;
1083 if (p->addr_taken)
1084 move_slot_to_level (p, temp_slot_level - 1);
1087 return;
1090 /* First see if we can find a match. */
1091 if (p == 0)
1092 p = find_temp_slot_from_address (XEXP (x, 0));
1094 if (p != 0)
1096 /* Move everything at our level whose address was taken to our new
1097 level in case we used its address. */
1098 struct temp_slot *q;
1100 if (p->level == temp_slot_level)
1102 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1104 next = q->next;
1106 if (p != q && q->addr_taken)
1107 move_slot_to_level (q, temp_slot_level - 1);
1110 move_slot_to_level (p, temp_slot_level - 1);
1111 p->addr_taken = 0;
1113 return;
1116 /* Otherwise, preserve all non-kept slots at this level. */
1117 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1119 next = p->next;
1121 if (!p->keep)
1122 move_slot_to_level (p, temp_slot_level - 1);
1126 /* Free all temporaries used so far. This is normally called at the
1127 end of generating code for a statement. */
1129 void
1130 free_temp_slots (void)
1132 struct temp_slot *p, *next;
1134 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1136 next = p->next;
1138 if (!p->keep)
1139 make_slot_available (p);
1142 combine_temp_slots ();
1145 /* Push deeper into the nesting level for stack temporaries. */
1147 void
1148 push_temp_slots (void)
1150 temp_slot_level++;
1153 /* Pop a temporary nesting level. All slots in use in the current level
1154 are freed. */
1156 void
1157 pop_temp_slots (void)
1159 struct temp_slot *p, *next;
1161 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1163 next = p->next;
1164 make_slot_available (p);
1167 combine_temp_slots ();
1169 temp_slot_level--;
1172 /* Initialize temporary slots. */
1174 void
1175 init_temp_slots (void)
1177 /* We have not allocated any temporaries yet. */
1178 avail_temp_slots = 0;
1179 used_temp_slots = 0;
1180 temp_slot_level = 0;
1183 /* These routines are responsible for converting virtual register references
1184 to the actual hard register references once RTL generation is complete.
1186 The following four variables are used for communication between the
1187 routines. They contain the offsets of the virtual registers from their
1188 respective hard registers. */
1190 static int in_arg_offset;
1191 static int var_offset;
1192 static int dynamic_offset;
1193 static int out_arg_offset;
1194 static int cfa_offset;
1196 /* In most machines, the stack pointer register is equivalent to the bottom
1197 of the stack. */
1199 #ifndef STACK_POINTER_OFFSET
1200 #define STACK_POINTER_OFFSET 0
1201 #endif
1203 /* If not defined, pick an appropriate default for the offset of dynamically
1204 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1205 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1207 #ifndef STACK_DYNAMIC_OFFSET
1209 /* The bottom of the stack points to the actual arguments. If
1210 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1211 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1212 stack space for register parameters is not pushed by the caller, but
1213 rather part of the fixed stack areas and hence not included in
1214 `current_function_outgoing_args_size'. Nevertheless, we must allow
1215 for it when allocating stack dynamic objects. */
1217 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1218 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1219 ((ACCUMULATE_OUTGOING_ARGS \
1220 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1221 + (STACK_POINTER_OFFSET)) \
1223 #else
1224 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1225 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1226 + (STACK_POINTER_OFFSET))
1227 #endif
1228 #endif
1230 /* On most machines, the CFA coincides with the first incoming parm. */
1232 #ifndef ARG_POINTER_CFA_OFFSET
1233 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1234 #endif
1237 /* Pass through the INSNS of function FNDECL and convert virtual register
1238 references to hard register references. */
1240 void
1241 instantiate_virtual_regs (void)
1243 rtx insn;
1245 /* Compute the offsets to use for this function. */
1246 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1247 var_offset = STARTING_FRAME_OFFSET;
1248 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1249 out_arg_offset = STACK_POINTER_OFFSET;
1250 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1252 /* Scan all variables and parameters of this function. For each that is
1253 in memory, instantiate all virtual registers if the result is a valid
1254 address. If not, we do it later. That will handle most uses of virtual
1255 regs on many machines. */
1256 instantiate_decls (current_function_decl, 1);
1258 /* Initialize recognition, indicating that volatile is OK. */
1259 init_recog ();
1261 /* Scan through all the insns, instantiating every virtual register still
1262 present. */
1263 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1264 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1265 || GET_CODE (insn) == CALL_INSN)
1267 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
1268 if (INSN_DELETED_P (insn))
1269 continue;
1270 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
1271 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1272 if (GET_CODE (insn) == CALL_INSN)
1273 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
1274 NULL_RTX, 0);
1276 /* Past this point all ASM statements should match. Verify that
1277 to avoid failures later in the compilation process. */
1278 if (asm_noperands (PATTERN (insn)) >= 0
1279 && ! check_asm_operands (PATTERN (insn)))
1280 instantiate_virtual_regs_lossage (insn);
1283 /* Now instantiate the remaining register equivalences for debugging info.
1284 These will not be valid addresses. */
1285 instantiate_decls (current_function_decl, 0);
1287 /* Indicate that, from now on, assign_stack_local should use
1288 frame_pointer_rtx. */
1289 virtuals_instantiated = 1;
1292 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1293 all virtual registers in their DECL_RTL's.
1295 If VALID_ONLY, do this only if the resulting address is still valid.
1296 Otherwise, always do it. */
1298 static void
1299 instantiate_decls (tree fndecl, int valid_only)
1301 tree decl;
1303 /* Process all parameters of the function. */
1304 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1306 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
1307 HOST_WIDE_INT size_rtl;
1309 instantiate_decl (DECL_RTL (decl), size, valid_only);
1311 /* If the parameter was promoted, then the incoming RTL mode may be
1312 larger than the declared type size. We must use the larger of
1313 the two sizes. */
1314 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
1315 size = MAX (size_rtl, size);
1316 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
1319 /* Now process all variables defined in the function or its subblocks. */
1320 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
1323 /* Subroutine of instantiate_decls: Process all decls in the given
1324 BLOCK node and all its subblocks. */
1326 static void
1327 instantiate_decls_1 (tree let, int valid_only)
1329 tree t;
1331 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1332 if (DECL_RTL_SET_P (t))
1333 instantiate_decl (DECL_RTL (t),
1334 int_size_in_bytes (TREE_TYPE (t)),
1335 valid_only);
1337 /* Process all subblocks. */
1338 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1339 instantiate_decls_1 (t, valid_only);
1342 /* Subroutine of the preceding procedures: Given RTL representing a
1343 decl and the size of the object, do any instantiation required.
1345 If VALID_ONLY is nonzero, it means that the RTL should only be
1346 changed if the new address is valid. */
1348 static void
1349 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
1351 enum machine_mode mode;
1352 rtx addr;
1354 /* If this is not a MEM, no need to do anything. Similarly if the
1355 address is a constant or a register that is not a virtual register. */
1357 if (x == 0 || !MEM_P (x))
1358 return;
1360 addr = XEXP (x, 0);
1361 if (CONSTANT_P (addr)
1362 || (REG_P (addr)
1363 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1364 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1365 return;
1367 /* If we should only do this if the address is valid, copy the address.
1368 We need to do this so we can undo any changes that might make the
1369 address invalid. This copy is unfortunate, but probably can't be
1370 avoided. */
1372 if (valid_only)
1373 addr = copy_rtx (addr);
1375 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
1377 if (valid_only && size >= 0)
1379 unsigned HOST_WIDE_INT decl_size = size;
1381 /* Now verify that the resulting address is valid for every integer or
1382 floating-point mode up to and including SIZE bytes long. We do this
1383 since the object might be accessed in any mode and frame addresses
1384 are shared. */
1386 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1387 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1388 mode = GET_MODE_WIDER_MODE (mode))
1389 if (! memory_address_p (mode, addr))
1390 return;
1392 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
1393 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1394 mode = GET_MODE_WIDER_MODE (mode))
1395 if (! memory_address_p (mode, addr))
1396 return;
1399 /* Put back the address now that we have updated it and we either know
1400 it is valid or we don't care whether it is valid. */
1402 XEXP (x, 0) = addr;
1405 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1406 is a virtual register, return the equivalent hard register and set the
1407 offset indirectly through the pointer. Otherwise, return 0. */
1409 static rtx
1410 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1412 rtx new;
1413 HOST_WIDE_INT offset;
1415 if (x == virtual_incoming_args_rtx)
1416 new = arg_pointer_rtx, offset = in_arg_offset;
1417 else if (x == virtual_stack_vars_rtx)
1418 new = frame_pointer_rtx, offset = var_offset;
1419 else if (x == virtual_stack_dynamic_rtx)
1420 new = stack_pointer_rtx, offset = dynamic_offset;
1421 else if (x == virtual_outgoing_args_rtx)
1422 new = stack_pointer_rtx, offset = out_arg_offset;
1423 else if (x == virtual_cfa_rtx)
1424 new = arg_pointer_rtx, offset = cfa_offset;
1425 else
1426 return 0;
1428 *poffset = offset;
1429 return new;
1433 /* Called when instantiate_virtual_regs has failed to update the instruction.
1434 Usually this means that non-matching instruction has been emit, however for
1435 asm statements it may be the problem in the constraints. */
1436 static void
1437 instantiate_virtual_regs_lossage (rtx insn)
1439 if (asm_noperands (PATTERN (insn)) >= 0)
1441 error_for_asm (insn, "impossible constraint in `asm'");
1442 delete_insn (insn);
1444 else
1445 abort ();
1447 /* Given a pointer to a piece of rtx and an optional pointer to the
1448 containing object, instantiate any virtual registers present in it.
1450 If EXTRA_INSNS, we always do the replacement and generate
1451 any extra insns before OBJECT. If it zero, we do nothing if replacement
1452 is not valid.
1454 Return 1 if we either had nothing to do or if we were able to do the
1455 needed replacement. Return 0 otherwise; we only return zero if
1456 EXTRA_INSNS is zero.
1458 We first try some simple transformations to avoid the creation of extra
1459 pseudos. */
1461 static int
1462 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
1464 rtx x;
1465 RTX_CODE code;
1466 rtx new = 0;
1467 HOST_WIDE_INT offset = 0;
1468 rtx temp;
1469 rtx seq;
1470 int i, j;
1471 const char *fmt;
1473 /* Re-start here to avoid recursion in common cases. */
1474 restart:
1476 x = *loc;
1477 if (x == 0)
1478 return 1;
1480 /* We may have detected and deleted invalid asm statements. */
1481 if (object && INSN_P (object) && INSN_DELETED_P (object))
1482 return 1;
1484 code = GET_CODE (x);
1486 /* Check for some special cases. */
1487 switch (code)
1489 case CONST_INT:
1490 case CONST_DOUBLE:
1491 case CONST_VECTOR:
1492 case CONST:
1493 case SYMBOL_REF:
1494 case CODE_LABEL:
1495 case PC:
1496 case CC0:
1497 case ASM_INPUT:
1498 case ADDR_VEC:
1499 case ADDR_DIFF_VEC:
1500 case RETURN:
1501 return 1;
1503 case SET:
1504 /* We are allowed to set the virtual registers. This means that
1505 the actual register should receive the source minus the
1506 appropriate offset. This is used, for example, in the handling
1507 of non-local gotos. */
1508 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
1510 rtx src = SET_SRC (x);
1512 /* We are setting the register, not using it, so the relevant
1513 offset is the negative of the offset to use were we using
1514 the register. */
1515 offset = - offset;
1516 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
1518 /* The only valid sources here are PLUS or REG. Just do
1519 the simplest possible thing to handle them. */
1520 if (!REG_P (src) && GET_CODE (src) != PLUS)
1522 instantiate_virtual_regs_lossage (object);
1523 return 1;
1526 start_sequence ();
1527 if (!REG_P (src))
1528 temp = force_operand (src, NULL_RTX);
1529 else
1530 temp = src;
1531 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
1532 seq = get_insns ();
1533 end_sequence ();
1535 emit_insn_before (seq, object);
1536 SET_DEST (x) = new;
1538 if (! validate_change (object, &SET_SRC (x), temp, 0)
1539 || ! extra_insns)
1540 instantiate_virtual_regs_lossage (object);
1542 return 1;
1545 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
1546 loc = &SET_SRC (x);
1547 goto restart;
1549 case PLUS:
1550 /* Handle special case of virtual register plus constant. */
1551 if (CONSTANT_P (XEXP (x, 1)))
1553 rtx old, new_offset;
1555 /* Check for (plus (plus VIRT foo) (const_int)) first. */
1556 if (GET_CODE (XEXP (x, 0)) == PLUS)
1558 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
1560 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
1561 extra_insns);
1562 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
1564 else
1566 loc = &XEXP (x, 0);
1567 goto restart;
1571 #ifdef POINTERS_EXTEND_UNSIGNED
1572 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1573 we can commute the PLUS and SUBREG because pointers into the
1574 frame are well-behaved. */
1575 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
1576 && GET_CODE (XEXP (x, 1)) == CONST_INT
1577 && 0 != (new
1578 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
1579 &offset))
1580 && validate_change (object, loc,
1581 plus_constant (gen_lowpart (ptr_mode,
1582 new),
1583 offset
1584 + INTVAL (XEXP (x, 1))),
1586 return 1;
1587 #endif
1588 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
1590 /* We know the second operand is a constant. Unless the
1591 first operand is a REG (which has been already checked),
1592 it needs to be checked. */
1593 if (!REG_P (XEXP (x, 0)))
1595 loc = &XEXP (x, 0);
1596 goto restart;
1598 return 1;
1601 new_offset = plus_constant (XEXP (x, 1), offset);
1603 /* If the new constant is zero, try to replace the sum with just
1604 the register. */
1605 if (new_offset == const0_rtx
1606 && validate_change (object, loc, new, 0))
1607 return 1;
1609 /* Next try to replace the register and new offset.
1610 There are two changes to validate here and we can't assume that
1611 in the case of old offset equals new just changing the register
1612 will yield a valid insn. In the interests of a little efficiency,
1613 however, we only call validate change once (we don't queue up the
1614 changes and then call apply_change_group). */
1616 old = XEXP (x, 0);
1617 if (offset == 0
1618 ? ! validate_change (object, &XEXP (x, 0), new, 0)
1619 : (XEXP (x, 0) = new,
1620 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
1622 if (! extra_insns)
1624 XEXP (x, 0) = old;
1625 return 0;
1628 /* Otherwise copy the new constant into a register and replace
1629 constant with that register. */
1630 temp = gen_reg_rtx (Pmode);
1631 XEXP (x, 0) = new;
1632 if (validate_change (object, &XEXP (x, 1), temp, 0))
1633 emit_insn_before (gen_move_insn (temp, new_offset), object);
1634 else
1636 /* If that didn't work, replace this expression with a
1637 register containing the sum. */
1639 XEXP (x, 0) = old;
1640 new = gen_rtx_PLUS (Pmode, new, new_offset);
1642 start_sequence ();
1643 temp = force_operand (new, NULL_RTX);
1644 seq = get_insns ();
1645 end_sequence ();
1647 emit_insn_before (seq, object);
1648 if (! validate_change (object, loc, temp, 0)
1649 && ! validate_replace_rtx (x, temp, object))
1651 instantiate_virtual_regs_lossage (object);
1652 return 1;
1657 return 1;
1660 /* Fall through to generic two-operand expression case. */
1661 case EXPR_LIST:
1662 case CALL:
1663 case COMPARE:
1664 case MINUS:
1665 case MULT:
1666 case DIV: case UDIV:
1667 case MOD: case UMOD:
1668 case AND: case IOR: case XOR:
1669 case ROTATERT: case ROTATE:
1670 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
1671 case NE: case EQ:
1672 case GE: case GT: case GEU: case GTU:
1673 case LE: case LT: case LEU: case LTU:
1674 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
1675 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
1676 loc = &XEXP (x, 0);
1677 goto restart;
1679 case MEM:
1680 /* Most cases of MEM that convert to valid addresses have already been
1681 handled by our scan of decls. The only special handling we
1682 need here is to make a copy of the rtx to ensure it isn't being
1683 shared if we have to change it to a pseudo.
1685 If the rtx is a simple reference to an address via a virtual register,
1686 it can potentially be shared. In such cases, first try to make it
1687 a valid address, which can also be shared. Otherwise, copy it and
1688 proceed normally.
1690 First check for common cases that need no processing. These are
1691 usually due to instantiation already being done on a previous instance
1692 of a shared rtx. */
1694 temp = XEXP (x, 0);
1695 if (CONSTANT_ADDRESS_P (temp)
1696 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1697 || temp == arg_pointer_rtx
1698 #endif
1699 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1700 || temp == hard_frame_pointer_rtx
1701 #endif
1702 || temp == frame_pointer_rtx)
1703 return 1;
1705 if (GET_CODE (temp) == PLUS
1706 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1707 && (XEXP (temp, 0) == frame_pointer_rtx
1708 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1709 || XEXP (temp, 0) == hard_frame_pointer_rtx
1710 #endif
1711 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1712 || XEXP (temp, 0) == arg_pointer_rtx
1713 #endif
1715 return 1;
1717 if (temp == virtual_stack_vars_rtx
1718 || temp == virtual_incoming_args_rtx
1719 || (GET_CODE (temp) == PLUS
1720 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1721 && (XEXP (temp, 0) == virtual_stack_vars_rtx
1722 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
1724 /* This MEM may be shared. If the substitution can be done without
1725 the need to generate new pseudos, we want to do it in place
1726 so all copies of the shared rtx benefit. The call below will
1727 only make substitutions if the resulting address is still
1728 valid.
1730 Note that we cannot pass X as the object in the recursive call
1731 since the insn being processed may not allow all valid
1732 addresses. However, if we were not passed on object, we can
1733 only modify X without copying it if X will have a valid
1734 address.
1736 ??? Also note that this can still lose if OBJECT is an insn that
1737 has less restrictions on an address that some other insn.
1738 In that case, we will modify the shared address. This case
1739 doesn't seem very likely, though. One case where this could
1740 happen is in the case of a USE or CLOBBER reference, but we
1741 take care of that below. */
1743 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
1744 object ? object : x, 0))
1745 return 1;
1747 /* Otherwise make a copy and process that copy. We copy the entire
1748 RTL expression since it might be a PLUS which could also be
1749 shared. */
1750 *loc = x = copy_rtx (x);
1753 /* Fall through to generic unary operation case. */
1754 case PREFETCH:
1755 case SUBREG:
1756 case STRICT_LOW_PART:
1757 case NEG: case NOT:
1758 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
1759 case SIGN_EXTEND: case ZERO_EXTEND:
1760 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
1761 case FLOAT: case FIX:
1762 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
1763 case ABS:
1764 case SQRT:
1765 case FFS:
1766 case CLZ: case CTZ:
1767 case POPCOUNT: case PARITY:
1768 /* These case either have just one operand or we know that we need not
1769 check the rest of the operands. */
1770 loc = &XEXP (x, 0);
1771 goto restart;
1773 case USE:
1774 case CLOBBER:
1775 /* If the operand is a MEM, see if the change is a valid MEM. If not,
1776 go ahead and make the invalid one, but do it to a copy. For a REG,
1777 just make the recursive call, since there's no chance of a problem. */
1779 if ((MEM_P (XEXP (x, 0))
1780 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
1782 || (REG_P (XEXP (x, 0))
1783 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
1784 return 1;
1786 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
1787 loc = &XEXP (x, 0);
1788 goto restart;
1790 case REG:
1791 /* Try to replace with a PLUS. If that doesn't work, compute the sum
1792 in front of this insn and substitute the temporary. */
1793 if ((new = instantiate_new_reg (x, &offset)) != 0)
1795 temp = plus_constant (new, offset);
1796 if (!validate_change (object, loc, temp, 0))
1798 if (! extra_insns)
1799 return 0;
1801 start_sequence ();
1802 temp = force_operand (temp, NULL_RTX);
1803 seq = get_insns ();
1804 end_sequence ();
1806 emit_insn_before (seq, object);
1807 if (! validate_change (object, loc, temp, 0)
1808 && ! validate_replace_rtx (x, temp, object))
1809 instantiate_virtual_regs_lossage (object);
1813 return 1;
1815 default:
1816 break;
1819 /* Scan all subexpressions. */
1820 fmt = GET_RTX_FORMAT (code);
1821 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1822 if (*fmt == 'e')
1824 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
1825 return 0;
1827 else if (*fmt == 'E')
1828 for (j = 0; j < XVECLEN (x, i); j++)
1829 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
1830 extra_insns))
1831 return 0;
1833 return 1;
1836 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1837 This means a type for which function calls must pass an address to the
1838 function or get an address back from the function.
1839 EXP may be a type node or an expression (whose type is tested). */
1842 aggregate_value_p (tree exp, tree fntype)
1844 int i, regno, nregs;
1845 rtx reg;
1847 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1849 if (fntype)
1850 switch (TREE_CODE (fntype))
1852 case CALL_EXPR:
1853 fntype = get_callee_fndecl (fntype);
1854 fntype = fntype ? TREE_TYPE (fntype) : 0;
1855 break;
1856 case FUNCTION_DECL:
1857 fntype = TREE_TYPE (fntype);
1858 break;
1859 case FUNCTION_TYPE:
1860 case METHOD_TYPE:
1861 break;
1862 case IDENTIFIER_NODE:
1863 fntype = 0;
1864 break;
1865 default:
1866 /* We don't expect other rtl types here. */
1867 abort();
1870 if (TREE_CODE (type) == VOID_TYPE)
1871 return 0;
1872 /* If the front end has decided that this needs to be passed by
1873 reference, do so. */
1874 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1875 && DECL_BY_REFERENCE (exp))
1876 return 1;
1877 if (targetm.calls.return_in_memory (type, fntype))
1878 return 1;
1879 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1880 and thus can't be returned in registers. */
1881 if (TREE_ADDRESSABLE (type))
1882 return 1;
1883 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1884 return 1;
1885 /* Make sure we have suitable call-clobbered regs to return
1886 the value in; if not, we must return it in memory. */
1887 reg = hard_function_value (type, 0, 0);
1889 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1890 it is OK. */
1891 if (!REG_P (reg))
1892 return 0;
1894 regno = REGNO (reg);
1895 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1896 for (i = 0; i < nregs; i++)
1897 if (! call_used_regs[regno + i])
1898 return 1;
1899 return 0;
1902 /* Return true if we should assign DECL a pseudo register; false if it
1903 should live on the local stack. */
1905 bool
1906 use_register_for_decl (tree decl)
1908 /* Honor volatile. */
1909 if (TREE_SIDE_EFFECTS (decl))
1910 return false;
1912 /* Honor addressability. */
1913 if (TREE_ADDRESSABLE (decl))
1914 return false;
1916 /* Only register-like things go in registers. */
1917 if (DECL_MODE (decl) == BLKmode)
1918 return false;
1920 /* If -ffloat-store specified, don't put explicit float variables
1921 into registers. */
1922 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1923 propagates values across these stores, and it probably shouldn't. */
1924 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1925 return false;
1927 /* Compiler-generated temporaries can always go in registers. */
1928 if (DECL_ARTIFICIAL (decl))
1929 return true;
1931 #ifdef NON_SAVING_SETJMP
1932 /* Protect variables not declared "register" from setjmp. */
1933 if (NON_SAVING_SETJMP
1934 && current_function_calls_setjmp
1935 && !DECL_REGISTER (decl))
1936 return false;
1937 #endif
1939 return (optimize || DECL_REGISTER (decl));
1942 /* Return true if TYPE should be passed by invisible reference. */
1944 bool
1945 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1946 tree type, bool named_arg)
1948 if (type)
1950 /* If this type contains non-trivial constructors, then it is
1951 forbidden for the middle-end to create any new copies. */
1952 if (TREE_ADDRESSABLE (type))
1953 return true;
1955 /* GCC post 3.4 passes *all* variable sized types by reference. */
1956 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1957 return true;
1960 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1963 /* Structures to communicate between the subroutines of assign_parms.
1964 The first holds data persistent across all parameters, the second
1965 is cleared out for each parameter. */
1967 struct assign_parm_data_all
1969 CUMULATIVE_ARGS args_so_far;
1970 struct args_size stack_args_size;
1971 tree function_result_decl;
1972 tree orig_fnargs;
1973 rtx conversion_insns;
1974 HOST_WIDE_INT pretend_args_size;
1975 HOST_WIDE_INT extra_pretend_bytes;
1976 int reg_parm_stack_space;
1979 struct assign_parm_data_one
1981 tree nominal_type;
1982 tree passed_type;
1983 rtx entry_parm;
1984 rtx stack_parm;
1985 enum machine_mode nominal_mode;
1986 enum machine_mode passed_mode;
1987 enum machine_mode promoted_mode;
1988 struct locate_and_pad_arg_data locate;
1989 int partial;
1990 BOOL_BITFIELD named_arg : 1;
1991 BOOL_BITFIELD last_named : 1;
1992 BOOL_BITFIELD passed_pointer : 1;
1993 BOOL_BITFIELD on_stack : 1;
1994 BOOL_BITFIELD loaded_in_reg : 1;
1997 /* A subroutine of assign_parms. Initialize ALL. */
1999 static void
2000 assign_parms_initialize_all (struct assign_parm_data_all *all)
2002 tree fntype;
2004 memset (all, 0, sizeof (*all));
2006 fntype = TREE_TYPE (current_function_decl);
2008 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2009 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2010 #else
2011 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2012 current_function_decl, -1);
2013 #endif
2015 #ifdef REG_PARM_STACK_SPACE
2016 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2017 #endif
2020 /* If ARGS contains entries with complex types, split the entry into two
2021 entries of the component type. Return a new list of substitutions are
2022 needed, else the old list. */
2024 static tree
2025 split_complex_args (tree args)
2027 tree p;
2029 /* Before allocating memory, check for the common case of no complex. */
2030 for (p = args; p; p = TREE_CHAIN (p))
2032 tree type = TREE_TYPE (p);
2033 if (TREE_CODE (type) == COMPLEX_TYPE
2034 && targetm.calls.split_complex_arg (type))
2035 goto found;
2037 return args;
2039 found:
2040 args = copy_list (args);
2042 for (p = args; p; p = TREE_CHAIN (p))
2044 tree type = TREE_TYPE (p);
2045 if (TREE_CODE (type) == COMPLEX_TYPE
2046 && targetm.calls.split_complex_arg (type))
2048 tree decl;
2049 tree subtype = TREE_TYPE (type);
2051 /* Rewrite the PARM_DECL's type with its component. */
2052 TREE_TYPE (p) = subtype;
2053 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2054 DECL_MODE (p) = VOIDmode;
2055 DECL_SIZE (p) = NULL;
2056 DECL_SIZE_UNIT (p) = NULL;
2057 layout_decl (p, 0);
2059 /* Build a second synthetic decl. */
2060 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2061 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2062 layout_decl (decl, 0);
2064 /* Splice it in; skip the new decl. */
2065 TREE_CHAIN (decl) = TREE_CHAIN (p);
2066 TREE_CHAIN (p) = decl;
2067 p = decl;
2071 return args;
2074 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2075 the hidden struct return argument, and (abi willing) complex args.
2076 Return the new parameter list. */
2078 static tree
2079 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2081 tree fndecl = current_function_decl;
2082 tree fntype = TREE_TYPE (fndecl);
2083 tree fnargs = DECL_ARGUMENTS (fndecl);
2085 /* If struct value address is treated as the first argument, make it so. */
2086 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2087 && ! current_function_returns_pcc_struct
2088 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2090 tree type = build_pointer_type (TREE_TYPE (fntype));
2091 tree decl;
2093 decl = build_decl (PARM_DECL, NULL_TREE, type);
2094 DECL_ARG_TYPE (decl) = type;
2095 DECL_ARTIFICIAL (decl) = 1;
2097 TREE_CHAIN (decl) = fnargs;
2098 fnargs = decl;
2099 all->function_result_decl = decl;
2102 all->orig_fnargs = fnargs;
2104 /* If the target wants to split complex arguments into scalars, do so. */
2105 if (targetm.calls.split_complex_arg)
2106 fnargs = split_complex_args (fnargs);
2108 return fnargs;
2111 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2112 data for the parameter. Incorporate ABI specifics such as pass-by-
2113 reference and type promotion. */
2115 static void
2116 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2117 struct assign_parm_data_one *data)
2119 tree nominal_type, passed_type;
2120 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2122 memset (data, 0, sizeof (*data));
2124 /* Set LAST_NAMED if this is last named arg before last anonymous args. */
2125 if (current_function_stdarg)
2127 tree tem;
2128 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
2129 if (DECL_NAME (tem))
2130 break;
2131 if (tem == 0)
2132 data->last_named = true;
2135 /* Set NAMED_ARG if this arg should be treated as a named arg. For
2136 most machines, if this is a varargs/stdarg function, then we treat
2137 the last named arg as if it were anonymous too. */
2138 if (targetm.calls.strict_argument_naming (&all->args_so_far))
2139 data->named_arg = 1;
2140 else
2141 data->named_arg = !data->last_named;
2143 nominal_type = TREE_TYPE (parm);
2144 passed_type = DECL_ARG_TYPE (parm);
2146 /* Look out for errors propagating this far. Also, if the parameter's
2147 type is void then its value doesn't matter. */
2148 if (TREE_TYPE (parm) == error_mark_node
2149 /* This can happen after weird syntax errors
2150 or if an enum type is defined among the parms. */
2151 || TREE_CODE (parm) != PARM_DECL
2152 || passed_type == NULL
2153 || VOID_TYPE_P (nominal_type))
2155 nominal_type = passed_type = void_type_node;
2156 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2157 goto egress;
2160 /* Find mode of arg as it is passed, and mode of arg as it should be
2161 during execution of this function. */
2162 passed_mode = TYPE_MODE (passed_type);
2163 nominal_mode = TYPE_MODE (nominal_type);
2165 /* If the parm is to be passed as a transparent union, use the type of
2166 the first field for the tests below. We have already verified that
2167 the modes are the same. */
2168 if (DECL_TRANSPARENT_UNION (parm)
2169 || (TREE_CODE (passed_type) == UNION_TYPE
2170 && TYPE_TRANSPARENT_UNION (passed_type)))
2171 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2173 /* See if this arg was passed by invisible reference. */
2174 if (pass_by_reference (&all->args_so_far, passed_mode,
2175 passed_type, data->named_arg))
2177 passed_type = nominal_type = build_pointer_type (passed_type);
2178 data->passed_pointer = true;
2179 passed_mode = nominal_mode = Pmode;
2182 /* Find mode as it is passed by the ABI. */
2183 promoted_mode = passed_mode;
2184 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2186 int unsignedp = TYPE_UNSIGNED (passed_type);
2187 promoted_mode = promote_mode (passed_type, promoted_mode,
2188 &unsignedp, 1);
2191 egress:
2192 data->nominal_type = nominal_type;
2193 data->passed_type = passed_type;
2194 data->nominal_mode = nominal_mode;
2195 data->passed_mode = passed_mode;
2196 data->promoted_mode = promoted_mode;
2199 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2201 static void
2202 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2203 struct assign_parm_data_one *data, bool no_rtl)
2205 int varargs_pretend_bytes = 0;
2207 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2208 data->promoted_mode,
2209 data->passed_type,
2210 &varargs_pretend_bytes, no_rtl);
2212 /* If the back-end has requested extra stack space, record how much is
2213 needed. Do not change pretend_args_size otherwise since it may be
2214 nonzero from an earlier partial argument. */
2215 if (varargs_pretend_bytes > 0)
2216 all->pretend_args_size = varargs_pretend_bytes;
2219 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2220 the incoming location of the current parameter. */
2222 static void
2223 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2224 struct assign_parm_data_one *data)
2226 HOST_WIDE_INT pretend_bytes = 0;
2227 rtx entry_parm;
2228 bool in_regs;
2230 if (data->promoted_mode == VOIDmode)
2232 data->entry_parm = data->stack_parm = const0_rtx;
2233 return;
2236 #ifdef FUNCTION_INCOMING_ARG
2237 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2238 data->passed_type, data->named_arg);
2239 #else
2240 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2241 data->passed_type, data->named_arg);
2242 #endif
2244 if (entry_parm == 0)
2245 data->promoted_mode = data->passed_mode;
2247 /* Determine parm's home in the stack, in case it arrives in the stack
2248 or we should pretend it did. Compute the stack position and rtx where
2249 the argument arrives and its size.
2251 There is one complexity here: If this was a parameter that would
2252 have been passed in registers, but wasn't only because it is
2253 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2254 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2255 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2256 as it was the previous time. */
2257 in_regs = entry_parm != 0;
2258 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2259 in_regs = true;
2260 #endif
2261 if (!in_regs && !data->named_arg)
2263 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2265 rtx tem;
2266 #ifdef FUNCTION_INCOMING_ARG
2267 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2268 data->passed_type, true);
2269 #else
2270 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2271 data->passed_type, true);
2272 #endif
2273 in_regs = tem != NULL;
2277 /* If this parameter was passed both in registers and in the stack, use
2278 the copy on the stack. */
2279 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2280 data->passed_type))
2281 entry_parm = 0;
2283 if (entry_parm)
2285 int partial;
2287 partial = FUNCTION_ARG_PARTIAL_NREGS (all->args_so_far,
2288 data->promoted_mode,
2289 data->passed_type,
2290 data->named_arg);
2291 data->partial = partial;
2293 /* The caller might already have allocated stack space for the
2294 register parameters. */
2295 if (partial != 0 && all->reg_parm_stack_space == 0)
2297 /* Part of this argument is passed in registers and part
2298 is passed on the stack. Ask the prologue code to extend
2299 the stack part so that we can recreate the full value.
2301 PRETEND_BYTES is the size of the registers we need to store.
2302 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2303 stack space that the prologue should allocate.
2305 Internally, gcc assumes that the argument pointer is aligned
2306 to STACK_BOUNDARY bits. This is used both for alignment
2307 optimizations (see init_emit) and to locate arguments that are
2308 aligned to more than PARM_BOUNDARY bits. We must preserve this
2309 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2310 a stack boundary. */
2312 /* We assume at most one partial arg, and it must be the first
2313 argument on the stack. */
2314 if (all->extra_pretend_bytes || all->pretend_args_size)
2315 abort ();
2317 pretend_bytes = partial * UNITS_PER_WORD;
2318 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2320 /* We want to align relative to the actual stack pointer, so
2321 don't include this in the stack size until later. */
2322 all->extra_pretend_bytes = all->pretend_args_size;
2326 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2327 entry_parm ? data->partial : 0, current_function_decl,
2328 &all->stack_args_size, &data->locate);
2330 /* Adjust offsets to include the pretend args. */
2331 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2332 data->locate.slot_offset.constant += pretend_bytes;
2333 data->locate.offset.constant += pretend_bytes;
2335 data->entry_parm = entry_parm;
2338 /* A subroutine of assign_parms. If there is actually space on the stack
2339 for this parm, count it in stack_args_size and return true. */
2341 static bool
2342 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2343 struct assign_parm_data_one *data)
2345 /* Trivially true if we've no incomming register. */
2346 if (data->entry_parm == NULL)
2348 /* Also true if we're partially in registers and partially not,
2349 since we've arranged to drop the entire argument on the stack. */
2350 else if (data->partial != 0)
2352 /* Also true if the target says that it's passed in both registers
2353 and on the stack. */
2354 else if (GET_CODE (data->entry_parm) == PARALLEL
2355 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2357 /* Also true if the target says that there's stack allocated for
2358 all register parameters. */
2359 else if (all->reg_parm_stack_space > 0)
2361 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2362 else
2363 return false;
2365 all->stack_args_size.constant += data->locate.size.constant;
2366 if (data->locate.size.var)
2367 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2369 return true;
2372 /* A subroutine of assign_parms. Given that this parameter is allocated
2373 stack space by the ABI, find it. */
2375 static void
2376 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2378 rtx offset_rtx, stack_parm;
2379 unsigned int align, boundary;
2381 /* If we're passing this arg using a reg, make its stack home the
2382 aligned stack slot. */
2383 if (data->entry_parm)
2384 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2385 else
2386 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2388 stack_parm = current_function_internal_arg_pointer;
2389 if (offset_rtx != const0_rtx)
2390 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2391 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2393 set_mem_attributes (stack_parm, parm, 1);
2395 boundary = FUNCTION_ARG_BOUNDARY (data->promoted_mode, data->passed_type);
2396 align = 0;
2398 /* If we're padding upward, we know that the alignment of the slot
2399 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2400 intentionally forcing upward padding. Otherwise we have to come
2401 up with a guess at the alignment based on OFFSET_RTX. */
2402 if (data->locate.where_pad == upward || data->entry_parm)
2403 align = boundary;
2404 else if (GET_CODE (offset_rtx) == CONST_INT)
2406 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2407 align = align & -align;
2409 if (align > 0)
2410 set_mem_align (stack_parm, align);
2412 if (data->entry_parm)
2413 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2415 data->stack_parm = stack_parm;
2418 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2419 always valid and contiguous. */
2421 static void
2422 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2424 rtx entry_parm = data->entry_parm;
2425 rtx stack_parm = data->stack_parm;
2427 /* If this parm was passed part in regs and part in memory, pretend it
2428 arrived entirely in memory by pushing the register-part onto the stack.
2429 In the special case of a DImode or DFmode that is split, we could put
2430 it together in a pseudoreg directly, but for now that's not worth
2431 bothering with. */
2432 if (data->partial != 0)
2434 /* Handle calls that pass values in multiple non-contiguous
2435 locations. The Irix 6 ABI has examples of this. */
2436 if (GET_CODE (entry_parm) == PARALLEL)
2437 emit_group_store (validize_mem (stack_parm), entry_parm,
2438 data->passed_type,
2439 int_size_in_bytes (data->passed_type));
2440 else
2441 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2442 data->partial);
2444 entry_parm = stack_parm;
2447 /* If we didn't decide this parm came in a register, by default it came
2448 on the stack. */
2449 else if (entry_parm == NULL)
2450 entry_parm = stack_parm;
2452 /* When an argument is passed in multiple locations, we can't make use
2453 of this information, but we can save some copying if the whole argument
2454 is passed in a single register. */
2455 else if (GET_CODE (entry_parm) == PARALLEL
2456 && data->nominal_mode != BLKmode
2457 && data->passed_mode != BLKmode)
2459 size_t i, len = XVECLEN (entry_parm, 0);
2461 for (i = 0; i < len; i++)
2462 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2463 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2464 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2465 == data->passed_mode)
2466 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2468 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2469 break;
2473 data->entry_parm = entry_parm;
2476 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2477 always valid and properly aligned. */
2480 static void
2481 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2483 rtx stack_parm = data->stack_parm;
2485 /* If we can't trust the parm stack slot to be aligned enough for its
2486 ultimate type, don't use that slot after entry. We'll make another
2487 stack slot, if we need one. */
2488 if (STRICT_ALIGNMENT && stack_parm
2489 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2490 stack_parm = NULL;
2492 /* If parm was passed in memory, and we need to convert it on entry,
2493 don't store it back in that same slot. */
2494 else if (data->entry_parm == stack_parm
2495 && data->nominal_mode != BLKmode
2496 && data->nominal_mode != data->passed_mode)
2497 stack_parm = NULL;
2499 data->stack_parm = stack_parm;
2502 /* A subroutine of assign_parms. Return true if the current parameter
2503 should be stored as a BLKmode in the current frame. */
2505 static bool
2506 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2508 if (data->nominal_mode == BLKmode)
2509 return true;
2510 if (GET_CODE (data->entry_parm) == PARALLEL)
2511 return true;
2513 #ifdef BLOCK_REG_PADDING
2514 if (data->locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward)
2515 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD)
2516 return true;
2517 #endif
2519 return false;
2522 /* A subroutine of assign_parms. Arrange for the parameter to be
2523 present and valid in DATA->STACK_RTL. */
2525 static void
2526 assign_parm_setup_block (tree parm, struct assign_parm_data_one *data)
2528 rtx entry_parm = data->entry_parm;
2529 rtx stack_parm = data->stack_parm;
2531 /* If we've a non-block object that's nevertheless passed in parts,
2532 reconstitute it in register operations rather than on the stack. */
2533 if (GET_CODE (entry_parm) == PARALLEL
2534 && data->nominal_mode != BLKmode
2535 && XVECLEN (entry_parm, 0) > 1
2536 && optimize)
2538 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2540 emit_group_store (parmreg, entry_parm, data->nominal_type,
2541 int_size_in_bytes (data->nominal_type));
2542 SET_DECL_RTL (parm, parmreg);
2543 return;
2546 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2547 calls that pass values in multiple non-contiguous locations. */
2548 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2550 HOST_WIDE_INT size = int_size_in_bytes (data->passed_type);
2551 HOST_WIDE_INT size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2552 rtx mem;
2554 /* Note that we will be storing an integral number of words.
2555 So we have to be careful to ensure that we allocate an
2556 integral number of words. We do this below in the
2557 assign_stack_local if space was not allocated in the argument
2558 list. If it was, this will not work if PARM_BOUNDARY is not
2559 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2560 if it becomes a problem. Exception is when BLKmode arrives
2561 with arguments not conforming to word_mode. */
2563 if (stack_parm == 0)
2565 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
2566 data->stack_parm = stack_parm;
2567 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2568 set_mem_attributes (stack_parm, parm, 1);
2570 else if (GET_CODE (entry_parm) == PARALLEL)
2572 else if (size != 0 && PARM_BOUNDARY % BITS_PER_WORD != 0)
2573 abort ();
2575 mem = validize_mem (stack_parm);
2577 /* Handle values in multiple non-contiguous locations. */
2578 if (GET_CODE (entry_parm) == PARALLEL)
2579 emit_group_store (mem, entry_parm, data->passed_type, size);
2581 else if (size == 0)
2584 /* If SIZE is that of a mode no bigger than a word, just use
2585 that mode's store operation. */
2586 else if (size <= UNITS_PER_WORD)
2588 enum machine_mode mode
2589 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2591 if (mode != BLKmode
2592 #ifdef BLOCK_REG_PADDING
2593 && (size == UNITS_PER_WORD
2594 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2595 != (BYTES_BIG_ENDIAN ? upward : downward)))
2596 #endif
2599 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2600 emit_move_insn (change_address (mem, mode, 0), reg);
2603 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2604 machine must be aligned to the left before storing
2605 to memory. Note that the previous test doesn't
2606 handle all cases (e.g. SIZE == 3). */
2607 else if (size != UNITS_PER_WORD
2608 #ifdef BLOCK_REG_PADDING
2609 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2610 == downward)
2611 #else
2612 && BYTES_BIG_ENDIAN
2613 #endif
2616 rtx tem, x;
2617 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2618 rtx reg = gen_rtx_REG (word_mode, REGNO (data->entry_parm));
2620 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2621 build_int_cst (NULL_TREE, by, 0),
2622 NULL_RTX, 1);
2623 tem = change_address (mem, word_mode, 0);
2624 emit_move_insn (tem, x);
2626 else
2627 move_block_from_reg (REGNO (data->entry_parm), mem,
2628 size_stored / UNITS_PER_WORD);
2630 else
2631 move_block_from_reg (REGNO (data->entry_parm), mem,
2632 size_stored / UNITS_PER_WORD);
2635 SET_DECL_RTL (parm, stack_parm);
2638 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2639 parameter. Get it there. Perform all ABI specified conversions. */
2641 static void
2642 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2643 struct assign_parm_data_one *data)
2645 rtx parmreg;
2646 enum machine_mode promoted_nominal_mode;
2647 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2648 bool did_conversion = false;
2650 /* Store the parm in a pseudoregister during the function, but we may
2651 need to do it in a wider mode. */
2653 promoted_nominal_mode
2654 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2656 parmreg = gen_reg_rtx (promoted_nominal_mode);
2658 if (!DECL_ARTIFICIAL (parm))
2659 mark_user_reg (parmreg);
2661 /* If this was an item that we received a pointer to,
2662 set DECL_RTL appropriately. */
2663 if (data->passed_pointer)
2665 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2666 set_mem_attributes (x, parm, 1);
2667 SET_DECL_RTL (parm, x);
2669 else
2671 SET_DECL_RTL (parm, parmreg);
2672 maybe_set_unchanging (DECL_RTL (parm), parm);
2675 /* Copy the value into the register. */
2676 if (data->nominal_mode != data->passed_mode
2677 || promoted_nominal_mode != data->promoted_mode)
2679 int save_tree_used;
2681 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2682 mode, by the caller. We now have to convert it to
2683 NOMINAL_MODE, if different. However, PARMREG may be in
2684 a different mode than NOMINAL_MODE if it is being stored
2685 promoted.
2687 If ENTRY_PARM is a hard register, it might be in a register
2688 not valid for operating in its mode (e.g., an odd-numbered
2689 register for a DFmode). In that case, moves are the only
2690 thing valid, so we can't do a convert from there. This
2691 occurs when the calling sequence allow such misaligned
2692 usages.
2694 In addition, the conversion may involve a call, which could
2695 clobber parameters which haven't been copied to pseudo
2696 registers yet. Therefore, we must first copy the parm to
2697 a pseudo reg here, and save the conversion until after all
2698 parameters have been moved. */
2700 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2702 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2704 push_to_sequence (all->conversion_insns);
2705 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2707 if (GET_CODE (tempreg) == SUBREG
2708 && GET_MODE (tempreg) == data->nominal_mode
2709 && REG_P (SUBREG_REG (tempreg))
2710 && data->nominal_mode == data->passed_mode
2711 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2712 && GET_MODE_SIZE (GET_MODE (tempreg))
2713 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2715 /* The argument is already sign/zero extended, so note it
2716 into the subreg. */
2717 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2718 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2721 /* TREE_USED gets set erroneously during expand_assignment. */
2722 save_tree_used = TREE_USED (parm);
2723 expand_assignment (parm, make_tree (data->nominal_type, tempreg), 0);
2724 TREE_USED (parm) = save_tree_used;
2725 all->conversion_insns = get_insns ();
2726 end_sequence ();
2728 did_conversion = true;
2730 else
2731 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2733 /* If we were passed a pointer but the actual value can safely live
2734 in a register, put it in one. */
2735 if (data->passed_pointer
2736 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2737 /* If by-reference argument was promoted, demote it. */
2738 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2739 || use_register_for_decl (parm)))
2741 /* We can't use nominal_mode, because it will have been set to
2742 Pmode above. We must use the actual mode of the parm. */
2743 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2744 mark_user_reg (parmreg);
2746 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2748 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2749 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2751 push_to_sequence (all->conversion_insns);
2752 emit_move_insn (tempreg, DECL_RTL (parm));
2753 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2754 emit_move_insn (parmreg, tempreg);
2755 all->conversion_insns = get_insns();
2756 end_sequence ();
2758 did_conversion = true;
2760 else
2761 emit_move_insn (parmreg, DECL_RTL (parm));
2763 SET_DECL_RTL (parm, parmreg);
2765 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2766 now the parm. */
2767 data->stack_parm = NULL;
2770 /* If we are passed an arg by reference and it is our responsibility
2771 to make a copy, do it now.
2772 PASSED_TYPE and PASSED mode now refer to the pointer, not the
2773 original argument, so we must recreate them in the call to
2774 FUNCTION_ARG_CALLEE_COPIES. */
2775 /* ??? Later add code to handle the case that if the argument isn't
2776 modified, don't do the copy. */
2778 else if (data->passed_pointer)
2780 tree type = TREE_TYPE (data->passed_type);
2782 if (FUNCTION_ARG_CALLEE_COPIES (all->args_so_far, TYPE_MODE (type),
2783 type, data->named_arg)
2784 && !TREE_ADDRESSABLE (type))
2786 rtx copy;
2788 /* This sequence may involve a library call perhaps clobbering
2789 registers that haven't been copied to pseudos yet. */
2791 push_to_sequence (all->conversion_insns);
2793 if (!COMPLETE_TYPE_P (type)
2794 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2796 /* This is a variable sized object. */
2797 copy = allocate_dynamic_stack_space (expr_size (parm), NULL_RTX,
2798 TYPE_ALIGN (type));
2799 copy = gen_rtx_MEM (BLKmode, copy);
2801 else
2802 copy = assign_stack_temp (TYPE_MODE (type),
2803 int_size_in_bytes (type), 1);
2804 set_mem_attributes (copy, parm, 1);
2806 store_expr (parm, copy, 0);
2807 emit_move_insn (parmreg, XEXP (copy, 0));
2808 all->conversion_insns = get_insns ();
2809 end_sequence ();
2811 did_conversion = true;
2815 /* Mark the register as eliminable if we did no conversion and it was
2816 copied from memory at a fixed offset, and the arg pointer was not
2817 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2818 offset formed an invalid address, such memory-equivalences as we
2819 make here would screw up life analysis for it. */
2820 if (data->nominal_mode == data->passed_mode
2821 && !did_conversion
2822 && data->stack_parm != 0
2823 && MEM_P (data->stack_parm)
2824 && data->locate.offset.var == 0
2825 && reg_mentioned_p (virtual_incoming_args_rtx,
2826 XEXP (data->stack_parm, 0)))
2828 rtx linsn = get_last_insn ();
2829 rtx sinsn, set;
2831 /* Mark complex types separately. */
2832 if (GET_CODE (parmreg) == CONCAT)
2834 enum machine_mode submode
2835 = GET_MODE_INNER (GET_MODE (parmreg));
2836 int regnor = REGNO (gen_realpart (submode, parmreg));
2837 int regnoi = REGNO (gen_imagpart (submode, parmreg));
2838 rtx stackr = gen_realpart (submode, data->stack_parm);
2839 rtx stacki = gen_imagpart (submode, data->stack_parm);
2841 /* Scan backwards for the set of the real and
2842 imaginary parts. */
2843 for (sinsn = linsn; sinsn != 0;
2844 sinsn = prev_nonnote_insn (sinsn))
2846 set = single_set (sinsn);
2847 if (set == 0)
2848 continue;
2850 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2851 REG_NOTES (sinsn)
2852 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2853 REG_NOTES (sinsn));
2854 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2855 REG_NOTES (sinsn)
2856 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2857 REG_NOTES (sinsn));
2860 else if ((set = single_set (linsn)) != 0
2861 && SET_DEST (set) == parmreg)
2862 REG_NOTES (linsn)
2863 = gen_rtx_EXPR_LIST (REG_EQUIV,
2864 data->stack_parm, REG_NOTES (linsn));
2867 /* For pointer data type, suggest pointer register. */
2868 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2869 mark_reg_pointer (parmreg,
2870 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2873 /* A subroutine of assign_parms. Allocate stack space to hold the current
2874 parameter. Get it there. Perform all ABI specified conversions. */
2876 static void
2877 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2878 struct assign_parm_data_one *data)
2880 /* Value must be stored in the stack slot STACK_PARM during function
2881 execution. */
2883 if (data->promoted_mode != data->nominal_mode)
2885 /* Conversion is required. */
2886 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2888 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2890 push_to_sequence (all->conversion_insns);
2891 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2892 TYPE_UNSIGNED (TREE_TYPE (parm)));
2894 if (data->stack_parm)
2895 /* ??? This may need a big-endian conversion on sparc64. */
2896 data->stack_parm
2897 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2899 all->conversion_insns = get_insns ();
2900 end_sequence ();
2903 if (data->entry_parm != data->stack_parm)
2905 if (data->stack_parm == 0)
2907 data->stack_parm
2908 = assign_stack_local (GET_MODE (data->entry_parm),
2909 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2911 set_mem_attributes (data->stack_parm, parm, 1);
2914 if (data->promoted_mode != data->nominal_mode)
2916 push_to_sequence (all->conversion_insns);
2917 emit_move_insn (validize_mem (data->stack_parm),
2918 validize_mem (data->entry_parm));
2919 all->conversion_insns = get_insns ();
2920 end_sequence ();
2922 else
2923 emit_move_insn (validize_mem (data->stack_parm),
2924 validize_mem (data->entry_parm));
2927 SET_DECL_RTL (parm, data->stack_parm);
2930 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2931 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2933 static void
2934 assign_parms_unsplit_complex (tree orig_fnargs, tree fnargs)
2936 tree parm;
2938 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2940 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2941 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2943 rtx tmp, real, imag;
2944 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2946 real = DECL_RTL (fnargs);
2947 imag = DECL_RTL (TREE_CHAIN (fnargs));
2948 if (inner != GET_MODE (real))
2950 real = gen_lowpart_SUBREG (inner, real);
2951 imag = gen_lowpart_SUBREG (inner, imag);
2953 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2954 SET_DECL_RTL (parm, tmp);
2956 real = DECL_INCOMING_RTL (fnargs);
2957 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2958 if (inner != GET_MODE (real))
2960 real = gen_lowpart_SUBREG (inner, real);
2961 imag = gen_lowpart_SUBREG (inner, imag);
2963 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2964 set_decl_incoming_rtl (parm, tmp);
2965 fnargs = TREE_CHAIN (fnargs);
2967 else
2969 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2970 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2972 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2973 instead of the copy of decl, i.e. FNARGS. */
2974 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2975 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2978 fnargs = TREE_CHAIN (fnargs);
2982 /* Assign RTL expressions to the function's parameters. This may involve
2983 copying them into registers and using those registers as the DECL_RTL. */
2985 void
2986 assign_parms (tree fndecl)
2988 struct assign_parm_data_all all;
2989 tree fnargs, parm;
2990 rtx internal_arg_pointer;
2991 int varargs_setup = 0;
2993 /* If the reg that the virtual arg pointer will be translated into is
2994 not a fixed reg or is the stack pointer, make a copy of the virtual
2995 arg pointer, and address parms via the copy. The frame pointer is
2996 considered fixed even though it is not marked as such.
2998 The second time through, simply use ap to avoid generating rtx. */
3000 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3001 || ! (fixed_regs[ARG_POINTER_REGNUM]
3002 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
3003 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3004 else
3005 internal_arg_pointer = virtual_incoming_args_rtx;
3006 current_function_internal_arg_pointer = internal_arg_pointer;
3008 assign_parms_initialize_all (&all);
3009 fnargs = assign_parms_augmented_arg_list (&all);
3011 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3013 struct assign_parm_data_one data;
3015 /* Extract the type of PARM; adjust it according to ABI. */
3016 assign_parm_find_data_types (&all, parm, &data);
3018 /* Early out for errors and void parameters. */
3019 if (data.passed_mode == VOIDmode)
3021 SET_DECL_RTL (parm, const0_rtx);
3022 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3023 continue;
3026 /* Handle stdargs. LAST_NAMED is a slight mis-nomer; it's also true
3027 for the unnamed dummy argument following the last named argument.
3028 See ABI silliness wrt strict_argument_naming and NAMED_ARG. So
3029 we only want to do this when we get to the actual last named
3030 argument, which will be the first time LAST_NAMED gets set. */
3031 if (data.last_named && !varargs_setup)
3033 varargs_setup = true;
3034 assign_parms_setup_varargs (&all, &data, false);
3037 /* Find out where the parameter arrives in this function. */
3038 assign_parm_find_entry_rtl (&all, &data);
3040 /* Find out where stack space for this parameter might be. */
3041 if (assign_parm_is_stack_parm (&all, &data))
3043 assign_parm_find_stack_rtl (parm, &data);
3044 assign_parm_adjust_entry_rtl (&data);
3047 /* Record permanently how this parm was passed. */
3048 set_decl_incoming_rtl (parm, data.entry_parm);
3050 /* Update info on where next arg arrives in registers. */
3051 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3052 data.passed_type, data.named_arg);
3054 assign_parm_adjust_stack_rtl (&data);
3056 if (assign_parm_setup_block_p (&data))
3057 assign_parm_setup_block (parm, &data);
3058 else if (data.passed_pointer || use_register_for_decl (parm))
3059 assign_parm_setup_reg (&all, parm, &data);
3060 else
3061 assign_parm_setup_stack (&all, parm, &data);
3064 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3065 assign_parms_unsplit_complex (all.orig_fnargs, fnargs);
3067 /* Output all parameter conversion instructions (possibly including calls)
3068 now that all parameters have been copied out of hard registers. */
3069 emit_insn (all.conversion_insns);
3071 /* If we are receiving a struct value address as the first argument, set up
3072 the RTL for the function result. As this might require code to convert
3073 the transmitted address to Pmode, we do this here to ensure that possible
3074 preliminary conversions of the address have been emitted already. */
3075 if (all.function_result_decl)
3077 tree result = DECL_RESULT (current_function_decl);
3078 rtx addr = DECL_RTL (all.function_result_decl);
3079 rtx x;
3081 if (DECL_BY_REFERENCE (result))
3082 x = addr;
3083 else
3085 addr = convert_memory_address (Pmode, addr);
3086 x = gen_rtx_MEM (DECL_MODE (result), addr);
3087 set_mem_attributes (x, result, 1);
3089 SET_DECL_RTL (result, x);
3092 /* We have aligned all the args, so add space for the pretend args. */
3093 current_function_pretend_args_size = all.pretend_args_size;
3094 all.stack_args_size.constant += all.extra_pretend_bytes;
3095 current_function_args_size = all.stack_args_size.constant;
3097 /* Adjust function incoming argument size for alignment and
3098 minimum length. */
3100 #ifdef REG_PARM_STACK_SPACE
3101 current_function_args_size = MAX (current_function_args_size,
3102 REG_PARM_STACK_SPACE (fndecl));
3103 #endif
3105 current_function_args_size
3106 = ((current_function_args_size + STACK_BYTES - 1)
3107 / STACK_BYTES) * STACK_BYTES;
3109 #ifdef ARGS_GROW_DOWNWARD
3110 current_function_arg_offset_rtx
3111 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3112 : expand_expr (size_diffop (all.stack_args_size.var,
3113 size_int (-all.stack_args_size.constant)),
3114 NULL_RTX, VOIDmode, 0));
3115 #else
3116 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3117 #endif
3119 /* See how many bytes, if any, of its args a function should try to pop
3120 on return. */
3122 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3123 current_function_args_size);
3125 /* For stdarg.h function, save info about
3126 regs and stack space used by the named args. */
3128 current_function_args_info = all.args_so_far;
3130 /* Set the rtx used for the function return value. Put this in its
3131 own variable so any optimizers that need this information don't have
3132 to include tree.h. Do this here so it gets done when an inlined
3133 function gets output. */
3135 current_function_return_rtx
3136 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3137 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3139 /* If scalar return value was computed in a pseudo-reg, or was a named
3140 return value that got dumped to the stack, copy that to the hard
3141 return register. */
3142 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3144 tree decl_result = DECL_RESULT (fndecl);
3145 rtx decl_rtl = DECL_RTL (decl_result);
3147 if (REG_P (decl_rtl)
3148 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3149 : DECL_REGISTER (decl_result))
3151 rtx real_decl_rtl;
3153 #ifdef FUNCTION_OUTGOING_VALUE
3154 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3155 fndecl);
3156 #else
3157 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3158 fndecl);
3159 #endif
3160 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3161 /* The delay slot scheduler assumes that current_function_return_rtx
3162 holds the hard register containing the return value, not a
3163 temporary pseudo. */
3164 current_function_return_rtx = real_decl_rtl;
3169 /* Indicate whether REGNO is an incoming argument to the current function
3170 that was promoted to a wider mode. If so, return the RTX for the
3171 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3172 that REGNO is promoted from and whether the promotion was signed or
3173 unsigned. */
3176 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3178 tree arg;
3180 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3181 arg = TREE_CHAIN (arg))
3182 if (REG_P (DECL_INCOMING_RTL (arg))
3183 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3184 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3186 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3187 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3189 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3190 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3191 && mode != DECL_MODE (arg))
3193 *pmode = DECL_MODE (arg);
3194 *punsignedp = unsignedp;
3195 return DECL_INCOMING_RTL (arg);
3199 return 0;
3203 /* Compute the size and offset from the start of the stacked arguments for a
3204 parm passed in mode PASSED_MODE and with type TYPE.
3206 INITIAL_OFFSET_PTR points to the current offset into the stacked
3207 arguments.
3209 The starting offset and size for this parm are returned in
3210 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3211 nonzero, the offset is that of stack slot, which is returned in
3212 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3213 padding required from the initial offset ptr to the stack slot.
3215 IN_REGS is nonzero if the argument will be passed in registers. It will
3216 never be set if REG_PARM_STACK_SPACE is not defined.
3218 FNDECL is the function in which the argument was defined.
3220 There are two types of rounding that are done. The first, controlled by
3221 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3222 list to be aligned to the specific boundary (in bits). This rounding
3223 affects the initial and starting offsets, but not the argument size.
3225 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3226 optionally rounds the size of the parm to PARM_BOUNDARY. The
3227 initial offset is not affected by this rounding, while the size always
3228 is and the starting offset may be. */
3230 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3231 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3232 callers pass in the total size of args so far as
3233 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3235 void
3236 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3237 int partial, tree fndecl ATTRIBUTE_UNUSED,
3238 struct args_size *initial_offset_ptr,
3239 struct locate_and_pad_arg_data *locate)
3241 tree sizetree;
3242 enum direction where_pad;
3243 int boundary;
3244 int reg_parm_stack_space = 0;
3245 int part_size_in_regs;
3247 #ifdef REG_PARM_STACK_SPACE
3248 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3250 /* If we have found a stack parm before we reach the end of the
3251 area reserved for registers, skip that area. */
3252 if (! in_regs)
3254 if (reg_parm_stack_space > 0)
3256 if (initial_offset_ptr->var)
3258 initial_offset_ptr->var
3259 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3260 ssize_int (reg_parm_stack_space));
3261 initial_offset_ptr->constant = 0;
3263 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3264 initial_offset_ptr->constant = reg_parm_stack_space;
3267 #endif /* REG_PARM_STACK_SPACE */
3269 part_size_in_regs = 0;
3270 if (reg_parm_stack_space == 0)
3271 part_size_in_regs = ((partial * UNITS_PER_WORD)
3272 / (PARM_BOUNDARY / BITS_PER_UNIT)
3273 * (PARM_BOUNDARY / BITS_PER_UNIT));
3275 sizetree
3276 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3277 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3278 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3279 locate->where_pad = where_pad;
3281 #ifdef ARGS_GROW_DOWNWARD
3282 locate->slot_offset.constant = -initial_offset_ptr->constant;
3283 if (initial_offset_ptr->var)
3284 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3285 initial_offset_ptr->var);
3288 tree s2 = sizetree;
3289 if (where_pad != none
3290 && (!host_integerp (sizetree, 1)
3291 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3292 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3293 SUB_PARM_SIZE (locate->slot_offset, s2);
3296 locate->slot_offset.constant += part_size_in_regs;
3298 if (!in_regs
3299 #ifdef REG_PARM_STACK_SPACE
3300 || REG_PARM_STACK_SPACE (fndecl) > 0
3301 #endif
3303 pad_to_arg_alignment (&locate->slot_offset, boundary,
3304 &locate->alignment_pad);
3306 locate->size.constant = (-initial_offset_ptr->constant
3307 - locate->slot_offset.constant);
3308 if (initial_offset_ptr->var)
3309 locate->size.var = size_binop (MINUS_EXPR,
3310 size_binop (MINUS_EXPR,
3311 ssize_int (0),
3312 initial_offset_ptr->var),
3313 locate->slot_offset.var);
3315 /* Pad_below needs the pre-rounded size to know how much to pad
3316 below. */
3317 locate->offset = locate->slot_offset;
3318 if (where_pad == downward)
3319 pad_below (&locate->offset, passed_mode, sizetree);
3321 #else /* !ARGS_GROW_DOWNWARD */
3322 if (!in_regs
3323 #ifdef REG_PARM_STACK_SPACE
3324 || REG_PARM_STACK_SPACE (fndecl) > 0
3325 #endif
3327 pad_to_arg_alignment (initial_offset_ptr, boundary,
3328 &locate->alignment_pad);
3329 locate->slot_offset = *initial_offset_ptr;
3331 #ifdef PUSH_ROUNDING
3332 if (passed_mode != BLKmode)
3333 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3334 #endif
3336 /* Pad_below needs the pre-rounded size to know how much to pad below
3337 so this must be done before rounding up. */
3338 locate->offset = locate->slot_offset;
3339 if (where_pad == downward)
3340 pad_below (&locate->offset, passed_mode, sizetree);
3342 if (where_pad != none
3343 && (!host_integerp (sizetree, 1)
3344 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3345 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3347 ADD_PARM_SIZE (locate->size, sizetree);
3349 locate->size.constant -= part_size_in_regs;
3350 #endif /* ARGS_GROW_DOWNWARD */
3353 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3354 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3356 static void
3357 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3358 struct args_size *alignment_pad)
3360 tree save_var = NULL_TREE;
3361 HOST_WIDE_INT save_constant = 0;
3362 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3363 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3365 #ifdef SPARC_STACK_BOUNDARY_HACK
3366 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3367 higher than the real alignment of %sp. However, when it does this,
3368 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3369 This is a temporary hack while the sparc port is fixed. */
3370 if (SPARC_STACK_BOUNDARY_HACK)
3371 sp_offset = 0;
3372 #endif
3374 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3376 save_var = offset_ptr->var;
3377 save_constant = offset_ptr->constant;
3380 alignment_pad->var = NULL_TREE;
3381 alignment_pad->constant = 0;
3383 if (boundary > BITS_PER_UNIT)
3385 if (offset_ptr->var)
3387 tree sp_offset_tree = ssize_int (sp_offset);
3388 tree offset = size_binop (PLUS_EXPR,
3389 ARGS_SIZE_TREE (*offset_ptr),
3390 sp_offset_tree);
3391 #ifdef ARGS_GROW_DOWNWARD
3392 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3393 #else
3394 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3395 #endif
3397 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3398 /* ARGS_SIZE_TREE includes constant term. */
3399 offset_ptr->constant = 0;
3400 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3401 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3402 save_var);
3404 else
3406 offset_ptr->constant = -sp_offset +
3407 #ifdef ARGS_GROW_DOWNWARD
3408 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3409 #else
3410 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3411 #endif
3412 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3413 alignment_pad->constant = offset_ptr->constant - save_constant;
3418 static void
3419 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3421 if (passed_mode != BLKmode)
3423 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3424 offset_ptr->constant
3425 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3426 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3427 - GET_MODE_SIZE (passed_mode));
3429 else
3431 if (TREE_CODE (sizetree) != INTEGER_CST
3432 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3434 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3435 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3436 /* Add it in. */
3437 ADD_PARM_SIZE (*offset_ptr, s2);
3438 SUB_PARM_SIZE (*offset_ptr, sizetree);
3443 /* Walk the tree of blocks describing the binding levels within a function
3444 and warn about variables the might be killed by setjmp or vfork.
3445 This is done after calling flow_analysis and before global_alloc
3446 clobbers the pseudo-regs to hard regs. */
3448 void
3449 setjmp_vars_warning (tree block)
3451 tree decl, sub;
3453 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3455 if (TREE_CODE (decl) == VAR_DECL
3456 && DECL_RTL_SET_P (decl)
3457 && REG_P (DECL_RTL (decl))
3458 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3459 warning ("%Jvariable '%D' might be clobbered by `longjmp' or `vfork'",
3460 decl, decl);
3463 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3464 setjmp_vars_warning (sub);
3467 /* Do the appropriate part of setjmp_vars_warning
3468 but for arguments instead of local variables. */
3470 void
3471 setjmp_args_warning (void)
3473 tree decl;
3474 for (decl = DECL_ARGUMENTS (current_function_decl);
3475 decl; decl = TREE_CHAIN (decl))
3476 if (DECL_RTL (decl) != 0
3477 && REG_P (DECL_RTL (decl))
3478 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3479 warning ("%Jargument '%D' might be clobbered by `longjmp' or `vfork'",
3480 decl, decl);
3484 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3485 and create duplicate blocks. */
3486 /* ??? Need an option to either create block fragments or to create
3487 abstract origin duplicates of a source block. It really depends
3488 on what optimization has been performed. */
3490 void
3491 reorder_blocks (void)
3493 tree block = DECL_INITIAL (current_function_decl);
3494 varray_type block_stack;
3496 if (block == NULL_TREE)
3497 return;
3499 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
3501 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3502 clear_block_marks (block);
3504 /* Prune the old trees away, so that they don't get in the way. */
3505 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3506 BLOCK_CHAIN (block) = NULL_TREE;
3508 /* Recreate the block tree from the note nesting. */
3509 reorder_blocks_1 (get_insns (), block, &block_stack);
3510 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3512 /* Remove deleted blocks from the block fragment chains. */
3513 reorder_fix_fragments (block);
3516 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3518 void
3519 clear_block_marks (tree block)
3521 while (block)
3523 TREE_ASM_WRITTEN (block) = 0;
3524 clear_block_marks (BLOCK_SUBBLOCKS (block));
3525 block = BLOCK_CHAIN (block);
3529 static void
3530 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
3532 rtx insn;
3534 for (insn = insns; insn; insn = NEXT_INSN (insn))
3536 if (NOTE_P (insn))
3538 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3540 tree block = NOTE_BLOCK (insn);
3542 /* If we have seen this block before, that means it now
3543 spans multiple address regions. Create a new fragment. */
3544 if (TREE_ASM_WRITTEN (block))
3546 tree new_block = copy_node (block);
3547 tree origin;
3549 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3550 ? BLOCK_FRAGMENT_ORIGIN (block)
3551 : block);
3552 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3553 BLOCK_FRAGMENT_CHAIN (new_block)
3554 = BLOCK_FRAGMENT_CHAIN (origin);
3555 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3557 NOTE_BLOCK (insn) = new_block;
3558 block = new_block;
3561 BLOCK_SUBBLOCKS (block) = 0;
3562 TREE_ASM_WRITTEN (block) = 1;
3563 /* When there's only one block for the entire function,
3564 current_block == block and we mustn't do this, it
3565 will cause infinite recursion. */
3566 if (block != current_block)
3568 BLOCK_SUPERCONTEXT (block) = current_block;
3569 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3570 BLOCK_SUBBLOCKS (current_block) = block;
3571 current_block = block;
3573 VARRAY_PUSH_TREE (*p_block_stack, block);
3575 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3577 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
3578 VARRAY_POP (*p_block_stack);
3579 BLOCK_SUBBLOCKS (current_block)
3580 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3581 current_block = BLOCK_SUPERCONTEXT (current_block);
3587 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3588 appears in the block tree, select one of the fragments to become
3589 the new origin block. */
3591 static void
3592 reorder_fix_fragments (tree block)
3594 while (block)
3596 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3597 tree new_origin = NULL_TREE;
3599 if (dup_origin)
3601 if (! TREE_ASM_WRITTEN (dup_origin))
3603 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3605 /* Find the first of the remaining fragments. There must
3606 be at least one -- the current block. */
3607 while (! TREE_ASM_WRITTEN (new_origin))
3608 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3609 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3612 else if (! dup_origin)
3613 new_origin = block;
3615 /* Re-root the rest of the fragments to the new origin. In the
3616 case that DUP_ORIGIN was null, that means BLOCK was the origin
3617 of a chain of fragments and we want to remove those fragments
3618 that didn't make it to the output. */
3619 if (new_origin)
3621 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3622 tree chain = *pp;
3624 while (chain)
3626 if (TREE_ASM_WRITTEN (chain))
3628 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3629 *pp = chain;
3630 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3632 chain = BLOCK_FRAGMENT_CHAIN (chain);
3634 *pp = NULL_TREE;
3637 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3638 block = BLOCK_CHAIN (block);
3642 /* Reverse the order of elements in the chain T of blocks,
3643 and return the new head of the chain (old last element). */
3645 tree
3646 blocks_nreverse (tree t)
3648 tree prev = 0, decl, next;
3649 for (decl = t; decl; decl = next)
3651 next = BLOCK_CHAIN (decl);
3652 BLOCK_CHAIN (decl) = prev;
3653 prev = decl;
3655 return prev;
3658 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3659 non-NULL, list them all into VECTOR, in a depth-first preorder
3660 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3661 blocks. */
3663 static int
3664 all_blocks (tree block, tree *vector)
3666 int n_blocks = 0;
3668 while (block)
3670 TREE_ASM_WRITTEN (block) = 0;
3672 /* Record this block. */
3673 if (vector)
3674 vector[n_blocks] = block;
3676 ++n_blocks;
3678 /* Record the subblocks, and their subblocks... */
3679 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3680 vector ? vector + n_blocks : 0);
3681 block = BLOCK_CHAIN (block);
3684 return n_blocks;
3687 /* Return a vector containing all the blocks rooted at BLOCK. The
3688 number of elements in the vector is stored in N_BLOCKS_P. The
3689 vector is dynamically allocated; it is the caller's responsibility
3690 to call `free' on the pointer returned. */
3692 static tree *
3693 get_block_vector (tree block, int *n_blocks_p)
3695 tree *block_vector;
3697 *n_blocks_p = all_blocks (block, NULL);
3698 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3699 all_blocks (block, block_vector);
3701 return block_vector;
3704 static GTY(()) int next_block_index = 2;
3706 /* Set BLOCK_NUMBER for all the blocks in FN. */
3708 void
3709 number_blocks (tree fn)
3711 int i;
3712 int n_blocks;
3713 tree *block_vector;
3715 /* For SDB and XCOFF debugging output, we start numbering the blocks
3716 from 1 within each function, rather than keeping a running
3717 count. */
3718 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3719 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3720 next_block_index = 1;
3721 #endif
3723 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3725 /* The top-level BLOCK isn't numbered at all. */
3726 for (i = 1; i < n_blocks; ++i)
3727 /* We number the blocks from two. */
3728 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3730 free (block_vector);
3732 return;
3735 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3737 tree
3738 debug_find_var_in_block_tree (tree var, tree block)
3740 tree t;
3742 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3743 if (t == var)
3744 return block;
3746 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3748 tree ret = debug_find_var_in_block_tree (var, t);
3749 if (ret)
3750 return ret;
3753 return NULL_TREE;
3756 /* Allocate a function structure for FNDECL and set its contents
3757 to the defaults. */
3759 void
3760 allocate_struct_function (tree fndecl)
3762 tree result;
3763 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3765 cfun = ggc_alloc_cleared (sizeof (struct function));
3767 cfun->stack_alignment_needed = STACK_BOUNDARY;
3768 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3770 current_function_funcdef_no = funcdef_no++;
3772 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3774 init_eh_for_function ();
3776 lang_hooks.function.init (cfun);
3777 if (init_machine_status)
3778 cfun->machine = (*init_machine_status) ();
3780 if (fndecl == NULL)
3781 return;
3783 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3784 cfun->decl = fndecl;
3786 result = DECL_RESULT (fndecl);
3787 if (aggregate_value_p (result, fndecl))
3789 #ifdef PCC_STATIC_STRUCT_RETURN
3790 current_function_returns_pcc_struct = 1;
3791 #endif
3792 current_function_returns_struct = 1;
3795 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3797 current_function_stdarg
3798 = (fntype
3799 && TYPE_ARG_TYPES (fntype) != 0
3800 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3801 != void_type_node));
3804 /* Reset cfun, and other non-struct-function variables to defaults as
3805 appropriate for emitting rtl at the start of a function. */
3807 static void
3808 prepare_function_start (tree fndecl)
3810 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3811 cfun = DECL_STRUCT_FUNCTION (fndecl);
3812 else
3813 allocate_struct_function (fndecl);
3814 init_emit ();
3815 init_varasm_status (cfun);
3816 init_expr ();
3818 cse_not_expected = ! optimize;
3820 /* Caller save not needed yet. */
3821 caller_save_needed = 0;
3823 /* We haven't done register allocation yet. */
3824 reg_renumber = 0;
3826 /* Indicate that we have not instantiated virtual registers yet. */
3827 virtuals_instantiated = 0;
3829 /* Indicate that we want CONCATs now. */
3830 generating_concat_p = 1;
3832 /* Indicate we have no need of a frame pointer yet. */
3833 frame_pointer_needed = 0;
3836 /* Initialize the rtl expansion mechanism so that we can do simple things
3837 like generate sequences. This is used to provide a context during global
3838 initialization of some passes. */
3839 void
3840 init_dummy_function_start (void)
3842 prepare_function_start (NULL);
3845 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3846 and initialize static variables for generating RTL for the statements
3847 of the function. */
3849 void
3850 init_function_start (tree subr)
3852 prepare_function_start (subr);
3854 /* Prevent ever trying to delete the first instruction of a
3855 function. Also tell final how to output a linenum before the
3856 function prologue. Note linenums could be missing, e.g. when
3857 compiling a Java .class file. */
3858 if (! DECL_IS_BUILTIN (subr))
3859 emit_line_note (DECL_SOURCE_LOCATION (subr));
3861 /* Make sure first insn is a note even if we don't want linenums.
3862 This makes sure the first insn will never be deleted.
3863 Also, final expects a note to appear there. */
3864 emit_note (NOTE_INSN_DELETED);
3866 /* Warn if this value is an aggregate type,
3867 regardless of which calling convention we are using for it. */
3868 if (warn_aggregate_return
3869 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3870 warning ("function returns an aggregate");
3873 /* Make sure all values used by the optimization passes have sane
3874 defaults. */
3875 void
3876 init_function_for_compilation (void)
3878 reg_renumber = 0;
3880 /* No prologue/epilogue insns yet. */
3881 VARRAY_GROW (prologue, 0);
3882 VARRAY_GROW (epilogue, 0);
3883 VARRAY_GROW (sibcall_epilogue, 0);
3886 /* Expand a call to __main at the beginning of a possible main function. */
3888 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
3889 #undef HAS_INIT_SECTION
3890 #define HAS_INIT_SECTION
3891 #endif
3893 void
3894 expand_main_function (void)
3896 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
3897 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
3899 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
3900 rtx tmp, seq;
3902 start_sequence ();
3903 /* Forcibly align the stack. */
3904 #ifdef STACK_GROWS_DOWNWARD
3905 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
3906 stack_pointer_rtx, 1, OPTAB_WIDEN);
3907 #else
3908 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3909 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
3910 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
3911 stack_pointer_rtx, 1, OPTAB_WIDEN);
3912 #endif
3913 if (tmp != stack_pointer_rtx)
3914 emit_move_insn (stack_pointer_rtx, tmp);
3916 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
3917 tmp = force_reg (Pmode, const0_rtx);
3918 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
3919 seq = get_insns ();
3920 end_sequence ();
3922 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
3923 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
3924 break;
3925 if (tmp)
3926 emit_insn_before (seq, tmp);
3927 else
3928 emit_insn (seq);
3930 #endif
3932 #ifndef HAS_INIT_SECTION
3933 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3934 #endif
3937 /* The PENDING_SIZES represent the sizes of variable-sized types.
3938 Create RTL for the various sizes now (using temporary variables),
3939 so that we can refer to the sizes from the RTL we are generating
3940 for the current function. The PENDING_SIZES are a TREE_LIST. The
3941 TREE_VALUE of each node is a SAVE_EXPR. */
3943 void
3944 expand_pending_sizes (tree pending_sizes)
3946 tree tem;
3948 /* Evaluate now the sizes of any types declared among the arguments. */
3949 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
3950 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
3953 /* Start the RTL for a new function, and set variables used for
3954 emitting RTL.
3955 SUBR is the FUNCTION_DECL node.
3956 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
3957 the function's parameters, which must be run at any return statement. */
3959 void
3960 expand_function_start (tree subr)
3962 /* Make sure volatile mem refs aren't considered
3963 valid operands of arithmetic insns. */
3964 init_recog_no_volatile ();
3966 current_function_profile
3967 = (profile_flag
3968 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
3970 current_function_limit_stack
3971 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
3973 /* Make the label for return statements to jump to. Do not special
3974 case machines with special return instructions -- they will be
3975 handled later during jump, ifcvt, or epilogue creation. */
3976 return_label = gen_label_rtx ();
3978 /* Initialize rtx used to return the value. */
3979 /* Do this before assign_parms so that we copy the struct value address
3980 before any library calls that assign parms might generate. */
3982 /* Decide whether to return the value in memory or in a register. */
3983 if (aggregate_value_p (DECL_RESULT (subr), subr))
3985 /* Returning something that won't go in a register. */
3986 rtx value_address = 0;
3988 #ifdef PCC_STATIC_STRUCT_RETURN
3989 if (current_function_returns_pcc_struct)
3991 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
3992 value_address = assemble_static_space (size);
3994 else
3995 #endif
3997 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
3998 /* Expect to be passed the address of a place to store the value.
3999 If it is passed as an argument, assign_parms will take care of
4000 it. */
4001 if (sv)
4003 value_address = gen_reg_rtx (Pmode);
4004 emit_move_insn (value_address, sv);
4007 if (value_address)
4009 rtx x = value_address;
4010 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4012 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4013 set_mem_attributes (x, DECL_RESULT (subr), 1);
4015 SET_DECL_RTL (DECL_RESULT (subr), x);
4018 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4019 /* If return mode is void, this decl rtl should not be used. */
4020 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4021 else
4023 /* Compute the return values into a pseudo reg, which we will copy
4024 into the true return register after the cleanups are done. */
4026 /* In order to figure out what mode to use for the pseudo, we
4027 figure out what the mode of the eventual return register will
4028 actually be, and use that. */
4029 rtx hard_reg
4030 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
4031 subr, 1);
4033 /* Structures that are returned in registers are not aggregate_value_p,
4034 so we may see a PARALLEL or a REG. */
4035 if (REG_P (hard_reg))
4036 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
4037 else if (GET_CODE (hard_reg) == PARALLEL)
4038 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4039 else
4040 abort ();
4042 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4043 result to the real return register(s). */
4044 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4047 /* Initialize rtx for parameters and local variables.
4048 In some cases this requires emitting insns. */
4049 assign_parms (subr);
4051 /* If function gets a static chain arg, store it. */
4052 if (cfun->static_chain_decl)
4054 tree parm = cfun->static_chain_decl;
4055 rtx local = gen_reg_rtx (Pmode);
4057 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4058 SET_DECL_RTL (parm, local);
4059 maybe_set_unchanging (local, parm);
4060 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4062 emit_move_insn (local, static_chain_incoming_rtx);
4065 /* If the function receives a non-local goto, then store the
4066 bits we need to restore the frame pointer. */
4067 if (cfun->nonlocal_goto_save_area)
4069 tree t_save;
4070 rtx r_save;
4072 /* ??? We need to do this save early. Unfortunately here is
4073 before the frame variable gets declared. Help out... */
4074 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4076 t_save = build4 (ARRAY_REF, ptr_type_node,
4077 cfun->nonlocal_goto_save_area,
4078 integer_zero_node, NULL_TREE, NULL_TREE);
4079 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4080 r_save = convert_memory_address (Pmode, r_save);
4082 emit_move_insn (r_save, virtual_stack_vars_rtx);
4083 update_nonlocal_goto_save_area ();
4086 /* The following was moved from init_function_start.
4087 The move is supposed to make sdb output more accurate. */
4088 /* Indicate the beginning of the function body,
4089 as opposed to parm setup. */
4090 emit_note (NOTE_INSN_FUNCTION_BEG);
4092 if (!NOTE_P (get_last_insn ()))
4093 emit_note (NOTE_INSN_DELETED);
4094 parm_birth_insn = get_last_insn ();
4096 if (current_function_profile)
4098 #ifdef PROFILE_HOOK
4099 PROFILE_HOOK (current_function_funcdef_no);
4100 #endif
4103 /* After the display initializations is where the tail-recursion label
4104 should go, if we end up needing one. Ensure we have a NOTE here
4105 since some things (like trampolines) get placed before this. */
4106 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4108 /* Evaluate now the sizes of any types declared among the arguments. */
4109 expand_pending_sizes (nreverse (get_pending_sizes ()));
4111 /* Make sure there is a line number after the function entry setup code. */
4112 force_next_line_note ();
4115 /* Undo the effects of init_dummy_function_start. */
4116 void
4117 expand_dummy_function_end (void)
4119 /* End any sequences that failed to be closed due to syntax errors. */
4120 while (in_sequence_p ())
4121 end_sequence ();
4123 /* Outside function body, can't compute type's actual size
4124 until next function's body starts. */
4126 free_after_parsing (cfun);
4127 free_after_compilation (cfun);
4128 cfun = 0;
4131 /* Call DOIT for each hard register used as a return value from
4132 the current function. */
4134 void
4135 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4137 rtx outgoing = current_function_return_rtx;
4139 if (! outgoing)
4140 return;
4142 if (REG_P (outgoing))
4143 (*doit) (outgoing, arg);
4144 else if (GET_CODE (outgoing) == PARALLEL)
4146 int i;
4148 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4150 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4152 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4153 (*doit) (x, arg);
4158 static void
4159 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4161 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4164 void
4165 clobber_return_register (void)
4167 diddle_return_value (do_clobber_return_reg, NULL);
4169 /* In case we do use pseudo to return value, clobber it too. */
4170 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4172 tree decl_result = DECL_RESULT (current_function_decl);
4173 rtx decl_rtl = DECL_RTL (decl_result);
4174 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4176 do_clobber_return_reg (decl_rtl, NULL);
4181 static void
4182 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4184 emit_insn (gen_rtx_USE (VOIDmode, reg));
4187 void
4188 use_return_register (void)
4190 diddle_return_value (do_use_return_reg, NULL);
4193 /* Possibly warn about unused parameters. */
4194 void
4195 do_warn_unused_parameter (tree fn)
4197 tree decl;
4199 for (decl = DECL_ARGUMENTS (fn);
4200 decl; decl = TREE_CHAIN (decl))
4201 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4202 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4203 warning ("%Junused parameter '%D'", decl, decl);
4206 static GTY(()) rtx initial_trampoline;
4208 /* Generate RTL for the end of the current function. */
4210 void
4211 expand_function_end (void)
4213 rtx clobber_after;
4215 /* If arg_pointer_save_area was referenced only from a nested
4216 function, we will not have initialized it yet. Do that now. */
4217 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4218 get_arg_pointer_save_area (cfun);
4220 /* If we are doing stack checking and this function makes calls,
4221 do a stack probe at the start of the function to ensure we have enough
4222 space for another stack frame. */
4223 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4225 rtx insn, seq;
4227 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4228 if (CALL_P (insn))
4230 start_sequence ();
4231 probe_stack_range (STACK_CHECK_PROTECT,
4232 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4233 seq = get_insns ();
4234 end_sequence ();
4235 emit_insn_before (seq, tail_recursion_reentry);
4236 break;
4240 /* Possibly warn about unused parameters.
4241 When frontend does unit-at-a-time, the warning is already
4242 issued at finalization time. */
4243 if (warn_unused_parameter
4244 && !lang_hooks.callgraph.expand_function)
4245 do_warn_unused_parameter (current_function_decl);
4247 /* End any sequences that failed to be closed due to syntax errors. */
4248 while (in_sequence_p ())
4249 end_sequence ();
4251 clear_pending_stack_adjust ();
4252 do_pending_stack_adjust ();
4254 /* @@@ This is a kludge. We want to ensure that instructions that
4255 may trap are not moved into the epilogue by scheduling, because
4256 we don't always emit unwind information for the epilogue.
4257 However, not all machine descriptions define a blockage insn, so
4258 emit an ASM_INPUT to act as one. */
4259 if (flag_non_call_exceptions)
4260 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4262 /* Mark the end of the function body.
4263 If control reaches this insn, the function can drop through
4264 without returning a value. */
4265 emit_note (NOTE_INSN_FUNCTION_END);
4267 /* Must mark the last line number note in the function, so that the test
4268 coverage code can avoid counting the last line twice. This just tells
4269 the code to ignore the immediately following line note, since there
4270 already exists a copy of this note somewhere above. This line number
4271 note is still needed for debugging though, so we can't delete it. */
4272 if (flag_test_coverage)
4273 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4275 /* Output a linenumber for the end of the function.
4276 SDB depends on this. */
4277 force_next_line_note ();
4278 emit_line_note (input_location);
4280 /* Before the return label (if any), clobber the return
4281 registers so that they are not propagated live to the rest of
4282 the function. This can only happen with functions that drop
4283 through; if there had been a return statement, there would
4284 have either been a return rtx, or a jump to the return label.
4286 We delay actual code generation after the current_function_value_rtx
4287 is computed. */
4288 clobber_after = get_last_insn ();
4290 /* Output the label for the actual return from the function,
4291 if one is expected. This happens either because a function epilogue
4292 is used instead of a return instruction, or because a return was done
4293 with a goto in order to run local cleanups, or because of pcc-style
4294 structure returning. */
4295 if (return_label)
4296 emit_label (return_label);
4298 /* Let except.c know where it should emit the call to unregister
4299 the function context for sjlj exceptions. */
4300 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4301 sjlj_emit_function_exit_after (get_last_insn ());
4303 /* If we had calls to alloca, and this machine needs
4304 an accurate stack pointer to exit the function,
4305 insert some code to save and restore the stack pointer. */
4306 if (! EXIT_IGNORE_STACK
4307 && current_function_calls_alloca)
4309 rtx tem = 0;
4311 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4312 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4315 /* If scalar return value was computed in a pseudo-reg, or was a named
4316 return value that got dumped to the stack, copy that to the hard
4317 return register. */
4318 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4320 tree decl_result = DECL_RESULT (current_function_decl);
4321 rtx decl_rtl = DECL_RTL (decl_result);
4323 if (REG_P (decl_rtl)
4324 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4325 : DECL_REGISTER (decl_result))
4327 rtx real_decl_rtl = current_function_return_rtx;
4329 /* This should be set in assign_parms. */
4330 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
4331 abort ();
4333 /* If this is a BLKmode structure being returned in registers,
4334 then use the mode computed in expand_return. Note that if
4335 decl_rtl is memory, then its mode may have been changed,
4336 but that current_function_return_rtx has not. */
4337 if (GET_MODE (real_decl_rtl) == BLKmode)
4338 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4340 /* If a named return value dumped decl_return to memory, then
4341 we may need to re-do the PROMOTE_MODE signed/unsigned
4342 extension. */
4343 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4345 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4347 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4348 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4349 &unsignedp, 1);
4351 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4353 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4355 /* If expand_function_start has created a PARALLEL for decl_rtl,
4356 move the result to the real return registers. Otherwise, do
4357 a group load from decl_rtl for a named return. */
4358 if (GET_CODE (decl_rtl) == PARALLEL)
4359 emit_group_move (real_decl_rtl, decl_rtl);
4360 else
4361 emit_group_load (real_decl_rtl, decl_rtl,
4362 TREE_TYPE (decl_result),
4363 int_size_in_bytes (TREE_TYPE (decl_result)));
4365 else
4366 emit_move_insn (real_decl_rtl, decl_rtl);
4370 /* If returning a structure, arrange to return the address of the value
4371 in a place where debuggers expect to find it.
4373 If returning a structure PCC style,
4374 the caller also depends on this value.
4375 And current_function_returns_pcc_struct is not necessarily set. */
4376 if (current_function_returns_struct
4377 || current_function_returns_pcc_struct)
4379 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4380 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4381 rtx outgoing;
4383 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4384 type = TREE_TYPE (type);
4385 else
4386 value_address = XEXP (value_address, 0);
4388 #ifdef FUNCTION_OUTGOING_VALUE
4389 outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4390 current_function_decl);
4391 #else
4392 outgoing = FUNCTION_VALUE (build_pointer_type (type),
4393 current_function_decl);
4394 #endif
4396 /* Mark this as a function return value so integrate will delete the
4397 assignment and USE below when inlining this function. */
4398 REG_FUNCTION_VALUE_P (outgoing) = 1;
4400 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4401 value_address = convert_memory_address (GET_MODE (outgoing),
4402 value_address);
4404 emit_move_insn (outgoing, value_address);
4406 /* Show return register used to hold result (in this case the address
4407 of the result. */
4408 current_function_return_rtx = outgoing;
4411 /* If this is an implementation of throw, do what's necessary to
4412 communicate between __builtin_eh_return and the epilogue. */
4413 expand_eh_return ();
4415 /* Emit the actual code to clobber return register. */
4417 rtx seq, after;
4419 start_sequence ();
4420 clobber_return_register ();
4421 seq = get_insns ();
4422 end_sequence ();
4424 after = emit_insn_after (seq, clobber_after);
4427 /* Output the label for the naked return from the function, if one is
4428 expected. This is currently used only by __builtin_return. */
4429 if (naked_return_label)
4430 emit_label (naked_return_label);
4432 /* ??? This should no longer be necessary since stupid is no longer with
4433 us, but there are some parts of the compiler (eg reload_combine, and
4434 sh mach_dep_reorg) that still try and compute their own lifetime info
4435 instead of using the general framework. */
4436 use_return_register ();
4440 get_arg_pointer_save_area (struct function *f)
4442 rtx ret = f->x_arg_pointer_save_area;
4444 if (! ret)
4446 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4447 f->x_arg_pointer_save_area = ret;
4450 if (f == cfun && ! f->arg_pointer_save_area_init)
4452 rtx seq;
4454 /* Save the arg pointer at the beginning of the function. The
4455 generated stack slot may not be a valid memory address, so we
4456 have to check it and fix it if necessary. */
4457 start_sequence ();
4458 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4459 seq = get_insns ();
4460 end_sequence ();
4462 push_topmost_sequence ();
4463 emit_insn_after (seq, get_insns ());
4464 pop_topmost_sequence ();
4467 return ret;
4470 /* Extend a vector that records the INSN_UIDs of INSNS
4471 (a list of one or more insns). */
4473 static void
4474 record_insns (rtx insns, varray_type *vecp)
4476 int i, len;
4477 rtx tmp;
4479 tmp = insns;
4480 len = 0;
4481 while (tmp != NULL_RTX)
4483 len++;
4484 tmp = NEXT_INSN (tmp);
4487 i = VARRAY_SIZE (*vecp);
4488 VARRAY_GROW (*vecp, i + len);
4489 tmp = insns;
4490 while (tmp != NULL_RTX)
4492 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
4493 i++;
4494 tmp = NEXT_INSN (tmp);
4498 /* Set the locator of the insn chain starting at INSN to LOC. */
4499 static void
4500 set_insn_locators (rtx insn, int loc)
4502 while (insn != NULL_RTX)
4504 if (INSN_P (insn))
4505 INSN_LOCATOR (insn) = loc;
4506 insn = NEXT_INSN (insn);
4510 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4511 be running after reorg, SEQUENCE rtl is possible. */
4513 static int
4514 contains (rtx insn, varray_type vec)
4516 int i, j;
4518 if (NONJUMP_INSN_P (insn)
4519 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4521 int count = 0;
4522 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4523 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4524 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
4525 count++;
4526 return count;
4528 else
4530 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4531 if (INSN_UID (insn) == VARRAY_INT (vec, j))
4532 return 1;
4534 return 0;
4538 prologue_epilogue_contains (rtx insn)
4540 if (contains (insn, prologue))
4541 return 1;
4542 if (contains (insn, epilogue))
4543 return 1;
4544 return 0;
4548 sibcall_epilogue_contains (rtx insn)
4550 if (sibcall_epilogue)
4551 return contains (insn, sibcall_epilogue);
4552 return 0;
4555 #ifdef HAVE_return
4556 /* Insert gen_return at the end of block BB. This also means updating
4557 block_for_insn appropriately. */
4559 static void
4560 emit_return_into_block (basic_block bb, rtx line_note)
4562 emit_jump_insn_after (gen_return (), BB_END (bb));
4563 if (line_note)
4564 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4566 #endif /* HAVE_return */
4568 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4570 /* These functions convert the epilogue into a variant that does not modify the
4571 stack pointer. This is used in cases where a function returns an object
4572 whose size is not known until it is computed. The called function leaves the
4573 object on the stack, leaves the stack depressed, and returns a pointer to
4574 the object.
4576 What we need to do is track all modifications and references to the stack
4577 pointer, deleting the modifications and changing the references to point to
4578 the location the stack pointer would have pointed to had the modifications
4579 taken place.
4581 These functions need to be portable so we need to make as few assumptions
4582 about the epilogue as we can. However, the epilogue basically contains
4583 three things: instructions to reset the stack pointer, instructions to
4584 reload registers, possibly including the frame pointer, and an
4585 instruction to return to the caller.
4587 If we can't be sure of what a relevant epilogue insn is doing, we abort.
4588 We also make no attempt to validate the insns we make since if they are
4589 invalid, we probably can't do anything valid. The intent is that these
4590 routines get "smarter" as more and more machines start to use them and
4591 they try operating on different epilogues.
4593 We use the following structure to track what the part of the epilogue that
4594 we've already processed has done. We keep two copies of the SP equivalence,
4595 one for use during the insn we are processing and one for use in the next
4596 insn. The difference is because one part of a PARALLEL may adjust SP
4597 and the other may use it. */
4599 struct epi_info
4601 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4602 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4603 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4604 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4605 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4606 should be set to once we no longer need
4607 its value. */
4608 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4609 for registers. */
4612 static void handle_epilogue_set (rtx, struct epi_info *);
4613 static void update_epilogue_consts (rtx, rtx, void *);
4614 static void emit_equiv_load (struct epi_info *);
4616 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4617 no modifications to the stack pointer. Return the new list of insns. */
4619 static rtx
4620 keep_stack_depressed (rtx insns)
4622 int j;
4623 struct epi_info info;
4624 rtx insn, next;
4626 /* If the epilogue is just a single instruction, it must be OK as is. */
4627 if (NEXT_INSN (insns) == NULL_RTX)
4628 return insns;
4630 /* Otherwise, start a sequence, initialize the information we have, and
4631 process all the insns we were given. */
4632 start_sequence ();
4634 info.sp_equiv_reg = stack_pointer_rtx;
4635 info.sp_offset = 0;
4636 info.equiv_reg_src = 0;
4638 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4639 info.const_equiv[j] = 0;
4641 insn = insns;
4642 next = NULL_RTX;
4643 while (insn != NULL_RTX)
4645 next = NEXT_INSN (insn);
4647 if (!INSN_P (insn))
4649 add_insn (insn);
4650 insn = next;
4651 continue;
4654 /* If this insn references the register that SP is equivalent to and
4655 we have a pending load to that register, we must force out the load
4656 first and then indicate we no longer know what SP's equivalent is. */
4657 if (info.equiv_reg_src != 0
4658 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4660 emit_equiv_load (&info);
4661 info.sp_equiv_reg = 0;
4664 info.new_sp_equiv_reg = info.sp_equiv_reg;
4665 info.new_sp_offset = info.sp_offset;
4667 /* If this is a (RETURN) and the return address is on the stack,
4668 update the address and change to an indirect jump. */
4669 if (GET_CODE (PATTERN (insn)) == RETURN
4670 || (GET_CODE (PATTERN (insn)) == PARALLEL
4671 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4673 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4674 rtx base = 0;
4675 HOST_WIDE_INT offset = 0;
4676 rtx jump_insn, jump_set;
4678 /* If the return address is in a register, we can emit the insn
4679 unchanged. Otherwise, it must be a MEM and we see what the
4680 base register and offset are. In any case, we have to emit any
4681 pending load to the equivalent reg of SP, if any. */
4682 if (REG_P (retaddr))
4684 emit_equiv_load (&info);
4685 add_insn (insn);
4686 insn = next;
4687 continue;
4689 else if (MEM_P (retaddr)
4690 && REG_P (XEXP (retaddr, 0)))
4691 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
4692 else if (MEM_P (retaddr)
4693 && GET_CODE (XEXP (retaddr, 0)) == PLUS
4694 && REG_P (XEXP (XEXP (retaddr, 0), 0))
4695 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
4697 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
4698 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
4700 else
4701 abort ();
4703 /* If the base of the location containing the return pointer
4704 is SP, we must update it with the replacement address. Otherwise,
4705 just build the necessary MEM. */
4706 retaddr = plus_constant (base, offset);
4707 if (base == stack_pointer_rtx)
4708 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4709 plus_constant (info.sp_equiv_reg,
4710 info.sp_offset));
4712 retaddr = gen_rtx_MEM (Pmode, retaddr);
4714 /* If there is a pending load to the equivalent register for SP
4715 and we reference that register, we must load our address into
4716 a scratch register and then do that load. */
4717 if (info.equiv_reg_src
4718 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4720 unsigned int regno;
4721 rtx reg;
4723 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4724 if (HARD_REGNO_MODE_OK (regno, Pmode)
4725 && !fixed_regs[regno]
4726 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4727 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
4728 regno)
4729 && !refers_to_regno_p (regno,
4730 regno + hard_regno_nregs[regno]
4731 [Pmode],
4732 info.equiv_reg_src, NULL)
4733 && info.const_equiv[regno] == 0)
4734 break;
4736 if (regno == FIRST_PSEUDO_REGISTER)
4737 abort ();
4739 reg = gen_rtx_REG (Pmode, regno);
4740 emit_move_insn (reg, retaddr);
4741 retaddr = reg;
4744 emit_equiv_load (&info);
4745 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4747 /* Show the SET in the above insn is a RETURN. */
4748 jump_set = single_set (jump_insn);
4749 if (jump_set == 0)
4750 abort ();
4751 else
4752 SET_IS_RETURN_P (jump_set) = 1;
4755 /* If SP is not mentioned in the pattern and its equivalent register, if
4756 any, is not modified, just emit it. Otherwise, if neither is set,
4757 replace the reference to SP and emit the insn. If none of those are
4758 true, handle each SET individually. */
4759 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4760 && (info.sp_equiv_reg == stack_pointer_rtx
4761 || !reg_set_p (info.sp_equiv_reg, insn)))
4762 add_insn (insn);
4763 else if (! reg_set_p (stack_pointer_rtx, insn)
4764 && (info.sp_equiv_reg == stack_pointer_rtx
4765 || !reg_set_p (info.sp_equiv_reg, insn)))
4767 if (! validate_replace_rtx (stack_pointer_rtx,
4768 plus_constant (info.sp_equiv_reg,
4769 info.sp_offset),
4770 insn))
4771 abort ();
4773 add_insn (insn);
4775 else if (GET_CODE (PATTERN (insn)) == SET)
4776 handle_epilogue_set (PATTERN (insn), &info);
4777 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4779 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4780 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4781 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4783 else
4784 add_insn (insn);
4786 info.sp_equiv_reg = info.new_sp_equiv_reg;
4787 info.sp_offset = info.new_sp_offset;
4789 /* Now update any constants this insn sets. */
4790 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4791 insn = next;
4794 insns = get_insns ();
4795 end_sequence ();
4796 return insns;
4799 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4800 structure that contains information about what we've seen so far. We
4801 process this SET by either updating that data or by emitting one or
4802 more insns. */
4804 static void
4805 handle_epilogue_set (rtx set, struct epi_info *p)
4807 /* First handle the case where we are setting SP. Record what it is being
4808 set from. If unknown, abort. */
4809 if (reg_set_p (stack_pointer_rtx, set))
4811 if (SET_DEST (set) != stack_pointer_rtx)
4812 abort ();
4814 if (GET_CODE (SET_SRC (set)) == PLUS)
4816 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4817 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4818 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4819 else if (REG_P (XEXP (SET_SRC (set), 1))
4820 && REGNO (XEXP (SET_SRC (set), 1)) < FIRST_PSEUDO_REGISTER
4821 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))] != 0)
4822 p->new_sp_offset
4823 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4824 else
4825 abort ();
4827 else
4828 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4830 /* If we are adjusting SP, we adjust from the old data. */
4831 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4833 p->new_sp_equiv_reg = p->sp_equiv_reg;
4834 p->new_sp_offset += p->sp_offset;
4837 if (p->new_sp_equiv_reg == 0 || !REG_P (p->new_sp_equiv_reg))
4838 abort ();
4840 return;
4843 /* Next handle the case where we are setting SP's equivalent register.
4844 If we already have a value to set it to, abort. We could update, but
4845 there seems little point in handling that case. Note that we have
4846 to allow for the case where we are setting the register set in
4847 the previous part of a PARALLEL inside a single insn. But use the
4848 old offset for any updates within this insn. We must allow for the case
4849 where the register is being set in a different (usually wider) mode than
4850 Pmode). */
4851 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4853 if (p->equiv_reg_src != 0
4854 || !REG_P (p->new_sp_equiv_reg)
4855 || !REG_P (SET_DEST (set))
4856 || GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) > BITS_PER_WORD
4857 || REGNO (p->new_sp_equiv_reg) != REGNO (SET_DEST (set)))
4858 abort ();
4859 else
4860 p->equiv_reg_src
4861 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4862 plus_constant (p->sp_equiv_reg,
4863 p->sp_offset));
4866 /* Otherwise, replace any references to SP in the insn to its new value
4867 and emit the insn. */
4868 else
4870 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4871 plus_constant (p->sp_equiv_reg,
4872 p->sp_offset));
4873 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4874 plus_constant (p->sp_equiv_reg,
4875 p->sp_offset));
4876 emit_insn (set);
4880 /* Update the tracking information for registers set to constants. */
4882 static void
4883 update_epilogue_consts (rtx dest, rtx x, void *data)
4885 struct epi_info *p = (struct epi_info *) data;
4886 rtx new;
4888 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4889 return;
4891 /* If we are either clobbering a register or doing a partial set,
4892 show we don't know the value. */
4893 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
4894 p->const_equiv[REGNO (dest)] = 0;
4896 /* If we are setting it to a constant, record that constant. */
4897 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
4898 p->const_equiv[REGNO (dest)] = SET_SRC (x);
4900 /* If this is a binary operation between a register we have been tracking
4901 and a constant, see if we can compute a new constant value. */
4902 else if (ARITHMETIC_P (SET_SRC (x))
4903 && REG_P (XEXP (SET_SRC (x), 0))
4904 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
4905 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
4906 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4907 && 0 != (new = simplify_binary_operation
4908 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
4909 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
4910 XEXP (SET_SRC (x), 1)))
4911 && GET_CODE (new) == CONST_INT)
4912 p->const_equiv[REGNO (dest)] = new;
4914 /* Otherwise, we can't do anything with this value. */
4915 else
4916 p->const_equiv[REGNO (dest)] = 0;
4919 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
4921 static void
4922 emit_equiv_load (struct epi_info *p)
4924 if (p->equiv_reg_src != 0)
4926 rtx dest = p->sp_equiv_reg;
4928 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
4929 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
4930 REGNO (p->sp_equiv_reg));
4932 emit_move_insn (dest, p->equiv_reg_src);
4933 p->equiv_reg_src = 0;
4936 #endif
4938 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4939 this into place with notes indicating where the prologue ends and where
4940 the epilogue begins. Update the basic block information when possible. */
4942 void
4943 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
4945 int inserted = 0;
4946 edge e;
4947 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4948 rtx seq;
4949 #endif
4950 #ifdef HAVE_prologue
4951 rtx prologue_end = NULL_RTX;
4952 #endif
4953 #if defined (HAVE_epilogue) || defined(HAVE_return)
4954 rtx epilogue_end = NULL_RTX;
4955 #endif
4957 #ifdef HAVE_prologue
4958 if (HAVE_prologue)
4960 start_sequence ();
4961 seq = gen_prologue ();
4962 emit_insn (seq);
4964 /* Retain a map of the prologue insns. */
4965 record_insns (seq, &prologue);
4966 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
4968 seq = get_insns ();
4969 end_sequence ();
4970 set_insn_locators (seq, prologue_locator);
4972 /* Can't deal with multiple successors of the entry block
4973 at the moment. Function should always have at least one
4974 entry point. */
4975 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
4976 abort ();
4978 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
4979 inserted = 1;
4981 #endif
4983 /* If the exit block has no non-fake predecessors, we don't need
4984 an epilogue. */
4985 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
4986 if ((e->flags & EDGE_FAKE) == 0)
4987 break;
4988 if (e == NULL)
4989 goto epilogue_done;
4991 #ifdef HAVE_return
4992 if (optimize && HAVE_return)
4994 /* If we're allowed to generate a simple return instruction,
4995 then by definition we don't need a full epilogue. Examine
4996 the block that falls through to EXIT. If it does not
4997 contain any code, examine its predecessors and try to
4998 emit (conditional) return instructions. */
5000 basic_block last;
5001 edge e_next;
5002 rtx label;
5004 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5005 if (e->flags & EDGE_FALLTHRU)
5006 break;
5007 if (e == NULL)
5008 goto epilogue_done;
5009 last = e->src;
5011 /* Verify that there are no active instructions in the last block. */
5012 label = BB_END (last);
5013 while (label && !LABEL_P (label))
5015 if (active_insn_p (label))
5016 break;
5017 label = PREV_INSN (label);
5020 if (BB_HEAD (last) == label && LABEL_P (label))
5022 rtx epilogue_line_note = NULL_RTX;
5024 /* Locate the line number associated with the closing brace,
5025 if we can find one. */
5026 for (seq = get_last_insn ();
5027 seq && ! active_insn_p (seq);
5028 seq = PREV_INSN (seq))
5029 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5031 epilogue_line_note = seq;
5032 break;
5035 for (e = last->pred; e; e = e_next)
5037 basic_block bb = e->src;
5038 rtx jump;
5040 e_next = e->pred_next;
5041 if (bb == ENTRY_BLOCK_PTR)
5042 continue;
5044 jump = BB_END (bb);
5045 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5046 continue;
5048 /* If we have an unconditional jump, we can replace that
5049 with a simple return instruction. */
5050 if (simplejump_p (jump))
5052 emit_return_into_block (bb, epilogue_line_note);
5053 delete_insn (jump);
5056 /* If we have a conditional jump, we can try to replace
5057 that with a conditional return instruction. */
5058 else if (condjump_p (jump))
5060 if (! redirect_jump (jump, 0, 0))
5061 continue;
5063 /* If this block has only one successor, it both jumps
5064 and falls through to the fallthru block, so we can't
5065 delete the edge. */
5066 if (bb->succ->succ_next == NULL)
5067 continue;
5069 else
5070 continue;
5072 /* Fix up the CFG for the successful change we just made. */
5073 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5076 /* Emit a return insn for the exit fallthru block. Whether
5077 this is still reachable will be determined later. */
5079 emit_barrier_after (BB_END (last));
5080 emit_return_into_block (last, epilogue_line_note);
5081 epilogue_end = BB_END (last);
5082 last->succ->flags &= ~EDGE_FALLTHRU;
5083 goto epilogue_done;
5086 #endif
5087 /* Find the edge that falls through to EXIT. Other edges may exist
5088 due to RETURN instructions, but those don't need epilogues.
5089 There really shouldn't be a mixture -- either all should have
5090 been converted or none, however... */
5092 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5093 if (e->flags & EDGE_FALLTHRU)
5094 break;
5095 if (e == NULL)
5096 goto epilogue_done;
5098 #ifdef HAVE_epilogue
5099 if (HAVE_epilogue)
5101 start_sequence ();
5102 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5104 seq = gen_epilogue ();
5106 #ifdef INCOMING_RETURN_ADDR_RTX
5107 /* If this function returns with the stack depressed and we can support
5108 it, massage the epilogue to actually do that. */
5109 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5110 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5111 seq = keep_stack_depressed (seq);
5112 #endif
5114 emit_jump_insn (seq);
5116 /* Retain a map of the epilogue insns. */
5117 record_insns (seq, &epilogue);
5118 set_insn_locators (seq, epilogue_locator);
5120 seq = get_insns ();
5121 end_sequence ();
5123 insert_insn_on_edge (seq, e);
5124 inserted = 1;
5126 else
5127 #endif
5129 basic_block cur_bb;
5131 if (! next_active_insn (BB_END (e->src)))
5132 goto epilogue_done;
5133 /* We have a fall-through edge to the exit block, the source is not
5134 at the end of the function, and there will be an assembler epilogue
5135 at the end of the function.
5136 We can't use force_nonfallthru here, because that would try to
5137 use return. Inserting a jump 'by hand' is extremely messy, so
5138 we take advantage of cfg_layout_finalize using
5139 fixup_fallthru_exit_predecessor. */
5140 cfg_layout_initialize (0);
5141 FOR_EACH_BB (cur_bb)
5142 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5143 cur_bb->rbi->next = cur_bb->next_bb;
5144 cfg_layout_finalize ();
5146 epilogue_done:
5148 if (inserted)
5149 commit_edge_insertions ();
5151 #ifdef HAVE_sibcall_epilogue
5152 /* Emit sibling epilogues before any sibling call sites. */
5153 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5155 basic_block bb = e->src;
5156 rtx insn = BB_END (bb);
5157 rtx i;
5158 rtx newinsn;
5160 if (!CALL_P (insn)
5161 || ! SIBLING_CALL_P (insn))
5162 continue;
5164 start_sequence ();
5165 emit_insn (gen_sibcall_epilogue ());
5166 seq = get_insns ();
5167 end_sequence ();
5169 /* Retain a map of the epilogue insns. Used in life analysis to
5170 avoid getting rid of sibcall epilogue insns. Do this before we
5171 actually emit the sequence. */
5172 record_insns (seq, &sibcall_epilogue);
5173 set_insn_locators (seq, epilogue_locator);
5175 i = PREV_INSN (insn);
5176 newinsn = emit_insn_before (seq, insn);
5178 #endif
5180 #ifdef HAVE_prologue
5181 /* This is probably all useless now that we use locators. */
5182 if (prologue_end)
5184 rtx insn, prev;
5186 /* GDB handles `break f' by setting a breakpoint on the first
5187 line note after the prologue. Which means (1) that if
5188 there are line number notes before where we inserted the
5189 prologue we should move them, and (2) we should generate a
5190 note before the end of the first basic block, if there isn't
5191 one already there.
5193 ??? This behavior is completely broken when dealing with
5194 multiple entry functions. We simply place the note always
5195 into first basic block and let alternate entry points
5196 to be missed.
5199 for (insn = prologue_end; insn; insn = prev)
5201 prev = PREV_INSN (insn);
5202 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5204 /* Note that we cannot reorder the first insn in the
5205 chain, since rest_of_compilation relies on that
5206 remaining constant. */
5207 if (prev == NULL)
5208 break;
5209 reorder_insns (insn, insn, prologue_end);
5213 /* Find the last line number note in the first block. */
5214 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5215 insn != prologue_end && insn;
5216 insn = PREV_INSN (insn))
5217 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5218 break;
5220 /* If we didn't find one, make a copy of the first line number
5221 we run across. */
5222 if (! insn)
5224 for (insn = next_active_insn (prologue_end);
5225 insn;
5226 insn = PREV_INSN (insn))
5227 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5229 emit_note_copy_after (insn, prologue_end);
5230 break;
5234 #endif
5235 #ifdef HAVE_epilogue
5236 if (epilogue_end)
5238 rtx insn, next;
5240 /* Similarly, move any line notes that appear after the epilogue.
5241 There is no need, however, to be quite so anal about the existence
5242 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5243 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5244 info generation. */
5245 for (insn = epilogue_end; insn; insn = next)
5247 next = NEXT_INSN (insn);
5248 if (NOTE_P (insn)
5249 && (NOTE_LINE_NUMBER (insn) > 0
5250 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5251 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5252 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5255 #endif
5258 /* Reposition the prologue-end and epilogue-begin notes after instruction
5259 scheduling and delayed branch scheduling. */
5261 void
5262 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5264 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5265 rtx insn, last, note;
5266 int len;
5268 if ((len = VARRAY_SIZE (prologue)) > 0)
5270 last = 0, note = 0;
5272 /* Scan from the beginning until we reach the last prologue insn.
5273 We apparently can't depend on basic_block_{head,end} after
5274 reorg has run. */
5275 for (insn = f; insn; insn = NEXT_INSN (insn))
5277 if (NOTE_P (insn))
5279 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5280 note = insn;
5282 else if (contains (insn, prologue))
5284 last = insn;
5285 if (--len == 0)
5286 break;
5290 if (last)
5292 /* Find the prologue-end note if we haven't already, and
5293 move it to just after the last prologue insn. */
5294 if (note == 0)
5296 for (note = last; (note = NEXT_INSN (note));)
5297 if (NOTE_P (note)
5298 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5299 break;
5302 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5303 if (LABEL_P (last))
5304 last = NEXT_INSN (last);
5305 reorder_insns (note, note, last);
5309 if ((len = VARRAY_SIZE (epilogue)) > 0)
5311 last = 0, note = 0;
5313 /* Scan from the end until we reach the first epilogue insn.
5314 We apparently can't depend on basic_block_{head,end} after
5315 reorg has run. */
5316 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5318 if (NOTE_P (insn))
5320 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5321 note = insn;
5323 else if (contains (insn, epilogue))
5325 last = insn;
5326 if (--len == 0)
5327 break;
5331 if (last)
5333 /* Find the epilogue-begin note if we haven't already, and
5334 move it to just before the first epilogue insn. */
5335 if (note == 0)
5337 for (note = insn; (note = PREV_INSN (note));)
5338 if (NOTE_P (note)
5339 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5340 break;
5343 if (PREV_INSN (last) != note)
5344 reorder_insns (note, note, PREV_INSN (last));
5347 #endif /* HAVE_prologue or HAVE_epilogue */
5350 /* Called once, at initialization, to initialize function.c. */
5352 void
5353 init_function_once (void)
5355 VARRAY_INT_INIT (prologue, 0, "prologue");
5356 VARRAY_INT_INIT (epilogue, 0, "epilogue");
5357 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
5360 /* Resets insn_block_boundaries array. */
5362 void
5363 reset_block_changes (void)
5365 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5366 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5369 /* Record the boundary for BLOCK. */
5370 void
5371 record_block_change (tree block)
5373 int i, n;
5374 tree last_block;
5376 if (!block)
5377 return;
5379 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5380 VARRAY_POP (cfun->ib_boundaries_block);
5381 n = get_max_uid ();
5382 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5383 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5385 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5388 /* Finishes record of boundaries. */
5389 void finalize_block_changes (void)
5391 record_block_change (DECL_INITIAL (current_function_decl));
5394 /* For INSN return the BLOCK it belongs to. */
5395 void
5396 check_block_change (rtx insn, tree *block)
5398 unsigned uid = INSN_UID (insn);
5400 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5401 return;
5403 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5406 /* Releases the ib_boundaries_block records. */
5407 void
5408 free_block_changes (void)
5410 cfun->ib_boundaries_block = NULL;
5413 /* Returns the name of the current function. */
5414 const char *
5415 current_function_name (void)
5417 return lang_hooks.decl_printable_name (cfun->decl, 2);
5420 #include "gt-function.h"