* alias.c (init_alias_analysis): Allocate reg_known_value and
[official-gcc.git] / gcc / except.c
blob3c7692c4e90e3672494a03335787ba5f0c5a9648
1 /* Implements exception handling.
2 Copyright (C) 1989, 1992-1999 Free Software Foundation, Inc.
3 Contributed by Mike Stump <mrs@cygnus.com>.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* An exception is an event that can be signaled from within a
24 function. This event can then be "caught" or "trapped" by the
25 callers of this function. This potentially allows program flow to
26 be transferred to any arbitrary code associated with a function call
27 several levels up the stack.
29 The intended use for this mechanism is for signaling "exceptional
30 events" in an out-of-band fashion, hence its name. The C++ language
31 (and many other OO-styled or functional languages) practically
32 requires such a mechanism, as otherwise it becomes very difficult
33 or even impossible to signal failure conditions in complex
34 situations. The traditional C++ example is when an error occurs in
35 the process of constructing an object; without such a mechanism, it
36 is impossible to signal that the error occurs without adding global
37 state variables and error checks around every object construction.
39 The act of causing this event to occur is referred to as "throwing
40 an exception". (Alternate terms include "raising an exception" or
41 "signaling an exception".) The term "throw" is used because control
42 is returned to the callers of the function that is signaling the
43 exception, and thus there is the concept of "throwing" the
44 exception up the call stack.
46 There are two major codegen options for exception handling. The
47 flag -fsjlj-exceptions can be used to select the setjmp/longjmp
48 approach, which is the default. -fno-sjlj-exceptions can be used to
49 get the PC range table approach. While this is a compile time
50 flag, an entire application must be compiled with the same codegen
51 option. The first is a PC range table approach, the second is a
52 setjmp/longjmp based scheme. We will first discuss the PC range
53 table approach, after that, we will discuss the setjmp/longjmp
54 based approach.
56 It is appropriate to speak of the "context of a throw". This
57 context refers to the address where the exception is thrown from,
58 and is used to determine which exception region will handle the
59 exception.
61 Regions of code within a function can be marked such that if it
62 contains the context of a throw, control will be passed to a
63 designated "exception handler". These areas are known as "exception
64 regions". Exception regions cannot overlap, but they can be nested
65 to any arbitrary depth. Also, exception regions cannot cross
66 function boundaries.
68 Exception handlers can either be specified by the user (which we
69 will call a "user-defined handler") or generated by the compiler
70 (which we will designate as a "cleanup"). Cleanups are used to
71 perform tasks such as destruction of objects allocated on the
72 stack.
74 In the current implementation, cleanups are handled by allocating an
75 exception region for the area that the cleanup is designated for,
76 and the handler for the region performs the cleanup and then
77 rethrows the exception to the outer exception region. From the
78 standpoint of the current implementation, there is little
79 distinction made between a cleanup and a user-defined handler, and
80 the phrase "exception handler" can be used to refer to either one
81 equally well. (The section "Future Directions" below discusses how
82 this will change).
84 Each object file that is compiled with exception handling contains
85 a static array of exception handlers named __EXCEPTION_TABLE__.
86 Each entry contains the starting and ending addresses of the
87 exception region, and the address of the handler designated for
88 that region.
90 If the target does not use the DWARF 2 frame unwind information, at
91 program startup each object file invokes a function named
92 __register_exceptions with the address of its local
93 __EXCEPTION_TABLE__. __register_exceptions is defined in libgcc2.c, and
94 is responsible for recording all of the exception regions into one list
95 (which is kept in a static variable named exception_table_list).
97 On targets that support crtstuff.c, the unwind information
98 is stored in a section named .eh_frame and the information for the
99 entire shared object or program is registered with a call to
100 __register_frame_info. On other targets, the information for each
101 translation unit is registered from the file generated by collect2.
102 __register_frame_info is defined in frame.c, and is responsible for
103 recording all of the unwind regions into one list (which is kept in a
104 static variable named unwind_table_list).
106 The function __throw is actually responsible for doing the
107 throw. On machines that have unwind info support, __throw is generated
108 by code in libgcc2.c, otherwise __throw is generated on a
109 per-object-file basis for each source file compiled with
110 -fexceptions by the C++ frontend. Before __throw is invoked,
111 the current context of the throw needs to be placed in the global
112 variable __eh_pc.
114 __throw attempts to find the appropriate exception handler for the
115 PC value stored in __eh_pc by calling __find_first_exception_table_match
116 (which is defined in libgcc2.c). If __find_first_exception_table_match
117 finds a relevant handler, __throw transfers control directly to it.
119 If a handler for the context being thrown from can't be found, __throw
120 walks (see Walking the stack below) the stack up the dynamic call chain to
121 continue searching for an appropriate exception handler based upon the
122 caller of the function it last sought a exception handler for. It stops
123 then either an exception handler is found, or when the top of the
124 call chain is reached.
126 If no handler is found, an external library function named
127 __terminate is called. If a handler is found, then we restart
128 our search for a handler at the end of the call chain, and repeat
129 the search process, but instead of just walking up the call chain,
130 we unwind the call chain as we walk up it.
132 Internal implementation details:
134 To associate a user-defined handler with a block of statements, the
135 function expand_start_try_stmts is used to mark the start of the
136 block of statements with which the handler is to be associated
137 (which is known as a "try block"). All statements that appear
138 afterwards will be associated with the try block.
140 A call to expand_start_all_catch marks the end of the try block,
141 and also marks the start of the "catch block" (the user-defined
142 handler) associated with the try block.
144 This user-defined handler will be invoked for *every* exception
145 thrown with the context of the try block. It is up to the handler
146 to decide whether or not it wishes to handle any given exception,
147 as there is currently no mechanism in this implementation for doing
148 this. (There are plans for conditionally processing an exception
149 based on its "type", which will provide a language-independent
150 mechanism).
152 If the handler chooses not to process the exception (perhaps by
153 looking at an "exception type" or some other additional data
154 supplied with the exception), it can fall through to the end of the
155 handler. expand_end_all_catch and expand_leftover_cleanups
156 add additional code to the end of each handler to take care of
157 rethrowing to the outer exception handler.
159 The handler also has the option to continue with "normal flow of
160 code", or in other words to resume executing at the statement
161 immediately after the end of the exception region. The variable
162 caught_return_label_stack contains a stack of labels, and jumping
163 to the topmost entry's label via expand_goto will resume normal
164 flow to the statement immediately after the end of the exception
165 region. If the handler falls through to the end, the exception will
166 be rethrown to the outer exception region.
168 The instructions for the catch block are kept as a separate
169 sequence, and will be emitted at the end of the function along with
170 the handlers specified via expand_eh_region_end. The end of the
171 catch block is marked with expand_end_all_catch.
173 Any data associated with the exception must currently be handled by
174 some external mechanism maintained in the frontend. For example,
175 the C++ exception mechanism passes an arbitrary value along with
176 the exception, and this is handled in the C++ frontend by using a
177 global variable to hold the value. (This will be changing in the
178 future.)
180 The mechanism in C++ for handling data associated with the
181 exception is clearly not thread-safe. For a thread-based
182 environment, another mechanism must be used (possibly using a
183 per-thread allocation mechanism if the size of the area that needs
184 to be allocated isn't known at compile time.)
186 Internally-generated exception regions (cleanups) are marked by
187 calling expand_eh_region_start to mark the start of the region,
188 and expand_eh_region_end (handler) is used to both designate the
189 end of the region and to associate a specified handler/cleanup with
190 the region. The rtl code in HANDLER will be invoked whenever an
191 exception occurs in the region between the calls to
192 expand_eh_region_start and expand_eh_region_end. After HANDLER is
193 executed, additional code is emitted to handle rethrowing the
194 exception to the outer exception handler. The code for HANDLER will
195 be emitted at the end of the function.
197 TARGET_EXPRs can also be used to designate exception regions. A
198 TARGET_EXPR gives an unwind-protect style interface commonly used
199 in functional languages such as LISP. The associated expression is
200 evaluated, and whether or not it (or any of the functions that it
201 calls) throws an exception, the protect expression is always
202 invoked. This implementation takes care of the details of
203 associating an exception table entry with the expression and
204 generating the necessary code (it actually emits the protect
205 expression twice, once for normal flow and once for the exception
206 case). As for the other handlers, the code for the exception case
207 will be emitted at the end of the function.
209 Cleanups can also be specified by using add_partial_entry (handler)
210 and end_protect_partials. add_partial_entry creates the start of
211 a new exception region; HANDLER will be invoked if an exception is
212 thrown with the context of the region between the calls to
213 add_partial_entry and end_protect_partials. end_protect_partials is
214 used to mark the end of these regions. add_partial_entry can be
215 called as many times as needed before calling end_protect_partials.
216 However, end_protect_partials should only be invoked once for each
217 group of calls to add_partial_entry as the entries are queued
218 and all of the outstanding entries are processed simultaneously
219 when end_protect_partials is invoked. Similarly to the other
220 handlers, the code for HANDLER will be emitted at the end of the
221 function.
223 The generated RTL for an exception region includes
224 NOTE_INSN_EH_REGION_BEG and NOTE_INSN_EH_REGION_END notes that mark
225 the start and end of the exception region. A unique label is also
226 generated at the start of the exception region, which is available
227 by looking at the ehstack variable. The topmost entry corresponds
228 to the current region.
230 In the current implementation, an exception can only be thrown from
231 a function call (since the mechanism used to actually throw an
232 exception involves calling __throw). If an exception region is
233 created but no function calls occur within that region, the region
234 can be safely optimized away (along with its exception handlers)
235 since no exceptions can ever be caught in that region. This
236 optimization is performed unless -fasynchronous-exceptions is
237 given. If the user wishes to throw from a signal handler, or other
238 asynchronous place, -fasynchronous-exceptions should be used when
239 compiling for maximally correct code, at the cost of additional
240 exception regions. Using -fasynchronous-exceptions only produces
241 code that is reasonably safe in such situations, but a correct
242 program cannot rely upon this working. It can be used in failsafe
243 code, where trying to continue on, and proceeding with potentially
244 incorrect results is better than halting the program.
247 Walking the stack:
249 The stack is walked by starting with a pointer to the current
250 frame, and finding the pointer to the callers frame. The unwind info
251 tells __throw how to find it.
253 Unwinding the stack:
255 When we use the term unwinding the stack, we mean undoing the
256 effects of the function prologue in a controlled fashion so that we
257 still have the flow of control. Otherwise, we could just return
258 (jump to the normal end of function epilogue).
260 This is done in __throw in libgcc2.c when we know that a handler exists
261 in a frame higher up the call stack than its immediate caller.
263 To unwind, we find the unwind data associated with the frame, if any.
264 If we don't find any, we call the library routine __terminate. If we do
265 find it, we use the information to copy the saved register values from
266 that frame into the register save area in the frame for __throw, return
267 into a stub which updates the stack pointer, and jump to the handler.
268 The normal function epilogue for __throw handles restoring the saved
269 values into registers.
271 When unwinding, we use this method if we know it will
272 work (if DWARF2_UNWIND_INFO is defined). Otherwise, we know that
273 an inline unwinder will have been emitted for any function that
274 __unwind_function cannot unwind. The inline unwinder appears as a
275 normal exception handler for the entire function, for any function
276 that we know cannot be unwound by __unwind_function. We inform the
277 compiler of whether a function can be unwound with
278 __unwind_function by having DOESNT_NEED_UNWINDER evaluate to true
279 when the unwinder isn't needed. __unwind_function is used as an
280 action of last resort. If no other method can be used for
281 unwinding, __unwind_function is used. If it cannot unwind, it
282 should call __terminate.
284 By default, if the target-specific backend doesn't supply a definition
285 for __unwind_function and doesn't support DWARF2_UNWIND_INFO, inlined
286 unwinders will be used instead. The main tradeoff here is in text space
287 utilization. Obviously, if inline unwinders have to be generated
288 repeatedly, this uses much more space than if a single routine is used.
290 However, it is simply not possible on some platforms to write a
291 generalized routine for doing stack unwinding without having some
292 form of additional data associated with each function. The current
293 implementation can encode this data in the form of additional
294 machine instructions or as static data in tabular form. The later
295 is called the unwind data.
297 The backend macro DOESNT_NEED_UNWINDER is used to conditionalize whether
298 or not per-function unwinders are needed. If DOESNT_NEED_UNWINDER is
299 defined and has a non-zero value, a per-function unwinder is not emitted
300 for the current function. If the static unwind data is supported, then
301 a per-function unwinder is not emitted.
303 On some platforms it is possible that neither __unwind_function
304 nor inlined unwinders are available. For these platforms it is not
305 possible to throw through a function call, and abort will be
306 invoked instead of performing the throw.
308 The reason the unwind data may be needed is that on some platforms
309 the order and types of data stored on the stack can vary depending
310 on the type of function, its arguments and returned values, and the
311 compilation options used (optimization versus non-optimization,
312 -fomit-frame-pointer, processor variations, etc).
314 Unfortunately, this also means that throwing through functions that
315 aren't compiled with exception handling support will still not be
316 possible on some platforms. This problem is currently being
317 investigated, but no solutions have been found that do not imply
318 some unacceptable performance penalties.
320 Future directions:
322 Currently __throw makes no differentiation between cleanups and
323 user-defined exception regions. While this makes the implementation
324 simple, it also implies that it is impossible to determine if a
325 user-defined exception handler exists for a given exception without
326 completely unwinding the stack in the process. This is undesirable
327 from the standpoint of debugging, as ideally it would be possible
328 to trap unhandled exceptions in the debugger before the process of
329 unwinding has even started.
331 This problem can be solved by marking user-defined handlers in a
332 special way (probably by adding additional bits to exception_table_list).
333 A two-pass scheme could then be used by __throw to iterate
334 through the table. The first pass would search for a relevant
335 user-defined handler for the current context of the throw, and if
336 one is found, the second pass would then invoke all needed cleanups
337 before jumping to the user-defined handler.
339 Many languages (including C++ and Ada) make execution of a
340 user-defined handler conditional on the "type" of the exception
341 thrown. (The type of the exception is actually the type of the data
342 that is thrown with the exception.) It will thus be necessary for
343 __throw to be able to determine if a given user-defined
344 exception handler will actually be executed, given the type of
345 exception.
347 One scheme is to add additional information to exception_table_list
348 as to the types of exceptions accepted by each handler. __throw
349 can do the type comparisons and then determine if the handler is
350 actually going to be executed.
352 There is currently no significant level of debugging support
353 available, other than to place a breakpoint on __throw. While
354 this is sufficient in most cases, it would be helpful to be able to
355 know where a given exception was going to be thrown to before it is
356 actually thrown, and to be able to choose between stopping before
357 every exception region (including cleanups), or just user-defined
358 exception regions. This should be possible to do in the two-pass
359 scheme by adding additional labels to __throw for appropriate
360 breakpoints, and additional debugger commands could be added to
361 query various state variables to determine what actions are to be
362 performed next.
364 Another major problem that is being worked on is the issue with stack
365 unwinding on various platforms. Currently the only platforms that have
366 support for the generation of a generic unwinder are the SPARC and MIPS.
367 All other ports require per-function unwinders, which produce large
368 amounts of code bloat.
370 For setjmp/longjmp based exception handling, some of the details
371 are as above, but there are some additional details. This section
372 discusses the details.
374 We don't use NOTE_INSN_EH_REGION_{BEG,END} pairs. We don't
375 optimize EH regions yet. We don't have to worry about machine
376 specific issues with unwinding the stack, as we rely upon longjmp
377 for all the machine specific details. There is no variable context
378 of a throw, just the one implied by the dynamic handler stack
379 pointed to by the dynamic handler chain. There is no exception
380 table, and no calls to __register_exceptions. __sjthrow is used
381 instead of __throw, and it works by using the dynamic handler
382 chain, and longjmp. -fasynchronous-exceptions has no effect, as
383 the elimination of trivial exception regions is not yet performed.
385 A frontend can set protect_cleanup_actions_with_terminate when all
386 the cleanup actions should be protected with an EH region that
387 calls terminate when an unhandled exception is throw. C++ does
388 this, Ada does not. */
391 #include "config.h"
392 #include "defaults.h"
393 #include "eh-common.h"
394 #include "system.h"
395 #include "rtl.h"
396 #include "tree.h"
397 #include "flags.h"
398 #include "except.h"
399 #include "function.h"
400 #include "insn-flags.h"
401 #include "expr.h"
402 #include "insn-codes.h"
403 #include "regs.h"
404 #include "hard-reg-set.h"
405 #include "insn-config.h"
406 #include "recog.h"
407 #include "output.h"
408 #include "toplev.h"
409 #include "intl.h"
410 #include "obstack.h"
411 #include "ggc.h"
412 #include "tm_p.h"
414 /* One to use setjmp/longjmp method of generating code for exception
415 handling. */
417 int exceptions_via_longjmp = 2;
419 /* One to enable asynchronous exception support. */
421 int asynchronous_exceptions = 0;
423 /* One to protect cleanup actions with a handler that calls
424 __terminate, zero otherwise. */
426 int protect_cleanup_actions_with_terminate;
428 /* A list of labels used for exception handlers. Created by
429 find_exception_handler_labels for the optimization passes. */
431 rtx exception_handler_labels;
433 /* Keeps track of the label used as the context of a throw to rethrow an
434 exception to the outer exception region. */
436 struct label_node *outer_context_label_stack = NULL;
438 /* Pseudos used to hold exception return data in the interim between
439 __builtin_eh_return and the end of the function. */
441 static rtx eh_return_context;
442 static rtx eh_return_stack_adjust;
443 static rtx eh_return_handler;
445 /* This is used for targets which can call rethrow with an offset instead
446 of an address. This is subtracted from the rethrow label we are
447 interested in. */
449 static rtx first_rethrow_symbol = NULL_RTX;
450 static rtx final_rethrow = NULL_RTX;
451 static rtx last_rethrow_symbol = NULL_RTX;
454 /* Prototypes for local functions. */
456 static void push_eh_entry PROTO((struct eh_stack *));
457 static struct eh_entry * pop_eh_entry PROTO((struct eh_stack *));
458 static void enqueue_eh_entry PROTO((struct eh_queue *, struct eh_entry *));
459 static struct eh_entry * dequeue_eh_entry PROTO((struct eh_queue *));
460 static rtx call_get_eh_context PROTO((void));
461 static void start_dynamic_cleanup PROTO((tree, tree));
462 static void start_dynamic_handler PROTO((void));
463 static void expand_rethrow PROTO((rtx));
464 static void output_exception_table_entry PROTO((FILE *, int));
465 static int can_throw PROTO((rtx));
466 static rtx scan_region PROTO((rtx, int, int *));
467 static void eh_regs PROTO((rtx *, rtx *, rtx *, int));
468 static void set_insn_eh_region PROTO((rtx *, int));
469 #ifdef DONT_USE_BUILTIN_SETJMP
470 static void jumpif_rtx PROTO((rtx, rtx));
471 #endif
472 static void mark_eh_node PROTO((struct eh_node *));
473 static void mark_eh_stack PROTO((struct eh_stack *));
474 static void mark_eh_queue PROTO((struct eh_queue *));
475 static void mark_tree_label_node PROTO ((struct label_node *));
476 static void mark_func_eh_entry PROTO ((void *));
477 static rtx create_rethrow_ref PROTO ((int));
478 static void push_entry PROTO ((struct eh_stack *, struct eh_entry*));
479 static void receive_exception_label PROTO ((rtx));
480 static int new_eh_region_entry PROTO ((int, rtx));
481 static int find_func_region PROTO ((int));
482 static void clear_function_eh_region PROTO ((void));
483 static void process_nestinfo PROTO ((int, eh_nesting_info *, int *));
485 rtx expand_builtin_return_addr PROTO((enum built_in_function, int, rtx));
487 /* Various support routines to manipulate the various data structures
488 used by the exception handling code. */
490 extern struct obstack permanent_obstack;
492 /* Generate a SYMBOL_REF for rethrow to use */
493 static rtx
494 create_rethrow_ref (region_num)
495 int region_num;
497 rtx def;
498 char *ptr;
499 char buf[60];
501 push_obstacks_nochange ();
502 end_temporary_allocation ();
504 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", region_num);
505 ptr = ggc_alloc_string (buf, -1);
506 def = gen_rtx_SYMBOL_REF (Pmode, ptr);
507 SYMBOL_REF_NEED_ADJUST (def) = 1;
509 pop_obstacks ();
510 return def;
513 /* Push a label entry onto the given STACK. */
515 void
516 push_label_entry (stack, rlabel, tlabel)
517 struct label_node **stack;
518 rtx rlabel;
519 tree tlabel;
521 struct label_node *newnode
522 = (struct label_node *) xmalloc (sizeof (struct label_node));
524 if (rlabel)
525 newnode->u.rlabel = rlabel;
526 else
527 newnode->u.tlabel = tlabel;
528 newnode->chain = *stack;
529 *stack = newnode;
532 /* Pop a label entry from the given STACK. */
535 pop_label_entry (stack)
536 struct label_node **stack;
538 rtx label;
539 struct label_node *tempnode;
541 if (! *stack)
542 return NULL_RTX;
544 tempnode = *stack;
545 label = tempnode->u.rlabel;
546 *stack = (*stack)->chain;
547 free (tempnode);
549 return label;
552 /* Return the top element of the given STACK. */
554 tree
555 top_label_entry (stack)
556 struct label_node **stack;
558 if (! *stack)
559 return NULL_TREE;
561 return (*stack)->u.tlabel;
564 /* get an exception label. These must be on the permanent obstack */
567 gen_exception_label ()
569 rtx lab;
570 lab = gen_label_rtx ();
571 return lab;
574 /* Push a new eh_node entry onto STACK. */
576 static void
577 push_eh_entry (stack)
578 struct eh_stack *stack;
580 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
581 struct eh_entry *entry = (struct eh_entry *) xmalloc (sizeof (struct eh_entry));
583 rtx rlab = gen_exception_label ();
584 entry->finalization = NULL_TREE;
585 entry->label_used = 0;
586 entry->exception_handler_label = rlab;
587 entry->false_label = NULL_RTX;
588 if (! flag_new_exceptions)
589 entry->outer_context = gen_label_rtx ();
590 else
591 entry->outer_context = create_rethrow_ref (CODE_LABEL_NUMBER (rlab));
592 entry->rethrow_label = entry->outer_context;
594 node->entry = entry;
595 node->chain = stack->top;
596 stack->top = node;
599 /* push an existing entry onto a stack. */
600 static void
601 push_entry (stack, entry)
602 struct eh_stack *stack;
603 struct eh_entry *entry;
605 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
606 node->entry = entry;
607 node->chain = stack->top;
608 stack->top = node;
611 /* Pop an entry from the given STACK. */
613 static struct eh_entry *
614 pop_eh_entry (stack)
615 struct eh_stack *stack;
617 struct eh_node *tempnode;
618 struct eh_entry *tempentry;
620 tempnode = stack->top;
621 tempentry = tempnode->entry;
622 stack->top = stack->top->chain;
623 free (tempnode);
625 return tempentry;
628 /* Enqueue an ENTRY onto the given QUEUE. */
630 static void
631 enqueue_eh_entry (queue, entry)
632 struct eh_queue *queue;
633 struct eh_entry *entry;
635 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
637 node->entry = entry;
638 node->chain = NULL;
640 if (queue->head == NULL)
642 queue->head = node;
644 else
646 queue->tail->chain = node;
648 queue->tail = node;
651 /* Dequeue an entry from the given QUEUE. */
653 static struct eh_entry *
654 dequeue_eh_entry (queue)
655 struct eh_queue *queue;
657 struct eh_node *tempnode;
658 struct eh_entry *tempentry;
660 if (queue->head == NULL)
661 return NULL;
663 tempnode = queue->head;
664 queue->head = queue->head->chain;
666 tempentry = tempnode->entry;
667 free (tempnode);
669 return tempentry;
672 static void
673 receive_exception_label (handler_label)
674 rtx handler_label;
676 emit_label (handler_label);
678 #ifdef HAVE_exception_receiver
679 if (! exceptions_via_longjmp)
680 if (HAVE_exception_receiver)
681 emit_insn (gen_exception_receiver ());
682 #endif
684 #ifdef HAVE_nonlocal_goto_receiver
685 if (! exceptions_via_longjmp)
686 if (HAVE_nonlocal_goto_receiver)
687 emit_insn (gen_nonlocal_goto_receiver ());
688 #endif
692 struct func_eh_entry
694 int range_number; /* EH region number from EH NOTE insn's. */
695 rtx rethrow_label; /* Label for rethrow. */
696 int rethrow_ref; /* Is rethrow referenced? */
697 struct handler_info *handlers;
701 /* table of function eh regions */
702 static struct func_eh_entry *function_eh_regions = NULL;
703 static int num_func_eh_entries = 0;
704 static int current_func_eh_entry = 0;
706 #define SIZE_FUNC_EH(X) (sizeof (struct func_eh_entry) * X)
708 /* Add a new eh_entry for this function, and base it off of the information
709 in the EH_ENTRY parameter. A NULL parameter is invalid.
710 OUTER_CONTEXT is a label which is used for rethrowing. The number
711 returned is an number which uniquely identifies this exception range. */
713 static int
714 new_eh_region_entry (note_eh_region, rethrow)
715 int note_eh_region;
716 rtx rethrow;
718 if (current_func_eh_entry == num_func_eh_entries)
720 if (num_func_eh_entries == 0)
722 function_eh_regions =
723 (struct func_eh_entry *) xmalloc (SIZE_FUNC_EH (50));
724 num_func_eh_entries = 50;
726 else
728 num_func_eh_entries = num_func_eh_entries * 3 / 2;
729 function_eh_regions = (struct func_eh_entry *)
730 xrealloc (function_eh_regions, SIZE_FUNC_EH (num_func_eh_entries));
733 function_eh_regions[current_func_eh_entry].range_number = note_eh_region;
734 if (rethrow == NULL_RTX)
735 function_eh_regions[current_func_eh_entry].rethrow_label =
736 create_rethrow_ref (note_eh_region);
737 else
738 function_eh_regions[current_func_eh_entry].rethrow_label = rethrow;
739 function_eh_regions[current_func_eh_entry].handlers = NULL;
741 return current_func_eh_entry++;
744 /* Add new handler information to an exception range. The first parameter
745 specifies the range number (returned from new_eh_entry()). The second
746 parameter specifies the handler. By default the handler is inserted at
747 the end of the list. A handler list may contain only ONE NULL_TREE
748 typeinfo entry. Regardless where it is positioned, a NULL_TREE entry
749 is always output as the LAST handler in the exception table for a region. */
751 void
752 add_new_handler (region, newhandler)
753 int region;
754 struct handler_info *newhandler;
756 struct handler_info *last;
758 newhandler->next = NULL;
759 last = function_eh_regions[region].handlers;
760 if (last == NULL)
761 function_eh_regions[region].handlers = newhandler;
762 else
764 for ( ; ; last = last->next)
766 if (last->type_info == CATCH_ALL_TYPE)
767 pedwarn ("additional handler after ...");
768 if (last->next == NULL)
769 break;
771 last->next = newhandler;
775 /* Remove a handler label. The handler label is being deleted, so all
776 regions which reference this handler should have it removed from their
777 list of possible handlers. Any region which has the final handler
778 removed can be deleted. */
780 void remove_handler (removing_label)
781 rtx removing_label;
783 struct handler_info *handler, *last;
784 int x;
785 for (x = 0 ; x < current_func_eh_entry; ++x)
787 last = NULL;
788 handler = function_eh_regions[x].handlers;
789 for ( ; handler; last = handler, handler = handler->next)
790 if (handler->handler_label == removing_label)
792 if (last)
794 last->next = handler->next;
795 handler = last;
797 else
798 function_eh_regions[x].handlers = handler->next;
803 /* This function will return a malloc'd pointer to an array of
804 void pointer representing the runtime match values that
805 currently exist in all regions. */
807 int
808 find_all_handler_type_matches (array)
809 void ***array;
811 struct handler_info *handler, *last;
812 int x,y;
813 void *val;
814 void **ptr;
815 int max_ptr;
816 int n_ptr = 0;
818 *array = NULL;
820 if (!doing_eh (0) || ! flag_new_exceptions)
821 return 0;
823 max_ptr = 100;
824 ptr = (void **) xmalloc (max_ptr * sizeof (void *));
826 for (x = 0 ; x < current_func_eh_entry; x++)
828 last = NULL;
829 handler = function_eh_regions[x].handlers;
830 for ( ; handler; last = handler, handler = handler->next)
832 val = handler->type_info;
833 if (val != NULL && val != CATCH_ALL_TYPE)
835 /* See if this match value has already been found. */
836 for (y = 0; y < n_ptr; y++)
837 if (ptr[y] == val)
838 break;
840 /* If we break early, we already found this value. */
841 if (y < n_ptr)
842 continue;
844 /* Do we need to allocate more space? */
845 if (n_ptr >= max_ptr)
847 max_ptr += max_ptr / 2;
848 ptr = (void **) xrealloc (ptr, max_ptr * sizeof (void *));
850 ptr[n_ptr] = val;
851 n_ptr++;
856 if (n_ptr == 0)
858 free (ptr);
859 ptr = NULL;
861 *array = ptr;
862 return n_ptr;
865 /* Create a new handler structure initialized with the handler label and
866 typeinfo fields passed in. */
868 struct handler_info *
869 get_new_handler (handler, typeinfo)
870 rtx handler;
871 void *typeinfo;
873 struct handler_info* ptr;
874 ptr = (struct handler_info *) xmalloc (sizeof (struct handler_info));
875 ptr->handler_label = handler;
876 ptr->handler_number = CODE_LABEL_NUMBER (handler);
877 ptr->type_info = typeinfo;
878 ptr->next = NULL;
880 return ptr;
885 /* Find the index in function_eh_regions associated with a NOTE region. If
886 the region cannot be found, a -1 is returned. This should never happen! */
888 static int
889 find_func_region (insn_region)
890 int insn_region;
892 int x;
893 for (x = 0; x < current_func_eh_entry; x++)
894 if (function_eh_regions[x].range_number == insn_region)
895 return x;
897 return -1;
900 /* Get a pointer to the first handler in an exception region's list. */
902 struct handler_info *
903 get_first_handler (region)
904 int region;
906 return function_eh_regions[find_func_region (region)].handlers;
909 /* Clean out the function_eh_region table and free all memory */
911 static void
912 clear_function_eh_region ()
914 int x;
915 struct handler_info *ptr, *next;
916 for (x = 0; x < current_func_eh_entry; x++)
917 for (ptr = function_eh_regions[x].handlers; ptr != NULL; ptr = next)
919 next = ptr->next;
920 free (ptr);
922 free (function_eh_regions);
923 num_func_eh_entries = 0;
924 current_func_eh_entry = 0;
927 /* Make a duplicate of an exception region by copying all the handlers
928 for an exception region. Return the new handler index. The final
929 parameter is a routine which maps old labels to new ones. */
931 int
932 duplicate_eh_handlers (old_note_eh_region, new_note_eh_region, map)
933 int old_note_eh_region, new_note_eh_region;
934 rtx (*map) PARAMS ((rtx));
936 struct handler_info *ptr, *new_ptr;
937 int new_region, region;
939 region = find_func_region (old_note_eh_region);
940 if (region == -1)
941 fatal ("Cannot duplicate non-existant exception region.");
943 /* duplicate_eh_handlers may have been called during a symbol remap. */
944 new_region = find_func_region (new_note_eh_region);
945 if (new_region != -1)
946 return (new_region);
948 new_region = new_eh_region_entry (new_note_eh_region, NULL_RTX);
950 ptr = function_eh_regions[region].handlers;
952 for ( ; ptr; ptr = ptr->next)
954 new_ptr = get_new_handler (map (ptr->handler_label), ptr->type_info);
955 add_new_handler (new_region, new_ptr);
958 return new_region;
962 /* Given a rethrow symbol, find the EH region number this is for. */
963 int
964 eh_region_from_symbol (sym)
965 rtx sym;
967 int x;
968 if (sym == last_rethrow_symbol)
969 return 1;
970 for (x = 0; x < current_func_eh_entry; x++)
971 if (function_eh_regions[x].rethrow_label == sym)
972 return function_eh_regions[x].range_number;
973 return -1;
977 /* When inlining/unrolling, we have to map the symbols passed to
978 __rethrow as well. This performs the remap. If a symbol isn't foiund,
979 the original one is returned. This is not an efficient routine,
980 so don't call it on everything!! */
981 rtx
982 rethrow_symbol_map (sym, map)
983 rtx sym;
984 rtx (*map) PARAMS ((rtx));
986 int x, y;
987 for (x = 0; x < current_func_eh_entry; x++)
988 if (function_eh_regions[x].rethrow_label == sym)
990 /* We've found the original region, now lets determine which region
991 this now maps to. */
992 rtx l1 = function_eh_regions[x].handlers->handler_label;
993 rtx l2 = map (l1);
994 y = CODE_LABEL_NUMBER (l2); /* This is the new region number */
995 x = find_func_region (y); /* Get the new permanent region */
996 if (x == -1) /* Hmm, Doesn't exist yet */
998 x = duplicate_eh_handlers (CODE_LABEL_NUMBER (l1), y, map);
999 /* Since we're mapping it, it must be used. */
1000 function_eh_regions[x].rethrow_ref = 1;
1002 return function_eh_regions[x].rethrow_label;
1004 return sym;
1007 int
1008 rethrow_used (region)
1009 int region;
1011 if (flag_new_exceptions)
1013 int ret = function_eh_regions[find_func_region (region)].rethrow_ref;
1014 return ret;
1016 return 0;
1020 /* Routine to see if exception handling is turned on.
1021 DO_WARN is non-zero if we want to inform the user that exception
1022 handling is turned off.
1024 This is used to ensure that -fexceptions has been specified if the
1025 compiler tries to use any exception-specific functions. */
1028 doing_eh (do_warn)
1029 int do_warn;
1031 if (! flag_exceptions)
1033 static int warned = 0;
1034 if (! warned && do_warn)
1036 error ("exception handling disabled, use -fexceptions to enable");
1037 warned = 1;
1039 return 0;
1041 return 1;
1044 /* Given a return address in ADDR, determine the address we should use
1045 to find the corresponding EH region. */
1048 eh_outer_context (addr)
1049 rtx addr;
1051 /* First mask out any unwanted bits. */
1052 #ifdef MASK_RETURN_ADDR
1053 expand_and (addr, MASK_RETURN_ADDR, addr);
1054 #endif
1056 /* Then adjust to find the real return address. */
1057 #if defined (RETURN_ADDR_OFFSET)
1058 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
1059 #endif
1061 return addr;
1064 /* Start a new exception region for a region of code that has a
1065 cleanup action and push the HANDLER for the region onto
1066 protect_list. All of the regions created with add_partial_entry
1067 will be ended when end_protect_partials is invoked. */
1069 void
1070 add_partial_entry (handler)
1071 tree handler;
1073 expand_eh_region_start ();
1075 /* Make sure the entry is on the correct obstack. */
1076 push_obstacks_nochange ();
1077 resume_temporary_allocation ();
1079 /* Because this is a cleanup action, we may have to protect the handler
1080 with __terminate. */
1081 handler = protect_with_terminate (handler);
1083 protect_list = tree_cons (NULL_TREE, handler, protect_list);
1084 pop_obstacks ();
1087 /* Emit code to get EH context to current function. */
1089 static rtx
1090 call_get_eh_context ()
1092 static tree fn;
1093 tree expr;
1095 if (fn == NULL_TREE)
1097 tree fntype;
1098 fn = get_identifier ("__get_eh_context");
1099 push_obstacks_nochange ();
1100 end_temporary_allocation ();
1101 fntype = build_pointer_type (build_pointer_type
1102 (build_pointer_type (void_type_node)));
1103 fntype = build_function_type (fntype, NULL_TREE);
1104 fn = build_decl (FUNCTION_DECL, fn, fntype);
1105 DECL_EXTERNAL (fn) = 1;
1106 TREE_PUBLIC (fn) = 1;
1107 DECL_ARTIFICIAL (fn) = 1;
1108 TREE_READONLY (fn) = 1;
1109 make_decl_rtl (fn, NULL_PTR, 1);
1110 assemble_external (fn);
1111 pop_obstacks ();
1113 ggc_add_tree_root (&fn, 1);
1116 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1117 expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1118 expr, NULL_TREE, NULL_TREE);
1119 TREE_SIDE_EFFECTS (expr) = 1;
1121 return copy_to_reg (expand_expr (expr, NULL_RTX, VOIDmode, 0));
1124 /* Get a reference to the EH context.
1125 We will only generate a register for the current function EH context here,
1126 and emit a USE insn to mark that this is a EH context register.
1128 Later, emit_eh_context will emit needed call to __get_eh_context
1129 in libgcc2, and copy the value to the register we have generated. */
1132 get_eh_context ()
1134 if (current_function_ehc == 0)
1136 rtx insn;
1138 current_function_ehc = gen_reg_rtx (Pmode);
1140 insn = gen_rtx_USE (GET_MODE (current_function_ehc),
1141 current_function_ehc);
1142 insn = emit_insn_before (insn, get_first_nonparm_insn ());
1144 REG_NOTES (insn)
1145 = gen_rtx_EXPR_LIST (REG_EH_CONTEXT, current_function_ehc,
1146 REG_NOTES (insn));
1148 return current_function_ehc;
1151 /* Get a reference to the dynamic handler chain. It points to the
1152 pointer to the next element in the dynamic handler chain. It ends
1153 when there are no more elements in the dynamic handler chain, when
1154 the value is &top_elt from libgcc2.c. Immediately after the
1155 pointer, is an area suitable for setjmp/longjmp when
1156 DONT_USE_BUILTIN_SETJMP is defined, and an area suitable for
1157 __builtin_setjmp/__builtin_longjmp when DONT_USE_BUILTIN_SETJMP
1158 isn't defined. */
1161 get_dynamic_handler_chain ()
1163 rtx ehc, dhc, result;
1165 ehc = get_eh_context ();
1167 /* This is the offset of dynamic_handler_chain in the eh_context struct
1168 declared in eh-common.h. If its location is change, change this offset */
1169 dhc = plus_constant (ehc, POINTER_SIZE / BITS_PER_UNIT);
1171 result = copy_to_reg (dhc);
1173 /* We don't want a copy of the dcc, but rather, the single dcc. */
1174 return gen_rtx_MEM (Pmode, result);
1177 /* Get a reference to the dynamic cleanup chain. It points to the
1178 pointer to the next element in the dynamic cleanup chain.
1179 Immediately after the pointer, are two Pmode variables, one for a
1180 pointer to a function that performs the cleanup action, and the
1181 second, the argument to pass to that function. */
1184 get_dynamic_cleanup_chain ()
1186 rtx dhc, dcc, result;
1188 dhc = get_dynamic_handler_chain ();
1189 dcc = plus_constant (dhc, POINTER_SIZE / BITS_PER_UNIT);
1191 result = copy_to_reg (dcc);
1193 /* We don't want a copy of the dcc, but rather, the single dcc. */
1194 return gen_rtx_MEM (Pmode, result);
1197 #ifdef DONT_USE_BUILTIN_SETJMP
1198 /* Generate code to evaluate X and jump to LABEL if the value is nonzero.
1199 LABEL is an rtx of code CODE_LABEL, in this function. */
1201 static void
1202 jumpif_rtx (x, label)
1203 rtx x;
1204 rtx label;
1206 jumpif (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
1208 #endif
1210 /* Start a dynamic cleanup on the EH runtime dynamic cleanup stack.
1211 We just need to create an element for the cleanup list, and push it
1212 into the chain.
1214 A dynamic cleanup is a cleanup action implied by the presence of an
1215 element on the EH runtime dynamic cleanup stack that is to be
1216 performed when an exception is thrown. The cleanup action is
1217 performed by __sjthrow when an exception is thrown. Only certain
1218 actions can be optimized into dynamic cleanup actions. For the
1219 restrictions on what actions can be performed using this routine,
1220 see expand_eh_region_start_tree. */
1222 static void
1223 start_dynamic_cleanup (func, arg)
1224 tree func;
1225 tree arg;
1227 rtx dcc;
1228 rtx new_func, new_arg;
1229 rtx x, buf;
1230 int size;
1232 /* We allocate enough room for a pointer to the function, and
1233 one argument. */
1234 size = 2;
1236 /* XXX, FIXME: The stack space allocated this way is too long lived,
1237 but there is no allocation routine that allocates at the level of
1238 the last binding contour. */
1239 buf = assign_stack_local (BLKmode,
1240 GET_MODE_SIZE (Pmode)*(size+1),
1243 buf = change_address (buf, Pmode, NULL_RTX);
1245 /* Store dcc into the first word of the newly allocated buffer. */
1247 dcc = get_dynamic_cleanup_chain ();
1248 emit_move_insn (buf, dcc);
1250 /* Store func and arg into the cleanup list element. */
1252 new_func = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1253 GET_MODE_SIZE (Pmode)));
1254 new_arg = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1255 GET_MODE_SIZE (Pmode)*2));
1256 x = expand_expr (func, new_func, Pmode, 0);
1257 if (x != new_func)
1258 emit_move_insn (new_func, x);
1260 x = expand_expr (arg, new_arg, Pmode, 0);
1261 if (x != new_arg)
1262 emit_move_insn (new_arg, x);
1264 /* Update the cleanup chain. */
1266 x = force_operand (XEXP (buf, 0), dcc);
1267 if (x != dcc)
1268 emit_move_insn (dcc, x);
1271 /* Emit RTL to start a dynamic handler on the EH runtime dynamic
1272 handler stack. This should only be used by expand_eh_region_start
1273 or expand_eh_region_start_tree. */
1275 static void
1276 start_dynamic_handler ()
1278 rtx dhc, dcc;
1279 rtx x, arg, buf;
1280 int size;
1282 #ifndef DONT_USE_BUILTIN_SETJMP
1283 /* The number of Pmode words for the setjmp buffer, when using the
1284 builtin setjmp/longjmp, see expand_builtin, case BUILT_IN_LONGJMP. */
1285 /* We use 2 words here before calling expand_builtin_setjmp.
1286 expand_builtin_setjmp uses 2 words, and then calls emit_stack_save.
1287 emit_stack_save needs space of size STACK_SAVEAREA_MODE (SAVE_NONLOCAL).
1288 Subtract one, because the assign_stack_local call below adds 1. */
1289 size = (2 + 2 + (GET_MODE_SIZE (STACK_SAVEAREA_MODE (SAVE_NONLOCAL))
1290 / GET_MODE_SIZE (Pmode))
1291 - 1);
1292 #else
1293 #ifdef JMP_BUF_SIZE
1294 size = JMP_BUF_SIZE;
1295 #else
1296 /* Should be large enough for most systems, if it is not,
1297 JMP_BUF_SIZE should be defined with the proper value. It will
1298 also tend to be larger than necessary for most systems, a more
1299 optimal port will define JMP_BUF_SIZE. */
1300 size = FIRST_PSEUDO_REGISTER+2;
1301 #endif
1302 #endif
1303 /* XXX, FIXME: The stack space allocated this way is too long lived,
1304 but there is no allocation routine that allocates at the level of
1305 the last binding contour. */
1306 arg = assign_stack_local (BLKmode,
1307 GET_MODE_SIZE (Pmode)*(size+1),
1310 arg = change_address (arg, Pmode, NULL_RTX);
1312 /* Store dhc into the first word of the newly allocated buffer. */
1314 dhc = get_dynamic_handler_chain ();
1315 dcc = gen_rtx_MEM (Pmode, plus_constant (XEXP (arg, 0),
1316 GET_MODE_SIZE (Pmode)));
1317 emit_move_insn (arg, dhc);
1319 /* Zero out the start of the cleanup chain. */
1320 emit_move_insn (dcc, const0_rtx);
1322 /* The jmpbuf starts two words into the area allocated. */
1323 buf = plus_constant (XEXP (arg, 0), GET_MODE_SIZE (Pmode)*2);
1325 #ifdef DONT_USE_BUILTIN_SETJMP
1326 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, 1, SImode, 1,
1327 buf, Pmode);
1328 /* If we come back here for a catch, transfer control to the handler. */
1329 jumpif_rtx (x, ehstack.top->entry->exception_handler_label);
1330 #else
1332 /* A label to continue execution for the no exception case. */
1333 rtx noex = gen_label_rtx();
1334 x = expand_builtin_setjmp (buf, NULL_RTX, noex,
1335 ehstack.top->entry->exception_handler_label);
1336 emit_label (noex);
1338 #endif
1340 /* We are committed to this, so update the handler chain. */
1342 emit_move_insn (dhc, force_operand (XEXP (arg, 0), NULL_RTX));
1345 /* Start an exception handling region for the given cleanup action.
1346 All instructions emitted after this point are considered to be part
1347 of the region until expand_eh_region_end is invoked. CLEANUP is
1348 the cleanup action to perform. The return value is true if the
1349 exception region was optimized away. If that case,
1350 expand_eh_region_end does not need to be called for this cleanup,
1351 nor should it be.
1353 This routine notices one particular common case in C++ code
1354 generation, and optimizes it so as to not need the exception
1355 region. It works by creating a dynamic cleanup action, instead of
1356 a using an exception region. */
1359 expand_eh_region_start_tree (decl, cleanup)
1360 tree decl;
1361 tree cleanup;
1363 /* This is the old code. */
1364 if (! doing_eh (0))
1365 return 0;
1367 /* The optimization only applies to actions protected with
1368 terminate, and only applies if we are using the setjmp/longjmp
1369 codegen method. */
1370 if (exceptions_via_longjmp
1371 && protect_cleanup_actions_with_terminate)
1373 tree func, arg;
1374 tree args;
1376 /* Ignore any UNSAVE_EXPR. */
1377 if (TREE_CODE (cleanup) == UNSAVE_EXPR)
1378 cleanup = TREE_OPERAND (cleanup, 0);
1380 /* Further, it only applies if the action is a call, if there
1381 are 2 arguments, and if the second argument is 2. */
1383 if (TREE_CODE (cleanup) == CALL_EXPR
1384 && (args = TREE_OPERAND (cleanup, 1))
1385 && (func = TREE_OPERAND (cleanup, 0))
1386 && (arg = TREE_VALUE (args))
1387 && (args = TREE_CHAIN (args))
1389 /* is the second argument 2? */
1390 && TREE_CODE (TREE_VALUE (args)) == INTEGER_CST
1391 && TREE_INT_CST_LOW (TREE_VALUE (args)) == 2
1392 && TREE_INT_CST_HIGH (TREE_VALUE (args)) == 0
1394 /* Make sure there are no other arguments. */
1395 && TREE_CHAIN (args) == NULL_TREE)
1397 /* Arrange for returns and gotos to pop the entry we make on the
1398 dynamic cleanup stack. */
1399 expand_dcc_cleanup (decl);
1400 start_dynamic_cleanup (func, arg);
1401 return 1;
1405 expand_eh_region_start_for_decl (decl);
1406 ehstack.top->entry->finalization = cleanup;
1408 return 0;
1411 /* Just like expand_eh_region_start, except if a cleanup action is
1412 entered on the cleanup chain, the TREE_PURPOSE of the element put
1413 on the chain is DECL. DECL should be the associated VAR_DECL, if
1414 any, otherwise it should be NULL_TREE. */
1416 void
1417 expand_eh_region_start_for_decl (decl)
1418 tree decl;
1420 rtx note;
1422 /* This is the old code. */
1423 if (! doing_eh (0))
1424 return;
1426 /* We need a new block to record the start and end of the
1427 dynamic handler chain. We also want to prevent jumping into
1428 a try block. */
1429 expand_start_bindings (2);
1431 /* But we don't need or want a new temporary level. */
1432 pop_temp_slots ();
1434 /* Mark this block as created by expand_eh_region_start. This
1435 is so that we can pop the block with expand_end_bindings
1436 automatically. */
1437 mark_block_as_eh_region ();
1439 if (exceptions_via_longjmp)
1441 /* Arrange for returns and gotos to pop the entry we make on the
1442 dynamic handler stack. */
1443 expand_dhc_cleanup (decl);
1446 push_eh_entry (&ehstack);
1447 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_BEG);
1448 NOTE_EH_HANDLER (note)
1449 = CODE_LABEL_NUMBER (ehstack.top->entry->exception_handler_label);
1450 if (exceptions_via_longjmp)
1451 start_dynamic_handler ();
1454 /* Start an exception handling region. All instructions emitted after
1455 this point are considered to be part of the region until
1456 expand_eh_region_end is invoked. */
1458 void
1459 expand_eh_region_start ()
1461 expand_eh_region_start_for_decl (NULL_TREE);
1464 /* End an exception handling region. The information about the region
1465 is found on the top of ehstack.
1467 HANDLER is either the cleanup for the exception region, or if we're
1468 marking the end of a try block, HANDLER is integer_zero_node.
1470 HANDLER will be transformed to rtl when expand_leftover_cleanups
1471 is invoked. */
1473 void
1474 expand_eh_region_end (handler)
1475 tree handler;
1477 struct eh_entry *entry;
1478 rtx note;
1479 int ret, r;
1481 if (! doing_eh (0))
1482 return;
1484 entry = pop_eh_entry (&ehstack);
1486 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_END);
1487 ret = NOTE_EH_HANDLER (note)
1488 = CODE_LABEL_NUMBER (entry->exception_handler_label);
1489 if (exceptions_via_longjmp == 0 && ! flag_new_exceptions
1490 /* We share outer_context between regions; only emit it once. */
1491 && INSN_UID (entry->outer_context) == 0)
1493 rtx label;
1495 label = gen_label_rtx ();
1496 emit_jump (label);
1498 /* Emit a label marking the end of this exception region that
1499 is used for rethrowing into the outer context. */
1500 emit_label (entry->outer_context);
1501 expand_internal_throw ();
1503 emit_label (label);
1506 entry->finalization = handler;
1508 /* create region entry in final exception table */
1509 r = new_eh_region_entry (NOTE_EH_HANDLER (note), entry->rethrow_label);
1511 enqueue_eh_entry (&ehqueue, entry);
1513 /* If we have already started ending the bindings, don't recurse. */
1514 if (is_eh_region ())
1516 /* Because we don't need or want a new temporary level and
1517 because we didn't create one in expand_eh_region_start,
1518 create a fake one now to avoid removing one in
1519 expand_end_bindings. */
1520 push_temp_slots ();
1522 mark_block_as_not_eh_region ();
1524 expand_end_bindings (NULL_TREE, 0, 0);
1528 /* End the EH region for a goto fixup. We only need them in the region-based
1529 EH scheme. */
1531 void
1532 expand_fixup_region_start ()
1534 if (! doing_eh (0) || exceptions_via_longjmp)
1535 return;
1537 expand_eh_region_start ();
1540 /* End the EH region for a goto fixup. CLEANUP is the cleanup we just
1541 expanded; to avoid running it twice if it throws, we look through the
1542 ehqueue for a matching region and rethrow from its outer_context. */
1544 void
1545 expand_fixup_region_end (cleanup)
1546 tree cleanup;
1548 struct eh_node *node;
1549 int dont_issue;
1551 if (! doing_eh (0) || exceptions_via_longjmp)
1552 return;
1554 for (node = ehstack.top; node && node->entry->finalization != cleanup; )
1555 node = node->chain;
1556 if (node == 0)
1557 for (node = ehqueue.head; node && node->entry->finalization != cleanup; )
1558 node = node->chain;
1559 if (node == 0)
1560 abort ();
1562 /* If the outer context label has not been issued yet, we don't want
1563 to issue it as a part of this region, unless this is the
1564 correct region for the outer context. If we did, then the label for
1565 the outer context will be WITHIN the begin/end labels,
1566 and we could get an infinte loop when it tried to rethrow, or just
1567 generally incorrect execution following a throw. */
1569 if (flag_new_exceptions)
1570 dont_issue = 0;
1571 else
1572 dont_issue = ((INSN_UID (node->entry->outer_context) == 0)
1573 && (ehstack.top->entry != node->entry));
1575 ehstack.top->entry->outer_context = node->entry->outer_context;
1577 /* Since we are rethrowing to the OUTER region, we know we don't need
1578 a jump around sequence for this region, so we'll pretend the outer
1579 context label has been issued by setting INSN_UID to 1, then clearing
1580 it again afterwards. */
1582 if (dont_issue)
1583 INSN_UID (node->entry->outer_context) = 1;
1585 /* Just rethrow. size_zero_node is just a NOP. */
1586 expand_eh_region_end (size_zero_node);
1588 if (dont_issue)
1589 INSN_UID (node->entry->outer_context) = 0;
1592 /* If we are using the setjmp/longjmp EH codegen method, we emit a
1593 call to __sjthrow.
1595 Otherwise, we emit a call to __throw and note that we threw
1596 something, so we know we need to generate the necessary code for
1597 __throw.
1599 Before invoking throw, the __eh_pc variable must have been set up
1600 to contain the PC being thrown from. This address is used by
1601 __throw to determine which exception region (if any) is
1602 responsible for handling the exception. */
1604 void
1605 emit_throw ()
1607 if (exceptions_via_longjmp)
1609 emit_library_call (sjthrow_libfunc, 0, VOIDmode, 0);
1611 else
1613 #ifdef JUMP_TO_THROW
1614 emit_indirect_jump (throw_libfunc);
1615 #else
1616 emit_library_call (throw_libfunc, 0, VOIDmode, 0);
1617 #endif
1619 emit_barrier ();
1622 /* Throw the current exception. If appropriate, this is done by jumping
1623 to the next handler. */
1625 void
1626 expand_internal_throw ()
1628 emit_throw ();
1631 /* Called from expand_exception_blocks and expand_end_catch_block to
1632 emit any pending handlers/cleanups queued from expand_eh_region_end. */
1634 void
1635 expand_leftover_cleanups ()
1637 struct eh_entry *entry;
1639 while ((entry = dequeue_eh_entry (&ehqueue)) != 0)
1641 rtx prev;
1643 /* A leftover try block. Shouldn't be one here. */
1644 if (entry->finalization == integer_zero_node)
1645 abort ();
1647 /* Output the label for the start of the exception handler. */
1649 receive_exception_label (entry->exception_handler_label);
1651 /* register a handler for this cleanup region */
1652 add_new_handler (
1653 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1654 get_new_handler (entry->exception_handler_label, NULL));
1656 /* And now generate the insns for the handler. */
1657 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1659 prev = get_last_insn ();
1660 if (prev == NULL || GET_CODE (prev) != BARRIER)
1661 /* Emit code to throw to the outer context if we fall off
1662 the end of the handler. */
1663 expand_rethrow (entry->outer_context);
1665 do_pending_stack_adjust ();
1666 free (entry);
1670 /* Called at the start of a block of try statements. */
1671 void
1672 expand_start_try_stmts ()
1674 if (! doing_eh (1))
1675 return;
1677 expand_eh_region_start ();
1680 /* Called to begin a catch clause. The parameter is the object which
1681 will be passed to the runtime type check routine. */
1682 void
1683 start_catch_handler (rtime)
1684 tree rtime;
1686 rtx handler_label;
1687 int insn_region_num;
1688 int eh_region_entry;
1690 if (! doing_eh (1))
1691 return;
1693 handler_label = catchstack.top->entry->exception_handler_label;
1694 insn_region_num = CODE_LABEL_NUMBER (handler_label);
1695 eh_region_entry = find_func_region (insn_region_num);
1697 /* If we've already issued this label, pick a new one */
1698 if (catchstack.top->entry->label_used)
1699 handler_label = gen_exception_label ();
1700 else
1701 catchstack.top->entry->label_used = 1;
1703 receive_exception_label (handler_label);
1705 add_new_handler (eh_region_entry, get_new_handler (handler_label, rtime));
1707 if (flag_new_exceptions && ! exceptions_via_longjmp)
1708 return;
1710 /* Under the old mechanism, as well as setjmp/longjmp, we need to
1711 issue code to compare 'rtime' to the value in eh_info, via the
1712 matching function in eh_info. If its is false, we branch around
1713 the handler we are about to issue. */
1715 if (rtime != NULL_TREE && rtime != CATCH_ALL_TYPE)
1717 rtx call_rtx, rtime_address;
1719 if (catchstack.top->entry->false_label != NULL_RTX)
1721 error ("Never issued previous false_label");
1722 abort ();
1724 catchstack.top->entry->false_label = gen_exception_label ();
1726 rtime_address = expand_expr (rtime, NULL_RTX, Pmode, EXPAND_INITIALIZER);
1727 #ifdef POINTERS_EXTEND_UNSIGNED
1728 rtime_address = convert_memory_address (Pmode, rtime_address);
1729 #endif
1730 rtime_address = force_reg (Pmode, rtime_address);
1732 /* Now issue the call, and branch around handler if needed */
1733 call_rtx = emit_library_call_value (eh_rtime_match_libfunc, NULL_RTX,
1734 0, SImode, 1, rtime_address, Pmode);
1736 /* Did the function return true? */
1737 emit_cmp_and_jump_insns (call_rtx, const0_rtx, EQ, NULL_RTX,
1738 GET_MODE (call_rtx), 0, 0,
1739 catchstack.top->entry->false_label);
1743 /* Called to end a catch clause. If we aren't using the new exception
1744 model tabel mechanism, we need to issue the branch-around label
1745 for the end of the catch block. */
1747 void
1748 end_catch_handler ()
1750 if (! doing_eh (1))
1751 return;
1753 if (flag_new_exceptions && ! exceptions_via_longjmp)
1755 emit_barrier ();
1756 return;
1759 /* A NULL label implies the catch clause was a catch all or cleanup */
1760 if (catchstack.top->entry->false_label == NULL_RTX)
1761 return;
1763 emit_label (catchstack.top->entry->false_label);
1764 catchstack.top->entry->false_label = NULL_RTX;
1767 /* Generate RTL for the start of a group of catch clauses.
1769 It is responsible for starting a new instruction sequence for the
1770 instructions in the catch block, and expanding the handlers for the
1771 internally-generated exception regions nested within the try block
1772 corresponding to this catch block. */
1774 void
1775 expand_start_all_catch ()
1777 struct eh_entry *entry;
1778 tree label;
1779 rtx outer_context;
1781 if (! doing_eh (1))
1782 return;
1784 outer_context = ehstack.top->entry->outer_context;
1786 /* End the try block. */
1787 expand_eh_region_end (integer_zero_node);
1789 emit_line_note (input_filename, lineno);
1790 label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
1792 /* The label for the exception handling block that we will save.
1793 This is Lresume in the documentation. */
1794 expand_label (label);
1796 /* Push the label that points to where normal flow is resumed onto
1797 the top of the label stack. */
1798 push_label_entry (&caught_return_label_stack, NULL_RTX, label);
1800 /* Start a new sequence for all the catch blocks. We will add this
1801 to the global sequence catch_clauses when we have completed all
1802 the handlers in this handler-seq. */
1803 start_sequence ();
1805 entry = dequeue_eh_entry (&ehqueue);
1806 for ( ; entry->finalization != integer_zero_node;
1807 entry = dequeue_eh_entry (&ehqueue))
1809 rtx prev;
1811 /* Emit the label for the cleanup handler for this region, and
1812 expand the code for the handler.
1814 Note that a catch region is handled as a side-effect here;
1815 for a try block, entry->finalization will contain
1816 integer_zero_node, so no code will be generated in the
1817 expand_expr call below. But, the label for the handler will
1818 still be emitted, so any code emitted after this point will
1819 end up being the handler. */
1821 receive_exception_label (entry->exception_handler_label);
1823 /* register a handler for this cleanup region */
1824 add_new_handler (
1825 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1826 get_new_handler (entry->exception_handler_label, NULL));
1828 /* And now generate the insns for the cleanup handler. */
1829 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1831 prev = get_last_insn ();
1832 if (prev == NULL || GET_CODE (prev) != BARRIER)
1833 /* Code to throw out to outer context when we fall off end
1834 of the handler. We can't do this here for catch blocks,
1835 so it's done in expand_end_all_catch instead. */
1836 expand_rethrow (entry->outer_context);
1838 do_pending_stack_adjust ();
1839 free (entry);
1842 /* At this point, all the cleanups are done, and the ehqueue now has
1843 the current exception region at its head. We dequeue it, and put it
1844 on the catch stack. */
1846 push_entry (&catchstack, entry);
1848 /* If we are not doing setjmp/longjmp EH, because we are reordered
1849 out of line, we arrange to rethrow in the outer context. We need to
1850 do this because we are not physically within the region, if any, that
1851 logically contains this catch block. */
1852 if (! exceptions_via_longjmp)
1854 expand_eh_region_start ();
1855 ehstack.top->entry->outer_context = outer_context;
1860 /* Finish up the catch block. At this point all the insns for the
1861 catch clauses have already been generated, so we only have to add
1862 them to the catch_clauses list. We also want to make sure that if
1863 we fall off the end of the catch clauses that we rethrow to the
1864 outer EH region. */
1866 void
1867 expand_end_all_catch ()
1869 rtx new_catch_clause;
1870 struct eh_entry *entry;
1872 if (! doing_eh (1))
1873 return;
1875 /* Dequeue the current catch clause region. */
1876 entry = pop_eh_entry (&catchstack);
1877 free (entry);
1879 if (! exceptions_via_longjmp)
1881 rtx outer_context = ehstack.top->entry->outer_context;
1883 /* Finish the rethrow region. size_zero_node is just a NOP. */
1884 expand_eh_region_end (size_zero_node);
1885 /* New exceptions handling models will never have a fall through
1886 of a catch clause */
1887 if (!flag_new_exceptions)
1888 expand_rethrow (outer_context);
1890 else
1891 expand_rethrow (NULL_RTX);
1893 /* Code to throw out to outer context, if we fall off end of catch
1894 handlers. This is rethrow (Lresume, same id, same obj) in the
1895 documentation. We use Lresume because we know that it will throw
1896 to the correct context.
1898 In other words, if the catch handler doesn't exit or return, we
1899 do a "throw" (using the address of Lresume as the point being
1900 thrown from) so that the outer EH region can then try to process
1901 the exception. */
1903 /* Now we have the complete catch sequence. */
1904 new_catch_clause = get_insns ();
1905 end_sequence ();
1907 /* This level of catch blocks is done, so set up the successful
1908 catch jump label for the next layer of catch blocks. */
1909 pop_label_entry (&caught_return_label_stack);
1910 pop_label_entry (&outer_context_label_stack);
1912 /* Add the new sequence of catches to the main one for this function. */
1913 push_to_sequence (catch_clauses);
1914 emit_insns (new_catch_clause);
1915 catch_clauses = get_insns ();
1916 end_sequence ();
1918 /* Here we fall through into the continuation code. */
1921 /* Rethrow from the outer context LABEL. */
1923 static void
1924 expand_rethrow (label)
1925 rtx label;
1927 if (exceptions_via_longjmp)
1928 emit_throw ();
1929 else
1930 if (flag_new_exceptions)
1932 rtx insn;
1933 int region;
1934 if (label == NULL_RTX)
1935 label = last_rethrow_symbol;
1936 emit_library_call (rethrow_libfunc, 0, VOIDmode, 1, label, Pmode);
1937 region = find_func_region (eh_region_from_symbol (label));
1938 function_eh_regions[region].rethrow_ref = 1;
1940 /* Search backwards for the actual call insn. */
1941 insn = get_last_insn ();
1942 while (GET_CODE (insn) != CALL_INSN)
1943 insn = PREV_INSN (insn);
1944 delete_insns_since (insn);
1946 /* Mark the label/symbol on the call. */
1947 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_RETHROW, label,
1948 REG_NOTES (insn));
1949 emit_barrier ();
1951 else
1952 emit_jump (label);
1955 /* End all the pending exception regions on protect_list. The handlers
1956 will be emitted when expand_leftover_cleanups is invoked. */
1958 void
1959 end_protect_partials ()
1961 while (protect_list)
1963 expand_eh_region_end (TREE_VALUE (protect_list));
1964 protect_list = TREE_CHAIN (protect_list);
1968 /* Arrange for __terminate to be called if there is an unhandled throw
1969 from within E. */
1971 tree
1972 protect_with_terminate (e)
1973 tree e;
1975 /* We only need to do this when using setjmp/longjmp EH and the
1976 language requires it, as otherwise we protect all of the handlers
1977 at once, if we need to. */
1978 if (exceptions_via_longjmp && protect_cleanup_actions_with_terminate)
1980 tree handler, result;
1982 /* All cleanups must be on the function_obstack. */
1983 push_obstacks_nochange ();
1984 resume_temporary_allocation ();
1986 handler = make_node (RTL_EXPR);
1987 TREE_TYPE (handler) = void_type_node;
1988 RTL_EXPR_RTL (handler) = const0_rtx;
1989 TREE_SIDE_EFFECTS (handler) = 1;
1990 start_sequence_for_rtl_expr (handler);
1992 emit_library_call (terminate_libfunc, 0, VOIDmode, 0);
1993 emit_barrier ();
1995 RTL_EXPR_SEQUENCE (handler) = get_insns ();
1996 end_sequence ();
1998 result = build (TRY_CATCH_EXPR, TREE_TYPE (e), e, handler);
1999 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2000 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2001 TREE_READONLY (result) = TREE_READONLY (e);
2003 pop_obstacks ();
2005 e = result;
2008 return e;
2011 /* The exception table that we build that is used for looking up and
2012 dispatching exceptions, the current number of entries, and its
2013 maximum size before we have to extend it.
2015 The number in eh_table is the code label number of the exception
2016 handler for the region. This is added by add_eh_table_entry and
2017 used by output_exception_table_entry. */
2019 static int *eh_table = NULL;
2020 static int eh_table_size = 0;
2021 static int eh_table_max_size = 0;
2023 /* Note the need for an exception table entry for region N. If we
2024 don't need to output an explicit exception table, avoid all of the
2025 extra work.
2027 Called from final_scan_insn when a NOTE_INSN_EH_REGION_BEG is seen.
2028 (Or NOTE_INSN_EH_REGION_END sometimes)
2029 N is the NOTE_EH_HANDLER of the note, which comes from the code
2030 label number of the exception handler for the region. */
2032 void
2033 add_eh_table_entry (n)
2034 int n;
2036 #ifndef OMIT_EH_TABLE
2037 if (eh_table_size >= eh_table_max_size)
2039 if (eh_table)
2041 eh_table_max_size += eh_table_max_size>>1;
2043 if (eh_table_max_size < 0)
2044 abort ();
2046 eh_table = (int *) xrealloc (eh_table,
2047 eh_table_max_size * sizeof (int));
2049 else
2051 eh_table_max_size = 252;
2052 eh_table = (int *) xmalloc (eh_table_max_size * sizeof (int));
2055 eh_table[eh_table_size++] = n;
2056 #endif
2059 /* Return a non-zero value if we need to output an exception table.
2061 On some platforms, we don't have to output a table explicitly.
2062 This routine doesn't mean we don't have one. */
2065 exception_table_p ()
2067 if (eh_table)
2068 return 1;
2070 return 0;
2073 /* Output the entry of the exception table corresponding to the
2074 exception region numbered N to file FILE.
2076 N is the code label number corresponding to the handler of the
2077 region. */
2079 static void
2080 output_exception_table_entry (file, n)
2081 FILE *file;
2082 int n;
2084 char buf[256];
2085 rtx sym;
2086 struct handler_info *handler = get_first_handler (n);
2087 int index = find_func_region (n);
2088 rtx rethrow;
2090 /* form and emit the rethrow label, if needed */
2091 rethrow = function_eh_regions[index].rethrow_label;
2092 if (rethrow != NULL_RTX && !flag_new_exceptions)
2093 rethrow = NULL_RTX;
2094 if (rethrow != NULL_RTX && handler == NULL)
2095 if (! function_eh_regions[index].rethrow_ref)
2096 rethrow = NULL_RTX;
2099 for ( ; handler != NULL || rethrow != NULL_RTX; handler = handler->next)
2101 /* rethrow label should indicate the LAST entry for a region */
2102 if (rethrow != NULL_RTX && (handler == NULL || handler->next == NULL))
2104 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", n);
2105 assemble_label(buf);
2106 rethrow = NULL_RTX;
2109 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHB", n);
2110 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2111 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2113 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHE", n);
2114 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2115 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2117 if (handler == NULL)
2118 assemble_integer (GEN_INT (0), POINTER_SIZE / BITS_PER_UNIT, 1);
2119 else
2121 ASM_GENERATE_INTERNAL_LABEL (buf, "L", handler->handler_number);
2122 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2123 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2126 if (flag_new_exceptions)
2128 if (handler == NULL || handler->type_info == NULL)
2129 assemble_integer (const0_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2130 else
2131 if (handler->type_info == CATCH_ALL_TYPE)
2132 assemble_integer (GEN_INT (CATCH_ALL_TYPE),
2133 POINTER_SIZE / BITS_PER_UNIT, 1);
2134 else
2135 output_constant ((tree)(handler->type_info),
2136 POINTER_SIZE / BITS_PER_UNIT);
2138 putc ('\n', file); /* blank line */
2139 /* We only output the first label under the old scheme */
2140 if (! flag_new_exceptions || handler == NULL)
2141 break;
2145 /* Output the exception table if we have and need one. */
2147 static short language_code = 0;
2148 static short version_code = 0;
2150 /* This routine will set the language code for exceptions. */
2151 void
2152 set_exception_lang_code (code)
2153 int code;
2155 language_code = code;
2158 /* This routine will set the language version code for exceptions. */
2159 void
2160 set_exception_version_code (code)
2161 int code;
2163 version_code = code;
2167 void
2168 output_exception_table ()
2170 int i;
2171 char buf[256];
2172 extern FILE *asm_out_file;
2174 if (! doing_eh (0) || ! eh_table)
2175 return;
2177 exception_section ();
2179 /* Beginning marker for table. */
2180 assemble_align (GET_MODE_ALIGNMENT (ptr_mode));
2181 assemble_label ("__EXCEPTION_TABLE__");
2183 if (flag_new_exceptions)
2185 assemble_integer (GEN_INT (NEW_EH_RUNTIME),
2186 POINTER_SIZE / BITS_PER_UNIT, 1);
2187 assemble_integer (GEN_INT (language_code), 2 , 1);
2188 assemble_integer (GEN_INT (version_code), 2 , 1);
2190 /* Add enough padding to make sure table aligns on a pointer boundry. */
2191 i = GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT - 4;
2192 for ( ; i < 0; i = i + GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT)
2194 if (i != 0)
2195 assemble_integer (const0_rtx, i , 1);
2197 /* Generate the label for offset calculations on rethrows */
2198 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", 0);
2199 assemble_label(buf);
2202 for (i = 0; i < eh_table_size; ++i)
2203 output_exception_table_entry (asm_out_file, eh_table[i]);
2205 free (eh_table);
2206 clear_function_eh_region ();
2208 /* Ending marker for table. */
2209 /* Generate the label for end of table. */
2210 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", CODE_LABEL_NUMBER (final_rethrow));
2211 assemble_label(buf);
2212 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2214 /* for binary compatability, the old __throw checked the second
2215 position for a -1, so we should output at least 2 -1's */
2216 if (! flag_new_exceptions)
2217 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2219 putc ('\n', asm_out_file); /* blank line */
2222 /* Emit code to get EH context.
2224 We have to scan thru the code to find possible EH context registers.
2225 Inlined functions may use it too, and thus we'll have to be able
2226 to change them too.
2228 This is done only if using exceptions_via_longjmp. */
2230 void
2231 emit_eh_context ()
2233 rtx insn;
2234 rtx ehc = 0;
2236 if (! doing_eh (0))
2237 return;
2239 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2240 if (GET_CODE (insn) == INSN
2241 && GET_CODE (PATTERN (insn)) == USE)
2243 rtx reg = find_reg_note (insn, REG_EH_CONTEXT, 0);
2244 if (reg)
2246 rtx insns;
2248 start_sequence ();
2250 /* If this is the first use insn, emit the call here. This
2251 will always be at the top of our function, because if
2252 expand_inline_function notices a REG_EH_CONTEXT note, it
2253 adds a use insn to this function as well. */
2254 if (ehc == 0)
2255 ehc = call_get_eh_context ();
2257 emit_move_insn (XEXP (reg, 0), ehc);
2258 insns = get_insns ();
2259 end_sequence ();
2261 emit_insns_before (insns, insn);
2263 /* At -O0, we must make the context register stay alive so
2264 that the stupid.c register allocator doesn't get confused. */
2265 if (obey_regdecls != 0)
2267 insns = gen_rtx_USE (GET_MODE (XEXP (reg,0)), XEXP (reg,0));
2268 emit_insn_before (insns, get_last_insn ());
2274 /* Scan the current insns and build a list of handler labels. The
2275 resulting list is placed in the global variable exception_handler_labels.
2277 It is called after the last exception handling region is added to
2278 the current function (when the rtl is almost all built for the
2279 current function) and before the jump optimization pass. */
2281 void
2282 find_exception_handler_labels ()
2284 rtx insn;
2286 exception_handler_labels = NULL_RTX;
2288 /* If we aren't doing exception handling, there isn't much to check. */
2289 if (! doing_eh (0))
2290 return;
2292 /* For each start of a region, add its label to the list. */
2294 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2296 struct handler_info* ptr;
2297 if (GET_CODE (insn) == NOTE
2298 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2300 ptr = get_first_handler (NOTE_EH_HANDLER (insn));
2301 for ( ; ptr; ptr = ptr->next)
2303 /* make sure label isn't in the list already */
2304 rtx x;
2305 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2306 if (XEXP (x, 0) == ptr->handler_label)
2307 break;
2308 if (! x)
2309 exception_handler_labels = gen_rtx_EXPR_LIST (VOIDmode,
2310 ptr->handler_label, exception_handler_labels);
2316 /* Return a value of 1 if the parameter label number is an exception handler
2317 label. Return 0 otherwise. */
2320 is_exception_handler_label (lab)
2321 int lab;
2323 rtx x;
2324 for (x = exception_handler_labels ; x ; x = XEXP (x, 1))
2325 if (lab == CODE_LABEL_NUMBER (XEXP (x, 0)))
2326 return 1;
2327 return 0;
2330 /* Perform sanity checking on the exception_handler_labels list.
2332 Can be called after find_exception_handler_labels is called to
2333 build the list of exception handlers for the current function and
2334 before we finish processing the current function. */
2336 void
2337 check_exception_handler_labels ()
2339 rtx insn, insn2;
2341 /* If we aren't doing exception handling, there isn't much to check. */
2342 if (! doing_eh (0))
2343 return;
2345 /* Make sure there is no more than 1 copy of a label */
2346 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
2348 int count = 0;
2349 for (insn2 = exception_handler_labels; insn2; insn2 = XEXP (insn2, 1))
2350 if (XEXP (insn, 0) == XEXP (insn2, 0))
2351 count++;
2352 if (count != 1)
2353 warning ("Counted %d copies of EH region %d in list.\n", count,
2354 CODE_LABEL_NUMBER (insn));
2359 /* Mark the children of NODE for GC. */
2361 static void
2362 mark_eh_node (node)
2363 struct eh_node *node;
2365 while (node)
2367 if (node->entry)
2369 ggc_mark_rtx (node->entry->outer_context);
2370 ggc_mark_rtx (node->entry->exception_handler_label);
2371 ggc_mark_tree (node->entry->finalization);
2372 ggc_mark_rtx (node->entry->false_label);
2373 ggc_mark_rtx (node->entry->rethrow_label);
2375 node = node ->chain;
2379 /* Mark S for GC. */
2381 static void
2382 mark_eh_stack (s)
2383 struct eh_stack *s;
2385 if (s)
2386 mark_eh_node (s->top);
2389 /* Mark Q for GC. */
2391 static void
2392 mark_eh_queue (q)
2393 struct eh_queue *q;
2395 if (q)
2396 mark_eh_node (q->head);
2399 /* Mark NODE for GC. A label_node contains a union containing either
2400 a tree or an rtx. This label_node will contain a tree. */
2402 static void
2403 mark_tree_label_node (node)
2404 struct label_node *node;
2406 while (node)
2408 ggc_mark_tree (node->u.tlabel);
2409 node = node->chain;
2413 /* Mark EH for GC. */
2415 void
2416 mark_eh_status (eh)
2417 struct eh_status *eh;
2419 if (eh == 0)
2420 return;
2422 mark_eh_stack (&eh->x_ehstack);
2423 mark_eh_stack (&eh->x_catchstack);
2424 mark_eh_queue (&eh->x_ehqueue);
2425 ggc_mark_rtx (eh->x_catch_clauses);
2427 lang_mark_false_label_stack (eh->x_false_label_stack);
2428 mark_tree_label_node (eh->x_caught_return_label_stack);
2430 ggc_mark_tree (eh->x_protect_list);
2431 ggc_mark_rtx (eh->ehc);
2432 ggc_mark_rtx (eh->x_eh_return_stub_label);
2435 /* Mark ARG (which is really a struct func_eh_entry**) for GC. */
2437 static void
2438 mark_func_eh_entry (arg)
2439 void *arg;
2441 struct func_eh_entry *fee;
2442 struct handler_info *h;
2443 int i;
2445 fee = *((struct func_eh_entry **) arg);
2447 for (i = 0; i < current_func_eh_entry; ++i)
2449 ggc_mark_rtx (fee->rethrow_label);
2450 for (h = fee->handlers; h; h = h->next)
2452 ggc_mark_rtx (h->handler_label);
2453 if (h->type_info != CATCH_ALL_TYPE)
2454 ggc_mark_tree ((tree) h->type_info);
2457 /* Skip to the next entry in the array. */
2458 ++fee;
2462 /* This group of functions initializes the exception handling data
2463 structures at the start of the compilation, initializes the data
2464 structures at the start of a function, and saves and restores the
2465 exception handling data structures for the start/end of a nested
2466 function. */
2468 /* Toplevel initialization for EH things. */
2470 void
2471 init_eh ()
2473 first_rethrow_symbol = create_rethrow_ref (0);
2474 final_rethrow = gen_exception_label ();
2475 last_rethrow_symbol = create_rethrow_ref (CODE_LABEL_NUMBER (final_rethrow));
2477 ggc_add_rtx_root (&exception_handler_labels, 1);
2478 ggc_add_rtx_root (&eh_return_context, 1);
2479 ggc_add_rtx_root (&eh_return_stack_adjust, 1);
2480 ggc_add_rtx_root (&eh_return_handler, 1);
2481 ggc_add_rtx_root (&first_rethrow_symbol, 1);
2482 ggc_add_rtx_root (&final_rethrow, 1);
2483 ggc_add_rtx_root (&last_rethrow_symbol, 1);
2484 ggc_add_root (&function_eh_regions, 1, sizeof (function_eh_regions),
2485 mark_func_eh_entry);
2488 /* Initialize the per-function EH information. */
2490 void
2491 init_eh_for_function ()
2493 current_function->eh
2494 = (struct eh_status *) xmalloc (sizeof (struct eh_status));
2496 ehstack.top = 0;
2497 catchstack.top = 0;
2498 ehqueue.head = ehqueue.tail = 0;
2499 catch_clauses = NULL_RTX;
2500 false_label_stack = 0;
2501 caught_return_label_stack = 0;
2502 protect_list = NULL_TREE;
2503 current_function_ehc = NULL_RTX;
2504 eh_return_context = NULL_RTX;
2505 eh_return_stack_adjust = NULL_RTX;
2506 eh_return_handler = NULL_RTX;
2507 eh_return_stub_label = NULL_RTX;
2510 void
2511 free_eh_status (f)
2512 struct function *f;
2514 free (f->eh);
2515 f->eh = NULL;
2518 /* This section is for the exception handling specific optimization
2519 pass. First are the internal routines, and then the main
2520 optimization pass. */
2522 /* Determine if the given INSN can throw an exception. */
2524 static int
2525 can_throw (insn)
2526 rtx insn;
2528 /* Calls can always potentially throw exceptions, unless they have
2529 a REG_EH_REGION note with a value of 0 or less. */
2530 if (GET_CODE (insn) == CALL_INSN)
2532 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2533 if (!note || XINT (XEXP (note, 0), 0) > 0)
2534 return 1;
2537 if (asynchronous_exceptions)
2539 /* If we wanted asynchronous exceptions, then everything but NOTEs
2540 and CODE_LABELs could throw. */
2541 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != CODE_LABEL)
2542 return 1;
2545 return 0;
2548 /* Scan a exception region looking for the matching end and then
2549 remove it if possible. INSN is the start of the region, N is the
2550 region number, and DELETE_OUTER is to note if anything in this
2551 region can throw.
2553 Regions are removed if they cannot possibly catch an exception.
2554 This is determined by invoking can_throw on each insn within the
2555 region; if can_throw returns true for any of the instructions, the
2556 region can catch an exception, since there is an insn within the
2557 region that is capable of throwing an exception.
2559 Returns the NOTE_INSN_EH_REGION_END corresponding to this region, or
2560 calls abort if it can't find one.
2562 Can abort if INSN is not a NOTE_INSN_EH_REGION_BEGIN, or if N doesn't
2563 correspond to the region number, or if DELETE_OUTER is NULL. */
2565 static rtx
2566 scan_region (insn, n, delete_outer)
2567 rtx insn;
2568 int n;
2569 int *delete_outer;
2571 rtx start = insn;
2573 /* Assume we can delete the region. */
2574 int delete = 1;
2576 /* Can't delete something which is rethrown to. */
2577 if (rethrow_used (n))
2578 delete = 0;
2580 if (insn == NULL_RTX
2581 || GET_CODE (insn) != NOTE
2582 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
2583 || NOTE_EH_HANDLER (insn) != n
2584 || delete_outer == NULL)
2585 abort ();
2587 insn = NEXT_INSN (insn);
2589 /* Look for the matching end. */
2590 while (! (GET_CODE (insn) == NOTE
2591 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2593 /* If anything can throw, we can't remove the region. */
2594 if (delete && can_throw (insn))
2596 delete = 0;
2599 /* Watch out for and handle nested regions. */
2600 if (GET_CODE (insn) == NOTE
2601 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2603 insn = scan_region (insn, NOTE_EH_HANDLER (insn), &delete);
2606 insn = NEXT_INSN (insn);
2609 /* The _BEG/_END NOTEs must match and nest. */
2610 if (NOTE_EH_HANDLER (insn) != n)
2611 abort ();
2613 /* If anything in this exception region can throw, we can throw. */
2614 if (! delete)
2615 *delete_outer = 0;
2616 else
2618 /* Delete the start and end of the region. */
2619 delete_insn (start);
2620 delete_insn (insn);
2622 /* We no longer removed labels here, since flow will now remove any
2623 handler which cannot be called any more. */
2625 #if 0
2626 /* Only do this part if we have built the exception handler
2627 labels. */
2628 if (exception_handler_labels)
2630 rtx x, *prev = &exception_handler_labels;
2632 /* Find it in the list of handlers. */
2633 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2635 rtx label = XEXP (x, 0);
2636 if (CODE_LABEL_NUMBER (label) == n)
2638 /* If we are the last reference to the handler,
2639 delete it. */
2640 if (--LABEL_NUSES (label) == 0)
2641 delete_insn (label);
2643 if (optimize)
2645 /* Remove it from the list of exception handler
2646 labels, if we are optimizing. If we are not, then
2647 leave it in the list, as we are not really going to
2648 remove the region. */
2649 *prev = XEXP (x, 1);
2650 XEXP (x, 1) = 0;
2651 XEXP (x, 0) = 0;
2654 break;
2656 prev = &XEXP (x, 1);
2659 #endif
2661 return insn;
2664 /* Perform various interesting optimizations for exception handling
2665 code.
2667 We look for empty exception regions and make them go (away). The
2668 jump optimization code will remove the handler if nothing else uses
2669 it. */
2671 void
2672 exception_optimize ()
2674 rtx insn;
2675 int n;
2677 /* Remove empty regions. */
2678 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2680 if (GET_CODE (insn) == NOTE
2681 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2683 /* Since scan_region will return the NOTE_INSN_EH_REGION_END
2684 insn, we will indirectly skip through all the insns
2685 inbetween. We are also guaranteed that the value of insn
2686 returned will be valid, as otherwise scan_region won't
2687 return. */
2688 insn = scan_region (insn, NOTE_EH_HANDLER (insn), &n);
2693 /* This function determines whether any of the exception regions in the
2694 current function are targets of a rethrow or not, and set the
2695 reference flag according. */
2696 void
2697 update_rethrow_references ()
2699 rtx insn;
2700 int x, region;
2701 int *saw_region, *saw_rethrow;
2703 if (!flag_new_exceptions)
2704 return;
2706 saw_region = (int *) alloca (current_func_eh_entry * sizeof (int));
2707 saw_rethrow = (int *) alloca (current_func_eh_entry * sizeof (int));
2708 bzero ((char *) saw_region, (current_func_eh_entry * sizeof (int)));
2709 bzero ((char *) saw_rethrow, (current_func_eh_entry * sizeof (int)));
2711 /* Determine what regions exist, and whether there are any rethrows
2712 to those regions or not. */
2713 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2714 if (GET_CODE (insn) == CALL_INSN)
2716 rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX);
2717 if (note)
2719 region = eh_region_from_symbol (XEXP (note, 0));
2720 region = find_func_region (region);
2721 saw_rethrow[region] = 1;
2724 else
2725 if (GET_CODE (insn) == NOTE)
2727 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2729 region = find_func_region (NOTE_EH_HANDLER (insn));
2730 saw_region[region] = 1;
2734 /* For any regions we did see, set the referenced flag. */
2735 for (x = 0; x < current_func_eh_entry; x++)
2736 if (saw_region[x])
2737 function_eh_regions[x].rethrow_ref = saw_rethrow[x];
2740 /* Various hooks for the DWARF 2 __throw routine. */
2742 /* Do any necessary initialization to access arbitrary stack frames.
2743 On the SPARC, this means flushing the register windows. */
2745 void
2746 expand_builtin_unwind_init ()
2748 /* Set this so all the registers get saved in our frame; we need to be
2749 able to copy the saved values for any registers from frames we unwind. */
2750 current_function_has_nonlocal_label = 1;
2752 #ifdef SETUP_FRAME_ADDRESSES
2753 SETUP_FRAME_ADDRESSES ();
2754 #endif
2757 /* Given a value extracted from the return address register or stack slot,
2758 return the actual address encoded in that value. */
2761 expand_builtin_extract_return_addr (addr_tree)
2762 tree addr_tree;
2764 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2765 return eh_outer_context (addr);
2768 /* Given an actual address in addr_tree, do any necessary encoding
2769 and return the value to be stored in the return address register or
2770 stack slot so the epilogue will return to that address. */
2773 expand_builtin_frob_return_addr (addr_tree)
2774 tree addr_tree;
2776 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2777 #ifdef RETURN_ADDR_OFFSET
2778 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2779 #endif
2780 return addr;
2783 /* Choose three registers for communication between the main body of
2784 __throw and the epilogue (or eh stub) and the exception handler.
2785 We must do this with hard registers because the epilogue itself
2786 will be generated after reload, at which point we may not reference
2787 pseudos at all.
2789 The first passes the exception context to the handler. For this
2790 we use the return value register for a void*.
2792 The second holds the stack pointer value to be restored. For
2793 this we use the static chain register if it exists and is different
2794 from the previous, otherwise some arbitrary call-clobbered register.
2796 The third holds the address of the handler itself. Here we use
2797 some arbitrary call-clobbered register. */
2799 static void
2800 eh_regs (pcontext, psp, pra, outgoing)
2801 rtx *pcontext, *psp, *pra;
2802 int outgoing;
2804 rtx rcontext, rsp, rra;
2805 int i;
2807 #ifdef FUNCTION_OUTGOING_VALUE
2808 if (outgoing)
2809 rcontext = FUNCTION_OUTGOING_VALUE (build_pointer_type (void_type_node),
2810 current_function_decl);
2811 else
2812 #endif
2813 rcontext = FUNCTION_VALUE (build_pointer_type (void_type_node),
2814 current_function_decl);
2816 #ifdef STATIC_CHAIN_REGNUM
2817 if (outgoing)
2818 rsp = static_chain_incoming_rtx;
2819 else
2820 rsp = static_chain_rtx;
2821 if (REGNO (rsp) == REGNO (rcontext))
2822 #endif /* STATIC_CHAIN_REGNUM */
2823 rsp = NULL_RTX;
2825 if (rsp == NULL_RTX)
2827 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2828 if (call_used_regs[i] && ! fixed_regs[i] && i != REGNO (rcontext))
2829 break;
2830 if (i == FIRST_PSEUDO_REGISTER)
2831 abort();
2833 rsp = gen_rtx_REG (Pmode, i);
2836 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2837 if (call_used_regs[i] && ! fixed_regs[i]
2838 && i != REGNO (rcontext) && i != REGNO (rsp))
2839 break;
2840 if (i == FIRST_PSEUDO_REGISTER)
2841 abort();
2843 rra = gen_rtx_REG (Pmode, i);
2845 *pcontext = rcontext;
2846 *psp = rsp;
2847 *pra = rra;
2850 /* Retrieve the register which contains the pointer to the eh_context
2851 structure set the __throw. */
2853 #if 0
2854 rtx
2855 get_reg_for_handler ()
2857 rtx reg1;
2858 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
2859 current_function_decl);
2860 return reg1;
2862 #endif
2864 /* Set up the epilogue with the magic bits we'll need to return to the
2865 exception handler. */
2867 void
2868 expand_builtin_eh_return (context, stack, handler)
2869 tree context, stack, handler;
2871 if (eh_return_context)
2872 error("Duplicate call to __builtin_eh_return");
2874 eh_return_context
2875 = copy_to_reg (expand_expr (context, NULL_RTX, VOIDmode, 0));
2876 eh_return_stack_adjust
2877 = copy_to_reg (expand_expr (stack, NULL_RTX, VOIDmode, 0));
2878 eh_return_handler
2879 = copy_to_reg (expand_expr (handler, NULL_RTX, VOIDmode, 0));
2882 void
2883 expand_eh_return ()
2885 rtx reg1, reg2, reg3;
2886 rtx stub_start, after_stub;
2887 rtx ra, tmp;
2889 if (!eh_return_context)
2890 return;
2892 current_function_cannot_inline = N_("function uses __builtin_eh_return");
2894 eh_regs (&reg1, &reg2, &reg3, 1);
2895 #ifdef POINTERS_EXTEND_UNSIGNED
2896 eh_return_context = convert_memory_address (Pmode, eh_return_context);
2897 eh_return_stack_adjust =
2898 convert_memory_address (Pmode, eh_return_stack_adjust);
2899 eh_return_handler = convert_memory_address (Pmode, eh_return_handler);
2900 #endif
2901 emit_move_insn (reg1, eh_return_context);
2902 emit_move_insn (reg2, eh_return_stack_adjust);
2903 emit_move_insn (reg3, eh_return_handler);
2905 /* Talk directly to the target's epilogue code when possible. */
2907 #ifdef HAVE_eh_epilogue
2908 if (HAVE_eh_epilogue)
2910 emit_insn (gen_eh_epilogue (reg1, reg2, reg3));
2911 return;
2913 #endif
2915 /* Otherwise, use the same stub technique we had before. */
2917 eh_return_stub_label = stub_start = gen_label_rtx ();
2918 after_stub = gen_label_rtx ();
2920 /* Set the return address to the stub label. */
2922 ra = expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
2923 0, hard_frame_pointer_rtx);
2924 if (GET_CODE (ra) == REG && REGNO (ra) >= FIRST_PSEUDO_REGISTER)
2925 abort();
2927 tmp = memory_address (Pmode, gen_rtx_LABEL_REF (Pmode, stub_start));
2928 #ifdef RETURN_ADDR_OFFSET
2929 tmp = plus_constant (tmp, -RETURN_ADDR_OFFSET);
2930 #endif
2931 tmp = force_operand (tmp, ra);
2932 if (tmp != ra)
2933 emit_move_insn (ra, tmp);
2935 /* Indicate that the registers are in fact used. */
2936 emit_insn (gen_rtx_USE (VOIDmode, reg1));
2937 emit_insn (gen_rtx_USE (VOIDmode, reg2));
2938 emit_insn (gen_rtx_USE (VOIDmode, reg3));
2939 if (GET_CODE (ra) == REG)
2940 emit_insn (gen_rtx_USE (VOIDmode, ra));
2942 /* Generate the stub. */
2944 emit_jump (after_stub);
2945 emit_label (stub_start);
2947 eh_regs (&reg1, &reg2, &reg3, 0);
2948 adjust_stack (reg2);
2949 emit_indirect_jump (reg3);
2951 emit_label (after_stub);
2955 /* This contains the code required to verify whether arbitrary instructions
2956 are in the same exception region. */
2958 static int *insn_eh_region = (int *)0;
2959 static int maximum_uid;
2961 static void
2962 set_insn_eh_region (first, region_num)
2963 rtx *first;
2964 int region_num;
2966 rtx insn;
2967 int rnum;
2969 for (insn = *first; insn; insn = NEXT_INSN (insn))
2971 if ((GET_CODE (insn) == NOTE)
2972 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG))
2974 rnum = NOTE_EH_HANDLER (insn);
2975 insn_eh_region[INSN_UID (insn)] = rnum;
2976 insn = NEXT_INSN (insn);
2977 set_insn_eh_region (&insn, rnum);
2978 /* Upon return, insn points to the EH_REGION_END of nested region */
2979 continue;
2981 insn_eh_region[INSN_UID (insn)] = region_num;
2982 if ((GET_CODE (insn) == NOTE) &&
2983 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2984 break;
2986 *first = insn;
2989 /* Free the insn table, an make sure it cannot be used again. */
2991 void
2992 free_insn_eh_region ()
2994 if (!doing_eh (0))
2995 return;
2997 if (insn_eh_region)
2999 free (insn_eh_region);
3000 insn_eh_region = (int *)0;
3004 /* Initialize the table. max_uid must be calculated and handed into
3005 this routine. If it is unavailable, passing a value of 0 will
3006 cause this routine to calculate it as well. */
3008 void
3009 init_insn_eh_region (first, max_uid)
3010 rtx first;
3011 int max_uid;
3013 rtx insn;
3015 if (!doing_eh (0))
3016 return;
3018 if (insn_eh_region)
3019 free_insn_eh_region();
3021 if (max_uid == 0)
3022 for (insn = first; insn; insn = NEXT_INSN (insn))
3023 if (INSN_UID (insn) > max_uid) /* find largest UID */
3024 max_uid = INSN_UID (insn);
3026 maximum_uid = max_uid;
3027 insn_eh_region = (int *) xmalloc ((max_uid + 1) * sizeof (int));
3028 insn = first;
3029 set_insn_eh_region (&insn, 0);
3033 /* Check whether 2 instructions are within the same region. */
3035 int
3036 in_same_eh_region (insn1, insn2)
3037 rtx insn1, insn2;
3039 int ret, uid1, uid2;
3041 /* If no exceptions, instructions are always in same region. */
3042 if (!doing_eh (0))
3043 return 1;
3045 /* If the table isn't allocated, assume the worst. */
3046 if (!insn_eh_region)
3047 return 0;
3049 uid1 = INSN_UID (insn1);
3050 uid2 = INSN_UID (insn2);
3052 /* if instructions have been allocated beyond the end, either
3053 the table is out of date, or this is a late addition, or
3054 something... Assume the worst. */
3055 if (uid1 > maximum_uid || uid2 > maximum_uid)
3056 return 0;
3058 ret = (insn_eh_region[uid1] == insn_eh_region[uid2]);
3059 return ret;
3063 /* This function will initialize the handler list for a specified block.
3064 It may recursively call itself if the outer block hasn't been processed
3065 yet. At some point in the future we can trim out handlers which we
3066 know cannot be called. (ie, if a block has an INT type handler,
3067 control will never be passed to an outer INT type handler). */
3068 static void
3069 process_nestinfo (block, info, nested_eh_region)
3070 int block;
3071 eh_nesting_info *info;
3072 int *nested_eh_region;
3074 handler_info *ptr, *last_ptr = NULL;
3075 int x, y, count = 0;
3076 int extra = 0;
3077 handler_info **extra_handlers = 0;
3078 int index = info->region_index[block];
3080 /* If we've already processed this block, simply return. */
3081 if (info->num_handlers[index] > 0)
3082 return;
3084 for (ptr = get_first_handler (block); ptr; last_ptr = ptr, ptr = ptr->next)
3085 count++;
3087 /* pick up any information from the next outer region. It will already
3088 contain a summary of itself and all outer regions to it. */
3090 if (nested_eh_region [block] != 0)
3092 int nested_index = info->region_index[nested_eh_region[block]];
3093 process_nestinfo (nested_eh_region[block], info, nested_eh_region);
3094 extra = info->num_handlers[nested_index];
3095 extra_handlers = info->handlers[nested_index];
3096 info->outer_index[index] = nested_index;
3099 /* If the last handler is either a CATCH_ALL or a cleanup, then we
3100 won't use the outer ones since we know control will not go past the
3101 catch-all or cleanup. */
3103 if (last_ptr != NULL && (last_ptr->type_info == NULL
3104 || last_ptr->type_info == CATCH_ALL_TYPE))
3105 extra = 0;
3107 info->num_handlers[index] = count + extra;
3108 info->handlers[index] = (handler_info **) xmalloc ((count + extra)
3109 * sizeof (handler_info **));
3111 /* First put all our handlers into the list. */
3112 ptr = get_first_handler (block);
3113 for (x = 0; x < count; x++)
3115 info->handlers[index][x] = ptr;
3116 ptr = ptr->next;
3119 /* Now add all the outer region handlers, if they aren't they same as
3120 one of the types in the current block. We won't worry about
3121 derived types yet, we'll just look for the exact type. */
3122 for (y =0, x = 0; x < extra ; x++)
3124 int i, ok;
3125 ok = 1;
3126 /* Check to see if we have a type duplication. */
3127 for (i = 0; i < count; i++)
3128 if (info->handlers[index][i]->type_info == extra_handlers[x]->type_info)
3130 ok = 0;
3131 /* Record one less handler. */
3132 (info->num_handlers[index])--;
3133 break;
3135 if (ok)
3137 info->handlers[index][y + count] = extra_handlers[x];
3138 y++;
3143 /* This function will allocate and initialize an eh_nesting_info structure.
3144 It returns a pointer to the completed data structure. If there are
3145 no exception regions, a NULL value is returned. */
3146 eh_nesting_info *
3147 init_eh_nesting_info ()
3149 int *nested_eh_region;
3150 int region_count = 0;
3151 rtx eh_note = NULL_RTX;
3152 eh_nesting_info *info;
3153 rtx insn;
3154 int x;
3156 info = (eh_nesting_info *) xmalloc (sizeof (eh_nesting_info));
3157 info->region_index = (int *) xcalloc ((max_label_num () + 1), sizeof (int));
3159 nested_eh_region = (int *) alloca ((max_label_num () + 1) * sizeof (int));
3160 bzero ((char *) nested_eh_region, (max_label_num () + 1) * sizeof (int));
3162 /* Create the nested_eh_region list. If indexed with a block number, it
3163 returns the block number of the next outermost region, if any.
3164 We can count the number of regions and initialize the region_index
3165 vector at the same time. */
3166 for (insn = get_insns(); insn; insn = NEXT_INSN (insn))
3168 if (GET_CODE (insn) == NOTE)
3170 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
3172 int block = NOTE_EH_HANDLER (insn);
3173 region_count++;
3174 info->region_index[block] = region_count;
3175 if (eh_note)
3176 nested_eh_region [block] =
3177 NOTE_EH_HANDLER (XEXP (eh_note, 0));
3178 else
3179 nested_eh_region [block] = 0;
3180 eh_note = gen_rtx_EXPR_LIST (VOIDmode, insn, eh_note);
3182 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
3183 eh_note = XEXP (eh_note, 1);
3187 /* If there are no regions, wrap it up now. */
3188 if (region_count == 0)
3190 free (info->region_index);
3191 free (info);
3192 return NULL;
3195 region_count++;
3196 info->handlers = (handler_info ***) xcalloc (region_count,
3197 sizeof (handler_info ***));
3198 info->num_handlers = (int *) xcalloc (region_count, sizeof (int));
3199 info->outer_index = (int *) xcalloc (region_count, sizeof (int));
3201 /* Now initialize the handler lists for all exception blocks. */
3202 for (x = 0; x <= max_label_num (); x++)
3204 if (info->region_index[x] != 0)
3205 process_nestinfo (x, info, nested_eh_region);
3207 info->region_count = region_count;
3208 return info;
3212 /* This function is used to retreive the vector of handlers which
3213 can be reached by a given insn in a given exception region.
3214 BLOCK is the exception block the insn is in.
3215 INFO is the eh_nesting_info structure.
3216 INSN is the (optional) insn within the block. If insn is not NULL_RTX,
3217 it may contain reg notes which modify its throwing behavior, and
3218 these will be obeyed. If NULL_RTX is passed, then we simply return the
3219 handlers for block.
3220 HANDLERS is the address of a pointer to a vector of handler_info pointers.
3221 Upon return, this will have the handlers which can be reached by block.
3222 This function returns the number of elements in the handlers vector. */
3223 int
3224 reachable_handlers (block, info, insn, handlers)
3225 int block;
3226 eh_nesting_info *info;
3227 rtx insn ;
3228 handler_info ***handlers;
3230 int index = 0;
3231 *handlers = NULL;
3233 if (info == NULL)
3234 return 0;
3235 if (block > 0)
3236 index = info->region_index[block];
3238 if (insn && GET_CODE (insn) == CALL_INSN)
3240 /* RETHROWs specify a region number from which we are going to rethrow.
3241 This means we wont pass control to handlers in the specified
3242 region, but rather any region OUTSIDE the specified region.
3243 We accomplish this by setting block to the outer_index of the
3244 specified region. */
3245 rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX);
3246 if (note)
3248 index = eh_region_from_symbol (XEXP (note, 0));
3249 index = info->region_index[index];
3250 if (index)
3251 index = info->outer_index[index];
3253 else
3255 /* If there is no rethrow, we look for a REG_EH_REGION, and
3256 we'll throw from that block. A value of 0 or less
3257 indicates that this insn cannot throw. */
3258 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3259 if (note)
3261 int b = XINT (XEXP (note, 0), 0);
3262 if (b <= 0)
3263 index = 0;
3264 else
3265 index = info->region_index[b];
3269 /* If we reach this point, and index is 0, there is no throw. */
3270 if (index == 0)
3271 return 0;
3273 *handlers = info->handlers[index];
3274 return info->num_handlers[index];
3278 /* This function will free all memory associated with the eh_nesting info. */
3280 void
3281 free_eh_nesting_info (info)
3282 eh_nesting_info *info;
3284 int x;
3285 if (info != NULL)
3287 if (info->region_index)
3288 free (info->region_index);
3289 if (info->num_handlers)
3290 free (info->num_handlers);
3291 if (info->outer_index)
3292 free (info->outer_index);
3293 if (info->handlers)
3295 for (x = 0; x < info->region_count; x++)
3296 if (info->handlers[x])
3297 free (info->handlers[x]);
3298 free (info->handlers);