Fix thinko
[official-gcc.git] / gcc / ada / a-ngelfu.adb
blobd7ae2c8dc2eca2d658c8ee6065aae7106604d3c0
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUNTIME COMPONENTS --
4 -- --
5 -- ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 -- This body is specifically for using an Ada interface to C math.h to get
35 -- the computation engine. Many special cases are handled locally to avoid
36 -- unnecessary calls. This is not a "strict" implementation, but takes full
37 -- advantage of the C functions, e.g. in providing interface to hardware
38 -- provided versions of the elementary functions.
40 -- Uses functions sqrt, exp, log, pow, sin, asin, cos, acos, tan, atan,
41 -- sinh, cosh, tanh from C library via math.h
43 with Ada.Numerics.Aux;
45 package body Ada.Numerics.Generic_Elementary_Functions is
47 use type Ada.Numerics.Aux.Double;
49 Sqrt_Two : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696;
50 Log_Two : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755;
51 Half_Log_Two : constant := Log_Two / 2;
53 subtype T is Float_Type'Base;
54 subtype Double is Aux.Double;
56 Two_Pi : constant T := 2.0 * Pi;
57 Half_Pi : constant T := Pi / 2.0;
58 Fourth_Pi : constant T := Pi / 4.0;
60 Epsilon : constant T := 2.0 ** (1 - T'Model_Mantissa);
61 IEpsilon : constant T := 2.0 ** (T'Model_Mantissa - 1);
62 Log_Epsilon : constant T := T (1 - T'Model_Mantissa) * Log_Two;
63 Half_Log_Epsilon : constant T := T (1 - T'Model_Mantissa) * Half_Log_Two;
64 Log_Inverse_Epsilon : constant T := T (T'Model_Mantissa - 1) * Log_Two;
65 Sqrt_Epsilon : constant T := Sqrt_Two ** (1 - T'Model_Mantissa);
67 DEpsilon : constant Double := Double (Epsilon);
68 DIEpsilon : constant Double := Double (IEpsilon);
70 -----------------------
71 -- Local Subprograms --
72 -----------------------
74 function Exp_Strict (X : Float_Type'Base) return Float_Type'Base;
75 -- Cody/Waite routine, supposedly more precise than the library
76 -- version. Currently only needed for Sinh/Cosh on X86 with the largest
77 -- FP type.
79 function Local_Atan
80 (Y : Float_Type'Base;
81 X : Float_Type'Base := 1.0)
82 return Float_Type'Base;
83 -- Common code for arc tangent after cyele reduction
85 ----------
86 -- "**" --
87 ----------
89 function "**" (Left, Right : Float_Type'Base) return Float_Type'Base is
90 A_Right : Float_Type'Base;
91 Int_Part : Integer;
92 Result : Float_Type'Base;
93 R1 : Float_Type'Base;
94 Rest : Float_Type'Base;
96 begin
97 if Left = 0.0
98 and then Right = 0.0
99 then
100 raise Argument_Error;
102 elsif Left < 0.0 then
103 raise Argument_Error;
105 elsif Right = 0.0 then
106 return 1.0;
108 elsif Left = 0.0 then
109 if Right < 0.0 then
110 raise Constraint_Error;
111 else
112 return 0.0;
113 end if;
115 elsif Left = 1.0 then
116 return 1.0;
118 elsif Right = 1.0 then
119 return Left;
121 else
122 begin
123 if Right = 2.0 then
124 return Left * Left;
126 elsif Right = 0.5 then
127 return Sqrt (Left);
129 else
130 A_Right := abs (Right);
132 -- If exponent is larger than one, compute integer exponen-
133 -- tiation if possible, and evaluate fractional part with
134 -- more precision. The relative error is now proportional
135 -- to the fractional part of the exponent only.
137 if A_Right > 1.0
138 and then A_Right < Float_Type'Base (Integer'Last)
139 then
140 Int_Part := Integer (Float_Type'Base'Truncation (A_Right));
141 Result := Left ** Int_Part;
142 Rest := A_Right - Float_Type'Base (Int_Part);
144 -- Compute with two leading bits of the mantissa using
145 -- square roots. Bound to be better than logarithms, and
146 -- easily extended to greater precision.
148 if Rest >= 0.5 then
149 R1 := Sqrt (Left);
150 Result := Result * R1;
151 Rest := Rest - 0.5;
153 if Rest >= 0.25 then
154 Result := Result * Sqrt (R1);
155 Rest := Rest - 0.25;
156 end if;
158 elsif Rest >= 0.25 then
159 Result := Result * Sqrt (Sqrt (Left));
160 Rest := Rest - 0.25;
161 end if;
163 Result := Result *
164 Float_Type'Base (Aux.Pow (Double (Left), Double (Rest)));
166 if Right >= 0.0 then
167 return Result;
168 else
169 return (1.0 / Result);
170 end if;
171 else
172 return
173 Float_Type'Base (Aux.Pow (Double (Left), Double (Right)));
174 end if;
175 end if;
177 exception
178 when others =>
179 raise Constraint_Error;
180 end;
181 end if;
182 end "**";
184 ------------
185 -- Arccos --
186 ------------
188 -- Natural cycle
190 function Arccos (X : Float_Type'Base) return Float_Type'Base is
191 Temp : Float_Type'Base;
193 begin
194 if abs X > 1.0 then
195 raise Argument_Error;
197 elsif abs X < Sqrt_Epsilon then
198 return Pi / 2.0 - X;
200 elsif X = 1.0 then
201 return 0.0;
203 elsif X = -1.0 then
204 return Pi;
205 end if;
207 Temp := Float_Type'Base (Aux.Acos (Double (X)));
209 if Temp < 0.0 then
210 Temp := Pi + Temp;
211 end if;
213 return Temp;
214 end Arccos;
216 -- Arbitrary cycle
218 function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base is
219 Temp : Float_Type'Base;
221 begin
222 if Cycle <= 0.0 then
223 raise Argument_Error;
225 elsif abs X > 1.0 then
226 raise Argument_Error;
228 elsif abs X < Sqrt_Epsilon then
229 return Cycle / 4.0;
231 elsif X = 1.0 then
232 return 0.0;
234 elsif X = -1.0 then
235 return Cycle / 2.0;
236 end if;
238 Temp := Arctan (Sqrt ((1.0 - X) * (1.0 + X)) / X, 1.0, Cycle);
240 if Temp < 0.0 then
241 Temp := Cycle / 2.0 + Temp;
242 end if;
244 return Temp;
245 end Arccos;
247 -------------
248 -- Arccosh --
249 -------------
251 function Arccosh (X : Float_Type'Base) return Float_Type'Base is
252 begin
253 -- Return positive branch of Log (X - Sqrt (X * X - 1.0)), or
254 -- the proper approximation for X close to 1 or >> 1.
256 if X < 1.0 then
257 raise Argument_Error;
259 elsif X < 1.0 + Sqrt_Epsilon then
260 return Sqrt (2.0 * (X - 1.0));
262 elsif X > 1.0 / Sqrt_Epsilon then
263 return Log (X) + Log_Two;
265 else
266 return Log (X + Sqrt ((X - 1.0) * (X + 1.0)));
267 end if;
268 end Arccosh;
270 ------------
271 -- Arccot --
272 ------------
274 -- Natural cycle
276 function Arccot
277 (X : Float_Type'Base;
278 Y : Float_Type'Base := 1.0)
279 return Float_Type'Base
281 begin
282 -- Just reverse arguments
284 return Arctan (Y, X);
285 end Arccot;
287 -- Arbitrary cycle
289 function Arccot
290 (X : Float_Type'Base;
291 Y : Float_Type'Base := 1.0;
292 Cycle : Float_Type'Base)
293 return Float_Type'Base
295 begin
296 -- Just reverse arguments
298 return Arctan (Y, X, Cycle);
299 end Arccot;
301 -------------
302 -- Arccoth --
303 -------------
305 function Arccoth (X : Float_Type'Base) return Float_Type'Base is
306 begin
307 if abs X > 2.0 then
308 return Arctanh (1.0 / X);
310 elsif abs X = 1.0 then
311 raise Constraint_Error;
313 elsif abs X < 1.0 then
314 raise Argument_Error;
316 else
317 -- 1.0 < abs X <= 2.0. One of X + 1.0 and X - 1.0 is exact, the
318 -- other has error 0 or Epsilon.
320 return 0.5 * (Log (abs (X + 1.0)) - Log (abs (X - 1.0)));
321 end if;
322 end Arccoth;
324 ------------
325 -- Arcsin --
326 ------------
328 -- Natural cycle
330 function Arcsin (X : Float_Type'Base) return Float_Type'Base is
331 begin
332 if abs X > 1.0 then
333 raise Argument_Error;
335 elsif abs X < Sqrt_Epsilon then
336 return X;
338 elsif X = 1.0 then
339 return Pi / 2.0;
341 elsif X = -1.0 then
342 return -Pi / 2.0;
343 end if;
345 return Float_Type'Base (Aux.Asin (Double (X)));
346 end Arcsin;
348 -- Arbitrary cycle
350 function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base is
351 begin
352 if Cycle <= 0.0 then
353 raise Argument_Error;
355 elsif abs X > 1.0 then
356 raise Argument_Error;
358 elsif X = 0.0 then
359 return X;
361 elsif X = 1.0 then
362 return Cycle / 4.0;
364 elsif X = -1.0 then
365 return -Cycle / 4.0;
366 end if;
368 return Arctan (X / Sqrt ((1.0 - X) * (1.0 + X)), 1.0, Cycle);
369 end Arcsin;
371 -------------
372 -- Arcsinh --
373 -------------
375 function Arcsinh (X : Float_Type'Base) return Float_Type'Base is
376 begin
377 if abs X < Sqrt_Epsilon then
378 return X;
380 elsif X > 1.0 / Sqrt_Epsilon then
381 return Log (X) + Log_Two;
383 elsif X < -1.0 / Sqrt_Epsilon then
384 return -(Log (-X) + Log_Two);
386 elsif X < 0.0 then
387 return -Log (abs X + Sqrt (X * X + 1.0));
389 else
390 return Log (X + Sqrt (X * X + 1.0));
391 end if;
392 end Arcsinh;
394 ------------
395 -- Arctan --
396 ------------
398 -- Natural cycle
400 function Arctan
401 (Y : Float_Type'Base;
402 X : Float_Type'Base := 1.0)
403 return Float_Type'Base
405 begin
406 if X = 0.0
407 and then Y = 0.0
408 then
409 raise Argument_Error;
411 elsif Y = 0.0 then
412 if X > 0.0 then
413 return 0.0;
414 else -- X < 0.0
415 return Pi * Float_Type'Copy_Sign (1.0, Y);
416 end if;
418 elsif X = 0.0 then
419 if Y > 0.0 then
420 return Half_Pi;
421 else -- Y < 0.0
422 return -Half_Pi;
423 end if;
425 else
426 return Local_Atan (Y, X);
427 end if;
428 end Arctan;
430 -- Arbitrary cycle
432 function Arctan
433 (Y : Float_Type'Base;
434 X : Float_Type'Base := 1.0;
435 Cycle : Float_Type'Base)
436 return Float_Type'Base
438 begin
439 if Cycle <= 0.0 then
440 raise Argument_Error;
442 elsif X = 0.0
443 and then Y = 0.0
444 then
445 raise Argument_Error;
447 elsif Y = 0.0 then
448 if X > 0.0 then
449 return 0.0;
450 else -- X < 0.0
451 return Cycle / 2.0 * Float_Type'Copy_Sign (1.0, Y);
452 end if;
454 elsif X = 0.0 then
455 if Y > 0.0 then
456 return Cycle / 4.0;
457 else -- Y < 0.0
458 return -Cycle / 4.0;
459 end if;
461 else
462 return Local_Atan (Y, X) * Cycle / Two_Pi;
463 end if;
464 end Arctan;
466 -------------
467 -- Arctanh --
468 -------------
470 function Arctanh (X : Float_Type'Base) return Float_Type'Base is
471 A, B, D, A_Plus_1, A_From_1 : Float_Type'Base;
472 Mantissa : constant Integer := Float_Type'Base'Machine_Mantissa;
474 begin
475 -- The naive formula:
477 -- Arctanh (X) := (1/2) * Log (1 + X) / (1 - X)
479 -- is not well-behaved numerically when X < 0.5 and when X is close
480 -- to one. The following is accurate but probably not optimal.
482 if abs X = 1.0 then
483 raise Constraint_Error;
485 elsif abs X >= 1.0 - 2.0 ** (-Mantissa) then
487 if abs X >= 1.0 then
488 raise Argument_Error;
489 else
491 -- The one case that overflows if put through the method below:
492 -- abs X = 1.0 - Epsilon. In this case (1/2) log (2/Epsilon) is
493 -- accurate. This simplifies to:
495 return Float_Type'Copy_Sign (
496 Half_Log_Two * Float_Type'Base (Mantissa + 1), X);
497 end if;
499 -- elsif abs X <= 0.5 then
500 -- why is above line commented out ???
502 else
503 -- Use several piecewise linear approximations.
504 -- A is close to X, chosen so 1.0 + A, 1.0 - A, and X - A are exact.
505 -- The two scalings remove the low-order bits of X.
507 A := Float_Type'Base'Scaling (
508 Float_Type'Base (Long_Long_Integer
509 (Float_Type'Base'Scaling (X, Mantissa - 1))), 1 - Mantissa);
511 B := X - A; -- This is exact; abs B <= 2**(-Mantissa).
512 A_Plus_1 := 1.0 + A; -- This is exact.
513 A_From_1 := 1.0 - A; -- Ditto.
514 D := A_Plus_1 * A_From_1; -- 1 - A*A.
516 -- use one term of the series expansion:
517 -- f (x + e) = f(x) + e * f'(x) + ..
519 -- The derivative of Arctanh at A is 1/(1-A*A). Next term is
520 -- A*(B/D)**2 (if a quadratic approximation is ever needed).
522 return 0.5 * (Log (A_Plus_1) - Log (A_From_1)) + B / D;
524 -- else
525 -- return 0.5 * Log ((X + 1.0) / (1.0 - X));
526 -- why are above lines commented out ???
527 end if;
528 end Arctanh;
530 ---------
531 -- Cos --
532 ---------
534 -- Natural cycle
536 function Cos (X : Float_Type'Base) return Float_Type'Base is
537 begin
538 if X = 0.0 then
539 return 1.0;
541 elsif abs X < Sqrt_Epsilon then
542 return 1.0;
544 end if;
546 return Float_Type'Base (Aux.Cos (Double (X)));
547 end Cos;
549 -- Arbitrary cycle
551 function Cos (X, Cycle : Float_Type'Base) return Float_Type'Base is
552 begin
553 -- Just reuse the code for Sin. The potential small
554 -- loss of speed is negligible with proper (front-end) inlining.
556 return -Sin (abs X - Cycle * 0.25, Cycle);
557 end Cos;
559 ----------
560 -- Cosh --
561 ----------
563 function Cosh (X : Float_Type'Base) return Float_Type'Base is
564 Lnv : constant Float_Type'Base := 8#0.542714#;
565 V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
566 Y : Float_Type'Base := abs X;
567 Z : Float_Type'Base;
569 begin
570 if Y < Sqrt_Epsilon then
571 return 1.0;
573 elsif Y > Log_Inverse_Epsilon then
574 Z := Exp_Strict (Y - Lnv);
575 return (Z + V2minus1 * Z);
577 else
578 Z := Exp_Strict (Y);
579 return 0.5 * (Z + 1.0 / Z);
580 end if;
582 end Cosh;
584 ---------
585 -- Cot --
586 ---------
588 -- Natural cycle
590 function Cot (X : Float_Type'Base) return Float_Type'Base is
591 begin
592 if X = 0.0 then
593 raise Constraint_Error;
595 elsif abs X < Sqrt_Epsilon then
596 return 1.0 / X;
597 end if;
599 return 1.0 / Float_Type'Base (Aux.Tan (Double (X)));
600 end Cot;
602 -- Arbitrary cycle
604 function Cot (X, Cycle : Float_Type'Base) return Float_Type'Base is
605 T : Float_Type'Base;
607 begin
608 if Cycle <= 0.0 then
609 raise Argument_Error;
610 end if;
612 T := Float_Type'Base'Remainder (X, Cycle);
614 if T = 0.0 or abs T = 0.5 * Cycle then
615 raise Constraint_Error;
617 elsif abs T < Sqrt_Epsilon then
618 return 1.0 / T;
620 elsif abs T = 0.25 * Cycle then
621 return 0.0;
623 else
624 T := T / Cycle * Two_Pi;
625 return Cos (T) / Sin (T);
626 end if;
627 end Cot;
629 ----------
630 -- Coth --
631 ----------
633 function Coth (X : Float_Type'Base) return Float_Type'Base is
634 begin
635 if X = 0.0 then
636 raise Constraint_Error;
638 elsif X < Half_Log_Epsilon then
639 return -1.0;
641 elsif X > -Half_Log_Epsilon then
642 return 1.0;
644 elsif abs X < Sqrt_Epsilon then
645 return 1.0 / X;
646 end if;
648 return 1.0 / Float_Type'Base (Aux.Tanh (Double (X)));
649 end Coth;
651 ---------
652 -- Exp --
653 ---------
655 function Exp (X : Float_Type'Base) return Float_Type'Base is
656 Result : Float_Type'Base;
658 begin
659 if X = 0.0 then
660 return 1.0;
661 end if;
663 Result := Float_Type'Base (Aux.Exp (Double (X)));
665 -- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
666 -- is False, then we can just leave it as an infinity (and indeed we
667 -- prefer to do so). But if Machine_Overflows is True, then we have
668 -- to raise a Constraint_Error exception as required by the RM.
670 if Float_Type'Machine_Overflows and then not Result'Valid then
671 raise Constraint_Error;
672 end if;
674 return Result;
675 end Exp;
677 ----------------
678 -- Exp_Strict --
679 ----------------
681 function Exp_Strict (X : Float_Type'Base) return Float_Type'Base is
682 G : Float_Type'Base;
683 Z : Float_Type'Base;
685 P0 : constant := 0.25000_00000_00000_00000;
686 P1 : constant := 0.75753_18015_94227_76666E-2;
687 P2 : constant := 0.31555_19276_56846_46356E-4;
689 Q0 : constant := 0.5;
690 Q1 : constant := 0.56817_30269_85512_21787E-1;
691 Q2 : constant := 0.63121_89437_43985_02557E-3;
692 Q3 : constant := 0.75104_02839_98700_46114E-6;
694 C1 : constant := 8#0.543#;
695 C2 : constant := -2.1219_44400_54690_58277E-4;
696 Le : constant := 1.4426_95040_88896_34074;
698 XN : Float_Type'Base;
699 P, Q, R : Float_Type'Base;
701 begin
702 if X = 0.0 then
703 return 1.0;
704 end if;
706 XN := Float_Type'Base'Rounding (X * Le);
707 G := (X - XN * C1) - XN * C2;
708 Z := G * G;
709 P := G * ((P2 * Z + P1) * Z + P0);
710 Q := ((Q3 * Z + Q2) * Z + Q1) * Z + Q0;
711 R := 0.5 + P / (Q - P);
713 R := Float_Type'Base'Scaling (R, Integer (XN) + 1);
715 -- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
716 -- is False, then we can just leave it as an infinity (and indeed we
717 -- prefer to do so). But if Machine_Overflows is True, then we have
718 -- to raise a Constraint_Error exception as required by the RM.
720 if Float_Type'Machine_Overflows and then not R'Valid then
721 raise Constraint_Error;
722 else
723 return R;
724 end if;
726 end Exp_Strict;
728 ----------------
729 -- Local_Atan --
730 ----------------
732 function Local_Atan
733 (Y : Float_Type'Base;
734 X : Float_Type'Base := 1.0)
735 return Float_Type'Base
737 Z : Float_Type'Base;
738 Raw_Atan : Float_Type'Base;
740 begin
741 if abs Y > abs X then
742 Z := abs (X / Y);
743 else
744 Z := abs (Y / X);
745 end if;
747 if Z < Sqrt_Epsilon then
748 Raw_Atan := Z;
750 elsif Z = 1.0 then
751 Raw_Atan := Pi / 4.0;
753 else
754 Raw_Atan := Float_Type'Base (Aux.Atan (Double (Z)));
755 end if;
757 if abs Y > abs X then
758 Raw_Atan := Half_Pi - Raw_Atan;
759 end if;
761 if X > 0.0 then
762 if Y > 0.0 then
763 return Raw_Atan;
764 else -- Y < 0.0
765 return -Raw_Atan;
766 end if;
768 else -- X < 0.0
769 if Y > 0.0 then
770 return Pi - Raw_Atan;
771 else -- Y < 0.0
772 return -(Pi - Raw_Atan);
773 end if;
774 end if;
775 end Local_Atan;
777 ---------
778 -- Log --
779 ---------
781 -- Natural base
783 function Log (X : Float_Type'Base) return Float_Type'Base is
784 begin
785 if X < 0.0 then
786 raise Argument_Error;
788 elsif X = 0.0 then
789 raise Constraint_Error;
791 elsif X = 1.0 then
792 return 0.0;
793 end if;
795 return Float_Type'Base (Aux.Log (Double (X)));
796 end Log;
798 -- Arbitrary base
800 function Log (X, Base : Float_Type'Base) return Float_Type'Base is
801 begin
802 if X < 0.0 then
803 raise Argument_Error;
805 elsif Base <= 0.0 or else Base = 1.0 then
806 raise Argument_Error;
808 elsif X = 0.0 then
809 raise Constraint_Error;
811 elsif X = 1.0 then
812 return 0.0;
813 end if;
815 return Float_Type'Base (Aux.Log (Double (X)) / Aux.Log (Double (Base)));
816 end Log;
818 ---------
819 -- Sin --
820 ---------
822 -- Natural cycle
824 function Sin (X : Float_Type'Base) return Float_Type'Base is
825 begin
826 if abs X < Sqrt_Epsilon then
827 return X;
828 end if;
830 return Float_Type'Base (Aux.Sin (Double (X)));
831 end Sin;
833 -- Arbitrary cycle
835 function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base is
836 T : Float_Type'Base;
838 begin
839 if Cycle <= 0.0 then
840 raise Argument_Error;
842 elsif X = 0.0 then
843 -- Is this test really needed on any machine ???
844 return X;
845 end if;
847 T := Float_Type'Base'Remainder (X, Cycle);
849 -- The following two reductions reduce the argument
850 -- to the interval [-0.25 * Cycle, 0.25 * Cycle].
851 -- This reduction is exact and is needed to prevent
852 -- inaccuracy that may result if the sinus function
853 -- a different (more accurate) value of Pi in its
854 -- reduction than is used in the multiplication with Two_Pi.
856 if abs T > 0.25 * Cycle then
857 T := 0.5 * Float_Type'Copy_Sign (Cycle, T) - T;
858 end if;
860 -- Could test for 12.0 * abs T = Cycle, and return
861 -- an exact value in those cases. It is not clear that
862 -- this is worth the extra test though.
864 return Float_Type'Base (Aux.Sin (Double (T / Cycle * Two_Pi)));
865 end Sin;
867 ----------
868 -- Sinh --
869 ----------
871 function Sinh (X : Float_Type'Base) return Float_Type'Base is
872 Lnv : constant Float_Type'Base := 8#0.542714#;
873 V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
874 Y : Float_Type'Base := abs X;
875 F : constant Float_Type'Base := Y * Y;
876 Z : Float_Type'Base;
878 Float_Digits_1_6 : constant Boolean := Float_Type'Digits < 7;
880 begin
881 if Y < Sqrt_Epsilon then
882 return X;
884 elsif Y > Log_Inverse_Epsilon then
885 Z := Exp_Strict (Y - Lnv);
886 Z := Z + V2minus1 * Z;
888 elsif Y < 1.0 then
890 if Float_Digits_1_6 then
892 -- Use expansion provided by Cody and Waite, p. 226. Note that
893 -- leading term of the polynomial in Q is exactly 1.0.
895 declare
896 P0 : constant := -0.71379_3159E+1;
897 P1 : constant := -0.19033_3399E+0;
898 Q0 : constant := -0.42827_7109E+2;
900 begin
901 Z := Y + Y * F * (P1 * F + P0) / (F + Q0);
902 end;
904 else
905 declare
906 P0 : constant := -0.35181_28343_01771_17881E+6;
907 P1 : constant := -0.11563_52119_68517_68270E+5;
908 P2 : constant := -0.16375_79820_26307_51372E+3;
909 P3 : constant := -0.78966_12741_73570_99479E+0;
910 Q0 : constant := -0.21108_77005_81062_71242E+7;
911 Q1 : constant := 0.36162_72310_94218_36460E+5;
912 Q2 : constant := -0.27773_52311_96507_01667E+3;
914 begin
915 Z := Y + Y * F * (((P3 * F + P2) * F + P1) * F + P0)
916 / (((F + Q2) * F + Q1) * F + Q0);
917 end;
918 end if;
920 else
921 Z := Exp_Strict (Y);
922 Z := 0.5 * (Z - 1.0 / Z);
923 end if;
925 if X > 0.0 then
926 return Z;
927 else
928 return -Z;
929 end if;
930 end Sinh;
932 ----------
933 -- Sqrt --
934 ----------
936 function Sqrt (X : Float_Type'Base) return Float_Type'Base is
937 begin
938 if X < 0.0 then
939 raise Argument_Error;
941 -- Special case Sqrt (0.0) to preserve possible minus sign per IEEE
943 elsif X = 0.0 then
944 return X;
946 end if;
948 return Float_Type'Base (Aux.Sqrt (Double (X)));
949 end Sqrt;
951 ---------
952 -- Tan --
953 ---------
955 -- Natural cycle
957 function Tan (X : Float_Type'Base) return Float_Type'Base is
958 begin
959 if abs X < Sqrt_Epsilon then
960 return X;
962 elsif abs X = Pi / 2.0 then
963 raise Constraint_Error;
964 end if;
966 return Float_Type'Base (Aux.Tan (Double (X)));
967 end Tan;
969 -- Arbitrary cycle
971 function Tan (X, Cycle : Float_Type'Base) return Float_Type'Base is
972 T : Float_Type'Base;
974 begin
975 if Cycle <= 0.0 then
976 raise Argument_Error;
978 elsif X = 0.0 then
979 return X;
980 end if;
982 T := Float_Type'Base'Remainder (X, Cycle);
984 if abs T = 0.25 * Cycle then
985 raise Constraint_Error;
987 elsif abs T = 0.5 * Cycle then
988 return 0.0;
990 else
991 T := T / Cycle * Two_Pi;
992 return Sin (T) / Cos (T);
993 end if;
995 end Tan;
997 ----------
998 -- Tanh --
999 ----------
1001 function Tanh (X : Float_Type'Base) return Float_Type'Base is
1002 P0 : constant Float_Type'Base := -0.16134_11902E4;
1003 P1 : constant Float_Type'Base := -0.99225_92967E2;
1004 P2 : constant Float_Type'Base := -0.96437_49299E0;
1006 Q0 : constant Float_Type'Base := 0.48402_35707E4;
1007 Q1 : constant Float_Type'Base := 0.22337_72071E4;
1008 Q2 : constant Float_Type'Base := 0.11274_47438E3;
1009 Q3 : constant Float_Type'Base := 0.10000000000E1;
1011 Half_Ln3 : constant Float_Type'Base := 0.54930_61443;
1013 P, Q, R : Float_Type'Base;
1014 Y : Float_Type'Base := abs X;
1015 G : Float_Type'Base := Y * Y;
1017 Float_Type_Digits_15_Or_More : constant Boolean :=
1018 Float_Type'Digits > 14;
1020 begin
1021 if X < Half_Log_Epsilon then
1022 return -1.0;
1024 elsif X > -Half_Log_Epsilon then
1025 return 1.0;
1027 elsif Y < Sqrt_Epsilon then
1028 return X;
1030 elsif Y < Half_Ln3
1031 and then Float_Type_Digits_15_Or_More
1032 then
1033 P := (P2 * G + P1) * G + P0;
1034 Q := ((Q3 * G + Q2) * G + Q1) * G + Q0;
1035 R := G * (P / Q);
1036 return X + X * R;
1038 else
1039 return Float_Type'Base (Aux.Tanh (Double (X)));
1040 end if;
1041 end Tanh;
1043 end Ada.Numerics.Generic_Elementary_Functions;