1 ------------------------------------------------------------------------------
3 -- GNAT RUNTIME COMPONENTS --
5 -- ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS --
9 -- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
32 ------------------------------------------------------------------------------
34 -- This body is specifically for using an Ada interface to C math.h to get
35 -- the computation engine. Many special cases are handled locally to avoid
36 -- unnecessary calls. This is not a "strict" implementation, but takes full
37 -- advantage of the C functions, e.g. in providing interface to hardware
38 -- provided versions of the elementary functions.
40 -- Uses functions sqrt, exp, log, pow, sin, asin, cos, acos, tan, atan,
41 -- sinh, cosh, tanh from C library via math.h
43 with Ada
.Numerics
.Aux
;
45 package body Ada
.Numerics
.Generic_Elementary_Functions
is
47 use type Ada
.Numerics
.Aux
.Double
;
49 Sqrt_Two
: constant := 1.41421_35623_73095_04880_16887_24209_69807_85696
;
50 Log_Two
: constant := 0.69314_71805_59945_30941_72321_21458_17656_80755
;
51 Half_Log_Two
: constant := Log_Two
/ 2;
53 subtype T
is Float_Type
'Base;
54 subtype Double
is Aux
.Double
;
56 Two_Pi
: constant T
:= 2.0 * Pi
;
57 Half_Pi
: constant T
:= Pi
/ 2.0;
58 Fourth_Pi
: constant T
:= Pi
/ 4.0;
60 Epsilon
: constant T
:= 2.0 ** (1 - T
'Model_Mantissa);
61 IEpsilon
: constant T
:= 2.0 ** (T
'Model_Mantissa - 1);
62 Log_Epsilon
: constant T
:= T
(1 - T
'Model_Mantissa) * Log_Two
;
63 Half_Log_Epsilon
: constant T
:= T
(1 - T
'Model_Mantissa) * Half_Log_Two
;
64 Log_Inverse_Epsilon
: constant T
:= T
(T
'Model_Mantissa - 1) * Log_Two
;
65 Sqrt_Epsilon
: constant T
:= Sqrt_Two
** (1 - T
'Model_Mantissa);
67 DEpsilon
: constant Double
:= Double
(Epsilon
);
68 DIEpsilon
: constant Double
:= Double
(IEpsilon
);
70 -----------------------
71 -- Local Subprograms --
72 -----------------------
74 function Exp_Strict
(X
: Float_Type
'Base) return Float_Type
'Base;
75 -- Cody/Waite routine, supposedly more precise than the library
76 -- version. Currently only needed for Sinh/Cosh on X86 with the largest
81 X
: Float_Type
'Base := 1.0)
82 return Float_Type
'Base;
83 -- Common code for arc tangent after cyele reduction
89 function "**" (Left
, Right
: Float_Type
'Base) return Float_Type
'Base is
90 A_Right
: Float_Type
'Base;
92 Result
: Float_Type
'Base;
94 Rest
: Float_Type
'Base;
100 raise Argument_Error
;
102 elsif Left
< 0.0 then
103 raise Argument_Error
;
105 elsif Right
= 0.0 then
108 elsif Left
= 0.0 then
110 raise Constraint_Error
;
115 elsif Left
= 1.0 then
118 elsif Right
= 1.0 then
126 elsif Right
= 0.5 then
130 A_Right
:= abs (Right
);
132 -- If exponent is larger than one, compute integer exponen-
133 -- tiation if possible, and evaluate fractional part with
134 -- more precision. The relative error is now proportional
135 -- to the fractional part of the exponent only.
138 and then A_Right
< Float_Type
'Base (Integer'Last)
140 Int_Part
:= Integer (Float_Type
'Base'Truncation (A_Right));
141 Result := Left ** Int_Part;
142 Rest := A_Right - Float_Type'Base (Int_Part);
144 -- Compute with two leading bits of the mantissa using
145 -- square roots. Bound to be better than logarithms, and
146 -- easily extended to greater precision.
150 Result := Result * R1;
154 Result := Result * Sqrt (R1);
158 elsif Rest >= 0.25 then
159 Result := Result * Sqrt (Sqrt (Left));
164 Float_Type'Base (Aux.Pow (Double (Left), Double (Rest)));
169 return (1.0 / Result);
173 Float_Type'Base (Aux.Pow (Double (Left), Double (Right)));
179 raise Constraint_Error;
190 function Arccos (X : Float_Type'Base) return Float_Type'Base is
191 Temp : Float_Type'Base;
195 raise Argument_Error;
197 elsif abs X < Sqrt_Epsilon then
207 Temp := Float_Type'Base (Aux.Acos (Double (X)));
218 function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base is
219 Temp : Float_Type'Base;
223 raise Argument_Error;
225 elsif abs X > 1.0 then
226 raise Argument_Error;
228 elsif abs X < Sqrt_Epsilon then
238 Temp := Arctan (Sqrt ((1.0 - X) * (1.0 + X)) / X, 1.0, Cycle);
241 Temp := Cycle / 2.0 + Temp;
251 function Arccosh (X : Float_Type'Base) return Float_Type'Base is
253 -- Return positive branch of Log (X - Sqrt (X * X - 1.0)), or
254 -- the proper approximation for X close to 1 or >> 1.
257 raise Argument_Error;
259 elsif X < 1.0 + Sqrt_Epsilon then
260 return Sqrt (2.0 * (X - 1.0));
262 elsif X > 1.0 / Sqrt_Epsilon then
263 return Log (X) + Log_Two;
266 return Log (X + Sqrt ((X - 1.0) * (X + 1.0)));
277 (X : Float_Type'Base;
278 Y : Float_Type'Base := 1.0)
279 return Float_Type'Base
282 -- Just reverse arguments
284 return Arctan (Y, X);
290 (X : Float_Type'Base;
291 Y : Float_Type'Base := 1.0;
292 Cycle : Float_Type'Base)
293 return Float_Type'Base
296 -- Just reverse arguments
298 return Arctan (Y, X, Cycle);
305 function Arccoth (X : Float_Type'Base) return Float_Type'Base is
308 return Arctanh (1.0 / X);
310 elsif abs X = 1.0 then
311 raise Constraint_Error;
313 elsif abs X < 1.0 then
314 raise Argument_Error;
317 -- 1.0 < abs X <= 2.0. One of X + 1.0 and X - 1.0 is exact, the
318 -- other has error 0 or Epsilon.
320 return 0.5 * (Log (abs (X + 1.0)) - Log (abs (X - 1.0)));
330 function Arcsin (X : Float_Type'Base) return Float_Type'Base is
333 raise Argument_Error;
335 elsif abs X < Sqrt_Epsilon then
345 return Float_Type'Base (Aux.Asin (Double (X)));
350 function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base is
353 raise Argument_Error;
355 elsif abs X > 1.0 then
356 raise Argument_Error;
368 return Arctan (X / Sqrt ((1.0 - X) * (1.0 + X)), 1.0, Cycle);
375 function Arcsinh (X : Float_Type'Base) return Float_Type'Base is
377 if abs X < Sqrt_Epsilon then
380 elsif X > 1.0 / Sqrt_Epsilon then
381 return Log (X) + Log_Two;
383 elsif X < -1.0 / Sqrt_Epsilon then
384 return -(Log (-X) + Log_Two);
387 return -Log (abs X + Sqrt (X * X + 1.0));
390 return Log (X + Sqrt (X * X + 1.0));
401 (Y : Float_Type'Base;
402 X : Float_Type'Base := 1.0)
403 return Float_Type'Base
409 raise Argument_Error;
415 return Pi * Float_Type'Copy_Sign (1.0, Y);
426 return Local_Atan (Y, X);
433 (Y : Float_Type'Base;
434 X : Float_Type'Base := 1.0;
435 Cycle : Float_Type'Base)
436 return Float_Type'Base
440 raise Argument_Error;
445 raise Argument_Error;
451 return Cycle / 2.0 * Float_Type'Copy_Sign (1.0, Y);
462 return Local_Atan (Y, X) * Cycle / Two_Pi;
470 function Arctanh (X : Float_Type'Base) return Float_Type'Base is
471 A, B, D, A_Plus_1, A_From_1 : Float_Type'Base;
472 Mantissa : constant Integer := Float_Type'Base'Machine_Mantissa
;
475 -- The naive formula:
477 -- Arctanh (X) := (1/2) * Log (1 + X) / (1 - X)
479 -- is not well-behaved numerically when X < 0.5 and when X is close
480 -- to one. The following is accurate but probably not optimal.
483 raise Constraint_Error
;
485 elsif abs X
>= 1.0 - 2.0 ** (-Mantissa
) then
488 raise Argument_Error
;
491 -- The one case that overflows if put through the method below:
492 -- abs X = 1.0 - Epsilon. In this case (1/2) log (2/Epsilon) is
493 -- accurate. This simplifies to:
495 return Float_Type
'Copy_Sign (
496 Half_Log_Two
* Float_Type
'Base (Mantissa
+ 1), X
);
499 -- elsif abs X <= 0.5 then
500 -- why is above line commented out ???
503 -- Use several piecewise linear approximations.
504 -- A is close to X, chosen so 1.0 + A, 1.0 - A, and X - A are exact.
505 -- The two scalings remove the low-order bits of X.
507 A
:= Float_Type
'Base'Scaling (
508 Float_Type'Base (Long_Long_Integer
509 (Float_Type'Base'Scaling
(X
, Mantissa
- 1))), 1 - Mantissa
);
511 B
:= X
- A
; -- This is exact; abs B <= 2**(-Mantissa).
512 A_Plus_1
:= 1.0 + A
; -- This is exact.
513 A_From_1
:= 1.0 - A
; -- Ditto.
514 D
:= A_Plus_1
* A_From_1
; -- 1 - A*A.
516 -- use one term of the series expansion:
517 -- f (x + e) = f(x) + e * f'(x) + ..
519 -- The derivative of Arctanh at A is 1/(1-A*A). Next term is
520 -- A*(B/D)**2 (if a quadratic approximation is ever needed).
522 return 0.5 * (Log
(A_Plus_1
) - Log
(A_From_1
)) + B
/ D
;
525 -- return 0.5 * Log ((X + 1.0) / (1.0 - X));
526 -- why are above lines commented out ???
536 function Cos
(X
: Float_Type
'Base) return Float_Type
'Base is
541 elsif abs X
< Sqrt_Epsilon
then
546 return Float_Type
'Base (Aux
.Cos
(Double
(X
)));
551 function Cos
(X
, Cycle
: Float_Type
'Base) return Float_Type
'Base is
553 -- Just reuse the code for Sin. The potential small
554 -- loss of speed is negligible with proper (front-end) inlining.
556 return -Sin
(abs X
- Cycle
* 0.25, Cycle
);
563 function Cosh
(X
: Float_Type
'Base) return Float_Type
'Base is
564 Lnv
: constant Float_Type
'Base := 8#
0.542714#
;
565 V2minus1
: constant Float_Type
'Base := 0.13830_27787_96019_02638E
-4
;
566 Y
: Float_Type
'Base := abs X
;
570 if Y
< Sqrt_Epsilon
then
573 elsif Y
> Log_Inverse_Epsilon
then
574 Z
:= Exp_Strict
(Y
- Lnv
);
575 return (Z
+ V2minus1
* Z
);
579 return 0.5 * (Z
+ 1.0 / Z
);
590 function Cot
(X
: Float_Type
'Base) return Float_Type
'Base is
593 raise Constraint_Error
;
595 elsif abs X
< Sqrt_Epsilon
then
599 return 1.0 / Float_Type
'Base (Aux
.Tan
(Double
(X
)));
604 function Cot
(X
, Cycle
: Float_Type
'Base) return Float_Type
'Base is
609 raise Argument_Error
;
612 T
:= Float_Type
'Base'Remainder (X, Cycle);
614 if T = 0.0 or abs T = 0.5 * Cycle then
615 raise Constraint_Error;
617 elsif abs T < Sqrt_Epsilon then
620 elsif abs T = 0.25 * Cycle then
624 T := T / Cycle * Two_Pi;
625 return Cos (T) / Sin (T);
633 function Coth (X : Float_Type'Base) return Float_Type'Base is
636 raise Constraint_Error;
638 elsif X < Half_Log_Epsilon then
641 elsif X > -Half_Log_Epsilon then
644 elsif abs X < Sqrt_Epsilon then
648 return 1.0 / Float_Type'Base (Aux.Tanh (Double (X)));
655 function Exp (X : Float_Type'Base) return Float_Type'Base is
656 Result : Float_Type'Base;
663 Result := Float_Type'Base (Aux.Exp (Double (X)));
665 -- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
666 -- is False, then we can just leave it as an infinity (and indeed we
667 -- prefer to do so). But if Machine_Overflows is True, then we have
668 -- to raise a Constraint_Error exception as required by the RM.
670 if Float_Type'Machine_Overflows and then not Result'Valid then
671 raise Constraint_Error;
681 function Exp_Strict (X : Float_Type'Base) return Float_Type'Base is
685 P0 : constant := 0.25000_00000_00000_00000;
686 P1 : constant := 0.75753_18015_94227_76666E-2;
687 P2 : constant := 0.31555_19276_56846_46356E-4;
689 Q0 : constant := 0.5;
690 Q1 : constant := 0.56817_30269_85512_21787E-1;
691 Q2 : constant := 0.63121_89437_43985_02557E-3;
692 Q3 : constant := 0.75104_02839_98700_46114E-6;
694 C1 : constant := 8#0.543#;
695 C2 : constant := -2.1219_44400_54690_58277E-4;
696 Le : constant := 1.4426_95040_88896_34074;
698 XN : Float_Type'Base;
699 P, Q, R : Float_Type'Base;
706 XN := Float_Type'Base'Rounding
(X
* Le
);
707 G
:= (X
- XN
* C1
) - XN
* C2
;
709 P
:= G
* ((P2
* Z
+ P1
) * Z
+ P0
);
710 Q
:= ((Q3
* Z
+ Q2
) * Z
+ Q1
) * Z
+ Q0
;
711 R
:= 0.5 + P
/ (Q
- P
);
713 R
:= Float_Type
'Base'Scaling (R, Integer (XN) + 1);
715 -- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
716 -- is False, then we can just leave it as an infinity (and indeed we
717 -- prefer to do so). But if Machine_Overflows is True, then we have
718 -- to raise a Constraint_Error exception as required by the RM.
720 if Float_Type'Machine_Overflows and then not R'Valid then
721 raise Constraint_Error;
733 (Y : Float_Type'Base;
734 X : Float_Type'Base := 1.0)
735 return Float_Type'Base
738 Raw_Atan : Float_Type'Base;
741 if abs Y > abs X then
747 if Z < Sqrt_Epsilon then
751 Raw_Atan := Pi / 4.0;
754 Raw_Atan := Float_Type'Base (Aux.Atan (Double (Z)));
757 if abs Y > abs X then
758 Raw_Atan := Half_Pi - Raw_Atan;
770 return Pi - Raw_Atan;
772 return -(Pi - Raw_Atan);
783 function Log (X : Float_Type'Base) return Float_Type'Base is
786 raise Argument_Error;
789 raise Constraint_Error;
795 return Float_Type'Base (Aux.Log (Double (X)));
800 function Log (X, Base : Float_Type'Base) return Float_Type'Base is
803 raise Argument_Error;
805 elsif Base <= 0.0 or else Base = 1.0 then
806 raise Argument_Error;
809 raise Constraint_Error;
815 return Float_Type'Base (Aux.Log (Double (X)) / Aux.Log (Double (Base)));
824 function Sin (X : Float_Type'Base) return Float_Type'Base is
826 if abs X < Sqrt_Epsilon then
830 return Float_Type'Base (Aux.Sin (Double (X)));
835 function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base is
840 raise Argument_Error;
843 -- Is this test really needed on any machine ???
847 T := Float_Type'Base'Remainder
(X
, Cycle
);
849 -- The following two reductions reduce the argument
850 -- to the interval [-0.25 * Cycle, 0.25 * Cycle].
851 -- This reduction is exact and is needed to prevent
852 -- inaccuracy that may result if the sinus function
853 -- a different (more accurate) value of Pi in its
854 -- reduction than is used in the multiplication with Two_Pi.
856 if abs T
> 0.25 * Cycle
then
857 T
:= 0.5 * Float_Type
'Copy_Sign (Cycle
, T
) - T
;
860 -- Could test for 12.0 * abs T = Cycle, and return
861 -- an exact value in those cases. It is not clear that
862 -- this is worth the extra test though.
864 return Float_Type
'Base (Aux
.Sin
(Double
(T
/ Cycle
* Two_Pi
)));
871 function Sinh
(X
: Float_Type
'Base) return Float_Type
'Base is
872 Lnv
: constant Float_Type
'Base := 8#
0.542714#
;
873 V2minus1
: constant Float_Type
'Base := 0.13830_27787_96019_02638E
-4
;
874 Y
: Float_Type
'Base := abs X
;
875 F
: constant Float_Type
'Base := Y
* Y
;
878 Float_Digits_1_6
: constant Boolean := Float_Type
'Digits < 7;
881 if Y
< Sqrt_Epsilon
then
884 elsif Y
> Log_Inverse_Epsilon
then
885 Z
:= Exp_Strict
(Y
- Lnv
);
886 Z
:= Z
+ V2minus1
* Z
;
890 if Float_Digits_1_6
then
892 -- Use expansion provided by Cody and Waite, p. 226. Note that
893 -- leading term of the polynomial in Q is exactly 1.0.
896 P0
: constant := -0.71379_3159E
+1
;
897 P1
: constant := -0.19033_3399E
+0
;
898 Q0
: constant := -0.42827_7109E
+2
;
901 Z
:= Y
+ Y
* F
* (P1
* F
+ P0
) / (F
+ Q0
);
906 P0
: constant := -0.35181_28343_01771_17881E
+6
;
907 P1
: constant := -0.11563_52119_68517_68270E
+5
;
908 P2
: constant := -0.16375_79820_26307_51372E
+3
;
909 P3
: constant := -0.78966_12741_73570_99479E
+0
;
910 Q0
: constant := -0.21108_77005_81062_71242E
+7
;
911 Q1
: constant := 0.36162_72310_94218_36460E
+5
;
912 Q2
: constant := -0.27773_52311_96507_01667E
+3
;
915 Z
:= Y
+ Y
* F
* (((P3
* F
+ P2
) * F
+ P1
) * F
+ P0
)
916 / (((F
+ Q2
) * F
+ Q1
) * F
+ Q0
);
922 Z
:= 0.5 * (Z
- 1.0 / Z
);
936 function Sqrt
(X
: Float_Type
'Base) return Float_Type
'Base is
939 raise Argument_Error
;
941 -- Special case Sqrt (0.0) to preserve possible minus sign per IEEE
948 return Float_Type
'Base (Aux
.Sqrt
(Double
(X
)));
957 function Tan
(X
: Float_Type
'Base) return Float_Type
'Base is
959 if abs X
< Sqrt_Epsilon
then
962 elsif abs X
= Pi
/ 2.0 then
963 raise Constraint_Error
;
966 return Float_Type
'Base (Aux
.Tan
(Double
(X
)));
971 function Tan
(X
, Cycle
: Float_Type
'Base) return Float_Type
'Base is
976 raise Argument_Error
;
982 T
:= Float_Type
'Base'Remainder (X, Cycle);
984 if abs T = 0.25 * Cycle then
985 raise Constraint_Error;
987 elsif abs T = 0.5 * Cycle then
991 T := T / Cycle * Two_Pi;
992 return Sin (T) / Cos (T);
1001 function Tanh (X : Float_Type'Base) return Float_Type'Base is
1002 P0 : constant Float_Type'Base := -0.16134_11902E4;
1003 P1 : constant Float_Type'Base := -0.99225_92967E2;
1004 P2 : constant Float_Type'Base := -0.96437_49299E0;
1006 Q0 : constant Float_Type'Base := 0.48402_35707E4;
1007 Q1 : constant Float_Type'Base := 0.22337_72071E4;
1008 Q2 : constant Float_Type'Base := 0.11274_47438E3;
1009 Q3 : constant Float_Type'Base := 0.10000000000E1;
1011 Half_Ln3 : constant Float_Type'Base := 0.54930_61443;
1013 P, Q, R : Float_Type'Base;
1014 Y : Float_Type'Base := abs X;
1015 G : Float_Type'Base := Y * Y;
1017 Float_Type_Digits_15_Or_More : constant Boolean :=
1018 Float_Type'Digits > 14;
1021 if X < Half_Log_Epsilon then
1024 elsif X > -Half_Log_Epsilon then
1027 elsif Y < Sqrt_Epsilon then
1031 and then Float_Type_Digits_15_Or_More
1033 P := (P2 * G + P1) * G + P0;
1034 Q := ((Q3 * G + Q2) * G + Q1) * G + Q0;
1039 return Float_Type'Base (Aux.Tanh (Double (X)));
1043 end Ada.Numerics.Generic_Elementary_Functions;