* c-parser.c (c_parser_for_statement): Initialize incr.
[official-gcc.git] / gcc / tree-ssa-loop-prefetch.c
blob3fd834cf998212b723f52283bf6bcba566cf315f
1 /* Array prefetching.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "output.h"
28 #include "tree-pretty-print.h"
29 #include "tree-flow.h"
30 #include "tree-dump.h"
31 #include "timevar.h"
32 #include "cfgloop.h"
33 #include "tree-pass.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "hashtab.h"
37 #include "tree-chrec.h"
38 #include "tree-scalar-evolution.h"
39 #include "diagnostic-core.h"
40 #include "toplev.h"
41 #include "params.h"
42 #include "langhooks.h"
43 #include "tree-inline.h"
44 #include "tree-data-ref.h"
47 /* FIXME: Needed for optabs, but this should all be moved to a TBD interface
48 between the GIMPLE and RTL worlds. */
49 #include "expr.h"
50 #include "optabs.h"
52 /* This pass inserts prefetch instructions to optimize cache usage during
53 accesses to arrays in loops. It processes loops sequentially and:
55 1) Gathers all memory references in the single loop.
56 2) For each of the references it decides when it is profitable to prefetch
57 it. To do it, we evaluate the reuse among the accesses, and determines
58 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
59 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
60 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
61 iterations of the loop that are zero modulo PREFETCH_MOD). For example
62 (assuming cache line size is 64 bytes, char has size 1 byte and there
63 is no hardware sequential prefetch):
65 char *a;
66 for (i = 0; i < max; i++)
68 a[255] = ...; (0)
69 a[i] = ...; (1)
70 a[i + 64] = ...; (2)
71 a[16*i] = ...; (3)
72 a[187*i] = ...; (4)
73 a[187*i + 50] = ...; (5)
76 (0) obviously has PREFETCH_BEFORE 1
77 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
78 location 64 iterations before it, and PREFETCH_MOD 64 (since
79 it hits the same cache line otherwise).
80 (2) has PREFETCH_MOD 64
81 (3) has PREFETCH_MOD 4
82 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
83 the cache line accessed by (5) is the same with probability only
84 7/32.
85 (5) has PREFETCH_MOD 1 as well.
87 Additionally, we use data dependence analysis to determine for each
88 reference the distance till the first reuse; this information is used
89 to determine the temporality of the issued prefetch instruction.
91 3) We determine how much ahead we need to prefetch. The number of
92 iterations needed is time to fetch / time spent in one iteration of
93 the loop. The problem is that we do not know either of these values,
94 so we just make a heuristic guess based on a magic (possibly)
95 target-specific constant and size of the loop.
97 4) Determine which of the references we prefetch. We take into account
98 that there is a maximum number of simultaneous prefetches (provided
99 by machine description). We prefetch as many prefetches as possible
100 while still within this bound (starting with those with lowest
101 prefetch_mod, since they are responsible for most of the cache
102 misses).
104 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
105 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
106 prefetching nonaccessed memory.
107 TODO -- actually implement peeling.
109 6) We actually emit the prefetch instructions. ??? Perhaps emit the
110 prefetch instructions with guards in cases where 5) was not sufficient
111 to satisfy the constraints?
113 A cost model is implemented to determine whether or not prefetching is
114 profitable for a given loop. The cost model has three heuristics:
116 1. Function trip_count_to_ahead_ratio_too_small_p implements a
117 heuristic that determines whether or not the loop has too few
118 iterations (compared to ahead). Prefetching is not likely to be
119 beneficial if the trip count to ahead ratio is below a certain
120 minimum.
122 2. Function mem_ref_count_reasonable_p implements a heuristic that
123 determines whether the given loop has enough CPU ops that can be
124 overlapped with cache missing memory ops. If not, the loop
125 won't benefit from prefetching. In the implementation,
126 prefetching is not considered beneficial if the ratio between
127 the instruction count and the mem ref count is below a certain
128 minimum.
130 3. Function insn_to_prefetch_ratio_too_small_p implements a
131 heuristic that disables prefetching in a loop if the prefetching
132 cost is above a certain limit. The relative prefetching cost is
133 estimated by taking the ratio between the prefetch count and the
134 total intruction count (this models the I-cache cost).
136 The limits used in these heuristics are defined as parameters with
137 reasonable default values. Machine-specific default values will be
138 added later.
140 Some other TODO:
141 -- write and use more general reuse analysis (that could be also used
142 in other cache aimed loop optimizations)
143 -- make it behave sanely together with the prefetches given by user
144 (now we just ignore them; at the very least we should avoid
145 optimizing loops in that user put his own prefetches)
146 -- we assume cache line size alignment of arrays; this could be
147 improved. */
149 /* Magic constants follow. These should be replaced by machine specific
150 numbers. */
152 /* True if write can be prefetched by a read prefetch. */
154 #ifndef WRITE_CAN_USE_READ_PREFETCH
155 #define WRITE_CAN_USE_READ_PREFETCH 1
156 #endif
158 /* True if read can be prefetched by a write prefetch. */
160 #ifndef READ_CAN_USE_WRITE_PREFETCH
161 #define READ_CAN_USE_WRITE_PREFETCH 0
162 #endif
164 /* The size of the block loaded by a single prefetch. Usually, this is
165 the same as cache line size (at the moment, we only consider one level
166 of cache hierarchy). */
168 #ifndef PREFETCH_BLOCK
169 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
170 #endif
172 /* Do we have a forward hardware sequential prefetching? */
174 #ifndef HAVE_FORWARD_PREFETCH
175 #define HAVE_FORWARD_PREFETCH 0
176 #endif
178 /* Do we have a backward hardware sequential prefetching? */
180 #ifndef HAVE_BACKWARD_PREFETCH
181 #define HAVE_BACKWARD_PREFETCH 0
182 #endif
184 /* In some cases we are only able to determine that there is a certain
185 probability that the two accesses hit the same cache line. In this
186 case, we issue the prefetches for both of them if this probability
187 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
189 #ifndef ACCEPTABLE_MISS_RATE
190 #define ACCEPTABLE_MISS_RATE 50
191 #endif
193 #ifndef HAVE_prefetch
194 #define HAVE_prefetch 0
195 #endif
197 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
198 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
200 /* We consider a memory access nontemporal if it is not reused sooner than
201 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
202 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
203 so that we use nontemporal prefetches e.g. if single memory location
204 is accessed several times in a single iteration of the loop. */
205 #define NONTEMPORAL_FRACTION 16
207 /* In case we have to emit a memory fence instruction after the loop that
208 uses nontemporal stores, this defines the builtin to use. */
210 #ifndef FENCE_FOLLOWING_MOVNT
211 #define FENCE_FOLLOWING_MOVNT NULL_TREE
212 #endif
214 /* It is not profitable to prefetch when the trip count is not at
215 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
216 For example, in a loop with a prefetch ahead distance of 10,
217 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
218 profitable to prefetch when the trip count is greater or equal to
219 40. In that case, 30 out of the 40 iterations will benefit from
220 prefetching. */
222 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
223 #define TRIP_COUNT_TO_AHEAD_RATIO 4
224 #endif
226 /* The group of references between that reuse may occur. */
228 struct mem_ref_group
230 tree base; /* Base of the reference. */
231 tree step; /* Step of the reference. */
232 struct mem_ref *refs; /* References in the group. */
233 struct mem_ref_group *next; /* Next group of references. */
236 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
238 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
240 /* Do not generate a prefetch if the unroll factor is significantly less
241 than what is required by the prefetch. This is to avoid redundant
242 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
243 2, prefetching requires unrolling the loop 16 times, but
244 the loop is actually unrolled twice. In this case (ratio = 8),
245 prefetching is not likely to be beneficial. */
247 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
248 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
249 #endif
251 /* Some of the prefetch computations have quadratic complexity. We want to
252 avoid huge compile times and, therefore, want to limit the amount of
253 memory references per loop where we consider prefetching. */
255 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
256 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
257 #endif
259 /* The memory reference. */
261 struct mem_ref
263 gimple stmt; /* Statement in that the reference appears. */
264 tree mem; /* The reference. */
265 HOST_WIDE_INT delta; /* Constant offset of the reference. */
266 struct mem_ref_group *group; /* The group of references it belongs to. */
267 unsigned HOST_WIDE_INT prefetch_mod;
268 /* Prefetch only each PREFETCH_MOD-th
269 iteration. */
270 unsigned HOST_WIDE_INT prefetch_before;
271 /* Prefetch only first PREFETCH_BEFORE
272 iterations. */
273 unsigned reuse_distance; /* The amount of data accessed before the first
274 reuse of this value. */
275 struct mem_ref *next; /* The next reference in the group. */
276 unsigned write_p : 1; /* Is it a write? */
277 unsigned independent_p : 1; /* True if the reference is independent on
278 all other references inside the loop. */
279 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
280 unsigned storent_p : 1; /* True if we changed the store to a
281 nontemporal one. */
284 /* Dumps information about reference REF to FILE. */
286 static void
287 dump_mem_ref (FILE *file, struct mem_ref *ref)
289 fprintf (file, "Reference %p:\n", (void *) ref);
291 fprintf (file, " group %p (base ", (void *) ref->group);
292 print_generic_expr (file, ref->group->base, TDF_SLIM);
293 fprintf (file, ", step ");
294 if (cst_and_fits_in_hwi (ref->group->step))
295 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (ref->group->step));
296 else
297 print_generic_expr (file, ref->group->step, TDF_TREE);
298 fprintf (file, ")\n");
300 fprintf (file, " delta ");
301 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
302 fprintf (file, "\n");
304 fprintf (file, " %s\n", ref->write_p ? "write" : "read");
306 fprintf (file, "\n");
309 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
310 exist. */
312 static struct mem_ref_group *
313 find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
315 struct mem_ref_group *group;
317 for (; *groups; groups = &(*groups)->next)
319 if (operand_equal_p ((*groups)->step, step, 0)
320 && operand_equal_p ((*groups)->base, base, 0))
321 return *groups;
323 /* If step is an integer constant, keep the list of groups sorted
324 by decreasing step. */
325 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
326 && int_cst_value ((*groups)->step) < int_cst_value (step))
327 break;
330 group = XNEW (struct mem_ref_group);
331 group->base = base;
332 group->step = step;
333 group->refs = NULL;
334 group->next = *groups;
335 *groups = group;
337 return group;
340 /* Records a memory reference MEM in GROUP with offset DELTA and write status
341 WRITE_P. The reference occurs in statement STMT. */
343 static void
344 record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
345 HOST_WIDE_INT delta, bool write_p)
347 struct mem_ref **aref;
349 /* Do not record the same address twice. */
350 for (aref = &group->refs; *aref; aref = &(*aref)->next)
352 /* It does not have to be possible for write reference to reuse the read
353 prefetch, or vice versa. */
354 if (!WRITE_CAN_USE_READ_PREFETCH
355 && write_p
356 && !(*aref)->write_p)
357 continue;
358 if (!READ_CAN_USE_WRITE_PREFETCH
359 && !write_p
360 && (*aref)->write_p)
361 continue;
363 if ((*aref)->delta == delta)
364 return;
367 (*aref) = XNEW (struct mem_ref);
368 (*aref)->stmt = stmt;
369 (*aref)->mem = mem;
370 (*aref)->delta = delta;
371 (*aref)->write_p = write_p;
372 (*aref)->prefetch_before = PREFETCH_ALL;
373 (*aref)->prefetch_mod = 1;
374 (*aref)->reuse_distance = 0;
375 (*aref)->issue_prefetch_p = false;
376 (*aref)->group = group;
377 (*aref)->next = NULL;
378 (*aref)->independent_p = false;
379 (*aref)->storent_p = false;
381 if (dump_file && (dump_flags & TDF_DETAILS))
382 dump_mem_ref (dump_file, *aref);
385 /* Release memory references in GROUPS. */
387 static void
388 release_mem_refs (struct mem_ref_group *groups)
390 struct mem_ref_group *next_g;
391 struct mem_ref *ref, *next_r;
393 for (; groups; groups = next_g)
395 next_g = groups->next;
396 for (ref = groups->refs; ref; ref = next_r)
398 next_r = ref->next;
399 free (ref);
401 free (groups);
405 /* A structure used to pass arguments to idx_analyze_ref. */
407 struct ar_data
409 struct loop *loop; /* Loop of the reference. */
410 gimple stmt; /* Statement of the reference. */
411 tree *step; /* Step of the memory reference. */
412 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
415 /* Analyzes a single INDEX of a memory reference to obtain information
416 described at analyze_ref. Callback for for_each_index. */
418 static bool
419 idx_analyze_ref (tree base, tree *index, void *data)
421 struct ar_data *ar_data = (struct ar_data *) data;
422 tree ibase, step, stepsize;
423 HOST_WIDE_INT idelta = 0, imult = 1;
424 affine_iv iv;
426 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
427 *index, &iv, true))
428 return false;
429 ibase = iv.base;
430 step = iv.step;
432 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
433 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
435 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
436 ibase = TREE_OPERAND (ibase, 0);
438 if (cst_and_fits_in_hwi (ibase))
440 idelta += int_cst_value (ibase);
441 ibase = build_int_cst (TREE_TYPE (ibase), 0);
444 if (TREE_CODE (base) == ARRAY_REF)
446 stepsize = array_ref_element_size (base);
447 if (!cst_and_fits_in_hwi (stepsize))
448 return false;
449 imult = int_cst_value (stepsize);
450 step = fold_build2 (MULT_EXPR, sizetype,
451 fold_convert (sizetype, step),
452 fold_convert (sizetype, stepsize));
453 idelta *= imult;
456 if (*ar_data->step == NULL_TREE)
457 *ar_data->step = step;
458 else
459 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
460 fold_convert (sizetype, *ar_data->step),
461 fold_convert (sizetype, step));
462 *ar_data->delta += idelta;
463 *index = ibase;
465 return true;
468 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
469 STEP are integer constants and iter is number of iterations of LOOP. The
470 reference occurs in statement STMT. Strips nonaddressable component
471 references from REF_P. */
473 static bool
474 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
475 tree *step, HOST_WIDE_INT *delta,
476 gimple stmt)
478 struct ar_data ar_data;
479 tree off;
480 HOST_WIDE_INT bit_offset;
481 tree ref = *ref_p;
483 *step = NULL_TREE;
484 *delta = 0;
486 /* First strip off the component references. Ignore bitfields.
487 Also strip off the real and imagine parts of a complex, so that
488 they can have the same base. */
489 if (TREE_CODE (ref) == REALPART_EXPR
490 || TREE_CODE (ref) == IMAGPART_EXPR
491 || (TREE_CODE (ref) == COMPONENT_REF
492 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
494 if (TREE_CODE (ref) == IMAGPART_EXPR)
495 *delta += int_size_in_bytes (TREE_TYPE (ref));
496 ref = TREE_OPERAND (ref, 0);
499 *ref_p = ref;
501 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
503 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
504 bit_offset = TREE_INT_CST_LOW (off);
505 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
507 *delta += bit_offset / BITS_PER_UNIT;
510 *base = unshare_expr (ref);
511 ar_data.loop = loop;
512 ar_data.stmt = stmt;
513 ar_data.step = step;
514 ar_data.delta = delta;
515 return for_each_index (base, idx_analyze_ref, &ar_data);
518 /* Record a memory reference REF to the list REFS. The reference occurs in
519 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
520 reference was recorded, false otherwise. */
522 static bool
523 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
524 tree ref, bool write_p, gimple stmt)
526 tree base, step;
527 HOST_WIDE_INT delta;
528 struct mem_ref_group *agrp;
530 if (get_base_address (ref) == NULL)
531 return false;
533 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
534 return false;
535 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
536 if (step == NULL_TREE)
537 return false;
539 /* Stop if the address of BASE could not be taken. */
540 if (may_be_nonaddressable_p (base))
541 return false;
543 /* Limit non-constant step prefetching only to the innermost loops. */
544 if (!cst_and_fits_in_hwi (step) && loop->inner != NULL)
545 return false;
547 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
548 are integer constants. */
549 agrp = find_or_create_group (refs, base, step);
550 record_ref (agrp, stmt, ref, delta, write_p);
552 return true;
555 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
556 true if there are no other memory references inside the loop. */
558 static struct mem_ref_group *
559 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
561 basic_block *body = get_loop_body_in_dom_order (loop);
562 basic_block bb;
563 unsigned i;
564 gimple_stmt_iterator bsi;
565 gimple stmt;
566 tree lhs, rhs;
567 struct mem_ref_group *refs = NULL;
569 *no_other_refs = true;
570 *ref_count = 0;
572 /* Scan the loop body in order, so that the former references precede the
573 later ones. */
574 for (i = 0; i < loop->num_nodes; i++)
576 bb = body[i];
577 if (bb->loop_father != loop)
578 continue;
580 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
582 stmt = gsi_stmt (bsi);
584 if (gimple_code (stmt) != GIMPLE_ASSIGN)
586 if (gimple_vuse (stmt)
587 || (is_gimple_call (stmt)
588 && !(gimple_call_flags (stmt) & ECF_CONST)))
589 *no_other_refs = false;
590 continue;
593 lhs = gimple_assign_lhs (stmt);
594 rhs = gimple_assign_rhs1 (stmt);
596 if (REFERENCE_CLASS_P (rhs))
598 *no_other_refs &= gather_memory_references_ref (loop, &refs,
599 rhs, false, stmt);
600 *ref_count += 1;
602 if (REFERENCE_CLASS_P (lhs))
604 *no_other_refs &= gather_memory_references_ref (loop, &refs,
605 lhs, true, stmt);
606 *ref_count += 1;
610 free (body);
612 return refs;
615 /* Prune the prefetch candidate REF using the self-reuse. */
617 static void
618 prune_ref_by_self_reuse (struct mem_ref *ref)
620 HOST_WIDE_INT step;
621 bool backward;
623 /* If the step size is non constant, we cannot calculate prefetch_mod. */
624 if (!cst_and_fits_in_hwi (ref->group->step))
625 return;
627 step = int_cst_value (ref->group->step);
629 backward = step < 0;
631 if (step == 0)
633 /* Prefetch references to invariant address just once. */
634 ref->prefetch_before = 1;
635 return;
638 if (backward)
639 step = -step;
641 if (step > PREFETCH_BLOCK)
642 return;
644 if ((backward && HAVE_BACKWARD_PREFETCH)
645 || (!backward && HAVE_FORWARD_PREFETCH))
647 ref->prefetch_before = 1;
648 return;
651 ref->prefetch_mod = PREFETCH_BLOCK / step;
654 /* Divides X by BY, rounding down. */
656 static HOST_WIDE_INT
657 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
659 gcc_assert (by > 0);
661 if (x >= 0)
662 return x / by;
663 else
664 return (x + by - 1) / by;
667 /* Given a CACHE_LINE_SIZE and two inductive memory references
668 with a common STEP greater than CACHE_LINE_SIZE and an address
669 difference DELTA, compute the probability that they will fall
670 in different cache lines. Return true if the computed miss rate
671 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
672 number of distinct iterations after which the pattern repeats itself.
673 ALIGN_UNIT is the unit of alignment in bytes. */
675 static bool
676 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
677 HOST_WIDE_INT step, HOST_WIDE_INT delta,
678 unsigned HOST_WIDE_INT distinct_iters,
679 int align_unit)
681 unsigned align, iter;
682 int total_positions, miss_positions, max_allowed_miss_positions;
683 int address1, address2, cache_line1, cache_line2;
685 /* It always misses if delta is greater than or equal to the cache
686 line size. */
687 if (delta >= (HOST_WIDE_INT) cache_line_size)
688 return false;
690 miss_positions = 0;
691 total_positions = (cache_line_size / align_unit) * distinct_iters;
692 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
694 /* Iterate through all possible alignments of the first
695 memory reference within its cache line. */
696 for (align = 0; align < cache_line_size; align += align_unit)
698 /* Iterate through all distinct iterations. */
699 for (iter = 0; iter < distinct_iters; iter++)
701 address1 = align + step * iter;
702 address2 = address1 + delta;
703 cache_line1 = address1 / cache_line_size;
704 cache_line2 = address2 / cache_line_size;
705 if (cache_line1 != cache_line2)
707 miss_positions += 1;
708 if (miss_positions > max_allowed_miss_positions)
709 return false;
712 return true;
715 /* Prune the prefetch candidate REF using the reuse with BY.
716 If BY_IS_BEFORE is true, BY is before REF in the loop. */
718 static void
719 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
720 bool by_is_before)
722 HOST_WIDE_INT step;
723 bool backward;
724 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
725 HOST_WIDE_INT delta = delta_b - delta_r;
726 HOST_WIDE_INT hit_from;
727 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
728 HOST_WIDE_INT reduced_step;
729 unsigned HOST_WIDE_INT reduced_prefetch_block;
730 tree ref_type;
731 int align_unit;
733 /* If the step is non constant we cannot calculate prefetch_before. */
734 if (!cst_and_fits_in_hwi (ref->group->step)) {
735 return;
738 step = int_cst_value (ref->group->step);
740 backward = step < 0;
743 if (delta == 0)
745 /* If the references has the same address, only prefetch the
746 former. */
747 if (by_is_before)
748 ref->prefetch_before = 0;
750 return;
753 if (!step)
755 /* If the reference addresses are invariant and fall into the
756 same cache line, prefetch just the first one. */
757 if (!by_is_before)
758 return;
760 if (ddown (ref->delta, PREFETCH_BLOCK)
761 != ddown (by->delta, PREFETCH_BLOCK))
762 return;
764 ref->prefetch_before = 0;
765 return;
768 /* Only prune the reference that is behind in the array. */
769 if (backward)
771 if (delta > 0)
772 return;
774 /* Transform the data so that we may assume that the accesses
775 are forward. */
776 delta = - delta;
777 step = -step;
778 delta_r = PREFETCH_BLOCK - 1 - delta_r;
779 delta_b = PREFETCH_BLOCK - 1 - delta_b;
781 else
783 if (delta < 0)
784 return;
787 /* Check whether the two references are likely to hit the same cache
788 line, and how distant the iterations in that it occurs are from
789 each other. */
791 if (step <= PREFETCH_BLOCK)
793 /* The accesses are sure to meet. Let us check when. */
794 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
795 prefetch_before = (hit_from - delta_r + step - 1) / step;
797 /* Do not reduce prefetch_before if we meet beyond cache size. */
798 if (prefetch_before > (unsigned) abs (L2_CACHE_SIZE_BYTES / step))
799 prefetch_before = PREFETCH_ALL;
800 if (prefetch_before < ref->prefetch_before)
801 ref->prefetch_before = prefetch_before;
803 return;
806 /* A more complicated case with step > prefetch_block. First reduce
807 the ratio between the step and the cache line size to its simplest
808 terms. The resulting denominator will then represent the number of
809 distinct iterations after which each address will go back to its
810 initial location within the cache line. This computation assumes
811 that PREFETCH_BLOCK is a power of two. */
812 prefetch_block = PREFETCH_BLOCK;
813 reduced_prefetch_block = prefetch_block;
814 reduced_step = step;
815 while ((reduced_step & 1) == 0
816 && reduced_prefetch_block > 1)
818 reduced_step >>= 1;
819 reduced_prefetch_block >>= 1;
822 prefetch_before = delta / step;
823 delta %= step;
824 ref_type = TREE_TYPE (ref->mem);
825 align_unit = TYPE_ALIGN (ref_type) / 8;
826 if (is_miss_rate_acceptable (prefetch_block, step, delta,
827 reduced_prefetch_block, align_unit))
829 /* Do not reduce prefetch_before if we meet beyond cache size. */
830 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
831 prefetch_before = PREFETCH_ALL;
832 if (prefetch_before < ref->prefetch_before)
833 ref->prefetch_before = prefetch_before;
835 return;
838 /* Try also the following iteration. */
839 prefetch_before++;
840 delta = step - delta;
841 if (is_miss_rate_acceptable (prefetch_block, step, delta,
842 reduced_prefetch_block, align_unit))
844 if (prefetch_before < ref->prefetch_before)
845 ref->prefetch_before = prefetch_before;
847 return;
850 /* The ref probably does not reuse by. */
851 return;
854 /* Prune the prefetch candidate REF using the reuses with other references
855 in REFS. */
857 static void
858 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
860 struct mem_ref *prune_by;
861 bool before = true;
863 prune_ref_by_self_reuse (ref);
865 for (prune_by = refs; prune_by; prune_by = prune_by->next)
867 if (prune_by == ref)
869 before = false;
870 continue;
873 if (!WRITE_CAN_USE_READ_PREFETCH
874 && ref->write_p
875 && !prune_by->write_p)
876 continue;
877 if (!READ_CAN_USE_WRITE_PREFETCH
878 && !ref->write_p
879 && prune_by->write_p)
880 continue;
882 prune_ref_by_group_reuse (ref, prune_by, before);
886 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
888 static void
889 prune_group_by_reuse (struct mem_ref_group *group)
891 struct mem_ref *ref_pruned;
893 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
895 prune_ref_by_reuse (ref_pruned, group->refs);
897 if (dump_file && (dump_flags & TDF_DETAILS))
899 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
901 if (ref_pruned->prefetch_before == PREFETCH_ALL
902 && ref_pruned->prefetch_mod == 1)
903 fprintf (dump_file, " no restrictions");
904 else if (ref_pruned->prefetch_before == 0)
905 fprintf (dump_file, " do not prefetch");
906 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
907 fprintf (dump_file, " prefetch once");
908 else
910 if (ref_pruned->prefetch_before != PREFETCH_ALL)
912 fprintf (dump_file, " prefetch before ");
913 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
914 ref_pruned->prefetch_before);
916 if (ref_pruned->prefetch_mod != 1)
918 fprintf (dump_file, " prefetch mod ");
919 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
920 ref_pruned->prefetch_mod);
923 fprintf (dump_file, "\n");
928 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
930 static void
931 prune_by_reuse (struct mem_ref_group *groups)
933 for (; groups; groups = groups->next)
934 prune_group_by_reuse (groups);
937 /* Returns true if we should issue prefetch for REF. */
939 static bool
940 should_issue_prefetch_p (struct mem_ref *ref)
942 /* For now do not issue prefetches for only first few of the
943 iterations. */
944 if (ref->prefetch_before != PREFETCH_ALL)
946 if (dump_file && (dump_flags & TDF_DETAILS))
947 fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
948 (void *) ref);
949 return false;
952 /* Do not prefetch nontemporal stores. */
953 if (ref->storent_p)
955 if (dump_file && (dump_flags & TDF_DETAILS))
956 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
957 return false;
960 return true;
963 /* Decide which of the prefetch candidates in GROUPS to prefetch.
964 AHEAD is the number of iterations to prefetch ahead (which corresponds
965 to the number of simultaneous instances of one prefetch running at a
966 time). UNROLL_FACTOR is the factor by that the loop is going to be
967 unrolled. Returns true if there is anything to prefetch. */
969 static bool
970 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
971 unsigned ahead)
973 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
974 unsigned slots_per_prefetch;
975 struct mem_ref *ref;
976 bool any = false;
978 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
979 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
981 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
982 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
983 it will need a prefetch slot. */
984 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
985 if (dump_file && (dump_flags & TDF_DETAILS))
986 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
987 slots_per_prefetch);
989 /* For now we just take memory references one by one and issue
990 prefetches for as many as possible. The groups are sorted
991 starting with the largest step, since the references with
992 large step are more likely to cause many cache misses. */
994 for (; groups; groups = groups->next)
995 for (ref = groups->refs; ref; ref = ref->next)
997 if (!should_issue_prefetch_p (ref))
998 continue;
1000 /* The loop is far from being sufficiently unrolled for this
1001 prefetch. Do not generate prefetch to avoid many redudant
1002 prefetches. */
1003 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1004 continue;
1006 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
1007 and we unroll the loop UNROLL_FACTOR times, we need to insert
1008 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1009 iteration. */
1010 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1011 / ref->prefetch_mod);
1012 prefetch_slots = n_prefetches * slots_per_prefetch;
1014 /* If more than half of the prefetches would be lost anyway, do not
1015 issue the prefetch. */
1016 if (2 * remaining_prefetch_slots < prefetch_slots)
1017 continue;
1019 ref->issue_prefetch_p = true;
1021 if (remaining_prefetch_slots <= prefetch_slots)
1022 return true;
1023 remaining_prefetch_slots -= prefetch_slots;
1024 any = true;
1027 return any;
1030 /* Return TRUE if no prefetch is going to be generated in the given
1031 GROUPS. */
1033 static bool
1034 nothing_to_prefetch_p (struct mem_ref_group *groups)
1036 struct mem_ref *ref;
1038 for (; groups; groups = groups->next)
1039 for (ref = groups->refs; ref; ref = ref->next)
1040 if (should_issue_prefetch_p (ref))
1041 return false;
1043 return true;
1046 /* Estimate the number of prefetches in the given GROUPS.
1047 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
1049 static int
1050 estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
1052 struct mem_ref *ref;
1053 unsigned n_prefetches;
1054 int prefetch_count = 0;
1056 for (; groups; groups = groups->next)
1057 for (ref = groups->refs; ref; ref = ref->next)
1058 if (should_issue_prefetch_p (ref))
1060 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1061 / ref->prefetch_mod);
1062 prefetch_count += n_prefetches;
1065 return prefetch_count;
1068 /* Issue prefetches for the reference REF into loop as decided before.
1069 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
1070 is the factor by which LOOP was unrolled. */
1072 static void
1073 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1075 HOST_WIDE_INT delta;
1076 tree addr, addr_base, write_p, local, forward;
1077 gimple prefetch;
1078 gimple_stmt_iterator bsi;
1079 unsigned n_prefetches, ap;
1080 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
1082 if (dump_file && (dump_flags & TDF_DETAILS))
1083 fprintf (dump_file, "Issued%s prefetch for %p.\n",
1084 nontemporal ? " nontemporal" : "",
1085 (void *) ref);
1087 bsi = gsi_for_stmt (ref->stmt);
1089 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1090 / ref->prefetch_mod);
1091 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
1092 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1093 true, NULL, true, GSI_SAME_STMT);
1094 write_p = ref->write_p ? integer_one_node : integer_zero_node;
1095 local = nontemporal ? integer_zero_node : integer_three_node;
1097 for (ap = 0; ap < n_prefetches; ap++)
1099 if (cst_and_fits_in_hwi (ref->group->step))
1101 /* Determine the address to prefetch. */
1102 delta = (ahead + ap * ref->prefetch_mod) *
1103 int_cst_value (ref->group->step);
1104 addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node,
1105 addr_base, size_int (delta));
1106 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1107 true, GSI_SAME_STMT);
1109 else
1111 /* The step size is non-constant but loop-invariant. We use the
1112 heuristic to simply prefetch ahead iterations ahead. */
1113 forward = fold_build2 (MULT_EXPR, sizetype,
1114 fold_convert (sizetype, ref->group->step),
1115 fold_convert (sizetype, size_int (ahead)));
1116 addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node, addr_base,
1117 forward);
1118 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1119 NULL, true, GSI_SAME_STMT);
1121 /* Create the prefetch instruction. */
1122 prefetch = gimple_build_call (built_in_decls[BUILT_IN_PREFETCH],
1123 3, addr, write_p, local);
1124 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
1128 /* Issue prefetches for the references in GROUPS into loop as decided before.
1129 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1130 factor by that LOOP was unrolled. */
1132 static void
1133 issue_prefetches (struct mem_ref_group *groups,
1134 unsigned unroll_factor, unsigned ahead)
1136 struct mem_ref *ref;
1138 for (; groups; groups = groups->next)
1139 for (ref = groups->refs; ref; ref = ref->next)
1140 if (ref->issue_prefetch_p)
1141 issue_prefetch_ref (ref, unroll_factor, ahead);
1144 /* Returns true if REF is a memory write for that a nontemporal store insn
1145 can be used. */
1147 static bool
1148 nontemporal_store_p (struct mem_ref *ref)
1150 enum machine_mode mode;
1151 enum insn_code code;
1153 /* REF must be a write that is not reused. We require it to be independent
1154 on all other memory references in the loop, as the nontemporal stores may
1155 be reordered with respect to other memory references. */
1156 if (!ref->write_p
1157 || !ref->independent_p
1158 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1159 return false;
1161 /* Check that we have the storent instruction for the mode. */
1162 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1163 if (mode == BLKmode)
1164 return false;
1166 code = optab_handler (storent_optab, mode);
1167 return code != CODE_FOR_nothing;
1170 /* If REF is a nontemporal store, we mark the corresponding modify statement
1171 and return true. Otherwise, we return false. */
1173 static bool
1174 mark_nontemporal_store (struct mem_ref *ref)
1176 if (!nontemporal_store_p (ref))
1177 return false;
1179 if (dump_file && (dump_flags & TDF_DETAILS))
1180 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1181 (void *) ref);
1183 gimple_assign_set_nontemporal_move (ref->stmt, true);
1184 ref->storent_p = true;
1186 return true;
1189 /* Issue a memory fence instruction after LOOP. */
1191 static void
1192 emit_mfence_after_loop (struct loop *loop)
1194 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1195 edge exit;
1196 gimple call;
1197 gimple_stmt_iterator bsi;
1198 unsigned i;
1200 FOR_EACH_VEC_ELT (edge, exits, i, exit)
1202 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1204 if (!single_pred_p (exit->dest)
1205 /* If possible, we prefer not to insert the fence on other paths
1206 in cfg. */
1207 && !(exit->flags & EDGE_ABNORMAL))
1208 split_loop_exit_edge (exit);
1209 bsi = gsi_after_labels (exit->dest);
1211 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1212 mark_virtual_ops_for_renaming (call);
1215 VEC_free (edge, heap, exits);
1216 update_ssa (TODO_update_ssa_only_virtuals);
1219 /* Returns true if we can use storent in loop, false otherwise. */
1221 static bool
1222 may_use_storent_in_loop_p (struct loop *loop)
1224 bool ret = true;
1226 if (loop->inner != NULL)
1227 return false;
1229 /* If we must issue a mfence insn after using storent, check that there
1230 is a suitable place for it at each of the loop exits. */
1231 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1233 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1234 unsigned i;
1235 edge exit;
1237 FOR_EACH_VEC_ELT (edge, exits, i, exit)
1238 if ((exit->flags & EDGE_ABNORMAL)
1239 && exit->dest == EXIT_BLOCK_PTR)
1240 ret = false;
1242 VEC_free (edge, heap, exits);
1245 return ret;
1248 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1249 references in the loop. */
1251 static void
1252 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1254 struct mem_ref *ref;
1255 bool any = false;
1257 if (!may_use_storent_in_loop_p (loop))
1258 return;
1260 for (; groups; groups = groups->next)
1261 for (ref = groups->refs; ref; ref = ref->next)
1262 any |= mark_nontemporal_store (ref);
1264 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1265 emit_mfence_after_loop (loop);
1268 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1269 this is the case, fill in DESC by the description of number of
1270 iterations. */
1272 static bool
1273 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1274 unsigned factor)
1276 if (!can_unroll_loop_p (loop, factor, desc))
1277 return false;
1279 /* We only consider loops without control flow for unrolling. This is not
1280 a hard restriction -- tree_unroll_loop works with arbitrary loops
1281 as well; but the unrolling/prefetching is usually more profitable for
1282 loops consisting of a single basic block, and we want to limit the
1283 code growth. */
1284 if (loop->num_nodes > 2)
1285 return false;
1287 return true;
1290 /* Determine the coefficient by that unroll LOOP, from the information
1291 contained in the list of memory references REFS. Description of
1292 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1293 insns of the LOOP. EST_NITER is the estimated number of iterations of
1294 the loop, or -1 if no estimate is available. */
1296 static unsigned
1297 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1298 unsigned ninsns, struct tree_niter_desc *desc,
1299 HOST_WIDE_INT est_niter)
1301 unsigned upper_bound;
1302 unsigned nfactor, factor, mod_constraint;
1303 struct mem_ref_group *agp;
1304 struct mem_ref *ref;
1306 /* First check whether the loop is not too large to unroll. We ignore
1307 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1308 from unrolling them enough to make exactly one cache line covered by each
1309 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1310 us from unrolling the loops too many times in cases where we only expect
1311 gains from better scheduling and decreasing loop overhead, which is not
1312 the case here. */
1313 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1315 /* If we unrolled the loop more times than it iterates, the unrolled version
1316 of the loop would be never entered. */
1317 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1318 upper_bound = est_niter;
1320 if (upper_bound <= 1)
1321 return 1;
1323 /* Choose the factor so that we may prefetch each cache just once,
1324 but bound the unrolling by UPPER_BOUND. */
1325 factor = 1;
1326 for (agp = refs; agp; agp = agp->next)
1327 for (ref = agp->refs; ref; ref = ref->next)
1328 if (should_issue_prefetch_p (ref))
1330 mod_constraint = ref->prefetch_mod;
1331 nfactor = least_common_multiple (mod_constraint, factor);
1332 if (nfactor <= upper_bound)
1333 factor = nfactor;
1336 if (!should_unroll_loop_p (loop, desc, factor))
1337 return 1;
1339 return factor;
1342 /* Returns the total volume of the memory references REFS, taking into account
1343 reuses in the innermost loop and cache line size. TODO -- we should also
1344 take into account reuses across the iterations of the loops in the loop
1345 nest. */
1347 static unsigned
1348 volume_of_references (struct mem_ref_group *refs)
1350 unsigned volume = 0;
1351 struct mem_ref_group *gr;
1352 struct mem_ref *ref;
1354 for (gr = refs; gr; gr = gr->next)
1355 for (ref = gr->refs; ref; ref = ref->next)
1357 /* Almost always reuses another value? */
1358 if (ref->prefetch_before != PREFETCH_ALL)
1359 continue;
1361 /* If several iterations access the same cache line, use the size of
1362 the line divided by this number. Otherwise, a cache line is
1363 accessed in each iteration. TODO -- in the latter case, we should
1364 take the size of the reference into account, rounding it up on cache
1365 line size multiple. */
1366 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1368 return volume;
1371 /* Returns the volume of memory references accessed across VEC iterations of
1372 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1373 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1375 static unsigned
1376 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1378 unsigned i;
1380 for (i = 0; i < n; i++)
1381 if (vec[i] != 0)
1382 break;
1384 if (i == n)
1385 return 0;
1387 gcc_assert (vec[i] > 0);
1389 /* We ignore the parts of the distance vector in subloops, since usually
1390 the numbers of iterations are much smaller. */
1391 return loop_sizes[i] * vec[i];
1394 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1395 at the position corresponding to the loop of the step. N is the depth
1396 of the considered loop nest, and, LOOP is its innermost loop. */
1398 static void
1399 add_subscript_strides (tree access_fn, unsigned stride,
1400 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1402 struct loop *aloop;
1403 tree step;
1404 HOST_WIDE_INT astep;
1405 unsigned min_depth = loop_depth (loop) - n;
1407 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1409 aloop = get_chrec_loop (access_fn);
1410 step = CHREC_RIGHT (access_fn);
1411 access_fn = CHREC_LEFT (access_fn);
1413 if ((unsigned) loop_depth (aloop) <= min_depth)
1414 continue;
1416 if (host_integerp (step, 0))
1417 astep = tree_low_cst (step, 0);
1418 else
1419 astep = L1_CACHE_LINE_SIZE;
1421 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1426 /* Returns the volume of memory references accessed between two consecutive
1427 self-reuses of the reference DR. We consider the subscripts of DR in N
1428 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1429 loops. LOOP is the innermost loop of the current loop nest. */
1431 static unsigned
1432 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1433 struct loop *loop)
1435 tree stride, access_fn;
1436 HOST_WIDE_INT *strides, astride;
1437 VEC (tree, heap) *access_fns;
1438 tree ref = DR_REF (dr);
1439 unsigned i, ret = ~0u;
1441 /* In the following example:
1443 for (i = 0; i < N; i++)
1444 for (j = 0; j < N; j++)
1445 use (a[j][i]);
1446 the same cache line is accessed each N steps (except if the change from
1447 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1448 we cannot rely purely on the results of the data dependence analysis.
1450 Instead, we compute the stride of the reference in each loop, and consider
1451 the innermost loop in that the stride is less than cache size. */
1453 strides = XCNEWVEC (HOST_WIDE_INT, n);
1454 access_fns = DR_ACCESS_FNS (dr);
1456 FOR_EACH_VEC_ELT (tree, access_fns, i, access_fn)
1458 /* Keep track of the reference corresponding to the subscript, so that we
1459 know its stride. */
1460 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1461 ref = TREE_OPERAND (ref, 0);
1463 if (TREE_CODE (ref) == ARRAY_REF)
1465 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1466 if (host_integerp (stride, 1))
1467 astride = tree_low_cst (stride, 1);
1468 else
1469 astride = L1_CACHE_LINE_SIZE;
1471 ref = TREE_OPERAND (ref, 0);
1473 else
1474 astride = 1;
1476 add_subscript_strides (access_fn, astride, strides, n, loop);
1479 for (i = n; i-- > 0; )
1481 unsigned HOST_WIDE_INT s;
1483 s = strides[i] < 0 ? -strides[i] : strides[i];
1485 if (s < (unsigned) L1_CACHE_LINE_SIZE
1486 && (loop_sizes[i]
1487 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1489 ret = loop_sizes[i];
1490 break;
1494 free (strides);
1495 return ret;
1498 /* Determines the distance till the first reuse of each reference in REFS
1499 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1500 memory references in the loop. */
1502 static void
1503 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1504 bool no_other_refs)
1506 struct loop *nest, *aloop;
1507 VEC (data_reference_p, heap) *datarefs = NULL;
1508 VEC (ddr_p, heap) *dependences = NULL;
1509 struct mem_ref_group *gr;
1510 struct mem_ref *ref, *refb;
1511 VEC (loop_p, heap) *vloops = NULL;
1512 unsigned *loop_data_size;
1513 unsigned i, j, n;
1514 unsigned volume, dist, adist;
1515 HOST_WIDE_INT vol;
1516 data_reference_p dr;
1517 ddr_p dep;
1519 if (loop->inner)
1520 return;
1522 /* Find the outermost loop of the loop nest of loop (we require that
1523 there are no sibling loops inside the nest). */
1524 nest = loop;
1525 while (1)
1527 aloop = loop_outer (nest);
1529 if (aloop == current_loops->tree_root
1530 || aloop->inner->next)
1531 break;
1533 nest = aloop;
1536 /* For each loop, determine the amount of data accessed in each iteration.
1537 We use this to estimate whether the reference is evicted from the
1538 cache before its reuse. */
1539 find_loop_nest (nest, &vloops);
1540 n = VEC_length (loop_p, vloops);
1541 loop_data_size = XNEWVEC (unsigned, n);
1542 volume = volume_of_references (refs);
1543 i = n;
1544 while (i-- != 0)
1546 loop_data_size[i] = volume;
1547 /* Bound the volume by the L2 cache size, since above this bound,
1548 all dependence distances are equivalent. */
1549 if (volume > L2_CACHE_SIZE_BYTES)
1550 continue;
1552 aloop = VEC_index (loop_p, vloops, i);
1553 vol = estimated_loop_iterations_int (aloop, false);
1554 if (vol < 0)
1555 vol = expected_loop_iterations (aloop);
1556 volume *= vol;
1559 /* Prepare the references in the form suitable for data dependence
1560 analysis. We ignore unanalyzable data references (the results
1561 are used just as a heuristics to estimate temporality of the
1562 references, hence we do not need to worry about correctness). */
1563 for (gr = refs; gr; gr = gr->next)
1564 for (ref = gr->refs; ref; ref = ref->next)
1566 dr = create_data_ref (nest, ref->mem, ref->stmt, !ref->write_p);
1568 if (dr)
1570 ref->reuse_distance = volume;
1571 dr->aux = ref;
1572 VEC_safe_push (data_reference_p, heap, datarefs, dr);
1574 else
1575 no_other_refs = false;
1578 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
1580 dist = self_reuse_distance (dr, loop_data_size, n, loop);
1581 ref = (struct mem_ref *) dr->aux;
1582 if (ref->reuse_distance > dist)
1583 ref->reuse_distance = dist;
1585 if (no_other_refs)
1586 ref->independent_p = true;
1589 compute_all_dependences (datarefs, &dependences, vloops, true);
1591 FOR_EACH_VEC_ELT (ddr_p, dependences, i, dep)
1593 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1594 continue;
1596 ref = (struct mem_ref *) DDR_A (dep)->aux;
1597 refb = (struct mem_ref *) DDR_B (dep)->aux;
1599 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1600 || DDR_NUM_DIST_VECTS (dep) == 0)
1602 /* If the dependence cannot be analyzed, assume that there might be
1603 a reuse. */
1604 dist = 0;
1606 ref->independent_p = false;
1607 refb->independent_p = false;
1609 else
1611 /* The distance vectors are normalized to be always lexicographically
1612 positive, hence we cannot tell just from them whether DDR_A comes
1613 before DDR_B or vice versa. However, it is not important,
1614 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1615 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1616 in cache (and marking it as nontemporal would not affect
1617 anything). */
1619 dist = volume;
1620 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1622 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1623 loop_data_size, n);
1625 /* If this is a dependence in the innermost loop (i.e., the
1626 distances in all superloops are zero) and it is not
1627 the trivial self-dependence with distance zero, record that
1628 the references are not completely independent. */
1629 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1630 && (ref != refb
1631 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1633 ref->independent_p = false;
1634 refb->independent_p = false;
1637 /* Ignore accesses closer than
1638 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1639 so that we use nontemporal prefetches e.g. if single memory
1640 location is accessed several times in a single iteration of
1641 the loop. */
1642 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1643 continue;
1645 if (adist < dist)
1646 dist = adist;
1650 if (ref->reuse_distance > dist)
1651 ref->reuse_distance = dist;
1652 if (refb->reuse_distance > dist)
1653 refb->reuse_distance = dist;
1656 free_dependence_relations (dependences);
1657 free_data_refs (datarefs);
1658 free (loop_data_size);
1660 if (dump_file && (dump_flags & TDF_DETAILS))
1662 fprintf (dump_file, "Reuse distances:\n");
1663 for (gr = refs; gr; gr = gr->next)
1664 for (ref = gr->refs; ref; ref = ref->next)
1665 fprintf (dump_file, " ref %p distance %u\n",
1666 (void *) ref, ref->reuse_distance);
1670 /* Determine whether or not the trip count to ahead ratio is too small based
1671 on prefitablility consideration.
1672 AHEAD: the iteration ahead distance,
1673 EST_NITER: the estimated trip count. */
1675 static bool
1676 trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1678 /* Assume trip count to ahead ratio is big enough if the trip count could not
1679 be estimated at compile time. */
1680 if (est_niter < 0)
1681 return false;
1683 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1685 if (dump_file && (dump_flags & TDF_DETAILS))
1686 fprintf (dump_file,
1687 "Not prefetching -- loop estimated to roll only %d times\n",
1688 (int) est_niter);
1689 return true;
1692 return false;
1695 /* Determine whether or not the number of memory references in the loop is
1696 reasonable based on the profitablity and compilation time considerations.
1697 NINSNS: estimated number of instructions in the loop,
1698 MEM_REF_COUNT: total number of memory references in the loop. */
1700 static bool
1701 mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
1703 int insn_to_mem_ratio;
1705 if (mem_ref_count == 0)
1706 return false;
1708 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1709 (compute_all_dependences) have high costs based on quadratic complexity.
1710 To avoid huge compilation time, we give up prefetching if mem_ref_count
1711 is too large. */
1712 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1713 return false;
1715 /* Prefetching improves performance by overlapping cache missing
1716 memory accesses with CPU operations. If the loop does not have
1717 enough CPU operations to overlap with memory operations, prefetching
1718 won't give a significant benefit. One approximate way of checking
1719 this is to require the ratio of instructions to memory references to
1720 be above a certain limit. This approximation works well in practice.
1721 TODO: Implement a more precise computation by estimating the time
1722 for each CPU or memory op in the loop. Time estimates for memory ops
1723 should account for cache misses. */
1724 insn_to_mem_ratio = ninsns / mem_ref_count;
1726 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
1728 if (dump_file && (dump_flags & TDF_DETAILS))
1729 fprintf (dump_file,
1730 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1731 insn_to_mem_ratio);
1732 return false;
1735 return true;
1738 /* Determine whether or not the instruction to prefetch ratio in the loop is
1739 too small based on the profitablity consideration.
1740 NINSNS: estimated number of instructions in the loop,
1741 PREFETCH_COUNT: an estimate of the number of prefetches,
1742 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
1744 static bool
1745 insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1746 unsigned unroll_factor)
1748 int insn_to_prefetch_ratio;
1750 /* Prefetching most likely causes performance degradation when the instruction
1751 to prefetch ratio is too small. Too many prefetch instructions in a loop
1752 may reduce the I-cache performance.
1753 (unroll_factor * ninsns) is used to estimate the number of instructions in
1754 the unrolled loop. This implementation is a bit simplistic -- the number
1755 of issued prefetch instructions is also affected by unrolling. So,
1756 prefetch_mod and the unroll factor should be taken into account when
1757 determining prefetch_count. Also, the number of insns of the unrolled
1758 loop will usually be significantly smaller than the number of insns of the
1759 original loop * unroll_factor (at least the induction variable increases
1760 and the exit branches will get eliminated), so it might be better to use
1761 tree_estimate_loop_size + estimated_unrolled_size. */
1762 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1763 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
1765 if (dump_file && (dump_flags & TDF_DETAILS))
1766 fprintf (dump_file,
1767 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1768 insn_to_prefetch_ratio);
1769 return true;
1772 return false;
1776 /* Issue prefetch instructions for array references in LOOP. Returns
1777 true if the LOOP was unrolled. */
1779 static bool
1780 loop_prefetch_arrays (struct loop *loop)
1782 struct mem_ref_group *refs;
1783 unsigned ahead, ninsns, time, unroll_factor;
1784 HOST_WIDE_INT est_niter;
1785 struct tree_niter_desc desc;
1786 bool unrolled = false, no_other_refs;
1787 unsigned prefetch_count;
1788 unsigned mem_ref_count;
1790 if (optimize_loop_nest_for_size_p (loop))
1792 if (dump_file && (dump_flags & TDF_DETAILS))
1793 fprintf (dump_file, " ignored (cold area)\n");
1794 return false;
1797 /* FIXME: the time should be weighted by the probabilities of the blocks in
1798 the loop body. */
1799 time = tree_num_loop_insns (loop, &eni_time_weights);
1800 if (time == 0)
1801 return false;
1803 ahead = (PREFETCH_LATENCY + time - 1) / time;
1804 est_niter = estimated_loop_iterations_int (loop, false);
1806 /* Prefetching is not likely to be profitable if the trip count to ahead
1807 ratio is too small. */
1808 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1809 return false;
1811 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1813 /* Step 1: gather the memory references. */
1814 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
1816 /* Give up prefetching if the number of memory references in the
1817 loop is not reasonable based on profitablity and compilation time
1818 considerations. */
1819 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1820 goto fail;
1822 /* Step 2: estimate the reuse effects. */
1823 prune_by_reuse (refs);
1825 if (nothing_to_prefetch_p (refs))
1826 goto fail;
1828 determine_loop_nest_reuse (loop, refs, no_other_refs);
1830 /* Step 3: determine unroll factor. */
1831 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1832 est_niter);
1834 /* Estimate prefetch count for the unrolled loop. */
1835 prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1836 if (prefetch_count == 0)
1837 goto fail;
1839 if (dump_file && (dump_flags & TDF_DETAILS))
1840 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1841 HOST_WIDE_INT_PRINT_DEC "\n"
1842 "insn count %d, mem ref count %d, prefetch count %d\n",
1843 ahead, unroll_factor, est_niter,
1844 ninsns, mem_ref_count, prefetch_count);
1846 /* Prefetching is not likely to be profitable if the instruction to prefetch
1847 ratio is too small. */
1848 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1849 unroll_factor))
1850 goto fail;
1852 mark_nontemporal_stores (loop, refs);
1854 /* Step 4: what to prefetch? */
1855 if (!schedule_prefetches (refs, unroll_factor, ahead))
1856 goto fail;
1858 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1859 iterations so that we do not issue superfluous prefetches. */
1860 if (unroll_factor != 1)
1862 tree_unroll_loop (loop, unroll_factor,
1863 single_dom_exit (loop), &desc);
1864 unrolled = true;
1867 /* Step 6: issue the prefetches. */
1868 issue_prefetches (refs, unroll_factor, ahead);
1870 fail:
1871 release_mem_refs (refs);
1872 return unrolled;
1875 /* Issue prefetch instructions for array references in loops. */
1877 unsigned int
1878 tree_ssa_prefetch_arrays (void)
1880 loop_iterator li;
1881 struct loop *loop;
1882 bool unrolled = false;
1883 int todo_flags = 0;
1885 if (!HAVE_prefetch
1886 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1887 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1888 of processor costs and i486 does not have prefetch, but
1889 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1890 || PREFETCH_BLOCK == 0)
1891 return 0;
1893 if (dump_file && (dump_flags & TDF_DETAILS))
1895 fprintf (dump_file, "Prefetching parameters:\n");
1896 fprintf (dump_file, " simultaneous prefetches: %d\n",
1897 SIMULTANEOUS_PREFETCHES);
1898 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
1899 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
1900 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1901 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
1902 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1903 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1904 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
1905 MIN_INSN_TO_PREFETCH_RATIO);
1906 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
1907 PREFETCH_MIN_INSN_TO_MEM_RATIO);
1908 fprintf (dump_file, "\n");
1911 initialize_original_copy_tables ();
1913 if (!built_in_decls[BUILT_IN_PREFETCH])
1915 tree type = build_function_type_list (void_type_node,
1916 const_ptr_type_node, NULL_TREE);
1917 tree decl = add_builtin_function ("__builtin_prefetch", type,
1918 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1919 NULL, NULL_TREE);
1920 DECL_IS_NOVOPS (decl) = true;
1921 built_in_decls[BUILT_IN_PREFETCH] = decl;
1924 /* We assume that size of cache line is a power of two, so verify this
1925 here. */
1926 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1928 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1930 if (dump_file && (dump_flags & TDF_DETAILS))
1931 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1933 unrolled |= loop_prefetch_arrays (loop);
1935 if (dump_file && (dump_flags & TDF_DETAILS))
1936 fprintf (dump_file, "\n\n");
1939 if (unrolled)
1941 scev_reset ();
1942 todo_flags |= TODO_cleanup_cfg;
1945 free_original_copy_tables ();
1946 return todo_flags;