* c-parser.c (c_parser_for_statement): Initialize incr.
[official-gcc.git] / gcc / emit-rtl.c
blob01dd70ab567a73e3347bff6cf593d001ca4a3252
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 /* Middle-to-low level generation of rtx code and insns.
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "diagnostic-core.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
61 #include "params.h"
62 #include "target.h"
64 struct target_rtl default_target_rtl;
65 #if SWITCHABLE_TARGET
66 struct target_rtl *this_target_rtl = &default_target_rtl;
67 #endif
69 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
71 /* Commonly used modes. */
73 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
74 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
75 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
76 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
78 /* Datastructures maintained for currently processed function in RTL form. */
80 struct rtl_data x_rtl;
82 /* Indexed by pseudo register number, gives the rtx for that pseudo.
83 Allocated in parallel with regno_pointer_align.
84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
87 rtx * regno_reg_rtx;
89 /* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
92 static GTY(()) int label_num = 1;
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
98 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
100 rtx const_true_rtx;
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
119 /* A hash table storing CONST_INTs whose absolute value is greater
120 than MAX_SAVED_CONST_INT. */
122 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
123 htab_t const_int_htab;
125 /* A hash table storing memory attribute structures. */
126 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
127 htab_t mem_attrs_htab;
129 /* A hash table storing register attribute structures. */
130 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
131 htab_t reg_attrs_htab;
133 /* A hash table storing all CONST_DOUBLEs. */
134 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
135 htab_t const_double_htab;
137 /* A hash table storing all CONST_FIXEDs. */
138 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
139 htab_t const_fixed_htab;
141 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
142 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
143 #define last_location (crtl->emit.x_last_location)
144 #define first_label_num (crtl->emit.x_first_label_num)
146 static rtx make_call_insn_raw (rtx);
147 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
148 static void set_used_decls (tree);
149 static void mark_label_nuses (rtx);
150 static hashval_t const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx lookup_const_double (rtx);
155 static hashval_t const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx lookup_const_fixed (rtx);
158 static hashval_t mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
161 addr_space_t, enum machine_mode);
162 static hashval_t reg_attrs_htab_hash (const void *);
163 static int reg_attrs_htab_eq (const void *, const void *);
164 static reg_attrs *get_reg_attrs (tree, int);
165 static rtx gen_const_vector (enum machine_mode, int);
166 static void copy_rtx_if_shared_1 (rtx *orig);
168 /* Probability of the conditional branch currently proceeded by try_split.
169 Set to -1 otherwise. */
170 int split_branch_probability = -1;
172 /* Returns a hash code for X (which is a really a CONST_INT). */
174 static hashval_t
175 const_int_htab_hash (const void *x)
177 return (hashval_t) INTVAL ((const_rtx) x);
180 /* Returns nonzero if the value represented by X (which is really a
181 CONST_INT) is the same as that given by Y (which is really a
182 HOST_WIDE_INT *). */
184 static int
185 const_int_htab_eq (const void *x, const void *y)
187 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
190 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
191 static hashval_t
192 const_double_htab_hash (const void *x)
194 const_rtx const value = (const_rtx) x;
195 hashval_t h;
197 if (GET_MODE (value) == VOIDmode)
198 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
199 else
201 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
202 /* MODE is used in the comparison, so it should be in the hash. */
203 h ^= GET_MODE (value);
205 return h;
208 /* Returns nonzero if the value represented by X (really a ...)
209 is the same as that represented by Y (really a ...) */
210 static int
211 const_double_htab_eq (const void *x, const void *y)
213 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
215 if (GET_MODE (a) != GET_MODE (b))
216 return 0;
217 if (GET_MODE (a) == VOIDmode)
218 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
219 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
220 else
221 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
222 CONST_DOUBLE_REAL_VALUE (b));
225 /* Returns a hash code for X (which is really a CONST_FIXED). */
227 static hashval_t
228 const_fixed_htab_hash (const void *x)
230 const_rtx const value = (const_rtx) x;
231 hashval_t h;
233 h = fixed_hash (CONST_FIXED_VALUE (value));
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h ^= GET_MODE (value);
236 return h;
239 /* Returns nonzero if the value represented by X (really a ...)
240 is the same as that represented by Y (really a ...). */
242 static int
243 const_fixed_htab_eq (const void *x, const void *y)
245 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
247 if (GET_MODE (a) != GET_MODE (b))
248 return 0;
249 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
252 /* Returns a hash code for X (which is a really a mem_attrs *). */
254 static hashval_t
255 mem_attrs_htab_hash (const void *x)
257 const mem_attrs *const p = (const mem_attrs *) x;
259 return (p->alias ^ (p->align * 1000)
260 ^ (p->addrspace * 4000)
261 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
262 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
263 ^ (size_t) iterative_hash_expr (p->expr, 0));
266 /* Returns nonzero if the value represented by X (which is really a
267 mem_attrs *) is the same as that given by Y (which is also really a
268 mem_attrs *). */
270 static int
271 mem_attrs_htab_eq (const void *x, const void *y)
273 const mem_attrs *const p = (const mem_attrs *) x;
274 const mem_attrs *const q = (const mem_attrs *) y;
276 return (p->alias == q->alias && p->offset == q->offset
277 && p->size == q->size && p->align == q->align
278 && p->addrspace == q->addrspace
279 && (p->expr == q->expr
280 || (p->expr != NULL_TREE && q->expr != NULL_TREE
281 && operand_equal_p (p->expr, q->expr, 0))));
284 /* Allocate a new mem_attrs structure and insert it into the hash table if
285 one identical to it is not already in the table. We are doing this for
286 MEM of mode MODE. */
288 static mem_attrs *
289 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
290 unsigned int align, addr_space_t addrspace, enum machine_mode mode)
292 mem_attrs attrs;
293 void **slot;
295 /* If everything is the default, we can just return zero.
296 This must match what the corresponding MEM_* macros return when the
297 field is not present. */
298 if (alias == 0 && expr == 0 && offset == 0 && addrspace == 0
299 && (size == 0
300 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
301 && (STRICT_ALIGNMENT && mode != BLKmode
302 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
303 return 0;
305 attrs.alias = alias;
306 attrs.expr = expr;
307 attrs.offset = offset;
308 attrs.size = size;
309 attrs.align = align;
310 attrs.addrspace = addrspace;
312 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
313 if (*slot == 0)
315 *slot = ggc_alloc_mem_attrs ();
316 memcpy (*slot, &attrs, sizeof (mem_attrs));
319 return (mem_attrs *) *slot;
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
324 static hashval_t
325 reg_attrs_htab_hash (const void *x)
327 const reg_attrs *const p = (const reg_attrs *) x;
329 return ((p->offset * 1000) ^ (long) p->decl);
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
334 reg_attrs *). */
336 static int
337 reg_attrs_htab_eq (const void *x, const void *y)
339 const reg_attrs *const p = (const reg_attrs *) x;
340 const reg_attrs *const q = (const reg_attrs *) y;
342 return (p->decl == q->decl && p->offset == q->offset);
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
346 MEM of mode MODE. */
348 static reg_attrs *
349 get_reg_attrs (tree decl, int offset)
351 reg_attrs attrs;
352 void **slot;
354 /* If everything is the default, we can just return zero. */
355 if (decl == 0 && offset == 0)
356 return 0;
358 attrs.decl = decl;
359 attrs.offset = offset;
361 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
362 if (*slot == 0)
364 *slot = ggc_alloc_reg_attrs ();
365 memcpy (*slot, &attrs, sizeof (reg_attrs));
368 return (reg_attrs *) *slot;
372 #if !HAVE_blockage
373 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
374 across this insn. */
377 gen_blockage (void)
379 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
380 MEM_VOLATILE_P (x) = true;
381 return x;
383 #endif
386 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
387 don't attempt to share with the various global pieces of rtl (such as
388 frame_pointer_rtx). */
391 gen_raw_REG (enum machine_mode mode, int regno)
393 rtx x = gen_rtx_raw_REG (mode, regno);
394 ORIGINAL_REGNO (x) = regno;
395 return x;
398 /* There are some RTL codes that require special attention; the generation
399 functions do the raw handling. If you add to this list, modify
400 special_rtx in gengenrtl.c as well. */
403 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
405 void **slot;
407 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
408 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
410 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
411 if (const_true_rtx && arg == STORE_FLAG_VALUE)
412 return const_true_rtx;
413 #endif
415 /* Look up the CONST_INT in the hash table. */
416 slot = htab_find_slot_with_hash (const_int_htab, &arg,
417 (hashval_t) arg, INSERT);
418 if (*slot == 0)
419 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
421 return (rtx) *slot;
425 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
427 return GEN_INT (trunc_int_for_mode (c, mode));
430 /* CONST_DOUBLEs might be created from pairs of integers, or from
431 REAL_VALUE_TYPEs. Also, their length is known only at run time,
432 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
434 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
435 hash table. If so, return its counterpart; otherwise add it
436 to the hash table and return it. */
437 static rtx
438 lookup_const_double (rtx real)
440 void **slot = htab_find_slot (const_double_htab, real, INSERT);
441 if (*slot == 0)
442 *slot = real;
444 return (rtx) *slot;
447 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
448 VALUE in mode MODE. */
450 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
452 rtx real = rtx_alloc (CONST_DOUBLE);
453 PUT_MODE (real, mode);
455 real->u.rv = value;
457 return lookup_const_double (real);
460 /* Determine whether FIXED, a CONST_FIXED, already exists in the
461 hash table. If so, return its counterpart; otherwise add it
462 to the hash table and return it. */
464 static rtx
465 lookup_const_fixed (rtx fixed)
467 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
468 if (*slot == 0)
469 *slot = fixed;
471 return (rtx) *slot;
474 /* Return a CONST_FIXED rtx for a fixed-point value specified by
475 VALUE in mode MODE. */
478 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
480 rtx fixed = rtx_alloc (CONST_FIXED);
481 PUT_MODE (fixed, mode);
483 fixed->u.fv = value;
485 return lookup_const_fixed (fixed);
488 /* Constructs double_int from rtx CST. */
490 double_int
491 rtx_to_double_int (const_rtx cst)
493 double_int r;
495 if (CONST_INT_P (cst))
496 r = shwi_to_double_int (INTVAL (cst));
497 else if (CONST_DOUBLE_P (cst) && GET_MODE (cst) == VOIDmode)
499 r.low = CONST_DOUBLE_LOW (cst);
500 r.high = CONST_DOUBLE_HIGH (cst);
502 else
503 gcc_unreachable ();
505 return r;
509 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
510 a double_int. */
513 immed_double_int_const (double_int i, enum machine_mode mode)
515 return immed_double_const (i.low, i.high, mode);
518 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
519 of ints: I0 is the low-order word and I1 is the high-order word.
520 Do not use this routine for non-integer modes; convert to
521 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
524 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
526 rtx value;
527 unsigned int i;
529 /* There are the following cases (note that there are no modes with
530 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
532 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
533 gen_int_mode.
534 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
535 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
536 from copies of the sign bit, and sign of i0 and i1 are the same), then
537 we return a CONST_INT for i0.
538 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
539 if (mode != VOIDmode)
541 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
542 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
543 /* We can get a 0 for an error mark. */
544 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
545 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
547 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
548 return gen_int_mode (i0, mode);
550 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
553 /* If this integer fits in one word, return a CONST_INT. */
554 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
555 return GEN_INT (i0);
557 /* We use VOIDmode for integers. */
558 value = rtx_alloc (CONST_DOUBLE);
559 PUT_MODE (value, VOIDmode);
561 CONST_DOUBLE_LOW (value) = i0;
562 CONST_DOUBLE_HIGH (value) = i1;
564 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
565 XWINT (value, i) = 0;
567 return lookup_const_double (value);
571 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
573 /* In case the MD file explicitly references the frame pointer, have
574 all such references point to the same frame pointer. This is
575 used during frame pointer elimination to distinguish the explicit
576 references to these registers from pseudos that happened to be
577 assigned to them.
579 If we have eliminated the frame pointer or arg pointer, we will
580 be using it as a normal register, for example as a spill
581 register. In such cases, we might be accessing it in a mode that
582 is not Pmode and therefore cannot use the pre-allocated rtx.
584 Also don't do this when we are making new REGs in reload, since
585 we don't want to get confused with the real pointers. */
587 if (mode == Pmode && !reload_in_progress)
589 if (regno == FRAME_POINTER_REGNUM
590 && (!reload_completed || frame_pointer_needed))
591 return frame_pointer_rtx;
592 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
593 if (regno == HARD_FRAME_POINTER_REGNUM
594 && (!reload_completed || frame_pointer_needed))
595 return hard_frame_pointer_rtx;
596 #endif
597 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
598 if (regno == ARG_POINTER_REGNUM)
599 return arg_pointer_rtx;
600 #endif
601 #ifdef RETURN_ADDRESS_POINTER_REGNUM
602 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
603 return return_address_pointer_rtx;
604 #endif
605 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
606 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
607 return pic_offset_table_rtx;
608 if (regno == STACK_POINTER_REGNUM)
609 return stack_pointer_rtx;
612 #if 0
613 /* If the per-function register table has been set up, try to re-use
614 an existing entry in that table to avoid useless generation of RTL.
616 This code is disabled for now until we can fix the various backends
617 which depend on having non-shared hard registers in some cases. Long
618 term we want to re-enable this code as it can significantly cut down
619 on the amount of useless RTL that gets generated.
621 We'll also need to fix some code that runs after reload that wants to
622 set ORIGINAL_REGNO. */
624 if (cfun
625 && cfun->emit
626 && regno_reg_rtx
627 && regno < FIRST_PSEUDO_REGISTER
628 && reg_raw_mode[regno] == mode)
629 return regno_reg_rtx[regno];
630 #endif
632 return gen_raw_REG (mode, regno);
636 gen_rtx_MEM (enum machine_mode mode, rtx addr)
638 rtx rt = gen_rtx_raw_MEM (mode, addr);
640 /* This field is not cleared by the mere allocation of the rtx, so
641 we clear it here. */
642 MEM_ATTRS (rt) = 0;
644 return rt;
647 /* Generate a memory referring to non-trapping constant memory. */
650 gen_const_mem (enum machine_mode mode, rtx addr)
652 rtx mem = gen_rtx_MEM (mode, addr);
653 MEM_READONLY_P (mem) = 1;
654 MEM_NOTRAP_P (mem) = 1;
655 return mem;
658 /* Generate a MEM referring to fixed portions of the frame, e.g., register
659 save areas. */
662 gen_frame_mem (enum machine_mode mode, rtx addr)
664 rtx mem = gen_rtx_MEM (mode, addr);
665 MEM_NOTRAP_P (mem) = 1;
666 set_mem_alias_set (mem, get_frame_alias_set ());
667 return mem;
670 /* Generate a MEM referring to a temporary use of the stack, not part
671 of the fixed stack frame. For example, something which is pushed
672 by a target splitter. */
674 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
676 rtx mem = gen_rtx_MEM (mode, addr);
677 MEM_NOTRAP_P (mem) = 1;
678 if (!cfun->calls_alloca)
679 set_mem_alias_set (mem, get_frame_alias_set ());
680 return mem;
683 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
684 this construct would be valid, and false otherwise. */
686 bool
687 validate_subreg (enum machine_mode omode, enum machine_mode imode,
688 const_rtx reg, unsigned int offset)
690 unsigned int isize = GET_MODE_SIZE (imode);
691 unsigned int osize = GET_MODE_SIZE (omode);
693 /* All subregs must be aligned. */
694 if (offset % osize != 0)
695 return false;
697 /* The subreg offset cannot be outside the inner object. */
698 if (offset >= isize)
699 return false;
701 /* ??? This should not be here. Temporarily continue to allow word_mode
702 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
703 Generally, backends are doing something sketchy but it'll take time to
704 fix them all. */
705 if (omode == word_mode)
707 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
708 is the culprit here, and not the backends. */
709 else if (osize >= UNITS_PER_WORD && isize >= osize)
711 /* Allow component subregs of complex and vector. Though given the below
712 extraction rules, it's not always clear what that means. */
713 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
714 && GET_MODE_INNER (imode) == omode)
716 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
717 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
718 represent this. It's questionable if this ought to be represented at
719 all -- why can't this all be hidden in post-reload splitters that make
720 arbitrarily mode changes to the registers themselves. */
721 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
723 /* Subregs involving floating point modes are not allowed to
724 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
725 (subreg:SI (reg:DF) 0) isn't. */
726 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
728 if (isize != osize)
729 return false;
732 /* Paradoxical subregs must have offset zero. */
733 if (osize > isize)
734 return offset == 0;
736 /* This is a normal subreg. Verify that the offset is representable. */
738 /* For hard registers, we already have most of these rules collected in
739 subreg_offset_representable_p. */
740 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
742 unsigned int regno = REGNO (reg);
744 #ifdef CANNOT_CHANGE_MODE_CLASS
745 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
746 && GET_MODE_INNER (imode) == omode)
748 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
749 return false;
750 #endif
752 return subreg_offset_representable_p (regno, imode, offset, omode);
755 /* For pseudo registers, we want most of the same checks. Namely:
756 If the register no larger than a word, the subreg must be lowpart.
757 If the register is larger than a word, the subreg must be the lowpart
758 of a subword. A subreg does *not* perform arbitrary bit extraction.
759 Given that we've already checked mode/offset alignment, we only have
760 to check subword subregs here. */
761 if (osize < UNITS_PER_WORD)
763 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
764 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
765 if (offset % UNITS_PER_WORD != low_off)
766 return false;
768 return true;
772 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
774 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
775 return gen_rtx_raw_SUBREG (mode, reg, offset);
778 /* Generate a SUBREG representing the least-significant part of REG if MODE
779 is smaller than mode of REG, otherwise paradoxical SUBREG. */
782 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
784 enum machine_mode inmode;
786 inmode = GET_MODE (reg);
787 if (inmode == VOIDmode)
788 inmode = mode;
789 return gen_rtx_SUBREG (mode, reg,
790 subreg_lowpart_offset (mode, inmode));
794 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
796 rtvec
797 gen_rtvec (int n, ...)
799 int i;
800 rtvec rt_val;
801 va_list p;
803 va_start (p, n);
805 /* Don't allocate an empty rtvec... */
806 if (n == 0)
807 return NULL_RTVEC;
809 rt_val = rtvec_alloc (n);
811 for (i = 0; i < n; i++)
812 rt_val->elem[i] = va_arg (p, rtx);
814 va_end (p);
815 return rt_val;
818 rtvec
819 gen_rtvec_v (int n, rtx *argp)
821 int i;
822 rtvec rt_val;
824 /* Don't allocate an empty rtvec... */
825 if (n == 0)
826 return NULL_RTVEC;
828 rt_val = rtvec_alloc (n);
830 for (i = 0; i < n; i++)
831 rt_val->elem[i] = *argp++;
833 return rt_val;
836 /* Return the number of bytes between the start of an OUTER_MODE
837 in-memory value and the start of an INNER_MODE in-memory value,
838 given that the former is a lowpart of the latter. It may be a
839 paradoxical lowpart, in which case the offset will be negative
840 on big-endian targets. */
843 byte_lowpart_offset (enum machine_mode outer_mode,
844 enum machine_mode inner_mode)
846 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
847 return subreg_lowpart_offset (outer_mode, inner_mode);
848 else
849 return -subreg_lowpart_offset (inner_mode, outer_mode);
852 /* Generate a REG rtx for a new pseudo register of mode MODE.
853 This pseudo is assigned the next sequential register number. */
856 gen_reg_rtx (enum machine_mode mode)
858 rtx val;
859 unsigned int align = GET_MODE_ALIGNMENT (mode);
861 gcc_assert (can_create_pseudo_p ());
863 /* If a virtual register with bigger mode alignment is generated,
864 increase stack alignment estimation because it might be spilled
865 to stack later. */
866 if (SUPPORTS_STACK_ALIGNMENT
867 && crtl->stack_alignment_estimated < align
868 && !crtl->stack_realign_processed)
870 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
871 if (crtl->stack_alignment_estimated < min_align)
872 crtl->stack_alignment_estimated = min_align;
875 if (generating_concat_p
876 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
877 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
879 /* For complex modes, don't make a single pseudo.
880 Instead, make a CONCAT of two pseudos.
881 This allows noncontiguous allocation of the real and imaginary parts,
882 which makes much better code. Besides, allocating DCmode
883 pseudos overstrains reload on some machines like the 386. */
884 rtx realpart, imagpart;
885 enum machine_mode partmode = GET_MODE_INNER (mode);
887 realpart = gen_reg_rtx (partmode);
888 imagpart = gen_reg_rtx (partmode);
889 return gen_rtx_CONCAT (mode, realpart, imagpart);
892 /* Make sure regno_pointer_align, and regno_reg_rtx are large
893 enough to have an element for this pseudo reg number. */
895 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
897 int old_size = crtl->emit.regno_pointer_align_length;
898 char *tmp;
899 rtx *new1;
901 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
902 memset (tmp + old_size, 0, old_size);
903 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
905 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
906 memset (new1 + old_size, 0, old_size * sizeof (rtx));
907 regno_reg_rtx = new1;
909 crtl->emit.regno_pointer_align_length = old_size * 2;
912 val = gen_raw_REG (mode, reg_rtx_no);
913 regno_reg_rtx[reg_rtx_no++] = val;
914 return val;
917 /* Update NEW with the same attributes as REG, but with OFFSET added
918 to the REG_OFFSET. */
920 static void
921 update_reg_offset (rtx new_rtx, rtx reg, int offset)
923 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
924 REG_OFFSET (reg) + offset);
927 /* Generate a register with same attributes as REG, but with OFFSET
928 added to the REG_OFFSET. */
931 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
932 int offset)
934 rtx new_rtx = gen_rtx_REG (mode, regno);
936 update_reg_offset (new_rtx, reg, offset);
937 return new_rtx;
940 /* Generate a new pseudo-register with the same attributes as REG, but
941 with OFFSET added to the REG_OFFSET. */
944 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
946 rtx new_rtx = gen_reg_rtx (mode);
948 update_reg_offset (new_rtx, reg, offset);
949 return new_rtx;
952 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
953 new register is a (possibly paradoxical) lowpart of the old one. */
955 void
956 adjust_reg_mode (rtx reg, enum machine_mode mode)
958 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
959 PUT_MODE (reg, mode);
962 /* Copy REG's attributes from X, if X has any attributes. If REG and X
963 have different modes, REG is a (possibly paradoxical) lowpart of X. */
965 void
966 set_reg_attrs_from_value (rtx reg, rtx x)
968 int offset;
970 /* Hard registers can be reused for multiple purposes within the same
971 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
972 on them is wrong. */
973 if (HARD_REGISTER_P (reg))
974 return;
976 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
977 if (MEM_P (x))
979 if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
980 REG_ATTRS (reg)
981 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
982 if (MEM_POINTER (x))
983 mark_reg_pointer (reg, 0);
985 else if (REG_P (x))
987 if (REG_ATTRS (x))
988 update_reg_offset (reg, x, offset);
989 if (REG_POINTER (x))
990 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
994 /* Generate a REG rtx for a new pseudo register, copying the mode
995 and attributes from X. */
998 gen_reg_rtx_and_attrs (rtx x)
1000 rtx reg = gen_reg_rtx (GET_MODE (x));
1001 set_reg_attrs_from_value (reg, x);
1002 return reg;
1005 /* Set the register attributes for registers contained in PARM_RTX.
1006 Use needed values from memory attributes of MEM. */
1008 void
1009 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1011 if (REG_P (parm_rtx))
1012 set_reg_attrs_from_value (parm_rtx, mem);
1013 else if (GET_CODE (parm_rtx) == PARALLEL)
1015 /* Check for a NULL entry in the first slot, used to indicate that the
1016 parameter goes both on the stack and in registers. */
1017 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1018 for (; i < XVECLEN (parm_rtx, 0); i++)
1020 rtx x = XVECEXP (parm_rtx, 0, i);
1021 if (REG_P (XEXP (x, 0)))
1022 REG_ATTRS (XEXP (x, 0))
1023 = get_reg_attrs (MEM_EXPR (mem),
1024 INTVAL (XEXP (x, 1)));
1029 /* Set the REG_ATTRS for registers in value X, given that X represents
1030 decl T. */
1032 void
1033 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1035 if (GET_CODE (x) == SUBREG)
1037 gcc_assert (subreg_lowpart_p (x));
1038 x = SUBREG_REG (x);
1040 if (REG_P (x))
1041 REG_ATTRS (x)
1042 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1043 DECL_MODE (t)));
1044 if (GET_CODE (x) == CONCAT)
1046 if (REG_P (XEXP (x, 0)))
1047 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1048 if (REG_P (XEXP (x, 1)))
1049 REG_ATTRS (XEXP (x, 1))
1050 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1052 if (GET_CODE (x) == PARALLEL)
1054 int i, start;
1056 /* Check for a NULL entry, used to indicate that the parameter goes
1057 both on the stack and in registers. */
1058 if (XEXP (XVECEXP (x, 0, 0), 0))
1059 start = 0;
1060 else
1061 start = 1;
1063 for (i = start; i < XVECLEN (x, 0); i++)
1065 rtx y = XVECEXP (x, 0, i);
1066 if (REG_P (XEXP (y, 0)))
1067 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1072 /* Assign the RTX X to declaration T. */
1074 void
1075 set_decl_rtl (tree t, rtx x)
1077 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1078 if (x)
1079 set_reg_attrs_for_decl_rtl (t, x);
1082 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1083 if the ABI requires the parameter to be passed by reference. */
1085 void
1086 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1088 DECL_INCOMING_RTL (t) = x;
1089 if (x && !by_reference_p)
1090 set_reg_attrs_for_decl_rtl (t, x);
1093 /* Identify REG (which may be a CONCAT) as a user register. */
1095 void
1096 mark_user_reg (rtx reg)
1098 if (GET_CODE (reg) == CONCAT)
1100 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1101 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1103 else
1105 gcc_assert (REG_P (reg));
1106 REG_USERVAR_P (reg) = 1;
1110 /* Identify REG as a probable pointer register and show its alignment
1111 as ALIGN, if nonzero. */
1113 void
1114 mark_reg_pointer (rtx reg, int align)
1116 if (! REG_POINTER (reg))
1118 REG_POINTER (reg) = 1;
1120 if (align)
1121 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1123 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1124 /* We can no-longer be sure just how aligned this pointer is. */
1125 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1128 /* Return 1 plus largest pseudo reg number used in the current function. */
1131 max_reg_num (void)
1133 return reg_rtx_no;
1136 /* Return 1 + the largest label number used so far in the current function. */
1139 max_label_num (void)
1141 return label_num;
1144 /* Return first label number used in this function (if any were used). */
1147 get_first_label_num (void)
1149 return first_label_num;
1152 /* If the rtx for label was created during the expansion of a nested
1153 function, then first_label_num won't include this label number.
1154 Fix this now so that array indices work later. */
1156 void
1157 maybe_set_first_label_num (rtx x)
1159 if (CODE_LABEL_NUMBER (x) < first_label_num)
1160 first_label_num = CODE_LABEL_NUMBER (x);
1163 /* Return a value representing some low-order bits of X, where the number
1164 of low-order bits is given by MODE. Note that no conversion is done
1165 between floating-point and fixed-point values, rather, the bit
1166 representation is returned.
1168 This function handles the cases in common between gen_lowpart, below,
1169 and two variants in cse.c and combine.c. These are the cases that can
1170 be safely handled at all points in the compilation.
1172 If this is not a case we can handle, return 0. */
1175 gen_lowpart_common (enum machine_mode mode, rtx x)
1177 int msize = GET_MODE_SIZE (mode);
1178 int xsize;
1179 int offset = 0;
1180 enum machine_mode innermode;
1182 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1183 so we have to make one up. Yuk. */
1184 innermode = GET_MODE (x);
1185 if (CONST_INT_P (x)
1186 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1187 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1188 else if (innermode == VOIDmode)
1189 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1191 xsize = GET_MODE_SIZE (innermode);
1193 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1195 if (innermode == mode)
1196 return x;
1198 /* MODE must occupy no more words than the mode of X. */
1199 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1200 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1201 return 0;
1203 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1204 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1205 return 0;
1207 offset = subreg_lowpart_offset (mode, innermode);
1209 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1210 && (GET_MODE_CLASS (mode) == MODE_INT
1211 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1213 /* If we are getting the low-order part of something that has been
1214 sign- or zero-extended, we can either just use the object being
1215 extended or make a narrower extension. If we want an even smaller
1216 piece than the size of the object being extended, call ourselves
1217 recursively.
1219 This case is used mostly by combine and cse. */
1221 if (GET_MODE (XEXP (x, 0)) == mode)
1222 return XEXP (x, 0);
1223 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1224 return gen_lowpart_common (mode, XEXP (x, 0));
1225 else if (msize < xsize)
1226 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1228 else if (GET_CODE (x) == SUBREG || REG_P (x)
1229 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1230 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1231 return simplify_gen_subreg (mode, x, innermode, offset);
1233 /* Otherwise, we can't do this. */
1234 return 0;
1238 gen_highpart (enum machine_mode mode, rtx x)
1240 unsigned int msize = GET_MODE_SIZE (mode);
1241 rtx result;
1243 /* This case loses if X is a subreg. To catch bugs early,
1244 complain if an invalid MODE is used even in other cases. */
1245 gcc_assert (msize <= UNITS_PER_WORD
1246 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1248 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1249 subreg_highpart_offset (mode, GET_MODE (x)));
1250 gcc_assert (result);
1252 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1253 the target if we have a MEM. gen_highpart must return a valid operand,
1254 emitting code if necessary to do so. */
1255 if (MEM_P (result))
1257 result = validize_mem (result);
1258 gcc_assert (result);
1261 return result;
1264 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1265 be VOIDmode constant. */
1267 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1269 if (GET_MODE (exp) != VOIDmode)
1271 gcc_assert (GET_MODE (exp) == innermode);
1272 return gen_highpart (outermode, exp);
1274 return simplify_gen_subreg (outermode, exp, innermode,
1275 subreg_highpart_offset (outermode, innermode));
1278 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1280 unsigned int
1281 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1283 unsigned int offset = 0;
1284 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1286 if (difference > 0)
1288 if (WORDS_BIG_ENDIAN)
1289 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1290 if (BYTES_BIG_ENDIAN)
1291 offset += difference % UNITS_PER_WORD;
1294 return offset;
1297 /* Return offset in bytes to get OUTERMODE high part
1298 of the value in mode INNERMODE stored in memory in target format. */
1299 unsigned int
1300 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1302 unsigned int offset = 0;
1303 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1305 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1307 if (difference > 0)
1309 if (! WORDS_BIG_ENDIAN)
1310 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1311 if (! BYTES_BIG_ENDIAN)
1312 offset += difference % UNITS_PER_WORD;
1315 return offset;
1318 /* Return 1 iff X, assumed to be a SUBREG,
1319 refers to the least significant part of its containing reg.
1320 If X is not a SUBREG, always return 1 (it is its own low part!). */
1323 subreg_lowpart_p (const_rtx x)
1325 if (GET_CODE (x) != SUBREG)
1326 return 1;
1327 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1328 return 0;
1330 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1331 == SUBREG_BYTE (x));
1334 /* Return subword OFFSET of operand OP.
1335 The word number, OFFSET, is interpreted as the word number starting
1336 at the low-order address. OFFSET 0 is the low-order word if not
1337 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1339 If we cannot extract the required word, we return zero. Otherwise,
1340 an rtx corresponding to the requested word will be returned.
1342 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1343 reload has completed, a valid address will always be returned. After
1344 reload, if a valid address cannot be returned, we return zero.
1346 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1347 it is the responsibility of the caller.
1349 MODE is the mode of OP in case it is a CONST_INT.
1351 ??? This is still rather broken for some cases. The problem for the
1352 moment is that all callers of this thing provide no 'goal mode' to
1353 tell us to work with. This exists because all callers were written
1354 in a word based SUBREG world.
1355 Now use of this function can be deprecated by simplify_subreg in most
1356 cases.
1360 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1362 if (mode == VOIDmode)
1363 mode = GET_MODE (op);
1365 gcc_assert (mode != VOIDmode);
1367 /* If OP is narrower than a word, fail. */
1368 if (mode != BLKmode
1369 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1370 return 0;
1372 /* If we want a word outside OP, return zero. */
1373 if (mode != BLKmode
1374 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1375 return const0_rtx;
1377 /* Form a new MEM at the requested address. */
1378 if (MEM_P (op))
1380 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1382 if (! validate_address)
1383 return new_rtx;
1385 else if (reload_completed)
1387 if (! strict_memory_address_addr_space_p (word_mode,
1388 XEXP (new_rtx, 0),
1389 MEM_ADDR_SPACE (op)))
1390 return 0;
1392 else
1393 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1396 /* Rest can be handled by simplify_subreg. */
1397 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1400 /* Similar to `operand_subword', but never return 0. If we can't
1401 extract the required subword, put OP into a register and try again.
1402 The second attempt must succeed. We always validate the address in
1403 this case.
1405 MODE is the mode of OP, in case it is CONST_INT. */
1408 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1410 rtx result = operand_subword (op, offset, 1, mode);
1412 if (result)
1413 return result;
1415 if (mode != BLKmode && mode != VOIDmode)
1417 /* If this is a register which can not be accessed by words, copy it
1418 to a pseudo register. */
1419 if (REG_P (op))
1420 op = copy_to_reg (op);
1421 else
1422 op = force_reg (mode, op);
1425 result = operand_subword (op, offset, 1, mode);
1426 gcc_assert (result);
1428 return result;
1431 /* Returns 1 if both MEM_EXPR can be considered equal
1432 and 0 otherwise. */
1435 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1437 if (expr1 == expr2)
1438 return 1;
1440 if (! expr1 || ! expr2)
1441 return 0;
1443 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1444 return 0;
1446 return operand_equal_p (expr1, expr2, 0);
1449 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1450 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1451 -1 if not known. */
1454 get_mem_align_offset (rtx mem, unsigned int align)
1456 tree expr;
1457 unsigned HOST_WIDE_INT offset;
1459 /* This function can't use
1460 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1461 || !CONST_INT_P (MEM_OFFSET (mem))
1462 || (MAX (MEM_ALIGN (mem),
1463 get_object_alignment (MEM_EXPR (mem), align))
1464 < align))
1465 return -1;
1466 else
1467 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1468 for two reasons:
1469 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1470 for <variable>. get_inner_reference doesn't handle it and
1471 even if it did, the alignment in that case needs to be determined
1472 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1473 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1474 isn't sufficiently aligned, the object it is in might be. */
1475 gcc_assert (MEM_P (mem));
1476 expr = MEM_EXPR (mem);
1477 if (expr == NULL_TREE
1478 || MEM_OFFSET (mem) == NULL_RTX
1479 || !CONST_INT_P (MEM_OFFSET (mem)))
1480 return -1;
1482 offset = INTVAL (MEM_OFFSET (mem));
1483 if (DECL_P (expr))
1485 if (DECL_ALIGN (expr) < align)
1486 return -1;
1488 else if (INDIRECT_REF_P (expr))
1490 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1491 return -1;
1493 else if (TREE_CODE (expr) == COMPONENT_REF)
1495 while (1)
1497 tree inner = TREE_OPERAND (expr, 0);
1498 tree field = TREE_OPERAND (expr, 1);
1499 tree byte_offset = component_ref_field_offset (expr);
1500 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1502 if (!byte_offset
1503 || !host_integerp (byte_offset, 1)
1504 || !host_integerp (bit_offset, 1))
1505 return -1;
1507 offset += tree_low_cst (byte_offset, 1);
1508 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1510 if (inner == NULL_TREE)
1512 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1513 < (unsigned int) align)
1514 return -1;
1515 break;
1517 else if (DECL_P (inner))
1519 if (DECL_ALIGN (inner) < align)
1520 return -1;
1521 break;
1523 else if (TREE_CODE (inner) != COMPONENT_REF)
1524 return -1;
1525 expr = inner;
1528 else
1529 return -1;
1531 return offset & ((align / BITS_PER_UNIT) - 1);
1534 /* Given REF (a MEM) and T, either the type of X or the expression
1535 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1536 if we are making a new object of this type. BITPOS is nonzero if
1537 there is an offset outstanding on T that will be applied later. */
1539 void
1540 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1541 HOST_WIDE_INT bitpos)
1543 alias_set_type alias = MEM_ALIAS_SET (ref);
1544 tree expr = MEM_EXPR (ref);
1545 rtx offset = MEM_OFFSET (ref);
1546 rtx size = MEM_SIZE (ref);
1547 unsigned int align = MEM_ALIGN (ref);
1548 HOST_WIDE_INT apply_bitpos = 0;
1549 tree type;
1551 /* It can happen that type_for_mode was given a mode for which there
1552 is no language-level type. In which case it returns NULL, which
1553 we can see here. */
1554 if (t == NULL_TREE)
1555 return;
1557 type = TYPE_P (t) ? t : TREE_TYPE (t);
1558 if (type == error_mark_node)
1559 return;
1561 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1562 wrong answer, as it assumes that DECL_RTL already has the right alias
1563 info. Callers should not set DECL_RTL until after the call to
1564 set_mem_attributes. */
1565 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1567 /* Get the alias set from the expression or type (perhaps using a
1568 front-end routine) and use it. */
1569 alias = get_alias_set (t);
1571 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1572 MEM_IN_STRUCT_P (ref)
1573 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1574 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1576 /* If we are making an object of this type, or if this is a DECL, we know
1577 that it is a scalar if the type is not an aggregate. */
1578 if ((objectp || DECL_P (t))
1579 && ! AGGREGATE_TYPE_P (type)
1580 && TREE_CODE (type) != COMPLEX_TYPE)
1581 MEM_SCALAR_P (ref) = 1;
1583 /* We can set the alignment from the type if we are making an object,
1584 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1585 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1586 align = MAX (align, TYPE_ALIGN (type));
1588 else if (TREE_CODE (t) == MEM_REF)
1590 tree op0 = TREE_OPERAND (t, 0);
1591 if (TREE_CODE (op0) == ADDR_EXPR
1592 && (DECL_P (TREE_OPERAND (op0, 0))
1593 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
1595 if (DECL_P (TREE_OPERAND (op0, 0)))
1596 align = DECL_ALIGN (TREE_OPERAND (op0, 0));
1597 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1599 align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
1600 #ifdef CONSTANT_ALIGNMENT
1601 align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0), align);
1602 #endif
1604 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1606 unsigned HOST_WIDE_INT ioff
1607 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1608 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1609 align = MIN (aoff, align);
1612 else
1613 /* ??? This isn't fully correct, we can't set the alignment from the
1614 type in all cases. */
1615 align = MAX (align, TYPE_ALIGN (type));
1618 else if (TREE_CODE (t) == TARGET_MEM_REF)
1619 /* ??? This isn't fully correct, we can't set the alignment from the
1620 type in all cases. */
1621 align = MAX (align, TYPE_ALIGN (type));
1623 /* If the size is known, we can set that. */
1624 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1625 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1627 /* If T is not a type, we may be able to deduce some more information about
1628 the expression. */
1629 if (! TYPE_P (t))
1631 tree base;
1632 bool align_computed = false;
1634 if (TREE_THIS_VOLATILE (t))
1635 MEM_VOLATILE_P (ref) = 1;
1637 /* Now remove any conversions: they don't change what the underlying
1638 object is. Likewise for SAVE_EXPR. */
1639 while (CONVERT_EXPR_P (t)
1640 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1641 || TREE_CODE (t) == SAVE_EXPR)
1642 t = TREE_OPERAND (t, 0);
1644 /* We may look through structure-like accesses for the purposes of
1645 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1646 base = t;
1647 while (TREE_CODE (base) == COMPONENT_REF
1648 || TREE_CODE (base) == REALPART_EXPR
1649 || TREE_CODE (base) == IMAGPART_EXPR
1650 || TREE_CODE (base) == BIT_FIELD_REF)
1651 base = TREE_OPERAND (base, 0);
1653 if (TREE_CODE (base) == MEM_REF
1654 && TREE_CODE (TREE_OPERAND (base, 0)) == ADDR_EXPR)
1655 base = TREE_OPERAND (TREE_OPERAND (base, 0), 0);
1656 if (DECL_P (base))
1658 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1659 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1660 else
1661 MEM_NOTRAP_P (ref) = 1;
1663 else if (TREE_CODE (base) == INDIRECT_REF
1664 || TREE_CODE (base) == MEM_REF
1665 || TREE_CODE (base) == TARGET_MEM_REF
1666 || TREE_CODE (base) == ARRAY_REF
1667 || TREE_CODE (base) == ARRAY_RANGE_REF)
1668 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1670 base = get_base_address (base);
1671 if (base && DECL_P (base)
1672 && TREE_READONLY (base)
1673 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1674 MEM_READONLY_P (ref) = 1;
1676 /* If this expression uses it's parent's alias set, mark it such
1677 that we won't change it. */
1678 if (component_uses_parent_alias_set (t))
1679 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1681 /* If this is a decl, set the attributes of the MEM from it. */
1682 if (DECL_P (t))
1684 expr = t;
1685 offset = const0_rtx;
1686 apply_bitpos = bitpos;
1687 size = (DECL_SIZE_UNIT (t)
1688 && host_integerp (DECL_SIZE_UNIT (t), 1)
1689 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1690 align = DECL_ALIGN (t);
1691 align_computed = true;
1694 /* If this is a constant, we know the alignment. */
1695 else if (CONSTANT_CLASS_P (t))
1697 align = TYPE_ALIGN (type);
1698 #ifdef CONSTANT_ALIGNMENT
1699 align = CONSTANT_ALIGNMENT (t, align);
1700 #endif
1701 align_computed = true;
1704 /* If this is a field reference and not a bit-field, record it. */
1705 /* ??? There is some information that can be gleaned from bit-fields,
1706 such as the word offset in the structure that might be modified.
1707 But skip it for now. */
1708 else if (TREE_CODE (t) == COMPONENT_REF
1709 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1711 expr = t;
1712 offset = const0_rtx;
1713 apply_bitpos = bitpos;
1714 /* ??? Any reason the field size would be different than
1715 the size we got from the type? */
1718 /* If this is an array reference, look for an outer field reference. */
1719 else if (TREE_CODE (t) == ARRAY_REF)
1721 tree off_tree = size_zero_node;
1722 /* We can't modify t, because we use it at the end of the
1723 function. */
1724 tree t2 = t;
1728 tree index = TREE_OPERAND (t2, 1);
1729 tree low_bound = array_ref_low_bound (t2);
1730 tree unit_size = array_ref_element_size (t2);
1732 /* We assume all arrays have sizes that are a multiple of a byte.
1733 First subtract the lower bound, if any, in the type of the
1734 index, then convert to sizetype and multiply by the size of
1735 the array element. */
1736 if (! integer_zerop (low_bound))
1737 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1738 index, low_bound);
1740 off_tree = size_binop (PLUS_EXPR,
1741 size_binop (MULT_EXPR,
1742 fold_convert (sizetype,
1743 index),
1744 unit_size),
1745 off_tree);
1746 t2 = TREE_OPERAND (t2, 0);
1748 while (TREE_CODE (t2) == ARRAY_REF);
1750 if (DECL_P (t2))
1752 expr = t2;
1753 offset = NULL;
1754 if (host_integerp (off_tree, 1))
1756 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1757 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1758 align = DECL_ALIGN (t2);
1759 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1760 align = aoff;
1761 align_computed = true;
1762 offset = GEN_INT (ioff);
1763 apply_bitpos = bitpos;
1766 else if (TREE_CODE (t2) == COMPONENT_REF)
1768 expr = t2;
1769 offset = NULL;
1770 if (host_integerp (off_tree, 1))
1772 offset = GEN_INT (tree_low_cst (off_tree, 1));
1773 apply_bitpos = bitpos;
1775 /* ??? Any reason the field size would be different than
1776 the size we got from the type? */
1779 /* If this is an indirect reference, record it. */
1780 else if (TREE_CODE (t) == MEM_REF)
1782 expr = t;
1783 offset = const0_rtx;
1784 apply_bitpos = bitpos;
1788 /* If this is an indirect reference, record it. */
1789 else if (TREE_CODE (t) == MEM_REF
1790 || TREE_CODE (t) == TARGET_MEM_REF)
1792 expr = t;
1793 offset = const0_rtx;
1794 apply_bitpos = bitpos;
1797 if (!align_computed && !INDIRECT_REF_P (t))
1799 unsigned int obj_align = get_object_alignment (t, BIGGEST_ALIGNMENT);
1800 align = MAX (align, obj_align);
1804 /* If we modified OFFSET based on T, then subtract the outstanding
1805 bit position offset. Similarly, increase the size of the accessed
1806 object to contain the negative offset. */
1807 if (apply_bitpos)
1809 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1810 if (size)
1811 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1814 /* Now set the attributes we computed above. */
1815 MEM_ATTRS (ref)
1816 = get_mem_attrs (alias, expr, offset, size, align,
1817 TYPE_ADDR_SPACE (type), GET_MODE (ref));
1819 /* If this is already known to be a scalar or aggregate, we are done. */
1820 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1821 return;
1823 /* If it is a reference into an aggregate, this is part of an aggregate.
1824 Otherwise we don't know. */
1825 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1826 || TREE_CODE (t) == ARRAY_RANGE_REF
1827 || TREE_CODE (t) == BIT_FIELD_REF)
1828 MEM_IN_STRUCT_P (ref) = 1;
1831 void
1832 set_mem_attributes (rtx ref, tree t, int objectp)
1834 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1837 /* Set the alias set of MEM to SET. */
1839 void
1840 set_mem_alias_set (rtx mem, alias_set_type set)
1842 #ifdef ENABLE_CHECKING
1843 /* If the new and old alias sets don't conflict, something is wrong. */
1844 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1845 #endif
1847 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1848 MEM_SIZE (mem), MEM_ALIGN (mem),
1849 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1852 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1854 void
1855 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1857 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1858 MEM_OFFSET (mem), MEM_SIZE (mem),
1859 MEM_ALIGN (mem), addrspace, GET_MODE (mem));
1862 /* Set the alignment of MEM to ALIGN bits. */
1864 void
1865 set_mem_align (rtx mem, unsigned int align)
1867 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1868 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1869 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1872 /* Set the expr for MEM to EXPR. */
1874 void
1875 set_mem_expr (rtx mem, tree expr)
1877 MEM_ATTRS (mem)
1878 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1879 MEM_SIZE (mem), MEM_ALIGN (mem),
1880 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1883 /* Set the offset of MEM to OFFSET. */
1885 void
1886 set_mem_offset (rtx mem, rtx offset)
1888 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1889 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1890 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1893 /* Set the size of MEM to SIZE. */
1895 void
1896 set_mem_size (rtx mem, rtx size)
1898 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1899 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1900 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1903 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1904 and its address changed to ADDR. (VOIDmode means don't change the mode.
1905 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1906 returned memory location is required to be valid. The memory
1907 attributes are not changed. */
1909 static rtx
1910 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1912 addr_space_t as;
1913 rtx new_rtx;
1915 gcc_assert (MEM_P (memref));
1916 as = MEM_ADDR_SPACE (memref);
1917 if (mode == VOIDmode)
1918 mode = GET_MODE (memref);
1919 if (addr == 0)
1920 addr = XEXP (memref, 0);
1921 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1922 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1923 return memref;
1925 if (validate)
1927 if (reload_in_progress || reload_completed)
1928 gcc_assert (memory_address_addr_space_p (mode, addr, as));
1929 else
1930 addr = memory_address_addr_space (mode, addr, as);
1933 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1934 return memref;
1936 new_rtx = gen_rtx_MEM (mode, addr);
1937 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1938 return new_rtx;
1941 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1942 way we are changing MEMREF, so we only preserve the alias set. */
1945 change_address (rtx memref, enum machine_mode mode, rtx addr)
1947 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1948 enum machine_mode mmode = GET_MODE (new_rtx);
1949 unsigned int align;
1951 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1952 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1954 /* If there are no changes, just return the original memory reference. */
1955 if (new_rtx == memref)
1957 if (MEM_ATTRS (memref) == 0
1958 || (MEM_EXPR (memref) == NULL
1959 && MEM_OFFSET (memref) == NULL
1960 && MEM_SIZE (memref) == size
1961 && MEM_ALIGN (memref) == align))
1962 return new_rtx;
1964 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1965 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1968 MEM_ATTRS (new_rtx)
1969 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align,
1970 MEM_ADDR_SPACE (memref), mmode);
1972 return new_rtx;
1975 /* Return a memory reference like MEMREF, but with its mode changed
1976 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1977 nonzero, the memory address is forced to be valid.
1978 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1979 and caller is responsible for adjusting MEMREF base register. */
1982 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1983 int validate, int adjust)
1985 rtx addr = XEXP (memref, 0);
1986 rtx new_rtx;
1987 rtx memoffset = MEM_OFFSET (memref);
1988 rtx size = 0;
1989 unsigned int memalign = MEM_ALIGN (memref);
1990 addr_space_t as = MEM_ADDR_SPACE (memref);
1991 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
1992 int pbits;
1994 /* If there are no changes, just return the original memory reference. */
1995 if (mode == GET_MODE (memref) && !offset
1996 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1997 return memref;
1999 /* ??? Prefer to create garbage instead of creating shared rtl.
2000 This may happen even if offset is nonzero -- consider
2001 (plus (plus reg reg) const_int) -- so do this always. */
2002 addr = copy_rtx (addr);
2004 /* Convert a possibly large offset to a signed value within the
2005 range of the target address space. */
2006 pbits = GET_MODE_BITSIZE (address_mode);
2007 if (HOST_BITS_PER_WIDE_INT > pbits)
2009 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2010 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2011 >> shift);
2014 if (adjust)
2016 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2017 object, we can merge it into the LO_SUM. */
2018 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2019 && offset >= 0
2020 && (unsigned HOST_WIDE_INT) offset
2021 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2022 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2023 plus_constant (XEXP (addr, 1), offset));
2024 else
2025 addr = plus_constant (addr, offset);
2028 new_rtx = change_address_1 (memref, mode, addr, validate);
2030 /* If the address is a REG, change_address_1 rightfully returns memref,
2031 but this would destroy memref's MEM_ATTRS. */
2032 if (new_rtx == memref && offset != 0)
2033 new_rtx = copy_rtx (new_rtx);
2035 /* Compute the new values of the memory attributes due to this adjustment.
2036 We add the offsets and update the alignment. */
2037 if (memoffset)
2038 memoffset = GEN_INT (offset + INTVAL (memoffset));
2040 /* Compute the new alignment by taking the MIN of the alignment and the
2041 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2042 if zero. */
2043 if (offset != 0)
2044 memalign
2045 = MIN (memalign,
2046 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2048 /* We can compute the size in a number of ways. */
2049 if (GET_MODE (new_rtx) != BLKmode)
2050 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2051 else if (MEM_SIZE (memref))
2052 size = plus_constant (MEM_SIZE (memref), -offset);
2054 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2055 memoffset, size, memalign, as,
2056 GET_MODE (new_rtx));
2058 /* At some point, we should validate that this offset is within the object,
2059 if all the appropriate values are known. */
2060 return new_rtx;
2063 /* Return a memory reference like MEMREF, but with its mode changed
2064 to MODE and its address changed to ADDR, which is assumed to be
2065 MEMREF offset by OFFSET bytes. If VALIDATE is
2066 nonzero, the memory address is forced to be valid. */
2069 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2070 HOST_WIDE_INT offset, int validate)
2072 memref = change_address_1 (memref, VOIDmode, addr, validate);
2073 return adjust_address_1 (memref, mode, offset, validate, 0);
2076 /* Return a memory reference like MEMREF, but whose address is changed by
2077 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2078 known to be in OFFSET (possibly 1). */
2081 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2083 rtx new_rtx, addr = XEXP (memref, 0);
2084 addr_space_t as = MEM_ADDR_SPACE (memref);
2085 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
2087 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2089 /* At this point we don't know _why_ the address is invalid. It
2090 could have secondary memory references, multiplies or anything.
2092 However, if we did go and rearrange things, we can wind up not
2093 being able to recognize the magic around pic_offset_table_rtx.
2094 This stuff is fragile, and is yet another example of why it is
2095 bad to expose PIC machinery too early. */
2096 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, as)
2097 && GET_CODE (addr) == PLUS
2098 && XEXP (addr, 0) == pic_offset_table_rtx)
2100 addr = force_reg (GET_MODE (addr), addr);
2101 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2104 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2105 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2107 /* If there are no changes, just return the original memory reference. */
2108 if (new_rtx == memref)
2109 return new_rtx;
2111 /* Update the alignment to reflect the offset. Reset the offset, which
2112 we don't know. */
2113 MEM_ATTRS (new_rtx)
2114 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2115 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2116 as, GET_MODE (new_rtx));
2117 return new_rtx;
2120 /* Return a memory reference like MEMREF, but with its address changed to
2121 ADDR. The caller is asserting that the actual piece of memory pointed
2122 to is the same, just the form of the address is being changed, such as
2123 by putting something into a register. */
2126 replace_equiv_address (rtx memref, rtx addr)
2128 /* change_address_1 copies the memory attribute structure without change
2129 and that's exactly what we want here. */
2130 update_temp_slot_address (XEXP (memref, 0), addr);
2131 return change_address_1 (memref, VOIDmode, addr, 1);
2134 /* Likewise, but the reference is not required to be valid. */
2137 replace_equiv_address_nv (rtx memref, rtx addr)
2139 return change_address_1 (memref, VOIDmode, addr, 0);
2142 /* Return a memory reference like MEMREF, but with its mode widened to
2143 MODE and offset by OFFSET. This would be used by targets that e.g.
2144 cannot issue QImode memory operations and have to use SImode memory
2145 operations plus masking logic. */
2148 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2150 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2151 tree expr = MEM_EXPR (new_rtx);
2152 rtx memoffset = MEM_OFFSET (new_rtx);
2153 unsigned int size = GET_MODE_SIZE (mode);
2155 /* If there are no changes, just return the original memory reference. */
2156 if (new_rtx == memref)
2157 return new_rtx;
2159 /* If we don't know what offset we were at within the expression, then
2160 we can't know if we've overstepped the bounds. */
2161 if (! memoffset)
2162 expr = NULL_TREE;
2164 while (expr)
2166 if (TREE_CODE (expr) == COMPONENT_REF)
2168 tree field = TREE_OPERAND (expr, 1);
2169 tree offset = component_ref_field_offset (expr);
2171 if (! DECL_SIZE_UNIT (field))
2173 expr = NULL_TREE;
2174 break;
2177 /* Is the field at least as large as the access? If so, ok,
2178 otherwise strip back to the containing structure. */
2179 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2180 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2181 && INTVAL (memoffset) >= 0)
2182 break;
2184 if (! host_integerp (offset, 1))
2186 expr = NULL_TREE;
2187 break;
2190 expr = TREE_OPERAND (expr, 0);
2191 memoffset
2192 = (GEN_INT (INTVAL (memoffset)
2193 + tree_low_cst (offset, 1)
2194 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2195 / BITS_PER_UNIT)));
2197 /* Similarly for the decl. */
2198 else if (DECL_P (expr)
2199 && DECL_SIZE_UNIT (expr)
2200 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2201 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2202 && (! memoffset || INTVAL (memoffset) >= 0))
2203 break;
2204 else
2206 /* The widened memory access overflows the expression, which means
2207 that it could alias another expression. Zap it. */
2208 expr = NULL_TREE;
2209 break;
2213 if (! expr)
2214 memoffset = NULL_RTX;
2216 /* The widened memory may alias other stuff, so zap the alias set. */
2217 /* ??? Maybe use get_alias_set on any remaining expression. */
2219 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2220 MEM_ALIGN (new_rtx),
2221 MEM_ADDR_SPACE (new_rtx), mode);
2223 return new_rtx;
2226 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2227 static GTY(()) tree spill_slot_decl;
2229 tree
2230 get_spill_slot_decl (bool force_build_p)
2232 tree d = spill_slot_decl;
2233 rtx rd;
2235 if (d || !force_build_p)
2236 return d;
2238 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2239 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2240 DECL_ARTIFICIAL (d) = 1;
2241 DECL_IGNORED_P (d) = 1;
2242 TREE_USED (d) = 1;
2243 spill_slot_decl = d;
2245 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2246 MEM_NOTRAP_P (rd) = 1;
2247 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2248 NULL_RTX, 0, ADDR_SPACE_GENERIC, BLKmode);
2249 SET_DECL_RTL (d, rd);
2251 return d;
2254 /* Given MEM, a result from assign_stack_local, fill in the memory
2255 attributes as appropriate for a register allocator spill slot.
2256 These slots are not aliasable by other memory. We arrange for
2257 them all to use a single MEM_EXPR, so that the aliasing code can
2258 work properly in the case of shared spill slots. */
2260 void
2261 set_mem_attrs_for_spill (rtx mem)
2263 alias_set_type alias;
2264 rtx addr, offset;
2265 tree expr;
2267 expr = get_spill_slot_decl (true);
2268 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2270 /* We expect the incoming memory to be of the form:
2271 (mem:MODE (plus (reg sfp) (const_int offset)))
2272 with perhaps the plus missing for offset = 0. */
2273 addr = XEXP (mem, 0);
2274 offset = const0_rtx;
2275 if (GET_CODE (addr) == PLUS
2276 && CONST_INT_P (XEXP (addr, 1)))
2277 offset = XEXP (addr, 1);
2279 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2280 MEM_SIZE (mem), MEM_ALIGN (mem),
2281 ADDR_SPACE_GENERIC, GET_MODE (mem));
2282 MEM_NOTRAP_P (mem) = 1;
2285 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2288 gen_label_rtx (void)
2290 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2291 NULL, label_num++, NULL);
2294 /* For procedure integration. */
2296 /* Install new pointers to the first and last insns in the chain.
2297 Also, set cur_insn_uid to one higher than the last in use.
2298 Used for an inline-procedure after copying the insn chain. */
2300 void
2301 set_new_first_and_last_insn (rtx first, rtx last)
2303 rtx insn;
2305 set_first_insn (first);
2306 set_last_insn (last);
2307 cur_insn_uid = 0;
2309 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2311 int debug_count = 0;
2313 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2314 cur_debug_insn_uid = 0;
2316 for (insn = first; insn; insn = NEXT_INSN (insn))
2317 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2318 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2319 else
2321 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2322 if (DEBUG_INSN_P (insn))
2323 debug_count++;
2326 if (debug_count)
2327 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2328 else
2329 cur_debug_insn_uid++;
2331 else
2332 for (insn = first; insn; insn = NEXT_INSN (insn))
2333 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2335 cur_insn_uid++;
2338 /* Go through all the RTL insn bodies and copy any invalid shared
2339 structure. This routine should only be called once. */
2341 static void
2342 unshare_all_rtl_1 (rtx insn)
2344 /* Unshare just about everything else. */
2345 unshare_all_rtl_in_chain (insn);
2347 /* Make sure the addresses of stack slots found outside the insn chain
2348 (such as, in DECL_RTL of a variable) are not shared
2349 with the insn chain.
2351 This special care is necessary when the stack slot MEM does not
2352 actually appear in the insn chain. If it does appear, its address
2353 is unshared from all else at that point. */
2354 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2357 /* Go through all the RTL insn bodies and copy any invalid shared
2358 structure, again. This is a fairly expensive thing to do so it
2359 should be done sparingly. */
2361 void
2362 unshare_all_rtl_again (rtx insn)
2364 rtx p;
2365 tree decl;
2367 for (p = insn; p; p = NEXT_INSN (p))
2368 if (INSN_P (p))
2370 reset_used_flags (PATTERN (p));
2371 reset_used_flags (REG_NOTES (p));
2374 /* Make sure that virtual stack slots are not shared. */
2375 set_used_decls (DECL_INITIAL (cfun->decl));
2377 /* Make sure that virtual parameters are not shared. */
2378 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2379 set_used_flags (DECL_RTL (decl));
2381 reset_used_flags (stack_slot_list);
2383 unshare_all_rtl_1 (insn);
2386 unsigned int
2387 unshare_all_rtl (void)
2389 unshare_all_rtl_1 (get_insns ());
2390 return 0;
2393 struct rtl_opt_pass pass_unshare_all_rtl =
2396 RTL_PASS,
2397 "unshare", /* name */
2398 NULL, /* gate */
2399 unshare_all_rtl, /* execute */
2400 NULL, /* sub */
2401 NULL, /* next */
2402 0, /* static_pass_number */
2403 TV_NONE, /* tv_id */
2404 0, /* properties_required */
2405 0, /* properties_provided */
2406 0, /* properties_destroyed */
2407 0, /* todo_flags_start */
2408 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2413 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2414 Recursively does the same for subexpressions. */
2416 static void
2417 verify_rtx_sharing (rtx orig, rtx insn)
2419 rtx x = orig;
2420 int i;
2421 enum rtx_code code;
2422 const char *format_ptr;
2424 if (x == 0)
2425 return;
2427 code = GET_CODE (x);
2429 /* These types may be freely shared. */
2431 switch (code)
2433 case REG:
2434 case DEBUG_EXPR:
2435 case VALUE:
2436 case CONST_INT:
2437 case CONST_DOUBLE:
2438 case CONST_FIXED:
2439 case CONST_VECTOR:
2440 case SYMBOL_REF:
2441 case LABEL_REF:
2442 case CODE_LABEL:
2443 case PC:
2444 case CC0:
2445 case SCRATCH:
2446 return;
2447 /* SCRATCH must be shared because they represent distinct values. */
2448 case CLOBBER:
2449 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2450 return;
2451 break;
2453 case CONST:
2454 if (shared_const_p (orig))
2455 return;
2456 break;
2458 case MEM:
2459 /* A MEM is allowed to be shared if its address is constant. */
2460 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2461 || reload_completed || reload_in_progress)
2462 return;
2464 break;
2466 default:
2467 break;
2470 /* This rtx may not be shared. If it has already been seen,
2471 replace it with a copy of itself. */
2472 #ifdef ENABLE_CHECKING
2473 if (RTX_FLAG (x, used))
2475 error ("invalid rtl sharing found in the insn");
2476 debug_rtx (insn);
2477 error ("shared rtx");
2478 debug_rtx (x);
2479 internal_error ("internal consistency failure");
2481 #endif
2482 gcc_assert (!RTX_FLAG (x, used));
2484 RTX_FLAG (x, used) = 1;
2486 /* Now scan the subexpressions recursively. */
2488 format_ptr = GET_RTX_FORMAT (code);
2490 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2492 switch (*format_ptr++)
2494 case 'e':
2495 verify_rtx_sharing (XEXP (x, i), insn);
2496 break;
2498 case 'E':
2499 if (XVEC (x, i) != NULL)
2501 int j;
2502 int len = XVECLEN (x, i);
2504 for (j = 0; j < len; j++)
2506 /* We allow sharing of ASM_OPERANDS inside single
2507 instruction. */
2508 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2509 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2510 == ASM_OPERANDS))
2511 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2512 else
2513 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2516 break;
2519 return;
2522 /* Go through all the RTL insn bodies and check that there is no unexpected
2523 sharing in between the subexpressions. */
2525 DEBUG_FUNCTION void
2526 verify_rtl_sharing (void)
2528 rtx p;
2530 for (p = get_insns (); p; p = NEXT_INSN (p))
2531 if (INSN_P (p))
2533 reset_used_flags (PATTERN (p));
2534 reset_used_flags (REG_NOTES (p));
2535 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2537 int i;
2538 rtx q, sequence = PATTERN (p);
2540 for (i = 0; i < XVECLEN (sequence, 0); i++)
2542 q = XVECEXP (sequence, 0, i);
2543 gcc_assert (INSN_P (q));
2544 reset_used_flags (PATTERN (q));
2545 reset_used_flags (REG_NOTES (q));
2550 for (p = get_insns (); p; p = NEXT_INSN (p))
2551 if (INSN_P (p))
2553 verify_rtx_sharing (PATTERN (p), p);
2554 verify_rtx_sharing (REG_NOTES (p), p);
2558 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2559 Assumes the mark bits are cleared at entry. */
2561 void
2562 unshare_all_rtl_in_chain (rtx insn)
2564 for (; insn; insn = NEXT_INSN (insn))
2565 if (INSN_P (insn))
2567 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2568 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2572 /* Go through all virtual stack slots of a function and mark them as
2573 shared. We never replace the DECL_RTLs themselves with a copy,
2574 but expressions mentioned into a DECL_RTL cannot be shared with
2575 expressions in the instruction stream.
2577 Note that reload may convert pseudo registers into memories in-place.
2578 Pseudo registers are always shared, but MEMs never are. Thus if we
2579 reset the used flags on MEMs in the instruction stream, we must set
2580 them again on MEMs that appear in DECL_RTLs. */
2582 static void
2583 set_used_decls (tree blk)
2585 tree t;
2587 /* Mark decls. */
2588 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2589 if (DECL_RTL_SET_P (t))
2590 set_used_flags (DECL_RTL (t));
2592 /* Now process sub-blocks. */
2593 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2594 set_used_decls (t);
2597 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2598 Recursively does the same for subexpressions. Uses
2599 copy_rtx_if_shared_1 to reduce stack space. */
2602 copy_rtx_if_shared (rtx orig)
2604 copy_rtx_if_shared_1 (&orig);
2605 return orig;
2608 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2609 use. Recursively does the same for subexpressions. */
2611 static void
2612 copy_rtx_if_shared_1 (rtx *orig1)
2614 rtx x;
2615 int i;
2616 enum rtx_code code;
2617 rtx *last_ptr;
2618 const char *format_ptr;
2619 int copied = 0;
2620 int length;
2622 /* Repeat is used to turn tail-recursion into iteration. */
2623 repeat:
2624 x = *orig1;
2626 if (x == 0)
2627 return;
2629 code = GET_CODE (x);
2631 /* These types may be freely shared. */
2633 switch (code)
2635 case REG:
2636 case DEBUG_EXPR:
2637 case VALUE:
2638 case CONST_INT:
2639 case CONST_DOUBLE:
2640 case CONST_FIXED:
2641 case CONST_VECTOR:
2642 case SYMBOL_REF:
2643 case LABEL_REF:
2644 case CODE_LABEL:
2645 case PC:
2646 case CC0:
2647 case SCRATCH:
2648 /* SCRATCH must be shared because they represent distinct values. */
2649 return;
2650 case CLOBBER:
2651 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2652 return;
2653 break;
2655 case CONST:
2656 if (shared_const_p (x))
2657 return;
2658 break;
2660 case DEBUG_INSN:
2661 case INSN:
2662 case JUMP_INSN:
2663 case CALL_INSN:
2664 case NOTE:
2665 case BARRIER:
2666 /* The chain of insns is not being copied. */
2667 return;
2669 default:
2670 break;
2673 /* This rtx may not be shared. If it has already been seen,
2674 replace it with a copy of itself. */
2676 if (RTX_FLAG (x, used))
2678 x = shallow_copy_rtx (x);
2679 copied = 1;
2681 RTX_FLAG (x, used) = 1;
2683 /* Now scan the subexpressions recursively.
2684 We can store any replaced subexpressions directly into X
2685 since we know X is not shared! Any vectors in X
2686 must be copied if X was copied. */
2688 format_ptr = GET_RTX_FORMAT (code);
2689 length = GET_RTX_LENGTH (code);
2690 last_ptr = NULL;
2692 for (i = 0; i < length; i++)
2694 switch (*format_ptr++)
2696 case 'e':
2697 if (last_ptr)
2698 copy_rtx_if_shared_1 (last_ptr);
2699 last_ptr = &XEXP (x, i);
2700 break;
2702 case 'E':
2703 if (XVEC (x, i) != NULL)
2705 int j;
2706 int len = XVECLEN (x, i);
2708 /* Copy the vector iff I copied the rtx and the length
2709 is nonzero. */
2710 if (copied && len > 0)
2711 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2713 /* Call recursively on all inside the vector. */
2714 for (j = 0; j < len; j++)
2716 if (last_ptr)
2717 copy_rtx_if_shared_1 (last_ptr);
2718 last_ptr = &XVECEXP (x, i, j);
2721 break;
2724 *orig1 = x;
2725 if (last_ptr)
2727 orig1 = last_ptr;
2728 goto repeat;
2730 return;
2733 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2734 to look for shared sub-parts. */
2736 void
2737 reset_used_flags (rtx x)
2739 int i, j;
2740 enum rtx_code code;
2741 const char *format_ptr;
2742 int length;
2744 /* Repeat is used to turn tail-recursion into iteration. */
2745 repeat:
2746 if (x == 0)
2747 return;
2749 code = GET_CODE (x);
2751 /* These types may be freely shared so we needn't do any resetting
2752 for them. */
2754 switch (code)
2756 case REG:
2757 case DEBUG_EXPR:
2758 case VALUE:
2759 case CONST_INT:
2760 case CONST_DOUBLE:
2761 case CONST_FIXED:
2762 case CONST_VECTOR:
2763 case SYMBOL_REF:
2764 case CODE_LABEL:
2765 case PC:
2766 case CC0:
2767 return;
2769 case DEBUG_INSN:
2770 case INSN:
2771 case JUMP_INSN:
2772 case CALL_INSN:
2773 case NOTE:
2774 case LABEL_REF:
2775 case BARRIER:
2776 /* The chain of insns is not being copied. */
2777 return;
2779 default:
2780 break;
2783 RTX_FLAG (x, used) = 0;
2785 format_ptr = GET_RTX_FORMAT (code);
2786 length = GET_RTX_LENGTH (code);
2788 for (i = 0; i < length; i++)
2790 switch (*format_ptr++)
2792 case 'e':
2793 if (i == length-1)
2795 x = XEXP (x, i);
2796 goto repeat;
2798 reset_used_flags (XEXP (x, i));
2799 break;
2801 case 'E':
2802 for (j = 0; j < XVECLEN (x, i); j++)
2803 reset_used_flags (XVECEXP (x, i, j));
2804 break;
2809 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2810 to look for shared sub-parts. */
2812 void
2813 set_used_flags (rtx x)
2815 int i, j;
2816 enum rtx_code code;
2817 const char *format_ptr;
2819 if (x == 0)
2820 return;
2822 code = GET_CODE (x);
2824 /* These types may be freely shared so we needn't do any resetting
2825 for them. */
2827 switch (code)
2829 case REG:
2830 case DEBUG_EXPR:
2831 case VALUE:
2832 case CONST_INT:
2833 case CONST_DOUBLE:
2834 case CONST_FIXED:
2835 case CONST_VECTOR:
2836 case SYMBOL_REF:
2837 case CODE_LABEL:
2838 case PC:
2839 case CC0:
2840 return;
2842 case DEBUG_INSN:
2843 case INSN:
2844 case JUMP_INSN:
2845 case CALL_INSN:
2846 case NOTE:
2847 case LABEL_REF:
2848 case BARRIER:
2849 /* The chain of insns is not being copied. */
2850 return;
2852 default:
2853 break;
2856 RTX_FLAG (x, used) = 1;
2858 format_ptr = GET_RTX_FORMAT (code);
2859 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2861 switch (*format_ptr++)
2863 case 'e':
2864 set_used_flags (XEXP (x, i));
2865 break;
2867 case 'E':
2868 for (j = 0; j < XVECLEN (x, i); j++)
2869 set_used_flags (XVECEXP (x, i, j));
2870 break;
2875 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2876 Return X or the rtx for the pseudo reg the value of X was copied into.
2877 OTHER must be valid as a SET_DEST. */
2880 make_safe_from (rtx x, rtx other)
2882 while (1)
2883 switch (GET_CODE (other))
2885 case SUBREG:
2886 other = SUBREG_REG (other);
2887 break;
2888 case STRICT_LOW_PART:
2889 case SIGN_EXTEND:
2890 case ZERO_EXTEND:
2891 other = XEXP (other, 0);
2892 break;
2893 default:
2894 goto done;
2896 done:
2897 if ((MEM_P (other)
2898 && ! CONSTANT_P (x)
2899 && !REG_P (x)
2900 && GET_CODE (x) != SUBREG)
2901 || (REG_P (other)
2902 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2903 || reg_mentioned_p (other, x))))
2905 rtx temp = gen_reg_rtx (GET_MODE (x));
2906 emit_move_insn (temp, x);
2907 return temp;
2909 return x;
2912 /* Emission of insns (adding them to the doubly-linked list). */
2914 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2917 get_last_insn_anywhere (void)
2919 struct sequence_stack *stack;
2920 if (get_last_insn ())
2921 return get_last_insn ();
2922 for (stack = seq_stack; stack; stack = stack->next)
2923 if (stack->last != 0)
2924 return stack->last;
2925 return 0;
2928 /* Return the first nonnote insn emitted in current sequence or current
2929 function. This routine looks inside SEQUENCEs. */
2932 get_first_nonnote_insn (void)
2934 rtx insn = get_insns ();
2936 if (insn)
2938 if (NOTE_P (insn))
2939 for (insn = next_insn (insn);
2940 insn && NOTE_P (insn);
2941 insn = next_insn (insn))
2942 continue;
2943 else
2945 if (NONJUMP_INSN_P (insn)
2946 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2947 insn = XVECEXP (PATTERN (insn), 0, 0);
2951 return insn;
2954 /* Return the last nonnote insn emitted in current sequence or current
2955 function. This routine looks inside SEQUENCEs. */
2958 get_last_nonnote_insn (void)
2960 rtx insn = get_last_insn ();
2962 if (insn)
2964 if (NOTE_P (insn))
2965 for (insn = previous_insn (insn);
2966 insn && NOTE_P (insn);
2967 insn = previous_insn (insn))
2968 continue;
2969 else
2971 if (NONJUMP_INSN_P (insn)
2972 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2973 insn = XVECEXP (PATTERN (insn), 0,
2974 XVECLEN (PATTERN (insn), 0) - 1);
2978 return insn;
2981 /* Return the number of actual (non-debug) insns emitted in this
2982 function. */
2985 get_max_insn_count (void)
2987 int n = cur_insn_uid;
2989 /* The table size must be stable across -g, to avoid codegen
2990 differences due to debug insns, and not be affected by
2991 -fmin-insn-uid, to avoid excessive table size and to simplify
2992 debugging of -fcompare-debug failures. */
2993 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
2994 n -= cur_debug_insn_uid;
2995 else
2996 n -= MIN_NONDEBUG_INSN_UID;
2998 return n;
3002 /* Return the next insn. If it is a SEQUENCE, return the first insn
3003 of the sequence. */
3006 next_insn (rtx insn)
3008 if (insn)
3010 insn = NEXT_INSN (insn);
3011 if (insn && NONJUMP_INSN_P (insn)
3012 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3013 insn = XVECEXP (PATTERN (insn), 0, 0);
3016 return insn;
3019 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3020 of the sequence. */
3023 previous_insn (rtx insn)
3025 if (insn)
3027 insn = PREV_INSN (insn);
3028 if (insn && NONJUMP_INSN_P (insn)
3029 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3030 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3033 return insn;
3036 /* Return the next insn after INSN that is not a NOTE. This routine does not
3037 look inside SEQUENCEs. */
3040 next_nonnote_insn (rtx insn)
3042 while (insn)
3044 insn = NEXT_INSN (insn);
3045 if (insn == 0 || !NOTE_P (insn))
3046 break;
3049 return insn;
3052 /* Return the next insn after INSN that is not a NOTE, but stop the
3053 search before we enter another basic block. This routine does not
3054 look inside SEQUENCEs. */
3057 next_nonnote_insn_bb (rtx insn)
3059 while (insn)
3061 insn = NEXT_INSN (insn);
3062 if (insn == 0 || !NOTE_P (insn))
3063 break;
3064 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3065 return NULL_RTX;
3068 return insn;
3071 /* Return the previous insn before INSN that is not a NOTE. This routine does
3072 not look inside SEQUENCEs. */
3075 prev_nonnote_insn (rtx insn)
3077 while (insn)
3079 insn = PREV_INSN (insn);
3080 if (insn == 0 || !NOTE_P (insn))
3081 break;
3084 return insn;
3087 /* Return the previous insn before INSN that is not a NOTE, but stop
3088 the search before we enter another basic block. This routine does
3089 not look inside SEQUENCEs. */
3092 prev_nonnote_insn_bb (rtx insn)
3094 while (insn)
3096 insn = PREV_INSN (insn);
3097 if (insn == 0 || !NOTE_P (insn))
3098 break;
3099 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3100 return NULL_RTX;
3103 return insn;
3106 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3107 routine does not look inside SEQUENCEs. */
3110 next_nondebug_insn (rtx insn)
3112 while (insn)
3114 insn = NEXT_INSN (insn);
3115 if (insn == 0 || !DEBUG_INSN_P (insn))
3116 break;
3119 return insn;
3122 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3123 This routine does not look inside SEQUENCEs. */
3126 prev_nondebug_insn (rtx insn)
3128 while (insn)
3130 insn = PREV_INSN (insn);
3131 if (insn == 0 || !DEBUG_INSN_P (insn))
3132 break;
3135 return insn;
3138 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3139 This routine does not look inside SEQUENCEs. */
3142 next_nonnote_nondebug_insn (rtx insn)
3144 while (insn)
3146 insn = NEXT_INSN (insn);
3147 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3148 break;
3151 return insn;
3154 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3155 This routine does not look inside SEQUENCEs. */
3158 prev_nonnote_nondebug_insn (rtx insn)
3160 while (insn)
3162 insn = PREV_INSN (insn);
3163 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3164 break;
3167 return insn;
3170 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3171 or 0, if there is none. This routine does not look inside
3172 SEQUENCEs. */
3175 next_real_insn (rtx insn)
3177 while (insn)
3179 insn = NEXT_INSN (insn);
3180 if (insn == 0 || INSN_P (insn))
3181 break;
3184 return insn;
3187 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3188 or 0, if there is none. This routine does not look inside
3189 SEQUENCEs. */
3192 prev_real_insn (rtx insn)
3194 while (insn)
3196 insn = PREV_INSN (insn);
3197 if (insn == 0 || INSN_P (insn))
3198 break;
3201 return insn;
3204 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3205 This routine does not look inside SEQUENCEs. */
3208 last_call_insn (void)
3210 rtx insn;
3212 for (insn = get_last_insn ();
3213 insn && !CALL_P (insn);
3214 insn = PREV_INSN (insn))
3217 return insn;
3220 /* Find the next insn after INSN that really does something. This routine
3221 does not look inside SEQUENCEs. After reload this also skips over
3222 standalone USE and CLOBBER insn. */
3225 active_insn_p (const_rtx insn)
3227 return (CALL_P (insn) || JUMP_P (insn)
3228 || (NONJUMP_INSN_P (insn)
3229 && (! reload_completed
3230 || (GET_CODE (PATTERN (insn)) != USE
3231 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3235 next_active_insn (rtx insn)
3237 while (insn)
3239 insn = NEXT_INSN (insn);
3240 if (insn == 0 || active_insn_p (insn))
3241 break;
3244 return insn;
3247 /* Find the last insn before INSN that really does something. This routine
3248 does not look inside SEQUENCEs. After reload this also skips over
3249 standalone USE and CLOBBER insn. */
3252 prev_active_insn (rtx insn)
3254 while (insn)
3256 insn = PREV_INSN (insn);
3257 if (insn == 0 || active_insn_p (insn))
3258 break;
3261 return insn;
3264 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3267 next_label (rtx insn)
3269 while (insn)
3271 insn = NEXT_INSN (insn);
3272 if (insn == 0 || LABEL_P (insn))
3273 break;
3276 return insn;
3279 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3282 prev_label (rtx insn)
3284 while (insn)
3286 insn = PREV_INSN (insn);
3287 if (insn == 0 || LABEL_P (insn))
3288 break;
3291 return insn;
3294 /* Return the last label to mark the same position as LABEL. Return null
3295 if LABEL itself is null. */
3298 skip_consecutive_labels (rtx label)
3300 rtx insn;
3302 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3303 if (LABEL_P (insn))
3304 label = insn;
3306 return label;
3309 #ifdef HAVE_cc0
3310 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3311 and REG_CC_USER notes so we can find it. */
3313 void
3314 link_cc0_insns (rtx insn)
3316 rtx user = next_nonnote_insn (insn);
3318 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3319 user = XVECEXP (PATTERN (user), 0, 0);
3321 add_reg_note (user, REG_CC_SETTER, insn);
3322 add_reg_note (insn, REG_CC_USER, user);
3325 /* Return the next insn that uses CC0 after INSN, which is assumed to
3326 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3327 applied to the result of this function should yield INSN).
3329 Normally, this is simply the next insn. However, if a REG_CC_USER note
3330 is present, it contains the insn that uses CC0.
3332 Return 0 if we can't find the insn. */
3335 next_cc0_user (rtx insn)
3337 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3339 if (note)
3340 return XEXP (note, 0);
3342 insn = next_nonnote_insn (insn);
3343 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3344 insn = XVECEXP (PATTERN (insn), 0, 0);
3346 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3347 return insn;
3349 return 0;
3352 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3353 note, it is the previous insn. */
3356 prev_cc0_setter (rtx insn)
3358 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3360 if (note)
3361 return XEXP (note, 0);
3363 insn = prev_nonnote_insn (insn);
3364 gcc_assert (sets_cc0_p (PATTERN (insn)));
3366 return insn;
3368 #endif
3370 #ifdef AUTO_INC_DEC
3371 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3373 static int
3374 find_auto_inc (rtx *xp, void *data)
3376 rtx x = *xp;
3377 rtx reg = (rtx) data;
3379 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3380 return 0;
3382 switch (GET_CODE (x))
3384 case PRE_DEC:
3385 case PRE_INC:
3386 case POST_DEC:
3387 case POST_INC:
3388 case PRE_MODIFY:
3389 case POST_MODIFY:
3390 if (rtx_equal_p (reg, XEXP (x, 0)))
3391 return 1;
3392 break;
3394 default:
3395 gcc_unreachable ();
3397 return -1;
3399 #endif
3401 /* Increment the label uses for all labels present in rtx. */
3403 static void
3404 mark_label_nuses (rtx x)
3406 enum rtx_code code;
3407 int i, j;
3408 const char *fmt;
3410 code = GET_CODE (x);
3411 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3412 LABEL_NUSES (XEXP (x, 0))++;
3414 fmt = GET_RTX_FORMAT (code);
3415 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3417 if (fmt[i] == 'e')
3418 mark_label_nuses (XEXP (x, i));
3419 else if (fmt[i] == 'E')
3420 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3421 mark_label_nuses (XVECEXP (x, i, j));
3426 /* Try splitting insns that can be split for better scheduling.
3427 PAT is the pattern which might split.
3428 TRIAL is the insn providing PAT.
3429 LAST is nonzero if we should return the last insn of the sequence produced.
3431 If this routine succeeds in splitting, it returns the first or last
3432 replacement insn depending on the value of LAST. Otherwise, it
3433 returns TRIAL. If the insn to be returned can be split, it will be. */
3436 try_split (rtx pat, rtx trial, int last)
3438 rtx before = PREV_INSN (trial);
3439 rtx after = NEXT_INSN (trial);
3440 int has_barrier = 0;
3441 rtx note, seq, tem;
3442 int probability;
3443 rtx insn_last, insn;
3444 int njumps = 0;
3446 /* We're not good at redistributing frame information. */
3447 if (RTX_FRAME_RELATED_P (trial))
3448 return trial;
3450 if (any_condjump_p (trial)
3451 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3452 split_branch_probability = INTVAL (XEXP (note, 0));
3453 probability = split_branch_probability;
3455 seq = split_insns (pat, trial);
3457 split_branch_probability = -1;
3459 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3460 We may need to handle this specially. */
3461 if (after && BARRIER_P (after))
3463 has_barrier = 1;
3464 after = NEXT_INSN (after);
3467 if (!seq)
3468 return trial;
3470 /* Avoid infinite loop if any insn of the result matches
3471 the original pattern. */
3472 insn_last = seq;
3473 while (1)
3475 if (INSN_P (insn_last)
3476 && rtx_equal_p (PATTERN (insn_last), pat))
3477 return trial;
3478 if (!NEXT_INSN (insn_last))
3479 break;
3480 insn_last = NEXT_INSN (insn_last);
3483 /* We will be adding the new sequence to the function. The splitters
3484 may have introduced invalid RTL sharing, so unshare the sequence now. */
3485 unshare_all_rtl_in_chain (seq);
3487 /* Mark labels. */
3488 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3490 if (JUMP_P (insn))
3492 mark_jump_label (PATTERN (insn), insn, 0);
3493 njumps++;
3494 if (probability != -1
3495 && any_condjump_p (insn)
3496 && !find_reg_note (insn, REG_BR_PROB, 0))
3498 /* We can preserve the REG_BR_PROB notes only if exactly
3499 one jump is created, otherwise the machine description
3500 is responsible for this step using
3501 split_branch_probability variable. */
3502 gcc_assert (njumps == 1);
3503 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3508 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3509 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3510 if (CALL_P (trial))
3512 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3513 if (CALL_P (insn))
3515 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3516 while (*p)
3517 p = &XEXP (*p, 1);
3518 *p = CALL_INSN_FUNCTION_USAGE (trial);
3519 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3521 /* Update the debug information for the CALL_INSN. */
3522 if (flag_enable_icf_debug)
3523 (*debug_hooks->copy_call_info) (trial, insn);
3527 /* Copy notes, particularly those related to the CFG. */
3528 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3530 switch (REG_NOTE_KIND (note))
3532 case REG_EH_REGION:
3533 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3534 break;
3536 case REG_NORETURN:
3537 case REG_SETJMP:
3538 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3540 if (CALL_P (insn))
3541 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3543 break;
3545 case REG_NON_LOCAL_GOTO:
3546 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3548 if (JUMP_P (insn))
3549 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3551 break;
3553 #ifdef AUTO_INC_DEC
3554 case REG_INC:
3555 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3557 rtx reg = XEXP (note, 0);
3558 if (!FIND_REG_INC_NOTE (insn, reg)
3559 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3560 add_reg_note (insn, REG_INC, reg);
3562 break;
3563 #endif
3565 default:
3566 break;
3570 /* If there are LABELS inside the split insns increment the
3571 usage count so we don't delete the label. */
3572 if (INSN_P (trial))
3574 insn = insn_last;
3575 while (insn != NULL_RTX)
3577 /* JUMP_P insns have already been "marked" above. */
3578 if (NONJUMP_INSN_P (insn))
3579 mark_label_nuses (PATTERN (insn));
3581 insn = PREV_INSN (insn);
3585 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3587 delete_insn (trial);
3588 if (has_barrier)
3589 emit_barrier_after (tem);
3591 /* Recursively call try_split for each new insn created; by the
3592 time control returns here that insn will be fully split, so
3593 set LAST and continue from the insn after the one returned.
3594 We can't use next_active_insn here since AFTER may be a note.
3595 Ignore deleted insns, which can be occur if not optimizing. */
3596 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3597 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3598 tem = try_split (PATTERN (tem), tem, 1);
3600 /* Return either the first or the last insn, depending on which was
3601 requested. */
3602 return last
3603 ? (after ? PREV_INSN (after) : get_last_insn ())
3604 : NEXT_INSN (before);
3607 /* Make and return an INSN rtx, initializing all its slots.
3608 Store PATTERN in the pattern slots. */
3611 make_insn_raw (rtx pattern)
3613 rtx insn;
3615 insn = rtx_alloc (INSN);
3617 INSN_UID (insn) = cur_insn_uid++;
3618 PATTERN (insn) = pattern;
3619 INSN_CODE (insn) = -1;
3620 REG_NOTES (insn) = NULL;
3621 INSN_LOCATOR (insn) = curr_insn_locator ();
3622 BLOCK_FOR_INSN (insn) = NULL;
3624 #ifdef ENABLE_RTL_CHECKING
3625 if (insn
3626 && INSN_P (insn)
3627 && (returnjump_p (insn)
3628 || (GET_CODE (insn) == SET
3629 && SET_DEST (insn) == pc_rtx)))
3631 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3632 debug_rtx (insn);
3634 #endif
3636 return insn;
3639 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3642 make_debug_insn_raw (rtx pattern)
3644 rtx insn;
3646 insn = rtx_alloc (DEBUG_INSN);
3647 INSN_UID (insn) = cur_debug_insn_uid++;
3648 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3649 INSN_UID (insn) = cur_insn_uid++;
3651 PATTERN (insn) = pattern;
3652 INSN_CODE (insn) = -1;
3653 REG_NOTES (insn) = NULL;
3654 INSN_LOCATOR (insn) = curr_insn_locator ();
3655 BLOCK_FOR_INSN (insn) = NULL;
3657 return insn;
3660 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3663 make_jump_insn_raw (rtx pattern)
3665 rtx insn;
3667 insn = rtx_alloc (JUMP_INSN);
3668 INSN_UID (insn) = cur_insn_uid++;
3670 PATTERN (insn) = pattern;
3671 INSN_CODE (insn) = -1;
3672 REG_NOTES (insn) = NULL;
3673 JUMP_LABEL (insn) = NULL;
3674 INSN_LOCATOR (insn) = curr_insn_locator ();
3675 BLOCK_FOR_INSN (insn) = NULL;
3677 return insn;
3680 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3682 static rtx
3683 make_call_insn_raw (rtx pattern)
3685 rtx insn;
3687 insn = rtx_alloc (CALL_INSN);
3688 INSN_UID (insn) = cur_insn_uid++;
3690 PATTERN (insn) = pattern;
3691 INSN_CODE (insn) = -1;
3692 REG_NOTES (insn) = NULL;
3693 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3694 INSN_LOCATOR (insn) = curr_insn_locator ();
3695 BLOCK_FOR_INSN (insn) = NULL;
3697 return insn;
3700 /* Add INSN to the end of the doubly-linked list.
3701 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3703 void
3704 add_insn (rtx insn)
3706 PREV_INSN (insn) = get_last_insn();
3707 NEXT_INSN (insn) = 0;
3709 if (NULL != get_last_insn())
3710 NEXT_INSN (get_last_insn ()) = insn;
3712 if (NULL == get_insns ())
3713 set_first_insn (insn);
3715 set_last_insn (insn);
3718 /* Add INSN into the doubly-linked list after insn AFTER. This and
3719 the next should be the only functions called to insert an insn once
3720 delay slots have been filled since only they know how to update a
3721 SEQUENCE. */
3723 void
3724 add_insn_after (rtx insn, rtx after, basic_block bb)
3726 rtx next = NEXT_INSN (after);
3728 gcc_assert (!optimize || !INSN_DELETED_P (after));
3730 NEXT_INSN (insn) = next;
3731 PREV_INSN (insn) = after;
3733 if (next)
3735 PREV_INSN (next) = insn;
3736 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3737 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3739 else if (get_last_insn () == after)
3740 set_last_insn (insn);
3741 else
3743 struct sequence_stack *stack = seq_stack;
3744 /* Scan all pending sequences too. */
3745 for (; stack; stack = stack->next)
3746 if (after == stack->last)
3748 stack->last = insn;
3749 break;
3752 gcc_assert (stack);
3755 if (!BARRIER_P (after)
3756 && !BARRIER_P (insn)
3757 && (bb = BLOCK_FOR_INSN (after)))
3759 set_block_for_insn (insn, bb);
3760 if (INSN_P (insn))
3761 df_insn_rescan (insn);
3762 /* Should not happen as first in the BB is always
3763 either NOTE or LABEL. */
3764 if (BB_END (bb) == after
3765 /* Avoid clobbering of structure when creating new BB. */
3766 && !BARRIER_P (insn)
3767 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3768 BB_END (bb) = insn;
3771 NEXT_INSN (after) = insn;
3772 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3774 rtx sequence = PATTERN (after);
3775 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3779 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3780 the previous should be the only functions called to insert an insn
3781 once delay slots have been filled since only they know how to
3782 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3783 bb from before. */
3785 void
3786 add_insn_before (rtx insn, rtx before, basic_block bb)
3788 rtx prev = PREV_INSN (before);
3790 gcc_assert (!optimize || !INSN_DELETED_P (before));
3792 PREV_INSN (insn) = prev;
3793 NEXT_INSN (insn) = before;
3795 if (prev)
3797 NEXT_INSN (prev) = insn;
3798 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3800 rtx sequence = PATTERN (prev);
3801 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3804 else if (get_insns () == before)
3805 set_first_insn (insn);
3806 else
3808 struct sequence_stack *stack = seq_stack;
3809 /* Scan all pending sequences too. */
3810 for (; stack; stack = stack->next)
3811 if (before == stack->first)
3813 stack->first = insn;
3814 break;
3817 gcc_assert (stack);
3820 if (!bb
3821 && !BARRIER_P (before)
3822 && !BARRIER_P (insn))
3823 bb = BLOCK_FOR_INSN (before);
3825 if (bb)
3827 set_block_for_insn (insn, bb);
3828 if (INSN_P (insn))
3829 df_insn_rescan (insn);
3830 /* Should not happen as first in the BB is always either NOTE or
3831 LABEL. */
3832 gcc_assert (BB_HEAD (bb) != insn
3833 /* Avoid clobbering of structure when creating new BB. */
3834 || BARRIER_P (insn)
3835 || NOTE_INSN_BASIC_BLOCK_P (insn));
3838 PREV_INSN (before) = insn;
3839 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3840 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3844 /* Replace insn with an deleted instruction note. */
3846 void
3847 set_insn_deleted (rtx insn)
3849 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3850 PUT_CODE (insn, NOTE);
3851 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3855 /* Remove an insn from its doubly-linked list. This function knows how
3856 to handle sequences. */
3857 void
3858 remove_insn (rtx insn)
3860 rtx next = NEXT_INSN (insn);
3861 rtx prev = PREV_INSN (insn);
3862 basic_block bb;
3864 /* Later in the code, the block will be marked dirty. */
3865 df_insn_delete (NULL, INSN_UID (insn));
3867 if (prev)
3869 NEXT_INSN (prev) = next;
3870 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3872 rtx sequence = PATTERN (prev);
3873 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3876 else if (get_insns () == insn)
3878 if (next)
3879 PREV_INSN (next) = NULL;
3880 set_first_insn (next);
3882 else
3884 struct sequence_stack *stack = seq_stack;
3885 /* Scan all pending sequences too. */
3886 for (; stack; stack = stack->next)
3887 if (insn == stack->first)
3889 stack->first = next;
3890 break;
3893 gcc_assert (stack);
3896 if (next)
3898 PREV_INSN (next) = prev;
3899 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3900 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3902 else if (get_last_insn () == insn)
3903 set_last_insn (prev);
3904 else
3906 struct sequence_stack *stack = seq_stack;
3907 /* Scan all pending sequences too. */
3908 for (; stack; stack = stack->next)
3909 if (insn == stack->last)
3911 stack->last = prev;
3912 break;
3915 gcc_assert (stack);
3917 if (!BARRIER_P (insn)
3918 && (bb = BLOCK_FOR_INSN (insn)))
3920 if (INSN_P (insn))
3921 df_set_bb_dirty (bb);
3922 if (BB_HEAD (bb) == insn)
3924 /* Never ever delete the basic block note without deleting whole
3925 basic block. */
3926 gcc_assert (!NOTE_P (insn));
3927 BB_HEAD (bb) = next;
3929 if (BB_END (bb) == insn)
3930 BB_END (bb) = prev;
3934 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3936 void
3937 add_function_usage_to (rtx call_insn, rtx call_fusage)
3939 gcc_assert (call_insn && CALL_P (call_insn));
3941 /* Put the register usage information on the CALL. If there is already
3942 some usage information, put ours at the end. */
3943 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3945 rtx link;
3947 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3948 link = XEXP (link, 1))
3951 XEXP (link, 1) = call_fusage;
3953 else
3954 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3957 /* Delete all insns made since FROM.
3958 FROM becomes the new last instruction. */
3960 void
3961 delete_insns_since (rtx from)
3963 if (from == 0)
3964 set_first_insn (0);
3965 else
3966 NEXT_INSN (from) = 0;
3967 set_last_insn (from);
3970 /* This function is deprecated, please use sequences instead.
3972 Move a consecutive bunch of insns to a different place in the chain.
3973 The insns to be moved are those between FROM and TO.
3974 They are moved to a new position after the insn AFTER.
3975 AFTER must not be FROM or TO or any insn in between.
3977 This function does not know about SEQUENCEs and hence should not be
3978 called after delay-slot filling has been done. */
3980 void
3981 reorder_insns_nobb (rtx from, rtx to, rtx after)
3983 #ifdef ENABLE_CHECKING
3984 rtx x;
3985 for (x = from; x != to; x = NEXT_INSN (x))
3986 gcc_assert (after != x);
3987 gcc_assert (after != to);
3988 #endif
3990 /* Splice this bunch out of where it is now. */
3991 if (PREV_INSN (from))
3992 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3993 if (NEXT_INSN (to))
3994 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3995 if (get_last_insn () == to)
3996 set_last_insn (PREV_INSN (from));
3997 if (get_insns () == from)
3998 set_first_insn (NEXT_INSN (to));
4000 /* Make the new neighbors point to it and it to them. */
4001 if (NEXT_INSN (after))
4002 PREV_INSN (NEXT_INSN (after)) = to;
4004 NEXT_INSN (to) = NEXT_INSN (after);
4005 PREV_INSN (from) = after;
4006 NEXT_INSN (after) = from;
4007 if (after == get_last_insn())
4008 set_last_insn (to);
4011 /* Same as function above, but take care to update BB boundaries. */
4012 void
4013 reorder_insns (rtx from, rtx to, rtx after)
4015 rtx prev = PREV_INSN (from);
4016 basic_block bb, bb2;
4018 reorder_insns_nobb (from, to, after);
4020 if (!BARRIER_P (after)
4021 && (bb = BLOCK_FOR_INSN (after)))
4023 rtx x;
4024 df_set_bb_dirty (bb);
4026 if (!BARRIER_P (from)
4027 && (bb2 = BLOCK_FOR_INSN (from)))
4029 if (BB_END (bb2) == to)
4030 BB_END (bb2) = prev;
4031 df_set_bb_dirty (bb2);
4034 if (BB_END (bb) == after)
4035 BB_END (bb) = to;
4037 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4038 if (!BARRIER_P (x))
4039 df_insn_change_bb (x, bb);
4044 /* Emit insn(s) of given code and pattern
4045 at a specified place within the doubly-linked list.
4047 All of the emit_foo global entry points accept an object
4048 X which is either an insn list or a PATTERN of a single
4049 instruction.
4051 There are thus a few canonical ways to generate code and
4052 emit it at a specific place in the instruction stream. For
4053 example, consider the instruction named SPOT and the fact that
4054 we would like to emit some instructions before SPOT. We might
4055 do it like this:
4057 start_sequence ();
4058 ... emit the new instructions ...
4059 insns_head = get_insns ();
4060 end_sequence ();
4062 emit_insn_before (insns_head, SPOT);
4064 It used to be common to generate SEQUENCE rtl instead, but that
4065 is a relic of the past which no longer occurs. The reason is that
4066 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4067 generated would almost certainly die right after it was created. */
4069 /* Make X be output before the instruction BEFORE. */
4072 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4074 rtx last = before;
4075 rtx insn;
4077 gcc_assert (before);
4079 if (x == NULL_RTX)
4080 return last;
4082 switch (GET_CODE (x))
4084 case DEBUG_INSN:
4085 case INSN:
4086 case JUMP_INSN:
4087 case CALL_INSN:
4088 case CODE_LABEL:
4089 case BARRIER:
4090 case NOTE:
4091 insn = x;
4092 while (insn)
4094 rtx next = NEXT_INSN (insn);
4095 add_insn_before (insn, before, bb);
4096 last = insn;
4097 insn = next;
4099 break;
4101 #ifdef ENABLE_RTL_CHECKING
4102 case SEQUENCE:
4103 gcc_unreachable ();
4104 break;
4105 #endif
4107 default:
4108 last = make_insn_raw (x);
4109 add_insn_before (last, before, bb);
4110 break;
4113 return last;
4116 /* Make an instruction with body X and code JUMP_INSN
4117 and output it before the instruction BEFORE. */
4120 emit_jump_insn_before_noloc (rtx x, rtx before)
4122 rtx insn, last = NULL_RTX;
4124 gcc_assert (before);
4126 switch (GET_CODE (x))
4128 case DEBUG_INSN:
4129 case INSN:
4130 case JUMP_INSN:
4131 case CALL_INSN:
4132 case CODE_LABEL:
4133 case BARRIER:
4134 case NOTE:
4135 insn = x;
4136 while (insn)
4138 rtx next = NEXT_INSN (insn);
4139 add_insn_before (insn, before, NULL);
4140 last = insn;
4141 insn = next;
4143 break;
4145 #ifdef ENABLE_RTL_CHECKING
4146 case SEQUENCE:
4147 gcc_unreachable ();
4148 break;
4149 #endif
4151 default:
4152 last = make_jump_insn_raw (x);
4153 add_insn_before (last, before, NULL);
4154 break;
4157 return last;
4160 /* Make an instruction with body X and code CALL_INSN
4161 and output it before the instruction BEFORE. */
4164 emit_call_insn_before_noloc (rtx x, rtx before)
4166 rtx last = NULL_RTX, insn;
4168 gcc_assert (before);
4170 switch (GET_CODE (x))
4172 case DEBUG_INSN:
4173 case INSN:
4174 case JUMP_INSN:
4175 case CALL_INSN:
4176 case CODE_LABEL:
4177 case BARRIER:
4178 case NOTE:
4179 insn = x;
4180 while (insn)
4182 rtx next = NEXT_INSN (insn);
4183 add_insn_before (insn, before, NULL);
4184 last = insn;
4185 insn = next;
4187 break;
4189 #ifdef ENABLE_RTL_CHECKING
4190 case SEQUENCE:
4191 gcc_unreachable ();
4192 break;
4193 #endif
4195 default:
4196 last = make_call_insn_raw (x);
4197 add_insn_before (last, before, NULL);
4198 break;
4201 return last;
4204 /* Make an instruction with body X and code DEBUG_INSN
4205 and output it before the instruction BEFORE. */
4208 emit_debug_insn_before_noloc (rtx x, rtx before)
4210 rtx last = NULL_RTX, insn;
4212 gcc_assert (before);
4214 switch (GET_CODE (x))
4216 case DEBUG_INSN:
4217 case INSN:
4218 case JUMP_INSN:
4219 case CALL_INSN:
4220 case CODE_LABEL:
4221 case BARRIER:
4222 case NOTE:
4223 insn = x;
4224 while (insn)
4226 rtx next = NEXT_INSN (insn);
4227 add_insn_before (insn, before, NULL);
4228 last = insn;
4229 insn = next;
4231 break;
4233 #ifdef ENABLE_RTL_CHECKING
4234 case SEQUENCE:
4235 gcc_unreachable ();
4236 break;
4237 #endif
4239 default:
4240 last = make_debug_insn_raw (x);
4241 add_insn_before (last, before, NULL);
4242 break;
4245 return last;
4248 /* Make an insn of code BARRIER
4249 and output it before the insn BEFORE. */
4252 emit_barrier_before (rtx before)
4254 rtx insn = rtx_alloc (BARRIER);
4256 INSN_UID (insn) = cur_insn_uid++;
4258 add_insn_before (insn, before, NULL);
4259 return insn;
4262 /* Emit the label LABEL before the insn BEFORE. */
4265 emit_label_before (rtx label, rtx before)
4267 /* This can be called twice for the same label as a result of the
4268 confusion that follows a syntax error! So make it harmless. */
4269 if (INSN_UID (label) == 0)
4271 INSN_UID (label) = cur_insn_uid++;
4272 add_insn_before (label, before, NULL);
4275 return label;
4278 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4281 emit_note_before (enum insn_note subtype, rtx before)
4283 rtx note = rtx_alloc (NOTE);
4284 INSN_UID (note) = cur_insn_uid++;
4285 NOTE_KIND (note) = subtype;
4286 BLOCK_FOR_INSN (note) = NULL;
4287 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4289 add_insn_before (note, before, NULL);
4290 return note;
4293 /* Helper for emit_insn_after, handles lists of instructions
4294 efficiently. */
4296 static rtx
4297 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4299 rtx last;
4300 rtx after_after;
4301 if (!bb && !BARRIER_P (after))
4302 bb = BLOCK_FOR_INSN (after);
4304 if (bb)
4306 df_set_bb_dirty (bb);
4307 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4308 if (!BARRIER_P (last))
4310 set_block_for_insn (last, bb);
4311 df_insn_rescan (last);
4313 if (!BARRIER_P (last))
4315 set_block_for_insn (last, bb);
4316 df_insn_rescan (last);
4318 if (BB_END (bb) == after)
4319 BB_END (bb) = last;
4321 else
4322 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4323 continue;
4325 after_after = NEXT_INSN (after);
4327 NEXT_INSN (after) = first;
4328 PREV_INSN (first) = after;
4329 NEXT_INSN (last) = after_after;
4330 if (after_after)
4331 PREV_INSN (after_after) = last;
4333 if (after == get_last_insn())
4334 set_last_insn (last);
4336 return last;
4339 /* Make X be output after the insn AFTER and set the BB of insn. If
4340 BB is NULL, an attempt is made to infer the BB from AFTER. */
4343 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4345 rtx last = after;
4347 gcc_assert (after);
4349 if (x == NULL_RTX)
4350 return last;
4352 switch (GET_CODE (x))
4354 case DEBUG_INSN:
4355 case INSN:
4356 case JUMP_INSN:
4357 case CALL_INSN:
4358 case CODE_LABEL:
4359 case BARRIER:
4360 case NOTE:
4361 last = emit_insn_after_1 (x, after, bb);
4362 break;
4364 #ifdef ENABLE_RTL_CHECKING
4365 case SEQUENCE:
4366 gcc_unreachable ();
4367 break;
4368 #endif
4370 default:
4371 last = make_insn_raw (x);
4372 add_insn_after (last, after, bb);
4373 break;
4376 return last;
4380 /* Make an insn of code JUMP_INSN with body X
4381 and output it after the insn AFTER. */
4384 emit_jump_insn_after_noloc (rtx x, rtx after)
4386 rtx last;
4388 gcc_assert (after);
4390 switch (GET_CODE (x))
4392 case DEBUG_INSN:
4393 case INSN:
4394 case JUMP_INSN:
4395 case CALL_INSN:
4396 case CODE_LABEL:
4397 case BARRIER:
4398 case NOTE:
4399 last = emit_insn_after_1 (x, after, NULL);
4400 break;
4402 #ifdef ENABLE_RTL_CHECKING
4403 case SEQUENCE:
4404 gcc_unreachable ();
4405 break;
4406 #endif
4408 default:
4409 last = make_jump_insn_raw (x);
4410 add_insn_after (last, after, NULL);
4411 break;
4414 return last;
4417 /* Make an instruction with body X and code CALL_INSN
4418 and output it after the instruction AFTER. */
4421 emit_call_insn_after_noloc (rtx x, rtx after)
4423 rtx last;
4425 gcc_assert (after);
4427 switch (GET_CODE (x))
4429 case DEBUG_INSN:
4430 case INSN:
4431 case JUMP_INSN:
4432 case CALL_INSN:
4433 case CODE_LABEL:
4434 case BARRIER:
4435 case NOTE:
4436 last = emit_insn_after_1 (x, after, NULL);
4437 break;
4439 #ifdef ENABLE_RTL_CHECKING
4440 case SEQUENCE:
4441 gcc_unreachable ();
4442 break;
4443 #endif
4445 default:
4446 last = make_call_insn_raw (x);
4447 add_insn_after (last, after, NULL);
4448 break;
4451 return last;
4454 /* Make an instruction with body X and code CALL_INSN
4455 and output it after the instruction AFTER. */
4458 emit_debug_insn_after_noloc (rtx x, rtx after)
4460 rtx last;
4462 gcc_assert (after);
4464 switch (GET_CODE (x))
4466 case DEBUG_INSN:
4467 case INSN:
4468 case JUMP_INSN:
4469 case CALL_INSN:
4470 case CODE_LABEL:
4471 case BARRIER:
4472 case NOTE:
4473 last = emit_insn_after_1 (x, after, NULL);
4474 break;
4476 #ifdef ENABLE_RTL_CHECKING
4477 case SEQUENCE:
4478 gcc_unreachable ();
4479 break;
4480 #endif
4482 default:
4483 last = make_debug_insn_raw (x);
4484 add_insn_after (last, after, NULL);
4485 break;
4488 return last;
4491 /* Make an insn of code BARRIER
4492 and output it after the insn AFTER. */
4495 emit_barrier_after (rtx after)
4497 rtx insn = rtx_alloc (BARRIER);
4499 INSN_UID (insn) = cur_insn_uid++;
4501 add_insn_after (insn, after, NULL);
4502 return insn;
4505 /* Emit the label LABEL after the insn AFTER. */
4508 emit_label_after (rtx label, rtx after)
4510 /* This can be called twice for the same label
4511 as a result of the confusion that follows a syntax error!
4512 So make it harmless. */
4513 if (INSN_UID (label) == 0)
4515 INSN_UID (label) = cur_insn_uid++;
4516 add_insn_after (label, after, NULL);
4519 return label;
4522 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4525 emit_note_after (enum insn_note subtype, rtx after)
4527 rtx note = rtx_alloc (NOTE);
4528 INSN_UID (note) = cur_insn_uid++;
4529 NOTE_KIND (note) = subtype;
4530 BLOCK_FOR_INSN (note) = NULL;
4531 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4532 add_insn_after (note, after, NULL);
4533 return note;
4536 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4538 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4540 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4542 if (pattern == NULL_RTX || !loc)
4543 return last;
4545 after = NEXT_INSN (after);
4546 while (1)
4548 if (active_insn_p (after) && !INSN_LOCATOR (after))
4549 INSN_LOCATOR (after) = loc;
4550 if (after == last)
4551 break;
4552 after = NEXT_INSN (after);
4554 return last;
4557 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4559 emit_insn_after (rtx pattern, rtx after)
4561 rtx prev = after;
4563 while (DEBUG_INSN_P (prev))
4564 prev = PREV_INSN (prev);
4566 if (INSN_P (prev))
4567 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4568 else
4569 return emit_insn_after_noloc (pattern, after, NULL);
4572 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4574 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4576 rtx last = emit_jump_insn_after_noloc (pattern, after);
4578 if (pattern == NULL_RTX || !loc)
4579 return last;
4581 after = NEXT_INSN (after);
4582 while (1)
4584 if (active_insn_p (after) && !INSN_LOCATOR (after))
4585 INSN_LOCATOR (after) = loc;
4586 if (after == last)
4587 break;
4588 after = NEXT_INSN (after);
4590 return last;
4593 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4595 emit_jump_insn_after (rtx pattern, rtx after)
4597 rtx prev = after;
4599 while (DEBUG_INSN_P (prev))
4600 prev = PREV_INSN (prev);
4602 if (INSN_P (prev))
4603 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4604 else
4605 return emit_jump_insn_after_noloc (pattern, after);
4608 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4610 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4612 rtx last = emit_call_insn_after_noloc (pattern, after);
4614 if (pattern == NULL_RTX || !loc)
4615 return last;
4617 after = NEXT_INSN (after);
4618 while (1)
4620 if (active_insn_p (after) && !INSN_LOCATOR (after))
4621 INSN_LOCATOR (after) = loc;
4622 if (after == last)
4623 break;
4624 after = NEXT_INSN (after);
4626 return last;
4629 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4631 emit_call_insn_after (rtx pattern, rtx after)
4633 rtx prev = after;
4635 while (DEBUG_INSN_P (prev))
4636 prev = PREV_INSN (prev);
4638 if (INSN_P (prev))
4639 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4640 else
4641 return emit_call_insn_after_noloc (pattern, after);
4644 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4646 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4648 rtx last = emit_debug_insn_after_noloc (pattern, after);
4650 if (pattern == NULL_RTX || !loc)
4651 return last;
4653 after = NEXT_INSN (after);
4654 while (1)
4656 if (active_insn_p (after) && !INSN_LOCATOR (after))
4657 INSN_LOCATOR (after) = loc;
4658 if (after == last)
4659 break;
4660 after = NEXT_INSN (after);
4662 return last;
4665 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4667 emit_debug_insn_after (rtx pattern, rtx after)
4669 if (INSN_P (after))
4670 return emit_debug_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4671 else
4672 return emit_debug_insn_after_noloc (pattern, after);
4675 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4677 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4679 rtx first = PREV_INSN (before);
4680 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4682 if (pattern == NULL_RTX || !loc)
4683 return last;
4685 if (!first)
4686 first = get_insns ();
4687 else
4688 first = NEXT_INSN (first);
4689 while (1)
4691 if (active_insn_p (first) && !INSN_LOCATOR (first))
4692 INSN_LOCATOR (first) = loc;
4693 if (first == last)
4694 break;
4695 first = NEXT_INSN (first);
4697 return last;
4700 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4702 emit_insn_before (rtx pattern, rtx before)
4704 rtx next = before;
4706 while (DEBUG_INSN_P (next))
4707 next = PREV_INSN (next);
4709 if (INSN_P (next))
4710 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4711 else
4712 return emit_insn_before_noloc (pattern, before, NULL);
4715 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4717 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4719 rtx first = PREV_INSN (before);
4720 rtx last = emit_jump_insn_before_noloc (pattern, before);
4722 if (pattern == NULL_RTX)
4723 return last;
4725 first = NEXT_INSN (first);
4726 while (1)
4728 if (active_insn_p (first) && !INSN_LOCATOR (first))
4729 INSN_LOCATOR (first) = loc;
4730 if (first == last)
4731 break;
4732 first = NEXT_INSN (first);
4734 return last;
4737 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4739 emit_jump_insn_before (rtx pattern, rtx before)
4741 rtx next = before;
4743 while (DEBUG_INSN_P (next))
4744 next = PREV_INSN (next);
4746 if (INSN_P (next))
4747 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4748 else
4749 return emit_jump_insn_before_noloc (pattern, before);
4752 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4754 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4756 rtx first = PREV_INSN (before);
4757 rtx last = emit_call_insn_before_noloc (pattern, before);
4759 if (pattern == NULL_RTX)
4760 return last;
4762 first = NEXT_INSN (first);
4763 while (1)
4765 if (active_insn_p (first) && !INSN_LOCATOR (first))
4766 INSN_LOCATOR (first) = loc;
4767 if (first == last)
4768 break;
4769 first = NEXT_INSN (first);
4771 return last;
4774 /* like emit_call_insn_before_noloc,
4775 but set insn_locator according to before. */
4777 emit_call_insn_before (rtx pattern, rtx before)
4779 rtx next = before;
4781 while (DEBUG_INSN_P (next))
4782 next = PREV_INSN (next);
4784 if (INSN_P (next))
4785 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4786 else
4787 return emit_call_insn_before_noloc (pattern, before);
4790 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4792 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4794 rtx first = PREV_INSN (before);
4795 rtx last = emit_debug_insn_before_noloc (pattern, before);
4797 if (pattern == NULL_RTX)
4798 return last;
4800 first = NEXT_INSN (first);
4801 while (1)
4803 if (active_insn_p (first) && !INSN_LOCATOR (first))
4804 INSN_LOCATOR (first) = loc;
4805 if (first == last)
4806 break;
4807 first = NEXT_INSN (first);
4809 return last;
4812 /* like emit_debug_insn_before_noloc,
4813 but set insn_locator according to before. */
4815 emit_debug_insn_before (rtx pattern, rtx before)
4817 if (INSN_P (before))
4818 return emit_debug_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4819 else
4820 return emit_debug_insn_before_noloc (pattern, before);
4823 /* Take X and emit it at the end of the doubly-linked
4824 INSN list.
4826 Returns the last insn emitted. */
4829 emit_insn (rtx x)
4831 rtx last = get_last_insn();
4832 rtx insn;
4834 if (x == NULL_RTX)
4835 return last;
4837 switch (GET_CODE (x))
4839 case DEBUG_INSN:
4840 case INSN:
4841 case JUMP_INSN:
4842 case CALL_INSN:
4843 case CODE_LABEL:
4844 case BARRIER:
4845 case NOTE:
4846 insn = x;
4847 while (insn)
4849 rtx next = NEXT_INSN (insn);
4850 add_insn (insn);
4851 last = insn;
4852 insn = next;
4854 break;
4856 #ifdef ENABLE_RTL_CHECKING
4857 case SEQUENCE:
4858 gcc_unreachable ();
4859 break;
4860 #endif
4862 default:
4863 last = make_insn_raw (x);
4864 add_insn (last);
4865 break;
4868 return last;
4871 /* Make an insn of code DEBUG_INSN with pattern X
4872 and add it to the end of the doubly-linked list. */
4875 emit_debug_insn (rtx x)
4877 rtx last = get_last_insn();
4878 rtx insn;
4880 if (x == NULL_RTX)
4881 return last;
4883 switch (GET_CODE (x))
4885 case DEBUG_INSN:
4886 case INSN:
4887 case JUMP_INSN:
4888 case CALL_INSN:
4889 case CODE_LABEL:
4890 case BARRIER:
4891 case NOTE:
4892 insn = x;
4893 while (insn)
4895 rtx next = NEXT_INSN (insn);
4896 add_insn (insn);
4897 last = insn;
4898 insn = next;
4900 break;
4902 #ifdef ENABLE_RTL_CHECKING
4903 case SEQUENCE:
4904 gcc_unreachable ();
4905 break;
4906 #endif
4908 default:
4909 last = make_debug_insn_raw (x);
4910 add_insn (last);
4911 break;
4914 return last;
4917 /* Make an insn of code JUMP_INSN with pattern X
4918 and add it to the end of the doubly-linked list. */
4921 emit_jump_insn (rtx x)
4923 rtx last = NULL_RTX, insn;
4925 switch (GET_CODE (x))
4927 case DEBUG_INSN:
4928 case INSN:
4929 case JUMP_INSN:
4930 case CALL_INSN:
4931 case CODE_LABEL:
4932 case BARRIER:
4933 case NOTE:
4934 insn = x;
4935 while (insn)
4937 rtx next = NEXT_INSN (insn);
4938 add_insn (insn);
4939 last = insn;
4940 insn = next;
4942 break;
4944 #ifdef ENABLE_RTL_CHECKING
4945 case SEQUENCE:
4946 gcc_unreachable ();
4947 break;
4948 #endif
4950 default:
4951 last = make_jump_insn_raw (x);
4952 add_insn (last);
4953 break;
4956 return last;
4959 /* Make an insn of code CALL_INSN with pattern X
4960 and add it to the end of the doubly-linked list. */
4963 emit_call_insn (rtx x)
4965 rtx insn;
4967 switch (GET_CODE (x))
4969 case DEBUG_INSN:
4970 case INSN:
4971 case JUMP_INSN:
4972 case CALL_INSN:
4973 case CODE_LABEL:
4974 case BARRIER:
4975 case NOTE:
4976 insn = emit_insn (x);
4977 break;
4979 #ifdef ENABLE_RTL_CHECKING
4980 case SEQUENCE:
4981 gcc_unreachable ();
4982 break;
4983 #endif
4985 default:
4986 insn = make_call_insn_raw (x);
4987 add_insn (insn);
4988 break;
4991 return insn;
4994 /* Add the label LABEL to the end of the doubly-linked list. */
4997 emit_label (rtx label)
4999 /* This can be called twice for the same label
5000 as a result of the confusion that follows a syntax error!
5001 So make it harmless. */
5002 if (INSN_UID (label) == 0)
5004 INSN_UID (label) = cur_insn_uid++;
5005 add_insn (label);
5007 return label;
5010 /* Make an insn of code BARRIER
5011 and add it to the end of the doubly-linked list. */
5014 emit_barrier (void)
5016 rtx barrier = rtx_alloc (BARRIER);
5017 INSN_UID (barrier) = cur_insn_uid++;
5018 add_insn (barrier);
5019 return barrier;
5022 /* Emit a copy of note ORIG. */
5025 emit_note_copy (rtx orig)
5027 rtx note;
5029 note = rtx_alloc (NOTE);
5031 INSN_UID (note) = cur_insn_uid++;
5032 NOTE_DATA (note) = NOTE_DATA (orig);
5033 NOTE_KIND (note) = NOTE_KIND (orig);
5034 BLOCK_FOR_INSN (note) = NULL;
5035 add_insn (note);
5037 return note;
5040 /* Make an insn of code NOTE or type NOTE_NO
5041 and add it to the end of the doubly-linked list. */
5044 emit_note (enum insn_note kind)
5046 rtx note;
5048 note = rtx_alloc (NOTE);
5049 INSN_UID (note) = cur_insn_uid++;
5050 NOTE_KIND (note) = kind;
5051 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
5052 BLOCK_FOR_INSN (note) = NULL;
5053 add_insn (note);
5054 return note;
5057 /* Emit a clobber of lvalue X. */
5060 emit_clobber (rtx x)
5062 /* CONCATs should not appear in the insn stream. */
5063 if (GET_CODE (x) == CONCAT)
5065 emit_clobber (XEXP (x, 0));
5066 return emit_clobber (XEXP (x, 1));
5068 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5071 /* Return a sequence of insns to clobber lvalue X. */
5074 gen_clobber (rtx x)
5076 rtx seq;
5078 start_sequence ();
5079 emit_clobber (x);
5080 seq = get_insns ();
5081 end_sequence ();
5082 return seq;
5085 /* Emit a use of rvalue X. */
5088 emit_use (rtx x)
5090 /* CONCATs should not appear in the insn stream. */
5091 if (GET_CODE (x) == CONCAT)
5093 emit_use (XEXP (x, 0));
5094 return emit_use (XEXP (x, 1));
5096 return emit_insn (gen_rtx_USE (VOIDmode, x));
5099 /* Return a sequence of insns to use rvalue X. */
5102 gen_use (rtx x)
5104 rtx seq;
5106 start_sequence ();
5107 emit_use (x);
5108 seq = get_insns ();
5109 end_sequence ();
5110 return seq;
5113 /* Cause next statement to emit a line note even if the line number
5114 has not changed. */
5116 void
5117 force_next_line_note (void)
5119 last_location = -1;
5122 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5123 note of this type already exists, remove it first. */
5126 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5128 rtx note = find_reg_note (insn, kind, NULL_RTX);
5130 switch (kind)
5132 case REG_EQUAL:
5133 case REG_EQUIV:
5134 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5135 has multiple sets (some callers assume single_set
5136 means the insn only has one set, when in fact it
5137 means the insn only has one * useful * set). */
5138 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
5140 gcc_assert (!note);
5141 return NULL_RTX;
5144 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5145 It serves no useful purpose and breaks eliminate_regs. */
5146 if (GET_CODE (datum) == ASM_OPERANDS)
5147 return NULL_RTX;
5149 if (note)
5151 XEXP (note, 0) = datum;
5152 df_notes_rescan (insn);
5153 return note;
5155 break;
5157 default:
5158 if (note)
5160 XEXP (note, 0) = datum;
5161 return note;
5163 break;
5166 add_reg_note (insn, kind, datum);
5168 switch (kind)
5170 case REG_EQUAL:
5171 case REG_EQUIV:
5172 df_notes_rescan (insn);
5173 break;
5174 default:
5175 break;
5178 return REG_NOTES (insn);
5181 /* Return an indication of which type of insn should have X as a body.
5182 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5184 static enum rtx_code
5185 classify_insn (rtx x)
5187 if (LABEL_P (x))
5188 return CODE_LABEL;
5189 if (GET_CODE (x) == CALL)
5190 return CALL_INSN;
5191 if (GET_CODE (x) == RETURN)
5192 return JUMP_INSN;
5193 if (GET_CODE (x) == SET)
5195 if (SET_DEST (x) == pc_rtx)
5196 return JUMP_INSN;
5197 else if (GET_CODE (SET_SRC (x)) == CALL)
5198 return CALL_INSN;
5199 else
5200 return INSN;
5202 if (GET_CODE (x) == PARALLEL)
5204 int j;
5205 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5206 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5207 return CALL_INSN;
5208 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5209 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5210 return JUMP_INSN;
5211 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5212 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5213 return CALL_INSN;
5215 return INSN;
5218 /* Emit the rtl pattern X as an appropriate kind of insn.
5219 If X is a label, it is simply added into the insn chain. */
5222 emit (rtx x)
5224 enum rtx_code code = classify_insn (x);
5226 switch (code)
5228 case CODE_LABEL:
5229 return emit_label (x);
5230 case INSN:
5231 return emit_insn (x);
5232 case JUMP_INSN:
5234 rtx insn = emit_jump_insn (x);
5235 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5236 return emit_barrier ();
5237 return insn;
5239 case CALL_INSN:
5240 return emit_call_insn (x);
5241 case DEBUG_INSN:
5242 return emit_debug_insn (x);
5243 default:
5244 gcc_unreachable ();
5248 /* Space for free sequence stack entries. */
5249 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5251 /* Begin emitting insns to a sequence. If this sequence will contain
5252 something that might cause the compiler to pop arguments to function
5253 calls (because those pops have previously been deferred; see
5254 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5255 before calling this function. That will ensure that the deferred
5256 pops are not accidentally emitted in the middle of this sequence. */
5258 void
5259 start_sequence (void)
5261 struct sequence_stack *tem;
5263 if (free_sequence_stack != NULL)
5265 tem = free_sequence_stack;
5266 free_sequence_stack = tem->next;
5268 else
5269 tem = ggc_alloc_sequence_stack ();
5271 tem->next = seq_stack;
5272 tem->first = get_insns ();
5273 tem->last = get_last_insn ();
5275 seq_stack = tem;
5277 set_first_insn (0);
5278 set_last_insn (0);
5281 /* Set up the insn chain starting with FIRST as the current sequence,
5282 saving the previously current one. See the documentation for
5283 start_sequence for more information about how to use this function. */
5285 void
5286 push_to_sequence (rtx first)
5288 rtx last;
5290 start_sequence ();
5292 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5294 set_first_insn (first);
5295 set_last_insn (last);
5298 /* Like push_to_sequence, but take the last insn as an argument to avoid
5299 looping through the list. */
5301 void
5302 push_to_sequence2 (rtx first, rtx last)
5304 start_sequence ();
5306 set_first_insn (first);
5307 set_last_insn (last);
5310 /* Set up the outer-level insn chain
5311 as the current sequence, saving the previously current one. */
5313 void
5314 push_topmost_sequence (void)
5316 struct sequence_stack *stack, *top = NULL;
5318 start_sequence ();
5320 for (stack = seq_stack; stack; stack = stack->next)
5321 top = stack;
5323 set_first_insn (top->first);
5324 set_last_insn (top->last);
5327 /* After emitting to the outer-level insn chain, update the outer-level
5328 insn chain, and restore the previous saved state. */
5330 void
5331 pop_topmost_sequence (void)
5333 struct sequence_stack *stack, *top = NULL;
5335 for (stack = seq_stack; stack; stack = stack->next)
5336 top = stack;
5338 top->first = get_insns ();
5339 top->last = get_last_insn ();
5341 end_sequence ();
5344 /* After emitting to a sequence, restore previous saved state.
5346 To get the contents of the sequence just made, you must call
5347 `get_insns' *before* calling here.
5349 If the compiler might have deferred popping arguments while
5350 generating this sequence, and this sequence will not be immediately
5351 inserted into the instruction stream, use do_pending_stack_adjust
5352 before calling get_insns. That will ensure that the deferred
5353 pops are inserted into this sequence, and not into some random
5354 location in the instruction stream. See INHIBIT_DEFER_POP for more
5355 information about deferred popping of arguments. */
5357 void
5358 end_sequence (void)
5360 struct sequence_stack *tem = seq_stack;
5362 set_first_insn (tem->first);
5363 set_last_insn (tem->last);
5364 seq_stack = tem->next;
5366 memset (tem, 0, sizeof (*tem));
5367 tem->next = free_sequence_stack;
5368 free_sequence_stack = tem;
5371 /* Return 1 if currently emitting into a sequence. */
5374 in_sequence_p (void)
5376 return seq_stack != 0;
5379 /* Put the various virtual registers into REGNO_REG_RTX. */
5381 static void
5382 init_virtual_regs (void)
5384 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5385 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5386 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5387 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5388 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5389 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5390 = virtual_preferred_stack_boundary_rtx;
5394 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5395 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5396 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5397 static int copy_insn_n_scratches;
5399 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5400 copied an ASM_OPERANDS.
5401 In that case, it is the original input-operand vector. */
5402 static rtvec orig_asm_operands_vector;
5404 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5405 copied an ASM_OPERANDS.
5406 In that case, it is the copied input-operand vector. */
5407 static rtvec copy_asm_operands_vector;
5409 /* Likewise for the constraints vector. */
5410 static rtvec orig_asm_constraints_vector;
5411 static rtvec copy_asm_constraints_vector;
5413 /* Recursively create a new copy of an rtx for copy_insn.
5414 This function differs from copy_rtx in that it handles SCRATCHes and
5415 ASM_OPERANDs properly.
5416 Normally, this function is not used directly; use copy_insn as front end.
5417 However, you could first copy an insn pattern with copy_insn and then use
5418 this function afterwards to properly copy any REG_NOTEs containing
5419 SCRATCHes. */
5422 copy_insn_1 (rtx orig)
5424 rtx copy;
5425 int i, j;
5426 RTX_CODE code;
5427 const char *format_ptr;
5429 if (orig == NULL)
5430 return NULL;
5432 code = GET_CODE (orig);
5434 switch (code)
5436 case REG:
5437 case CONST_INT:
5438 case CONST_DOUBLE:
5439 case CONST_FIXED:
5440 case CONST_VECTOR:
5441 case SYMBOL_REF:
5442 case CODE_LABEL:
5443 case PC:
5444 case CC0:
5445 return orig;
5446 case CLOBBER:
5447 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5448 return orig;
5449 break;
5451 case SCRATCH:
5452 for (i = 0; i < copy_insn_n_scratches; i++)
5453 if (copy_insn_scratch_in[i] == orig)
5454 return copy_insn_scratch_out[i];
5455 break;
5457 case CONST:
5458 if (shared_const_p (orig))
5459 return orig;
5460 break;
5462 /* A MEM with a constant address is not sharable. The problem is that
5463 the constant address may need to be reloaded. If the mem is shared,
5464 then reloading one copy of this mem will cause all copies to appear
5465 to have been reloaded. */
5467 default:
5468 break;
5471 /* Copy the various flags, fields, and other information. We assume
5472 that all fields need copying, and then clear the fields that should
5473 not be copied. That is the sensible default behavior, and forces
5474 us to explicitly document why we are *not* copying a flag. */
5475 copy = shallow_copy_rtx (orig);
5477 /* We do not copy the USED flag, which is used as a mark bit during
5478 walks over the RTL. */
5479 RTX_FLAG (copy, used) = 0;
5481 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5482 if (INSN_P (orig))
5484 RTX_FLAG (copy, jump) = 0;
5485 RTX_FLAG (copy, call) = 0;
5486 RTX_FLAG (copy, frame_related) = 0;
5489 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5491 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5492 switch (*format_ptr++)
5494 case 'e':
5495 if (XEXP (orig, i) != NULL)
5496 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5497 break;
5499 case 'E':
5500 case 'V':
5501 if (XVEC (orig, i) == orig_asm_constraints_vector)
5502 XVEC (copy, i) = copy_asm_constraints_vector;
5503 else if (XVEC (orig, i) == orig_asm_operands_vector)
5504 XVEC (copy, i) = copy_asm_operands_vector;
5505 else if (XVEC (orig, i) != NULL)
5507 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5508 for (j = 0; j < XVECLEN (copy, i); j++)
5509 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5511 break;
5513 case 't':
5514 case 'w':
5515 case 'i':
5516 case 's':
5517 case 'S':
5518 case 'u':
5519 case '0':
5520 /* These are left unchanged. */
5521 break;
5523 default:
5524 gcc_unreachable ();
5527 if (code == SCRATCH)
5529 i = copy_insn_n_scratches++;
5530 gcc_assert (i < MAX_RECOG_OPERANDS);
5531 copy_insn_scratch_in[i] = orig;
5532 copy_insn_scratch_out[i] = copy;
5534 else if (code == ASM_OPERANDS)
5536 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5537 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5538 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5539 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5542 return copy;
5545 /* Create a new copy of an rtx.
5546 This function differs from copy_rtx in that it handles SCRATCHes and
5547 ASM_OPERANDs properly.
5548 INSN doesn't really have to be a full INSN; it could be just the
5549 pattern. */
5551 copy_insn (rtx insn)
5553 copy_insn_n_scratches = 0;
5554 orig_asm_operands_vector = 0;
5555 orig_asm_constraints_vector = 0;
5556 copy_asm_operands_vector = 0;
5557 copy_asm_constraints_vector = 0;
5558 return copy_insn_1 (insn);
5561 /* Initialize data structures and variables in this file
5562 before generating rtl for each function. */
5564 void
5565 init_emit (void)
5567 set_first_insn (NULL);
5568 set_last_insn (NULL);
5569 if (MIN_NONDEBUG_INSN_UID)
5570 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5571 else
5572 cur_insn_uid = 1;
5573 cur_debug_insn_uid = 1;
5574 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5575 last_location = UNKNOWN_LOCATION;
5576 first_label_num = label_num;
5577 seq_stack = NULL;
5579 /* Init the tables that describe all the pseudo regs. */
5581 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5583 crtl->emit.regno_pointer_align
5584 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5586 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5588 /* Put copies of all the hard registers into regno_reg_rtx. */
5589 memcpy (regno_reg_rtx,
5590 initial_regno_reg_rtx,
5591 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5593 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5594 init_virtual_regs ();
5596 /* Indicate that the virtual registers and stack locations are
5597 all pointers. */
5598 REG_POINTER (stack_pointer_rtx) = 1;
5599 REG_POINTER (frame_pointer_rtx) = 1;
5600 REG_POINTER (hard_frame_pointer_rtx) = 1;
5601 REG_POINTER (arg_pointer_rtx) = 1;
5603 REG_POINTER (virtual_incoming_args_rtx) = 1;
5604 REG_POINTER (virtual_stack_vars_rtx) = 1;
5605 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5606 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5607 REG_POINTER (virtual_cfa_rtx) = 1;
5609 #ifdef STACK_BOUNDARY
5610 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5611 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5612 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5613 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5615 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5616 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5617 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5618 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5619 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5620 #endif
5622 #ifdef INIT_EXPANDERS
5623 INIT_EXPANDERS;
5624 #endif
5627 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5629 static rtx
5630 gen_const_vector (enum machine_mode mode, int constant)
5632 rtx tem;
5633 rtvec v;
5634 int units, i;
5635 enum machine_mode inner;
5637 units = GET_MODE_NUNITS (mode);
5638 inner = GET_MODE_INNER (mode);
5640 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5642 v = rtvec_alloc (units);
5644 /* We need to call this function after we set the scalar const_tiny_rtx
5645 entries. */
5646 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5648 for (i = 0; i < units; ++i)
5649 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5651 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5652 return tem;
5655 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5656 all elements are zero, and the one vector when all elements are one. */
5658 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5660 enum machine_mode inner = GET_MODE_INNER (mode);
5661 int nunits = GET_MODE_NUNITS (mode);
5662 rtx x;
5663 int i;
5665 /* Check to see if all of the elements have the same value. */
5666 x = RTVEC_ELT (v, nunits - 1);
5667 for (i = nunits - 2; i >= 0; i--)
5668 if (RTVEC_ELT (v, i) != x)
5669 break;
5671 /* If the values are all the same, check to see if we can use one of the
5672 standard constant vectors. */
5673 if (i == -1)
5675 if (x == CONST0_RTX (inner))
5676 return CONST0_RTX (mode);
5677 else if (x == CONST1_RTX (inner))
5678 return CONST1_RTX (mode);
5681 return gen_rtx_raw_CONST_VECTOR (mode, v);
5684 /* Initialise global register information required by all functions. */
5686 void
5687 init_emit_regs (void)
5689 int i;
5691 /* Reset register attributes */
5692 htab_empty (reg_attrs_htab);
5694 /* We need reg_raw_mode, so initialize the modes now. */
5695 init_reg_modes_target ();
5697 /* Assign register numbers to the globally defined register rtx. */
5698 pc_rtx = gen_rtx_PC (VOIDmode);
5699 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5700 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5701 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5702 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5703 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5704 virtual_incoming_args_rtx =
5705 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5706 virtual_stack_vars_rtx =
5707 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5708 virtual_stack_dynamic_rtx =
5709 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5710 virtual_outgoing_args_rtx =
5711 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5712 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5713 virtual_preferred_stack_boundary_rtx =
5714 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5716 /* Initialize RTL for commonly used hard registers. These are
5717 copied into regno_reg_rtx as we begin to compile each function. */
5718 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5719 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5721 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5722 return_address_pointer_rtx
5723 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5724 #endif
5726 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5727 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5728 else
5729 pic_offset_table_rtx = NULL_RTX;
5732 /* Create some permanent unique rtl objects shared between all functions. */
5734 void
5735 init_emit_once (void)
5737 int i;
5738 enum machine_mode mode;
5739 enum machine_mode double_mode;
5741 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5742 hash tables. */
5743 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5744 const_int_htab_eq, NULL);
5746 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5747 const_double_htab_eq, NULL);
5749 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5750 const_fixed_htab_eq, NULL);
5752 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5753 mem_attrs_htab_eq, NULL);
5754 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5755 reg_attrs_htab_eq, NULL);
5757 /* Compute the word and byte modes. */
5759 byte_mode = VOIDmode;
5760 word_mode = VOIDmode;
5761 double_mode = VOIDmode;
5763 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5764 mode != VOIDmode;
5765 mode = GET_MODE_WIDER_MODE (mode))
5767 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5768 && byte_mode == VOIDmode)
5769 byte_mode = mode;
5771 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5772 && word_mode == VOIDmode)
5773 word_mode = mode;
5776 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5777 mode != VOIDmode;
5778 mode = GET_MODE_WIDER_MODE (mode))
5780 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5781 && double_mode == VOIDmode)
5782 double_mode = mode;
5785 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5787 #ifdef INIT_EXPANDERS
5788 /* This is to initialize {init|mark|free}_machine_status before the first
5789 call to push_function_context_to. This is needed by the Chill front
5790 end which calls push_function_context_to before the first call to
5791 init_function_start. */
5792 INIT_EXPANDERS;
5793 #endif
5795 /* Create the unique rtx's for certain rtx codes and operand values. */
5797 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5798 tries to use these variables. */
5799 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5800 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5801 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5803 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5804 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5805 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5806 else
5807 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5809 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5810 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5811 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5813 dconstm1 = dconst1;
5814 dconstm1.sign = 1;
5816 dconsthalf = dconst1;
5817 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5819 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5821 const REAL_VALUE_TYPE *const r =
5822 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5824 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5825 mode != VOIDmode;
5826 mode = GET_MODE_WIDER_MODE (mode))
5827 const_tiny_rtx[i][(int) mode] =
5828 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5830 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5831 mode != VOIDmode;
5832 mode = GET_MODE_WIDER_MODE (mode))
5833 const_tiny_rtx[i][(int) mode] =
5834 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5836 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5838 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5839 mode != VOIDmode;
5840 mode = GET_MODE_WIDER_MODE (mode))
5841 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5843 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5844 mode != VOIDmode;
5845 mode = GET_MODE_WIDER_MODE (mode))
5846 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5849 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5850 mode != VOIDmode;
5851 mode = GET_MODE_WIDER_MODE (mode))
5853 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5854 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5857 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5858 mode != VOIDmode;
5859 mode = GET_MODE_WIDER_MODE (mode))
5861 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5862 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5865 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5866 mode != VOIDmode;
5867 mode = GET_MODE_WIDER_MODE (mode))
5869 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5870 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5873 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5874 mode != VOIDmode;
5875 mode = GET_MODE_WIDER_MODE (mode))
5877 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5878 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5881 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5882 mode != VOIDmode;
5883 mode = GET_MODE_WIDER_MODE (mode))
5885 FCONST0(mode).data.high = 0;
5886 FCONST0(mode).data.low = 0;
5887 FCONST0(mode).mode = mode;
5888 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5889 FCONST0 (mode), mode);
5892 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5893 mode != VOIDmode;
5894 mode = GET_MODE_WIDER_MODE (mode))
5896 FCONST0(mode).data.high = 0;
5897 FCONST0(mode).data.low = 0;
5898 FCONST0(mode).mode = mode;
5899 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5900 FCONST0 (mode), mode);
5903 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5904 mode != VOIDmode;
5905 mode = GET_MODE_WIDER_MODE (mode))
5907 FCONST0(mode).data.high = 0;
5908 FCONST0(mode).data.low = 0;
5909 FCONST0(mode).mode = mode;
5910 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5911 FCONST0 (mode), mode);
5913 /* We store the value 1. */
5914 FCONST1(mode).data.high = 0;
5915 FCONST1(mode).data.low = 0;
5916 FCONST1(mode).mode = mode;
5917 lshift_double (1, 0, GET_MODE_FBIT (mode),
5918 2 * HOST_BITS_PER_WIDE_INT,
5919 &FCONST1(mode).data.low,
5920 &FCONST1(mode).data.high,
5921 SIGNED_FIXED_POINT_MODE_P (mode));
5922 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5923 FCONST1 (mode), mode);
5926 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5927 mode != VOIDmode;
5928 mode = GET_MODE_WIDER_MODE (mode))
5930 FCONST0(mode).data.high = 0;
5931 FCONST0(mode).data.low = 0;
5932 FCONST0(mode).mode = mode;
5933 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5934 FCONST0 (mode), mode);
5936 /* We store the value 1. */
5937 FCONST1(mode).data.high = 0;
5938 FCONST1(mode).data.low = 0;
5939 FCONST1(mode).mode = mode;
5940 lshift_double (1, 0, GET_MODE_FBIT (mode),
5941 2 * HOST_BITS_PER_WIDE_INT,
5942 &FCONST1(mode).data.low,
5943 &FCONST1(mode).data.high,
5944 SIGNED_FIXED_POINT_MODE_P (mode));
5945 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5946 FCONST1 (mode), mode);
5949 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5950 mode != VOIDmode;
5951 mode = GET_MODE_WIDER_MODE (mode))
5953 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5956 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5957 mode != VOIDmode;
5958 mode = GET_MODE_WIDER_MODE (mode))
5960 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5963 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5964 mode != VOIDmode;
5965 mode = GET_MODE_WIDER_MODE (mode))
5967 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5968 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5971 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5972 mode != VOIDmode;
5973 mode = GET_MODE_WIDER_MODE (mode))
5975 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5976 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5979 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5980 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5981 const_tiny_rtx[0][i] = const0_rtx;
5983 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5984 if (STORE_FLAG_VALUE == 1)
5985 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5988 /* Produce exact duplicate of insn INSN after AFTER.
5989 Care updating of libcall regions if present. */
5992 emit_copy_of_insn_after (rtx insn, rtx after)
5994 rtx new_rtx, link;
5996 switch (GET_CODE (insn))
5998 case INSN:
5999 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6000 break;
6002 case JUMP_INSN:
6003 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6004 break;
6006 case DEBUG_INSN:
6007 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6008 break;
6010 case CALL_INSN:
6011 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6012 if (CALL_INSN_FUNCTION_USAGE (insn))
6013 CALL_INSN_FUNCTION_USAGE (new_rtx)
6014 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6015 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6016 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6017 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6018 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6019 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6020 break;
6022 default:
6023 gcc_unreachable ();
6026 /* Update LABEL_NUSES. */
6027 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6029 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
6031 /* If the old insn is frame related, then so is the new one. This is
6032 primarily needed for IA-64 unwind info which marks epilogue insns,
6033 which may be duplicated by the basic block reordering code. */
6034 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6036 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6037 will make them. REG_LABEL_TARGETs are created there too, but are
6038 supposed to be sticky, so we copy them. */
6039 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6040 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6042 if (GET_CODE (link) == EXPR_LIST)
6043 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6044 copy_insn_1 (XEXP (link, 0)));
6045 else
6046 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
6049 INSN_CODE (new_rtx) = INSN_CODE (insn);
6050 return new_rtx;
6053 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6055 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6057 if (hard_reg_clobbers[mode][regno])
6058 return hard_reg_clobbers[mode][regno];
6059 else
6060 return (hard_reg_clobbers[mode][regno] =
6061 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6064 #include "gt-emit-rtl.h"