reflect: canonicalize types returned by StructOf() and friends
[official-gcc.git] / gcc / tree-cfg.c
blob21b3fdffa59382280fa99c1276c1252c88a7e75d
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
60 #include "gimplify.h"
61 #include "attribs.h"
62 #include "selftest.h"
63 #include "opts.h"
64 #include "asan.h"
66 /* This file contains functions for building the Control Flow Graph (CFG)
67 for a function tree. */
69 /* Local declarations. */
71 /* Initial capacity for the basic block array. */
72 static const int initial_cfg_capacity = 20;
74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
75 which use a particular edge. The CASE_LABEL_EXPRs are chained together
76 via their CASE_CHAIN field, which we clear after we're done with the
77 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
79 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
80 update the case vector in response to edge redirections.
82 Right now this table is set up and torn down at key points in the
83 compilation process. It would be nice if we could make the table
84 more persistent. The key is getting notification of changes to
85 the CFG (particularly edge removal, creation and redirection). */
87 static hash_map<edge, tree> *edge_to_cases;
89 /* If we record edge_to_cases, this bitmap will hold indexes
90 of basic blocks that end in a GIMPLE_SWITCH which we touched
91 due to edge manipulations. */
93 static bitmap touched_switch_bbs;
95 /* CFG statistics. */
96 struct cfg_stats_d
98 long num_merged_labels;
101 static struct cfg_stats_d cfg_stats;
103 /* Data to pass to replace_block_vars_by_duplicates_1. */
104 struct replace_decls_d
106 hash_map<tree, tree> *vars_map;
107 tree to_context;
110 /* Hash table to store last discriminator assigned for each locus. */
111 struct locus_discrim_map
113 int location_line;
114 int discriminator;
117 /* Hashtable helpers. */
119 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
121 static inline hashval_t hash (const locus_discrim_map *);
122 static inline bool equal (const locus_discrim_map *,
123 const locus_discrim_map *);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
129 inline hashval_t
130 locus_discrim_hasher::hash (const locus_discrim_map *item)
132 return item->location_line;
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
138 inline bool
139 locus_discrim_hasher::equal (const locus_discrim_map *a,
140 const locus_discrim_map *b)
142 return a->location_line == b->location_line;
145 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
147 /* Basic blocks and flowgraphs. */
148 static void make_blocks (gimple_seq);
150 /* Edges. */
151 static void make_edges (void);
152 static void assign_discriminators (void);
153 static void make_cond_expr_edges (basic_block);
154 static void make_gimple_switch_edges (gswitch *, basic_block);
155 static bool make_goto_expr_edges (basic_block);
156 static void make_gimple_asm_edges (basic_block);
157 static edge gimple_redirect_edge_and_branch (edge, basic_block);
158 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
160 /* Various helpers. */
161 static inline bool stmt_starts_bb_p (gimple *, gimple *);
162 static int gimple_verify_flow_info (void);
163 static void gimple_make_forwarder_block (edge);
164 static gimple *first_non_label_stmt (basic_block);
165 static bool verify_gimple_transaction (gtransaction *);
166 static bool call_can_make_abnormal_goto (gimple *);
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block, basic_block);
170 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
171 static void remove_bb (basic_block);
172 static edge find_taken_edge_computed_goto (basic_block, tree);
173 static edge find_taken_edge_cond_expr (const gcond *, tree);
174 static edge find_taken_edge_switch_expr (const gswitch *, tree);
175 static tree find_case_label_for_value (const gswitch *, tree);
176 static void lower_phi_internal_fn ();
178 void
179 init_empty_tree_cfg_for_function (struct function *fn)
181 /* Initialize the basic block array. */
182 init_flow (fn);
183 profile_status_for_fn (fn) = PROFILE_ABSENT;
184 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
185 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
186 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
187 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
188 initial_cfg_capacity);
190 /* Build a mapping of labels to their associated blocks. */
191 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
192 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
193 initial_cfg_capacity);
195 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
196 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
198 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
199 = EXIT_BLOCK_PTR_FOR_FN (fn);
200 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
201 = ENTRY_BLOCK_PTR_FOR_FN (fn);
204 void
205 init_empty_tree_cfg (void)
207 init_empty_tree_cfg_for_function (cfun);
210 /*---------------------------------------------------------------------------
211 Create basic blocks
212 ---------------------------------------------------------------------------*/
214 /* Entry point to the CFG builder for trees. SEQ is the sequence of
215 statements to be added to the flowgraph. */
217 static void
218 build_gimple_cfg (gimple_seq seq)
220 /* Register specific gimple functions. */
221 gimple_register_cfg_hooks ();
223 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
225 init_empty_tree_cfg ();
227 make_blocks (seq);
229 /* Make sure there is always at least one block, even if it's empty. */
230 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
231 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
233 /* Adjust the size of the array. */
234 if (basic_block_info_for_fn (cfun)->length ()
235 < (size_t) n_basic_blocks_for_fn (cfun))
236 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
237 n_basic_blocks_for_fn (cfun));
239 /* To speed up statement iterator walks, we first purge dead labels. */
240 cleanup_dead_labels ();
242 /* Group case nodes to reduce the number of edges.
243 We do this after cleaning up dead labels because otherwise we miss
244 a lot of obvious case merging opportunities. */
245 group_case_labels ();
247 /* Create the edges of the flowgraph. */
248 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
249 make_edges ();
250 assign_discriminators ();
251 lower_phi_internal_fn ();
252 cleanup_dead_labels ();
253 delete discriminator_per_locus;
254 discriminator_per_locus = NULL;
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258 them and propagate the information to LOOP. We assume that the annotations
259 come immediately before the condition in BB, if any. */
261 static void
262 replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
264 gimple_stmt_iterator gsi = gsi_last_bb (bb);
265 gimple *stmt = gsi_stmt (gsi);
267 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
268 return;
270 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
272 stmt = gsi_stmt (gsi);
273 if (gimple_code (stmt) != GIMPLE_CALL)
274 break;
275 if (!gimple_call_internal_p (stmt)
276 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
277 break;
279 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
281 case annot_expr_ivdep_kind:
282 loop->safelen = INT_MAX;
283 break;
284 case annot_expr_unroll_kind:
285 loop->unroll
286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2));
287 cfun->has_unroll = true;
288 break;
289 case annot_expr_no_vector_kind:
290 loop->dont_vectorize = true;
291 break;
292 case annot_expr_vector_kind:
293 loop->force_vectorize = true;
294 cfun->has_force_vectorize_loops = true;
295 break;
296 case annot_expr_parallel_kind:
297 loop->can_be_parallel = true;
298 loop->safelen = INT_MAX;
299 break;
300 default:
301 gcc_unreachable ();
304 stmt = gimple_build_assign (gimple_call_lhs (stmt),
305 gimple_call_arg (stmt, 0));
306 gsi_replace (&gsi, stmt, true);
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311 them and propagate the information to the loop. We assume that the
312 annotations come immediately before the condition of the loop. */
314 static void
315 replace_loop_annotate (void)
317 struct loop *loop;
318 basic_block bb;
319 gimple_stmt_iterator gsi;
320 gimple *stmt;
322 FOR_EACH_LOOP (loop, 0)
324 /* First look into the header. */
325 replace_loop_annotate_in_block (loop->header, loop);
327 /* Then look into the latch, if any. */
328 if (loop->latch)
329 replace_loop_annotate_in_block (loop->latch, loop);
332 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
333 FOR_EACH_BB_FN (bb, cfun)
335 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
337 stmt = gsi_stmt (gsi);
338 if (gimple_code (stmt) != GIMPLE_CALL)
339 continue;
340 if (!gimple_call_internal_p (stmt)
341 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
342 continue;
344 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
346 case annot_expr_ivdep_kind:
347 case annot_expr_unroll_kind:
348 case annot_expr_no_vector_kind:
349 case annot_expr_vector_kind:
350 case annot_expr_parallel_kind:
351 break;
352 default:
353 gcc_unreachable ();
356 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
357 stmt = gimple_build_assign (gimple_call_lhs (stmt),
358 gimple_call_arg (stmt, 0));
359 gsi_replace (&gsi, stmt, true);
364 /* Lower internal PHI function from GIMPLE FE. */
366 static void
367 lower_phi_internal_fn ()
369 basic_block bb, pred = NULL;
370 gimple_stmt_iterator gsi;
371 tree lhs;
372 gphi *phi_node;
373 gimple *stmt;
375 /* After edge creation, handle __PHI function from GIMPLE FE. */
376 FOR_EACH_BB_FN (bb, cfun)
378 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
380 stmt = gsi_stmt (gsi);
381 if (! gimple_call_internal_p (stmt, IFN_PHI))
382 break;
384 lhs = gimple_call_lhs (stmt);
385 phi_node = create_phi_node (lhs, bb);
387 /* Add arguments to the PHI node. */
388 for (unsigned i = 0; i < gimple_call_num_args (stmt); ++i)
390 tree arg = gimple_call_arg (stmt, i);
391 if (TREE_CODE (arg) == LABEL_DECL)
392 pred = label_to_block (arg);
393 else
395 edge e = find_edge (pred, bb);
396 add_phi_arg (phi_node, arg, e, UNKNOWN_LOCATION);
400 gsi_remove (&gsi, true);
405 static unsigned int
406 execute_build_cfg (void)
408 gimple_seq body = gimple_body (current_function_decl);
410 build_gimple_cfg (body);
411 gimple_set_body (current_function_decl, NULL);
412 if (dump_file && (dump_flags & TDF_DETAILS))
414 fprintf (dump_file, "Scope blocks:\n");
415 dump_scope_blocks (dump_file, dump_flags);
417 cleanup_tree_cfg ();
418 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
419 replace_loop_annotate ();
420 return 0;
423 namespace {
425 const pass_data pass_data_build_cfg =
427 GIMPLE_PASS, /* type */
428 "cfg", /* name */
429 OPTGROUP_NONE, /* optinfo_flags */
430 TV_TREE_CFG, /* tv_id */
431 PROP_gimple_leh, /* properties_required */
432 ( PROP_cfg | PROP_loops ), /* properties_provided */
433 0, /* properties_destroyed */
434 0, /* todo_flags_start */
435 0, /* todo_flags_finish */
438 class pass_build_cfg : public gimple_opt_pass
440 public:
441 pass_build_cfg (gcc::context *ctxt)
442 : gimple_opt_pass (pass_data_build_cfg, ctxt)
445 /* opt_pass methods: */
446 virtual unsigned int execute (function *) { return execute_build_cfg (); }
448 }; // class pass_build_cfg
450 } // anon namespace
452 gimple_opt_pass *
453 make_pass_build_cfg (gcc::context *ctxt)
455 return new pass_build_cfg (ctxt);
459 /* Return true if T is a computed goto. */
461 bool
462 computed_goto_p (gimple *t)
464 return (gimple_code (t) == GIMPLE_GOTO
465 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
468 /* Returns true if the sequence of statements STMTS only contains
469 a call to __builtin_unreachable (). */
471 bool
472 gimple_seq_unreachable_p (gimple_seq stmts)
474 if (stmts == NULL
475 /* Return false if -fsanitize=unreachable, we don't want to
476 optimize away those calls, but rather turn them into
477 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
478 later. */
479 || sanitize_flags_p (SANITIZE_UNREACHABLE))
480 return false;
482 gimple_stmt_iterator gsi = gsi_last (stmts);
484 if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE))
485 return false;
487 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
489 gimple *stmt = gsi_stmt (gsi);
490 if (gimple_code (stmt) != GIMPLE_LABEL
491 && !is_gimple_debug (stmt)
492 && !gimple_clobber_p (stmt))
493 return false;
495 return true;
498 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
499 the other edge points to a bb with just __builtin_unreachable ().
500 I.e. return true for C->M edge in:
501 <bb C>:
503 if (something)
504 goto <bb N>;
505 else
506 goto <bb M>;
507 <bb N>:
508 __builtin_unreachable ();
509 <bb M>: */
511 bool
512 assert_unreachable_fallthru_edge_p (edge e)
514 basic_block pred_bb = e->src;
515 gimple *last = last_stmt (pred_bb);
516 if (last && gimple_code (last) == GIMPLE_COND)
518 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
519 if (other_bb == e->dest)
520 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
521 if (EDGE_COUNT (other_bb->succs) == 0)
522 return gimple_seq_unreachable_p (bb_seq (other_bb));
524 return false;
528 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
529 could alter control flow except via eh. We initialize the flag at
530 CFG build time and only ever clear it later. */
532 static void
533 gimple_call_initialize_ctrl_altering (gimple *stmt)
535 int flags = gimple_call_flags (stmt);
537 /* A call alters control flow if it can make an abnormal goto. */
538 if (call_can_make_abnormal_goto (stmt)
539 /* A call also alters control flow if it does not return. */
540 || flags & ECF_NORETURN
541 /* TM ending statements have backedges out of the transaction.
542 Return true so we split the basic block containing them.
543 Note that the TM_BUILTIN test is merely an optimization. */
544 || ((flags & ECF_TM_BUILTIN)
545 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
546 /* BUILT_IN_RETURN call is same as return statement. */
547 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
548 /* IFN_UNIQUE should be the last insn, to make checking for it
549 as cheap as possible. */
550 || (gimple_call_internal_p (stmt)
551 && gimple_call_internal_unique_p (stmt)))
552 gimple_call_set_ctrl_altering (stmt, true);
553 else
554 gimple_call_set_ctrl_altering (stmt, false);
558 /* Insert SEQ after BB and build a flowgraph. */
560 static basic_block
561 make_blocks_1 (gimple_seq seq, basic_block bb)
563 gimple_stmt_iterator i = gsi_start (seq);
564 gimple *stmt = NULL;
565 gimple *prev_stmt = NULL;
566 bool start_new_block = true;
567 bool first_stmt_of_seq = true;
569 while (!gsi_end_p (i))
571 /* PREV_STMT should only be set to a debug stmt if the debug
572 stmt is before nondebug stmts. Once stmt reaches a nondebug
573 nonlabel, prev_stmt will be set to it, so that
574 stmt_starts_bb_p will know to start a new block if a label is
575 found. However, if stmt was a label after debug stmts only,
576 keep the label in prev_stmt even if we find further debug
577 stmts, for there may be other labels after them, and they
578 should land in the same block. */
579 if (!prev_stmt || !stmt || !is_gimple_debug (stmt))
580 prev_stmt = stmt;
581 stmt = gsi_stmt (i);
583 if (stmt && is_gimple_call (stmt))
584 gimple_call_initialize_ctrl_altering (stmt);
586 /* If the statement starts a new basic block or if we have determined
587 in a previous pass that we need to create a new block for STMT, do
588 so now. */
589 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
591 if (!first_stmt_of_seq)
592 gsi_split_seq_before (&i, &seq);
593 bb = create_basic_block (seq, bb);
594 start_new_block = false;
595 prev_stmt = NULL;
598 /* Now add STMT to BB and create the subgraphs for special statement
599 codes. */
600 gimple_set_bb (stmt, bb);
602 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
603 next iteration. */
604 if (stmt_ends_bb_p (stmt))
606 /* If the stmt can make abnormal goto use a new temporary
607 for the assignment to the LHS. This makes sure the old value
608 of the LHS is available on the abnormal edge. Otherwise
609 we will end up with overlapping life-ranges for abnormal
610 SSA names. */
611 if (gimple_has_lhs (stmt)
612 && stmt_can_make_abnormal_goto (stmt)
613 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
615 tree lhs = gimple_get_lhs (stmt);
616 tree tmp = create_tmp_var (TREE_TYPE (lhs));
617 gimple *s = gimple_build_assign (lhs, tmp);
618 gimple_set_location (s, gimple_location (stmt));
619 gimple_set_block (s, gimple_block (stmt));
620 gimple_set_lhs (stmt, tmp);
621 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
622 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
623 DECL_GIMPLE_REG_P (tmp) = 1;
624 gsi_insert_after (&i, s, GSI_SAME_STMT);
626 start_new_block = true;
629 gsi_next (&i);
630 first_stmt_of_seq = false;
632 return bb;
635 /* Build a flowgraph for the sequence of stmts SEQ. */
637 static void
638 make_blocks (gimple_seq seq)
640 /* Look for debug markers right before labels, and move the debug
641 stmts after the labels. Accepting labels among debug markers
642 adds no value, just complexity; if we wanted to annotate labels
643 with view numbers (so sequencing among markers would matter) or
644 somesuch, we're probably better off still moving the labels, but
645 adding other debug annotations in their original positions or
646 emitting nonbind or bind markers associated with the labels in
647 the original position of the labels.
649 Moving labels would probably be simpler, but we can't do that:
650 moving labels assigns label ids to them, and doing so because of
651 debug markers makes for -fcompare-debug and possibly even codegen
652 differences. So, we have to move the debug stmts instead. To
653 that end, we scan SEQ backwards, marking the position of the
654 latest (earliest we find) label, and moving debug stmts that are
655 not separated from it by nondebug nonlabel stmts after the
656 label. */
657 if (MAY_HAVE_DEBUG_MARKER_STMTS)
659 gimple_stmt_iterator label = gsi_none ();
661 for (gimple_stmt_iterator i = gsi_last (seq); !gsi_end_p (i); gsi_prev (&i))
663 gimple *stmt = gsi_stmt (i);
665 /* If this is the first label we encounter (latest in SEQ)
666 before nondebug stmts, record its position. */
667 if (is_a <glabel *> (stmt))
669 if (gsi_end_p (label))
670 label = i;
671 continue;
674 /* Without a recorded label position to move debug stmts to,
675 there's nothing to do. */
676 if (gsi_end_p (label))
677 continue;
679 /* Move the debug stmt at I after LABEL. */
680 if (is_gimple_debug (stmt))
682 gcc_assert (gimple_debug_nonbind_marker_p (stmt));
683 /* As STMT is removed, I advances to the stmt after
684 STMT, so the gsi_prev in the for "increment"
685 expression gets us to the stmt we're to visit after
686 STMT. LABEL, however, would advance to the moved
687 stmt if we passed it to gsi_move_after, so pass it a
688 copy instead, so as to keep LABEL pointing to the
689 LABEL. */
690 gimple_stmt_iterator copy = label;
691 gsi_move_after (&i, &copy);
692 continue;
695 /* There aren't any (more?) debug stmts before label, so
696 there isn't anything else to move after it. */
697 label = gsi_none ();
701 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
704 /* Create and return a new empty basic block after bb AFTER. */
706 static basic_block
707 create_bb (void *h, void *e, basic_block after)
709 basic_block bb;
711 gcc_assert (!e);
713 /* Create and initialize a new basic block. Since alloc_block uses
714 GC allocation that clears memory to allocate a basic block, we do
715 not have to clear the newly allocated basic block here. */
716 bb = alloc_block ();
718 bb->index = last_basic_block_for_fn (cfun);
719 bb->flags = BB_NEW;
720 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
722 /* Add the new block to the linked list of blocks. */
723 link_block (bb, after);
725 /* Grow the basic block array if needed. */
726 if ((size_t) last_basic_block_for_fn (cfun)
727 == basic_block_info_for_fn (cfun)->length ())
729 size_t new_size =
730 (last_basic_block_for_fn (cfun)
731 + (last_basic_block_for_fn (cfun) + 3) / 4);
732 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
735 /* Add the newly created block to the array. */
736 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
738 n_basic_blocks_for_fn (cfun)++;
739 last_basic_block_for_fn (cfun)++;
741 return bb;
745 /*---------------------------------------------------------------------------
746 Edge creation
747 ---------------------------------------------------------------------------*/
749 /* If basic block BB has an abnormal edge to a basic block
750 containing IFN_ABNORMAL_DISPATCHER internal call, return
751 that the dispatcher's basic block, otherwise return NULL. */
753 basic_block
754 get_abnormal_succ_dispatcher (basic_block bb)
756 edge e;
757 edge_iterator ei;
759 FOR_EACH_EDGE (e, ei, bb->succs)
760 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
762 gimple_stmt_iterator gsi
763 = gsi_start_nondebug_after_labels_bb (e->dest);
764 gimple *g = gsi_stmt (gsi);
765 if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
766 return e->dest;
768 return NULL;
771 /* Helper function for make_edges. Create a basic block with
772 with ABNORMAL_DISPATCHER internal call in it if needed, and
773 create abnormal edges from BBS to it and from it to FOR_BB
774 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
776 static void
777 handle_abnormal_edges (basic_block *dispatcher_bbs,
778 basic_block for_bb, int *bb_to_omp_idx,
779 auto_vec<basic_block> *bbs, bool computed_goto)
781 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
782 unsigned int idx = 0;
783 basic_block bb;
784 bool inner = false;
786 if (bb_to_omp_idx)
788 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
789 if (bb_to_omp_idx[for_bb->index] != 0)
790 inner = true;
793 /* If the dispatcher has been created already, then there are basic
794 blocks with abnormal edges to it, so just make a new edge to
795 for_bb. */
796 if (*dispatcher == NULL)
798 /* Check if there are any basic blocks that need to have
799 abnormal edges to this dispatcher. If there are none, return
800 early. */
801 if (bb_to_omp_idx == NULL)
803 if (bbs->is_empty ())
804 return;
806 else
808 FOR_EACH_VEC_ELT (*bbs, idx, bb)
809 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
810 break;
811 if (bb == NULL)
812 return;
815 /* Create the dispatcher bb. */
816 *dispatcher = create_basic_block (NULL, for_bb);
817 if (computed_goto)
819 /* Factor computed gotos into a common computed goto site. Also
820 record the location of that site so that we can un-factor the
821 gotos after we have converted back to normal form. */
822 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
824 /* Create the destination of the factored goto. Each original
825 computed goto will put its desired destination into this
826 variable and jump to the label we create immediately below. */
827 tree var = create_tmp_var (ptr_type_node, "gotovar");
829 /* Build a label for the new block which will contain the
830 factored computed goto. */
831 tree factored_label_decl
832 = create_artificial_label (UNKNOWN_LOCATION);
833 gimple *factored_computed_goto_label
834 = gimple_build_label (factored_label_decl);
835 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
837 /* Build our new computed goto. */
838 gimple *factored_computed_goto = gimple_build_goto (var);
839 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
841 FOR_EACH_VEC_ELT (*bbs, idx, bb)
843 if (bb_to_omp_idx
844 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
845 continue;
847 gsi = gsi_last_bb (bb);
848 gimple *last = gsi_stmt (gsi);
850 gcc_assert (computed_goto_p (last));
852 /* Copy the original computed goto's destination into VAR. */
853 gimple *assignment
854 = gimple_build_assign (var, gimple_goto_dest (last));
855 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
857 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
858 e->goto_locus = gimple_location (last);
859 gsi_remove (&gsi, true);
862 else
864 tree arg = inner ? boolean_true_node : boolean_false_node;
865 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
866 1, arg);
867 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
868 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
870 /* Create predecessor edges of the dispatcher. */
871 FOR_EACH_VEC_ELT (*bbs, idx, bb)
873 if (bb_to_omp_idx
874 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
875 continue;
876 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
881 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
884 /* Creates outgoing edges for BB. Returns 1 when it ends with an
885 computed goto, returns 2 when it ends with a statement that
886 might return to this function via an nonlocal goto, otherwise
887 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
889 static int
890 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
892 gimple *last = last_stmt (bb);
893 bool fallthru = false;
894 int ret = 0;
896 if (!last)
897 return ret;
899 switch (gimple_code (last))
901 case GIMPLE_GOTO:
902 if (make_goto_expr_edges (bb))
903 ret = 1;
904 fallthru = false;
905 break;
906 case GIMPLE_RETURN:
908 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
909 e->goto_locus = gimple_location (last);
910 fallthru = false;
912 break;
913 case GIMPLE_COND:
914 make_cond_expr_edges (bb);
915 fallthru = false;
916 break;
917 case GIMPLE_SWITCH:
918 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
919 fallthru = false;
920 break;
921 case GIMPLE_RESX:
922 make_eh_edges (last);
923 fallthru = false;
924 break;
925 case GIMPLE_EH_DISPATCH:
926 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
927 break;
929 case GIMPLE_CALL:
930 /* If this function receives a nonlocal goto, then we need to
931 make edges from this call site to all the nonlocal goto
932 handlers. */
933 if (stmt_can_make_abnormal_goto (last))
934 ret = 2;
936 /* If this statement has reachable exception handlers, then
937 create abnormal edges to them. */
938 make_eh_edges (last);
940 /* BUILTIN_RETURN is really a return statement. */
941 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
943 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
944 fallthru = false;
946 /* Some calls are known not to return. */
947 else
948 fallthru = !gimple_call_noreturn_p (last);
949 break;
951 case GIMPLE_ASSIGN:
952 /* A GIMPLE_ASSIGN may throw internally and thus be considered
953 control-altering. */
954 if (is_ctrl_altering_stmt (last))
955 make_eh_edges (last);
956 fallthru = true;
957 break;
959 case GIMPLE_ASM:
960 make_gimple_asm_edges (bb);
961 fallthru = true;
962 break;
964 CASE_GIMPLE_OMP:
965 fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index);
966 break;
968 case GIMPLE_TRANSACTION:
970 gtransaction *txn = as_a <gtransaction *> (last);
971 tree label1 = gimple_transaction_label_norm (txn);
972 tree label2 = gimple_transaction_label_uninst (txn);
974 if (label1)
975 make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
976 if (label2)
977 make_edge (bb, label_to_block (label2),
978 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
980 tree label3 = gimple_transaction_label_over (txn);
981 if (gimple_transaction_subcode (txn)
982 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
983 make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
985 fallthru = false;
987 break;
989 default:
990 gcc_assert (!stmt_ends_bb_p (last));
991 fallthru = true;
992 break;
995 if (fallthru)
996 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
998 return ret;
1001 /* Join all the blocks in the flowgraph. */
1003 static void
1004 make_edges (void)
1006 basic_block bb;
1007 struct omp_region *cur_region = NULL;
1008 auto_vec<basic_block> ab_edge_goto;
1009 auto_vec<basic_block> ab_edge_call;
1010 int *bb_to_omp_idx = NULL;
1011 int cur_omp_region_idx = 0;
1013 /* Create an edge from entry to the first block with executable
1014 statements in it. */
1015 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
1016 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
1017 EDGE_FALLTHRU);
1019 /* Traverse the basic block array placing edges. */
1020 FOR_EACH_BB_FN (bb, cfun)
1022 int mer;
1024 if (bb_to_omp_idx)
1025 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
1027 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1028 if (mer == 1)
1029 ab_edge_goto.safe_push (bb);
1030 else if (mer == 2)
1031 ab_edge_call.safe_push (bb);
1033 if (cur_region && bb_to_omp_idx == NULL)
1034 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
1037 /* Computed gotos are hell to deal with, especially if there are
1038 lots of them with a large number of destinations. So we factor
1039 them to a common computed goto location before we build the
1040 edge list. After we convert back to normal form, we will un-factor
1041 the computed gotos since factoring introduces an unwanted jump.
1042 For non-local gotos and abnormal edges from calls to calls that return
1043 twice or forced labels, factor the abnormal edges too, by having all
1044 abnormal edges from the calls go to a common artificial basic block
1045 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1046 basic block to all forced labels and calls returning twice.
1047 We do this per-OpenMP structured block, because those regions
1048 are guaranteed to be single entry single exit by the standard,
1049 so it is not allowed to enter or exit such regions abnormally this way,
1050 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1051 must not transfer control across SESE region boundaries. */
1052 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
1054 gimple_stmt_iterator gsi;
1055 basic_block dispatcher_bb_array[2] = { NULL, NULL };
1056 basic_block *dispatcher_bbs = dispatcher_bb_array;
1057 int count = n_basic_blocks_for_fn (cfun);
1059 if (bb_to_omp_idx)
1060 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
1062 FOR_EACH_BB_FN (bb, cfun)
1064 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1066 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1067 tree target;
1069 if (!label_stmt)
1070 break;
1072 target = gimple_label_label (label_stmt);
1074 /* Make an edge to every label block that has been marked as a
1075 potential target for a computed goto or a non-local goto. */
1076 if (FORCED_LABEL (target))
1077 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1078 &ab_edge_goto, true);
1079 if (DECL_NONLOCAL (target))
1081 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1082 &ab_edge_call, false);
1083 break;
1087 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
1088 gsi_next_nondebug (&gsi);
1089 if (!gsi_end_p (gsi))
1091 /* Make an edge to every setjmp-like call. */
1092 gimple *call_stmt = gsi_stmt (gsi);
1093 if (is_gimple_call (call_stmt)
1094 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
1095 || gimple_call_builtin_p (call_stmt,
1096 BUILT_IN_SETJMP_RECEIVER)))
1097 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1098 &ab_edge_call, false);
1102 if (bb_to_omp_idx)
1103 XDELETE (dispatcher_bbs);
1106 XDELETE (bb_to_omp_idx);
1108 omp_free_regions ();
1111 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1112 needed. Returns true if new bbs were created.
1113 Note: This is transitional code, and should not be used for new code. We
1114 should be able to get rid of this by rewriting all target va-arg
1115 gimplification hooks to use an interface gimple_build_cond_value as described
1116 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1118 bool
1119 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
1121 gimple *stmt = gsi_stmt (*gsi);
1122 basic_block bb = gimple_bb (stmt);
1123 basic_block lastbb, afterbb;
1124 int old_num_bbs = n_basic_blocks_for_fn (cfun);
1125 edge e;
1126 lastbb = make_blocks_1 (seq, bb);
1127 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
1128 return false;
1129 e = split_block (bb, stmt);
1130 /* Move e->dest to come after the new basic blocks. */
1131 afterbb = e->dest;
1132 unlink_block (afterbb);
1133 link_block (afterbb, lastbb);
1134 redirect_edge_succ (e, bb->next_bb);
1135 bb = bb->next_bb;
1136 while (bb != afterbb)
1138 struct omp_region *cur_region = NULL;
1139 profile_count cnt = profile_count::zero ();
1140 bool all = true;
1142 int cur_omp_region_idx = 0;
1143 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1144 gcc_assert (!mer && !cur_region);
1145 add_bb_to_loop (bb, afterbb->loop_father);
1147 edge e;
1148 edge_iterator ei;
1149 FOR_EACH_EDGE (e, ei, bb->preds)
1151 if (e->count ().initialized_p ())
1152 cnt += e->count ();
1153 else
1154 all = false;
1156 tree_guess_outgoing_edge_probabilities (bb);
1157 if (all || profile_status_for_fn (cfun) == PROFILE_READ)
1158 bb->count = cnt;
1160 bb = bb->next_bb;
1162 return true;
1165 /* Find the next available discriminator value for LOCUS. The
1166 discriminator distinguishes among several basic blocks that
1167 share a common locus, allowing for more accurate sample-based
1168 profiling. */
1170 static int
1171 next_discriminator_for_locus (int line)
1173 struct locus_discrim_map item;
1174 struct locus_discrim_map **slot;
1176 item.location_line = line;
1177 item.discriminator = 0;
1178 slot = discriminator_per_locus->find_slot_with_hash (&item, line, INSERT);
1179 gcc_assert (slot);
1180 if (*slot == HTAB_EMPTY_ENTRY)
1182 *slot = XNEW (struct locus_discrim_map);
1183 gcc_assert (*slot);
1184 (*slot)->location_line = line;
1185 (*slot)->discriminator = 0;
1187 (*slot)->discriminator++;
1188 return (*slot)->discriminator;
1191 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1193 static bool
1194 same_line_p (location_t locus1, expanded_location *from, location_t locus2)
1196 expanded_location to;
1198 if (locus1 == locus2)
1199 return true;
1201 to = expand_location (locus2);
1203 if (from->line != to.line)
1204 return false;
1205 if (from->file == to.file)
1206 return true;
1207 return (from->file != NULL
1208 && to.file != NULL
1209 && filename_cmp (from->file, to.file) == 0);
1212 /* Assign discriminators to each basic block. */
1214 static void
1215 assign_discriminators (void)
1217 basic_block bb;
1219 FOR_EACH_BB_FN (bb, cfun)
1221 edge e;
1222 edge_iterator ei;
1223 gimple *last = last_stmt (bb);
1224 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1226 if (locus == UNKNOWN_LOCATION)
1227 continue;
1229 expanded_location locus_e = expand_location (locus);
1231 FOR_EACH_EDGE (e, ei, bb->succs)
1233 gimple *first = first_non_label_stmt (e->dest);
1234 gimple *last = last_stmt (e->dest);
1235 if ((first && same_line_p (locus, &locus_e,
1236 gimple_location (first)))
1237 || (last && same_line_p (locus, &locus_e,
1238 gimple_location (last))))
1240 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1241 bb->discriminator
1242 = next_discriminator_for_locus (locus_e.line);
1243 else
1244 e->dest->discriminator
1245 = next_discriminator_for_locus (locus_e.line);
1251 /* Create the edges for a GIMPLE_COND starting at block BB. */
1253 static void
1254 make_cond_expr_edges (basic_block bb)
1256 gcond *entry = as_a <gcond *> (last_stmt (bb));
1257 gimple *then_stmt, *else_stmt;
1258 basic_block then_bb, else_bb;
1259 tree then_label, else_label;
1260 edge e;
1262 gcc_assert (entry);
1263 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1265 /* Entry basic blocks for each component. */
1266 then_label = gimple_cond_true_label (entry);
1267 else_label = gimple_cond_false_label (entry);
1268 then_bb = label_to_block (then_label);
1269 else_bb = label_to_block (else_label);
1270 then_stmt = first_stmt (then_bb);
1271 else_stmt = first_stmt (else_bb);
1273 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1274 e->goto_locus = gimple_location (then_stmt);
1275 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1276 if (e)
1277 e->goto_locus = gimple_location (else_stmt);
1279 /* We do not need the labels anymore. */
1280 gimple_cond_set_true_label (entry, NULL_TREE);
1281 gimple_cond_set_false_label (entry, NULL_TREE);
1285 /* Called for each element in the hash table (P) as we delete the
1286 edge to cases hash table.
1288 Clear all the CASE_CHAINs to prevent problems with copying of
1289 SWITCH_EXPRs and structure sharing rules, then free the hash table
1290 element. */
1292 bool
1293 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1295 tree t, next;
1297 for (t = value; t; t = next)
1299 next = CASE_CHAIN (t);
1300 CASE_CHAIN (t) = NULL;
1303 return true;
1306 /* Start recording information mapping edges to case labels. */
1308 void
1309 start_recording_case_labels (void)
1311 gcc_assert (edge_to_cases == NULL);
1312 edge_to_cases = new hash_map<edge, tree>;
1313 touched_switch_bbs = BITMAP_ALLOC (NULL);
1316 /* Return nonzero if we are recording information for case labels. */
1318 static bool
1319 recording_case_labels_p (void)
1321 return (edge_to_cases != NULL);
1324 /* Stop recording information mapping edges to case labels and
1325 remove any information we have recorded. */
1326 void
1327 end_recording_case_labels (void)
1329 bitmap_iterator bi;
1330 unsigned i;
1331 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1332 delete edge_to_cases;
1333 edge_to_cases = NULL;
1334 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1336 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1337 if (bb)
1339 gimple *stmt = last_stmt (bb);
1340 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1341 group_case_labels_stmt (as_a <gswitch *> (stmt));
1344 BITMAP_FREE (touched_switch_bbs);
1347 /* If we are inside a {start,end}_recording_cases block, then return
1348 a chain of CASE_LABEL_EXPRs from T which reference E.
1350 Otherwise return NULL. */
1352 static tree
1353 get_cases_for_edge (edge e, gswitch *t)
1355 tree *slot;
1356 size_t i, n;
1358 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1359 chains available. Return NULL so the caller can detect this case. */
1360 if (!recording_case_labels_p ())
1361 return NULL;
1363 slot = edge_to_cases->get (e);
1364 if (slot)
1365 return *slot;
1367 /* If we did not find E in the hash table, then this must be the first
1368 time we have been queried for information about E & T. Add all the
1369 elements from T to the hash table then perform the query again. */
1371 n = gimple_switch_num_labels (t);
1372 for (i = 0; i < n; i++)
1374 tree elt = gimple_switch_label (t, i);
1375 tree lab = CASE_LABEL (elt);
1376 basic_block label_bb = label_to_block (lab);
1377 edge this_edge = find_edge (e->src, label_bb);
1379 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1380 a new chain. */
1381 tree &s = edge_to_cases->get_or_insert (this_edge);
1382 CASE_CHAIN (elt) = s;
1383 s = elt;
1386 return *edge_to_cases->get (e);
1389 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1391 static void
1392 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1394 size_t i, n;
1396 n = gimple_switch_num_labels (entry);
1398 for (i = 0; i < n; ++i)
1400 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1401 basic_block label_bb = label_to_block (lab);
1402 make_edge (bb, label_bb, 0);
1407 /* Return the basic block holding label DEST. */
1409 basic_block
1410 label_to_block_fn (struct function *ifun, tree dest)
1412 int uid = LABEL_DECL_UID (dest);
1414 /* We would die hard when faced by an undefined label. Emit a label to
1415 the very first basic block. This will hopefully make even the dataflow
1416 and undefined variable warnings quite right. */
1417 if (seen_error () && uid < 0)
1419 gimple_stmt_iterator gsi =
1420 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1421 gimple *stmt;
1423 stmt = gimple_build_label (dest);
1424 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1425 uid = LABEL_DECL_UID (dest);
1427 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1428 return NULL;
1429 return (*ifun->cfg->x_label_to_block_map)[uid];
1432 /* Create edges for a goto statement at block BB. Returns true
1433 if abnormal edges should be created. */
1435 static bool
1436 make_goto_expr_edges (basic_block bb)
1438 gimple_stmt_iterator last = gsi_last_bb (bb);
1439 gimple *goto_t = gsi_stmt (last);
1441 /* A simple GOTO creates normal edges. */
1442 if (simple_goto_p (goto_t))
1444 tree dest = gimple_goto_dest (goto_t);
1445 basic_block label_bb = label_to_block (dest);
1446 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1447 e->goto_locus = gimple_location (goto_t);
1448 gsi_remove (&last, true);
1449 return false;
1452 /* A computed GOTO creates abnormal edges. */
1453 return true;
1456 /* Create edges for an asm statement with labels at block BB. */
1458 static void
1459 make_gimple_asm_edges (basic_block bb)
1461 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1462 int i, n = gimple_asm_nlabels (stmt);
1464 for (i = 0; i < n; ++i)
1466 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1467 basic_block label_bb = label_to_block (label);
1468 make_edge (bb, label_bb, 0);
1472 /*---------------------------------------------------------------------------
1473 Flowgraph analysis
1474 ---------------------------------------------------------------------------*/
1476 /* Cleanup useless labels in basic blocks. This is something we wish
1477 to do early because it allows us to group case labels before creating
1478 the edges for the CFG, and it speeds up block statement iterators in
1479 all passes later on.
1480 We rerun this pass after CFG is created, to get rid of the labels that
1481 are no longer referenced. After then we do not run it any more, since
1482 (almost) no new labels should be created. */
1484 /* A map from basic block index to the leading label of that block. */
1485 static struct label_record
1487 /* The label. */
1488 tree label;
1490 /* True if the label is referenced from somewhere. */
1491 bool used;
1492 } *label_for_bb;
1494 /* Given LABEL return the first label in the same basic block. */
1496 static tree
1497 main_block_label (tree label)
1499 basic_block bb = label_to_block (label);
1500 tree main_label = label_for_bb[bb->index].label;
1502 /* label_to_block possibly inserted undefined label into the chain. */
1503 if (!main_label)
1505 label_for_bb[bb->index].label = label;
1506 main_label = label;
1509 label_for_bb[bb->index].used = true;
1510 return main_label;
1513 /* Clean up redundant labels within the exception tree. */
1515 static void
1516 cleanup_dead_labels_eh (void)
1518 eh_landing_pad lp;
1519 eh_region r;
1520 tree lab;
1521 int i;
1523 if (cfun->eh == NULL)
1524 return;
1526 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1527 if (lp && lp->post_landing_pad)
1529 lab = main_block_label (lp->post_landing_pad);
1530 if (lab != lp->post_landing_pad)
1532 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1533 EH_LANDING_PAD_NR (lab) = lp->index;
1537 FOR_ALL_EH_REGION (r)
1538 switch (r->type)
1540 case ERT_CLEANUP:
1541 case ERT_MUST_NOT_THROW:
1542 break;
1544 case ERT_TRY:
1546 eh_catch c;
1547 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1549 lab = c->label;
1550 if (lab)
1551 c->label = main_block_label (lab);
1554 break;
1556 case ERT_ALLOWED_EXCEPTIONS:
1557 lab = r->u.allowed.label;
1558 if (lab)
1559 r->u.allowed.label = main_block_label (lab);
1560 break;
1565 /* Cleanup redundant labels. This is a three-step process:
1566 1) Find the leading label for each block.
1567 2) Redirect all references to labels to the leading labels.
1568 3) Cleanup all useless labels. */
1570 void
1571 cleanup_dead_labels (void)
1573 basic_block bb;
1574 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1576 /* Find a suitable label for each block. We use the first user-defined
1577 label if there is one, or otherwise just the first label we see. */
1578 FOR_EACH_BB_FN (bb, cfun)
1580 gimple_stmt_iterator i;
1582 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1584 tree label;
1585 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1587 if (!label_stmt)
1588 break;
1590 label = gimple_label_label (label_stmt);
1592 /* If we have not yet seen a label for the current block,
1593 remember this one and see if there are more labels. */
1594 if (!label_for_bb[bb->index].label)
1596 label_for_bb[bb->index].label = label;
1597 continue;
1600 /* If we did see a label for the current block already, but it
1601 is an artificially created label, replace it if the current
1602 label is a user defined label. */
1603 if (!DECL_ARTIFICIAL (label)
1604 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1606 label_for_bb[bb->index].label = label;
1607 break;
1612 /* Now redirect all jumps/branches to the selected label.
1613 First do so for each block ending in a control statement. */
1614 FOR_EACH_BB_FN (bb, cfun)
1616 gimple *stmt = last_stmt (bb);
1617 tree label, new_label;
1619 if (!stmt)
1620 continue;
1622 switch (gimple_code (stmt))
1624 case GIMPLE_COND:
1626 gcond *cond_stmt = as_a <gcond *> (stmt);
1627 label = gimple_cond_true_label (cond_stmt);
1628 if (label)
1630 new_label = main_block_label (label);
1631 if (new_label != label)
1632 gimple_cond_set_true_label (cond_stmt, new_label);
1635 label = gimple_cond_false_label (cond_stmt);
1636 if (label)
1638 new_label = main_block_label (label);
1639 if (new_label != label)
1640 gimple_cond_set_false_label (cond_stmt, new_label);
1643 break;
1645 case GIMPLE_SWITCH:
1647 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1648 size_t i, n = gimple_switch_num_labels (switch_stmt);
1650 /* Replace all destination labels. */
1651 for (i = 0; i < n; ++i)
1653 tree case_label = gimple_switch_label (switch_stmt, i);
1654 label = CASE_LABEL (case_label);
1655 new_label = main_block_label (label);
1656 if (new_label != label)
1657 CASE_LABEL (case_label) = new_label;
1659 break;
1662 case GIMPLE_ASM:
1664 gasm *asm_stmt = as_a <gasm *> (stmt);
1665 int i, n = gimple_asm_nlabels (asm_stmt);
1667 for (i = 0; i < n; ++i)
1669 tree cons = gimple_asm_label_op (asm_stmt, i);
1670 tree label = main_block_label (TREE_VALUE (cons));
1671 TREE_VALUE (cons) = label;
1673 break;
1676 /* We have to handle gotos until they're removed, and we don't
1677 remove them until after we've created the CFG edges. */
1678 case GIMPLE_GOTO:
1679 if (!computed_goto_p (stmt))
1681 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1682 label = gimple_goto_dest (goto_stmt);
1683 new_label = main_block_label (label);
1684 if (new_label != label)
1685 gimple_goto_set_dest (goto_stmt, new_label);
1687 break;
1689 case GIMPLE_TRANSACTION:
1691 gtransaction *txn = as_a <gtransaction *> (stmt);
1693 label = gimple_transaction_label_norm (txn);
1694 if (label)
1696 new_label = main_block_label (label);
1697 if (new_label != label)
1698 gimple_transaction_set_label_norm (txn, new_label);
1701 label = gimple_transaction_label_uninst (txn);
1702 if (label)
1704 new_label = main_block_label (label);
1705 if (new_label != label)
1706 gimple_transaction_set_label_uninst (txn, new_label);
1709 label = gimple_transaction_label_over (txn);
1710 if (label)
1712 new_label = main_block_label (label);
1713 if (new_label != label)
1714 gimple_transaction_set_label_over (txn, new_label);
1717 break;
1719 default:
1720 break;
1724 /* Do the same for the exception region tree labels. */
1725 cleanup_dead_labels_eh ();
1727 /* Finally, purge dead labels. All user-defined labels and labels that
1728 can be the target of non-local gotos and labels which have their
1729 address taken are preserved. */
1730 FOR_EACH_BB_FN (bb, cfun)
1732 gimple_stmt_iterator i;
1733 tree label_for_this_bb = label_for_bb[bb->index].label;
1735 if (!label_for_this_bb)
1736 continue;
1738 /* If the main label of the block is unused, we may still remove it. */
1739 if (!label_for_bb[bb->index].used)
1740 label_for_this_bb = NULL;
1742 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1744 tree label;
1745 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1747 if (!label_stmt)
1748 break;
1750 label = gimple_label_label (label_stmt);
1752 if (label == label_for_this_bb
1753 || !DECL_ARTIFICIAL (label)
1754 || DECL_NONLOCAL (label)
1755 || FORCED_LABEL (label))
1756 gsi_next (&i);
1757 else
1758 gsi_remove (&i, true);
1762 free (label_for_bb);
1765 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1766 the ones jumping to the same label.
1767 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1769 bool
1770 group_case_labels_stmt (gswitch *stmt)
1772 int old_size = gimple_switch_num_labels (stmt);
1773 int i, next_index, new_size;
1774 basic_block default_bb = NULL;
1776 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1778 /* Look for possible opportunities to merge cases. */
1779 new_size = i = 1;
1780 while (i < old_size)
1782 tree base_case, base_high;
1783 basic_block base_bb;
1785 base_case = gimple_switch_label (stmt, i);
1787 gcc_assert (base_case);
1788 base_bb = label_to_block (CASE_LABEL (base_case));
1790 /* Discard cases that have the same destination as the default case or
1791 whose destiniation blocks have already been removed as unreachable. */
1792 if (base_bb == NULL || base_bb == default_bb)
1794 i++;
1795 continue;
1798 base_high = CASE_HIGH (base_case)
1799 ? CASE_HIGH (base_case)
1800 : CASE_LOW (base_case);
1801 next_index = i + 1;
1803 /* Try to merge case labels. Break out when we reach the end
1804 of the label vector or when we cannot merge the next case
1805 label with the current one. */
1806 while (next_index < old_size)
1808 tree merge_case = gimple_switch_label (stmt, next_index);
1809 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1810 wide_int bhp1 = wi::to_wide (base_high) + 1;
1812 /* Merge the cases if they jump to the same place,
1813 and their ranges are consecutive. */
1814 if (merge_bb == base_bb
1815 && wi::to_wide (CASE_LOW (merge_case)) == bhp1)
1817 base_high = CASE_HIGH (merge_case) ?
1818 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1819 CASE_HIGH (base_case) = base_high;
1820 next_index++;
1822 else
1823 break;
1826 /* Discard cases that have an unreachable destination block. */
1827 if (EDGE_COUNT (base_bb->succs) == 0
1828 && gimple_seq_unreachable_p (bb_seq (base_bb))
1829 /* Don't optimize this if __builtin_unreachable () is the
1830 implicitly added one by the C++ FE too early, before
1831 -Wreturn-type can be diagnosed. We'll optimize it later
1832 during switchconv pass or any other cfg cleanup. */
1833 && (gimple_in_ssa_p (cfun)
1834 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb)))
1835 != BUILTINS_LOCATION)))
1837 edge base_edge = find_edge (gimple_bb (stmt), base_bb);
1838 if (base_edge != NULL)
1839 remove_edge_and_dominated_blocks (base_edge);
1840 i = next_index;
1841 continue;
1844 if (new_size < i)
1845 gimple_switch_set_label (stmt, new_size,
1846 gimple_switch_label (stmt, i));
1847 i = next_index;
1848 new_size++;
1851 gcc_assert (new_size <= old_size);
1853 if (new_size < old_size)
1854 gimple_switch_set_num_labels (stmt, new_size);
1856 return new_size < old_size;
1859 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1860 and scan the sorted vector of cases. Combine the ones jumping to the
1861 same label. */
1863 bool
1864 group_case_labels (void)
1866 basic_block bb;
1867 bool changed = false;
1869 FOR_EACH_BB_FN (bb, cfun)
1871 gimple *stmt = last_stmt (bb);
1872 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1873 changed |= group_case_labels_stmt (as_a <gswitch *> (stmt));
1876 return changed;
1879 /* Checks whether we can merge block B into block A. */
1881 static bool
1882 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1884 gimple *stmt;
1886 if (!single_succ_p (a))
1887 return false;
1889 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1890 return false;
1892 if (single_succ (a) != b)
1893 return false;
1895 if (!single_pred_p (b))
1896 return false;
1898 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1899 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1900 return false;
1902 /* If A ends by a statement causing exceptions or something similar, we
1903 cannot merge the blocks. */
1904 stmt = last_stmt (a);
1905 if (stmt && stmt_ends_bb_p (stmt))
1906 return false;
1908 /* Do not allow a block with only a non-local label to be merged. */
1909 if (stmt)
1910 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1911 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1912 return false;
1914 /* Examine the labels at the beginning of B. */
1915 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1916 gsi_next (&gsi))
1918 tree lab;
1919 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1920 if (!label_stmt)
1921 break;
1922 lab = gimple_label_label (label_stmt);
1924 /* Do not remove user forced labels or for -O0 any user labels. */
1925 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1926 return false;
1929 /* Protect simple loop latches. We only want to avoid merging
1930 the latch with the loop header or with a block in another
1931 loop in this case. */
1932 if (current_loops
1933 && b->loop_father->latch == b
1934 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1935 && (b->loop_father->header == a
1936 || b->loop_father != a->loop_father))
1937 return false;
1939 /* It must be possible to eliminate all phi nodes in B. If ssa form
1940 is not up-to-date and a name-mapping is registered, we cannot eliminate
1941 any phis. Symbols marked for renaming are never a problem though. */
1942 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1943 gsi_next (&gsi))
1945 gphi *phi = gsi.phi ();
1946 /* Technically only new names matter. */
1947 if (name_registered_for_update_p (PHI_RESULT (phi)))
1948 return false;
1951 /* When not optimizing, don't merge if we'd lose goto_locus. */
1952 if (!optimize
1953 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1955 location_t goto_locus = single_succ_edge (a)->goto_locus;
1956 gimple_stmt_iterator prev, next;
1957 prev = gsi_last_nondebug_bb (a);
1958 next = gsi_after_labels (b);
1959 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1960 gsi_next_nondebug (&next);
1961 if ((gsi_end_p (prev)
1962 || gimple_location (gsi_stmt (prev)) != goto_locus)
1963 && (gsi_end_p (next)
1964 || gimple_location (gsi_stmt (next)) != goto_locus))
1965 return false;
1968 return true;
1971 /* Replaces all uses of NAME by VAL. */
1973 void
1974 replace_uses_by (tree name, tree val)
1976 imm_use_iterator imm_iter;
1977 use_operand_p use;
1978 gimple *stmt;
1979 edge e;
1981 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1983 /* Mark the block if we change the last stmt in it. */
1984 if (cfgcleanup_altered_bbs
1985 && stmt_ends_bb_p (stmt))
1986 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1988 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1990 replace_exp (use, val);
1992 if (gimple_code (stmt) == GIMPLE_PHI)
1994 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1995 PHI_ARG_INDEX_FROM_USE (use));
1996 if (e->flags & EDGE_ABNORMAL
1997 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1999 /* This can only occur for virtual operands, since
2000 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2001 would prevent replacement. */
2002 gcc_checking_assert (virtual_operand_p (name));
2003 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
2008 if (gimple_code (stmt) != GIMPLE_PHI)
2010 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
2011 gimple *orig_stmt = stmt;
2012 size_t i;
2014 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
2015 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
2016 only change sth from non-invariant to invariant, and only
2017 when propagating constants. */
2018 if (is_gimple_min_invariant (val))
2019 for (i = 0; i < gimple_num_ops (stmt); i++)
2021 tree op = gimple_op (stmt, i);
2022 /* Operands may be empty here. For example, the labels
2023 of a GIMPLE_COND are nulled out following the creation
2024 of the corresponding CFG edges. */
2025 if (op && TREE_CODE (op) == ADDR_EXPR)
2026 recompute_tree_invariant_for_addr_expr (op);
2029 if (fold_stmt (&gsi))
2030 stmt = gsi_stmt (gsi);
2032 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
2033 gimple_purge_dead_eh_edges (gimple_bb (stmt));
2035 update_stmt (stmt);
2039 gcc_checking_assert (has_zero_uses (name));
2041 /* Also update the trees stored in loop structures. */
2042 if (current_loops)
2044 struct loop *loop;
2046 FOR_EACH_LOOP (loop, 0)
2048 substitute_in_loop_info (loop, name, val);
2053 /* Merge block B into block A. */
2055 static void
2056 gimple_merge_blocks (basic_block a, basic_block b)
2058 gimple_stmt_iterator last, gsi;
2059 gphi_iterator psi;
2061 if (dump_file)
2062 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
2064 /* Remove all single-valued PHI nodes from block B of the form
2065 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2066 gsi = gsi_last_bb (a);
2067 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
2069 gimple *phi = gsi_stmt (psi);
2070 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
2071 gimple *copy;
2072 bool may_replace_uses = (virtual_operand_p (def)
2073 || may_propagate_copy (def, use));
2075 /* In case we maintain loop closed ssa form, do not propagate arguments
2076 of loop exit phi nodes. */
2077 if (current_loops
2078 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
2079 && !virtual_operand_p (def)
2080 && TREE_CODE (use) == SSA_NAME
2081 && a->loop_father != b->loop_father)
2082 may_replace_uses = false;
2084 if (!may_replace_uses)
2086 gcc_assert (!virtual_operand_p (def));
2088 /* Note that just emitting the copies is fine -- there is no problem
2089 with ordering of phi nodes. This is because A is the single
2090 predecessor of B, therefore results of the phi nodes cannot
2091 appear as arguments of the phi nodes. */
2092 copy = gimple_build_assign (def, use);
2093 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
2094 remove_phi_node (&psi, false);
2096 else
2098 /* If we deal with a PHI for virtual operands, we can simply
2099 propagate these without fussing with folding or updating
2100 the stmt. */
2101 if (virtual_operand_p (def))
2103 imm_use_iterator iter;
2104 use_operand_p use_p;
2105 gimple *stmt;
2107 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
2108 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2109 SET_USE (use_p, use);
2111 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
2112 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
2114 else
2115 replace_uses_by (def, use);
2117 remove_phi_node (&psi, true);
2121 /* Ensure that B follows A. */
2122 move_block_after (b, a);
2124 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
2125 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
2127 /* Remove labels from B and set gimple_bb to A for other statements. */
2128 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
2130 gimple *stmt = gsi_stmt (gsi);
2131 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2133 tree label = gimple_label_label (label_stmt);
2134 int lp_nr;
2136 gsi_remove (&gsi, false);
2138 /* Now that we can thread computed gotos, we might have
2139 a situation where we have a forced label in block B
2140 However, the label at the start of block B might still be
2141 used in other ways (think about the runtime checking for
2142 Fortran assigned gotos). So we can not just delete the
2143 label. Instead we move the label to the start of block A. */
2144 if (FORCED_LABEL (label))
2146 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
2147 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
2149 /* Other user labels keep around in a form of a debug stmt. */
2150 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_BIND_STMTS)
2152 gimple *dbg = gimple_build_debug_bind (label,
2153 integer_zero_node,
2154 stmt);
2155 gimple_debug_bind_reset_value (dbg);
2156 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
2159 lp_nr = EH_LANDING_PAD_NR (label);
2160 if (lp_nr)
2162 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2163 lp->post_landing_pad = NULL;
2166 else
2168 gimple_set_bb (stmt, a);
2169 gsi_next (&gsi);
2173 /* When merging two BBs, if their counts are different, the larger count
2174 is selected as the new bb count. This is to handle inconsistent
2175 profiles. */
2176 if (a->loop_father == b->loop_father)
2178 a->count = a->count.merge (b->count);
2181 /* Merge the sequences. */
2182 last = gsi_last_bb (a);
2183 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2184 set_bb_seq (b, NULL);
2186 if (cfgcleanup_altered_bbs)
2187 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2191 /* Return the one of two successors of BB that is not reachable by a
2192 complex edge, if there is one. Else, return BB. We use
2193 this in optimizations that use post-dominators for their heuristics,
2194 to catch the cases in C++ where function calls are involved. */
2196 basic_block
2197 single_noncomplex_succ (basic_block bb)
2199 edge e0, e1;
2200 if (EDGE_COUNT (bb->succs) != 2)
2201 return bb;
2203 e0 = EDGE_SUCC (bb, 0);
2204 e1 = EDGE_SUCC (bb, 1);
2205 if (e0->flags & EDGE_COMPLEX)
2206 return e1->dest;
2207 if (e1->flags & EDGE_COMPLEX)
2208 return e0->dest;
2210 return bb;
2213 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2215 void
2216 notice_special_calls (gcall *call)
2218 int flags = gimple_call_flags (call);
2220 if (flags & ECF_MAY_BE_ALLOCA)
2221 cfun->calls_alloca = true;
2222 if (flags & ECF_RETURNS_TWICE)
2223 cfun->calls_setjmp = true;
2227 /* Clear flags set by notice_special_calls. Used by dead code removal
2228 to update the flags. */
2230 void
2231 clear_special_calls (void)
2233 cfun->calls_alloca = false;
2234 cfun->calls_setjmp = false;
2237 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2239 static void
2240 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2242 /* Since this block is no longer reachable, we can just delete all
2243 of its PHI nodes. */
2244 remove_phi_nodes (bb);
2246 /* Remove edges to BB's successors. */
2247 while (EDGE_COUNT (bb->succs) > 0)
2248 remove_edge (EDGE_SUCC (bb, 0));
2252 /* Remove statements of basic block BB. */
2254 static void
2255 remove_bb (basic_block bb)
2257 gimple_stmt_iterator i;
2259 if (dump_file)
2261 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2262 if (dump_flags & TDF_DETAILS)
2264 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2265 fprintf (dump_file, "\n");
2269 if (current_loops)
2271 struct loop *loop = bb->loop_father;
2273 /* If a loop gets removed, clean up the information associated
2274 with it. */
2275 if (loop->latch == bb
2276 || loop->header == bb)
2277 free_numbers_of_iterations_estimates (loop);
2280 /* Remove all the instructions in the block. */
2281 if (bb_seq (bb) != NULL)
2283 /* Walk backwards so as to get a chance to substitute all
2284 released DEFs into debug stmts. See
2285 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2286 details. */
2287 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2289 gimple *stmt = gsi_stmt (i);
2290 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2291 if (label_stmt
2292 && (FORCED_LABEL (gimple_label_label (label_stmt))
2293 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2295 basic_block new_bb;
2296 gimple_stmt_iterator new_gsi;
2298 /* A non-reachable non-local label may still be referenced.
2299 But it no longer needs to carry the extra semantics of
2300 non-locality. */
2301 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2303 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2304 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2307 new_bb = bb->prev_bb;
2308 /* Don't move any labels into ENTRY block. */
2309 if (new_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2311 new_bb = single_succ (new_bb);
2312 gcc_assert (new_bb != bb);
2314 new_gsi = gsi_start_bb (new_bb);
2315 gsi_remove (&i, false);
2316 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2318 else
2320 /* Release SSA definitions. */
2321 release_defs (stmt);
2322 gsi_remove (&i, true);
2325 if (gsi_end_p (i))
2326 i = gsi_last_bb (bb);
2327 else
2328 gsi_prev (&i);
2332 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2333 bb->il.gimple.seq = NULL;
2334 bb->il.gimple.phi_nodes = NULL;
2338 /* Given a basic block BB and a value VAL for use in the final statement
2339 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2340 the edge that will be taken out of the block.
2341 If VAL is NULL_TREE, then the current value of the final statement's
2342 predicate or index is used.
2343 If the value does not match a unique edge, NULL is returned. */
2345 edge
2346 find_taken_edge (basic_block bb, tree val)
2348 gimple *stmt;
2350 stmt = last_stmt (bb);
2352 /* Handle ENTRY and EXIT. */
2353 if (!stmt)
2354 return NULL;
2356 if (gimple_code (stmt) == GIMPLE_COND)
2357 return find_taken_edge_cond_expr (as_a <gcond *> (stmt), val);
2359 if (gimple_code (stmt) == GIMPLE_SWITCH)
2360 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), val);
2362 if (computed_goto_p (stmt))
2364 /* Only optimize if the argument is a label, if the argument is
2365 not a label then we can not construct a proper CFG.
2367 It may be the case that we only need to allow the LABEL_REF to
2368 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2369 appear inside a LABEL_EXPR just to be safe. */
2370 if (val
2371 && (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2372 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2373 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2376 /* Otherwise we only know the taken successor edge if it's unique. */
2377 return single_succ_p (bb) ? single_succ_edge (bb) : NULL;
2380 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2381 statement, determine which of the outgoing edges will be taken out of the
2382 block. Return NULL if either edge may be taken. */
2384 static edge
2385 find_taken_edge_computed_goto (basic_block bb, tree val)
2387 basic_block dest;
2388 edge e = NULL;
2390 dest = label_to_block (val);
2391 if (dest)
2392 e = find_edge (bb, dest);
2394 /* It's possible for find_edge to return NULL here on invalid code
2395 that abuses the labels-as-values extension (e.g. code that attempts to
2396 jump *between* functions via stored labels-as-values; PR 84136).
2397 If so, then we simply return that NULL for the edge.
2398 We don't currently have a way of detecting such invalid code, so we
2399 can't assert that it was the case when a NULL edge occurs here. */
2401 return e;
2404 /* Given COND_STMT and a constant value VAL for use as the predicate,
2405 determine which of the two edges will be taken out of
2406 the statement's block. Return NULL if either edge may be taken.
2407 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2408 is used. */
2410 static edge
2411 find_taken_edge_cond_expr (const gcond *cond_stmt, tree val)
2413 edge true_edge, false_edge;
2415 if (val == NULL_TREE)
2417 /* Use the current value of the predicate. */
2418 if (gimple_cond_true_p (cond_stmt))
2419 val = integer_one_node;
2420 else if (gimple_cond_false_p (cond_stmt))
2421 val = integer_zero_node;
2422 else
2423 return NULL;
2425 else if (TREE_CODE (val) != INTEGER_CST)
2426 return NULL;
2428 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
2429 &true_edge, &false_edge);
2431 return (integer_zerop (val) ? false_edge : true_edge);
2434 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2435 which edge will be taken out of the statement's block. Return NULL if any
2436 edge may be taken.
2437 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2438 is used. */
2440 static edge
2441 find_taken_edge_switch_expr (const gswitch *switch_stmt, tree val)
2443 basic_block dest_bb;
2444 edge e;
2445 tree taken_case;
2447 if (gimple_switch_num_labels (switch_stmt) == 1)
2448 taken_case = gimple_switch_default_label (switch_stmt);
2449 else
2451 if (val == NULL_TREE)
2452 val = gimple_switch_index (switch_stmt);
2453 if (TREE_CODE (val) != INTEGER_CST)
2454 return NULL;
2455 else
2456 taken_case = find_case_label_for_value (switch_stmt, val);
2458 dest_bb = label_to_block (CASE_LABEL (taken_case));
2460 e = find_edge (gimple_bb (switch_stmt), dest_bb);
2461 gcc_assert (e);
2462 return e;
2466 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2467 We can make optimal use here of the fact that the case labels are
2468 sorted: We can do a binary search for a case matching VAL. */
2470 static tree
2471 find_case_label_for_value (const gswitch *switch_stmt, tree val)
2473 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2474 tree default_case = gimple_switch_default_label (switch_stmt);
2476 for (low = 0, high = n; high - low > 1; )
2478 size_t i = (high + low) / 2;
2479 tree t = gimple_switch_label (switch_stmt, i);
2480 int cmp;
2482 /* Cache the result of comparing CASE_LOW and val. */
2483 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2485 if (cmp > 0)
2486 high = i;
2487 else
2488 low = i;
2490 if (CASE_HIGH (t) == NULL)
2492 /* A singe-valued case label. */
2493 if (cmp == 0)
2494 return t;
2496 else
2498 /* A case range. We can only handle integer ranges. */
2499 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2500 return t;
2504 return default_case;
2508 /* Dump a basic block on stderr. */
2510 void
2511 gimple_debug_bb (basic_block bb)
2513 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2517 /* Dump basic block with index N on stderr. */
2519 basic_block
2520 gimple_debug_bb_n (int n)
2522 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2523 return BASIC_BLOCK_FOR_FN (cfun, n);
2527 /* Dump the CFG on stderr.
2529 FLAGS are the same used by the tree dumping functions
2530 (see TDF_* in dumpfile.h). */
2532 void
2533 gimple_debug_cfg (dump_flags_t flags)
2535 gimple_dump_cfg (stderr, flags);
2539 /* Dump the program showing basic block boundaries on the given FILE.
2541 FLAGS are the same used by the tree dumping functions (see TDF_* in
2542 tree.h). */
2544 void
2545 gimple_dump_cfg (FILE *file, dump_flags_t flags)
2547 if (flags & TDF_DETAILS)
2549 dump_function_header (file, current_function_decl, flags);
2550 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2551 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2552 last_basic_block_for_fn (cfun));
2554 brief_dump_cfg (file, flags);
2555 fprintf (file, "\n");
2558 if (flags & TDF_STATS)
2559 dump_cfg_stats (file);
2561 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2565 /* Dump CFG statistics on FILE. */
2567 void
2568 dump_cfg_stats (FILE *file)
2570 static long max_num_merged_labels = 0;
2571 unsigned long size, total = 0;
2572 long num_edges;
2573 basic_block bb;
2574 const char * const fmt_str = "%-30s%-13s%12s\n";
2575 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2576 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2577 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2578 const char *funcname = current_function_name ();
2580 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2582 fprintf (file, "---------------------------------------------------------\n");
2583 fprintf (file, fmt_str, "", " Number of ", "Memory");
2584 fprintf (file, fmt_str, "", " instances ", "used ");
2585 fprintf (file, "---------------------------------------------------------\n");
2587 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2588 total += size;
2589 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2590 SCALE (size), LABEL (size));
2592 num_edges = 0;
2593 FOR_EACH_BB_FN (bb, cfun)
2594 num_edges += EDGE_COUNT (bb->succs);
2595 size = num_edges * sizeof (struct edge_def);
2596 total += size;
2597 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2599 fprintf (file, "---------------------------------------------------------\n");
2600 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2601 LABEL (total));
2602 fprintf (file, "---------------------------------------------------------\n");
2603 fprintf (file, "\n");
2605 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2606 max_num_merged_labels = cfg_stats.num_merged_labels;
2608 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2609 cfg_stats.num_merged_labels, max_num_merged_labels);
2611 fprintf (file, "\n");
2615 /* Dump CFG statistics on stderr. Keep extern so that it's always
2616 linked in the final executable. */
2618 DEBUG_FUNCTION void
2619 debug_cfg_stats (void)
2621 dump_cfg_stats (stderr);
2624 /*---------------------------------------------------------------------------
2625 Miscellaneous helpers
2626 ---------------------------------------------------------------------------*/
2628 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2629 flow. Transfers of control flow associated with EH are excluded. */
2631 static bool
2632 call_can_make_abnormal_goto (gimple *t)
2634 /* If the function has no non-local labels, then a call cannot make an
2635 abnormal transfer of control. */
2636 if (!cfun->has_nonlocal_label
2637 && !cfun->calls_setjmp)
2638 return false;
2640 /* Likewise if the call has no side effects. */
2641 if (!gimple_has_side_effects (t))
2642 return false;
2644 /* Likewise if the called function is leaf. */
2645 if (gimple_call_flags (t) & ECF_LEAF)
2646 return false;
2648 return true;
2652 /* Return true if T can make an abnormal transfer of control flow.
2653 Transfers of control flow associated with EH are excluded. */
2655 bool
2656 stmt_can_make_abnormal_goto (gimple *t)
2658 if (computed_goto_p (t))
2659 return true;
2660 if (is_gimple_call (t))
2661 return call_can_make_abnormal_goto (t);
2662 return false;
2666 /* Return true if T represents a stmt that always transfers control. */
2668 bool
2669 is_ctrl_stmt (gimple *t)
2671 switch (gimple_code (t))
2673 case GIMPLE_COND:
2674 case GIMPLE_SWITCH:
2675 case GIMPLE_GOTO:
2676 case GIMPLE_RETURN:
2677 case GIMPLE_RESX:
2678 return true;
2679 default:
2680 return false;
2685 /* Return true if T is a statement that may alter the flow of control
2686 (e.g., a call to a non-returning function). */
2688 bool
2689 is_ctrl_altering_stmt (gimple *t)
2691 gcc_assert (t);
2693 switch (gimple_code (t))
2695 case GIMPLE_CALL:
2696 /* Per stmt call flag indicates whether the call could alter
2697 controlflow. */
2698 if (gimple_call_ctrl_altering_p (t))
2699 return true;
2700 break;
2702 case GIMPLE_EH_DISPATCH:
2703 /* EH_DISPATCH branches to the individual catch handlers at
2704 this level of a try or allowed-exceptions region. It can
2705 fallthru to the next statement as well. */
2706 return true;
2708 case GIMPLE_ASM:
2709 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2710 return true;
2711 break;
2713 CASE_GIMPLE_OMP:
2714 /* OpenMP directives alter control flow. */
2715 return true;
2717 case GIMPLE_TRANSACTION:
2718 /* A transaction start alters control flow. */
2719 return true;
2721 default:
2722 break;
2725 /* If a statement can throw, it alters control flow. */
2726 return stmt_can_throw_internal (t);
2730 /* Return true if T is a simple local goto. */
2732 bool
2733 simple_goto_p (gimple *t)
2735 return (gimple_code (t) == GIMPLE_GOTO
2736 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2740 /* Return true if STMT should start a new basic block. PREV_STMT is
2741 the statement preceding STMT. It is used when STMT is a label or a
2742 case label. Labels should only start a new basic block if their
2743 previous statement wasn't a label. Otherwise, sequence of labels
2744 would generate unnecessary basic blocks that only contain a single
2745 label. */
2747 static inline bool
2748 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2750 if (stmt == NULL)
2751 return false;
2753 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2754 any nondebug stmts in the block. We don't want to start another
2755 block in this case: the debug stmt will already have started the
2756 one STMT would start if we weren't outputting debug stmts. */
2757 if (prev_stmt && is_gimple_debug (prev_stmt))
2758 return false;
2760 /* Labels start a new basic block only if the preceding statement
2761 wasn't a label of the same type. This prevents the creation of
2762 consecutive blocks that have nothing but a single label. */
2763 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2765 /* Nonlocal and computed GOTO targets always start a new block. */
2766 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2767 || FORCED_LABEL (gimple_label_label (label_stmt)))
2768 return true;
2770 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2772 if (DECL_NONLOCAL (gimple_label_label (
2773 as_a <glabel *> (prev_stmt))))
2774 return true;
2776 cfg_stats.num_merged_labels++;
2777 return false;
2779 else
2780 return true;
2782 else if (gimple_code (stmt) == GIMPLE_CALL)
2784 if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2785 /* setjmp acts similar to a nonlocal GOTO target and thus should
2786 start a new block. */
2787 return true;
2788 if (gimple_call_internal_p (stmt, IFN_PHI)
2789 && prev_stmt
2790 && gimple_code (prev_stmt) != GIMPLE_LABEL
2791 && (gimple_code (prev_stmt) != GIMPLE_CALL
2792 || ! gimple_call_internal_p (prev_stmt, IFN_PHI)))
2793 /* PHI nodes start a new block unless preceeded by a label
2794 or another PHI. */
2795 return true;
2798 return false;
2802 /* Return true if T should end a basic block. */
2804 bool
2805 stmt_ends_bb_p (gimple *t)
2807 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2810 /* Remove block annotations and other data structures. */
2812 void
2813 delete_tree_cfg_annotations (struct function *fn)
2815 vec_free (label_to_block_map_for_fn (fn));
2818 /* Return the virtual phi in BB. */
2820 gphi *
2821 get_virtual_phi (basic_block bb)
2823 for (gphi_iterator gsi = gsi_start_phis (bb);
2824 !gsi_end_p (gsi);
2825 gsi_next (&gsi))
2827 gphi *phi = gsi.phi ();
2829 if (virtual_operand_p (PHI_RESULT (phi)))
2830 return phi;
2833 return NULL;
2836 /* Return the first statement in basic block BB. */
2838 gimple *
2839 first_stmt (basic_block bb)
2841 gimple_stmt_iterator i = gsi_start_bb (bb);
2842 gimple *stmt = NULL;
2844 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2846 gsi_next (&i);
2847 stmt = NULL;
2849 return stmt;
2852 /* Return the first non-label statement in basic block BB. */
2854 static gimple *
2855 first_non_label_stmt (basic_block bb)
2857 gimple_stmt_iterator i = gsi_start_bb (bb);
2858 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2859 gsi_next (&i);
2860 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2863 /* Return the last statement in basic block BB. */
2865 gimple *
2866 last_stmt (basic_block bb)
2868 gimple_stmt_iterator i = gsi_last_bb (bb);
2869 gimple *stmt = NULL;
2871 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2873 gsi_prev (&i);
2874 stmt = NULL;
2876 return stmt;
2879 /* Return the last statement of an otherwise empty block. Return NULL
2880 if the block is totally empty, or if it contains more than one
2881 statement. */
2883 gimple *
2884 last_and_only_stmt (basic_block bb)
2886 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2887 gimple *last, *prev;
2889 if (gsi_end_p (i))
2890 return NULL;
2892 last = gsi_stmt (i);
2893 gsi_prev_nondebug (&i);
2894 if (gsi_end_p (i))
2895 return last;
2897 /* Empty statements should no longer appear in the instruction stream.
2898 Everything that might have appeared before should be deleted by
2899 remove_useless_stmts, and the optimizers should just gsi_remove
2900 instead of smashing with build_empty_stmt.
2902 Thus the only thing that should appear here in a block containing
2903 one executable statement is a label. */
2904 prev = gsi_stmt (i);
2905 if (gimple_code (prev) == GIMPLE_LABEL)
2906 return last;
2907 else
2908 return NULL;
2911 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2913 static void
2914 reinstall_phi_args (edge new_edge, edge old_edge)
2916 edge_var_map *vm;
2917 int i;
2918 gphi_iterator phis;
2920 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2921 if (!v)
2922 return;
2924 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2925 v->iterate (i, &vm) && !gsi_end_p (phis);
2926 i++, gsi_next (&phis))
2928 gphi *phi = phis.phi ();
2929 tree result = redirect_edge_var_map_result (vm);
2930 tree arg = redirect_edge_var_map_def (vm);
2932 gcc_assert (result == gimple_phi_result (phi));
2934 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2937 redirect_edge_var_map_clear (old_edge);
2940 /* Returns the basic block after which the new basic block created
2941 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2942 near its "logical" location. This is of most help to humans looking
2943 at debugging dumps. */
2945 basic_block
2946 split_edge_bb_loc (edge edge_in)
2948 basic_block dest = edge_in->dest;
2949 basic_block dest_prev = dest->prev_bb;
2951 if (dest_prev)
2953 edge e = find_edge (dest_prev, dest);
2954 if (e && !(e->flags & EDGE_COMPLEX))
2955 return edge_in->src;
2957 return dest_prev;
2960 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2961 Abort on abnormal edges. */
2963 static basic_block
2964 gimple_split_edge (edge edge_in)
2966 basic_block new_bb, after_bb, dest;
2967 edge new_edge, e;
2969 /* Abnormal edges cannot be split. */
2970 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2972 dest = edge_in->dest;
2974 after_bb = split_edge_bb_loc (edge_in);
2976 new_bb = create_empty_bb (after_bb);
2977 new_bb->count = edge_in->count ();
2979 e = redirect_edge_and_branch (edge_in, new_bb);
2980 gcc_assert (e == edge_in);
2982 new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU);
2983 reinstall_phi_args (new_edge, e);
2985 return new_bb;
2989 /* Verify properties of the address expression T whose base should be
2990 TREE_ADDRESSABLE if VERIFY_ADDRESSABLE is true. */
2992 static bool
2993 verify_address (tree t, bool verify_addressable)
2995 bool old_constant;
2996 bool old_side_effects;
2997 bool new_constant;
2998 bool new_side_effects;
3000 old_constant = TREE_CONSTANT (t);
3001 old_side_effects = TREE_SIDE_EFFECTS (t);
3003 recompute_tree_invariant_for_addr_expr (t);
3004 new_side_effects = TREE_SIDE_EFFECTS (t);
3005 new_constant = TREE_CONSTANT (t);
3007 if (old_constant != new_constant)
3009 error ("constant not recomputed when ADDR_EXPR changed");
3010 return true;
3012 if (old_side_effects != new_side_effects)
3014 error ("side effects not recomputed when ADDR_EXPR changed");
3015 return true;
3018 tree base = TREE_OPERAND (t, 0);
3019 while (handled_component_p (base))
3020 base = TREE_OPERAND (base, 0);
3022 if (!(VAR_P (base)
3023 || TREE_CODE (base) == PARM_DECL
3024 || TREE_CODE (base) == RESULT_DECL))
3025 return false;
3027 if (DECL_GIMPLE_REG_P (base))
3029 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
3030 return true;
3033 if (verify_addressable && !TREE_ADDRESSABLE (base))
3035 error ("address taken, but ADDRESSABLE bit not set");
3036 return true;
3039 return false;
3043 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3044 Returns true if there is an error, otherwise false. */
3046 static bool
3047 verify_types_in_gimple_min_lval (tree expr)
3049 tree op;
3051 if (is_gimple_id (expr))
3052 return false;
3054 if (TREE_CODE (expr) != TARGET_MEM_REF
3055 && TREE_CODE (expr) != MEM_REF)
3057 error ("invalid expression for min lvalue");
3058 return true;
3061 /* TARGET_MEM_REFs are strange beasts. */
3062 if (TREE_CODE (expr) == TARGET_MEM_REF)
3063 return false;
3065 op = TREE_OPERAND (expr, 0);
3066 if (!is_gimple_val (op))
3068 error ("invalid operand in indirect reference");
3069 debug_generic_stmt (op);
3070 return true;
3072 /* Memory references now generally can involve a value conversion. */
3074 return false;
3077 /* Verify if EXPR is a valid GIMPLE reference expression. If
3078 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3079 if there is an error, otherwise false. */
3081 static bool
3082 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3084 if (TREE_CODE (expr) == REALPART_EXPR
3085 || TREE_CODE (expr) == IMAGPART_EXPR
3086 || TREE_CODE (expr) == BIT_FIELD_REF)
3088 tree op = TREE_OPERAND (expr, 0);
3089 if (!is_gimple_reg_type (TREE_TYPE (expr)))
3091 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3092 return true;
3095 if (TREE_CODE (expr) == BIT_FIELD_REF)
3097 tree t1 = TREE_OPERAND (expr, 1);
3098 tree t2 = TREE_OPERAND (expr, 2);
3099 poly_uint64 size, bitpos;
3100 if (!poly_int_tree_p (t1, &size)
3101 || !poly_int_tree_p (t2, &bitpos)
3102 || !types_compatible_p (bitsizetype, TREE_TYPE (t1))
3103 || !types_compatible_p (bitsizetype, TREE_TYPE (t2)))
3105 error ("invalid position or size operand to BIT_FIELD_REF");
3106 return true;
3108 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
3109 && maybe_ne (TYPE_PRECISION (TREE_TYPE (expr)), size))
3111 error ("integral result type precision does not match "
3112 "field size of BIT_FIELD_REF");
3113 return true;
3115 else if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
3116 && TYPE_MODE (TREE_TYPE (expr)) != BLKmode
3117 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr))),
3118 size))
3120 error ("mode size of non-integral result does not "
3121 "match field size of BIT_FIELD_REF");
3122 return true;
3124 if (!AGGREGATE_TYPE_P (TREE_TYPE (op))
3125 && maybe_gt (size + bitpos,
3126 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (op)))))
3128 error ("position plus size exceeds size of referenced object in "
3129 "BIT_FIELD_REF");
3130 return true;
3134 if ((TREE_CODE (expr) == REALPART_EXPR
3135 || TREE_CODE (expr) == IMAGPART_EXPR)
3136 && !useless_type_conversion_p (TREE_TYPE (expr),
3137 TREE_TYPE (TREE_TYPE (op))))
3139 error ("type mismatch in real/imagpart reference");
3140 debug_generic_stmt (TREE_TYPE (expr));
3141 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3142 return true;
3144 expr = op;
3147 while (handled_component_p (expr))
3149 if (TREE_CODE (expr) == REALPART_EXPR
3150 || TREE_CODE (expr) == IMAGPART_EXPR
3151 || TREE_CODE (expr) == BIT_FIELD_REF)
3153 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3154 return true;
3157 tree op = TREE_OPERAND (expr, 0);
3159 if (TREE_CODE (expr) == ARRAY_REF
3160 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3162 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3163 || (TREE_OPERAND (expr, 2)
3164 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3165 || (TREE_OPERAND (expr, 3)
3166 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3168 error ("invalid operands to array reference");
3169 debug_generic_stmt (expr);
3170 return true;
3174 /* Verify if the reference array element types are compatible. */
3175 if (TREE_CODE (expr) == ARRAY_REF
3176 && !useless_type_conversion_p (TREE_TYPE (expr),
3177 TREE_TYPE (TREE_TYPE (op))))
3179 error ("type mismatch in array reference");
3180 debug_generic_stmt (TREE_TYPE (expr));
3181 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3182 return true;
3184 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3185 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3186 TREE_TYPE (TREE_TYPE (op))))
3188 error ("type mismatch in array range reference");
3189 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3190 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3191 return true;
3194 if (TREE_CODE (expr) == COMPONENT_REF)
3196 if (TREE_OPERAND (expr, 2)
3197 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3199 error ("invalid COMPONENT_REF offset operator");
3200 return true;
3202 if (!useless_type_conversion_p (TREE_TYPE (expr),
3203 TREE_TYPE (TREE_OPERAND (expr, 1))))
3205 error ("type mismatch in component reference");
3206 debug_generic_stmt (TREE_TYPE (expr));
3207 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3208 return true;
3212 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3214 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3215 that their operand is not an SSA name or an invariant when
3216 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3217 bug). Otherwise there is nothing to verify, gross mismatches at
3218 most invoke undefined behavior. */
3219 if (require_lvalue
3220 && (TREE_CODE (op) == SSA_NAME
3221 || is_gimple_min_invariant (op)))
3223 error ("conversion of an SSA_NAME on the left hand side");
3224 debug_generic_stmt (expr);
3225 return true;
3227 else if (TREE_CODE (op) == SSA_NAME
3228 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3230 error ("conversion of register to a different size");
3231 debug_generic_stmt (expr);
3232 return true;
3234 else if (!handled_component_p (op))
3235 return false;
3238 expr = op;
3241 if (TREE_CODE (expr) == MEM_REF)
3243 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0))
3244 || (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
3245 && verify_address (TREE_OPERAND (expr, 0), false)))
3247 error ("invalid address operand in MEM_REF");
3248 debug_generic_stmt (expr);
3249 return true;
3251 if (!poly_int_tree_p (TREE_OPERAND (expr, 1))
3252 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3254 error ("invalid offset operand in MEM_REF");
3255 debug_generic_stmt (expr);
3256 return true;
3259 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3261 if (!TMR_BASE (expr)
3262 || !is_gimple_mem_ref_addr (TMR_BASE (expr))
3263 || (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
3264 && verify_address (TMR_BASE (expr), false)))
3266 error ("invalid address operand in TARGET_MEM_REF");
3267 return true;
3269 if (!TMR_OFFSET (expr)
3270 || !poly_int_tree_p (TMR_OFFSET (expr))
3271 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3273 error ("invalid offset operand in TARGET_MEM_REF");
3274 debug_generic_stmt (expr);
3275 return true;
3278 else if (TREE_CODE (expr) == INDIRECT_REF)
3280 error ("INDIRECT_REF in gimple IL");
3281 debug_generic_stmt (expr);
3282 return true;
3285 return ((require_lvalue || !is_gimple_min_invariant (expr))
3286 && verify_types_in_gimple_min_lval (expr));
3289 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3290 list of pointer-to types that is trivially convertible to DEST. */
3292 static bool
3293 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3295 tree src;
3297 if (!TYPE_POINTER_TO (src_obj))
3298 return true;
3300 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3301 if (useless_type_conversion_p (dest, src))
3302 return true;
3304 return false;
3307 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3308 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3310 static bool
3311 valid_fixed_convert_types_p (tree type1, tree type2)
3313 return (FIXED_POINT_TYPE_P (type1)
3314 && (INTEGRAL_TYPE_P (type2)
3315 || SCALAR_FLOAT_TYPE_P (type2)
3316 || FIXED_POINT_TYPE_P (type2)));
3319 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3320 is a problem, otherwise false. */
3322 static bool
3323 verify_gimple_call (gcall *stmt)
3325 tree fn = gimple_call_fn (stmt);
3326 tree fntype, fndecl;
3327 unsigned i;
3329 if (gimple_call_internal_p (stmt))
3331 if (fn)
3333 error ("gimple call has two targets");
3334 debug_generic_stmt (fn);
3335 return true;
3337 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3338 else if (gimple_call_internal_fn (stmt) == IFN_PHI)
3340 return false;
3343 else
3345 if (!fn)
3347 error ("gimple call has no target");
3348 return true;
3352 if (fn && !is_gimple_call_addr (fn))
3354 error ("invalid function in gimple call");
3355 debug_generic_stmt (fn);
3356 return true;
3359 if (fn
3360 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3361 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3362 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3364 error ("non-function in gimple call");
3365 return true;
3368 fndecl = gimple_call_fndecl (stmt);
3369 if (fndecl
3370 && TREE_CODE (fndecl) == FUNCTION_DECL
3371 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3372 && !DECL_PURE_P (fndecl)
3373 && !TREE_READONLY (fndecl))
3375 error ("invalid pure const state for function");
3376 return true;
3379 tree lhs = gimple_call_lhs (stmt);
3380 if (lhs
3381 && (!is_gimple_lvalue (lhs)
3382 || verify_types_in_gimple_reference (lhs, true)))
3384 error ("invalid LHS in gimple call");
3385 return true;
3388 if (gimple_call_ctrl_altering_p (stmt)
3389 && gimple_call_noreturn_p (stmt)
3390 && should_remove_lhs_p (lhs))
3392 error ("LHS in noreturn call");
3393 return true;
3396 fntype = gimple_call_fntype (stmt);
3397 if (fntype
3398 && lhs
3399 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3400 /* ??? At least C++ misses conversions at assignments from
3401 void * call results.
3402 For now simply allow arbitrary pointer type conversions. */
3403 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3404 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3406 error ("invalid conversion in gimple call");
3407 debug_generic_stmt (TREE_TYPE (lhs));
3408 debug_generic_stmt (TREE_TYPE (fntype));
3409 return true;
3412 if (gimple_call_chain (stmt)
3413 && !is_gimple_val (gimple_call_chain (stmt)))
3415 error ("invalid static chain in gimple call");
3416 debug_generic_stmt (gimple_call_chain (stmt));
3417 return true;
3420 /* If there is a static chain argument, the call should either be
3421 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3422 if (gimple_call_chain (stmt)
3423 && fndecl
3424 && !DECL_STATIC_CHAIN (fndecl))
3426 error ("static chain with function that doesn%'t use one");
3427 return true;
3430 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3432 switch (DECL_FUNCTION_CODE (fndecl))
3434 case BUILT_IN_UNREACHABLE:
3435 case BUILT_IN_TRAP:
3436 if (gimple_call_num_args (stmt) > 0)
3438 /* Built-in unreachable with parameters might not be caught by
3439 undefined behavior sanitizer. Front-ends do check users do not
3440 call them that way but we also produce calls to
3441 __builtin_unreachable internally, for example when IPA figures
3442 out a call cannot happen in a legal program. In such cases,
3443 we must make sure arguments are stripped off. */
3444 error ("__builtin_unreachable or __builtin_trap call with "
3445 "arguments");
3446 return true;
3448 break;
3449 default:
3450 break;
3454 /* ??? The C frontend passes unpromoted arguments in case it
3455 didn't see a function declaration before the call. So for now
3456 leave the call arguments mostly unverified. Once we gimplify
3457 unit-at-a-time we have a chance to fix this. */
3459 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3461 tree arg = gimple_call_arg (stmt, i);
3462 if ((is_gimple_reg_type (TREE_TYPE (arg))
3463 && !is_gimple_val (arg))
3464 || (!is_gimple_reg_type (TREE_TYPE (arg))
3465 && !is_gimple_lvalue (arg)))
3467 error ("invalid argument to gimple call");
3468 debug_generic_expr (arg);
3469 return true;
3473 return false;
3476 /* Verifies the gimple comparison with the result type TYPE and
3477 the operands OP0 and OP1, comparison code is CODE. */
3479 static bool
3480 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3482 tree op0_type = TREE_TYPE (op0);
3483 tree op1_type = TREE_TYPE (op1);
3485 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3487 error ("invalid operands in gimple comparison");
3488 return true;
3491 /* For comparisons we do not have the operations type as the
3492 effective type the comparison is carried out in. Instead
3493 we require that either the first operand is trivially
3494 convertible into the second, or the other way around.
3495 Because we special-case pointers to void we allow
3496 comparisons of pointers with the same mode as well. */
3497 if (!useless_type_conversion_p (op0_type, op1_type)
3498 && !useless_type_conversion_p (op1_type, op0_type)
3499 && (!POINTER_TYPE_P (op0_type)
3500 || !POINTER_TYPE_P (op1_type)
3501 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3503 error ("mismatching comparison operand types");
3504 debug_generic_expr (op0_type);
3505 debug_generic_expr (op1_type);
3506 return true;
3509 /* The resulting type of a comparison may be an effective boolean type. */
3510 if (INTEGRAL_TYPE_P (type)
3511 && (TREE_CODE (type) == BOOLEAN_TYPE
3512 || TYPE_PRECISION (type) == 1))
3514 if ((TREE_CODE (op0_type) == VECTOR_TYPE
3515 || TREE_CODE (op1_type) == VECTOR_TYPE)
3516 && code != EQ_EXPR && code != NE_EXPR
3517 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3518 && !VECTOR_INTEGER_TYPE_P (op0_type))
3520 error ("unsupported operation or type for vector comparison"
3521 " returning a boolean");
3522 debug_generic_expr (op0_type);
3523 debug_generic_expr (op1_type);
3524 return true;
3527 /* Or a boolean vector type with the same element count
3528 as the comparison operand types. */
3529 else if (TREE_CODE (type) == VECTOR_TYPE
3530 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3532 if (TREE_CODE (op0_type) != VECTOR_TYPE
3533 || TREE_CODE (op1_type) != VECTOR_TYPE)
3535 error ("non-vector operands in vector comparison");
3536 debug_generic_expr (op0_type);
3537 debug_generic_expr (op1_type);
3538 return true;
3541 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type),
3542 TYPE_VECTOR_SUBPARTS (op0_type)))
3544 error ("invalid vector comparison resulting type");
3545 debug_generic_expr (type);
3546 return true;
3549 else
3551 error ("bogus comparison result type");
3552 debug_generic_expr (type);
3553 return true;
3556 return false;
3559 /* Verify a gimple assignment statement STMT with an unary rhs.
3560 Returns true if anything is wrong. */
3562 static bool
3563 verify_gimple_assign_unary (gassign *stmt)
3565 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3566 tree lhs = gimple_assign_lhs (stmt);
3567 tree lhs_type = TREE_TYPE (lhs);
3568 tree rhs1 = gimple_assign_rhs1 (stmt);
3569 tree rhs1_type = TREE_TYPE (rhs1);
3571 if (!is_gimple_reg (lhs))
3573 error ("non-register as LHS of unary operation");
3574 return true;
3577 if (!is_gimple_val (rhs1))
3579 error ("invalid operand in unary operation");
3580 return true;
3583 /* First handle conversions. */
3584 switch (rhs_code)
3586 CASE_CONVERT:
3588 /* Allow conversions from pointer type to integral type only if
3589 there is no sign or zero extension involved.
3590 For targets were the precision of ptrofftype doesn't match that
3591 of pointers we need to allow arbitrary conversions to ptrofftype. */
3592 if ((POINTER_TYPE_P (lhs_type)
3593 && INTEGRAL_TYPE_P (rhs1_type))
3594 || (POINTER_TYPE_P (rhs1_type)
3595 && INTEGRAL_TYPE_P (lhs_type)
3596 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3597 || ptrofftype_p (lhs_type))))
3598 return false;
3600 /* Allow conversion from integral to offset type and vice versa. */
3601 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3602 && INTEGRAL_TYPE_P (rhs1_type))
3603 || (INTEGRAL_TYPE_P (lhs_type)
3604 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3605 return false;
3607 /* Otherwise assert we are converting between types of the
3608 same kind. */
3609 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3611 error ("invalid types in nop conversion");
3612 debug_generic_expr (lhs_type);
3613 debug_generic_expr (rhs1_type);
3614 return true;
3617 return false;
3620 case ADDR_SPACE_CONVERT_EXPR:
3622 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3623 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3624 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3626 error ("invalid types in address space conversion");
3627 debug_generic_expr (lhs_type);
3628 debug_generic_expr (rhs1_type);
3629 return true;
3632 return false;
3635 case FIXED_CONVERT_EXPR:
3637 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3638 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3640 error ("invalid types in fixed-point conversion");
3641 debug_generic_expr (lhs_type);
3642 debug_generic_expr (rhs1_type);
3643 return true;
3646 return false;
3649 case FLOAT_EXPR:
3651 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3652 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3653 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3655 error ("invalid types in conversion to floating point");
3656 debug_generic_expr (lhs_type);
3657 debug_generic_expr (rhs1_type);
3658 return true;
3661 return false;
3664 case FIX_TRUNC_EXPR:
3666 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3667 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3668 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3670 error ("invalid types in conversion to integer");
3671 debug_generic_expr (lhs_type);
3672 debug_generic_expr (rhs1_type);
3673 return true;
3676 return false;
3679 case VEC_UNPACK_HI_EXPR:
3680 case VEC_UNPACK_LO_EXPR:
3681 case VEC_UNPACK_FLOAT_HI_EXPR:
3682 case VEC_UNPACK_FLOAT_LO_EXPR:
3683 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
3684 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
3685 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3686 || TREE_CODE (lhs_type) != VECTOR_TYPE
3687 || (!INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3688 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type)))
3689 || (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3690 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3691 || ((rhs_code == VEC_UNPACK_HI_EXPR
3692 || rhs_code == VEC_UNPACK_LO_EXPR)
3693 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3694 != INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3695 || ((rhs_code == VEC_UNPACK_FLOAT_HI_EXPR
3696 || rhs_code == VEC_UNPACK_FLOAT_LO_EXPR)
3697 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3698 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))))
3699 || ((rhs_code == VEC_UNPACK_FIX_TRUNC_HI_EXPR
3700 || rhs_code == VEC_UNPACK_FIX_TRUNC_LO_EXPR)
3701 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3702 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type))))
3703 || (maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
3704 2 * GET_MODE_SIZE (element_mode (rhs1_type)))
3705 && (!VECTOR_BOOLEAN_TYPE_P (lhs_type)
3706 || !VECTOR_BOOLEAN_TYPE_P (rhs1_type)))
3707 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (lhs_type),
3708 TYPE_VECTOR_SUBPARTS (rhs1_type)))
3710 error ("type mismatch in vector unpack expression");
3711 debug_generic_expr (lhs_type);
3712 debug_generic_expr (rhs1_type);
3713 return true;
3716 return false;
3718 case NEGATE_EXPR:
3719 case ABS_EXPR:
3720 case BIT_NOT_EXPR:
3721 case PAREN_EXPR:
3722 case CONJ_EXPR:
3723 break;
3725 case VEC_DUPLICATE_EXPR:
3726 if (TREE_CODE (lhs_type) != VECTOR_TYPE
3727 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
3729 error ("vec_duplicate should be from a scalar to a like vector");
3730 debug_generic_expr (lhs_type);
3731 debug_generic_expr (rhs1_type);
3732 return true;
3734 return false;
3736 default:
3737 gcc_unreachable ();
3740 /* For the remaining codes assert there is no conversion involved. */
3741 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3743 error ("non-trivial conversion in unary operation");
3744 debug_generic_expr (lhs_type);
3745 debug_generic_expr (rhs1_type);
3746 return true;
3749 return false;
3752 /* Verify a gimple assignment statement STMT with a binary rhs.
3753 Returns true if anything is wrong. */
3755 static bool
3756 verify_gimple_assign_binary (gassign *stmt)
3758 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3759 tree lhs = gimple_assign_lhs (stmt);
3760 tree lhs_type = TREE_TYPE (lhs);
3761 tree rhs1 = gimple_assign_rhs1 (stmt);
3762 tree rhs1_type = TREE_TYPE (rhs1);
3763 tree rhs2 = gimple_assign_rhs2 (stmt);
3764 tree rhs2_type = TREE_TYPE (rhs2);
3766 if (!is_gimple_reg (lhs))
3768 error ("non-register as LHS of binary operation");
3769 return true;
3772 if (!is_gimple_val (rhs1)
3773 || !is_gimple_val (rhs2))
3775 error ("invalid operands in binary operation");
3776 return true;
3779 /* First handle operations that involve different types. */
3780 switch (rhs_code)
3782 case COMPLEX_EXPR:
3784 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3785 || !(INTEGRAL_TYPE_P (rhs1_type)
3786 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3787 || !(INTEGRAL_TYPE_P (rhs2_type)
3788 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3790 error ("type mismatch in complex expression");
3791 debug_generic_expr (lhs_type);
3792 debug_generic_expr (rhs1_type);
3793 debug_generic_expr (rhs2_type);
3794 return true;
3797 return false;
3800 case LSHIFT_EXPR:
3801 case RSHIFT_EXPR:
3802 case LROTATE_EXPR:
3803 case RROTATE_EXPR:
3805 /* Shifts and rotates are ok on integral types, fixed point
3806 types and integer vector types. */
3807 if ((!INTEGRAL_TYPE_P (rhs1_type)
3808 && !FIXED_POINT_TYPE_P (rhs1_type)
3809 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3810 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3811 || (!INTEGRAL_TYPE_P (rhs2_type)
3812 /* Vector shifts of vectors are also ok. */
3813 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3814 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3815 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3816 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3817 || !useless_type_conversion_p (lhs_type, rhs1_type))
3819 error ("type mismatch in shift expression");
3820 debug_generic_expr (lhs_type);
3821 debug_generic_expr (rhs1_type);
3822 debug_generic_expr (rhs2_type);
3823 return true;
3826 return false;
3829 case WIDEN_LSHIFT_EXPR:
3831 if (!INTEGRAL_TYPE_P (lhs_type)
3832 || !INTEGRAL_TYPE_P (rhs1_type)
3833 || TREE_CODE (rhs2) != INTEGER_CST
3834 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3836 error ("type mismatch in widening vector shift expression");
3837 debug_generic_expr (lhs_type);
3838 debug_generic_expr (rhs1_type);
3839 debug_generic_expr (rhs2_type);
3840 return true;
3843 return false;
3846 case VEC_WIDEN_LSHIFT_HI_EXPR:
3847 case VEC_WIDEN_LSHIFT_LO_EXPR:
3849 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3850 || TREE_CODE (lhs_type) != VECTOR_TYPE
3851 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3852 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3853 || TREE_CODE (rhs2) != INTEGER_CST
3854 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3855 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3857 error ("type mismatch in widening vector shift expression");
3858 debug_generic_expr (lhs_type);
3859 debug_generic_expr (rhs1_type);
3860 debug_generic_expr (rhs2_type);
3861 return true;
3864 return false;
3867 case PLUS_EXPR:
3868 case MINUS_EXPR:
3870 tree lhs_etype = lhs_type;
3871 tree rhs1_etype = rhs1_type;
3872 tree rhs2_etype = rhs2_type;
3873 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3875 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3876 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3878 error ("invalid non-vector operands to vector valued plus");
3879 return true;
3881 lhs_etype = TREE_TYPE (lhs_type);
3882 rhs1_etype = TREE_TYPE (rhs1_type);
3883 rhs2_etype = TREE_TYPE (rhs2_type);
3885 if (POINTER_TYPE_P (lhs_etype)
3886 || POINTER_TYPE_P (rhs1_etype)
3887 || POINTER_TYPE_P (rhs2_etype))
3889 error ("invalid (pointer) operands to plus/minus");
3890 return true;
3893 /* Continue with generic binary expression handling. */
3894 break;
3897 case POINTER_PLUS_EXPR:
3899 if (!POINTER_TYPE_P (rhs1_type)
3900 || !useless_type_conversion_p (lhs_type, rhs1_type)
3901 || !ptrofftype_p (rhs2_type))
3903 error ("type mismatch in pointer plus expression");
3904 debug_generic_stmt (lhs_type);
3905 debug_generic_stmt (rhs1_type);
3906 debug_generic_stmt (rhs2_type);
3907 return true;
3910 return false;
3913 case POINTER_DIFF_EXPR:
3915 if (!POINTER_TYPE_P (rhs1_type)
3916 || !POINTER_TYPE_P (rhs2_type)
3917 /* Because we special-case pointers to void we allow difference
3918 of arbitrary pointers with the same mode. */
3919 || TYPE_MODE (rhs1_type) != TYPE_MODE (rhs2_type)
3920 || TREE_CODE (lhs_type) != INTEGER_TYPE
3921 || TYPE_UNSIGNED (lhs_type)
3922 || TYPE_PRECISION (lhs_type) != TYPE_PRECISION (rhs1_type))
3924 error ("type mismatch in pointer diff expression");
3925 debug_generic_stmt (lhs_type);
3926 debug_generic_stmt (rhs1_type);
3927 debug_generic_stmt (rhs2_type);
3928 return true;
3931 return false;
3934 case TRUTH_ANDIF_EXPR:
3935 case TRUTH_ORIF_EXPR:
3936 case TRUTH_AND_EXPR:
3937 case TRUTH_OR_EXPR:
3938 case TRUTH_XOR_EXPR:
3940 gcc_unreachable ();
3942 case LT_EXPR:
3943 case LE_EXPR:
3944 case GT_EXPR:
3945 case GE_EXPR:
3946 case EQ_EXPR:
3947 case NE_EXPR:
3948 case UNORDERED_EXPR:
3949 case ORDERED_EXPR:
3950 case UNLT_EXPR:
3951 case UNLE_EXPR:
3952 case UNGT_EXPR:
3953 case UNGE_EXPR:
3954 case UNEQ_EXPR:
3955 case LTGT_EXPR:
3956 /* Comparisons are also binary, but the result type is not
3957 connected to the operand types. */
3958 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
3960 case WIDEN_MULT_EXPR:
3961 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3962 return true;
3963 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3964 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3966 case WIDEN_SUM_EXPR:
3968 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
3969 || TREE_CODE (lhs_type) != VECTOR_TYPE)
3970 && ((!INTEGRAL_TYPE_P (rhs1_type)
3971 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
3972 || (!INTEGRAL_TYPE_P (lhs_type)
3973 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
3974 || !useless_type_conversion_p (lhs_type, rhs2_type)
3975 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type)),
3976 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
3978 error ("type mismatch in widening sum reduction");
3979 debug_generic_expr (lhs_type);
3980 debug_generic_expr (rhs1_type);
3981 debug_generic_expr (rhs2_type);
3982 return true;
3984 return false;
3987 case VEC_WIDEN_MULT_HI_EXPR:
3988 case VEC_WIDEN_MULT_LO_EXPR:
3989 case VEC_WIDEN_MULT_EVEN_EXPR:
3990 case VEC_WIDEN_MULT_ODD_EXPR:
3992 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3993 || TREE_CODE (lhs_type) != VECTOR_TYPE
3994 || !types_compatible_p (rhs1_type, rhs2_type)
3995 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
3996 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
3998 error ("type mismatch in vector widening multiplication");
3999 debug_generic_expr (lhs_type);
4000 debug_generic_expr (rhs1_type);
4001 debug_generic_expr (rhs2_type);
4002 return true;
4004 return false;
4007 case VEC_PACK_TRUNC_EXPR:
4008 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4009 vector boolean types. */
4010 if (VECTOR_BOOLEAN_TYPE_P (lhs_type)
4011 && VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4012 && types_compatible_p (rhs1_type, rhs2_type)
4013 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type),
4014 2 * TYPE_VECTOR_SUBPARTS (rhs1_type)))
4015 return false;
4017 /* Fallthru. */
4018 case VEC_PACK_SAT_EXPR:
4019 case VEC_PACK_FIX_TRUNC_EXPR:
4021 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4022 || TREE_CODE (lhs_type) != VECTOR_TYPE
4023 || !((rhs_code == VEC_PACK_FIX_TRUNC_EXPR
4024 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
4025 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))
4026 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4027 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))))
4028 || !types_compatible_p (rhs1_type, rhs2_type)
4029 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
4030 2 * GET_MODE_SIZE (element_mode (lhs_type)))
4031 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type),
4032 TYPE_VECTOR_SUBPARTS (lhs_type)))
4034 error ("type mismatch in vector pack expression");
4035 debug_generic_expr (lhs_type);
4036 debug_generic_expr (rhs1_type);
4037 debug_generic_expr (rhs2_type);
4038 return true;
4041 return false;
4044 case VEC_PACK_FLOAT_EXPR:
4045 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4046 || TREE_CODE (lhs_type) != VECTOR_TYPE
4047 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4048 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type))
4049 || !types_compatible_p (rhs1_type, rhs2_type)
4050 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
4051 2 * GET_MODE_SIZE (element_mode (lhs_type)))
4052 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type),
4053 TYPE_VECTOR_SUBPARTS (lhs_type)))
4055 error ("type mismatch in vector pack expression");
4056 debug_generic_expr (lhs_type);
4057 debug_generic_expr (rhs1_type);
4058 debug_generic_expr (rhs2_type);
4059 return true;
4062 return false;
4064 case MULT_EXPR:
4065 case MULT_HIGHPART_EXPR:
4066 case TRUNC_DIV_EXPR:
4067 case CEIL_DIV_EXPR:
4068 case FLOOR_DIV_EXPR:
4069 case ROUND_DIV_EXPR:
4070 case TRUNC_MOD_EXPR:
4071 case CEIL_MOD_EXPR:
4072 case FLOOR_MOD_EXPR:
4073 case ROUND_MOD_EXPR:
4074 case RDIV_EXPR:
4075 case EXACT_DIV_EXPR:
4076 case MIN_EXPR:
4077 case MAX_EXPR:
4078 case BIT_IOR_EXPR:
4079 case BIT_XOR_EXPR:
4080 case BIT_AND_EXPR:
4081 /* Continue with generic binary expression handling. */
4082 break;
4084 case VEC_SERIES_EXPR:
4085 if (!useless_type_conversion_p (rhs1_type, rhs2_type))
4087 error ("type mismatch in series expression");
4088 debug_generic_expr (rhs1_type);
4089 debug_generic_expr (rhs2_type);
4090 return true;
4092 if (TREE_CODE (lhs_type) != VECTOR_TYPE
4093 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
4095 error ("vector type expected in series expression");
4096 debug_generic_expr (lhs_type);
4097 return true;
4099 return false;
4101 default:
4102 gcc_unreachable ();
4105 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4106 || !useless_type_conversion_p (lhs_type, rhs2_type))
4108 error ("type mismatch in binary expression");
4109 debug_generic_stmt (lhs_type);
4110 debug_generic_stmt (rhs1_type);
4111 debug_generic_stmt (rhs2_type);
4112 return true;
4115 return false;
4118 /* Verify a gimple assignment statement STMT with a ternary rhs.
4119 Returns true if anything is wrong. */
4121 static bool
4122 verify_gimple_assign_ternary (gassign *stmt)
4124 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4125 tree lhs = gimple_assign_lhs (stmt);
4126 tree lhs_type = TREE_TYPE (lhs);
4127 tree rhs1 = gimple_assign_rhs1 (stmt);
4128 tree rhs1_type = TREE_TYPE (rhs1);
4129 tree rhs2 = gimple_assign_rhs2 (stmt);
4130 tree rhs2_type = TREE_TYPE (rhs2);
4131 tree rhs3 = gimple_assign_rhs3 (stmt);
4132 tree rhs3_type = TREE_TYPE (rhs3);
4134 if (!is_gimple_reg (lhs))
4136 error ("non-register as LHS of ternary operation");
4137 return true;
4140 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
4141 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
4142 || !is_gimple_val (rhs2)
4143 || !is_gimple_val (rhs3))
4145 error ("invalid operands in ternary operation");
4146 return true;
4149 /* First handle operations that involve different types. */
4150 switch (rhs_code)
4152 case WIDEN_MULT_PLUS_EXPR:
4153 case WIDEN_MULT_MINUS_EXPR:
4154 if ((!INTEGRAL_TYPE_P (rhs1_type)
4155 && !FIXED_POINT_TYPE_P (rhs1_type))
4156 || !useless_type_conversion_p (rhs1_type, rhs2_type)
4157 || !useless_type_conversion_p (lhs_type, rhs3_type)
4158 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4159 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4161 error ("type mismatch in widening multiply-accumulate expression");
4162 debug_generic_expr (lhs_type);
4163 debug_generic_expr (rhs1_type);
4164 debug_generic_expr (rhs2_type);
4165 debug_generic_expr (rhs3_type);
4166 return true;
4168 break;
4170 case VEC_COND_EXPR:
4171 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4172 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4173 TYPE_VECTOR_SUBPARTS (lhs_type)))
4175 error ("the first argument of a VEC_COND_EXPR must be of a "
4176 "boolean vector type of the same number of elements "
4177 "as the result");
4178 debug_generic_expr (lhs_type);
4179 debug_generic_expr (rhs1_type);
4180 return true;
4182 /* Fallthrough. */
4183 case COND_EXPR:
4184 if (!is_gimple_val (rhs1)
4185 && verify_gimple_comparison (TREE_TYPE (rhs1),
4186 TREE_OPERAND (rhs1, 0),
4187 TREE_OPERAND (rhs1, 1),
4188 TREE_CODE (rhs1)))
4189 return true;
4190 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4191 || !useless_type_conversion_p (lhs_type, rhs3_type))
4193 error ("type mismatch in conditional expression");
4194 debug_generic_expr (lhs_type);
4195 debug_generic_expr (rhs2_type);
4196 debug_generic_expr (rhs3_type);
4197 return true;
4199 break;
4201 case VEC_PERM_EXPR:
4202 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4203 || !useless_type_conversion_p (lhs_type, rhs2_type))
4205 error ("type mismatch in vector permute expression");
4206 debug_generic_expr (lhs_type);
4207 debug_generic_expr (rhs1_type);
4208 debug_generic_expr (rhs2_type);
4209 debug_generic_expr (rhs3_type);
4210 return true;
4213 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4214 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4215 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4217 error ("vector types expected in vector permute expression");
4218 debug_generic_expr (lhs_type);
4219 debug_generic_expr (rhs1_type);
4220 debug_generic_expr (rhs2_type);
4221 debug_generic_expr (rhs3_type);
4222 return true;
4225 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4226 TYPE_VECTOR_SUBPARTS (rhs2_type))
4227 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type),
4228 TYPE_VECTOR_SUBPARTS (rhs3_type))
4229 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type),
4230 TYPE_VECTOR_SUBPARTS (lhs_type)))
4232 error ("vectors with different element number found "
4233 "in vector permute expression");
4234 debug_generic_expr (lhs_type);
4235 debug_generic_expr (rhs1_type);
4236 debug_generic_expr (rhs2_type);
4237 debug_generic_expr (rhs3_type);
4238 return true;
4241 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4242 || (TREE_CODE (rhs3) != VECTOR_CST
4243 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4244 (TREE_TYPE (rhs3_type)))
4245 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4246 (TREE_TYPE (rhs1_type))))))
4248 error ("invalid mask type in vector permute expression");
4249 debug_generic_expr (lhs_type);
4250 debug_generic_expr (rhs1_type);
4251 debug_generic_expr (rhs2_type);
4252 debug_generic_expr (rhs3_type);
4253 return true;
4256 return false;
4258 case SAD_EXPR:
4259 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4260 || !useless_type_conversion_p (lhs_type, rhs3_type)
4261 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4262 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4264 error ("type mismatch in sad expression");
4265 debug_generic_expr (lhs_type);
4266 debug_generic_expr (rhs1_type);
4267 debug_generic_expr (rhs2_type);
4268 debug_generic_expr (rhs3_type);
4269 return true;
4272 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4273 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4274 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4276 error ("vector types expected in sad expression");
4277 debug_generic_expr (lhs_type);
4278 debug_generic_expr (rhs1_type);
4279 debug_generic_expr (rhs2_type);
4280 debug_generic_expr (rhs3_type);
4281 return true;
4284 return false;
4286 case BIT_INSERT_EXPR:
4287 if (! useless_type_conversion_p (lhs_type, rhs1_type))
4289 error ("type mismatch in BIT_INSERT_EXPR");
4290 debug_generic_expr (lhs_type);
4291 debug_generic_expr (rhs1_type);
4292 return true;
4294 if (! ((INTEGRAL_TYPE_P (rhs1_type)
4295 && INTEGRAL_TYPE_P (rhs2_type))
4296 || (VECTOR_TYPE_P (rhs1_type)
4297 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))))
4299 error ("not allowed type combination in BIT_INSERT_EXPR");
4300 debug_generic_expr (rhs1_type);
4301 debug_generic_expr (rhs2_type);
4302 return true;
4304 if (! tree_fits_uhwi_p (rhs3)
4305 || ! types_compatible_p (bitsizetype, TREE_TYPE (rhs3))
4306 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
4308 error ("invalid position or size in BIT_INSERT_EXPR");
4309 return true;
4311 if (INTEGRAL_TYPE_P (rhs1_type))
4313 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4314 if (bitpos >= TYPE_PRECISION (rhs1_type)
4315 || (bitpos + TYPE_PRECISION (rhs2_type)
4316 > TYPE_PRECISION (rhs1_type)))
4318 error ("insertion out of range in BIT_INSERT_EXPR");
4319 return true;
4322 else if (VECTOR_TYPE_P (rhs1_type))
4324 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4325 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
4326 if (bitpos % bitsize != 0)
4328 error ("vector insertion not at element boundary");
4329 return true;
4332 return false;
4334 case DOT_PROD_EXPR:
4336 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4337 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4338 && ((!INTEGRAL_TYPE_P (rhs1_type)
4339 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4340 || (!INTEGRAL_TYPE_P (lhs_type)
4341 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4342 || !types_compatible_p (rhs1_type, rhs2_type)
4343 || !useless_type_conversion_p (lhs_type, rhs3_type)
4344 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type)),
4345 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4347 error ("type mismatch in dot product reduction");
4348 debug_generic_expr (lhs_type);
4349 debug_generic_expr (rhs1_type);
4350 debug_generic_expr (rhs2_type);
4351 return true;
4353 return false;
4356 case REALIGN_LOAD_EXPR:
4357 /* FIXME. */
4358 return false;
4360 default:
4361 gcc_unreachable ();
4363 return false;
4366 /* Verify a gimple assignment statement STMT with a single rhs.
4367 Returns true if anything is wrong. */
4369 static bool
4370 verify_gimple_assign_single (gassign *stmt)
4372 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4373 tree lhs = gimple_assign_lhs (stmt);
4374 tree lhs_type = TREE_TYPE (lhs);
4375 tree rhs1 = gimple_assign_rhs1 (stmt);
4376 tree rhs1_type = TREE_TYPE (rhs1);
4377 bool res = false;
4379 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4381 error ("non-trivial conversion at assignment");
4382 debug_generic_expr (lhs_type);
4383 debug_generic_expr (rhs1_type);
4384 return true;
4387 if (gimple_clobber_p (stmt)
4388 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4390 error ("non-decl/MEM_REF LHS in clobber statement");
4391 debug_generic_expr (lhs);
4392 return true;
4395 if (handled_component_p (lhs)
4396 || TREE_CODE (lhs) == MEM_REF
4397 || TREE_CODE (lhs) == TARGET_MEM_REF)
4398 res |= verify_types_in_gimple_reference (lhs, true);
4400 /* Special codes we cannot handle via their class. */
4401 switch (rhs_code)
4403 case ADDR_EXPR:
4405 tree op = TREE_OPERAND (rhs1, 0);
4406 if (!is_gimple_addressable (op))
4408 error ("invalid operand in unary expression");
4409 return true;
4412 /* Technically there is no longer a need for matching types, but
4413 gimple hygiene asks for this check. In LTO we can end up
4414 combining incompatible units and thus end up with addresses
4415 of globals that change their type to a common one. */
4416 if (!in_lto_p
4417 && !types_compatible_p (TREE_TYPE (op),
4418 TREE_TYPE (TREE_TYPE (rhs1)))
4419 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4420 TREE_TYPE (op)))
4422 error ("type mismatch in address expression");
4423 debug_generic_stmt (TREE_TYPE (rhs1));
4424 debug_generic_stmt (TREE_TYPE (op));
4425 return true;
4428 return (verify_address (rhs1, true)
4429 || verify_types_in_gimple_reference (op, true));
4432 /* tcc_reference */
4433 case INDIRECT_REF:
4434 error ("INDIRECT_REF in gimple IL");
4435 return true;
4437 case COMPONENT_REF:
4438 case BIT_FIELD_REF:
4439 case ARRAY_REF:
4440 case ARRAY_RANGE_REF:
4441 case VIEW_CONVERT_EXPR:
4442 case REALPART_EXPR:
4443 case IMAGPART_EXPR:
4444 case TARGET_MEM_REF:
4445 case MEM_REF:
4446 if (!is_gimple_reg (lhs)
4447 && is_gimple_reg_type (TREE_TYPE (lhs)))
4449 error ("invalid rhs for gimple memory store");
4450 debug_generic_stmt (lhs);
4451 debug_generic_stmt (rhs1);
4452 return true;
4454 return res || verify_types_in_gimple_reference (rhs1, false);
4456 /* tcc_constant */
4457 case SSA_NAME:
4458 case INTEGER_CST:
4459 case REAL_CST:
4460 case FIXED_CST:
4461 case COMPLEX_CST:
4462 case VECTOR_CST:
4463 case STRING_CST:
4464 return res;
4466 /* tcc_declaration */
4467 case CONST_DECL:
4468 return res;
4469 case VAR_DECL:
4470 case PARM_DECL:
4471 if (!is_gimple_reg (lhs)
4472 && !is_gimple_reg (rhs1)
4473 && is_gimple_reg_type (TREE_TYPE (lhs)))
4475 error ("invalid rhs for gimple memory store");
4476 debug_generic_stmt (lhs);
4477 debug_generic_stmt (rhs1);
4478 return true;
4480 return res;
4482 case CONSTRUCTOR:
4483 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4485 unsigned int i;
4486 tree elt_i, elt_v, elt_t = NULL_TREE;
4488 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4489 return res;
4490 /* For vector CONSTRUCTORs we require that either it is empty
4491 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4492 (then the element count must be correct to cover the whole
4493 outer vector and index must be NULL on all elements, or it is
4494 a CONSTRUCTOR of scalar elements, where we as an exception allow
4495 smaller number of elements (assuming zero filling) and
4496 consecutive indexes as compared to NULL indexes (such
4497 CONSTRUCTORs can appear in the IL from FEs). */
4498 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4500 if (elt_t == NULL_TREE)
4502 elt_t = TREE_TYPE (elt_v);
4503 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4505 tree elt_t = TREE_TYPE (elt_v);
4506 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4507 TREE_TYPE (elt_t)))
4509 error ("incorrect type of vector CONSTRUCTOR"
4510 " elements");
4511 debug_generic_stmt (rhs1);
4512 return true;
4514 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1)
4515 * TYPE_VECTOR_SUBPARTS (elt_t),
4516 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4518 error ("incorrect number of vector CONSTRUCTOR"
4519 " elements");
4520 debug_generic_stmt (rhs1);
4521 return true;
4524 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4525 elt_t))
4527 error ("incorrect type of vector CONSTRUCTOR elements");
4528 debug_generic_stmt (rhs1);
4529 return true;
4531 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1),
4532 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4534 error ("incorrect number of vector CONSTRUCTOR elements");
4535 debug_generic_stmt (rhs1);
4536 return true;
4539 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4541 error ("incorrect type of vector CONSTRUCTOR elements");
4542 debug_generic_stmt (rhs1);
4543 return true;
4545 if (elt_i != NULL_TREE
4546 && (TREE_CODE (elt_t) == VECTOR_TYPE
4547 || TREE_CODE (elt_i) != INTEGER_CST
4548 || compare_tree_int (elt_i, i) != 0))
4550 error ("vector CONSTRUCTOR with non-NULL element index");
4551 debug_generic_stmt (rhs1);
4552 return true;
4554 if (!is_gimple_val (elt_v))
4556 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4557 debug_generic_stmt (rhs1);
4558 return true;
4562 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4564 error ("non-vector CONSTRUCTOR with elements");
4565 debug_generic_stmt (rhs1);
4566 return true;
4568 return res;
4570 case ASSERT_EXPR:
4571 /* FIXME. */
4572 rhs1 = fold (ASSERT_EXPR_COND (rhs1));
4573 if (rhs1 == boolean_false_node)
4575 error ("ASSERT_EXPR with an always-false condition");
4576 debug_generic_stmt (rhs1);
4577 return true;
4579 break;
4581 case OBJ_TYPE_REF:
4582 case WITH_SIZE_EXPR:
4583 /* FIXME. */
4584 return res;
4586 default:;
4589 return res;
4592 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4593 is a problem, otherwise false. */
4595 static bool
4596 verify_gimple_assign (gassign *stmt)
4598 switch (gimple_assign_rhs_class (stmt))
4600 case GIMPLE_SINGLE_RHS:
4601 return verify_gimple_assign_single (stmt);
4603 case GIMPLE_UNARY_RHS:
4604 return verify_gimple_assign_unary (stmt);
4606 case GIMPLE_BINARY_RHS:
4607 return verify_gimple_assign_binary (stmt);
4609 case GIMPLE_TERNARY_RHS:
4610 return verify_gimple_assign_ternary (stmt);
4612 default:
4613 gcc_unreachable ();
4617 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4618 is a problem, otherwise false. */
4620 static bool
4621 verify_gimple_return (greturn *stmt)
4623 tree op = gimple_return_retval (stmt);
4624 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4626 /* We cannot test for present return values as we do not fix up missing
4627 return values from the original source. */
4628 if (op == NULL)
4629 return false;
4631 if (!is_gimple_val (op)
4632 && TREE_CODE (op) != RESULT_DECL)
4634 error ("invalid operand in return statement");
4635 debug_generic_stmt (op);
4636 return true;
4639 if ((TREE_CODE (op) == RESULT_DECL
4640 && DECL_BY_REFERENCE (op))
4641 || (TREE_CODE (op) == SSA_NAME
4642 && SSA_NAME_VAR (op)
4643 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4644 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4645 op = TREE_TYPE (op);
4647 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4649 error ("invalid conversion in return statement");
4650 debug_generic_stmt (restype);
4651 debug_generic_stmt (TREE_TYPE (op));
4652 return true;
4655 return false;
4659 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4660 is a problem, otherwise false. */
4662 static bool
4663 verify_gimple_goto (ggoto *stmt)
4665 tree dest = gimple_goto_dest (stmt);
4667 /* ??? We have two canonical forms of direct goto destinations, a
4668 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4669 if (TREE_CODE (dest) != LABEL_DECL
4670 && (!is_gimple_val (dest)
4671 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4673 error ("goto destination is neither a label nor a pointer");
4674 return true;
4677 return false;
4680 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4681 is a problem, otherwise false. */
4683 static bool
4684 verify_gimple_switch (gswitch *stmt)
4686 unsigned int i, n;
4687 tree elt, prev_upper_bound = NULL_TREE;
4688 tree index_type, elt_type = NULL_TREE;
4690 if (!is_gimple_val (gimple_switch_index (stmt)))
4692 error ("invalid operand to switch statement");
4693 debug_generic_stmt (gimple_switch_index (stmt));
4694 return true;
4697 index_type = TREE_TYPE (gimple_switch_index (stmt));
4698 if (! INTEGRAL_TYPE_P (index_type))
4700 error ("non-integral type switch statement");
4701 debug_generic_expr (index_type);
4702 return true;
4705 elt = gimple_switch_label (stmt, 0);
4706 if (CASE_LOW (elt) != NULL_TREE
4707 || CASE_HIGH (elt) != NULL_TREE
4708 || CASE_CHAIN (elt) != NULL_TREE)
4710 error ("invalid default case label in switch statement");
4711 debug_generic_expr (elt);
4712 return true;
4715 n = gimple_switch_num_labels (stmt);
4716 for (i = 1; i < n; i++)
4718 elt = gimple_switch_label (stmt, i);
4720 if (CASE_CHAIN (elt))
4722 error ("invalid CASE_CHAIN");
4723 debug_generic_expr (elt);
4724 return true;
4726 if (! CASE_LOW (elt))
4728 error ("invalid case label in switch statement");
4729 debug_generic_expr (elt);
4730 return true;
4732 if (CASE_HIGH (elt)
4733 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4735 error ("invalid case range in switch statement");
4736 debug_generic_expr (elt);
4737 return true;
4740 if (elt_type)
4742 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4743 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4745 error ("type mismatch for case label in switch statement");
4746 debug_generic_expr (elt);
4747 return true;
4750 else
4752 elt_type = TREE_TYPE (CASE_LOW (elt));
4753 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4755 error ("type precision mismatch in switch statement");
4756 return true;
4760 if (prev_upper_bound)
4762 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4764 error ("case labels not sorted in switch statement");
4765 return true;
4769 prev_upper_bound = CASE_HIGH (elt);
4770 if (! prev_upper_bound)
4771 prev_upper_bound = CASE_LOW (elt);
4774 return false;
4777 /* Verify a gimple debug statement STMT.
4778 Returns true if anything is wrong. */
4780 static bool
4781 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4783 /* There isn't much that could be wrong in a gimple debug stmt. A
4784 gimple debug bind stmt, for example, maps a tree, that's usually
4785 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4786 component or member of an aggregate type, to another tree, that
4787 can be an arbitrary expression. These stmts expand into debug
4788 insns, and are converted to debug notes by var-tracking.c. */
4789 return false;
4792 /* Verify a gimple label statement STMT.
4793 Returns true if anything is wrong. */
4795 static bool
4796 verify_gimple_label (glabel *stmt)
4798 tree decl = gimple_label_label (stmt);
4799 int uid;
4800 bool err = false;
4802 if (TREE_CODE (decl) != LABEL_DECL)
4803 return true;
4804 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4805 && DECL_CONTEXT (decl) != current_function_decl)
4807 error ("label's context is not the current function decl");
4808 err |= true;
4811 uid = LABEL_DECL_UID (decl);
4812 if (cfun->cfg
4813 && (uid == -1
4814 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4816 error ("incorrect entry in label_to_block_map");
4817 err |= true;
4820 uid = EH_LANDING_PAD_NR (decl);
4821 if (uid)
4823 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4824 if (decl != lp->post_landing_pad)
4826 error ("incorrect setting of landing pad number");
4827 err |= true;
4831 return err;
4834 /* Verify a gimple cond statement STMT.
4835 Returns true if anything is wrong. */
4837 static bool
4838 verify_gimple_cond (gcond *stmt)
4840 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4842 error ("invalid comparison code in gimple cond");
4843 return true;
4845 if (!(!gimple_cond_true_label (stmt)
4846 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4847 || !(!gimple_cond_false_label (stmt)
4848 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4850 error ("invalid labels in gimple cond");
4851 return true;
4854 return verify_gimple_comparison (boolean_type_node,
4855 gimple_cond_lhs (stmt),
4856 gimple_cond_rhs (stmt),
4857 gimple_cond_code (stmt));
4860 /* Verify the GIMPLE statement STMT. Returns true if there is an
4861 error, otherwise false. */
4863 static bool
4864 verify_gimple_stmt (gimple *stmt)
4866 switch (gimple_code (stmt))
4868 case GIMPLE_ASSIGN:
4869 return verify_gimple_assign (as_a <gassign *> (stmt));
4871 case GIMPLE_LABEL:
4872 return verify_gimple_label (as_a <glabel *> (stmt));
4874 case GIMPLE_CALL:
4875 return verify_gimple_call (as_a <gcall *> (stmt));
4877 case GIMPLE_COND:
4878 return verify_gimple_cond (as_a <gcond *> (stmt));
4880 case GIMPLE_GOTO:
4881 return verify_gimple_goto (as_a <ggoto *> (stmt));
4883 case GIMPLE_SWITCH:
4884 return verify_gimple_switch (as_a <gswitch *> (stmt));
4886 case GIMPLE_RETURN:
4887 return verify_gimple_return (as_a <greturn *> (stmt));
4889 case GIMPLE_ASM:
4890 return false;
4892 case GIMPLE_TRANSACTION:
4893 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
4895 /* Tuples that do not have tree operands. */
4896 case GIMPLE_NOP:
4897 case GIMPLE_PREDICT:
4898 case GIMPLE_RESX:
4899 case GIMPLE_EH_DISPATCH:
4900 case GIMPLE_EH_MUST_NOT_THROW:
4901 return false;
4903 CASE_GIMPLE_OMP:
4904 /* OpenMP directives are validated by the FE and never operated
4905 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4906 non-gimple expressions when the main index variable has had
4907 its address taken. This does not affect the loop itself
4908 because the header of an GIMPLE_OMP_FOR is merely used to determine
4909 how to setup the parallel iteration. */
4910 return false;
4912 case GIMPLE_DEBUG:
4913 return verify_gimple_debug (stmt);
4915 default:
4916 gcc_unreachable ();
4920 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4921 and false otherwise. */
4923 static bool
4924 verify_gimple_phi (gphi *phi)
4926 bool err = false;
4927 unsigned i;
4928 tree phi_result = gimple_phi_result (phi);
4929 bool virtual_p;
4931 if (!phi_result)
4933 error ("invalid PHI result");
4934 return true;
4937 virtual_p = virtual_operand_p (phi_result);
4938 if (TREE_CODE (phi_result) != SSA_NAME
4939 || (virtual_p
4940 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4942 error ("invalid PHI result");
4943 err = true;
4946 for (i = 0; i < gimple_phi_num_args (phi); i++)
4948 tree t = gimple_phi_arg_def (phi, i);
4950 if (!t)
4952 error ("missing PHI def");
4953 err |= true;
4954 continue;
4956 /* Addressable variables do have SSA_NAMEs but they
4957 are not considered gimple values. */
4958 else if ((TREE_CODE (t) == SSA_NAME
4959 && virtual_p != virtual_operand_p (t))
4960 || (virtual_p
4961 && (TREE_CODE (t) != SSA_NAME
4962 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4963 || (!virtual_p
4964 && !is_gimple_val (t)))
4966 error ("invalid PHI argument");
4967 debug_generic_expr (t);
4968 err |= true;
4970 #ifdef ENABLE_TYPES_CHECKING
4971 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4973 error ("incompatible types in PHI argument %u", i);
4974 debug_generic_stmt (TREE_TYPE (phi_result));
4975 debug_generic_stmt (TREE_TYPE (t));
4976 err |= true;
4978 #endif
4981 return err;
4984 /* Verify the GIMPLE statements inside the sequence STMTS. */
4986 static bool
4987 verify_gimple_in_seq_2 (gimple_seq stmts)
4989 gimple_stmt_iterator ittr;
4990 bool err = false;
4992 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4994 gimple *stmt = gsi_stmt (ittr);
4996 switch (gimple_code (stmt))
4998 case GIMPLE_BIND:
4999 err |= verify_gimple_in_seq_2 (
5000 gimple_bind_body (as_a <gbind *> (stmt)));
5001 break;
5003 case GIMPLE_TRY:
5004 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
5005 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
5006 break;
5008 case GIMPLE_EH_FILTER:
5009 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
5010 break;
5012 case GIMPLE_EH_ELSE:
5014 geh_else *eh_else = as_a <geh_else *> (stmt);
5015 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
5016 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
5018 break;
5020 case GIMPLE_CATCH:
5021 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
5022 as_a <gcatch *> (stmt)));
5023 break;
5025 case GIMPLE_TRANSACTION:
5026 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
5027 break;
5029 default:
5031 bool err2 = verify_gimple_stmt (stmt);
5032 if (err2)
5033 debug_gimple_stmt (stmt);
5034 err |= err2;
5039 return err;
5042 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5043 is a problem, otherwise false. */
5045 static bool
5046 verify_gimple_transaction (gtransaction *stmt)
5048 tree lab;
5050 lab = gimple_transaction_label_norm (stmt);
5051 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5052 return true;
5053 lab = gimple_transaction_label_uninst (stmt);
5054 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5055 return true;
5056 lab = gimple_transaction_label_over (stmt);
5057 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5058 return true;
5060 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
5064 /* Verify the GIMPLE statements inside the statement list STMTS. */
5066 DEBUG_FUNCTION void
5067 verify_gimple_in_seq (gimple_seq stmts)
5069 timevar_push (TV_TREE_STMT_VERIFY);
5070 if (verify_gimple_in_seq_2 (stmts))
5071 internal_error ("verify_gimple failed");
5072 timevar_pop (TV_TREE_STMT_VERIFY);
5075 /* Return true when the T can be shared. */
5077 static bool
5078 tree_node_can_be_shared (tree t)
5080 if (IS_TYPE_OR_DECL_P (t)
5081 || TREE_CODE (t) == SSA_NAME
5082 || TREE_CODE (t) == IDENTIFIER_NODE
5083 || TREE_CODE (t) == CASE_LABEL_EXPR
5084 || is_gimple_min_invariant (t))
5085 return true;
5087 if (t == error_mark_node)
5088 return true;
5090 return false;
5093 /* Called via walk_tree. Verify tree sharing. */
5095 static tree
5096 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
5098 hash_set<void *> *visited = (hash_set<void *> *) data;
5100 if (tree_node_can_be_shared (*tp))
5102 *walk_subtrees = false;
5103 return NULL;
5106 if (visited->add (*tp))
5107 return *tp;
5109 return NULL;
5112 /* Called via walk_gimple_stmt. Verify tree sharing. */
5114 static tree
5115 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
5117 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5118 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
5121 static bool eh_error_found;
5122 bool
5123 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
5124 hash_set<gimple *> *visited)
5126 if (!visited->contains (stmt))
5128 error ("dead STMT in EH table");
5129 debug_gimple_stmt (stmt);
5130 eh_error_found = true;
5132 return true;
5135 /* Verify if the location LOCs block is in BLOCKS. */
5137 static bool
5138 verify_location (hash_set<tree> *blocks, location_t loc)
5140 tree block = LOCATION_BLOCK (loc);
5141 if (block != NULL_TREE
5142 && !blocks->contains (block))
5144 error ("location references block not in block tree");
5145 return true;
5147 if (block != NULL_TREE)
5148 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
5149 return false;
5152 /* Called via walk_tree. Verify that expressions have no blocks. */
5154 static tree
5155 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
5157 if (!EXPR_P (*tp))
5159 *walk_subtrees = false;
5160 return NULL;
5163 location_t loc = EXPR_LOCATION (*tp);
5164 if (LOCATION_BLOCK (loc) != NULL)
5165 return *tp;
5167 return NULL;
5170 /* Called via walk_tree. Verify locations of expressions. */
5172 static tree
5173 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
5175 hash_set<tree> *blocks = (hash_set<tree> *) data;
5176 tree t = *tp;
5178 /* ??? This doesn't really belong here but there's no good place to
5179 stick this remainder of old verify_expr. */
5180 /* ??? This barfs on debug stmts which contain binds to vars with
5181 different function context. */
5182 #if 0
5183 if (VAR_P (t)
5184 || TREE_CODE (t) == PARM_DECL
5185 || TREE_CODE (t) == RESULT_DECL)
5187 tree context = decl_function_context (t);
5188 if (context != cfun->decl
5189 && !SCOPE_FILE_SCOPE_P (context)
5190 && !TREE_STATIC (t)
5191 && !DECL_EXTERNAL (t))
5193 error ("local declaration from a different function");
5194 return t;
5197 #endif
5199 if (VAR_P (t) && DECL_HAS_DEBUG_EXPR_P (t))
5201 tree x = DECL_DEBUG_EXPR (t);
5202 tree addr = walk_tree (&x, verify_expr_no_block, NULL, NULL);
5203 if (addr)
5204 return addr;
5206 if ((VAR_P (t)
5207 || TREE_CODE (t) == PARM_DECL
5208 || TREE_CODE (t) == RESULT_DECL)
5209 && DECL_HAS_VALUE_EXPR_P (t))
5211 tree x = DECL_VALUE_EXPR (t);
5212 tree addr = walk_tree (&x, verify_expr_no_block, NULL, NULL);
5213 if (addr)
5214 return addr;
5217 if (!EXPR_P (t))
5219 *walk_subtrees = false;
5220 return NULL;
5223 location_t loc = EXPR_LOCATION (t);
5224 if (verify_location (blocks, loc))
5225 return t;
5227 return NULL;
5230 /* Called via walk_gimple_op. Verify locations of expressions. */
5232 static tree
5233 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
5235 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5236 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
5239 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5241 static void
5242 collect_subblocks (hash_set<tree> *blocks, tree block)
5244 tree t;
5245 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
5247 blocks->add (t);
5248 collect_subblocks (blocks, t);
5252 /* Verify the GIMPLE statements in the CFG of FN. */
5254 DEBUG_FUNCTION void
5255 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
5257 basic_block bb;
5258 bool err = false;
5260 timevar_push (TV_TREE_STMT_VERIFY);
5261 hash_set<void *> visited;
5262 hash_set<gimple *> visited_throwing_stmts;
5264 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5265 hash_set<tree> blocks;
5266 if (DECL_INITIAL (fn->decl))
5268 blocks.add (DECL_INITIAL (fn->decl));
5269 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5272 FOR_EACH_BB_FN (bb, fn)
5274 gimple_stmt_iterator gsi;
5276 for (gphi_iterator gpi = gsi_start_phis (bb);
5277 !gsi_end_p (gpi);
5278 gsi_next (&gpi))
5280 gphi *phi = gpi.phi ();
5281 bool err2 = false;
5282 unsigned i;
5284 if (gimple_bb (phi) != bb)
5286 error ("gimple_bb (phi) is set to a wrong basic block");
5287 err2 = true;
5290 err2 |= verify_gimple_phi (phi);
5292 /* Only PHI arguments have locations. */
5293 if (gimple_location (phi) != UNKNOWN_LOCATION)
5295 error ("PHI node with location");
5296 err2 = true;
5299 for (i = 0; i < gimple_phi_num_args (phi); i++)
5301 tree arg = gimple_phi_arg_def (phi, i);
5302 tree addr = walk_tree (&arg, verify_node_sharing_1,
5303 &visited, NULL);
5304 if (addr)
5306 error ("incorrect sharing of tree nodes");
5307 debug_generic_expr (addr);
5308 err2 |= true;
5310 location_t loc = gimple_phi_arg_location (phi, i);
5311 if (virtual_operand_p (gimple_phi_result (phi))
5312 && loc != UNKNOWN_LOCATION)
5314 error ("virtual PHI with argument locations");
5315 err2 = true;
5317 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5318 if (addr)
5320 debug_generic_expr (addr);
5321 err2 = true;
5323 err2 |= verify_location (&blocks, loc);
5326 if (err2)
5327 debug_gimple_stmt (phi);
5328 err |= err2;
5331 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5333 gimple *stmt = gsi_stmt (gsi);
5334 bool err2 = false;
5335 struct walk_stmt_info wi;
5336 tree addr;
5337 int lp_nr;
5339 if (gimple_bb (stmt) != bb)
5341 error ("gimple_bb (stmt) is set to a wrong basic block");
5342 err2 = true;
5345 err2 |= verify_gimple_stmt (stmt);
5346 err2 |= verify_location (&blocks, gimple_location (stmt));
5348 memset (&wi, 0, sizeof (wi));
5349 wi.info = (void *) &visited;
5350 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5351 if (addr)
5353 error ("incorrect sharing of tree nodes");
5354 debug_generic_expr (addr);
5355 err2 |= true;
5358 memset (&wi, 0, sizeof (wi));
5359 wi.info = (void *) &blocks;
5360 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5361 if (addr)
5363 debug_generic_expr (addr);
5364 err2 |= true;
5367 /* If the statement is marked as part of an EH region, then it is
5368 expected that the statement could throw. Verify that when we
5369 have optimizations that simplify statements such that we prove
5370 that they cannot throw, that we update other data structures
5371 to match. */
5372 lp_nr = lookup_stmt_eh_lp (stmt);
5373 if (lp_nr != 0)
5374 visited_throwing_stmts.add (stmt);
5375 if (lp_nr > 0)
5377 if (!stmt_could_throw_p (stmt))
5379 if (verify_nothrow)
5381 error ("statement marked for throw, but doesn%'t");
5382 err2 |= true;
5385 else if (!gsi_one_before_end_p (gsi))
5387 error ("statement marked for throw in middle of block");
5388 err2 |= true;
5392 if (err2)
5393 debug_gimple_stmt (stmt);
5394 err |= err2;
5398 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5399 eh_error_found = false;
5400 if (eh_table)
5401 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5402 (&visited_throwing_stmts);
5404 if (err || eh_error_found)
5405 internal_error ("verify_gimple failed");
5407 verify_histograms ();
5408 timevar_pop (TV_TREE_STMT_VERIFY);
5412 /* Verifies that the flow information is OK. */
5414 static int
5415 gimple_verify_flow_info (void)
5417 int err = 0;
5418 basic_block bb;
5419 gimple_stmt_iterator gsi;
5420 gimple *stmt;
5421 edge e;
5422 edge_iterator ei;
5424 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5425 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5427 error ("ENTRY_BLOCK has IL associated with it");
5428 err = 1;
5431 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5432 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5434 error ("EXIT_BLOCK has IL associated with it");
5435 err = 1;
5438 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5439 if (e->flags & EDGE_FALLTHRU)
5441 error ("fallthru to exit from bb %d", e->src->index);
5442 err = 1;
5445 FOR_EACH_BB_FN (bb, cfun)
5447 bool found_ctrl_stmt = false;
5449 stmt = NULL;
5451 /* Skip labels on the start of basic block. */
5452 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5454 tree label;
5455 gimple *prev_stmt = stmt;
5457 stmt = gsi_stmt (gsi);
5459 if (gimple_code (stmt) != GIMPLE_LABEL)
5460 break;
5462 label = gimple_label_label (as_a <glabel *> (stmt));
5463 if (prev_stmt && DECL_NONLOCAL (label))
5465 error ("nonlocal label ");
5466 print_generic_expr (stderr, label);
5467 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5468 bb->index);
5469 err = 1;
5472 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5474 error ("EH landing pad label ");
5475 print_generic_expr (stderr, label);
5476 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5477 bb->index);
5478 err = 1;
5481 if (label_to_block (label) != bb)
5483 error ("label ");
5484 print_generic_expr (stderr, label);
5485 fprintf (stderr, " to block does not match in bb %d",
5486 bb->index);
5487 err = 1;
5490 if (decl_function_context (label) != current_function_decl)
5492 error ("label ");
5493 print_generic_expr (stderr, label);
5494 fprintf (stderr, " has incorrect context in bb %d",
5495 bb->index);
5496 err = 1;
5500 /* Verify that body of basic block BB is free of control flow. */
5501 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5503 gimple *stmt = gsi_stmt (gsi);
5505 if (found_ctrl_stmt)
5507 error ("control flow in the middle of basic block %d",
5508 bb->index);
5509 err = 1;
5512 if (stmt_ends_bb_p (stmt))
5513 found_ctrl_stmt = true;
5515 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5517 error ("label ");
5518 print_generic_expr (stderr, gimple_label_label (label_stmt));
5519 fprintf (stderr, " in the middle of basic block %d", bb->index);
5520 err = 1;
5524 gsi = gsi_last_nondebug_bb (bb);
5525 if (gsi_end_p (gsi))
5526 continue;
5528 stmt = gsi_stmt (gsi);
5530 if (gimple_code (stmt) == GIMPLE_LABEL)
5531 continue;
5533 err |= verify_eh_edges (stmt);
5535 if (is_ctrl_stmt (stmt))
5537 FOR_EACH_EDGE (e, ei, bb->succs)
5538 if (e->flags & EDGE_FALLTHRU)
5540 error ("fallthru edge after a control statement in bb %d",
5541 bb->index);
5542 err = 1;
5546 if (gimple_code (stmt) != GIMPLE_COND)
5548 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5549 after anything else but if statement. */
5550 FOR_EACH_EDGE (e, ei, bb->succs)
5551 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5553 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5554 bb->index);
5555 err = 1;
5559 switch (gimple_code (stmt))
5561 case GIMPLE_COND:
5563 edge true_edge;
5564 edge false_edge;
5566 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5568 if (!true_edge
5569 || !false_edge
5570 || !(true_edge->flags & EDGE_TRUE_VALUE)
5571 || !(false_edge->flags & EDGE_FALSE_VALUE)
5572 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5573 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5574 || EDGE_COUNT (bb->succs) >= 3)
5576 error ("wrong outgoing edge flags at end of bb %d",
5577 bb->index);
5578 err = 1;
5581 break;
5583 case GIMPLE_GOTO:
5584 if (simple_goto_p (stmt))
5586 error ("explicit goto at end of bb %d", bb->index);
5587 err = 1;
5589 else
5591 /* FIXME. We should double check that the labels in the
5592 destination blocks have their address taken. */
5593 FOR_EACH_EDGE (e, ei, bb->succs)
5594 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5595 | EDGE_FALSE_VALUE))
5596 || !(e->flags & EDGE_ABNORMAL))
5598 error ("wrong outgoing edge flags at end of bb %d",
5599 bb->index);
5600 err = 1;
5603 break;
5605 case GIMPLE_CALL:
5606 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5607 break;
5608 /* fallthru */
5609 case GIMPLE_RETURN:
5610 if (!single_succ_p (bb)
5611 || (single_succ_edge (bb)->flags
5612 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5613 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5615 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5616 err = 1;
5618 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5620 error ("return edge does not point to exit in bb %d",
5621 bb->index);
5622 err = 1;
5624 break;
5626 case GIMPLE_SWITCH:
5628 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5629 tree prev;
5630 edge e;
5631 size_t i, n;
5633 n = gimple_switch_num_labels (switch_stmt);
5635 /* Mark all the destination basic blocks. */
5636 for (i = 0; i < n; ++i)
5638 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5639 basic_block label_bb = label_to_block (lab);
5640 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5641 label_bb->aux = (void *)1;
5644 /* Verify that the case labels are sorted. */
5645 prev = gimple_switch_label (switch_stmt, 0);
5646 for (i = 1; i < n; ++i)
5648 tree c = gimple_switch_label (switch_stmt, i);
5649 if (!CASE_LOW (c))
5651 error ("found default case not at the start of "
5652 "case vector");
5653 err = 1;
5654 continue;
5656 if (CASE_LOW (prev)
5657 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5659 error ("case labels not sorted: ");
5660 print_generic_expr (stderr, prev);
5661 fprintf (stderr," is greater than ");
5662 print_generic_expr (stderr, c);
5663 fprintf (stderr," but comes before it.\n");
5664 err = 1;
5666 prev = c;
5668 /* VRP will remove the default case if it can prove it will
5669 never be executed. So do not verify there always exists
5670 a default case here. */
5672 FOR_EACH_EDGE (e, ei, bb->succs)
5674 if (!e->dest->aux)
5676 error ("extra outgoing edge %d->%d",
5677 bb->index, e->dest->index);
5678 err = 1;
5681 e->dest->aux = (void *)2;
5682 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5683 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5685 error ("wrong outgoing edge flags at end of bb %d",
5686 bb->index);
5687 err = 1;
5691 /* Check that we have all of them. */
5692 for (i = 0; i < n; ++i)
5694 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5695 basic_block label_bb = label_to_block (lab);
5697 if (label_bb->aux != (void *)2)
5699 error ("missing edge %i->%i", bb->index, label_bb->index);
5700 err = 1;
5704 FOR_EACH_EDGE (e, ei, bb->succs)
5705 e->dest->aux = (void *)0;
5707 break;
5709 case GIMPLE_EH_DISPATCH:
5710 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5711 break;
5713 default:
5714 break;
5718 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5719 verify_dominators (CDI_DOMINATORS);
5721 return err;
5725 /* Updates phi nodes after creating a forwarder block joined
5726 by edge FALLTHRU. */
5728 static void
5729 gimple_make_forwarder_block (edge fallthru)
5731 edge e;
5732 edge_iterator ei;
5733 basic_block dummy, bb;
5734 tree var;
5735 gphi_iterator gsi;
5737 dummy = fallthru->src;
5738 bb = fallthru->dest;
5740 if (single_pred_p (bb))
5741 return;
5743 /* If we redirected a branch we must create new PHI nodes at the
5744 start of BB. */
5745 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5747 gphi *phi, *new_phi;
5749 phi = gsi.phi ();
5750 var = gimple_phi_result (phi);
5751 new_phi = create_phi_node (var, bb);
5752 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5753 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5754 UNKNOWN_LOCATION);
5757 /* Add the arguments we have stored on edges. */
5758 FOR_EACH_EDGE (e, ei, bb->preds)
5760 if (e == fallthru)
5761 continue;
5763 flush_pending_stmts (e);
5768 /* Return a non-special label in the head of basic block BLOCK.
5769 Create one if it doesn't exist. */
5771 tree
5772 gimple_block_label (basic_block bb)
5774 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5775 bool first = true;
5776 tree label;
5777 glabel *stmt;
5779 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5781 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5782 if (!stmt)
5783 break;
5784 label = gimple_label_label (stmt);
5785 if (!DECL_NONLOCAL (label))
5787 if (!first)
5788 gsi_move_before (&i, &s);
5789 return label;
5793 label = create_artificial_label (UNKNOWN_LOCATION);
5794 stmt = gimple_build_label (label);
5795 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5796 return label;
5800 /* Attempt to perform edge redirection by replacing a possibly complex
5801 jump instruction by a goto or by removing the jump completely.
5802 This can apply only if all edges now point to the same block. The
5803 parameters and return values are equivalent to
5804 redirect_edge_and_branch. */
5806 static edge
5807 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5809 basic_block src = e->src;
5810 gimple_stmt_iterator i;
5811 gimple *stmt;
5813 /* We can replace or remove a complex jump only when we have exactly
5814 two edges. */
5815 if (EDGE_COUNT (src->succs) != 2
5816 /* Verify that all targets will be TARGET. Specifically, the
5817 edge that is not E must also go to TARGET. */
5818 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5819 return NULL;
5821 i = gsi_last_bb (src);
5822 if (gsi_end_p (i))
5823 return NULL;
5825 stmt = gsi_stmt (i);
5827 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5829 gsi_remove (&i, true);
5830 e = ssa_redirect_edge (e, target);
5831 e->flags = EDGE_FALLTHRU;
5832 return e;
5835 return NULL;
5839 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5840 edge representing the redirected branch. */
5842 static edge
5843 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5845 basic_block bb = e->src;
5846 gimple_stmt_iterator gsi;
5847 edge ret;
5848 gimple *stmt;
5850 if (e->flags & EDGE_ABNORMAL)
5851 return NULL;
5853 if (e->dest == dest)
5854 return NULL;
5856 if (e->flags & EDGE_EH)
5857 return redirect_eh_edge (e, dest);
5859 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5861 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5862 if (ret)
5863 return ret;
5866 gsi = gsi_last_nondebug_bb (bb);
5867 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5869 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5871 case GIMPLE_COND:
5872 /* For COND_EXPR, we only need to redirect the edge. */
5873 break;
5875 case GIMPLE_GOTO:
5876 /* No non-abnormal edges should lead from a non-simple goto, and
5877 simple ones should be represented implicitly. */
5878 gcc_unreachable ();
5880 case GIMPLE_SWITCH:
5882 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5883 tree label = gimple_block_label (dest);
5884 tree cases = get_cases_for_edge (e, switch_stmt);
5886 /* If we have a list of cases associated with E, then use it
5887 as it's a lot faster than walking the entire case vector. */
5888 if (cases)
5890 edge e2 = find_edge (e->src, dest);
5891 tree last, first;
5893 first = cases;
5894 while (cases)
5896 last = cases;
5897 CASE_LABEL (cases) = label;
5898 cases = CASE_CHAIN (cases);
5901 /* If there was already an edge in the CFG, then we need
5902 to move all the cases associated with E to E2. */
5903 if (e2)
5905 tree cases2 = get_cases_for_edge (e2, switch_stmt);
5907 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5908 CASE_CHAIN (cases2) = first;
5910 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5912 else
5914 size_t i, n = gimple_switch_num_labels (switch_stmt);
5916 for (i = 0; i < n; i++)
5918 tree elt = gimple_switch_label (switch_stmt, i);
5919 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5920 CASE_LABEL (elt) = label;
5924 break;
5926 case GIMPLE_ASM:
5928 gasm *asm_stmt = as_a <gasm *> (stmt);
5929 int i, n = gimple_asm_nlabels (asm_stmt);
5930 tree label = NULL;
5932 for (i = 0; i < n; ++i)
5934 tree cons = gimple_asm_label_op (asm_stmt, i);
5935 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5937 if (!label)
5938 label = gimple_block_label (dest);
5939 TREE_VALUE (cons) = label;
5943 /* If we didn't find any label matching the former edge in the
5944 asm labels, we must be redirecting the fallthrough
5945 edge. */
5946 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5948 break;
5950 case GIMPLE_RETURN:
5951 gsi_remove (&gsi, true);
5952 e->flags |= EDGE_FALLTHRU;
5953 break;
5955 case GIMPLE_OMP_RETURN:
5956 case GIMPLE_OMP_CONTINUE:
5957 case GIMPLE_OMP_SECTIONS_SWITCH:
5958 case GIMPLE_OMP_FOR:
5959 /* The edges from OMP constructs can be simply redirected. */
5960 break;
5962 case GIMPLE_EH_DISPATCH:
5963 if (!(e->flags & EDGE_FALLTHRU))
5964 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
5965 break;
5967 case GIMPLE_TRANSACTION:
5968 if (e->flags & EDGE_TM_ABORT)
5969 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
5970 gimple_block_label (dest));
5971 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
5972 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
5973 gimple_block_label (dest));
5974 else
5975 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
5976 gimple_block_label (dest));
5977 break;
5979 default:
5980 /* Otherwise it must be a fallthru edge, and we don't need to
5981 do anything besides redirecting it. */
5982 gcc_assert (e->flags & EDGE_FALLTHRU);
5983 break;
5986 /* Update/insert PHI nodes as necessary. */
5988 /* Now update the edges in the CFG. */
5989 e = ssa_redirect_edge (e, dest);
5991 return e;
5994 /* Returns true if it is possible to remove edge E by redirecting
5995 it to the destination of the other edge from E->src. */
5997 static bool
5998 gimple_can_remove_branch_p (const_edge e)
6000 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
6001 return false;
6003 return true;
6006 /* Simple wrapper, as we can always redirect fallthru edges. */
6008 static basic_block
6009 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
6011 e = gimple_redirect_edge_and_branch (e, dest);
6012 gcc_assert (e);
6014 return NULL;
6018 /* Splits basic block BB after statement STMT (but at least after the
6019 labels). If STMT is NULL, BB is split just after the labels. */
6021 static basic_block
6022 gimple_split_block (basic_block bb, void *stmt)
6024 gimple_stmt_iterator gsi;
6025 gimple_stmt_iterator gsi_tgt;
6026 gimple_seq list;
6027 basic_block new_bb;
6028 edge e;
6029 edge_iterator ei;
6031 new_bb = create_empty_bb (bb);
6033 /* Redirect the outgoing edges. */
6034 new_bb->succs = bb->succs;
6035 bb->succs = NULL;
6036 FOR_EACH_EDGE (e, ei, new_bb->succs)
6037 e->src = new_bb;
6039 /* Get a stmt iterator pointing to the first stmt to move. */
6040 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
6041 gsi = gsi_after_labels (bb);
6042 else
6044 gsi = gsi_for_stmt ((gimple *) stmt);
6045 gsi_next (&gsi);
6048 /* Move everything from GSI to the new basic block. */
6049 if (gsi_end_p (gsi))
6050 return new_bb;
6052 /* Split the statement list - avoid re-creating new containers as this
6053 brings ugly quadratic memory consumption in the inliner.
6054 (We are still quadratic since we need to update stmt BB pointers,
6055 sadly.) */
6056 gsi_split_seq_before (&gsi, &list);
6057 set_bb_seq (new_bb, list);
6058 for (gsi_tgt = gsi_start (list);
6059 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
6060 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
6062 return new_bb;
6066 /* Moves basic block BB after block AFTER. */
6068 static bool
6069 gimple_move_block_after (basic_block bb, basic_block after)
6071 if (bb->prev_bb == after)
6072 return true;
6074 unlink_block (bb);
6075 link_block (bb, after);
6077 return true;
6081 /* Return TRUE if block BB has no executable statements, otherwise return
6082 FALSE. */
6084 static bool
6085 gimple_empty_block_p (basic_block bb)
6087 /* BB must have no executable statements. */
6088 gimple_stmt_iterator gsi = gsi_after_labels (bb);
6089 if (phi_nodes (bb))
6090 return false;
6091 if (gsi_end_p (gsi))
6092 return true;
6093 if (is_gimple_debug (gsi_stmt (gsi)))
6094 gsi_next_nondebug (&gsi);
6095 return gsi_end_p (gsi);
6099 /* Split a basic block if it ends with a conditional branch and if the
6100 other part of the block is not empty. */
6102 static basic_block
6103 gimple_split_block_before_cond_jump (basic_block bb)
6105 gimple *last, *split_point;
6106 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6107 if (gsi_end_p (gsi))
6108 return NULL;
6109 last = gsi_stmt (gsi);
6110 if (gimple_code (last) != GIMPLE_COND
6111 && gimple_code (last) != GIMPLE_SWITCH)
6112 return NULL;
6113 gsi_prev (&gsi);
6114 split_point = gsi_stmt (gsi);
6115 return split_block (bb, split_point)->dest;
6119 /* Return true if basic_block can be duplicated. */
6121 static bool
6122 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
6124 return true;
6127 /* Create a duplicate of the basic block BB. NOTE: This does not
6128 preserve SSA form. */
6130 static basic_block
6131 gimple_duplicate_bb (basic_block bb)
6133 basic_block new_bb;
6134 gimple_stmt_iterator gsi_tgt;
6136 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6138 /* Copy the PHI nodes. We ignore PHI node arguments here because
6139 the incoming edges have not been setup yet. */
6140 for (gphi_iterator gpi = gsi_start_phis (bb);
6141 !gsi_end_p (gpi);
6142 gsi_next (&gpi))
6144 gphi *phi, *copy;
6145 phi = gpi.phi ();
6146 copy = create_phi_node (NULL_TREE, new_bb);
6147 create_new_def_for (gimple_phi_result (phi), copy,
6148 gimple_phi_result_ptr (copy));
6149 gimple_set_uid (copy, gimple_uid (phi));
6152 gsi_tgt = gsi_start_bb (new_bb);
6153 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
6154 !gsi_end_p (gsi);
6155 gsi_next (&gsi))
6157 def_operand_p def_p;
6158 ssa_op_iter op_iter;
6159 tree lhs;
6160 gimple *stmt, *copy;
6162 stmt = gsi_stmt (gsi);
6163 if (gimple_code (stmt) == GIMPLE_LABEL)
6164 continue;
6166 /* Don't duplicate label debug stmts. */
6167 if (gimple_debug_bind_p (stmt)
6168 && TREE_CODE (gimple_debug_bind_get_var (stmt))
6169 == LABEL_DECL)
6170 continue;
6172 /* Create a new copy of STMT and duplicate STMT's virtual
6173 operands. */
6174 copy = gimple_copy (stmt);
6175 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
6177 maybe_duplicate_eh_stmt (copy, stmt);
6178 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
6180 /* When copying around a stmt writing into a local non-user
6181 aggregate, make sure it won't share stack slot with other
6182 vars. */
6183 lhs = gimple_get_lhs (stmt);
6184 if (lhs && TREE_CODE (lhs) != SSA_NAME)
6186 tree base = get_base_address (lhs);
6187 if (base
6188 && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL)
6189 && DECL_IGNORED_P (base)
6190 && !TREE_STATIC (base)
6191 && !DECL_EXTERNAL (base)
6192 && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base)))
6193 DECL_NONSHAREABLE (base) = 1;
6196 /* Create new names for all the definitions created by COPY and
6197 add replacement mappings for each new name. */
6198 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
6199 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6202 return new_bb;
6205 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6207 static void
6208 add_phi_args_after_copy_edge (edge e_copy)
6210 basic_block bb, bb_copy = e_copy->src, dest;
6211 edge e;
6212 edge_iterator ei;
6213 gphi *phi, *phi_copy;
6214 tree def;
6215 gphi_iterator psi, psi_copy;
6217 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
6218 return;
6220 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
6222 if (e_copy->dest->flags & BB_DUPLICATED)
6223 dest = get_bb_original (e_copy->dest);
6224 else
6225 dest = e_copy->dest;
6227 e = find_edge (bb, dest);
6228 if (!e)
6230 /* During loop unrolling the target of the latch edge is copied.
6231 In this case we are not looking for edge to dest, but to
6232 duplicated block whose original was dest. */
6233 FOR_EACH_EDGE (e, ei, bb->succs)
6235 if ((e->dest->flags & BB_DUPLICATED)
6236 && get_bb_original (e->dest) == dest)
6237 break;
6240 gcc_assert (e != NULL);
6243 for (psi = gsi_start_phis (e->dest),
6244 psi_copy = gsi_start_phis (e_copy->dest);
6245 !gsi_end_p (psi);
6246 gsi_next (&psi), gsi_next (&psi_copy))
6248 phi = psi.phi ();
6249 phi_copy = psi_copy.phi ();
6250 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6251 add_phi_arg (phi_copy, def, e_copy,
6252 gimple_phi_arg_location_from_edge (phi, e));
6257 /* Basic block BB_COPY was created by code duplication. Add phi node
6258 arguments for edges going out of BB_COPY. The blocks that were
6259 duplicated have BB_DUPLICATED set. */
6261 void
6262 add_phi_args_after_copy_bb (basic_block bb_copy)
6264 edge e_copy;
6265 edge_iterator ei;
6267 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6269 add_phi_args_after_copy_edge (e_copy);
6273 /* Blocks in REGION_COPY array of length N_REGION were created by
6274 duplication of basic blocks. Add phi node arguments for edges
6275 going from these blocks. If E_COPY is not NULL, also add
6276 phi node arguments for its destination.*/
6278 void
6279 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6280 edge e_copy)
6282 unsigned i;
6284 for (i = 0; i < n_region; i++)
6285 region_copy[i]->flags |= BB_DUPLICATED;
6287 for (i = 0; i < n_region; i++)
6288 add_phi_args_after_copy_bb (region_copy[i]);
6289 if (e_copy)
6290 add_phi_args_after_copy_edge (e_copy);
6292 for (i = 0; i < n_region; i++)
6293 region_copy[i]->flags &= ~BB_DUPLICATED;
6296 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6297 important exit edge EXIT. By important we mean that no SSA name defined
6298 inside region is live over the other exit edges of the region. All entry
6299 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6300 to the duplicate of the region. Dominance and loop information is
6301 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6302 UPDATE_DOMINANCE is false then we assume that the caller will update the
6303 dominance information after calling this function. The new basic
6304 blocks are stored to REGION_COPY in the same order as they had in REGION,
6305 provided that REGION_COPY is not NULL.
6306 The function returns false if it is unable to copy the region,
6307 true otherwise. */
6309 bool
6310 gimple_duplicate_sese_region (edge entry, edge exit,
6311 basic_block *region, unsigned n_region,
6312 basic_block *region_copy,
6313 bool update_dominance)
6315 unsigned i;
6316 bool free_region_copy = false, copying_header = false;
6317 struct loop *loop = entry->dest->loop_father;
6318 edge exit_copy;
6319 vec<basic_block> doms = vNULL;
6320 edge redirected;
6321 profile_count total_count = profile_count::uninitialized ();
6322 profile_count entry_count = profile_count::uninitialized ();
6324 if (!can_copy_bbs_p (region, n_region))
6325 return false;
6327 /* Some sanity checking. Note that we do not check for all possible
6328 missuses of the functions. I.e. if you ask to copy something weird,
6329 it will work, but the state of structures probably will not be
6330 correct. */
6331 for (i = 0; i < n_region; i++)
6333 /* We do not handle subloops, i.e. all the blocks must belong to the
6334 same loop. */
6335 if (region[i]->loop_father != loop)
6336 return false;
6338 if (region[i] != entry->dest
6339 && region[i] == loop->header)
6340 return false;
6343 /* In case the function is used for loop header copying (which is the primary
6344 use), ensure that EXIT and its copy will be new latch and entry edges. */
6345 if (loop->header == entry->dest)
6347 copying_header = true;
6349 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6350 return false;
6352 for (i = 0; i < n_region; i++)
6353 if (region[i] != exit->src
6354 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6355 return false;
6358 initialize_original_copy_tables ();
6360 if (copying_header)
6361 set_loop_copy (loop, loop_outer (loop));
6362 else
6363 set_loop_copy (loop, loop);
6365 if (!region_copy)
6367 region_copy = XNEWVEC (basic_block, n_region);
6368 free_region_copy = true;
6371 /* Record blocks outside the region that are dominated by something
6372 inside. */
6373 if (update_dominance)
6375 doms.create (0);
6376 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6379 if (entry->dest->count.initialized_p ())
6381 total_count = entry->dest->count;
6382 entry_count = entry->count ();
6383 /* Fix up corner cases, to avoid division by zero or creation of negative
6384 frequencies. */
6385 if (entry_count > total_count)
6386 entry_count = total_count;
6389 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6390 split_edge_bb_loc (entry), update_dominance);
6391 if (total_count.initialized_p () && entry_count.initialized_p ())
6393 scale_bbs_frequencies_profile_count (region, n_region,
6394 total_count - entry_count,
6395 total_count);
6396 scale_bbs_frequencies_profile_count (region_copy, n_region, entry_count,
6397 total_count);
6400 if (copying_header)
6402 loop->header = exit->dest;
6403 loop->latch = exit->src;
6406 /* Redirect the entry and add the phi node arguments. */
6407 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6408 gcc_assert (redirected != NULL);
6409 flush_pending_stmts (entry);
6411 /* Concerning updating of dominators: We must recount dominators
6412 for entry block and its copy. Anything that is outside of the
6413 region, but was dominated by something inside needs recounting as
6414 well. */
6415 if (update_dominance)
6417 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6418 doms.safe_push (get_bb_original (entry->dest));
6419 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6420 doms.release ();
6423 /* Add the other PHI node arguments. */
6424 add_phi_args_after_copy (region_copy, n_region, NULL);
6426 if (free_region_copy)
6427 free (region_copy);
6429 free_original_copy_tables ();
6430 return true;
6433 /* Checks if BB is part of the region defined by N_REGION BBS. */
6434 static bool
6435 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6437 unsigned int n;
6439 for (n = 0; n < n_region; n++)
6441 if (bb == bbs[n])
6442 return true;
6444 return false;
6447 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6448 are stored to REGION_COPY in the same order in that they appear
6449 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6450 the region, EXIT an exit from it. The condition guarding EXIT
6451 is moved to ENTRY. Returns true if duplication succeeds, false
6452 otherwise.
6454 For example,
6456 some_code;
6457 if (cond)
6459 else
6462 is transformed to
6464 if (cond)
6466 some_code;
6469 else
6471 some_code;
6476 bool
6477 gimple_duplicate_sese_tail (edge entry, edge exit,
6478 basic_block *region, unsigned n_region,
6479 basic_block *region_copy)
6481 unsigned i;
6482 bool free_region_copy = false;
6483 struct loop *loop = exit->dest->loop_father;
6484 struct loop *orig_loop = entry->dest->loop_father;
6485 basic_block switch_bb, entry_bb, nentry_bb;
6486 vec<basic_block> doms;
6487 profile_count total_count = profile_count::uninitialized (),
6488 exit_count = profile_count::uninitialized ();
6489 edge exits[2], nexits[2], e;
6490 gimple_stmt_iterator gsi;
6491 gimple *cond_stmt;
6492 edge sorig, snew;
6493 basic_block exit_bb;
6494 gphi_iterator psi;
6495 gphi *phi;
6496 tree def;
6497 struct loop *target, *aloop, *cloop;
6499 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6500 exits[0] = exit;
6501 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6503 if (!can_copy_bbs_p (region, n_region))
6504 return false;
6506 initialize_original_copy_tables ();
6507 set_loop_copy (orig_loop, loop);
6509 target= loop;
6510 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6512 if (bb_part_of_region_p (aloop->header, region, n_region))
6514 cloop = duplicate_loop (aloop, target);
6515 duplicate_subloops (aloop, cloop);
6519 if (!region_copy)
6521 region_copy = XNEWVEC (basic_block, n_region);
6522 free_region_copy = true;
6525 gcc_assert (!need_ssa_update_p (cfun));
6527 /* Record blocks outside the region that are dominated by something
6528 inside. */
6529 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6531 total_count = exit->src->count;
6532 exit_count = exit->count ();
6533 /* Fix up corner cases, to avoid division by zero or creation of negative
6534 frequencies. */
6535 if (exit_count > total_count)
6536 exit_count = total_count;
6538 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6539 split_edge_bb_loc (exit), true);
6540 if (total_count.initialized_p () && exit_count.initialized_p ())
6542 scale_bbs_frequencies_profile_count (region, n_region,
6543 total_count - exit_count,
6544 total_count);
6545 scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count,
6546 total_count);
6549 /* Create the switch block, and put the exit condition to it. */
6550 entry_bb = entry->dest;
6551 nentry_bb = get_bb_copy (entry_bb);
6552 if (!last_stmt (entry->src)
6553 || !stmt_ends_bb_p (last_stmt (entry->src)))
6554 switch_bb = entry->src;
6555 else
6556 switch_bb = split_edge (entry);
6557 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6559 gsi = gsi_last_bb (switch_bb);
6560 cond_stmt = last_stmt (exit->src);
6561 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6562 cond_stmt = gimple_copy (cond_stmt);
6564 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6566 sorig = single_succ_edge (switch_bb);
6567 sorig->flags = exits[1]->flags;
6568 sorig->probability = exits[1]->probability;
6569 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6570 snew->probability = exits[0]->probability;
6573 /* Register the new edge from SWITCH_BB in loop exit lists. */
6574 rescan_loop_exit (snew, true, false);
6576 /* Add the PHI node arguments. */
6577 add_phi_args_after_copy (region_copy, n_region, snew);
6579 /* Get rid of now superfluous conditions and associated edges (and phi node
6580 arguments). */
6581 exit_bb = exit->dest;
6583 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6584 PENDING_STMT (e) = NULL;
6586 /* The latch of ORIG_LOOP was copied, and so was the backedge
6587 to the original header. We redirect this backedge to EXIT_BB. */
6588 for (i = 0; i < n_region; i++)
6589 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6591 gcc_assert (single_succ_edge (region_copy[i]));
6592 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6593 PENDING_STMT (e) = NULL;
6594 for (psi = gsi_start_phis (exit_bb);
6595 !gsi_end_p (psi);
6596 gsi_next (&psi))
6598 phi = psi.phi ();
6599 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6600 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6603 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6604 PENDING_STMT (e) = NULL;
6606 /* Anything that is outside of the region, but was dominated by something
6607 inside needs to update dominance info. */
6608 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6609 doms.release ();
6610 /* Update the SSA web. */
6611 update_ssa (TODO_update_ssa);
6613 if (free_region_copy)
6614 free (region_copy);
6616 free_original_copy_tables ();
6617 return true;
6620 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6621 adding blocks when the dominator traversal reaches EXIT. This
6622 function silently assumes that ENTRY strictly dominates EXIT. */
6624 void
6625 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6626 vec<basic_block> *bbs_p)
6628 basic_block son;
6630 for (son = first_dom_son (CDI_DOMINATORS, entry);
6631 son;
6632 son = next_dom_son (CDI_DOMINATORS, son))
6634 bbs_p->safe_push (son);
6635 if (son != exit)
6636 gather_blocks_in_sese_region (son, exit, bbs_p);
6640 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6641 The duplicates are recorded in VARS_MAP. */
6643 static void
6644 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6645 tree to_context)
6647 tree t = *tp, new_t;
6648 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6650 if (DECL_CONTEXT (t) == to_context)
6651 return;
6653 bool existed;
6654 tree &loc = vars_map->get_or_insert (t, &existed);
6656 if (!existed)
6658 if (SSA_VAR_P (t))
6660 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6661 add_local_decl (f, new_t);
6663 else
6665 gcc_assert (TREE_CODE (t) == CONST_DECL);
6666 new_t = copy_node (t);
6668 DECL_CONTEXT (new_t) = to_context;
6670 loc = new_t;
6672 else
6673 new_t = loc;
6675 *tp = new_t;
6679 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6680 VARS_MAP maps old ssa names and var_decls to the new ones. */
6682 static tree
6683 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6684 tree to_context)
6686 tree new_name;
6688 gcc_assert (!virtual_operand_p (name));
6690 tree *loc = vars_map->get (name);
6692 if (!loc)
6694 tree decl = SSA_NAME_VAR (name);
6695 if (decl)
6697 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6698 replace_by_duplicate_decl (&decl, vars_map, to_context);
6699 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6700 decl, SSA_NAME_DEF_STMT (name));
6702 else
6703 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6704 name, SSA_NAME_DEF_STMT (name));
6706 /* Now that we've used the def stmt to define new_name, make sure it
6707 doesn't define name anymore. */
6708 SSA_NAME_DEF_STMT (name) = NULL;
6710 vars_map->put (name, new_name);
6712 else
6713 new_name = *loc;
6715 return new_name;
6718 struct move_stmt_d
6720 tree orig_block;
6721 tree new_block;
6722 tree from_context;
6723 tree to_context;
6724 hash_map<tree, tree> *vars_map;
6725 htab_t new_label_map;
6726 hash_map<void *, void *> *eh_map;
6727 bool remap_decls_p;
6730 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6731 contained in *TP if it has been ORIG_BLOCK previously and change the
6732 DECL_CONTEXT of every local variable referenced in *TP. */
6734 static tree
6735 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6737 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6738 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6739 tree t = *tp;
6741 if (EXPR_P (t))
6743 tree block = TREE_BLOCK (t);
6744 if (block == NULL_TREE)
6746 else if (block == p->orig_block
6747 || p->orig_block == NULL_TREE)
6748 TREE_SET_BLOCK (t, p->new_block);
6749 else if (flag_checking)
6751 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6752 block = BLOCK_SUPERCONTEXT (block);
6753 gcc_assert (block == p->orig_block);
6756 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6758 if (TREE_CODE (t) == SSA_NAME)
6759 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6760 else if (TREE_CODE (t) == PARM_DECL
6761 && gimple_in_ssa_p (cfun))
6762 *tp = *(p->vars_map->get (t));
6763 else if (TREE_CODE (t) == LABEL_DECL)
6765 if (p->new_label_map)
6767 struct tree_map in, *out;
6768 in.base.from = t;
6769 out = (struct tree_map *)
6770 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6771 if (out)
6772 *tp = t = out->to;
6775 /* For FORCED_LABELs we can end up with references from other
6776 functions if some SESE regions are outlined. It is UB to
6777 jump in between them, but they could be used just for printing
6778 addresses etc. In that case, DECL_CONTEXT on the label should
6779 be the function containing the glabel stmt with that LABEL_DECL,
6780 rather than whatever function a reference to the label was seen
6781 last time. */
6782 if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t))
6783 DECL_CONTEXT (t) = p->to_context;
6785 else if (p->remap_decls_p)
6787 /* Replace T with its duplicate. T should no longer appear in the
6788 parent function, so this looks wasteful; however, it may appear
6789 in referenced_vars, and more importantly, as virtual operands of
6790 statements, and in alias lists of other variables. It would be
6791 quite difficult to expunge it from all those places. ??? It might
6792 suffice to do this for addressable variables. */
6793 if ((VAR_P (t) && !is_global_var (t))
6794 || TREE_CODE (t) == CONST_DECL)
6795 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6797 *walk_subtrees = 0;
6799 else if (TYPE_P (t))
6800 *walk_subtrees = 0;
6802 return NULL_TREE;
6805 /* Helper for move_stmt_r. Given an EH region number for the source
6806 function, map that to the duplicate EH regio number in the dest. */
6808 static int
6809 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6811 eh_region old_r, new_r;
6813 old_r = get_eh_region_from_number (old_nr);
6814 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6816 return new_r->index;
6819 /* Similar, but operate on INTEGER_CSTs. */
6821 static tree
6822 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6824 int old_nr, new_nr;
6826 old_nr = tree_to_shwi (old_t_nr);
6827 new_nr = move_stmt_eh_region_nr (old_nr, p);
6829 return build_int_cst (integer_type_node, new_nr);
6832 /* Like move_stmt_op, but for gimple statements.
6834 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6835 contained in the current statement in *GSI_P and change the
6836 DECL_CONTEXT of every local variable referenced in the current
6837 statement. */
6839 static tree
6840 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6841 struct walk_stmt_info *wi)
6843 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6844 gimple *stmt = gsi_stmt (*gsi_p);
6845 tree block = gimple_block (stmt);
6847 if (block == p->orig_block
6848 || (p->orig_block == NULL_TREE
6849 && block != NULL_TREE))
6850 gimple_set_block (stmt, p->new_block);
6852 switch (gimple_code (stmt))
6854 case GIMPLE_CALL:
6855 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6857 tree r, fndecl = gimple_call_fndecl (stmt);
6858 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6859 switch (DECL_FUNCTION_CODE (fndecl))
6861 case BUILT_IN_EH_COPY_VALUES:
6862 r = gimple_call_arg (stmt, 1);
6863 r = move_stmt_eh_region_tree_nr (r, p);
6864 gimple_call_set_arg (stmt, 1, r);
6865 /* FALLTHRU */
6867 case BUILT_IN_EH_POINTER:
6868 case BUILT_IN_EH_FILTER:
6869 r = gimple_call_arg (stmt, 0);
6870 r = move_stmt_eh_region_tree_nr (r, p);
6871 gimple_call_set_arg (stmt, 0, r);
6872 break;
6874 default:
6875 break;
6878 break;
6880 case GIMPLE_RESX:
6882 gresx *resx_stmt = as_a <gresx *> (stmt);
6883 int r = gimple_resx_region (resx_stmt);
6884 r = move_stmt_eh_region_nr (r, p);
6885 gimple_resx_set_region (resx_stmt, r);
6887 break;
6889 case GIMPLE_EH_DISPATCH:
6891 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
6892 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
6893 r = move_stmt_eh_region_nr (r, p);
6894 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
6896 break;
6898 case GIMPLE_OMP_RETURN:
6899 case GIMPLE_OMP_CONTINUE:
6900 break;
6902 case GIMPLE_LABEL:
6904 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
6905 so that such labels can be referenced from other regions.
6906 Make sure to update it when seeing a GIMPLE_LABEL though,
6907 that is the owner of the label. */
6908 walk_gimple_op (stmt, move_stmt_op, wi);
6909 *handled_ops_p = true;
6910 tree label = gimple_label_label (as_a <glabel *> (stmt));
6911 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
6912 DECL_CONTEXT (label) = p->to_context;
6914 break;
6916 default:
6917 if (is_gimple_omp (stmt))
6919 /* Do not remap variables inside OMP directives. Variables
6920 referenced in clauses and directive header belong to the
6921 parent function and should not be moved into the child
6922 function. */
6923 bool save_remap_decls_p = p->remap_decls_p;
6924 p->remap_decls_p = false;
6925 *handled_ops_p = true;
6927 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6928 move_stmt_op, wi);
6930 p->remap_decls_p = save_remap_decls_p;
6932 break;
6935 return NULL_TREE;
6938 /* Move basic block BB from function CFUN to function DEST_FN. The
6939 block is moved out of the original linked list and placed after
6940 block AFTER in the new list. Also, the block is removed from the
6941 original array of blocks and placed in DEST_FN's array of blocks.
6942 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6943 updated to reflect the moved edges.
6945 The local variables are remapped to new instances, VARS_MAP is used
6946 to record the mapping. */
6948 static void
6949 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6950 basic_block after, bool update_edge_count_p,
6951 struct move_stmt_d *d)
6953 struct control_flow_graph *cfg;
6954 edge_iterator ei;
6955 edge e;
6956 gimple_stmt_iterator si;
6957 unsigned old_len, new_len;
6959 /* Remove BB from dominance structures. */
6960 delete_from_dominance_info (CDI_DOMINATORS, bb);
6962 /* Move BB from its current loop to the copy in the new function. */
6963 if (current_loops)
6965 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6966 if (new_loop)
6967 bb->loop_father = new_loop;
6970 /* Link BB to the new linked list. */
6971 move_block_after (bb, after);
6973 /* Update the edge count in the corresponding flowgraphs. */
6974 if (update_edge_count_p)
6975 FOR_EACH_EDGE (e, ei, bb->succs)
6977 cfun->cfg->x_n_edges--;
6978 dest_cfun->cfg->x_n_edges++;
6981 /* Remove BB from the original basic block array. */
6982 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6983 cfun->cfg->x_n_basic_blocks--;
6985 /* Grow DEST_CFUN's basic block array if needed. */
6986 cfg = dest_cfun->cfg;
6987 cfg->x_n_basic_blocks++;
6988 if (bb->index >= cfg->x_last_basic_block)
6989 cfg->x_last_basic_block = bb->index + 1;
6991 old_len = vec_safe_length (cfg->x_basic_block_info);
6992 if ((unsigned) cfg->x_last_basic_block >= old_len)
6994 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6995 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6998 (*cfg->x_basic_block_info)[bb->index] = bb;
7000 /* Remap the variables in phi nodes. */
7001 for (gphi_iterator psi = gsi_start_phis (bb);
7002 !gsi_end_p (psi); )
7004 gphi *phi = psi.phi ();
7005 use_operand_p use;
7006 tree op = PHI_RESULT (phi);
7007 ssa_op_iter oi;
7008 unsigned i;
7010 if (virtual_operand_p (op))
7012 /* Remove the phi nodes for virtual operands (alias analysis will be
7013 run for the new function, anyway). */
7014 remove_phi_node (&psi, true);
7015 continue;
7018 SET_PHI_RESULT (phi,
7019 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7020 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
7022 op = USE_FROM_PTR (use);
7023 if (TREE_CODE (op) == SSA_NAME)
7024 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7027 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
7029 location_t locus = gimple_phi_arg_location (phi, i);
7030 tree block = LOCATION_BLOCK (locus);
7032 if (locus == UNKNOWN_LOCATION)
7033 continue;
7034 if (d->orig_block == NULL_TREE || block == d->orig_block)
7036 locus = set_block (locus, d->new_block);
7037 gimple_phi_arg_set_location (phi, i, locus);
7041 gsi_next (&psi);
7044 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7046 gimple *stmt = gsi_stmt (si);
7047 struct walk_stmt_info wi;
7049 memset (&wi, 0, sizeof (wi));
7050 wi.info = d;
7051 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
7053 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
7055 tree label = gimple_label_label (label_stmt);
7056 int uid = LABEL_DECL_UID (label);
7058 gcc_assert (uid > -1);
7060 old_len = vec_safe_length (cfg->x_label_to_block_map);
7061 if (old_len <= (unsigned) uid)
7063 new_len = 3 * uid / 2 + 1;
7064 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
7067 (*cfg->x_label_to_block_map)[uid] = bb;
7068 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
7070 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
7072 if (uid >= dest_cfun->cfg->last_label_uid)
7073 dest_cfun->cfg->last_label_uid = uid + 1;
7076 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
7077 remove_stmt_from_eh_lp_fn (cfun, stmt);
7079 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
7080 gimple_remove_stmt_histograms (cfun, stmt);
7082 /* We cannot leave any operands allocated from the operand caches of
7083 the current function. */
7084 free_stmt_operands (cfun, stmt);
7085 push_cfun (dest_cfun);
7086 update_stmt (stmt);
7087 pop_cfun ();
7090 FOR_EACH_EDGE (e, ei, bb->succs)
7091 if (e->goto_locus != UNKNOWN_LOCATION)
7093 tree block = LOCATION_BLOCK (e->goto_locus);
7094 if (d->orig_block == NULL_TREE
7095 || block == d->orig_block)
7096 e->goto_locus = set_block (e->goto_locus, d->new_block);
7100 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7101 the outermost EH region. Use REGION as the incoming base EH region. */
7103 static eh_region
7104 find_outermost_region_in_block (struct function *src_cfun,
7105 basic_block bb, eh_region region)
7107 gimple_stmt_iterator si;
7109 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7111 gimple *stmt = gsi_stmt (si);
7112 eh_region stmt_region;
7113 int lp_nr;
7115 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
7116 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
7117 if (stmt_region)
7119 if (region == NULL)
7120 region = stmt_region;
7121 else if (stmt_region != region)
7123 region = eh_region_outermost (src_cfun, stmt_region, region);
7124 gcc_assert (region != NULL);
7129 return region;
7132 static tree
7133 new_label_mapper (tree decl, void *data)
7135 htab_t hash = (htab_t) data;
7136 struct tree_map *m;
7137 void **slot;
7139 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
7141 m = XNEW (struct tree_map);
7142 m->hash = DECL_UID (decl);
7143 m->base.from = decl;
7144 m->to = create_artificial_label (UNKNOWN_LOCATION);
7145 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
7146 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
7147 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
7149 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
7150 gcc_assert (*slot == NULL);
7152 *slot = m;
7154 return m->to;
7157 /* Tree walker to replace the decls used inside value expressions by
7158 duplicates. */
7160 static tree
7161 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
7163 struct replace_decls_d *rd = (struct replace_decls_d *)data;
7165 switch (TREE_CODE (*tp))
7167 case VAR_DECL:
7168 case PARM_DECL:
7169 case RESULT_DECL:
7170 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
7171 break;
7172 default:
7173 break;
7176 if (IS_TYPE_OR_DECL_P (*tp))
7177 *walk_subtrees = false;
7179 return NULL;
7182 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7183 subblocks. */
7185 static void
7186 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
7187 tree to_context)
7189 tree *tp, t;
7191 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
7193 t = *tp;
7194 if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL)
7195 continue;
7196 replace_by_duplicate_decl (&t, vars_map, to_context);
7197 if (t != *tp)
7199 if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp))
7201 tree x = DECL_VALUE_EXPR (*tp);
7202 struct replace_decls_d rd = { vars_map, to_context };
7203 unshare_expr (x);
7204 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
7205 SET_DECL_VALUE_EXPR (t, x);
7206 DECL_HAS_VALUE_EXPR_P (t) = 1;
7208 DECL_CHAIN (t) = DECL_CHAIN (*tp);
7209 *tp = t;
7213 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
7214 replace_block_vars_by_duplicates (block, vars_map, to_context);
7217 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7218 from FN1 to FN2. */
7220 static void
7221 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7222 struct loop *loop)
7224 /* Discard it from the old loop array. */
7225 (*get_loops (fn1))[loop->num] = NULL;
7227 /* Place it in the new loop array, assigning it a new number. */
7228 loop->num = number_of_loops (fn2);
7229 vec_safe_push (loops_for_fn (fn2)->larray, loop);
7231 /* Recurse to children. */
7232 for (loop = loop->inner; loop; loop = loop->next)
7233 fixup_loop_arrays_after_move (fn1, fn2, loop);
7236 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7237 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7239 DEBUG_FUNCTION void
7240 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7242 basic_block bb;
7243 edge_iterator ei;
7244 edge e;
7245 bitmap bbs = BITMAP_ALLOC (NULL);
7246 int i;
7248 gcc_assert (entry != NULL);
7249 gcc_assert (entry != exit);
7250 gcc_assert (bbs_p != NULL);
7252 gcc_assert (bbs_p->length () > 0);
7254 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7255 bitmap_set_bit (bbs, bb->index);
7257 gcc_assert (bitmap_bit_p (bbs, entry->index));
7258 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7260 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7262 if (bb == entry)
7264 gcc_assert (single_pred_p (entry));
7265 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7267 else
7268 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7270 e = ei_edge (ei);
7271 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7274 if (bb == exit)
7276 gcc_assert (single_succ_p (exit));
7277 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7279 else
7280 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7282 e = ei_edge (ei);
7283 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7287 BITMAP_FREE (bbs);
7290 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7292 bool
7293 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7295 bitmap release_names = (bitmap)data;
7297 if (TREE_CODE (from) != SSA_NAME)
7298 return true;
7300 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7301 return true;
7304 /* Return LOOP_DIST_ALIAS call if present in BB. */
7306 static gimple *
7307 find_loop_dist_alias (basic_block bb)
7309 gimple *g = last_stmt (bb);
7310 if (g == NULL || gimple_code (g) != GIMPLE_COND)
7311 return NULL;
7313 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7314 gsi_prev (&gsi);
7315 if (gsi_end_p (gsi))
7316 return NULL;
7318 g = gsi_stmt (gsi);
7319 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS))
7320 return g;
7321 return NULL;
7324 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7325 to VALUE and update any immediate uses of it's LHS. */
7327 void
7328 fold_loop_internal_call (gimple *g, tree value)
7330 tree lhs = gimple_call_lhs (g);
7331 use_operand_p use_p;
7332 imm_use_iterator iter;
7333 gimple *use_stmt;
7334 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7336 update_call_from_tree (&gsi, value);
7337 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7339 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7340 SET_USE (use_p, value);
7341 update_stmt (use_stmt);
7345 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7346 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7347 single basic block in the original CFG and the new basic block is
7348 returned. DEST_CFUN must not have a CFG yet.
7350 Note that the region need not be a pure SESE region. Blocks inside
7351 the region may contain calls to abort/exit. The only restriction
7352 is that ENTRY_BB should be the only entry point and it must
7353 dominate EXIT_BB.
7355 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7356 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7357 to the new function.
7359 All local variables referenced in the region are assumed to be in
7360 the corresponding BLOCK_VARS and unexpanded variable lists
7361 associated with DEST_CFUN.
7363 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7364 reimplement move_sese_region_to_fn by duplicating the region rather than
7365 moving it. */
7367 basic_block
7368 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7369 basic_block exit_bb, tree orig_block)
7371 vec<basic_block> bbs, dom_bbs;
7372 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7373 basic_block after, bb, *entry_pred, *exit_succ, abb;
7374 struct function *saved_cfun = cfun;
7375 int *entry_flag, *exit_flag;
7376 profile_probability *entry_prob, *exit_prob;
7377 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7378 edge e;
7379 edge_iterator ei;
7380 htab_t new_label_map;
7381 hash_map<void *, void *> *eh_map;
7382 struct loop *loop = entry_bb->loop_father;
7383 struct loop *loop0 = get_loop (saved_cfun, 0);
7384 struct move_stmt_d d;
7386 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7387 region. */
7388 gcc_assert (entry_bb != exit_bb
7389 && (!exit_bb
7390 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7392 /* Collect all the blocks in the region. Manually add ENTRY_BB
7393 because it won't be added by dfs_enumerate_from. */
7394 bbs.create (0);
7395 bbs.safe_push (entry_bb);
7396 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7398 if (flag_checking)
7399 verify_sese (entry_bb, exit_bb, &bbs);
7401 /* The blocks that used to be dominated by something in BBS will now be
7402 dominated by the new block. */
7403 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7404 bbs.address (),
7405 bbs.length ());
7407 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7408 the predecessor edges to ENTRY_BB and the successor edges to
7409 EXIT_BB so that we can re-attach them to the new basic block that
7410 will replace the region. */
7411 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7412 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7413 entry_flag = XNEWVEC (int, num_entry_edges);
7414 entry_prob = XNEWVEC (profile_probability, num_entry_edges);
7415 i = 0;
7416 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7418 entry_prob[i] = e->probability;
7419 entry_flag[i] = e->flags;
7420 entry_pred[i++] = e->src;
7421 remove_edge (e);
7424 if (exit_bb)
7426 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7427 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7428 exit_flag = XNEWVEC (int, num_exit_edges);
7429 exit_prob = XNEWVEC (profile_probability, num_exit_edges);
7430 i = 0;
7431 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7433 exit_prob[i] = e->probability;
7434 exit_flag[i] = e->flags;
7435 exit_succ[i++] = e->dest;
7436 remove_edge (e);
7439 else
7441 num_exit_edges = 0;
7442 exit_succ = NULL;
7443 exit_flag = NULL;
7444 exit_prob = NULL;
7447 /* Switch context to the child function to initialize DEST_FN's CFG. */
7448 gcc_assert (dest_cfun->cfg == NULL);
7449 push_cfun (dest_cfun);
7451 init_empty_tree_cfg ();
7453 /* Initialize EH information for the new function. */
7454 eh_map = NULL;
7455 new_label_map = NULL;
7456 if (saved_cfun->eh)
7458 eh_region region = NULL;
7460 FOR_EACH_VEC_ELT (bbs, i, bb)
7461 region = find_outermost_region_in_block (saved_cfun, bb, region);
7463 init_eh_for_function ();
7464 if (region != NULL)
7466 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7467 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7468 new_label_mapper, new_label_map);
7472 /* Initialize an empty loop tree. */
7473 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7474 init_loops_structure (dest_cfun, loops, 1);
7475 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7476 set_loops_for_fn (dest_cfun, loops);
7478 vec<loop_p, va_gc> *larray = get_loops (saved_cfun)->copy ();
7480 /* Move the outlined loop tree part. */
7481 num_nodes = bbs.length ();
7482 FOR_EACH_VEC_ELT (bbs, i, bb)
7484 if (bb->loop_father->header == bb)
7486 struct loop *this_loop = bb->loop_father;
7487 struct loop *outer = loop_outer (this_loop);
7488 if (outer == loop
7489 /* If the SESE region contains some bbs ending with
7490 a noreturn call, those are considered to belong
7491 to the outermost loop in saved_cfun, rather than
7492 the entry_bb's loop_father. */
7493 || outer == loop0)
7495 if (outer != loop)
7496 num_nodes -= this_loop->num_nodes;
7497 flow_loop_tree_node_remove (bb->loop_father);
7498 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7499 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7502 else if (bb->loop_father == loop0 && loop0 != loop)
7503 num_nodes--;
7505 /* Remove loop exits from the outlined region. */
7506 if (loops_for_fn (saved_cfun)->exits)
7507 FOR_EACH_EDGE (e, ei, bb->succs)
7509 struct loops *l = loops_for_fn (saved_cfun);
7510 loop_exit **slot
7511 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7512 NO_INSERT);
7513 if (slot)
7514 l->exits->clear_slot (slot);
7518 /* Adjust the number of blocks in the tree root of the outlined part. */
7519 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7521 /* Setup a mapping to be used by move_block_to_fn. */
7522 loop->aux = current_loops->tree_root;
7523 loop0->aux = current_loops->tree_root;
7525 /* Fix up orig_loop_num. If the block referenced in it has been moved
7526 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7527 struct loop *dloop;
7528 signed char *moved_orig_loop_num = NULL;
7529 FOR_EACH_LOOP_FN (dest_cfun, dloop, 0)
7530 if (dloop->orig_loop_num)
7532 if (moved_orig_loop_num == NULL)
7533 moved_orig_loop_num
7534 = XCNEWVEC (signed char, vec_safe_length (larray));
7535 if ((*larray)[dloop->orig_loop_num] != NULL
7536 && get_loop (saved_cfun, dloop->orig_loop_num) == NULL)
7538 if (moved_orig_loop_num[dloop->orig_loop_num] >= 0
7539 && moved_orig_loop_num[dloop->orig_loop_num] < 2)
7540 moved_orig_loop_num[dloop->orig_loop_num]++;
7541 dloop->orig_loop_num = (*larray)[dloop->orig_loop_num]->num;
7543 else
7545 moved_orig_loop_num[dloop->orig_loop_num] = -1;
7546 dloop->orig_loop_num = 0;
7549 pop_cfun ();
7551 if (moved_orig_loop_num)
7553 FOR_EACH_VEC_ELT (bbs, i, bb)
7555 gimple *g = find_loop_dist_alias (bb);
7556 if (g == NULL)
7557 continue;
7559 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7560 gcc_assert (orig_loop_num
7561 && (unsigned) orig_loop_num < vec_safe_length (larray));
7562 if (moved_orig_loop_num[orig_loop_num] == 2)
7564 /* If we have moved both loops with this orig_loop_num into
7565 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7566 too, update the first argument. */
7567 gcc_assert ((*larray)[dloop->orig_loop_num] != NULL
7568 && (get_loop (saved_cfun, dloop->orig_loop_num)
7569 == NULL));
7570 tree t = build_int_cst (integer_type_node,
7571 (*larray)[dloop->orig_loop_num]->num);
7572 gimple_call_set_arg (g, 0, t);
7573 update_stmt (g);
7574 /* Make sure the following loop will not update it. */
7575 moved_orig_loop_num[orig_loop_num] = 0;
7577 else
7578 /* Otherwise at least one of the loops stayed in saved_cfun.
7579 Remove the LOOP_DIST_ALIAS call. */
7580 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7582 FOR_EACH_BB_FN (bb, saved_cfun)
7584 gimple *g = find_loop_dist_alias (bb);
7585 if (g == NULL)
7586 continue;
7587 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7588 gcc_assert (orig_loop_num
7589 && (unsigned) orig_loop_num < vec_safe_length (larray));
7590 if (moved_orig_loop_num[orig_loop_num])
7591 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7592 of the corresponding loops was moved, remove it. */
7593 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7595 XDELETEVEC (moved_orig_loop_num);
7597 ggc_free (larray);
7599 /* Move blocks from BBS into DEST_CFUN. */
7600 gcc_assert (bbs.length () >= 2);
7601 after = dest_cfun->cfg->x_entry_block_ptr;
7602 hash_map<tree, tree> vars_map;
7604 memset (&d, 0, sizeof (d));
7605 d.orig_block = orig_block;
7606 d.new_block = DECL_INITIAL (dest_cfun->decl);
7607 d.from_context = cfun->decl;
7608 d.to_context = dest_cfun->decl;
7609 d.vars_map = &vars_map;
7610 d.new_label_map = new_label_map;
7611 d.eh_map = eh_map;
7612 d.remap_decls_p = true;
7614 if (gimple_in_ssa_p (cfun))
7615 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7617 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7618 set_ssa_default_def (dest_cfun, arg, narg);
7619 vars_map.put (arg, narg);
7622 FOR_EACH_VEC_ELT (bbs, i, bb)
7624 /* No need to update edge counts on the last block. It has
7625 already been updated earlier when we detached the region from
7626 the original CFG. */
7627 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7628 after = bb;
7631 loop->aux = NULL;
7632 loop0->aux = NULL;
7633 /* Loop sizes are no longer correct, fix them up. */
7634 loop->num_nodes -= num_nodes;
7635 for (struct loop *outer = loop_outer (loop);
7636 outer; outer = loop_outer (outer))
7637 outer->num_nodes -= num_nodes;
7638 loop0->num_nodes -= bbs.length () - num_nodes;
7640 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7642 struct loop *aloop;
7643 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7644 if (aloop != NULL)
7646 if (aloop->simduid)
7648 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7649 d.to_context);
7650 dest_cfun->has_simduid_loops = true;
7652 if (aloop->force_vectorize)
7653 dest_cfun->has_force_vectorize_loops = true;
7657 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7658 if (orig_block)
7660 tree block;
7661 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7662 == NULL_TREE);
7663 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7664 = BLOCK_SUBBLOCKS (orig_block);
7665 for (block = BLOCK_SUBBLOCKS (orig_block);
7666 block; block = BLOCK_CHAIN (block))
7667 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7668 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7671 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7672 &vars_map, dest_cfun->decl);
7674 if (new_label_map)
7675 htab_delete (new_label_map);
7676 if (eh_map)
7677 delete eh_map;
7679 if (gimple_in_ssa_p (cfun))
7681 /* We need to release ssa-names in a defined order, so first find them,
7682 and then iterate in ascending version order. */
7683 bitmap release_names = BITMAP_ALLOC (NULL);
7684 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7685 bitmap_iterator bi;
7686 unsigned i;
7687 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7688 release_ssa_name (ssa_name (i));
7689 BITMAP_FREE (release_names);
7692 /* Rewire the entry and exit blocks. The successor to the entry
7693 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7694 the child function. Similarly, the predecessor of DEST_FN's
7695 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7696 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7697 various CFG manipulation function get to the right CFG.
7699 FIXME, this is silly. The CFG ought to become a parameter to
7700 these helpers. */
7701 push_cfun (dest_cfun);
7702 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = entry_bb->count;
7703 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7704 if (exit_bb)
7706 make_single_succ_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7707 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = exit_bb->count;
7709 else
7710 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = profile_count::zero ();
7711 pop_cfun ();
7713 /* Back in the original function, the SESE region has disappeared,
7714 create a new basic block in its place. */
7715 bb = create_empty_bb (entry_pred[0]);
7716 if (current_loops)
7717 add_bb_to_loop (bb, loop);
7718 for (i = 0; i < num_entry_edges; i++)
7720 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7721 e->probability = entry_prob[i];
7724 for (i = 0; i < num_exit_edges; i++)
7726 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7727 e->probability = exit_prob[i];
7730 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7731 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7732 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7733 dom_bbs.release ();
7735 if (exit_bb)
7737 free (exit_prob);
7738 free (exit_flag);
7739 free (exit_succ);
7741 free (entry_prob);
7742 free (entry_flag);
7743 free (entry_pred);
7744 bbs.release ();
7746 return bb;
7749 /* Dump default def DEF to file FILE using FLAGS and indentation
7750 SPC. */
7752 static void
7753 dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags)
7755 for (int i = 0; i < spc; ++i)
7756 fprintf (file, " ");
7757 dump_ssaname_info_to_file (file, def, spc);
7759 print_generic_expr (file, TREE_TYPE (def), flags);
7760 fprintf (file, " ");
7761 print_generic_expr (file, def, flags);
7762 fprintf (file, " = ");
7763 print_generic_expr (file, SSA_NAME_VAR (def), flags);
7764 fprintf (file, ";\n");
7767 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7769 static void
7770 print_no_sanitize_attr_value (FILE *file, tree value)
7772 unsigned int flags = tree_to_uhwi (value);
7773 bool first = true;
7774 for (int i = 0; sanitizer_opts[i].name != NULL; ++i)
7776 if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag)
7778 if (!first)
7779 fprintf (file, " | ");
7780 fprintf (file, "%s", sanitizer_opts[i].name);
7781 first = false;
7786 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7789 void
7790 dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags)
7792 tree arg, var, old_current_fndecl = current_function_decl;
7793 struct function *dsf;
7794 bool ignore_topmost_bind = false, any_var = false;
7795 basic_block bb;
7796 tree chain;
7797 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7798 && decl_is_tm_clone (fndecl));
7799 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7801 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
7803 fprintf (file, "__attribute__((");
7805 bool first = true;
7806 tree chain;
7807 for (chain = DECL_ATTRIBUTES (fndecl); chain;
7808 first = false, chain = TREE_CHAIN (chain))
7810 if (!first)
7811 fprintf (file, ", ");
7813 tree name = get_attribute_name (chain);
7814 print_generic_expr (file, name, dump_flags);
7815 if (TREE_VALUE (chain) != NULL_TREE)
7817 fprintf (file, " (");
7819 if (strstr (IDENTIFIER_POINTER (name), "no_sanitize"))
7820 print_no_sanitize_attr_value (file, TREE_VALUE (chain));
7821 else
7822 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
7823 fprintf (file, ")");
7827 fprintf (file, "))\n");
7830 current_function_decl = fndecl;
7831 if (flags & TDF_GIMPLE)
7833 print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)),
7834 dump_flags | TDF_SLIM);
7835 fprintf (file, " __GIMPLE ()\n%s (", function_name (fun));
7837 else
7838 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7840 arg = DECL_ARGUMENTS (fndecl);
7841 while (arg)
7843 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7844 fprintf (file, " ");
7845 print_generic_expr (file, arg, dump_flags);
7846 if (DECL_CHAIN (arg))
7847 fprintf (file, ", ");
7848 arg = DECL_CHAIN (arg);
7850 fprintf (file, ")\n");
7852 dsf = DECL_STRUCT_FUNCTION (fndecl);
7853 if (dsf && (flags & TDF_EH))
7854 dump_eh_tree (file, dsf);
7856 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7858 dump_node (fndecl, TDF_SLIM | flags, file);
7859 current_function_decl = old_current_fndecl;
7860 return;
7863 /* When GIMPLE is lowered, the variables are no longer available in
7864 BIND_EXPRs, so display them separately. */
7865 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7867 unsigned ix;
7868 ignore_topmost_bind = true;
7870 fprintf (file, "{\n");
7871 if (gimple_in_ssa_p (fun)
7872 && (flags & TDF_ALIAS))
7874 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
7875 arg = DECL_CHAIN (arg))
7877 tree def = ssa_default_def (fun, arg);
7878 if (def)
7879 dump_default_def (file, def, 2, flags);
7882 tree res = DECL_RESULT (fun->decl);
7883 if (res != NULL_TREE
7884 && DECL_BY_REFERENCE (res))
7886 tree def = ssa_default_def (fun, res);
7887 if (def)
7888 dump_default_def (file, def, 2, flags);
7891 tree static_chain = fun->static_chain_decl;
7892 if (static_chain != NULL_TREE)
7894 tree def = ssa_default_def (fun, static_chain);
7895 if (def)
7896 dump_default_def (file, def, 2, flags);
7900 if (!vec_safe_is_empty (fun->local_decls))
7901 FOR_EACH_LOCAL_DECL (fun, ix, var)
7903 print_generic_decl (file, var, flags);
7904 fprintf (file, "\n");
7906 any_var = true;
7909 tree name;
7911 if (gimple_in_ssa_p (cfun))
7912 FOR_EACH_SSA_NAME (ix, name, cfun)
7914 if (!SSA_NAME_VAR (name))
7916 fprintf (file, " ");
7917 print_generic_expr (file, TREE_TYPE (name), flags);
7918 fprintf (file, " ");
7919 print_generic_expr (file, name, flags);
7920 fprintf (file, ";\n");
7922 any_var = true;
7927 if (fun && fun->decl == fndecl
7928 && fun->cfg
7929 && basic_block_info_for_fn (fun))
7931 /* If the CFG has been built, emit a CFG-based dump. */
7932 if (!ignore_topmost_bind)
7933 fprintf (file, "{\n");
7935 if (any_var && n_basic_blocks_for_fn (fun))
7936 fprintf (file, "\n");
7938 FOR_EACH_BB_FN (bb, fun)
7939 dump_bb (file, bb, 2, flags);
7941 fprintf (file, "}\n");
7943 else if (fun->curr_properties & PROP_gimple_any)
7945 /* The function is now in GIMPLE form but the CFG has not been
7946 built yet. Emit the single sequence of GIMPLE statements
7947 that make up its body. */
7948 gimple_seq body = gimple_body (fndecl);
7950 if (gimple_seq_first_stmt (body)
7951 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7952 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7953 print_gimple_seq (file, body, 0, flags);
7954 else
7956 if (!ignore_topmost_bind)
7957 fprintf (file, "{\n");
7959 if (any_var)
7960 fprintf (file, "\n");
7962 print_gimple_seq (file, body, 2, flags);
7963 fprintf (file, "}\n");
7966 else
7968 int indent;
7970 /* Make a tree based dump. */
7971 chain = DECL_SAVED_TREE (fndecl);
7972 if (chain && TREE_CODE (chain) == BIND_EXPR)
7974 if (ignore_topmost_bind)
7976 chain = BIND_EXPR_BODY (chain);
7977 indent = 2;
7979 else
7980 indent = 0;
7982 else
7984 if (!ignore_topmost_bind)
7986 fprintf (file, "{\n");
7987 /* No topmost bind, pretend it's ignored for later. */
7988 ignore_topmost_bind = true;
7990 indent = 2;
7993 if (any_var)
7994 fprintf (file, "\n");
7996 print_generic_stmt_indented (file, chain, flags, indent);
7997 if (ignore_topmost_bind)
7998 fprintf (file, "}\n");
8001 if (flags & TDF_ENUMERATE_LOCALS)
8002 dump_enumerated_decls (file, flags);
8003 fprintf (file, "\n\n");
8005 current_function_decl = old_current_fndecl;
8008 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8010 DEBUG_FUNCTION void
8011 debug_function (tree fn, dump_flags_t flags)
8013 dump_function_to_file (fn, stderr, flags);
8017 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8019 static void
8020 print_pred_bbs (FILE *file, basic_block bb)
8022 edge e;
8023 edge_iterator ei;
8025 FOR_EACH_EDGE (e, ei, bb->preds)
8026 fprintf (file, "bb_%d ", e->src->index);
8030 /* Print on FILE the indexes for the successors of basic_block BB. */
8032 static void
8033 print_succ_bbs (FILE *file, basic_block bb)
8035 edge e;
8036 edge_iterator ei;
8038 FOR_EACH_EDGE (e, ei, bb->succs)
8039 fprintf (file, "bb_%d ", e->dest->index);
8042 /* Print to FILE the basic block BB following the VERBOSITY level. */
8044 void
8045 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
8047 char *s_indent = (char *) alloca ((size_t) indent + 1);
8048 memset ((void *) s_indent, ' ', (size_t) indent);
8049 s_indent[indent] = '\0';
8051 /* Print basic_block's header. */
8052 if (verbosity >= 2)
8054 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
8055 print_pred_bbs (file, bb);
8056 fprintf (file, "}, succs = {");
8057 print_succ_bbs (file, bb);
8058 fprintf (file, "})\n");
8061 /* Print basic_block's body. */
8062 if (verbosity >= 3)
8064 fprintf (file, "%s {\n", s_indent);
8065 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
8066 fprintf (file, "%s }\n", s_indent);
8070 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
8072 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8073 VERBOSITY level this outputs the contents of the loop, or just its
8074 structure. */
8076 static void
8077 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
8079 char *s_indent;
8080 basic_block bb;
8082 if (loop == NULL)
8083 return;
8085 s_indent = (char *) alloca ((size_t) indent + 1);
8086 memset ((void *) s_indent, ' ', (size_t) indent);
8087 s_indent[indent] = '\0';
8089 /* Print loop's header. */
8090 fprintf (file, "%sloop_%d (", s_indent, loop->num);
8091 if (loop->header)
8092 fprintf (file, "header = %d", loop->header->index);
8093 else
8095 fprintf (file, "deleted)\n");
8096 return;
8098 if (loop->latch)
8099 fprintf (file, ", latch = %d", loop->latch->index);
8100 else
8101 fprintf (file, ", multiple latches");
8102 fprintf (file, ", niter = ");
8103 print_generic_expr (file, loop->nb_iterations);
8105 if (loop->any_upper_bound)
8107 fprintf (file, ", upper_bound = ");
8108 print_decu (loop->nb_iterations_upper_bound, file);
8110 if (loop->any_likely_upper_bound)
8112 fprintf (file, ", likely_upper_bound = ");
8113 print_decu (loop->nb_iterations_likely_upper_bound, file);
8116 if (loop->any_estimate)
8118 fprintf (file, ", estimate = ");
8119 print_decu (loop->nb_iterations_estimate, file);
8121 if (loop->unroll)
8122 fprintf (file, ", unroll = %d", loop->unroll);
8123 fprintf (file, ")\n");
8125 /* Print loop's body. */
8126 if (verbosity >= 1)
8128 fprintf (file, "%s{\n", s_indent);
8129 FOR_EACH_BB_FN (bb, cfun)
8130 if (bb->loop_father == loop)
8131 print_loops_bb (file, bb, indent, verbosity);
8133 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
8134 fprintf (file, "%s}\n", s_indent);
8138 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8139 spaces. Following VERBOSITY level this outputs the contents of the
8140 loop, or just its structure. */
8142 static void
8143 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
8144 int verbosity)
8146 if (loop == NULL)
8147 return;
8149 print_loop (file, loop, indent, verbosity);
8150 print_loop_and_siblings (file, loop->next, indent, verbosity);
8153 /* Follow a CFG edge from the entry point of the program, and on entry
8154 of a loop, pretty print the loop structure on FILE. */
8156 void
8157 print_loops (FILE *file, int verbosity)
8159 basic_block bb;
8161 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
8162 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
8163 if (bb && bb->loop_father)
8164 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
8167 /* Dump a loop. */
8169 DEBUG_FUNCTION void
8170 debug (struct loop &ref)
8172 print_loop (stderr, &ref, 0, /*verbosity*/0);
8175 DEBUG_FUNCTION void
8176 debug (struct loop *ptr)
8178 if (ptr)
8179 debug (*ptr);
8180 else
8181 fprintf (stderr, "<nil>\n");
8184 /* Dump a loop verbosely. */
8186 DEBUG_FUNCTION void
8187 debug_verbose (struct loop &ref)
8189 print_loop (stderr, &ref, 0, /*verbosity*/3);
8192 DEBUG_FUNCTION void
8193 debug_verbose (struct loop *ptr)
8195 if (ptr)
8196 debug (*ptr);
8197 else
8198 fprintf (stderr, "<nil>\n");
8202 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8204 DEBUG_FUNCTION void
8205 debug_loops (int verbosity)
8207 print_loops (stderr, verbosity);
8210 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8212 DEBUG_FUNCTION void
8213 debug_loop (struct loop *loop, int verbosity)
8215 print_loop (stderr, loop, 0, verbosity);
8218 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8219 level. */
8221 DEBUG_FUNCTION void
8222 debug_loop_num (unsigned num, int verbosity)
8224 debug_loop (get_loop (cfun, num), verbosity);
8227 /* Return true if BB ends with a call, possibly followed by some
8228 instructions that must stay with the call. Return false,
8229 otherwise. */
8231 static bool
8232 gimple_block_ends_with_call_p (basic_block bb)
8234 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8235 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
8239 /* Return true if BB ends with a conditional branch. Return false,
8240 otherwise. */
8242 static bool
8243 gimple_block_ends_with_condjump_p (const_basic_block bb)
8245 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
8246 return (stmt && gimple_code (stmt) == GIMPLE_COND);
8250 /* Return true if statement T may terminate execution of BB in ways not
8251 explicitly represtented in the CFG. */
8253 bool
8254 stmt_can_terminate_bb_p (gimple *t)
8256 tree fndecl = NULL_TREE;
8257 int call_flags = 0;
8259 /* Eh exception not handled internally terminates execution of the whole
8260 function. */
8261 if (stmt_can_throw_external (t))
8262 return true;
8264 /* NORETURN and LONGJMP calls already have an edge to exit.
8265 CONST and PURE calls do not need one.
8266 We don't currently check for CONST and PURE here, although
8267 it would be a good idea, because those attributes are
8268 figured out from the RTL in mark_constant_function, and
8269 the counter incrementation code from -fprofile-arcs
8270 leads to different results from -fbranch-probabilities. */
8271 if (is_gimple_call (t))
8273 fndecl = gimple_call_fndecl (t);
8274 call_flags = gimple_call_flags (t);
8277 if (is_gimple_call (t)
8278 && fndecl
8279 && DECL_BUILT_IN (fndecl)
8280 && (call_flags & ECF_NOTHROW)
8281 && !(call_flags & ECF_RETURNS_TWICE)
8282 /* fork() doesn't really return twice, but the effect of
8283 wrapping it in __gcov_fork() which calls __gcov_flush()
8284 and clears the counters before forking has the same
8285 effect as returning twice. Force a fake edge. */
8286 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
8287 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
8288 return false;
8290 if (is_gimple_call (t))
8292 edge_iterator ei;
8293 edge e;
8294 basic_block bb;
8296 if (call_flags & (ECF_PURE | ECF_CONST)
8297 && !(call_flags & ECF_LOOPING_CONST_OR_PURE))
8298 return false;
8300 /* Function call may do longjmp, terminate program or do other things.
8301 Special case noreturn that have non-abnormal edges out as in this case
8302 the fact is sufficiently represented by lack of edges out of T. */
8303 if (!(call_flags & ECF_NORETURN))
8304 return true;
8306 bb = gimple_bb (t);
8307 FOR_EACH_EDGE (e, ei, bb->succs)
8308 if ((e->flags & EDGE_FAKE) == 0)
8309 return true;
8312 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
8313 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
8314 return true;
8316 return false;
8320 /* Add fake edges to the function exit for any non constant and non
8321 noreturn calls (or noreturn calls with EH/abnormal edges),
8322 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8323 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8324 that were split.
8326 The goal is to expose cases in which entering a basic block does
8327 not imply that all subsequent instructions must be executed. */
8329 static int
8330 gimple_flow_call_edges_add (sbitmap blocks)
8332 int i;
8333 int blocks_split = 0;
8334 int last_bb = last_basic_block_for_fn (cfun);
8335 bool check_last_block = false;
8337 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
8338 return 0;
8340 if (! blocks)
8341 check_last_block = true;
8342 else
8343 check_last_block = bitmap_bit_p (blocks,
8344 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
8346 /* In the last basic block, before epilogue generation, there will be
8347 a fallthru edge to EXIT. Special care is required if the last insn
8348 of the last basic block is a call because make_edge folds duplicate
8349 edges, which would result in the fallthru edge also being marked
8350 fake, which would result in the fallthru edge being removed by
8351 remove_fake_edges, which would result in an invalid CFG.
8353 Moreover, we can't elide the outgoing fake edge, since the block
8354 profiler needs to take this into account in order to solve the minimal
8355 spanning tree in the case that the call doesn't return.
8357 Handle this by adding a dummy instruction in a new last basic block. */
8358 if (check_last_block)
8360 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8361 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8362 gimple *t = NULL;
8364 if (!gsi_end_p (gsi))
8365 t = gsi_stmt (gsi);
8367 if (t && stmt_can_terminate_bb_p (t))
8369 edge e;
8371 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8372 if (e)
8374 gsi_insert_on_edge (e, gimple_build_nop ());
8375 gsi_commit_edge_inserts ();
8380 /* Now add fake edges to the function exit for any non constant
8381 calls since there is no way that we can determine if they will
8382 return or not... */
8383 for (i = 0; i < last_bb; i++)
8385 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8386 gimple_stmt_iterator gsi;
8387 gimple *stmt, *last_stmt;
8389 if (!bb)
8390 continue;
8392 if (blocks && !bitmap_bit_p (blocks, i))
8393 continue;
8395 gsi = gsi_last_nondebug_bb (bb);
8396 if (!gsi_end_p (gsi))
8398 last_stmt = gsi_stmt (gsi);
8401 stmt = gsi_stmt (gsi);
8402 if (stmt_can_terminate_bb_p (stmt))
8404 edge e;
8406 /* The handling above of the final block before the
8407 epilogue should be enough to verify that there is
8408 no edge to the exit block in CFG already.
8409 Calling make_edge in such case would cause us to
8410 mark that edge as fake and remove it later. */
8411 if (flag_checking && stmt == last_stmt)
8413 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8414 gcc_assert (e == NULL);
8417 /* Note that the following may create a new basic block
8418 and renumber the existing basic blocks. */
8419 if (stmt != last_stmt)
8421 e = split_block (bb, stmt);
8422 if (e)
8423 blocks_split++;
8425 e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8426 e->probability = profile_probability::guessed_never ();
8428 gsi_prev (&gsi);
8430 while (!gsi_end_p (gsi));
8434 if (blocks_split)
8435 checking_verify_flow_info ();
8437 return blocks_split;
8440 /* Removes edge E and all the blocks dominated by it, and updates dominance
8441 information. The IL in E->src needs to be updated separately.
8442 If dominance info is not available, only the edge E is removed.*/
8444 void
8445 remove_edge_and_dominated_blocks (edge e)
8447 vec<basic_block> bbs_to_remove = vNULL;
8448 vec<basic_block> bbs_to_fix_dom = vNULL;
8449 edge f;
8450 edge_iterator ei;
8451 bool none_removed = false;
8452 unsigned i;
8453 basic_block bb, dbb;
8454 bitmap_iterator bi;
8456 /* If we are removing a path inside a non-root loop that may change
8457 loop ownership of blocks or remove loops. Mark loops for fixup. */
8458 if (current_loops
8459 && loop_outer (e->src->loop_father) != NULL
8460 && e->src->loop_father == e->dest->loop_father)
8461 loops_state_set (LOOPS_NEED_FIXUP);
8463 if (!dom_info_available_p (CDI_DOMINATORS))
8465 remove_edge (e);
8466 return;
8469 /* No updating is needed for edges to exit. */
8470 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8472 if (cfgcleanup_altered_bbs)
8473 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8474 remove_edge (e);
8475 return;
8478 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8479 that is not dominated by E->dest, then this set is empty. Otherwise,
8480 all the basic blocks dominated by E->dest are removed.
8482 Also, to DF_IDOM we store the immediate dominators of the blocks in
8483 the dominance frontier of E (i.e., of the successors of the
8484 removed blocks, if there are any, and of E->dest otherwise). */
8485 FOR_EACH_EDGE (f, ei, e->dest->preds)
8487 if (f == e)
8488 continue;
8490 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8492 none_removed = true;
8493 break;
8497 auto_bitmap df, df_idom;
8498 if (none_removed)
8499 bitmap_set_bit (df_idom,
8500 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8501 else
8503 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8504 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8506 FOR_EACH_EDGE (f, ei, bb->succs)
8508 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8509 bitmap_set_bit (df, f->dest->index);
8512 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8513 bitmap_clear_bit (df, bb->index);
8515 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8517 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8518 bitmap_set_bit (df_idom,
8519 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8523 if (cfgcleanup_altered_bbs)
8525 /* Record the set of the altered basic blocks. */
8526 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8527 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8530 /* Remove E and the cancelled blocks. */
8531 if (none_removed)
8532 remove_edge (e);
8533 else
8535 /* Walk backwards so as to get a chance to substitute all
8536 released DEFs into debug stmts. See
8537 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8538 details. */
8539 for (i = bbs_to_remove.length (); i-- > 0; )
8540 delete_basic_block (bbs_to_remove[i]);
8543 /* Update the dominance information. The immediate dominator may change only
8544 for blocks whose immediate dominator belongs to DF_IDOM:
8546 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8547 removal. Let Z the arbitrary block such that idom(Z) = Y and
8548 Z dominates X after the removal. Before removal, there exists a path P
8549 from Y to X that avoids Z. Let F be the last edge on P that is
8550 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8551 dominates W, and because of P, Z does not dominate W), and W belongs to
8552 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8553 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8555 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8556 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8557 dbb;
8558 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8559 bbs_to_fix_dom.safe_push (dbb);
8562 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8564 bbs_to_remove.release ();
8565 bbs_to_fix_dom.release ();
8568 /* Purge dead EH edges from basic block BB. */
8570 bool
8571 gimple_purge_dead_eh_edges (basic_block bb)
8573 bool changed = false;
8574 edge e;
8575 edge_iterator ei;
8576 gimple *stmt = last_stmt (bb);
8578 if (stmt && stmt_can_throw_internal (stmt))
8579 return false;
8581 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8583 if (e->flags & EDGE_EH)
8585 remove_edge_and_dominated_blocks (e);
8586 changed = true;
8588 else
8589 ei_next (&ei);
8592 return changed;
8595 /* Purge dead EH edges from basic block listed in BLOCKS. */
8597 bool
8598 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8600 bool changed = false;
8601 unsigned i;
8602 bitmap_iterator bi;
8604 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8606 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8608 /* Earlier gimple_purge_dead_eh_edges could have removed
8609 this basic block already. */
8610 gcc_assert (bb || changed);
8611 if (bb != NULL)
8612 changed |= gimple_purge_dead_eh_edges (bb);
8615 return changed;
8618 /* Purge dead abnormal call edges from basic block BB. */
8620 bool
8621 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8623 bool changed = false;
8624 edge e;
8625 edge_iterator ei;
8626 gimple *stmt = last_stmt (bb);
8628 if (!cfun->has_nonlocal_label
8629 && !cfun->calls_setjmp)
8630 return false;
8632 if (stmt && stmt_can_make_abnormal_goto (stmt))
8633 return false;
8635 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8637 if (e->flags & EDGE_ABNORMAL)
8639 if (e->flags & EDGE_FALLTHRU)
8640 e->flags &= ~EDGE_ABNORMAL;
8641 else
8642 remove_edge_and_dominated_blocks (e);
8643 changed = true;
8645 else
8646 ei_next (&ei);
8649 return changed;
8652 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8654 bool
8655 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8657 bool changed = false;
8658 unsigned i;
8659 bitmap_iterator bi;
8661 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8663 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8665 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8666 this basic block already. */
8667 gcc_assert (bb || changed);
8668 if (bb != NULL)
8669 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8672 return changed;
8675 /* This function is called whenever a new edge is created or
8676 redirected. */
8678 static void
8679 gimple_execute_on_growing_pred (edge e)
8681 basic_block bb = e->dest;
8683 if (!gimple_seq_empty_p (phi_nodes (bb)))
8684 reserve_phi_args_for_new_edge (bb);
8687 /* This function is called immediately before edge E is removed from
8688 the edge vector E->dest->preds. */
8690 static void
8691 gimple_execute_on_shrinking_pred (edge e)
8693 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8694 remove_phi_args (e);
8697 /*---------------------------------------------------------------------------
8698 Helper functions for Loop versioning
8699 ---------------------------------------------------------------------------*/
8701 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8702 of 'first'. Both of them are dominated by 'new_head' basic block. When
8703 'new_head' was created by 'second's incoming edge it received phi arguments
8704 on the edge by split_edge(). Later, additional edge 'e' was created to
8705 connect 'new_head' and 'first'. Now this routine adds phi args on this
8706 additional edge 'e' that new_head to second edge received as part of edge
8707 splitting. */
8709 static void
8710 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8711 basic_block new_head, edge e)
8713 gphi *phi1, *phi2;
8714 gphi_iterator psi1, psi2;
8715 tree def;
8716 edge e2 = find_edge (new_head, second);
8718 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8719 edge, we should always have an edge from NEW_HEAD to SECOND. */
8720 gcc_assert (e2 != NULL);
8722 /* Browse all 'second' basic block phi nodes and add phi args to
8723 edge 'e' for 'first' head. PHI args are always in correct order. */
8725 for (psi2 = gsi_start_phis (second),
8726 psi1 = gsi_start_phis (first);
8727 !gsi_end_p (psi2) && !gsi_end_p (psi1);
8728 gsi_next (&psi2), gsi_next (&psi1))
8730 phi1 = psi1.phi ();
8731 phi2 = psi2.phi ();
8732 def = PHI_ARG_DEF (phi2, e2->dest_idx);
8733 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8738 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8739 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8740 the destination of the ELSE part. */
8742 static void
8743 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8744 basic_block second_head ATTRIBUTE_UNUSED,
8745 basic_block cond_bb, void *cond_e)
8747 gimple_stmt_iterator gsi;
8748 gimple *new_cond_expr;
8749 tree cond_expr = (tree) cond_e;
8750 edge e0;
8752 /* Build new conditional expr */
8753 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8754 NULL_TREE, NULL_TREE);
8756 /* Add new cond in cond_bb. */
8757 gsi = gsi_last_bb (cond_bb);
8758 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8760 /* Adjust edges appropriately to connect new head with first head
8761 as well as second head. */
8762 e0 = single_succ_edge (cond_bb);
8763 e0->flags &= ~EDGE_FALLTHRU;
8764 e0->flags |= EDGE_FALSE_VALUE;
8768 /* Do book-keeping of basic block BB for the profile consistency checker.
8769 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8770 then do post-pass accounting. Store the counting in RECORD. */
8771 static void
8772 gimple_account_profile_record (basic_block bb, int after_pass,
8773 struct profile_record *record)
8775 gimple_stmt_iterator i;
8776 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8778 record->size[after_pass]
8779 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8780 if (bb->count.initialized_p ())
8781 record->time[after_pass]
8782 += estimate_num_insns (gsi_stmt (i),
8783 &eni_time_weights) * bb->count.to_gcov_type ();
8784 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8785 record->time[after_pass]
8786 += estimate_num_insns (gsi_stmt (i),
8787 &eni_time_weights) * bb->count.to_frequency (cfun);
8791 struct cfg_hooks gimple_cfg_hooks = {
8792 "gimple",
8793 gimple_verify_flow_info,
8794 gimple_dump_bb, /* dump_bb */
8795 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8796 create_bb, /* create_basic_block */
8797 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8798 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8799 gimple_can_remove_branch_p, /* can_remove_branch_p */
8800 remove_bb, /* delete_basic_block */
8801 gimple_split_block, /* split_block */
8802 gimple_move_block_after, /* move_block_after */
8803 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8804 gimple_merge_blocks, /* merge_blocks */
8805 gimple_predict_edge, /* predict_edge */
8806 gimple_predicted_by_p, /* predicted_by_p */
8807 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8808 gimple_duplicate_bb, /* duplicate_block */
8809 gimple_split_edge, /* split_edge */
8810 gimple_make_forwarder_block, /* make_forward_block */
8811 NULL, /* tidy_fallthru_edge */
8812 NULL, /* force_nonfallthru */
8813 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8814 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8815 gimple_flow_call_edges_add, /* flow_call_edges_add */
8816 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8817 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8818 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8819 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8820 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8821 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8822 flush_pending_stmts, /* flush_pending_stmts */
8823 gimple_empty_block_p, /* block_empty_p */
8824 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8825 gimple_account_profile_record,
8829 /* Split all critical edges. */
8831 unsigned int
8832 split_critical_edges (void)
8834 basic_block bb;
8835 edge e;
8836 edge_iterator ei;
8838 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8839 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8840 mappings around the calls to split_edge. */
8841 start_recording_case_labels ();
8842 FOR_ALL_BB_FN (bb, cfun)
8844 FOR_EACH_EDGE (e, ei, bb->succs)
8846 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8847 split_edge (e);
8848 /* PRE inserts statements to edges and expects that
8849 since split_critical_edges was done beforehand, committing edge
8850 insertions will not split more edges. In addition to critical
8851 edges we must split edges that have multiple successors and
8852 end by control flow statements, such as RESX.
8853 Go ahead and split them too. This matches the logic in
8854 gimple_find_edge_insert_loc. */
8855 else if ((!single_pred_p (e->dest)
8856 || !gimple_seq_empty_p (phi_nodes (e->dest))
8857 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8858 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8859 && !(e->flags & EDGE_ABNORMAL))
8861 gimple_stmt_iterator gsi;
8863 gsi = gsi_last_bb (e->src);
8864 if (!gsi_end_p (gsi)
8865 && stmt_ends_bb_p (gsi_stmt (gsi))
8866 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8867 && !gimple_call_builtin_p (gsi_stmt (gsi),
8868 BUILT_IN_RETURN)))
8869 split_edge (e);
8873 end_recording_case_labels ();
8874 return 0;
8877 namespace {
8879 const pass_data pass_data_split_crit_edges =
8881 GIMPLE_PASS, /* type */
8882 "crited", /* name */
8883 OPTGROUP_NONE, /* optinfo_flags */
8884 TV_TREE_SPLIT_EDGES, /* tv_id */
8885 PROP_cfg, /* properties_required */
8886 PROP_no_crit_edges, /* properties_provided */
8887 0, /* properties_destroyed */
8888 0, /* todo_flags_start */
8889 0, /* todo_flags_finish */
8892 class pass_split_crit_edges : public gimple_opt_pass
8894 public:
8895 pass_split_crit_edges (gcc::context *ctxt)
8896 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8899 /* opt_pass methods: */
8900 virtual unsigned int execute (function *) { return split_critical_edges (); }
8902 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8903 }; // class pass_split_crit_edges
8905 } // anon namespace
8907 gimple_opt_pass *
8908 make_pass_split_crit_edges (gcc::context *ctxt)
8910 return new pass_split_crit_edges (ctxt);
8914 /* Insert COND expression which is GIMPLE_COND after STMT
8915 in basic block BB with appropriate basic block split
8916 and creation of a new conditionally executed basic block.
8917 Update profile so the new bb is visited with probability PROB.
8918 Return created basic block. */
8919 basic_block
8920 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond,
8921 profile_probability prob)
8923 edge fall = split_block (bb, stmt);
8924 gimple_stmt_iterator iter = gsi_last_bb (bb);
8925 basic_block new_bb;
8927 /* Insert cond statement. */
8928 gcc_assert (gimple_code (cond) == GIMPLE_COND);
8929 if (gsi_end_p (iter))
8930 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
8931 else
8932 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
8934 /* Create conditionally executed block. */
8935 new_bb = create_empty_bb (bb);
8936 edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE);
8937 e->probability = prob;
8938 new_bb->count = e->count ();
8939 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
8941 /* Fix edge for split bb. */
8942 fall->flags = EDGE_FALSE_VALUE;
8943 fall->probability -= e->probability;
8945 /* Update dominance info. */
8946 if (dom_info_available_p (CDI_DOMINATORS))
8948 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
8949 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
8952 /* Update loop info. */
8953 if (current_loops)
8954 add_bb_to_loop (new_bb, bb->loop_father);
8956 return new_bb;
8959 /* Build a ternary operation and gimplify it. Emit code before GSI.
8960 Return the gimple_val holding the result. */
8962 tree
8963 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8964 tree type, tree a, tree b, tree c)
8966 tree ret;
8967 location_t loc = gimple_location (gsi_stmt (*gsi));
8969 ret = fold_build3_loc (loc, code, type, a, b, c);
8970 STRIP_NOPS (ret);
8972 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8973 GSI_SAME_STMT);
8976 /* Build a binary operation and gimplify it. Emit code before GSI.
8977 Return the gimple_val holding the result. */
8979 tree
8980 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8981 tree type, tree a, tree b)
8983 tree ret;
8985 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8986 STRIP_NOPS (ret);
8988 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8989 GSI_SAME_STMT);
8992 /* Build a unary operation and gimplify it. Emit code before GSI.
8993 Return the gimple_val holding the result. */
8995 tree
8996 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8997 tree a)
8999 tree ret;
9001 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
9002 STRIP_NOPS (ret);
9004 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9005 GSI_SAME_STMT);
9010 /* Given a basic block B which ends with a conditional and has
9011 precisely two successors, determine which of the edges is taken if
9012 the conditional is true and which is taken if the conditional is
9013 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9015 void
9016 extract_true_false_edges_from_block (basic_block b,
9017 edge *true_edge,
9018 edge *false_edge)
9020 edge e = EDGE_SUCC (b, 0);
9022 if (e->flags & EDGE_TRUE_VALUE)
9024 *true_edge = e;
9025 *false_edge = EDGE_SUCC (b, 1);
9027 else
9029 *false_edge = e;
9030 *true_edge = EDGE_SUCC (b, 1);
9035 /* From a controlling predicate in the immediate dominator DOM of
9036 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9037 predicate evaluates to true and false and store them to
9038 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9039 they are non-NULL. Returns true if the edges can be determined,
9040 else return false. */
9042 bool
9043 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
9044 edge *true_controlled_edge,
9045 edge *false_controlled_edge)
9047 basic_block bb = phiblock;
9048 edge true_edge, false_edge, tem;
9049 edge e0 = NULL, e1 = NULL;
9051 /* We have to verify that one edge into the PHI node is dominated
9052 by the true edge of the predicate block and the other edge
9053 dominated by the false edge. This ensures that the PHI argument
9054 we are going to take is completely determined by the path we
9055 take from the predicate block.
9056 We can only use BB dominance checks below if the destination of
9057 the true/false edges are dominated by their edge, thus only
9058 have a single predecessor. */
9059 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
9060 tem = EDGE_PRED (bb, 0);
9061 if (tem == true_edge
9062 || (single_pred_p (true_edge->dest)
9063 && (tem->src == true_edge->dest
9064 || dominated_by_p (CDI_DOMINATORS,
9065 tem->src, true_edge->dest))))
9066 e0 = tem;
9067 else if (tem == false_edge
9068 || (single_pred_p (false_edge->dest)
9069 && (tem->src == false_edge->dest
9070 || dominated_by_p (CDI_DOMINATORS,
9071 tem->src, false_edge->dest))))
9072 e1 = tem;
9073 else
9074 return false;
9075 tem = EDGE_PRED (bb, 1);
9076 if (tem == true_edge
9077 || (single_pred_p (true_edge->dest)
9078 && (tem->src == true_edge->dest
9079 || dominated_by_p (CDI_DOMINATORS,
9080 tem->src, true_edge->dest))))
9081 e0 = tem;
9082 else if (tem == false_edge
9083 || (single_pred_p (false_edge->dest)
9084 && (tem->src == false_edge->dest
9085 || dominated_by_p (CDI_DOMINATORS,
9086 tem->src, false_edge->dest))))
9087 e1 = tem;
9088 else
9089 return false;
9090 if (!e0 || !e1)
9091 return false;
9093 if (true_controlled_edge)
9094 *true_controlled_edge = e0;
9095 if (false_controlled_edge)
9096 *false_controlled_edge = e1;
9098 return true;
9101 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9102 range [low, high]. Place associated stmts before *GSI. */
9104 void
9105 generate_range_test (basic_block bb, tree index, tree low, tree high,
9106 tree *lhs, tree *rhs)
9108 tree type = TREE_TYPE (index);
9109 tree utype = unsigned_type_for (type);
9111 low = fold_convert (type, low);
9112 high = fold_convert (type, high);
9114 tree tmp = make_ssa_name (type);
9115 gassign *sub1
9116 = gimple_build_assign (tmp, MINUS_EXPR, index, low);
9118 *lhs = make_ssa_name (utype);
9119 gassign *a = gimple_build_assign (*lhs, NOP_EXPR, tmp);
9121 *rhs = fold_build2 (MINUS_EXPR, utype, high, low);
9122 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9123 gsi_insert_before (&gsi, sub1, GSI_SAME_STMT);
9124 gsi_insert_before (&gsi, a, GSI_SAME_STMT);
9127 /* Emit return warnings. */
9129 namespace {
9131 const pass_data pass_data_warn_function_return =
9133 GIMPLE_PASS, /* type */
9134 "*warn_function_return", /* name */
9135 OPTGROUP_NONE, /* optinfo_flags */
9136 TV_NONE, /* tv_id */
9137 PROP_cfg, /* properties_required */
9138 0, /* properties_provided */
9139 0, /* properties_destroyed */
9140 0, /* todo_flags_start */
9141 0, /* todo_flags_finish */
9144 class pass_warn_function_return : public gimple_opt_pass
9146 public:
9147 pass_warn_function_return (gcc::context *ctxt)
9148 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
9151 /* opt_pass methods: */
9152 virtual unsigned int execute (function *);
9154 }; // class pass_warn_function_return
9156 unsigned int
9157 pass_warn_function_return::execute (function *fun)
9159 source_location location;
9160 gimple *last;
9161 edge e;
9162 edge_iterator ei;
9164 if (!targetm.warn_func_return (fun->decl))
9165 return 0;
9167 /* If we have a path to EXIT, then we do return. */
9168 if (TREE_THIS_VOLATILE (fun->decl)
9169 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
9171 location = UNKNOWN_LOCATION;
9172 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (fun)->preds);
9173 (e = ei_safe_edge (ei)); )
9175 last = last_stmt (e->src);
9176 if ((gimple_code (last) == GIMPLE_RETURN
9177 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
9178 && location == UNKNOWN_LOCATION
9179 && ((location = LOCATION_LOCUS (gimple_location (last)))
9180 != UNKNOWN_LOCATION)
9181 && !optimize)
9182 break;
9183 /* When optimizing, replace return stmts in noreturn functions
9184 with __builtin_unreachable () call. */
9185 if (optimize && gimple_code (last) == GIMPLE_RETURN)
9187 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9188 gimple *new_stmt = gimple_build_call (fndecl, 0);
9189 gimple_set_location (new_stmt, gimple_location (last));
9190 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9191 gsi_replace (&gsi, new_stmt, true);
9192 remove_edge (e);
9194 else
9195 ei_next (&ei);
9197 if (location == UNKNOWN_LOCATION)
9198 location = cfun->function_end_locus;
9199 warning_at (location, 0, "%<noreturn%> function does return");
9202 /* If we see "return;" in some basic block, then we do reach the end
9203 without returning a value. */
9204 else if (warn_return_type > 0
9205 && !TREE_NO_WARNING (fun->decl)
9206 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
9208 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
9210 gimple *last = last_stmt (e->src);
9211 greturn *return_stmt = dyn_cast <greturn *> (last);
9212 if (return_stmt
9213 && gimple_return_retval (return_stmt) == NULL
9214 && !gimple_no_warning_p (last))
9216 location = gimple_location (last);
9217 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9218 location = fun->function_end_locus;
9219 warning_at (location, OPT_Wreturn_type,
9220 "control reaches end of non-void function");
9221 TREE_NO_WARNING (fun->decl) = 1;
9222 break;
9225 /* The C++ FE turns fallthrough from the end of non-void function
9226 into __builtin_unreachable () call with BUILTINS_LOCATION.
9227 Recognize those too. */
9228 basic_block bb;
9229 if (!TREE_NO_WARNING (fun->decl))
9230 FOR_EACH_BB_FN (bb, fun)
9231 if (EDGE_COUNT (bb->succs) == 0)
9233 gimple *last = last_stmt (bb);
9234 const enum built_in_function ubsan_missing_ret
9235 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN;
9236 if (last
9237 && ((LOCATION_LOCUS (gimple_location (last))
9238 == BUILTINS_LOCATION
9239 && gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE))
9240 || gimple_call_builtin_p (last, ubsan_missing_ret)))
9242 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9243 gsi_prev_nondebug (&gsi);
9244 gimple *prev = gsi_stmt (gsi);
9245 if (prev == NULL)
9246 location = UNKNOWN_LOCATION;
9247 else
9248 location = gimple_location (prev);
9249 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9250 location = fun->function_end_locus;
9251 warning_at (location, OPT_Wreturn_type,
9252 "control reaches end of non-void function");
9253 TREE_NO_WARNING (fun->decl) = 1;
9254 break;
9258 return 0;
9261 } // anon namespace
9263 gimple_opt_pass *
9264 make_pass_warn_function_return (gcc::context *ctxt)
9266 return new pass_warn_function_return (ctxt);
9269 /* Walk a gimplified function and warn for functions whose return value is
9270 ignored and attribute((warn_unused_result)) is set. This is done before
9271 inlining, so we don't have to worry about that. */
9273 static void
9274 do_warn_unused_result (gimple_seq seq)
9276 tree fdecl, ftype;
9277 gimple_stmt_iterator i;
9279 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
9281 gimple *g = gsi_stmt (i);
9283 switch (gimple_code (g))
9285 case GIMPLE_BIND:
9286 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
9287 break;
9288 case GIMPLE_TRY:
9289 do_warn_unused_result (gimple_try_eval (g));
9290 do_warn_unused_result (gimple_try_cleanup (g));
9291 break;
9292 case GIMPLE_CATCH:
9293 do_warn_unused_result (gimple_catch_handler (
9294 as_a <gcatch *> (g)));
9295 break;
9296 case GIMPLE_EH_FILTER:
9297 do_warn_unused_result (gimple_eh_filter_failure (g));
9298 break;
9300 case GIMPLE_CALL:
9301 if (gimple_call_lhs (g))
9302 break;
9303 if (gimple_call_internal_p (g))
9304 break;
9306 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9307 LHS. All calls whose value is ignored should be
9308 represented like this. Look for the attribute. */
9309 fdecl = gimple_call_fndecl (g);
9310 ftype = gimple_call_fntype (g);
9312 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
9314 location_t loc = gimple_location (g);
9316 if (fdecl)
9317 warning_at (loc, OPT_Wunused_result,
9318 "ignoring return value of %qD, "
9319 "declared with attribute warn_unused_result",
9320 fdecl);
9321 else
9322 warning_at (loc, OPT_Wunused_result,
9323 "ignoring return value of function "
9324 "declared with attribute warn_unused_result");
9326 break;
9328 default:
9329 /* Not a container, not a call, or a call whose value is used. */
9330 break;
9335 namespace {
9337 const pass_data pass_data_warn_unused_result =
9339 GIMPLE_PASS, /* type */
9340 "*warn_unused_result", /* name */
9341 OPTGROUP_NONE, /* optinfo_flags */
9342 TV_NONE, /* tv_id */
9343 PROP_gimple_any, /* properties_required */
9344 0, /* properties_provided */
9345 0, /* properties_destroyed */
9346 0, /* todo_flags_start */
9347 0, /* todo_flags_finish */
9350 class pass_warn_unused_result : public gimple_opt_pass
9352 public:
9353 pass_warn_unused_result (gcc::context *ctxt)
9354 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
9357 /* opt_pass methods: */
9358 virtual bool gate (function *) { return flag_warn_unused_result; }
9359 virtual unsigned int execute (function *)
9361 do_warn_unused_result (gimple_body (current_function_decl));
9362 return 0;
9365 }; // class pass_warn_unused_result
9367 } // anon namespace
9369 gimple_opt_pass *
9370 make_pass_warn_unused_result (gcc::context *ctxt)
9372 return new pass_warn_unused_result (ctxt);
9375 /* IPA passes, compilation of earlier functions or inlining
9376 might have changed some properties, such as marked functions nothrow,
9377 pure, const or noreturn.
9378 Remove redundant edges and basic blocks, and create new ones if necessary.
9380 This pass can't be executed as stand alone pass from pass manager, because
9381 in between inlining and this fixup the verify_flow_info would fail. */
9383 unsigned int
9384 execute_fixup_cfg (void)
9386 basic_block bb;
9387 gimple_stmt_iterator gsi;
9388 int todo = 0;
9389 cgraph_node *node = cgraph_node::get (current_function_decl);
9390 profile_count num = node->count;
9391 profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
9392 bool scale = num.initialized_p () && !(num == den);
9394 if (scale)
9396 profile_count::adjust_for_ipa_scaling (&num, &den);
9397 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
9398 EXIT_BLOCK_PTR_FOR_FN (cfun)->count
9399 = EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den);
9402 FOR_EACH_BB_FN (bb, cfun)
9404 if (scale)
9405 bb->count = bb->count.apply_scale (num, den);
9406 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
9408 gimple *stmt = gsi_stmt (gsi);
9409 tree decl = is_gimple_call (stmt)
9410 ? gimple_call_fndecl (stmt)
9411 : NULL;
9412 if (decl)
9414 int flags = gimple_call_flags (stmt);
9415 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
9417 if (gimple_purge_dead_abnormal_call_edges (bb))
9418 todo |= TODO_cleanup_cfg;
9420 if (gimple_in_ssa_p (cfun))
9422 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9423 update_stmt (stmt);
9427 if (flags & ECF_NORETURN
9428 && fixup_noreturn_call (stmt))
9429 todo |= TODO_cleanup_cfg;
9432 /* Remove stores to variables we marked write-only.
9433 Keep access when store has side effect, i.e. in case when source
9434 is volatile. */
9435 if (gimple_store_p (stmt)
9436 && !gimple_has_side_effects (stmt))
9438 tree lhs = get_base_address (gimple_get_lhs (stmt));
9440 if (VAR_P (lhs)
9441 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9442 && varpool_node::get (lhs)->writeonly)
9444 unlink_stmt_vdef (stmt);
9445 gsi_remove (&gsi, true);
9446 release_defs (stmt);
9447 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9448 continue;
9451 /* For calls we can simply remove LHS when it is known
9452 to be write-only. */
9453 if (is_gimple_call (stmt)
9454 && gimple_get_lhs (stmt))
9456 tree lhs = get_base_address (gimple_get_lhs (stmt));
9458 if (VAR_P (lhs)
9459 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9460 && varpool_node::get (lhs)->writeonly)
9462 gimple_call_set_lhs (stmt, NULL);
9463 update_stmt (stmt);
9464 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9468 if (maybe_clean_eh_stmt (stmt)
9469 && gimple_purge_dead_eh_edges (bb))
9470 todo |= TODO_cleanup_cfg;
9471 gsi_next (&gsi);
9474 /* If we have a basic block with no successors that does not
9475 end with a control statement or a noreturn call end it with
9476 a call to __builtin_unreachable. This situation can occur
9477 when inlining a noreturn call that does in fact return. */
9478 if (EDGE_COUNT (bb->succs) == 0)
9480 gimple *stmt = last_stmt (bb);
9481 if (!stmt
9482 || (!is_ctrl_stmt (stmt)
9483 && (!is_gimple_call (stmt)
9484 || !gimple_call_noreturn_p (stmt))))
9486 if (stmt && is_gimple_call (stmt))
9487 gimple_call_set_ctrl_altering (stmt, false);
9488 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9489 stmt = gimple_build_call (fndecl, 0);
9490 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9491 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9492 if (!cfun->after_inlining)
9494 gcall *call_stmt = dyn_cast <gcall *> (stmt);
9495 node->create_edge (cgraph_node::get_create (fndecl),
9496 call_stmt, bb->count);
9501 if (scale)
9502 compute_function_frequency ();
9504 if (current_loops
9505 && (todo & TODO_cleanup_cfg))
9506 loops_state_set (LOOPS_NEED_FIXUP);
9508 return todo;
9511 namespace {
9513 const pass_data pass_data_fixup_cfg =
9515 GIMPLE_PASS, /* type */
9516 "fixup_cfg", /* name */
9517 OPTGROUP_NONE, /* optinfo_flags */
9518 TV_NONE, /* tv_id */
9519 PROP_cfg, /* properties_required */
9520 0, /* properties_provided */
9521 0, /* properties_destroyed */
9522 0, /* todo_flags_start */
9523 0, /* todo_flags_finish */
9526 class pass_fixup_cfg : public gimple_opt_pass
9528 public:
9529 pass_fixup_cfg (gcc::context *ctxt)
9530 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9533 /* opt_pass methods: */
9534 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
9535 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9537 }; // class pass_fixup_cfg
9539 } // anon namespace
9541 gimple_opt_pass *
9542 make_pass_fixup_cfg (gcc::context *ctxt)
9544 return new pass_fixup_cfg (ctxt);
9547 /* Garbage collection support for edge_def. */
9549 extern void gt_ggc_mx (tree&);
9550 extern void gt_ggc_mx (gimple *&);
9551 extern void gt_ggc_mx (rtx&);
9552 extern void gt_ggc_mx (basic_block&);
9554 static void
9555 gt_ggc_mx (rtx_insn *& x)
9557 if (x)
9558 gt_ggc_mx_rtx_def ((void *) x);
9561 void
9562 gt_ggc_mx (edge_def *e)
9564 tree block = LOCATION_BLOCK (e->goto_locus);
9565 gt_ggc_mx (e->src);
9566 gt_ggc_mx (e->dest);
9567 if (current_ir_type () == IR_GIMPLE)
9568 gt_ggc_mx (e->insns.g);
9569 else
9570 gt_ggc_mx (e->insns.r);
9571 gt_ggc_mx (block);
9574 /* PCH support for edge_def. */
9576 extern void gt_pch_nx (tree&);
9577 extern void gt_pch_nx (gimple *&);
9578 extern void gt_pch_nx (rtx&);
9579 extern void gt_pch_nx (basic_block&);
9581 static void
9582 gt_pch_nx (rtx_insn *& x)
9584 if (x)
9585 gt_pch_nx_rtx_def ((void *) x);
9588 void
9589 gt_pch_nx (edge_def *e)
9591 tree block = LOCATION_BLOCK (e->goto_locus);
9592 gt_pch_nx (e->src);
9593 gt_pch_nx (e->dest);
9594 if (current_ir_type () == IR_GIMPLE)
9595 gt_pch_nx (e->insns.g);
9596 else
9597 gt_pch_nx (e->insns.r);
9598 gt_pch_nx (block);
9601 void
9602 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9604 tree block = LOCATION_BLOCK (e->goto_locus);
9605 op (&(e->src), cookie);
9606 op (&(e->dest), cookie);
9607 if (current_ir_type () == IR_GIMPLE)
9608 op (&(e->insns.g), cookie);
9609 else
9610 op (&(e->insns.r), cookie);
9611 op (&(block), cookie);
9614 #if CHECKING_P
9616 namespace selftest {
9618 /* Helper function for CFG selftests: create a dummy function decl
9619 and push it as cfun. */
9621 static tree
9622 push_fndecl (const char *name)
9624 tree fn_type = build_function_type_array (integer_type_node, 0, NULL);
9625 /* FIXME: this uses input_location: */
9626 tree fndecl = build_fn_decl (name, fn_type);
9627 tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
9628 NULL_TREE, integer_type_node);
9629 DECL_RESULT (fndecl) = retval;
9630 push_struct_function (fndecl);
9631 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9632 ASSERT_TRUE (fun != NULL);
9633 init_empty_tree_cfg_for_function (fun);
9634 ASSERT_EQ (2, n_basic_blocks_for_fn (fun));
9635 ASSERT_EQ (0, n_edges_for_fn (fun));
9636 return fndecl;
9639 /* These tests directly create CFGs.
9640 Compare with the static fns within tree-cfg.c:
9641 - build_gimple_cfg
9642 - make_blocks: calls create_basic_block (seq, bb);
9643 - make_edges. */
9645 /* Verify a simple cfg of the form:
9646 ENTRY -> A -> B -> C -> EXIT. */
9648 static void
9649 test_linear_chain ()
9651 gimple_register_cfg_hooks ();
9653 tree fndecl = push_fndecl ("cfg_test_linear_chain");
9654 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9656 /* Create some empty blocks. */
9657 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9658 basic_block bb_b = create_empty_bb (bb_a);
9659 basic_block bb_c = create_empty_bb (bb_b);
9661 ASSERT_EQ (5, n_basic_blocks_for_fn (fun));
9662 ASSERT_EQ (0, n_edges_for_fn (fun));
9664 /* Create some edges: a simple linear chain of BBs. */
9665 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9666 make_edge (bb_a, bb_b, 0);
9667 make_edge (bb_b, bb_c, 0);
9668 make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9670 /* Verify the edges. */
9671 ASSERT_EQ (4, n_edges_for_fn (fun));
9672 ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds);
9673 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ());
9674 ASSERT_EQ (1, bb_a->preds->length ());
9675 ASSERT_EQ (1, bb_a->succs->length ());
9676 ASSERT_EQ (1, bb_b->preds->length ());
9677 ASSERT_EQ (1, bb_b->succs->length ());
9678 ASSERT_EQ (1, bb_c->preds->length ());
9679 ASSERT_EQ (1, bb_c->succs->length ());
9680 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ());
9681 ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs);
9683 /* Verify the dominance information
9684 Each BB in our simple chain should be dominated by the one before
9685 it. */
9686 calculate_dominance_info (CDI_DOMINATORS);
9687 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9688 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9689 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9690 ASSERT_EQ (1, dom_by_b.length ());
9691 ASSERT_EQ (bb_c, dom_by_b[0]);
9692 free_dominance_info (CDI_DOMINATORS);
9693 dom_by_b.release ();
9695 /* Similarly for post-dominance: each BB in our chain is post-dominated
9696 by the one after it. */
9697 calculate_dominance_info (CDI_POST_DOMINATORS);
9698 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9699 ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9700 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9701 ASSERT_EQ (1, postdom_by_b.length ());
9702 ASSERT_EQ (bb_a, postdom_by_b[0]);
9703 free_dominance_info (CDI_POST_DOMINATORS);
9704 postdom_by_b.release ();
9706 pop_cfun ();
9709 /* Verify a simple CFG of the form:
9710 ENTRY
9714 /t \f
9720 EXIT. */
9722 static void
9723 test_diamond ()
9725 gimple_register_cfg_hooks ();
9727 tree fndecl = push_fndecl ("cfg_test_diamond");
9728 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9730 /* Create some empty blocks. */
9731 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9732 basic_block bb_b = create_empty_bb (bb_a);
9733 basic_block bb_c = create_empty_bb (bb_a);
9734 basic_block bb_d = create_empty_bb (bb_b);
9736 ASSERT_EQ (6, n_basic_blocks_for_fn (fun));
9737 ASSERT_EQ (0, n_edges_for_fn (fun));
9739 /* Create the edges. */
9740 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9741 make_edge (bb_a, bb_b, EDGE_TRUE_VALUE);
9742 make_edge (bb_a, bb_c, EDGE_FALSE_VALUE);
9743 make_edge (bb_b, bb_d, 0);
9744 make_edge (bb_c, bb_d, 0);
9745 make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9747 /* Verify the edges. */
9748 ASSERT_EQ (6, n_edges_for_fn (fun));
9749 ASSERT_EQ (1, bb_a->preds->length ());
9750 ASSERT_EQ (2, bb_a->succs->length ());
9751 ASSERT_EQ (1, bb_b->preds->length ());
9752 ASSERT_EQ (1, bb_b->succs->length ());
9753 ASSERT_EQ (1, bb_c->preds->length ());
9754 ASSERT_EQ (1, bb_c->succs->length ());
9755 ASSERT_EQ (2, bb_d->preds->length ());
9756 ASSERT_EQ (1, bb_d->succs->length ());
9758 /* Verify the dominance information. */
9759 calculate_dominance_info (CDI_DOMINATORS);
9760 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9761 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9762 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d));
9763 vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a);
9764 ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */
9765 dom_by_a.release ();
9766 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9767 ASSERT_EQ (0, dom_by_b.length ());
9768 dom_by_b.release ();
9769 free_dominance_info (CDI_DOMINATORS);
9771 /* Similarly for post-dominance. */
9772 calculate_dominance_info (CDI_POST_DOMINATORS);
9773 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9774 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9775 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c));
9776 vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d);
9777 ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */
9778 postdom_by_d.release ();
9779 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9780 ASSERT_EQ (0, postdom_by_b.length ());
9781 postdom_by_b.release ();
9782 free_dominance_info (CDI_POST_DOMINATORS);
9784 pop_cfun ();
9787 /* Verify that we can handle a CFG containing a "complete" aka
9788 fully-connected subgraph (where A B C D below all have edges
9789 pointing to each other node, also to themselves).
9790 e.g.:
9791 ENTRY EXIT
9797 A<--->B
9798 ^^ ^^
9799 | \ / |
9800 | X |
9801 | / \ |
9802 VV VV
9803 C<--->D
9806 static void
9807 test_fully_connected ()
9809 gimple_register_cfg_hooks ();
9811 tree fndecl = push_fndecl ("cfg_fully_connected");
9812 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9814 const int n = 4;
9816 /* Create some empty blocks. */
9817 auto_vec <basic_block> subgraph_nodes;
9818 for (int i = 0; i < n; i++)
9819 subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)));
9821 ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun));
9822 ASSERT_EQ (0, n_edges_for_fn (fun));
9824 /* Create the edges. */
9825 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU);
9826 make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9827 for (int i = 0; i < n; i++)
9828 for (int j = 0; j < n; j++)
9829 make_edge (subgraph_nodes[i], subgraph_nodes[j], 0);
9831 /* Verify the edges. */
9832 ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun));
9833 /* The first one is linked to ENTRY/EXIT as well as itself and
9834 everything else. */
9835 ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ());
9836 ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ());
9837 /* The other ones in the subgraph are linked to everything in
9838 the subgraph (including themselves). */
9839 for (int i = 1; i < n; i++)
9841 ASSERT_EQ (n, subgraph_nodes[i]->preds->length ());
9842 ASSERT_EQ (n, subgraph_nodes[i]->succs->length ());
9845 /* Verify the dominance information. */
9846 calculate_dominance_info (CDI_DOMINATORS);
9847 /* The initial block in the subgraph should be dominated by ENTRY. */
9848 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun),
9849 get_immediate_dominator (CDI_DOMINATORS,
9850 subgraph_nodes[0]));
9851 /* Every other block in the subgraph should be dominated by the
9852 initial block. */
9853 for (int i = 1; i < n; i++)
9854 ASSERT_EQ (subgraph_nodes[0],
9855 get_immediate_dominator (CDI_DOMINATORS,
9856 subgraph_nodes[i]));
9857 free_dominance_info (CDI_DOMINATORS);
9859 /* Similarly for post-dominance. */
9860 calculate_dominance_info (CDI_POST_DOMINATORS);
9861 /* The initial block in the subgraph should be postdominated by EXIT. */
9862 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun),
9863 get_immediate_dominator (CDI_POST_DOMINATORS,
9864 subgraph_nodes[0]));
9865 /* Every other block in the subgraph should be postdominated by the
9866 initial block, since that leads to EXIT. */
9867 for (int i = 1; i < n; i++)
9868 ASSERT_EQ (subgraph_nodes[0],
9869 get_immediate_dominator (CDI_POST_DOMINATORS,
9870 subgraph_nodes[i]));
9871 free_dominance_info (CDI_POST_DOMINATORS);
9873 pop_cfun ();
9876 /* Run all of the selftests within this file. */
9878 void
9879 tree_cfg_c_tests ()
9881 test_linear_chain ();
9882 test_diamond ();
9883 test_fully_connected ();
9886 } // namespace selftest
9888 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
9889 - loop
9890 - nested loops
9891 - switch statement (a block with many out-edges)
9892 - something that jumps to itself
9893 - etc */
9895 #endif /* CHECKING_P */