PR debug/53740
[official-gcc.git] / gcc / ira.c
blob43fb6084ca623c35eb8b48c32b7dc1704f8e8ccc
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* The integrated register allocator (IRA) is a
23 regional register allocator performing graph coloring on a top-down
24 traversal of nested regions. Graph coloring in a region is based
25 on Chaitin-Briggs algorithm. It is called integrated because
26 register coalescing, register live range splitting, and choosing a
27 better hard register are done on-the-fly during coloring. Register
28 coalescing and choosing a cheaper hard register is done by hard
29 register preferencing during hard register assigning. The live
30 range splitting is a byproduct of the regional register allocation.
32 Major IRA notions are:
34 o *Region* is a part of CFG where graph coloring based on
35 Chaitin-Briggs algorithm is done. IRA can work on any set of
36 nested CFG regions forming a tree. Currently the regions are
37 the entire function for the root region and natural loops for
38 the other regions. Therefore data structure representing a
39 region is called loop_tree_node.
41 o *Allocno class* is a register class used for allocation of
42 given allocno. It means that only hard register of given
43 register class can be assigned to given allocno. In reality,
44 even smaller subset of (*profitable*) hard registers can be
45 assigned. In rare cases, the subset can be even smaller
46 because our modification of Chaitin-Briggs algorithm requires
47 that sets of hard registers can be assigned to allocnos forms a
48 forest, i.e. the sets can be ordered in a way where any
49 previous set is not intersected with given set or is a superset
50 of given set.
52 o *Pressure class* is a register class belonging to a set of
53 register classes containing all of the hard-registers available
54 for register allocation. The set of all pressure classes for a
55 target is defined in the corresponding machine-description file
56 according some criteria. Register pressure is calculated only
57 for pressure classes and it affects some IRA decisions as
58 forming allocation regions.
60 o *Allocno* represents the live range of a pseudo-register in a
61 region. Besides the obvious attributes like the corresponding
62 pseudo-register number, allocno class, conflicting allocnos and
63 conflicting hard-registers, there are a few allocno attributes
64 which are important for understanding the allocation algorithm:
66 - *Live ranges*. This is a list of ranges of *program points*
67 where the allocno lives. Program points represent places
68 where a pseudo can be born or become dead (there are
69 approximately two times more program points than the insns)
70 and they are represented by integers starting with 0. The
71 live ranges are used to find conflicts between allocnos.
72 They also play very important role for the transformation of
73 the IRA internal representation of several regions into a one
74 region representation. The later is used during the reload
75 pass work because each allocno represents all of the
76 corresponding pseudo-registers.
78 - *Hard-register costs*. This is a vector of size equal to the
79 number of available hard-registers of the allocno class. The
80 cost of a callee-clobbered hard-register for an allocno is
81 increased by the cost of save/restore code around the calls
82 through the given allocno's life. If the allocno is a move
83 instruction operand and another operand is a hard-register of
84 the allocno class, the cost of the hard-register is decreased
85 by the move cost.
87 When an allocno is assigned, the hard-register with minimal
88 full cost is used. Initially, a hard-register's full cost is
89 the corresponding value from the hard-register's cost vector.
90 If the allocno is connected by a *copy* (see below) to
91 another allocno which has just received a hard-register, the
92 cost of the hard-register is decreased. Before choosing a
93 hard-register for an allocno, the allocno's current costs of
94 the hard-registers are modified by the conflict hard-register
95 costs of all of the conflicting allocnos which are not
96 assigned yet.
98 - *Conflict hard-register costs*. This is a vector of the same
99 size as the hard-register costs vector. To permit an
100 unassigned allocno to get a better hard-register, IRA uses
101 this vector to calculate the final full cost of the
102 available hard-registers. Conflict hard-register costs of an
103 unassigned allocno are also changed with a change of the
104 hard-register cost of the allocno when a copy involving the
105 allocno is processed as described above. This is done to
106 show other unassigned allocnos that a given allocno prefers
107 some hard-registers in order to remove the move instruction
108 corresponding to the copy.
110 o *Cap*. If a pseudo-register does not live in a region but
111 lives in a nested region, IRA creates a special allocno called
112 a cap in the outer region. A region cap is also created for a
113 subregion cap.
115 o *Copy*. Allocnos can be connected by copies. Copies are used
116 to modify hard-register costs for allocnos during coloring.
117 Such modifications reflects a preference to use the same
118 hard-register for the allocnos connected by copies. Usually
119 copies are created for move insns (in this case it results in
120 register coalescing). But IRA also creates copies for operands
121 of an insn which should be assigned to the same hard-register
122 due to constraints in the machine description (it usually
123 results in removing a move generated in reload to satisfy
124 the constraints) and copies referring to the allocno which is
125 the output operand of an instruction and the allocno which is
126 an input operand dying in the instruction (creation of such
127 copies results in less register shuffling). IRA *does not*
128 create copies between the same register allocnos from different
129 regions because we use another technique for propagating
130 hard-register preference on the borders of regions.
132 Allocnos (including caps) for the upper region in the region tree
133 *accumulate* information important for coloring from allocnos with
134 the same pseudo-register from nested regions. This includes
135 hard-register and memory costs, conflicts with hard-registers,
136 allocno conflicts, allocno copies and more. *Thus, attributes for
137 allocnos in a region have the same values as if the region had no
138 subregions*. It means that attributes for allocnos in the
139 outermost region corresponding to the function have the same values
140 as though the allocation used only one region which is the entire
141 function. It also means that we can look at IRA work as if the
142 first IRA did allocation for all function then it improved the
143 allocation for loops then their subloops and so on.
145 IRA major passes are:
147 o Building IRA internal representation which consists of the
148 following subpasses:
150 * First, IRA builds regions and creates allocnos (file
151 ira-build.c) and initializes most of their attributes.
153 * Then IRA finds an allocno class for each allocno and
154 calculates its initial (non-accumulated) cost of memory and
155 each hard-register of its allocno class (file ira-cost.c).
157 * IRA creates live ranges of each allocno, calulates register
158 pressure for each pressure class in each region, sets up
159 conflict hard registers for each allocno and info about calls
160 the allocno lives through (file ira-lives.c).
162 * IRA removes low register pressure loops from the regions
163 mostly to speed IRA up (file ira-build.c).
165 * IRA propagates accumulated allocno info from lower region
166 allocnos to corresponding upper region allocnos (file
167 ira-build.c).
169 * IRA creates all caps (file ira-build.c).
171 * Having live-ranges of allocnos and their classes, IRA creates
172 conflicting allocnos for each allocno. Conflicting allocnos
173 are stored as a bit vector or array of pointers to the
174 conflicting allocnos whatever is more profitable (file
175 ira-conflicts.c). At this point IRA creates allocno copies.
177 o Coloring. Now IRA has all necessary info to start graph coloring
178 process. It is done in each region on top-down traverse of the
179 region tree (file ira-color.c). There are following subpasses:
181 * Finding profitable hard registers of corresponding allocno
182 class for each allocno. For example, only callee-saved hard
183 registers are frequently profitable for allocnos living
184 through colors. If the profitable hard register set of
185 allocno does not form a tree based on subset relation, we use
186 some approximation to form the tree. This approximation is
187 used to figure out trivial colorability of allocnos. The
188 approximation is a pretty rare case.
190 * Putting allocnos onto the coloring stack. IRA uses Briggs
191 optimistic coloring which is a major improvement over
192 Chaitin's coloring. Therefore IRA does not spill allocnos at
193 this point. There is some freedom in the order of putting
194 allocnos on the stack which can affect the final result of
195 the allocation. IRA uses some heuristics to improve the
196 order.
198 We also use a modification of Chaitin-Briggs algorithm which
199 works for intersected register classes of allocnos. To
200 figure out trivial colorability of allocnos, the mentioned
201 above tree of hard register sets is used. To get an idea how
202 the algorithm works in i386 example, let us consider an
203 allocno to which any general hard register can be assigned.
204 If the allocno conflicts with eight allocnos to which only
205 EAX register can be assigned, given allocno is still
206 trivially colorable because all conflicting allocnos might be
207 assigned only to EAX and all other general hard registers are
208 still free.
210 To get an idea of the used trivial colorability criterion, it
211 is also useful to read article "Graph-Coloring Register
212 Allocation for Irregular Architectures" by Michael D. Smith
213 and Glen Holloway. Major difference between the article
214 approach and approach used in IRA is that Smith's approach
215 takes register classes only from machine description and IRA
216 calculate register classes from intermediate code too
217 (e.g. an explicit usage of hard registers in RTL code for
218 parameter passing can result in creation of additional
219 register classes which contain or exclude the hard
220 registers). That makes IRA approach useful for improving
221 coloring even for architectures with regular register files
222 and in fact some benchmarking shows the improvement for
223 regular class architectures is even bigger than for irregular
224 ones. Another difference is that Smith's approach chooses
225 intersection of classes of all insn operands in which a given
226 pseudo occurs. IRA can use bigger classes if it is still
227 more profitable than memory usage.
229 * Popping the allocnos from the stack and assigning them hard
230 registers. If IRA can not assign a hard register to an
231 allocno and the allocno is coalesced, IRA undoes the
232 coalescing and puts the uncoalesced allocnos onto the stack in
233 the hope that some such allocnos will get a hard register
234 separately. If IRA fails to assign hard register or memory
235 is more profitable for it, IRA spills the allocno. IRA
236 assigns the allocno the hard-register with minimal full
237 allocation cost which reflects the cost of usage of the
238 hard-register for the allocno and cost of usage of the
239 hard-register for allocnos conflicting with given allocno.
241 * Chaitin-Briggs coloring assigns as many pseudos as possible
242 to hard registers. After coloringh we try to improve
243 allocation with cost point of view. We improve the
244 allocation by spilling some allocnos and assigning the freed
245 hard registers to other allocnos if it decreases the overall
246 allocation cost.
248 * After allono assigning in the region, IRA modifies the hard
249 register and memory costs for the corresponding allocnos in
250 the subregions to reflect the cost of possible loads, stores,
251 or moves on the border of the region and its subregions.
252 When default regional allocation algorithm is used
253 (-fira-algorithm=mixed), IRA just propagates the assignment
254 for allocnos if the register pressure in the region for the
255 corresponding pressure class is less than number of available
256 hard registers for given pressure class.
258 o Spill/restore code moving. When IRA performs an allocation
259 by traversing regions in top-down order, it does not know what
260 happens below in the region tree. Therefore, sometimes IRA
261 misses opportunities to perform a better allocation. A simple
262 optimization tries to improve allocation in a region having
263 subregions and containing in another region. If the
264 corresponding allocnos in the subregion are spilled, it spills
265 the region allocno if it is profitable. The optimization
266 implements a simple iterative algorithm performing profitable
267 transformations while they are still possible. It is fast in
268 practice, so there is no real need for a better time complexity
269 algorithm.
271 o Code change. After coloring, two allocnos representing the
272 same pseudo-register outside and inside a region respectively
273 may be assigned to different locations (hard-registers or
274 memory). In this case IRA creates and uses a new
275 pseudo-register inside the region and adds code to move allocno
276 values on the region's borders. This is done during top-down
277 traversal of the regions (file ira-emit.c). In some
278 complicated cases IRA can create a new allocno to move allocno
279 values (e.g. when a swap of values stored in two hard-registers
280 is needed). At this stage, the new allocno is marked as
281 spilled. IRA still creates the pseudo-register and the moves
282 on the region borders even when both allocnos were assigned to
283 the same hard-register. If the reload pass spills a
284 pseudo-register for some reason, the effect will be smaller
285 because another allocno will still be in the hard-register. In
286 most cases, this is better then spilling both allocnos. If
287 reload does not change the allocation for the two
288 pseudo-registers, the trivial move will be removed by
289 post-reload optimizations. IRA does not generate moves for
290 allocnos assigned to the same hard register when the default
291 regional allocation algorithm is used and the register pressure
292 in the region for the corresponding pressure class is less than
293 number of available hard registers for given pressure class.
294 IRA also does some optimizations to remove redundant stores and
295 to reduce code duplication on the region borders.
297 o Flattening internal representation. After changing code, IRA
298 transforms its internal representation for several regions into
299 one region representation (file ira-build.c). This process is
300 called IR flattening. Such process is more complicated than IR
301 rebuilding would be, but is much faster.
303 o After IR flattening, IRA tries to assign hard registers to all
304 spilled allocnos. This is impelemented by a simple and fast
305 priority coloring algorithm (see function
306 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
307 created during the code change pass can be assigned to hard
308 registers.
310 o At the end IRA calls the reload pass. The reload pass
311 communicates with IRA through several functions in file
312 ira-color.c to improve its decisions in
314 * sharing stack slots for the spilled pseudos based on IRA info
315 about pseudo-register conflicts.
317 * reassigning hard-registers to all spilled pseudos at the end
318 of each reload iteration.
320 * choosing a better hard-register to spill based on IRA info
321 about pseudo-register live ranges and the register pressure
322 in places where the pseudo-register lives.
324 IRA uses a lot of data representing the target processors. These
325 data are initilized in file ira.c.
327 If function has no loops (or the loops are ignored when
328 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
329 coloring (only instead of separate pass of coalescing, we use hard
330 register preferencing). In such case, IRA works much faster
331 because many things are not made (like IR flattening, the
332 spill/restore optimization, and the code change).
334 Literature is worth to read for better understanding the code:
336 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
337 Graph Coloring Register Allocation.
339 o David Callahan, Brian Koblenz. Register allocation via
340 hierarchical graph coloring.
342 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
343 Coloring Register Allocation: A Study of the Chaitin-Briggs and
344 Callahan-Koblenz Algorithms.
346 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
347 Register Allocation Based on Graph Fusion.
349 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
350 Allocation for Irregular Architectures
352 o Vladimir Makarov. The Integrated Register Allocator for GCC.
354 o Vladimir Makarov. The top-down register allocator for irregular
355 register file architectures.
360 #include "config.h"
361 #include "system.h"
362 #include "coretypes.h"
363 #include "tm.h"
364 #include "regs.h"
365 #include "rtl.h"
366 #include "tm_p.h"
367 #include "target.h"
368 #include "flags.h"
369 #include "obstack.h"
370 #include "bitmap.h"
371 #include "hard-reg-set.h"
372 #include "basic-block.h"
373 #include "df.h"
374 #include "expr.h"
375 #include "recog.h"
376 #include "params.h"
377 #include "timevar.h"
378 #include "tree-pass.h"
379 #include "output.h"
380 #include "except.h"
381 #include "reload.h"
382 #include "diagnostic-core.h"
383 #include "function.h"
384 #include "ggc.h"
385 #include "ira-int.h"
386 #include "dce.h"
387 #include "dbgcnt.h"
389 struct target_ira default_target_ira;
390 struct target_ira_int default_target_ira_int;
391 #if SWITCHABLE_TARGET
392 struct target_ira *this_target_ira = &default_target_ira;
393 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
394 #endif
396 /* A modified value of flag `-fira-verbose' used internally. */
397 int internal_flag_ira_verbose;
399 /* Dump file of the allocator if it is not NULL. */
400 FILE *ira_dump_file;
402 /* The number of elements in the following array. */
403 int ira_spilled_reg_stack_slots_num;
405 /* The following array contains info about spilled pseudo-registers
406 stack slots used in current function so far. */
407 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
409 /* Correspondingly overall cost of the allocation, overall cost before
410 reload, cost of the allocnos assigned to hard-registers, cost of
411 the allocnos assigned to memory, cost of loads, stores and register
412 move insns generated for pseudo-register live range splitting (see
413 ira-emit.c). */
414 int ira_overall_cost, overall_cost_before;
415 int ira_reg_cost, ira_mem_cost;
416 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
417 int ira_move_loops_num, ira_additional_jumps_num;
419 /* All registers that can be eliminated. */
421 HARD_REG_SET eliminable_regset;
423 /* Temporary hard reg set used for a different calculation. */
424 static HARD_REG_SET temp_hard_regset;
426 #define last_mode_for_init_move_cost \
427 (this_target_ira_int->x_last_mode_for_init_move_cost)
430 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
431 static void
432 setup_reg_mode_hard_regset (void)
434 int i, m, hard_regno;
436 for (m = 0; m < NUM_MACHINE_MODES; m++)
437 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
439 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
440 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
441 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
442 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
443 hard_regno + i);
448 #define no_unit_alloc_regs \
449 (this_target_ira_int->x_no_unit_alloc_regs)
451 /* The function sets up the three arrays declared above. */
452 static void
453 setup_class_hard_regs (void)
455 int cl, i, hard_regno, n;
456 HARD_REG_SET processed_hard_reg_set;
458 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
459 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
461 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
462 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
463 CLEAR_HARD_REG_SET (processed_hard_reg_set);
464 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
466 ira_non_ordered_class_hard_regs[cl][i] = -1;
467 ira_class_hard_reg_index[cl][i] = -1;
469 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
471 #ifdef REG_ALLOC_ORDER
472 hard_regno = reg_alloc_order[i];
473 #else
474 hard_regno = i;
475 #endif
476 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
477 continue;
478 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
479 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
480 ira_class_hard_reg_index[cl][hard_regno] = -1;
481 else
483 ira_class_hard_reg_index[cl][hard_regno] = n;
484 ira_class_hard_regs[cl][n++] = hard_regno;
487 ira_class_hard_regs_num[cl] = n;
488 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
489 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
490 ira_non_ordered_class_hard_regs[cl][n++] = i;
491 ira_assert (ira_class_hard_regs_num[cl] == n);
495 /* Set up global variables defining info about hard registers for the
496 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
497 that we can use the hard frame pointer for the allocation. */
498 static void
499 setup_alloc_regs (bool use_hard_frame_p)
501 #ifdef ADJUST_REG_ALLOC_ORDER
502 ADJUST_REG_ALLOC_ORDER;
503 #endif
504 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
505 if (! use_hard_frame_p)
506 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
507 setup_class_hard_regs ();
512 #define alloc_reg_class_subclasses \
513 (this_target_ira_int->x_alloc_reg_class_subclasses)
515 /* Initialize the table of subclasses of each reg class. */
516 static void
517 setup_reg_subclasses (void)
519 int i, j;
520 HARD_REG_SET temp_hard_regset2;
522 for (i = 0; i < N_REG_CLASSES; i++)
523 for (j = 0; j < N_REG_CLASSES; j++)
524 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
526 for (i = 0; i < N_REG_CLASSES; i++)
528 if (i == (int) NO_REGS)
529 continue;
531 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
532 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
533 if (hard_reg_set_empty_p (temp_hard_regset))
534 continue;
535 for (j = 0; j < N_REG_CLASSES; j++)
536 if (i != j)
538 enum reg_class *p;
540 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
541 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
542 if (! hard_reg_set_subset_p (temp_hard_regset,
543 temp_hard_regset2))
544 continue;
545 p = &alloc_reg_class_subclasses[j][0];
546 while (*p != LIM_REG_CLASSES) p++;
547 *p = (enum reg_class) i;
554 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
555 static void
556 setup_class_subset_and_memory_move_costs (void)
558 int cl, cl2, mode, cost;
559 HARD_REG_SET temp_hard_regset2;
561 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
562 ira_memory_move_cost[mode][NO_REGS][0]
563 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
564 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
566 if (cl != (int) NO_REGS)
567 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
569 ira_max_memory_move_cost[mode][cl][0]
570 = ira_memory_move_cost[mode][cl][0]
571 = memory_move_cost ((enum machine_mode) mode,
572 (reg_class_t) cl, false);
573 ira_max_memory_move_cost[mode][cl][1]
574 = ira_memory_move_cost[mode][cl][1]
575 = memory_move_cost ((enum machine_mode) mode,
576 (reg_class_t) cl, true);
577 /* Costs for NO_REGS are used in cost calculation on the
578 1st pass when the preferred register classes are not
579 known yet. In this case we take the best scenario. */
580 if (ira_memory_move_cost[mode][NO_REGS][0]
581 > ira_memory_move_cost[mode][cl][0])
582 ira_max_memory_move_cost[mode][NO_REGS][0]
583 = ira_memory_move_cost[mode][NO_REGS][0]
584 = ira_memory_move_cost[mode][cl][0];
585 if (ira_memory_move_cost[mode][NO_REGS][1]
586 > ira_memory_move_cost[mode][cl][1])
587 ira_max_memory_move_cost[mode][NO_REGS][1]
588 = ira_memory_move_cost[mode][NO_REGS][1]
589 = ira_memory_move_cost[mode][cl][1];
592 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
593 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
595 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
596 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
597 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
598 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
599 ira_class_subset_p[cl][cl2]
600 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
601 if (! hard_reg_set_empty_p (temp_hard_regset2)
602 && hard_reg_set_subset_p (reg_class_contents[cl2],
603 reg_class_contents[cl]))
604 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
606 cost = ira_memory_move_cost[mode][cl2][0];
607 if (cost > ira_max_memory_move_cost[mode][cl][0])
608 ira_max_memory_move_cost[mode][cl][0] = cost;
609 cost = ira_memory_move_cost[mode][cl2][1];
610 if (cost > ira_max_memory_move_cost[mode][cl][1])
611 ira_max_memory_move_cost[mode][cl][1] = cost;
614 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
615 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
617 ira_memory_move_cost[mode][cl][0]
618 = ira_max_memory_move_cost[mode][cl][0];
619 ira_memory_move_cost[mode][cl][1]
620 = ira_max_memory_move_cost[mode][cl][1];
622 setup_reg_subclasses ();
627 /* Define the following macro if allocation through malloc if
628 preferable. */
629 #define IRA_NO_OBSTACK
631 #ifndef IRA_NO_OBSTACK
632 /* Obstack used for storing all dynamic data (except bitmaps) of the
633 IRA. */
634 static struct obstack ira_obstack;
635 #endif
637 /* Obstack used for storing all bitmaps of the IRA. */
638 static struct bitmap_obstack ira_bitmap_obstack;
640 /* Allocate memory of size LEN for IRA data. */
641 void *
642 ira_allocate (size_t len)
644 void *res;
646 #ifndef IRA_NO_OBSTACK
647 res = obstack_alloc (&ira_obstack, len);
648 #else
649 res = xmalloc (len);
650 #endif
651 return res;
654 /* Free memory ADDR allocated for IRA data. */
655 void
656 ira_free (void *addr ATTRIBUTE_UNUSED)
658 #ifndef IRA_NO_OBSTACK
659 /* do nothing */
660 #else
661 free (addr);
662 #endif
666 /* Allocate and returns bitmap for IRA. */
667 bitmap
668 ira_allocate_bitmap (void)
670 return BITMAP_ALLOC (&ira_bitmap_obstack);
673 /* Free bitmap B allocated for IRA. */
674 void
675 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
677 /* do nothing */
682 /* Output information about allocation of all allocnos (except for
683 caps) into file F. */
684 void
685 ira_print_disposition (FILE *f)
687 int i, n, max_regno;
688 ira_allocno_t a;
689 basic_block bb;
691 fprintf (f, "Disposition:");
692 max_regno = max_reg_num ();
693 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
694 for (a = ira_regno_allocno_map[i];
695 a != NULL;
696 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
698 if (n % 4 == 0)
699 fprintf (f, "\n");
700 n++;
701 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
702 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
703 fprintf (f, "b%-3d", bb->index);
704 else
705 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
706 if (ALLOCNO_HARD_REGNO (a) >= 0)
707 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
708 else
709 fprintf (f, " mem");
711 fprintf (f, "\n");
714 /* Outputs information about allocation of all allocnos into
715 stderr. */
716 void
717 ira_debug_disposition (void)
719 ira_print_disposition (stderr);
724 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
725 register class containing stack registers or NO_REGS if there are
726 no stack registers. To find this class, we iterate through all
727 register pressure classes and choose the first register pressure
728 class containing all the stack registers and having the biggest
729 size. */
730 static void
731 setup_stack_reg_pressure_class (void)
733 ira_stack_reg_pressure_class = NO_REGS;
734 #ifdef STACK_REGS
736 int i, best, size;
737 enum reg_class cl;
738 HARD_REG_SET temp_hard_regset2;
740 CLEAR_HARD_REG_SET (temp_hard_regset);
741 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
742 SET_HARD_REG_BIT (temp_hard_regset, i);
743 best = 0;
744 for (i = 0; i < ira_pressure_classes_num; i++)
746 cl = ira_pressure_classes[i];
747 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
748 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
749 size = hard_reg_set_size (temp_hard_regset2);
750 if (best < size)
752 best = size;
753 ira_stack_reg_pressure_class = cl;
757 #endif
760 /* Find pressure classes which are register classes for which we
761 calculate register pressure in IRA, register pressure sensitive
762 insn scheduling, and register pressure sensitive loop invariant
763 motion.
765 To make register pressure calculation easy, we always use
766 non-intersected register pressure classes. A move of hard
767 registers from one register pressure class is not more expensive
768 than load and store of the hard registers. Most likely an allocno
769 class will be a subset of a register pressure class and in many
770 cases a register pressure class. That makes usage of register
771 pressure classes a good approximation to find a high register
772 pressure. */
773 static void
774 setup_pressure_classes (void)
776 int cost, i, n, curr;
777 int cl, cl2;
778 enum reg_class pressure_classes[N_REG_CLASSES];
779 int m;
780 HARD_REG_SET temp_hard_regset2;
781 bool insert_p;
783 n = 0;
784 for (cl = 0; cl < N_REG_CLASSES; cl++)
786 if (ira_class_hard_regs_num[cl] == 0)
787 continue;
788 if (ira_class_hard_regs_num[cl] != 1
789 /* A register class without subclasses may contain a few
790 hard registers and movement between them is costly
791 (e.g. SPARC FPCC registers). We still should consider it
792 as a candidate for a pressure class. */
793 && alloc_reg_class_subclasses[cl][0] != LIM_REG_CLASSES)
795 /* Check that the moves between any hard registers of the
796 current class are not more expensive for a legal mode
797 than load/store of the hard registers of the current
798 class. Such class is a potential candidate to be a
799 register pressure class. */
800 for (m = 0; m < NUM_MACHINE_MODES; m++)
802 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
803 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
804 AND_COMPL_HARD_REG_SET (temp_hard_regset,
805 ira_prohibited_class_mode_regs[cl][m]);
806 if (hard_reg_set_empty_p (temp_hard_regset))
807 continue;
808 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
809 cost = ira_register_move_cost[m][cl][cl];
810 if (cost <= ira_max_memory_move_cost[m][cl][1]
811 || cost <= ira_max_memory_move_cost[m][cl][0])
812 break;
814 if (m >= NUM_MACHINE_MODES)
815 continue;
817 curr = 0;
818 insert_p = true;
819 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
820 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
821 /* Remove so far added pressure classes which are subset of the
822 current candidate class. Prefer GENERAL_REGS as a pressure
823 register class to another class containing the same
824 allocatable hard registers. We do this because machine
825 dependent cost hooks might give wrong costs for the latter
826 class but always give the right cost for the former class
827 (GENERAL_REGS). */
828 for (i = 0; i < n; i++)
830 cl2 = pressure_classes[i];
831 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
832 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
833 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
834 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
835 || cl2 == (int) GENERAL_REGS))
837 pressure_classes[curr++] = (enum reg_class) cl2;
838 insert_p = false;
839 continue;
841 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
842 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
843 || cl == (int) GENERAL_REGS))
844 continue;
845 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
846 insert_p = false;
847 pressure_classes[curr++] = (enum reg_class) cl2;
849 /* If the current candidate is a subset of a so far added
850 pressure class, don't add it to the list of the pressure
851 classes. */
852 if (insert_p)
853 pressure_classes[curr++] = (enum reg_class) cl;
854 n = curr;
856 #ifdef ENABLE_IRA_CHECKING
858 HARD_REG_SET ignore_hard_regs;
860 /* Check pressure classes correctness: here we check that hard
861 registers from all register pressure classes contains all hard
862 registers available for the allocation. */
863 CLEAR_HARD_REG_SET (temp_hard_regset);
864 CLEAR_HARD_REG_SET (temp_hard_regset2);
865 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
866 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
868 /* For some targets (like MIPS with MD_REGS), there are some
869 classes with hard registers available for allocation but
870 not able to hold value of any mode. */
871 for (m = 0; m < NUM_MACHINE_MODES; m++)
872 if (contains_reg_of_mode[cl][m])
873 break;
874 if (m >= NUM_MACHINE_MODES)
876 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
877 continue;
879 for (i = 0; i < n; i++)
880 if ((int) pressure_classes[i] == cl)
881 break;
882 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
883 if (i < n)
884 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
886 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
887 /* Some targets (like SPARC with ICC reg) have alocatable regs
888 for which no reg class is defined. */
889 if (REGNO_REG_CLASS (i) == NO_REGS)
890 SET_HARD_REG_BIT (ignore_hard_regs, i);
891 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
892 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
893 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
895 #endif
896 ira_pressure_classes_num = 0;
897 for (i = 0; i < n; i++)
899 cl = (int) pressure_classes[i];
900 ira_reg_pressure_class_p[cl] = true;
901 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
903 setup_stack_reg_pressure_class ();
906 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
907 whose register move cost between any registers of the class is the
908 same as for all its subclasses. We use the data to speed up the
909 2nd pass of calculations of allocno costs. */
910 static void
911 setup_uniform_class_p (void)
913 int i, cl, cl2, m;
915 for (cl = 0; cl < N_REG_CLASSES; cl++)
917 ira_uniform_class_p[cl] = false;
918 if (ira_class_hard_regs_num[cl] == 0)
919 continue;
920 /* We can not use alloc_reg_class_subclasses here because move
921 cost hooks does not take into account that some registers are
922 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
923 is element of alloc_reg_class_subclasses for GENERAL_REGS
924 because SSE regs are unavailable. */
925 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
927 if (ira_class_hard_regs_num[cl2] == 0)
928 continue;
929 for (m = 0; m < NUM_MACHINE_MODES; m++)
930 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
932 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
933 if (ira_register_move_cost[m][cl][cl]
934 != ira_register_move_cost[m][cl2][cl2])
935 break;
937 if (m < NUM_MACHINE_MODES)
938 break;
940 if (cl2 == LIM_REG_CLASSES)
941 ira_uniform_class_p[cl] = true;
945 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
946 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
948 Target may have many subtargets and not all target hard regiters can
949 be used for allocation, e.g. x86 port in 32-bit mode can not use
950 hard registers introduced in x86-64 like r8-r15). Some classes
951 might have the same allocatable hard registers, e.g. INDEX_REGS
952 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
953 calculations efforts we introduce allocno classes which contain
954 unique non-empty sets of allocatable hard-registers.
956 Pseudo class cost calculation in ira-costs.c is very expensive.
957 Therefore we are trying to decrease number of classes involved in
958 such calculation. Register classes used in the cost calculation
959 are called important classes. They are allocno classes and other
960 non-empty classes whose allocatable hard register sets are inside
961 of an allocno class hard register set. From the first sight, it
962 looks like that they are just allocno classes. It is not true. In
963 example of x86-port in 32-bit mode, allocno classes will contain
964 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
965 registers are the same for the both classes). The important
966 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
967 because a machine description insn constraint may refers for
968 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
969 of the insn constraints. */
970 static void
971 setup_allocno_and_important_classes (void)
973 int i, j, n, cl;
974 bool set_p;
975 HARD_REG_SET temp_hard_regset2;
976 static enum reg_class classes[LIM_REG_CLASSES + 1];
978 n = 0;
979 /* Collect classes which contain unique sets of allocatable hard
980 registers. Prefer GENERAL_REGS to other classes containing the
981 same set of hard registers. */
982 for (i = 0; i < LIM_REG_CLASSES; i++)
984 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
985 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
986 for (j = 0; j < n; j++)
988 cl = classes[j];
989 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
990 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
991 no_unit_alloc_regs);
992 if (hard_reg_set_equal_p (temp_hard_regset,
993 temp_hard_regset2))
994 break;
996 if (j >= n)
997 classes[n++] = (enum reg_class) i;
998 else if (i == GENERAL_REGS)
999 /* Prefer general regs. For i386 example, it means that
1000 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1001 (all of them consists of the same available hard
1002 registers). */
1003 classes[j] = (enum reg_class) i;
1005 classes[n] = LIM_REG_CLASSES;
1007 /* Set up classes which can be used for allocnos as classes
1008 conatining non-empty unique sets of allocatable hard
1009 registers. */
1010 ira_allocno_classes_num = 0;
1011 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1012 if (ira_class_hard_regs_num[cl] > 0)
1013 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1014 ira_important_classes_num = 0;
1015 /* Add non-allocno classes containing to non-empty set of
1016 allocatable hard regs. */
1017 for (cl = 0; cl < N_REG_CLASSES; cl++)
1018 if (ira_class_hard_regs_num[cl] > 0)
1020 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1021 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1022 set_p = false;
1023 for (j = 0; j < ira_allocno_classes_num; j++)
1025 COPY_HARD_REG_SET (temp_hard_regset2,
1026 reg_class_contents[ira_allocno_classes[j]]);
1027 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1028 if ((enum reg_class) cl == ira_allocno_classes[j])
1029 break;
1030 else if (hard_reg_set_subset_p (temp_hard_regset,
1031 temp_hard_regset2))
1032 set_p = true;
1034 if (set_p && j >= ira_allocno_classes_num)
1035 ira_important_classes[ira_important_classes_num++]
1036 = (enum reg_class) cl;
1038 /* Now add allocno classes to the important classes. */
1039 for (j = 0; j < ira_allocno_classes_num; j++)
1040 ira_important_classes[ira_important_classes_num++]
1041 = ira_allocno_classes[j];
1042 for (cl = 0; cl < N_REG_CLASSES; cl++)
1044 ira_reg_allocno_class_p[cl] = false;
1045 ira_reg_pressure_class_p[cl] = false;
1047 for (j = 0; j < ira_allocno_classes_num; j++)
1048 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1049 setup_pressure_classes ();
1050 setup_uniform_class_p ();
1053 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1054 given by array CLASSES of length CLASSES_NUM. The function is used
1055 make translation any reg class to an allocno class or to an
1056 pressure class. This translation is necessary for some
1057 calculations when we can use only allocno or pressure classes and
1058 such translation represents an approximate representation of all
1059 classes.
1061 The translation in case when allocatable hard register set of a
1062 given class is subset of allocatable hard register set of a class
1063 in CLASSES is pretty simple. We use smallest classes from CLASSES
1064 containing a given class. If allocatable hard register set of a
1065 given class is not a subset of any corresponding set of a class
1066 from CLASSES, we use the cheapest (with load/store point of view)
1067 class from CLASSES whose set intersects with given class set */
1068 static void
1069 setup_class_translate_array (enum reg_class *class_translate,
1070 int classes_num, enum reg_class *classes)
1072 int cl, mode;
1073 enum reg_class aclass, best_class, *cl_ptr;
1074 int i, cost, min_cost, best_cost;
1076 for (cl = 0; cl < N_REG_CLASSES; cl++)
1077 class_translate[cl] = NO_REGS;
1079 for (i = 0; i < classes_num; i++)
1081 aclass = classes[i];
1082 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1083 (cl = *cl_ptr) != LIM_REG_CLASSES;
1084 cl_ptr++)
1085 if (class_translate[cl] == NO_REGS)
1086 class_translate[cl] = aclass;
1087 class_translate[aclass] = aclass;
1089 /* For classes which are not fully covered by one of given classes
1090 (in other words covered by more one given class), use the
1091 cheapest class. */
1092 for (cl = 0; cl < N_REG_CLASSES; cl++)
1094 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1095 continue;
1096 best_class = NO_REGS;
1097 best_cost = INT_MAX;
1098 for (i = 0; i < classes_num; i++)
1100 aclass = classes[i];
1101 COPY_HARD_REG_SET (temp_hard_regset,
1102 reg_class_contents[aclass]);
1103 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1104 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1105 if (! hard_reg_set_empty_p (temp_hard_regset))
1107 min_cost = INT_MAX;
1108 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1110 cost = (ira_memory_move_cost[mode][cl][0]
1111 + ira_memory_move_cost[mode][cl][1]);
1112 if (min_cost > cost)
1113 min_cost = cost;
1115 if (best_class == NO_REGS || best_cost > min_cost)
1117 best_class = aclass;
1118 best_cost = min_cost;
1122 class_translate[cl] = best_class;
1126 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1127 IRA_PRESSURE_CLASS_TRANSLATE. */
1128 static void
1129 setup_class_translate (void)
1131 setup_class_translate_array (ira_allocno_class_translate,
1132 ira_allocno_classes_num, ira_allocno_classes);
1133 setup_class_translate_array (ira_pressure_class_translate,
1134 ira_pressure_classes_num, ira_pressure_classes);
1137 /* Order numbers of allocno classes in original target allocno class
1138 array, -1 for non-allocno classes. */
1139 static int allocno_class_order[N_REG_CLASSES];
1141 /* The function used to sort the important classes. */
1142 static int
1143 comp_reg_classes_func (const void *v1p, const void *v2p)
1145 enum reg_class cl1 = *(const enum reg_class *) v1p;
1146 enum reg_class cl2 = *(const enum reg_class *) v2p;
1147 enum reg_class tcl1, tcl2;
1148 int diff;
1150 tcl1 = ira_allocno_class_translate[cl1];
1151 tcl2 = ira_allocno_class_translate[cl2];
1152 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1153 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1154 return diff;
1155 return (int) cl1 - (int) cl2;
1158 /* For correct work of function setup_reg_class_relation we need to
1159 reorder important classes according to the order of their allocno
1160 classes. It places important classes containing the same
1161 allocatable hard register set adjacent to each other and allocno
1162 class with the allocatable hard register set right after the other
1163 important classes with the same set.
1165 In example from comments of function
1166 setup_allocno_and_important_classes, it places LEGACY_REGS and
1167 GENERAL_REGS close to each other and GENERAL_REGS is after
1168 LEGACY_REGS. */
1169 static void
1170 reorder_important_classes (void)
1172 int i;
1174 for (i = 0; i < N_REG_CLASSES; i++)
1175 allocno_class_order[i] = -1;
1176 for (i = 0; i < ira_allocno_classes_num; i++)
1177 allocno_class_order[ira_allocno_classes[i]] = i;
1178 qsort (ira_important_classes, ira_important_classes_num,
1179 sizeof (enum reg_class), comp_reg_classes_func);
1180 for (i = 0; i < ira_important_classes_num; i++)
1181 ira_important_class_nums[ira_important_classes[i]] = i;
1184 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1185 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1186 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1187 please see corresponding comments in ira-int.h. */
1188 static void
1189 setup_reg_class_relations (void)
1191 int i, cl1, cl2, cl3;
1192 HARD_REG_SET intersection_set, union_set, temp_set2;
1193 bool important_class_p[N_REG_CLASSES];
1195 memset (important_class_p, 0, sizeof (important_class_p));
1196 for (i = 0; i < ira_important_classes_num; i++)
1197 important_class_p[ira_important_classes[i]] = true;
1198 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1200 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1201 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1203 ira_reg_classes_intersect_p[cl1][cl2] = false;
1204 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1205 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1206 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1207 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1208 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1209 if (hard_reg_set_empty_p (temp_hard_regset)
1210 && hard_reg_set_empty_p (temp_set2))
1212 /* The both classes have no allocatable hard registers
1213 -- take all class hard registers into account and use
1214 reg_class_subunion and reg_class_superunion. */
1215 for (i = 0;; i++)
1217 cl3 = reg_class_subclasses[cl1][i];
1218 if (cl3 == LIM_REG_CLASSES)
1219 break;
1220 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1221 (enum reg_class) cl3))
1222 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1224 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1225 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1226 continue;
1228 ira_reg_classes_intersect_p[cl1][cl2]
1229 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1230 if (important_class_p[cl1] && important_class_p[cl2]
1231 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1233 /* CL1 and CL2 are important classes and CL1 allocatable
1234 hard register set is inside of CL2 allocatable hard
1235 registers -- make CL1 a superset of CL2. */
1236 enum reg_class *p;
1238 p = &ira_reg_class_super_classes[cl1][0];
1239 while (*p != LIM_REG_CLASSES)
1240 p++;
1241 *p++ = (enum reg_class) cl2;
1242 *p = LIM_REG_CLASSES;
1244 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1245 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1246 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1247 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1248 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1249 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1250 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1251 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1252 for (i = 0; i < ira_important_classes_num; i++)
1254 cl3 = ira_important_classes[i];
1255 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1256 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1257 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1259 /* CL3 allocatable hard register set is inside of
1260 intersection of allocatable hard register sets
1261 of CL1 and CL2. */
1262 COPY_HARD_REG_SET
1263 (temp_set2,
1264 reg_class_contents[(int)
1265 ira_reg_class_intersect[cl1][cl2]]);
1266 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1267 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1268 /* If the allocatable hard register sets are the
1269 same, prefer GENERAL_REGS or the smallest
1270 class for debugging purposes. */
1271 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1272 && (cl3 == GENERAL_REGS
1273 || (ira_reg_class_intersect[cl1][cl2] != GENERAL_REGS
1274 && hard_reg_set_subset_p
1275 (reg_class_contents[cl3],
1276 reg_class_contents
1277 [(int) ira_reg_class_intersect[cl1][cl2]])))))
1278 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1280 if (hard_reg_set_subset_p (temp_hard_regset, union_set))
1282 /* CL3 allocatbale hard register set is inside of
1283 union of allocatable hard register sets of CL1
1284 and CL2. */
1285 COPY_HARD_REG_SET
1286 (temp_set2,
1287 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1288 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1289 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1290 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1292 && (! hard_reg_set_equal_p (temp_set2,
1293 temp_hard_regset)
1294 || cl3 == GENERAL_REGS
1295 /* If the allocatable hard register sets are the
1296 same, prefer GENERAL_REGS or the smallest
1297 class for debugging purposes. */
1298 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1299 && hard_reg_set_subset_p
1300 (reg_class_contents[cl3],
1301 reg_class_contents
1302 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1303 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1305 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1307 /* CL3 allocatable hard register set contains union
1308 of allocatable hard register sets of CL1 and
1309 CL2. */
1310 COPY_HARD_REG_SET
1311 (temp_set2,
1312 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1313 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1314 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1315 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1317 && (! hard_reg_set_equal_p (temp_set2,
1318 temp_hard_regset)
1319 || cl3 == GENERAL_REGS
1320 /* If the allocatable hard register sets are the
1321 same, prefer GENERAL_REGS or the smallest
1322 class for debugging purposes. */
1323 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1324 && hard_reg_set_subset_p
1325 (reg_class_contents[cl3],
1326 reg_class_contents
1327 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1328 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1335 /* Output all unifrom and important classes into file F. */
1336 static void
1337 print_unform_and_important_classes (FILE *f)
1339 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1340 int i, cl;
1342 fprintf (f, "Uniform classes:\n");
1343 for (cl = 0; cl < N_REG_CLASSES; cl++)
1344 if (ira_uniform_class_p[cl])
1345 fprintf (f, " %s", reg_class_names[cl]);
1346 fprintf (f, "\nImportant classes:\n");
1347 for (i = 0; i < ira_important_classes_num; i++)
1348 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1349 fprintf (f, "\n");
1352 /* Output all possible allocno or pressure classes and their
1353 translation map into file F. */
1354 static void
1355 print_translated_classes (FILE *f, bool pressure_p)
1357 int classes_num = (pressure_p
1358 ? ira_pressure_classes_num : ira_allocno_classes_num);
1359 enum reg_class *classes = (pressure_p
1360 ? ira_pressure_classes : ira_allocno_classes);
1361 enum reg_class *class_translate = (pressure_p
1362 ? ira_pressure_class_translate
1363 : ira_allocno_class_translate);
1364 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1365 int i;
1367 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1368 for (i = 0; i < classes_num; i++)
1369 fprintf (f, " %s", reg_class_names[classes[i]]);
1370 fprintf (f, "\nClass translation:\n");
1371 for (i = 0; i < N_REG_CLASSES; i++)
1372 fprintf (f, " %s -> %s\n", reg_class_names[i],
1373 reg_class_names[class_translate[i]]);
1376 /* Output all possible allocno and translation classes and the
1377 translation maps into stderr. */
1378 void
1379 ira_debug_allocno_classes (void)
1381 print_unform_and_important_classes (stderr);
1382 print_translated_classes (stderr, false);
1383 print_translated_classes (stderr, true);
1386 /* Set up different arrays concerning class subsets, allocno and
1387 important classes. */
1388 static void
1389 find_reg_classes (void)
1391 setup_allocno_and_important_classes ();
1392 setup_class_translate ();
1393 reorder_important_classes ();
1394 setup_reg_class_relations ();
1399 /* Set up the array above. */
1400 static void
1401 setup_hard_regno_aclass (void)
1403 int i;
1405 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1407 #if 1
1408 ira_hard_regno_allocno_class[i]
1409 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1410 ? NO_REGS
1411 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1412 #else
1413 int j;
1414 enum reg_class cl;
1415 ira_hard_regno_allocno_class[i] = NO_REGS;
1416 for (j = 0; j < ira_allocno_classes_num; j++)
1418 cl = ira_allocno_classes[j];
1419 if (ira_class_hard_reg_index[cl][i] >= 0)
1421 ira_hard_regno_allocno_class[i] = cl;
1422 break;
1425 #endif
1431 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1432 static void
1433 setup_reg_class_nregs (void)
1435 int i, cl, cl2, m;
1437 for (m = 0; m < MAX_MACHINE_MODE; m++)
1439 for (cl = 0; cl < N_REG_CLASSES; cl++)
1440 ira_reg_class_max_nregs[cl][m]
1441 = ira_reg_class_min_nregs[cl][m]
1442 = targetm.class_max_nregs ((reg_class_t) cl, (enum machine_mode) m);
1443 for (cl = 0; cl < N_REG_CLASSES; cl++)
1444 for (i = 0;
1445 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1446 i++)
1447 if (ira_reg_class_min_nregs[cl2][m]
1448 < ira_reg_class_min_nregs[cl][m])
1449 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1455 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS. */
1456 static void
1457 setup_prohibited_class_mode_regs (void)
1459 int j, k, hard_regno, cl;
1461 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1463 for (j = 0; j < NUM_MACHINE_MODES; j++)
1465 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1466 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1468 hard_regno = ira_class_hard_regs[cl][k];
1469 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1470 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1471 hard_regno);
1477 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1478 spanning from one register pressure class to another one. It is
1479 called after defining the pressure classes. */
1480 static void
1481 clarify_prohibited_class_mode_regs (void)
1483 int j, k, hard_regno, cl, pclass, nregs;
1485 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1486 for (j = 0; j < NUM_MACHINE_MODES; j++)
1487 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1489 hard_regno = ira_class_hard_regs[cl][k];
1490 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1491 continue;
1492 nregs = hard_regno_nregs[hard_regno][j];
1493 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1495 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1496 hard_regno);
1497 continue;
1499 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1500 for (nregs-- ;nregs >= 0; nregs--)
1501 if (((enum reg_class) pclass
1502 != ira_pressure_class_translate[REGNO_REG_CLASS
1503 (hard_regno + nregs)]))
1505 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1506 hard_regno);
1507 break;
1512 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1513 and IRA_MAY_MOVE_OUT_COST for MODE. */
1514 void
1515 ira_init_register_move_cost (enum machine_mode mode)
1517 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1518 bool all_match = true;
1519 unsigned int cl1, cl2;
1521 ira_assert (ira_register_move_cost[mode] == NULL
1522 && ira_may_move_in_cost[mode] == NULL
1523 && ira_may_move_out_cost[mode] == NULL);
1524 ira_assert (have_regs_of_mode[mode]);
1525 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1526 if (contains_reg_of_mode[cl1][mode])
1527 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1529 int cost;
1530 if (!contains_reg_of_mode[cl2][mode])
1531 cost = 65535;
1532 else
1534 cost = register_move_cost (mode, (enum reg_class) cl1,
1535 (enum reg_class) cl2);
1536 ira_assert (cost < 65535);
1538 all_match &= (last_move_cost[cl1][cl2] == cost);
1539 last_move_cost[cl1][cl2] = cost;
1541 if (all_match && last_mode_for_init_move_cost != -1)
1543 ira_register_move_cost[mode]
1544 = ira_register_move_cost[last_mode_for_init_move_cost];
1545 ira_may_move_in_cost[mode]
1546 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1547 ira_may_move_out_cost[mode]
1548 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1549 return;
1551 last_mode_for_init_move_cost = mode;
1552 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1553 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1554 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1555 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1556 if (contains_reg_of_mode[cl1][mode])
1557 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1559 int cost;
1560 enum reg_class *p1, *p2;
1562 if (last_move_cost[cl1][cl2] == 65535)
1564 ira_register_move_cost[mode][cl1][cl2] = 65535;
1565 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1566 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1568 else
1570 cost = last_move_cost[cl1][cl2];
1572 for (p2 = &reg_class_subclasses[cl2][0];
1573 *p2 != LIM_REG_CLASSES; p2++)
1574 if (ira_class_hard_regs_num[*p2] > 0
1575 && (ira_reg_class_max_nregs[*p2][mode]
1576 <= ira_class_hard_regs_num[*p2]))
1577 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1579 for (p1 = &reg_class_subclasses[cl1][0];
1580 *p1 != LIM_REG_CLASSES; p1++)
1581 if (ira_class_hard_regs_num[*p1] > 0
1582 && (ira_reg_class_max_nregs[*p1][mode]
1583 <= ira_class_hard_regs_num[*p1]))
1584 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1586 ira_assert (cost <= 65535);
1587 ira_register_move_cost[mode][cl1][cl2] = cost;
1589 if (ira_class_subset_p[cl1][cl2])
1590 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1591 else
1592 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1594 if (ira_class_subset_p[cl2][cl1])
1595 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1596 else
1597 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1600 else
1601 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1603 ira_register_move_cost[mode][cl1][cl2] = 65535;
1604 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1605 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1610 /* This is called once during compiler work. It sets up
1611 different arrays whose values don't depend on the compiled
1612 function. */
1613 void
1614 ira_init_once (void)
1616 ira_init_costs_once ();
1619 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1620 ira_may_move_out_cost for each mode. */
1621 static void
1622 free_register_move_costs (void)
1624 int mode, i;
1626 /* Reset move_cost and friends, making sure we only free shared
1627 table entries once. */
1628 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1629 if (ira_register_move_cost[mode])
1631 for (i = 0;
1632 i < mode && (ira_register_move_cost[i]
1633 != ira_register_move_cost[mode]);
1634 i++)
1636 if (i == mode)
1638 free (ira_register_move_cost[mode]);
1639 free (ira_may_move_in_cost[mode]);
1640 free (ira_may_move_out_cost[mode]);
1643 memset (ira_register_move_cost, 0, sizeof ira_register_move_cost);
1644 memset (ira_may_move_in_cost, 0, sizeof ira_may_move_in_cost);
1645 memset (ira_may_move_out_cost, 0, sizeof ira_may_move_out_cost);
1646 last_mode_for_init_move_cost = -1;
1649 /* This is called every time when register related information is
1650 changed. */
1651 void
1652 ira_init (void)
1654 free_register_move_costs ();
1655 setup_reg_mode_hard_regset ();
1656 setup_alloc_regs (flag_omit_frame_pointer != 0);
1657 setup_class_subset_and_memory_move_costs ();
1658 setup_reg_class_nregs ();
1659 setup_prohibited_class_mode_regs ();
1660 find_reg_classes ();
1661 clarify_prohibited_class_mode_regs ();
1662 setup_hard_regno_aclass ();
1663 ira_init_costs ();
1666 /* Function called once at the end of compiler work. */
1667 void
1668 ira_finish_once (void)
1670 ira_finish_costs_once ();
1671 free_register_move_costs ();
1675 #define ira_prohibited_mode_move_regs_initialized_p \
1676 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1678 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1679 static void
1680 setup_prohibited_mode_move_regs (void)
1682 int i, j;
1683 rtx test_reg1, test_reg2, move_pat, move_insn;
1685 if (ira_prohibited_mode_move_regs_initialized_p)
1686 return;
1687 ira_prohibited_mode_move_regs_initialized_p = true;
1688 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1689 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1690 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1691 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, move_pat, 0, -1, 0);
1692 for (i = 0; i < NUM_MACHINE_MODES; i++)
1694 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1695 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1697 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
1698 continue;
1699 SET_REGNO_RAW (test_reg1, j);
1700 PUT_MODE (test_reg1, (enum machine_mode) i);
1701 SET_REGNO_RAW (test_reg2, j);
1702 PUT_MODE (test_reg2, (enum machine_mode) i);
1703 INSN_CODE (move_insn) = -1;
1704 recog_memoized (move_insn);
1705 if (INSN_CODE (move_insn) < 0)
1706 continue;
1707 extract_insn (move_insn);
1708 if (! constrain_operands (1))
1709 continue;
1710 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1717 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
1718 static bool
1719 ira_bad_reload_regno_1 (int regno, rtx x)
1721 int x_regno, n, i;
1722 ira_allocno_t a;
1723 enum reg_class pref;
1725 /* We only deal with pseudo regs. */
1726 if (! x || GET_CODE (x) != REG)
1727 return false;
1729 x_regno = REGNO (x);
1730 if (x_regno < FIRST_PSEUDO_REGISTER)
1731 return false;
1733 /* If the pseudo prefers REGNO explicitly, then do not consider
1734 REGNO a bad spill choice. */
1735 pref = reg_preferred_class (x_regno);
1736 if (reg_class_size[pref] == 1)
1737 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
1739 /* If the pseudo conflicts with REGNO, then we consider REGNO a
1740 poor choice for a reload regno. */
1741 a = ira_regno_allocno_map[x_regno];
1742 n = ALLOCNO_NUM_OBJECTS (a);
1743 for (i = 0; i < n; i++)
1745 ira_object_t obj = ALLOCNO_OBJECT (a, i);
1746 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
1747 return true;
1749 return false;
1752 /* Return nonzero if REGNO is a particularly bad choice for reloading
1753 IN or OUT. */
1754 bool
1755 ira_bad_reload_regno (int regno, rtx in, rtx out)
1757 return (ira_bad_reload_regno_1 (regno, in)
1758 || ira_bad_reload_regno_1 (regno, out));
1761 /* Return TRUE if *LOC contains an asm. */
1762 static int
1763 insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1765 if ( !*loc)
1766 return FALSE;
1767 if (GET_CODE (*loc) == ASM_OPERANDS)
1768 return TRUE;
1769 return FALSE;
1773 /* Return TRUE if INSN contains an ASM. */
1774 static bool
1775 insn_contains_asm (rtx insn)
1777 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1780 /* Add register clobbers from asm statements. */
1781 static void
1782 compute_regs_asm_clobbered (void)
1784 basic_block bb;
1786 FOR_EACH_BB (bb)
1788 rtx insn;
1789 FOR_BB_INSNS_REVERSE (bb, insn)
1791 df_ref *def_rec;
1793 if (insn_contains_asm (insn))
1794 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1796 df_ref def = *def_rec;
1797 unsigned int dregno = DF_REF_REGNO (def);
1798 if (HARD_REGISTER_NUM_P (dregno))
1799 add_to_hard_reg_set (&crtl->asm_clobbers,
1800 GET_MODE (DF_REF_REAL_REG (def)),
1801 dregno);
1808 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
1809 void
1810 ira_setup_eliminable_regset (void)
1812 #ifdef ELIMINABLE_REGS
1813 int i;
1814 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1815 #endif
1816 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1817 sp for alloca. So we can't eliminate the frame pointer in that
1818 case. At some point, we should improve this by emitting the
1819 sp-adjusting insns for this case. */
1820 int need_fp
1821 = (! flag_omit_frame_pointer
1822 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
1823 /* We need the frame pointer to catch stack overflow exceptions
1824 if the stack pointer is moving. */
1825 || (flag_stack_check && STACK_CHECK_MOVING_SP)
1826 || crtl->accesses_prior_frames
1827 || crtl->stack_realign_needed
1828 || targetm.frame_pointer_required ());
1830 frame_pointer_needed = need_fp;
1832 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1833 CLEAR_HARD_REG_SET (eliminable_regset);
1835 compute_regs_asm_clobbered ();
1837 /* Build the regset of all eliminable registers and show we can't
1838 use those that we already know won't be eliminated. */
1839 #ifdef ELIMINABLE_REGS
1840 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1842 bool cannot_elim
1843 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
1844 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
1846 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
1848 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1850 if (cannot_elim)
1851 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1853 else if (cannot_elim)
1854 error ("%s cannot be used in asm here",
1855 reg_names[eliminables[i].from]);
1856 else
1857 df_set_regs_ever_live (eliminables[i].from, true);
1859 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1860 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1862 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
1863 if (need_fp)
1864 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1866 else if (need_fp)
1867 error ("%s cannot be used in asm here",
1868 reg_names[HARD_FRAME_POINTER_REGNUM]);
1869 else
1870 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1871 #endif
1873 #else
1874 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1876 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
1877 if (need_fp)
1878 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1880 else if (need_fp)
1881 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1882 else
1883 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1884 #endif
1889 /* The length of the following two arrays. */
1890 int ira_reg_equiv_len;
1892 /* The element value is TRUE if the corresponding regno value is
1893 invariant. */
1894 bool *ira_reg_equiv_invariant_p;
1896 /* The element value is equiv constant of given pseudo-register or
1897 NULL_RTX. */
1898 rtx *ira_reg_equiv_const;
1900 /* Set up the two arrays declared above. */
1901 static void
1902 find_reg_equiv_invariant_const (void)
1904 unsigned int i;
1905 bool invariant_p;
1906 rtx list, insn, note, constant, x;
1908 for (i = FIRST_PSEUDO_REGISTER; i < VEC_length (reg_equivs_t, reg_equivs); i++)
1910 constant = NULL_RTX;
1911 invariant_p = false;
1912 for (list = reg_equiv_init (i); list != NULL_RTX; list = XEXP (list, 1))
1914 insn = XEXP (list, 0);
1915 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1917 if (note == NULL_RTX)
1918 continue;
1920 x = XEXP (note, 0);
1922 if (! CONSTANT_P (x)
1923 || ! flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
1925 /* It can happen that a REG_EQUIV note contains a MEM
1926 that is not a legitimate memory operand. As later
1927 stages of the reload assume that all addresses found
1928 in the reg_equiv_* arrays were originally legitimate,
1929 we ignore such REG_EQUIV notes. */
1930 if (memory_operand (x, VOIDmode))
1931 invariant_p = MEM_READONLY_P (x);
1932 else if (function_invariant_p (x))
1934 if (GET_CODE (x) == PLUS
1935 || x == frame_pointer_rtx || x == arg_pointer_rtx)
1936 invariant_p = true;
1937 else
1938 constant = x;
1942 ira_reg_equiv_invariant_p[i] = invariant_p;
1943 ira_reg_equiv_const[i] = constant;
1949 /* Vector of substitutions of register numbers,
1950 used to map pseudo regs into hardware regs.
1951 This is set up as a result of register allocation.
1952 Element N is the hard reg assigned to pseudo reg N,
1953 or is -1 if no hard reg was assigned.
1954 If N is a hard reg number, element N is N. */
1955 short *reg_renumber;
1957 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1958 the allocation found by IRA. */
1959 static void
1960 setup_reg_renumber (void)
1962 int regno, hard_regno;
1963 ira_allocno_t a;
1964 ira_allocno_iterator ai;
1966 caller_save_needed = 0;
1967 FOR_EACH_ALLOCNO (a, ai)
1969 /* There are no caps at this point. */
1970 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
1971 if (! ALLOCNO_ASSIGNED_P (a))
1972 /* It can happen if A is not referenced but partially anticipated
1973 somewhere in a region. */
1974 ALLOCNO_ASSIGNED_P (a) = true;
1975 ira_free_allocno_updated_costs (a);
1976 hard_regno = ALLOCNO_HARD_REGNO (a);
1977 regno = ALLOCNO_REGNO (a);
1978 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1979 if (hard_regno >= 0)
1981 int i, nwords;
1982 enum reg_class pclass;
1983 ira_object_t obj;
1985 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1986 nwords = ALLOCNO_NUM_OBJECTS (a);
1987 for (i = 0; i < nwords; i++)
1989 obj = ALLOCNO_OBJECT (a, i);
1990 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1991 reg_class_contents[pclass]);
1993 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
1994 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
1995 call_used_reg_set))
1997 ira_assert (!optimize || flag_caller_saves
1998 || (ALLOCNO_CALLS_CROSSED_NUM (a)
1999 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2000 || regno >= ira_reg_equiv_len
2001 || ira_reg_equiv_const[regno]
2002 || ira_reg_equiv_invariant_p[regno]);
2003 caller_save_needed = 1;
2009 /* Set up allocno assignment flags for further allocation
2010 improvements. */
2011 static void
2012 setup_allocno_assignment_flags (void)
2014 int hard_regno;
2015 ira_allocno_t a;
2016 ira_allocno_iterator ai;
2018 FOR_EACH_ALLOCNO (a, ai)
2020 if (! ALLOCNO_ASSIGNED_P (a))
2021 /* It can happen if A is not referenced but partially anticipated
2022 somewhere in a region. */
2023 ira_free_allocno_updated_costs (a);
2024 hard_regno = ALLOCNO_HARD_REGNO (a);
2025 /* Don't assign hard registers to allocnos which are destination
2026 of removed store at the end of loop. It has no sense to keep
2027 the same value in different hard registers. It is also
2028 impossible to assign hard registers correctly to such
2029 allocnos because the cost info and info about intersected
2030 calls are incorrect for them. */
2031 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2032 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2033 || (ALLOCNO_MEMORY_COST (a)
2034 - ALLOCNO_CLASS_COST (a)) < 0);
2035 ira_assert
2036 (hard_regno < 0
2037 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2038 reg_class_contents[ALLOCNO_CLASS (a)]));
2042 /* Evaluate overall allocation cost and the costs for using hard
2043 registers and memory for allocnos. */
2044 static void
2045 calculate_allocation_cost (void)
2047 int hard_regno, cost;
2048 ira_allocno_t a;
2049 ira_allocno_iterator ai;
2051 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2052 FOR_EACH_ALLOCNO (a, ai)
2054 hard_regno = ALLOCNO_HARD_REGNO (a);
2055 ira_assert (hard_regno < 0
2056 || (ira_hard_reg_in_set_p
2057 (hard_regno, ALLOCNO_MODE (a),
2058 reg_class_contents[ALLOCNO_CLASS (a)])));
2059 if (hard_regno < 0)
2061 cost = ALLOCNO_MEMORY_COST (a);
2062 ira_mem_cost += cost;
2064 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2066 cost = (ALLOCNO_HARD_REG_COSTS (a)
2067 [ira_class_hard_reg_index
2068 [ALLOCNO_CLASS (a)][hard_regno]]);
2069 ira_reg_cost += cost;
2071 else
2073 cost = ALLOCNO_CLASS_COST (a);
2074 ira_reg_cost += cost;
2076 ira_overall_cost += cost;
2079 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2081 fprintf (ira_dump_file,
2082 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2083 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2084 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2085 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
2086 ira_move_loops_num, ira_additional_jumps_num);
2091 #ifdef ENABLE_IRA_CHECKING
2092 /* Check the correctness of the allocation. We do need this because
2093 of complicated code to transform more one region internal
2094 representation into one region representation. */
2095 static void
2096 check_allocation (void)
2098 ira_allocno_t a;
2099 int hard_regno, nregs, conflict_nregs;
2100 ira_allocno_iterator ai;
2102 FOR_EACH_ALLOCNO (a, ai)
2104 int n = ALLOCNO_NUM_OBJECTS (a);
2105 int i;
2107 if (ALLOCNO_CAP_MEMBER (a) != NULL
2108 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2109 continue;
2110 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2111 if (nregs == 1)
2112 /* We allocated a single hard register. */
2113 n = 1;
2114 else if (n > 1)
2115 /* We allocated multiple hard registers, and we will test
2116 conflicts in a granularity of single hard regs. */
2117 nregs = 1;
2119 for (i = 0; i < n; i++)
2121 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2122 ira_object_t conflict_obj;
2123 ira_object_conflict_iterator oci;
2124 int this_regno = hard_regno;
2125 if (n > 1)
2127 if (REG_WORDS_BIG_ENDIAN)
2128 this_regno += n - i - 1;
2129 else
2130 this_regno += i;
2132 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2134 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2135 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2136 if (conflict_hard_regno < 0)
2137 continue;
2139 conflict_nregs
2140 = (hard_regno_nregs
2141 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2143 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2144 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2146 if (REG_WORDS_BIG_ENDIAN)
2147 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2148 - OBJECT_SUBWORD (conflict_obj) - 1);
2149 else
2150 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2151 conflict_nregs = 1;
2154 if ((conflict_hard_regno <= this_regno
2155 && this_regno < conflict_hard_regno + conflict_nregs)
2156 || (this_regno <= conflict_hard_regno
2157 && conflict_hard_regno < this_regno + nregs))
2159 fprintf (stderr, "bad allocation for %d and %d\n",
2160 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2161 gcc_unreachable ();
2167 #endif
2169 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2170 by IRA. */
2171 static void
2172 fix_reg_equiv_init (void)
2174 unsigned int max_regno = max_reg_num ();
2175 int i, new_regno, max;
2176 rtx x, prev, next, insn, set;
2178 if (VEC_length (reg_equivs_t, reg_equivs) < max_regno)
2180 max = VEC_length (reg_equivs_t, reg_equivs);
2181 grow_reg_equivs ();
2182 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2183 for (prev = NULL_RTX, x = reg_equiv_init (i);
2184 x != NULL_RTX;
2185 x = next)
2187 next = XEXP (x, 1);
2188 insn = XEXP (x, 0);
2189 set = single_set (insn);
2190 ira_assert (set != NULL_RTX
2191 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2192 if (REG_P (SET_DEST (set))
2193 && ((int) REGNO (SET_DEST (set)) == i
2194 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2195 new_regno = REGNO (SET_DEST (set));
2196 else if (REG_P (SET_SRC (set))
2197 && ((int) REGNO (SET_SRC (set)) == i
2198 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2199 new_regno = REGNO (SET_SRC (set));
2200 else
2201 gcc_unreachable ();
2202 if (new_regno == i)
2203 prev = x;
2204 else
2206 if (prev == NULL_RTX)
2207 reg_equiv_init (i) = next;
2208 else
2209 XEXP (prev, 1) = next;
2210 XEXP (x, 1) = reg_equiv_init (new_regno);
2211 reg_equiv_init (new_regno) = x;
2217 #ifdef ENABLE_IRA_CHECKING
2218 /* Print redundant memory-memory copies. */
2219 static void
2220 print_redundant_copies (void)
2222 int hard_regno;
2223 ira_allocno_t a;
2224 ira_copy_t cp, next_cp;
2225 ira_allocno_iterator ai;
2227 FOR_EACH_ALLOCNO (a, ai)
2229 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2230 /* It is a cap. */
2231 continue;
2232 hard_regno = ALLOCNO_HARD_REGNO (a);
2233 if (hard_regno >= 0)
2234 continue;
2235 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2236 if (cp->first == a)
2237 next_cp = cp->next_first_allocno_copy;
2238 else
2240 next_cp = cp->next_second_allocno_copy;
2241 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2242 && cp->insn != NULL_RTX
2243 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2244 fprintf (ira_dump_file,
2245 " Redundant move from %d(freq %d):%d\n",
2246 INSN_UID (cp->insn), cp->freq, hard_regno);
2250 #endif
2252 /* Setup preferred and alternative classes for new pseudo-registers
2253 created by IRA starting with START. */
2254 static void
2255 setup_preferred_alternate_classes_for_new_pseudos (int start)
2257 int i, old_regno;
2258 int max_regno = max_reg_num ();
2260 for (i = start; i < max_regno; i++)
2262 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2263 ira_assert (i != old_regno);
2264 setup_reg_classes (i, reg_preferred_class (old_regno),
2265 reg_alternate_class (old_regno),
2266 reg_allocno_class (old_regno));
2267 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2268 fprintf (ira_dump_file,
2269 " New r%d: setting preferred %s, alternative %s\n",
2270 i, reg_class_names[reg_preferred_class (old_regno)],
2271 reg_class_names[reg_alternate_class (old_regno)]);
2276 /* The number of entries allocated in teg_info. */
2277 static int allocated_reg_info_size;
2279 /* Regional allocation can create new pseudo-registers. This function
2280 expands some arrays for pseudo-registers. */
2281 static void
2282 expand_reg_info (void)
2284 int i;
2285 int size = max_reg_num ();
2287 resize_reg_info ();
2288 for (i = allocated_reg_info_size; i < size; i++)
2289 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2290 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2291 allocated_reg_info_size = size;
2294 /* Return TRUE if there is too high register pressure in the function.
2295 It is used to decide when stack slot sharing is worth to do. */
2296 static bool
2297 too_high_register_pressure_p (void)
2299 int i;
2300 enum reg_class pclass;
2302 for (i = 0; i < ira_pressure_classes_num; i++)
2304 pclass = ira_pressure_classes[i];
2305 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2306 return true;
2308 return false;
2313 /* Indicate that hard register number FROM was eliminated and replaced with
2314 an offset from hard register number TO. The status of hard registers live
2315 at the start of a basic block is updated by replacing a use of FROM with
2316 a use of TO. */
2318 void
2319 mark_elimination (int from, int to)
2321 basic_block bb;
2323 FOR_EACH_BB (bb)
2325 /* We don't use LIVE info in IRA. */
2326 bitmap r = DF_LR_IN (bb);
2328 if (REGNO_REG_SET_P (r, from))
2330 CLEAR_REGNO_REG_SET (r, from);
2331 SET_REGNO_REG_SET (r, to);
2338 struct equivalence
2340 /* Set when a REG_EQUIV note is found or created. Use to
2341 keep track of what memory accesses might be created later,
2342 e.g. by reload. */
2343 rtx replacement;
2344 rtx *src_p;
2345 /* The list of each instruction which initializes this register. */
2346 rtx init_insns;
2347 /* Loop depth is used to recognize equivalences which appear
2348 to be present within the same loop (or in an inner loop). */
2349 int loop_depth;
2350 /* Nonzero if this had a preexisting REG_EQUIV note. */
2351 int is_arg_equivalence;
2352 /* Set when an attempt should be made to replace a register
2353 with the associated src_p entry. */
2354 char replace;
2357 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2358 structure for that register. */
2359 static struct equivalence *reg_equiv;
2361 /* Used for communication between the following two functions: contains
2362 a MEM that we wish to ensure remains unchanged. */
2363 static rtx equiv_mem;
2365 /* Set nonzero if EQUIV_MEM is modified. */
2366 static int equiv_mem_modified;
2368 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2369 Called via note_stores. */
2370 static void
2371 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2372 void *data ATTRIBUTE_UNUSED)
2374 if ((REG_P (dest)
2375 && reg_overlap_mentioned_p (dest, equiv_mem))
2376 || (MEM_P (dest)
2377 && true_dependence (dest, VOIDmode, equiv_mem)))
2378 equiv_mem_modified = 1;
2381 /* Verify that no store between START and the death of REG invalidates
2382 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2383 by storing into an overlapping memory location, or with a non-const
2384 CALL_INSN.
2386 Return 1 if MEMREF remains valid. */
2387 static int
2388 validate_equiv_mem (rtx start, rtx reg, rtx memref)
2390 rtx insn;
2391 rtx note;
2393 equiv_mem = memref;
2394 equiv_mem_modified = 0;
2396 /* If the memory reference has side effects or is volatile, it isn't a
2397 valid equivalence. */
2398 if (side_effects_p (memref))
2399 return 0;
2401 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2403 if (! INSN_P (insn))
2404 continue;
2406 if (find_reg_note (insn, REG_DEAD, reg))
2407 return 1;
2409 /* This used to ignore readonly memory and const/pure calls. The problem
2410 is the equivalent form may reference a pseudo which gets assigned a
2411 call clobbered hard reg. When we later replace REG with its
2412 equivalent form, the value in the call-clobbered reg has been
2413 changed and all hell breaks loose. */
2414 if (CALL_P (insn))
2415 return 0;
2417 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2419 /* If a register mentioned in MEMREF is modified via an
2420 auto-increment, we lose the equivalence. Do the same if one
2421 dies; although we could extend the life, it doesn't seem worth
2422 the trouble. */
2424 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2425 if ((REG_NOTE_KIND (note) == REG_INC
2426 || REG_NOTE_KIND (note) == REG_DEAD)
2427 && REG_P (XEXP (note, 0))
2428 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2429 return 0;
2432 return 0;
2435 /* Returns zero if X is known to be invariant. */
2436 static int
2437 equiv_init_varies_p (rtx x)
2439 RTX_CODE code = GET_CODE (x);
2440 int i;
2441 const char *fmt;
2443 switch (code)
2445 case MEM:
2446 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
2448 case CONST:
2449 case CONST_INT:
2450 case CONST_DOUBLE:
2451 case CONST_FIXED:
2452 case CONST_VECTOR:
2453 case SYMBOL_REF:
2454 case LABEL_REF:
2455 return 0;
2457 case REG:
2458 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
2460 case ASM_OPERANDS:
2461 if (MEM_VOLATILE_P (x))
2462 return 1;
2464 /* Fall through. */
2466 default:
2467 break;
2470 fmt = GET_RTX_FORMAT (code);
2471 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2472 if (fmt[i] == 'e')
2474 if (equiv_init_varies_p (XEXP (x, i)))
2475 return 1;
2477 else if (fmt[i] == 'E')
2479 int j;
2480 for (j = 0; j < XVECLEN (x, i); j++)
2481 if (equiv_init_varies_p (XVECEXP (x, i, j)))
2482 return 1;
2485 return 0;
2488 /* Returns nonzero if X (used to initialize register REGNO) is movable.
2489 X is only movable if the registers it uses have equivalent initializations
2490 which appear to be within the same loop (or in an inner loop) and movable
2491 or if they are not candidates for local_alloc and don't vary. */
2492 static int
2493 equiv_init_movable_p (rtx x, int regno)
2495 int i, j;
2496 const char *fmt;
2497 enum rtx_code code = GET_CODE (x);
2499 switch (code)
2501 case SET:
2502 return equiv_init_movable_p (SET_SRC (x), regno);
2504 case CC0:
2505 case CLOBBER:
2506 return 0;
2508 case PRE_INC:
2509 case PRE_DEC:
2510 case POST_INC:
2511 case POST_DEC:
2512 case PRE_MODIFY:
2513 case POST_MODIFY:
2514 return 0;
2516 case REG:
2517 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
2518 && reg_equiv[REGNO (x)].replace)
2519 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
2520 && ! rtx_varies_p (x, 0)));
2522 case UNSPEC_VOLATILE:
2523 return 0;
2525 case ASM_OPERANDS:
2526 if (MEM_VOLATILE_P (x))
2527 return 0;
2529 /* Fall through. */
2531 default:
2532 break;
2535 fmt = GET_RTX_FORMAT (code);
2536 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2537 switch (fmt[i])
2539 case 'e':
2540 if (! equiv_init_movable_p (XEXP (x, i), regno))
2541 return 0;
2542 break;
2543 case 'E':
2544 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2545 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
2546 return 0;
2547 break;
2550 return 1;
2553 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
2554 true. */
2555 static int
2556 contains_replace_regs (rtx x)
2558 int i, j;
2559 const char *fmt;
2560 enum rtx_code code = GET_CODE (x);
2562 switch (code)
2564 case CONST_INT:
2565 case CONST:
2566 case LABEL_REF:
2567 case SYMBOL_REF:
2568 case CONST_DOUBLE:
2569 case CONST_FIXED:
2570 case CONST_VECTOR:
2571 case PC:
2572 case CC0:
2573 case HIGH:
2574 return 0;
2576 case REG:
2577 return reg_equiv[REGNO (x)].replace;
2579 default:
2580 break;
2583 fmt = GET_RTX_FORMAT (code);
2584 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2585 switch (fmt[i])
2587 case 'e':
2588 if (contains_replace_regs (XEXP (x, i)))
2589 return 1;
2590 break;
2591 case 'E':
2592 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2593 if (contains_replace_regs (XVECEXP (x, i, j)))
2594 return 1;
2595 break;
2598 return 0;
2601 /* TRUE if X references a memory location that would be affected by a store
2602 to MEMREF. */
2603 static int
2604 memref_referenced_p (rtx memref, rtx x)
2606 int i, j;
2607 const char *fmt;
2608 enum rtx_code code = GET_CODE (x);
2610 switch (code)
2612 case CONST_INT:
2613 case CONST:
2614 case LABEL_REF:
2615 case SYMBOL_REF:
2616 case CONST_DOUBLE:
2617 case CONST_FIXED:
2618 case CONST_VECTOR:
2619 case PC:
2620 case CC0:
2621 case HIGH:
2622 case LO_SUM:
2623 return 0;
2625 case REG:
2626 return (reg_equiv[REGNO (x)].replacement
2627 && memref_referenced_p (memref,
2628 reg_equiv[REGNO (x)].replacement));
2630 case MEM:
2631 if (true_dependence (memref, VOIDmode, x))
2632 return 1;
2633 break;
2635 case SET:
2636 /* If we are setting a MEM, it doesn't count (its address does), but any
2637 other SET_DEST that has a MEM in it is referencing the MEM. */
2638 if (MEM_P (SET_DEST (x)))
2640 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
2641 return 1;
2643 else if (memref_referenced_p (memref, SET_DEST (x)))
2644 return 1;
2646 return memref_referenced_p (memref, SET_SRC (x));
2648 default:
2649 break;
2652 fmt = GET_RTX_FORMAT (code);
2653 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2654 switch (fmt[i])
2656 case 'e':
2657 if (memref_referenced_p (memref, XEXP (x, i)))
2658 return 1;
2659 break;
2660 case 'E':
2661 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2662 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
2663 return 1;
2664 break;
2667 return 0;
2670 /* TRUE if some insn in the range (START, END] references a memory location
2671 that would be affected by a store to MEMREF. */
2672 static int
2673 memref_used_between_p (rtx memref, rtx start, rtx end)
2675 rtx insn;
2677 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2678 insn = NEXT_INSN (insn))
2680 if (!NONDEBUG_INSN_P (insn))
2681 continue;
2683 if (memref_referenced_p (memref, PATTERN (insn)))
2684 return 1;
2686 /* Nonconst functions may access memory. */
2687 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
2688 return 1;
2691 return 0;
2694 /* Mark REG as having no known equivalence.
2695 Some instructions might have been processed before and furnished
2696 with REG_EQUIV notes for this register; these notes will have to be
2697 removed.
2698 STORE is the piece of RTL that does the non-constant / conflicting
2699 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
2700 but needs to be there because this function is called from note_stores. */
2701 static void
2702 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
2703 void *data ATTRIBUTE_UNUSED)
2705 int regno;
2706 rtx list;
2708 if (!REG_P (reg))
2709 return;
2710 regno = REGNO (reg);
2711 list = reg_equiv[regno].init_insns;
2712 if (list == const0_rtx)
2713 return;
2714 reg_equiv[regno].init_insns = const0_rtx;
2715 reg_equiv[regno].replacement = NULL_RTX;
2716 /* This doesn't matter for equivalences made for argument registers, we
2717 should keep their initialization insns. */
2718 if (reg_equiv[regno].is_arg_equivalence)
2719 return;
2720 reg_equiv_init (regno) = NULL_RTX;
2721 for (; list; list = XEXP (list, 1))
2723 rtx insn = XEXP (list, 0);
2724 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
2728 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
2729 equivalent replacement. */
2731 static rtx
2732 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
2734 if (REG_P (loc))
2736 bitmap cleared_regs = (bitmap) data;
2737 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
2738 return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
2739 NULL_RTX, adjust_cleared_regs, data);
2741 return NULL_RTX;
2744 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
2745 static int recorded_label_ref;
2747 /* Find registers that are equivalent to a single value throughout the
2748 compilation (either because they can be referenced in memory or are
2749 set once from a single constant). Lower their priority for a
2750 register.
2752 If such a register is only referenced once, try substituting its
2753 value into the using insn. If it succeeds, we can eliminate the
2754 register completely.
2756 Initialize the REG_EQUIV_INIT array of initializing insns.
2758 Return non-zero if jump label rebuilding should be done. */
2759 static int
2760 update_equiv_regs (void)
2762 rtx insn;
2763 basic_block bb;
2764 int loop_depth;
2765 bitmap cleared_regs;
2767 /* We need to keep track of whether or not we recorded a LABEL_REF so
2768 that we know if the jump optimizer needs to be rerun. */
2769 recorded_label_ref = 0;
2771 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
2772 grow_reg_equivs ();
2774 init_alias_analysis ();
2776 /* Scan the insns and find which registers have equivalences. Do this
2777 in a separate scan of the insns because (due to -fcse-follow-jumps)
2778 a register can be set below its use. */
2779 FOR_EACH_BB (bb)
2781 loop_depth = bb->loop_depth;
2783 for (insn = BB_HEAD (bb);
2784 insn != NEXT_INSN (BB_END (bb));
2785 insn = NEXT_INSN (insn))
2787 rtx note;
2788 rtx set;
2789 rtx dest, src;
2790 int regno;
2792 if (! INSN_P (insn))
2793 continue;
2795 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2796 if (REG_NOTE_KIND (note) == REG_INC)
2797 no_equiv (XEXP (note, 0), note, NULL);
2799 set = single_set (insn);
2801 /* If this insn contains more (or less) than a single SET,
2802 only mark all destinations as having no known equivalence. */
2803 if (set == 0)
2805 note_stores (PATTERN (insn), no_equiv, NULL);
2806 continue;
2808 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2810 int i;
2812 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2814 rtx part = XVECEXP (PATTERN (insn), 0, i);
2815 if (part != set)
2816 note_stores (part, no_equiv, NULL);
2820 dest = SET_DEST (set);
2821 src = SET_SRC (set);
2823 /* See if this is setting up the equivalence between an argument
2824 register and its stack slot. */
2825 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2826 if (note)
2828 gcc_assert (REG_P (dest));
2829 regno = REGNO (dest);
2831 /* Note that we don't want to clear reg_equiv_init even if there
2832 are multiple sets of this register. */
2833 reg_equiv[regno].is_arg_equivalence = 1;
2835 /* Record for reload that this is an equivalencing insn. */
2836 if (rtx_equal_p (src, XEXP (note, 0)))
2837 reg_equiv_init (regno)
2838 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
2840 /* Continue normally in case this is a candidate for
2841 replacements. */
2844 if (!optimize)
2845 continue;
2847 /* We only handle the case of a pseudo register being set
2848 once, or always to the same value. */
2849 /* ??? The mn10200 port breaks if we add equivalences for
2850 values that need an ADDRESS_REGS register and set them equivalent
2851 to a MEM of a pseudo. The actual problem is in the over-conservative
2852 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
2853 calculate_needs, but we traditionally work around this problem
2854 here by rejecting equivalences when the destination is in a register
2855 that's likely spilled. This is fragile, of course, since the
2856 preferred class of a pseudo depends on all instructions that set
2857 or use it. */
2859 if (!REG_P (dest)
2860 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
2861 || reg_equiv[regno].init_insns == const0_rtx
2862 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
2863 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2865 /* This might be setting a SUBREG of a pseudo, a pseudo that is
2866 also set somewhere else to a constant. */
2867 note_stores (set, no_equiv, NULL);
2868 continue;
2871 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2873 /* cse sometimes generates function invariants, but doesn't put a
2874 REG_EQUAL note on the insn. Since this note would be redundant,
2875 there's no point creating it earlier than here. */
2876 if (! note && ! rtx_varies_p (src, 0))
2877 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2879 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2880 since it represents a function call */
2881 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
2882 note = NULL_RTX;
2884 if (DF_REG_DEF_COUNT (regno) != 1
2885 && (! note
2886 || rtx_varies_p (XEXP (note, 0), 0)
2887 || (reg_equiv[regno].replacement
2888 && ! rtx_equal_p (XEXP (note, 0),
2889 reg_equiv[regno].replacement))))
2891 no_equiv (dest, set, NULL);
2892 continue;
2894 /* Record this insn as initializing this register. */
2895 reg_equiv[regno].init_insns
2896 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
2898 /* If this register is known to be equal to a constant, record that
2899 it is always equivalent to the constant. */
2900 if (DF_REG_DEF_COUNT (regno) == 1
2901 && note && ! rtx_varies_p (XEXP (note, 0), 0))
2903 rtx note_value = XEXP (note, 0);
2904 remove_note (insn, note);
2905 set_unique_reg_note (insn, REG_EQUIV, note_value);
2908 /* If this insn introduces a "constant" register, decrease the priority
2909 of that register. Record this insn if the register is only used once
2910 more and the equivalence value is the same as our source.
2912 The latter condition is checked for two reasons: First, it is an
2913 indication that it may be more efficient to actually emit the insn
2914 as written (if no registers are available, reload will substitute
2915 the equivalence). Secondly, it avoids problems with any registers
2916 dying in this insn whose death notes would be missed.
2918 If we don't have a REG_EQUIV note, see if this insn is loading
2919 a register used only in one basic block from a MEM. If so, and the
2920 MEM remains unchanged for the life of the register, add a REG_EQUIV
2921 note. */
2923 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2925 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2926 && MEM_P (SET_SRC (set))
2927 && validate_equiv_mem (insn, dest, SET_SRC (set)))
2928 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
2930 if (note)
2932 int regno = REGNO (dest);
2933 rtx x = XEXP (note, 0);
2935 /* If we haven't done so, record for reload that this is an
2936 equivalencing insn. */
2937 if (!reg_equiv[regno].is_arg_equivalence)
2938 reg_equiv_init (regno)
2939 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
2941 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
2942 We might end up substituting the LABEL_REF for uses of the
2943 pseudo here or later. That kind of transformation may turn an
2944 indirect jump into a direct jump, in which case we must rerun the
2945 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
2946 if (GET_CODE (x) == LABEL_REF
2947 || (GET_CODE (x) == CONST
2948 && GET_CODE (XEXP (x, 0)) == PLUS
2949 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
2950 recorded_label_ref = 1;
2952 reg_equiv[regno].replacement = x;
2953 reg_equiv[regno].src_p = &SET_SRC (set);
2954 reg_equiv[regno].loop_depth = loop_depth;
2956 /* Don't mess with things live during setjmp. */
2957 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
2959 /* Note that the statement below does not affect the priority
2960 in local-alloc! */
2961 REG_LIVE_LENGTH (regno) *= 2;
2963 /* If the register is referenced exactly twice, meaning it is
2964 set once and used once, indicate that the reference may be
2965 replaced by the equivalence we computed above. Do this
2966 even if the register is only used in one block so that
2967 dependencies can be handled where the last register is
2968 used in a different block (i.e. HIGH / LO_SUM sequences)
2969 and to reduce the number of registers alive across
2970 calls. */
2972 if (REG_N_REFS (regno) == 2
2973 && (rtx_equal_p (x, src)
2974 || ! equiv_init_varies_p (src))
2975 && NONJUMP_INSN_P (insn)
2976 && equiv_init_movable_p (PATTERN (insn), regno))
2977 reg_equiv[regno].replace = 1;
2983 if (!optimize)
2984 goto out;
2986 /* A second pass, to gather additional equivalences with memory. This needs
2987 to be done after we know which registers we are going to replace. */
2989 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2991 rtx set, src, dest;
2992 unsigned regno;
2994 if (! INSN_P (insn))
2995 continue;
2997 set = single_set (insn);
2998 if (! set)
2999 continue;
3001 dest = SET_DEST (set);
3002 src = SET_SRC (set);
3004 /* If this sets a MEM to the contents of a REG that is only used
3005 in a single basic block, see if the register is always equivalent
3006 to that memory location and if moving the store from INSN to the
3007 insn that set REG is safe. If so, put a REG_EQUIV note on the
3008 initializing insn.
3010 Don't add a REG_EQUIV note if the insn already has one. The existing
3011 REG_EQUIV is likely more useful than the one we are adding.
3013 If one of the regs in the address has reg_equiv[REGNO].replace set,
3014 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3015 optimization may move the set of this register immediately before
3016 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3017 the mention in the REG_EQUIV note would be to an uninitialized
3018 pseudo. */
3020 if (MEM_P (dest) && REG_P (src)
3021 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3022 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3023 && DF_REG_DEF_COUNT (regno) == 1
3024 && reg_equiv[regno].init_insns != 0
3025 && reg_equiv[regno].init_insns != const0_rtx
3026 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3027 REG_EQUIV, NULL_RTX)
3028 && ! contains_replace_regs (XEXP (dest, 0)))
3030 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
3031 if (validate_equiv_mem (init_insn, src, dest)
3032 && ! memref_used_between_p (dest, init_insn, insn)
3033 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3034 multiple sets. */
3035 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3037 /* This insn makes the equivalence, not the one initializing
3038 the register. */
3039 reg_equiv_init (regno)
3040 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3041 df_notes_rescan (init_insn);
3046 cleared_regs = BITMAP_ALLOC (NULL);
3047 /* Now scan all regs killed in an insn to see if any of them are
3048 registers only used that once. If so, see if we can replace the
3049 reference with the equivalent form. If we can, delete the
3050 initializing reference and this register will go away. If we
3051 can't replace the reference, and the initializing reference is
3052 within the same loop (or in an inner loop), then move the register
3053 initialization just before the use, so that they are in the same
3054 basic block. */
3055 FOR_EACH_BB_REVERSE (bb)
3057 loop_depth = bb->loop_depth;
3058 for (insn = BB_END (bb);
3059 insn != PREV_INSN (BB_HEAD (bb));
3060 insn = PREV_INSN (insn))
3062 rtx link;
3064 if (! INSN_P (insn))
3065 continue;
3067 /* Don't substitute into a non-local goto, this confuses CFG. */
3068 if (JUMP_P (insn)
3069 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3070 continue;
3072 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3074 if (REG_NOTE_KIND (link) == REG_DEAD
3075 /* Make sure this insn still refers to the register. */
3076 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3078 int regno = REGNO (XEXP (link, 0));
3079 rtx equiv_insn;
3081 if (! reg_equiv[regno].replace
3082 || reg_equiv[regno].loop_depth < loop_depth
3083 /* There is no sense to move insns if we did
3084 register pressure-sensitive scheduling was
3085 done because it will not improve allocation
3086 but worsen insn schedule with a big
3087 probability. */
3088 || (flag_sched_pressure && flag_schedule_insns))
3089 continue;
3091 /* reg_equiv[REGNO].replace gets set only when
3092 REG_N_REFS[REGNO] is 2, i.e. the register is set
3093 once and used once. (If it were only set, but not used,
3094 flow would have deleted the setting insns.) Hence
3095 there can only be one insn in reg_equiv[REGNO].init_insns. */
3096 gcc_assert (reg_equiv[regno].init_insns
3097 && !XEXP (reg_equiv[regno].init_insns, 1));
3098 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3100 /* We may not move instructions that can throw, since
3101 that changes basic block boundaries and we are not
3102 prepared to adjust the CFG to match. */
3103 if (can_throw_internal (equiv_insn))
3104 continue;
3106 if (asm_noperands (PATTERN (equiv_insn)) < 0
3107 && validate_replace_rtx (regno_reg_rtx[regno],
3108 *(reg_equiv[regno].src_p), insn))
3110 rtx equiv_link;
3111 rtx last_link;
3112 rtx note;
3114 /* Find the last note. */
3115 for (last_link = link; XEXP (last_link, 1);
3116 last_link = XEXP (last_link, 1))
3119 /* Append the REG_DEAD notes from equiv_insn. */
3120 equiv_link = REG_NOTES (equiv_insn);
3121 while (equiv_link)
3123 note = equiv_link;
3124 equiv_link = XEXP (equiv_link, 1);
3125 if (REG_NOTE_KIND (note) == REG_DEAD)
3127 remove_note (equiv_insn, note);
3128 XEXP (last_link, 1) = note;
3129 XEXP (note, 1) = NULL_RTX;
3130 last_link = note;
3134 remove_death (regno, insn);
3135 SET_REG_N_REFS (regno, 0);
3136 REG_FREQ (regno) = 0;
3137 delete_insn (equiv_insn);
3139 reg_equiv[regno].init_insns
3140 = XEXP (reg_equiv[regno].init_insns, 1);
3142 reg_equiv_init (regno) = NULL_RTX;
3143 bitmap_set_bit (cleared_regs, regno);
3145 /* Move the initialization of the register to just before
3146 INSN. Update the flow information. */
3147 else if (prev_nondebug_insn (insn) != equiv_insn)
3149 rtx new_insn;
3151 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3152 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3153 REG_NOTES (equiv_insn) = 0;
3154 /* Rescan it to process the notes. */
3155 df_insn_rescan (new_insn);
3157 /* Make sure this insn is recognized before
3158 reload begins, otherwise
3159 eliminate_regs_in_insn will die. */
3160 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3162 delete_insn (equiv_insn);
3164 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3166 REG_BASIC_BLOCK (regno) = bb->index;
3167 REG_N_CALLS_CROSSED (regno) = 0;
3168 REG_FREQ_CALLS_CROSSED (regno) = 0;
3169 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3170 REG_LIVE_LENGTH (regno) = 2;
3172 if (insn == BB_HEAD (bb))
3173 BB_HEAD (bb) = PREV_INSN (insn);
3175 reg_equiv_init (regno)
3176 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3177 bitmap_set_bit (cleared_regs, regno);
3184 if (!bitmap_empty_p (cleared_regs))
3186 FOR_EACH_BB (bb)
3188 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3189 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3190 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3191 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3194 /* Last pass - adjust debug insns referencing cleared regs. */
3195 if (MAY_HAVE_DEBUG_INSNS)
3196 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3197 if (DEBUG_INSN_P (insn))
3199 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3200 INSN_VAR_LOCATION_LOC (insn)
3201 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3202 adjust_cleared_regs,
3203 (void *) cleared_regs);
3204 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3205 df_insn_rescan (insn);
3209 BITMAP_FREE (cleared_regs);
3211 out:
3212 /* Clean up. */
3214 end_alias_analysis ();
3215 free (reg_equiv);
3216 return recorded_label_ref;
3221 /* Print chain C to FILE. */
3222 static void
3223 print_insn_chain (FILE *file, struct insn_chain *c)
3225 fprintf (file, "insn=%d, ", INSN_UID(c->insn));
3226 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3227 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3231 /* Print all reload_insn_chains to FILE. */
3232 static void
3233 print_insn_chains (FILE *file)
3235 struct insn_chain *c;
3236 for (c = reload_insn_chain; c ; c = c->next)
3237 print_insn_chain (file, c);
3240 /* Return true if pseudo REGNO should be added to set live_throughout
3241 or dead_or_set of the insn chains for reload consideration. */
3242 static bool
3243 pseudo_for_reload_consideration_p (int regno)
3245 /* Consider spilled pseudos too for IRA because they still have a
3246 chance to get hard-registers in the reload when IRA is used. */
3247 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
3250 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3251 REG to the number of nregs, and INIT_VALUE to get the
3252 initialization. ALLOCNUM need not be the regno of REG. */
3253 static void
3254 init_live_subregs (bool init_value, sbitmap *live_subregs,
3255 int *live_subregs_used, int allocnum, rtx reg)
3257 unsigned int regno = REGNO (SUBREG_REG (reg));
3258 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
3260 gcc_assert (size > 0);
3262 /* Been there, done that. */
3263 if (live_subregs_used[allocnum])
3264 return;
3266 /* Create a new one with zeros. */
3267 if (live_subregs[allocnum] == NULL)
3268 live_subregs[allocnum] = sbitmap_alloc (size);
3270 /* If the entire reg was live before blasting into subregs, we need
3271 to init all of the subregs to ones else init to 0. */
3272 if (init_value)
3273 sbitmap_ones (live_subregs[allocnum]);
3274 else
3275 sbitmap_zero (live_subregs[allocnum]);
3277 /* Set the number of bits that we really want. */
3278 live_subregs_used[allocnum] = size;
3281 /* Walk the insns of the current function and build reload_insn_chain,
3282 and record register life information. */
3283 static void
3284 build_insn_chain (void)
3286 unsigned int i;
3287 struct insn_chain **p = &reload_insn_chain;
3288 basic_block bb;
3289 struct insn_chain *c = NULL;
3290 struct insn_chain *next = NULL;
3291 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
3292 bitmap elim_regset = BITMAP_ALLOC (NULL);
3293 /* live_subregs is a vector used to keep accurate information about
3294 which hardregs are live in multiword pseudos. live_subregs and
3295 live_subregs_used are indexed by pseudo number. The live_subreg
3296 entry for a particular pseudo is only used if the corresponding
3297 element is non zero in live_subregs_used. The value in
3298 live_subregs_used is number of bytes that the pseudo can
3299 occupy. */
3300 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
3301 int *live_subregs_used = XNEWVEC (int, max_regno);
3303 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3304 if (TEST_HARD_REG_BIT (eliminable_regset, i))
3305 bitmap_set_bit (elim_regset, i);
3306 FOR_EACH_BB_REVERSE (bb)
3308 bitmap_iterator bi;
3309 rtx insn;
3311 CLEAR_REG_SET (live_relevant_regs);
3312 memset (live_subregs_used, 0, max_regno * sizeof (int));
3314 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi)
3316 if (i >= FIRST_PSEUDO_REGISTER)
3317 break;
3318 bitmap_set_bit (live_relevant_regs, i);
3321 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb),
3322 FIRST_PSEUDO_REGISTER, i, bi)
3324 if (pseudo_for_reload_consideration_p (i))
3325 bitmap_set_bit (live_relevant_regs, i);
3328 FOR_BB_INSNS_REVERSE (bb, insn)
3330 if (!NOTE_P (insn) && !BARRIER_P (insn))
3332 unsigned int uid = INSN_UID (insn);
3333 df_ref *def_rec;
3334 df_ref *use_rec;
3336 c = new_insn_chain ();
3337 c->next = next;
3338 next = c;
3339 *p = c;
3340 p = &c->prev;
3342 c->insn = insn;
3343 c->block = bb->index;
3345 if (INSN_P (insn))
3346 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
3348 df_ref def = *def_rec;
3349 unsigned int regno = DF_REF_REGNO (def);
3351 /* Ignore may clobbers because these are generated
3352 from calls. However, every other kind of def is
3353 added to dead_or_set. */
3354 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
3356 if (regno < FIRST_PSEUDO_REGISTER)
3358 if (!fixed_regs[regno])
3359 bitmap_set_bit (&c->dead_or_set, regno);
3361 else if (pseudo_for_reload_consideration_p (regno))
3362 bitmap_set_bit (&c->dead_or_set, regno);
3365 if ((regno < FIRST_PSEUDO_REGISTER
3366 || reg_renumber[regno] >= 0
3367 || ira_conflicts_p)
3368 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
3370 rtx reg = DF_REF_REG (def);
3372 /* We can model subregs, but not if they are
3373 wrapped in ZERO_EXTRACTS. */
3374 if (GET_CODE (reg) == SUBREG
3375 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
3377 unsigned int start = SUBREG_BYTE (reg);
3378 unsigned int last = start
3379 + GET_MODE_SIZE (GET_MODE (reg));
3381 init_live_subregs
3382 (bitmap_bit_p (live_relevant_regs, regno),
3383 live_subregs, live_subregs_used, regno, reg);
3385 if (!DF_REF_FLAGS_IS_SET
3386 (def, DF_REF_STRICT_LOW_PART))
3388 /* Expand the range to cover entire words.
3389 Bytes added here are "don't care". */
3390 start
3391 = start / UNITS_PER_WORD * UNITS_PER_WORD;
3392 last = ((last + UNITS_PER_WORD - 1)
3393 / UNITS_PER_WORD * UNITS_PER_WORD);
3396 /* Ignore the paradoxical bits. */
3397 if ((int)last > live_subregs_used[regno])
3398 last = live_subregs_used[regno];
3400 while (start < last)
3402 RESET_BIT (live_subregs[regno], start);
3403 start++;
3406 if (sbitmap_empty_p (live_subregs[regno]))
3408 live_subregs_used[regno] = 0;
3409 bitmap_clear_bit (live_relevant_regs, regno);
3411 else
3412 /* Set live_relevant_regs here because
3413 that bit has to be true to get us to
3414 look at the live_subregs fields. */
3415 bitmap_set_bit (live_relevant_regs, regno);
3417 else
3419 /* DF_REF_PARTIAL is generated for
3420 subregs, STRICT_LOW_PART, and
3421 ZERO_EXTRACT. We handle the subreg
3422 case above so here we have to keep from
3423 modeling the def as a killing def. */
3424 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
3426 bitmap_clear_bit (live_relevant_regs, regno);
3427 live_subregs_used[regno] = 0;
3433 bitmap_and_compl_into (live_relevant_regs, elim_regset);
3434 bitmap_copy (&c->live_throughout, live_relevant_regs);
3436 if (INSN_P (insn))
3437 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
3439 df_ref use = *use_rec;
3440 unsigned int regno = DF_REF_REGNO (use);
3441 rtx reg = DF_REF_REG (use);
3443 /* DF_REF_READ_WRITE on a use means that this use
3444 is fabricated from a def that is a partial set
3445 to a multiword reg. Here, we only model the
3446 subreg case that is not wrapped in ZERO_EXTRACT
3447 precisely so we do not need to look at the
3448 fabricated use. */
3449 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
3450 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
3451 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
3452 continue;
3454 /* Add the last use of each var to dead_or_set. */
3455 if (!bitmap_bit_p (live_relevant_regs, regno))
3457 if (regno < FIRST_PSEUDO_REGISTER)
3459 if (!fixed_regs[regno])
3460 bitmap_set_bit (&c->dead_or_set, regno);
3462 else if (pseudo_for_reload_consideration_p (regno))
3463 bitmap_set_bit (&c->dead_or_set, regno);
3466 if (regno < FIRST_PSEUDO_REGISTER
3467 || pseudo_for_reload_consideration_p (regno))
3469 if (GET_CODE (reg) == SUBREG
3470 && !DF_REF_FLAGS_IS_SET (use,
3471 DF_REF_SIGN_EXTRACT
3472 | DF_REF_ZERO_EXTRACT))
3474 unsigned int start = SUBREG_BYTE (reg);
3475 unsigned int last = start
3476 + GET_MODE_SIZE (GET_MODE (reg));
3478 init_live_subregs
3479 (bitmap_bit_p (live_relevant_regs, regno),
3480 live_subregs, live_subregs_used, regno, reg);
3482 /* Ignore the paradoxical bits. */
3483 if ((int)last > live_subregs_used[regno])
3484 last = live_subregs_used[regno];
3486 while (start < last)
3488 SET_BIT (live_subregs[regno], start);
3489 start++;
3492 else
3493 /* Resetting the live_subregs_used is
3494 effectively saying do not use the subregs
3495 because we are reading the whole
3496 pseudo. */
3497 live_subregs_used[regno] = 0;
3498 bitmap_set_bit (live_relevant_regs, regno);
3504 /* FIXME!! The following code is a disaster. Reload needs to see the
3505 labels and jump tables that are just hanging out in between
3506 the basic blocks. See pr33676. */
3507 insn = BB_HEAD (bb);
3509 /* Skip over the barriers and cruft. */
3510 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
3511 || BLOCK_FOR_INSN (insn) == bb))
3512 insn = PREV_INSN (insn);
3514 /* While we add anything except barriers and notes, the focus is
3515 to get the labels and jump tables into the
3516 reload_insn_chain. */
3517 while (insn)
3519 if (!NOTE_P (insn) && !BARRIER_P (insn))
3521 if (BLOCK_FOR_INSN (insn))
3522 break;
3524 c = new_insn_chain ();
3525 c->next = next;
3526 next = c;
3527 *p = c;
3528 p = &c->prev;
3530 /* The block makes no sense here, but it is what the old
3531 code did. */
3532 c->block = bb->index;
3533 c->insn = insn;
3534 bitmap_copy (&c->live_throughout, live_relevant_regs);
3536 insn = PREV_INSN (insn);
3540 for (i = 0; i < (unsigned int) max_regno; i++)
3541 free (live_subregs[i]);
3543 reload_insn_chain = c;
3544 *p = NULL;
3546 free (live_subregs);
3547 free (live_subregs_used);
3548 BITMAP_FREE (live_relevant_regs);
3549 BITMAP_FREE (elim_regset);
3551 if (dump_file)
3552 print_insn_chains (dump_file);
3555 /* Examine the rtx found in *LOC, which is read or written to as determined
3556 by TYPE. Return false if we find a reason why an insn containing this
3557 rtx should not be moved (such as accesses to non-constant memory), true
3558 otherwise. */
3559 static bool
3560 rtx_moveable_p (rtx *loc, enum op_type type)
3562 const char *fmt;
3563 rtx x = *loc;
3564 enum rtx_code code = GET_CODE (x);
3565 int i, j;
3567 code = GET_CODE (x);
3568 switch (code)
3570 case CONST:
3571 case CONST_INT:
3572 case CONST_DOUBLE:
3573 case CONST_FIXED:
3574 case CONST_VECTOR:
3575 case SYMBOL_REF:
3576 case LABEL_REF:
3577 return true;
3579 case PC:
3580 return type == OP_IN;
3582 case CC0:
3583 return false;
3585 case REG:
3586 if (x == frame_pointer_rtx)
3587 return true;
3588 if (HARD_REGISTER_P (x))
3589 return false;
3591 return true;
3593 case MEM:
3594 if (type == OP_IN && MEM_READONLY_P (x))
3595 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
3596 return false;
3598 case SET:
3599 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
3600 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
3602 case STRICT_LOW_PART:
3603 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
3605 case ZERO_EXTRACT:
3606 case SIGN_EXTRACT:
3607 return (rtx_moveable_p (&XEXP (x, 0), type)
3608 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
3609 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
3611 case CLOBBER:
3612 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
3614 default:
3615 break;
3618 fmt = GET_RTX_FORMAT (code);
3619 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3621 if (fmt[i] == 'e')
3623 if (!rtx_moveable_p (&XEXP (x, i), type))
3624 return false;
3626 else if (fmt[i] == 'E')
3627 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3629 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
3630 return false;
3633 return true;
3636 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
3637 to give dominance relationships between two insns I1 and I2. */
3638 static bool
3639 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
3641 basic_block bb1 = BLOCK_FOR_INSN (i1);
3642 basic_block bb2 = BLOCK_FOR_INSN (i2);
3644 if (bb1 == bb2)
3645 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
3646 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
3649 /* Record the range of register numbers added by find_moveable_pseudos. */
3650 int first_moveable_pseudo, last_moveable_pseudo;
3652 /* These two vectors hold data for every register added by
3653 find_movable_pseudos, with index 0 holding data for the
3654 first_moveable_pseudo. */
3655 /* The original home register. */
3656 static VEC (rtx, heap) *pseudo_replaced_reg;
3658 /* Look for instances where we have an instruction that is known to increase
3659 register pressure, and whose result is not used immediately. If it is
3660 possible to move the instruction downwards to just before its first use,
3661 split its lifetime into two ranges. We create a new pseudo to compute the
3662 value, and emit a move instruction just before the first use. If, after
3663 register allocation, the new pseudo remains unallocated, the function
3664 move_unallocated_pseudos then deletes the move instruction and places
3665 the computation just before the first use.
3667 Such a move is safe and profitable if all the input registers remain live
3668 and unchanged between the original computation and its first use. In such
3669 a situation, the computation is known to increase register pressure, and
3670 moving it is known to at least not worsen it.
3672 We restrict moves to only those cases where a register remains unallocated,
3673 in order to avoid interfering too much with the instruction schedule. As
3674 an exception, we may move insns which only modify their input register
3675 (typically induction variables), as this increases the freedom for our
3676 intended transformation, and does not limit the second instruction
3677 scheduler pass. */
3679 static void
3680 find_moveable_pseudos (void)
3682 unsigned i;
3683 int max_regs = max_reg_num ();
3684 int max_uid = get_max_uid ();
3685 basic_block bb;
3686 int *uid_luid = XNEWVEC (int, max_uid);
3687 rtx *closest_uses = XNEWVEC (rtx, max_regs);
3688 /* A set of registers which are live but not modified throughout a block. */
3689 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head, last_basic_block);
3690 /* A set of registers which only exist in a given basic block. */
3691 bitmap_head *bb_local = XNEWVEC (bitmap_head, last_basic_block);
3692 /* A set of registers which are set once, in an instruction that can be
3693 moved freely downwards, but are otherwise transparent to a block. */
3694 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head, last_basic_block);
3695 bitmap_head live, used, set, interesting, unusable_as_input;
3696 bitmap_iterator bi;
3697 bitmap_initialize (&interesting, 0);
3699 first_moveable_pseudo = max_regs;
3700 VEC_free (rtx, heap, pseudo_replaced_reg);
3701 VEC_safe_grow (rtx, heap, pseudo_replaced_reg, max_regs);
3703 df_analyze ();
3704 calculate_dominance_info (CDI_DOMINATORS);
3706 i = 0;
3707 bitmap_initialize (&live, 0);
3708 bitmap_initialize (&used, 0);
3709 bitmap_initialize (&set, 0);
3710 bitmap_initialize (&unusable_as_input, 0);
3711 FOR_EACH_BB (bb)
3713 rtx insn;
3714 bitmap transp = bb_transp_live + bb->index;
3715 bitmap moveable = bb_moveable_reg_sets + bb->index;
3716 bitmap local = bb_local + bb->index;
3718 bitmap_initialize (local, 0);
3719 bitmap_initialize (transp, 0);
3720 bitmap_initialize (moveable, 0);
3721 bitmap_copy (&live, df_get_live_out (bb));
3722 bitmap_and_into (&live, df_get_live_in (bb));
3723 bitmap_copy (transp, &live);
3724 bitmap_clear (moveable);
3725 bitmap_clear (&live);
3726 bitmap_clear (&used);
3727 bitmap_clear (&set);
3728 FOR_BB_INSNS (bb, insn)
3729 if (NONDEBUG_INSN_P (insn))
3731 df_ref *u_rec, *d_rec;
3733 uid_luid[INSN_UID (insn)] = i++;
3735 u_rec = DF_INSN_USES (insn);
3736 d_rec = DF_INSN_DEFS (insn);
3737 if (d_rec[0] != NULL && d_rec[1] == NULL
3738 && u_rec[0] != NULL && u_rec[1] == NULL
3739 && DF_REF_REGNO (*u_rec) == DF_REF_REGNO (*d_rec)
3740 && !bitmap_bit_p (&set, DF_REF_REGNO (*u_rec))
3741 && rtx_moveable_p (&PATTERN (insn), OP_IN))
3743 unsigned regno = DF_REF_REGNO (*u_rec);
3744 bitmap_set_bit (moveable, regno);
3745 bitmap_set_bit (&set, regno);
3746 bitmap_set_bit (&used, regno);
3747 bitmap_clear_bit (transp, regno);
3748 continue;
3750 while (*u_rec)
3752 unsigned regno = DF_REF_REGNO (*u_rec);
3753 bitmap_set_bit (&used, regno);
3754 if (bitmap_clear_bit (moveable, regno))
3755 bitmap_clear_bit (transp, regno);
3756 u_rec++;
3759 while (*d_rec)
3761 unsigned regno = DF_REF_REGNO (*d_rec);
3762 bitmap_set_bit (&set, regno);
3763 bitmap_clear_bit (transp, regno);
3764 bitmap_clear_bit (moveable, regno);
3765 d_rec++;
3770 bitmap_clear (&live);
3771 bitmap_clear (&used);
3772 bitmap_clear (&set);
3774 FOR_EACH_BB (bb)
3776 bitmap local = bb_local + bb->index;
3777 rtx insn;
3779 FOR_BB_INSNS (bb, insn)
3780 if (NONDEBUG_INSN_P (insn))
3782 rtx def_insn, closest_use, note;
3783 df_ref *def_rec, def, use;
3784 unsigned regno;
3785 bool all_dominated, all_local;
3786 enum machine_mode mode;
3788 def_rec = DF_INSN_DEFS (insn);
3789 /* There must be exactly one def in this insn. */
3790 def = *def_rec;
3791 if (!def || def_rec[1] || !single_set (insn))
3792 continue;
3793 /* This must be the only definition of the reg. We also limit
3794 which modes we deal with so that we can assume we can generate
3795 move instructions. */
3796 regno = DF_REF_REGNO (def);
3797 mode = GET_MODE (DF_REF_REG (def));
3798 if (DF_REG_DEF_COUNT (regno) != 1
3799 || !DF_REF_INSN_INFO (def)
3800 || HARD_REGISTER_NUM_P (regno)
3801 || DF_REG_EQ_USE_COUNT (regno) > 0
3802 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
3803 continue;
3804 def_insn = DF_REF_INSN (def);
3806 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
3807 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
3808 break;
3810 if (note)
3812 if (dump_file)
3813 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
3814 regno);
3815 bitmap_set_bit (&unusable_as_input, regno);
3816 continue;
3819 use = DF_REG_USE_CHAIN (regno);
3820 all_dominated = true;
3821 all_local = true;
3822 closest_use = NULL_RTX;
3823 for (; use; use = DF_REF_NEXT_REG (use))
3825 rtx insn;
3826 if (!DF_REF_INSN_INFO (use))
3828 all_dominated = false;
3829 all_local = false;
3830 break;
3832 insn = DF_REF_INSN (use);
3833 if (DEBUG_INSN_P (insn))
3834 continue;
3835 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
3836 all_local = false;
3837 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
3838 all_dominated = false;
3839 if (closest_use != insn && closest_use != const0_rtx)
3841 if (closest_use == NULL_RTX)
3842 closest_use = insn;
3843 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
3844 closest_use = insn;
3845 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
3846 closest_use = const0_rtx;
3849 if (!all_dominated)
3851 if (dump_file)
3852 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
3853 regno);
3854 continue;
3856 if (all_local)
3857 bitmap_set_bit (local, regno);
3858 if (closest_use == const0_rtx || closest_use == NULL
3859 || next_nonnote_nondebug_insn (def_insn) == closest_use)
3861 if (dump_file)
3862 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
3863 closest_use == const0_rtx || closest_use == NULL
3864 ? " (no unique first use)" : "");
3865 continue;
3867 #ifdef HAVE_cc0
3868 if (reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
3870 if (dump_file)
3871 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
3872 regno);
3873 continue;
3875 #endif
3876 bitmap_set_bit (&interesting, regno);
3877 closest_uses[regno] = closest_use;
3879 if (dump_file && (all_local || all_dominated))
3881 fprintf (dump_file, "Reg %u:", regno);
3882 if (all_local)
3883 fprintf (dump_file, " local to bb %d", bb->index);
3884 if (all_dominated)
3885 fprintf (dump_file, " def dominates all uses");
3886 if (closest_use != const0_rtx)
3887 fprintf (dump_file, " has unique first use");
3888 fputs ("\n", dump_file);
3893 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
3895 df_ref def = DF_REG_DEF_CHAIN (i);
3896 rtx def_insn = DF_REF_INSN (def);
3897 basic_block def_block = BLOCK_FOR_INSN (def_insn);
3898 bitmap def_bb_local = bb_local + def_block->index;
3899 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
3900 bitmap def_bb_transp = bb_transp_live + def_block->index;
3901 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
3902 rtx use_insn = closest_uses[i];
3903 df_ref *def_insn_use_rec = DF_INSN_USES (def_insn);
3904 bool all_ok = true;
3905 bool all_transp = true;
3907 if (!REG_P (DF_REF_REG (def)))
3908 continue;
3910 if (!local_to_bb_p)
3912 if (dump_file)
3913 fprintf (dump_file, "Reg %u not local to one basic block\n",
3915 continue;
3917 if (reg_equiv_init (i) != NULL_RTX)
3919 if (dump_file)
3920 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
3922 continue;
3924 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
3926 if (dump_file)
3927 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
3928 INSN_UID (def_insn), i);
3929 continue;
3931 if (dump_file)
3932 fprintf (dump_file, "Examining insn %d, def for %d\n",
3933 INSN_UID (def_insn), i);
3934 while (*def_insn_use_rec != NULL)
3936 df_ref use = *def_insn_use_rec;
3937 unsigned regno = DF_REF_REGNO (use);
3938 if (bitmap_bit_p (&unusable_as_input, regno))
3940 all_ok = false;
3941 if (dump_file)
3942 fprintf (dump_file, " found unusable input reg %u.\n", regno);
3943 break;
3945 if (!bitmap_bit_p (def_bb_transp, regno))
3947 if (bitmap_bit_p (def_bb_moveable, regno)
3948 && !control_flow_insn_p (use_insn)
3949 #ifdef HAVE_cc0
3950 && !sets_cc0_p (use_insn)
3951 #endif
3954 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
3956 rtx x = NEXT_INSN (def_insn);
3957 while (!modified_in_p (DF_REF_REG (use), x))
3959 gcc_assert (x != use_insn);
3960 x = NEXT_INSN (x);
3962 if (dump_file)
3963 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
3964 regno, INSN_UID (x));
3965 emit_insn_after (PATTERN (x), use_insn);
3966 set_insn_deleted (x);
3968 else
3970 if (dump_file)
3971 fprintf (dump_file, " input reg %u modified between def and use\n",
3972 regno);
3973 all_transp = false;
3976 else
3977 all_transp = false;
3980 def_insn_use_rec++;
3982 if (!all_ok)
3983 continue;
3984 if (!dbg_cnt (ira_move))
3985 break;
3986 if (dump_file)
3987 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
3989 if (all_transp)
3991 rtx def_reg = DF_REF_REG (def);
3992 rtx newreg = ira_create_new_reg (def_reg);
3993 if (validate_change (def_insn, DF_REF_LOC (def), newreg, 0))
3995 unsigned nregno = REGNO (newreg);
3996 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
3997 nregno -= max_regs;
3998 VEC_replace (rtx, pseudo_replaced_reg, nregno, def_reg);
4003 FOR_EACH_BB (bb)
4005 bitmap_clear (bb_local + bb->index);
4006 bitmap_clear (bb_transp_live + bb->index);
4007 bitmap_clear (bb_moveable_reg_sets + bb->index);
4009 bitmap_clear (&interesting);
4010 bitmap_clear (&unusable_as_input);
4011 free (uid_luid);
4012 free (closest_uses);
4013 free (bb_local);
4014 free (bb_transp_live);
4015 free (bb_moveable_reg_sets);
4017 last_moveable_pseudo = max_reg_num ();
4019 fix_reg_equiv_init ();
4020 expand_reg_info ();
4021 regstat_free_n_sets_and_refs ();
4022 regstat_free_ri ();
4023 regstat_init_n_sets_and_refs ();
4024 regstat_compute_ri ();
4025 free_dominance_info (CDI_DOMINATORS);
4028 /* Perform the second half of the transformation started in
4029 find_moveable_pseudos. We look for instances where the newly introduced
4030 pseudo remains unallocated, and remove it by moving the definition to
4031 just before its use, replacing the move instruction generated by
4032 find_moveable_pseudos. */
4033 static void
4034 move_unallocated_pseudos (void)
4036 int i;
4037 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4038 if (reg_renumber[i] < 0)
4040 int idx = i - first_moveable_pseudo;
4041 rtx other_reg = VEC_index (rtx, pseudo_replaced_reg, idx);
4042 rtx def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
4043 /* The use must follow all definitions of OTHER_REG, so we can
4044 insert the new definition immediately after any of them. */
4045 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
4046 rtx move_insn = DF_REF_INSN (other_def);
4047 rtx newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
4048 rtx set;
4049 int success;
4051 if (dump_file)
4052 fprintf (dump_file, "moving def of %d (insn %d now) ",
4053 REGNO (other_reg), INSN_UID (def_insn));
4055 delete_insn (move_insn);
4056 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
4057 delete_insn (DF_REF_INSN (other_def));
4058 delete_insn (def_insn);
4060 set = single_set (newinsn);
4061 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
4062 gcc_assert (success);
4063 if (dump_file)
4064 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
4065 INSN_UID (newinsn), i);
4066 SET_REG_N_REFS (i, 0);
4070 /* If the backend knows where to allocate pseudos for hard
4071 register initial values, register these allocations now. */
4072 static void
4073 allocate_initial_values (void)
4075 if (targetm.allocate_initial_value)
4077 rtx hreg, preg, x;
4078 int i, regno;
4080 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
4082 if (! initial_value_entry (i, &hreg, &preg))
4083 break;
4085 x = targetm.allocate_initial_value (hreg);
4086 regno = REGNO (preg);
4087 if (x && REG_N_SETS (regno) <= 1)
4089 if (MEM_P (x))
4090 reg_equiv_memory_loc (regno) = x;
4091 else
4093 basic_block bb;
4094 int new_regno;
4096 gcc_assert (REG_P (x));
4097 new_regno = REGNO (x);
4098 reg_renumber[regno] = new_regno;
4099 /* Poke the regno right into regno_reg_rtx so that even
4100 fixed regs are accepted. */
4101 SET_REGNO (preg, new_regno);
4102 /* Update global register liveness information. */
4103 FOR_EACH_BB (bb)
4105 if (REGNO_REG_SET_P(df_get_live_in (bb), regno))
4106 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
4107 if (REGNO_REG_SET_P(df_get_live_out (bb), regno))
4108 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
4114 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
4115 &hreg, &preg));
4119 /* All natural loops. */
4120 struct loops ira_loops;
4122 /* True if we have allocno conflicts. It is false for non-optimized
4123 mode or when the conflict table is too big. */
4124 bool ira_conflicts_p;
4126 /* Saved between IRA and reload. */
4127 static int saved_flag_ira_share_spill_slots;
4129 /* This is the main entry of IRA. */
4130 static void
4131 ira (FILE *f)
4133 bool loops_p;
4134 int max_regno_before_ira, ira_max_point_before_emit;
4135 int rebuild_p;
4137 if (flag_caller_saves)
4138 init_caller_save ();
4140 if (flag_ira_verbose < 10)
4142 internal_flag_ira_verbose = flag_ira_verbose;
4143 ira_dump_file = f;
4145 else
4147 internal_flag_ira_verbose = flag_ira_verbose - 10;
4148 ira_dump_file = stderr;
4151 ira_conflicts_p = optimize > 0;
4152 setup_prohibited_mode_move_regs ();
4154 df_note_add_problem ();
4156 if (optimize == 1)
4158 df_live_add_problem ();
4159 df_live_set_all_dirty ();
4161 #ifdef ENABLE_CHECKING
4162 df->changeable_flags |= DF_VERIFY_SCHEDULED;
4163 #endif
4164 df_analyze ();
4165 df_clear_flags (DF_NO_INSN_RESCAN);
4166 regstat_init_n_sets_and_refs ();
4167 regstat_compute_ri ();
4169 /* If we are not optimizing, then this is the only place before
4170 register allocation where dataflow is done. And that is needed
4171 to generate these warnings. */
4172 if (warn_clobbered)
4173 generate_setjmp_warnings ();
4175 /* Determine if the current function is a leaf before running IRA
4176 since this can impact optimizations done by the prologue and
4177 epilogue thus changing register elimination offsets. */
4178 crtl->is_leaf = leaf_function_p ();
4180 if (resize_reg_info () && flag_ira_loop_pressure)
4181 ira_set_pseudo_classes (ira_dump_file);
4183 rebuild_p = update_equiv_regs ();
4185 #ifndef IRA_NO_OBSTACK
4186 gcc_obstack_init (&ira_obstack);
4187 #endif
4188 bitmap_obstack_initialize (&ira_bitmap_obstack);
4189 if (optimize)
4191 max_regno = max_reg_num ();
4192 ira_reg_equiv_len = max_regno;
4193 ira_reg_equiv_invariant_p
4194 = (bool *) ira_allocate (max_regno * sizeof (bool));
4195 memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
4196 ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
4197 memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
4198 find_reg_equiv_invariant_const ();
4199 if (rebuild_p)
4201 timevar_push (TV_JUMP);
4202 rebuild_jump_labels (get_insns ());
4203 if (purge_all_dead_edges ())
4204 delete_unreachable_blocks ();
4205 timevar_pop (TV_JUMP);
4209 allocated_reg_info_size = max_reg_num ();
4211 /* It is not worth to do such improvement when we use a simple
4212 allocation because of -O0 usage or because the function is too
4213 big. */
4214 if (ira_conflicts_p)
4215 find_moveable_pseudos ();
4217 max_regno_before_ira = max_reg_num ();
4218 ira_setup_eliminable_regset ();
4220 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
4221 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
4222 ira_move_loops_num = ira_additional_jumps_num = 0;
4224 ira_assert (current_loops == NULL);
4225 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
4227 flow_loops_find (&ira_loops);
4228 record_loop_exits ();
4229 current_loops = &ira_loops;
4232 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
4233 fprintf (ira_dump_file, "Building IRA IR\n");
4234 loops_p = ira_build ();
4236 ira_assert (ira_conflicts_p || !loops_p);
4238 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
4239 if (too_high_register_pressure_p () || cfun->calls_setjmp)
4240 /* It is just wasting compiler's time to pack spilled pseudos into
4241 stack slots in this case -- prohibit it. We also do this if
4242 there is setjmp call because a variable not modified between
4243 setjmp and longjmp the compiler is required to preserve its
4244 value and sharing slots does not guarantee it. */
4245 flag_ira_share_spill_slots = FALSE;
4247 ira_color ();
4249 ira_max_point_before_emit = ira_max_point;
4251 ira_initiate_emit_data ();
4253 ira_emit (loops_p);
4255 if (ira_conflicts_p)
4257 max_regno = max_reg_num ();
4259 if (! loops_p)
4260 ira_initiate_assign ();
4261 else
4263 expand_reg_info ();
4265 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
4266 fprintf (ira_dump_file, "Flattening IR\n");
4267 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
4268 /* New insns were generated: add notes and recalculate live
4269 info. */
4270 df_analyze ();
4272 flow_loops_find (&ira_loops);
4273 record_loop_exits ();
4274 current_loops = &ira_loops;
4276 setup_allocno_assignment_flags ();
4277 ira_initiate_assign ();
4278 ira_reassign_conflict_allocnos (max_regno);
4282 ira_finish_emit_data ();
4284 setup_reg_renumber ();
4286 calculate_allocation_cost ();
4288 #ifdef ENABLE_IRA_CHECKING
4289 if (ira_conflicts_p)
4290 check_allocation ();
4291 #endif
4293 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
4294 df_analyze ();
4296 if (max_regno != max_regno_before_ira)
4298 regstat_free_n_sets_and_refs ();
4299 regstat_free_ri ();
4300 regstat_init_n_sets_and_refs ();
4301 regstat_compute_ri ();
4304 overall_cost_before = ira_overall_cost;
4305 if (! ira_conflicts_p)
4306 grow_reg_equivs ();
4307 else
4309 fix_reg_equiv_init ();
4311 #ifdef ENABLE_IRA_CHECKING
4312 print_redundant_copies ();
4313 #endif
4315 ira_spilled_reg_stack_slots_num = 0;
4316 ira_spilled_reg_stack_slots
4317 = ((struct ira_spilled_reg_stack_slot *)
4318 ira_allocate (max_regno
4319 * sizeof (struct ira_spilled_reg_stack_slot)));
4320 memset (ira_spilled_reg_stack_slots, 0,
4321 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
4323 allocate_initial_values ();
4325 /* See comment for find_moveable_pseudos call. */
4326 if (ira_conflicts_p)
4327 move_unallocated_pseudos ();
4330 static void
4331 do_reload (void)
4333 basic_block bb;
4334 bool need_dce;
4336 if (flag_ira_verbose < 10)
4337 ira_dump_file = dump_file;
4339 df_set_flags (DF_NO_INSN_RESCAN);
4340 build_insn_chain ();
4342 need_dce = reload (get_insns (), ira_conflicts_p);
4344 timevar_push (TV_IRA);
4346 if (ira_conflicts_p)
4348 ira_free (ira_spilled_reg_stack_slots);
4350 ira_finish_assign ();
4352 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
4353 && overall_cost_before != ira_overall_cost)
4354 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
4355 ira_destroy ();
4357 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
4359 if (current_loops != NULL)
4361 flow_loops_free (&ira_loops);
4362 free_dominance_info (CDI_DOMINATORS);
4364 FOR_ALL_BB (bb)
4365 bb->loop_father = NULL;
4366 current_loops = NULL;
4368 regstat_free_ri ();
4369 regstat_free_n_sets_and_refs ();
4371 if (optimize)
4373 cleanup_cfg (CLEANUP_EXPENSIVE);
4375 ira_free (ira_reg_equiv_invariant_p);
4376 ira_free (ira_reg_equiv_const);
4379 bitmap_obstack_release (&ira_bitmap_obstack);
4380 #ifndef IRA_NO_OBSTACK
4381 obstack_free (&ira_obstack, NULL);
4382 #endif
4384 /* The code after the reload has changed so much that at this point
4385 we might as well just rescan everything. Note that
4386 df_rescan_all_insns is not going to help here because it does not
4387 touch the artificial uses and defs. */
4388 df_finish_pass (true);
4389 if (optimize > 1)
4390 df_live_add_problem ();
4391 df_scan_alloc (NULL);
4392 df_scan_blocks ();
4394 if (optimize)
4395 df_analyze ();
4397 if (need_dce && optimize)
4398 run_fast_dce ();
4400 timevar_pop (TV_IRA);
4403 /* Run the integrated register allocator. */
4404 static unsigned int
4405 rest_of_handle_ira (void)
4407 ira (dump_file);
4408 return 0;
4411 struct rtl_opt_pass pass_ira =
4414 RTL_PASS,
4415 "ira", /* name */
4416 NULL, /* gate */
4417 rest_of_handle_ira, /* execute */
4418 NULL, /* sub */
4419 NULL, /* next */
4420 0, /* static_pass_number */
4421 TV_IRA, /* tv_id */
4422 0, /* properties_required */
4423 0, /* properties_provided */
4424 0, /* properties_destroyed */
4425 0, /* todo_flags_start */
4426 0, /* todo_flags_finish */
4430 static unsigned int
4431 rest_of_handle_reload (void)
4433 do_reload ();
4434 return 0;
4437 struct rtl_opt_pass pass_reload =
4440 RTL_PASS,
4441 "reload", /* name */
4442 NULL, /* gate */
4443 rest_of_handle_reload, /* execute */
4444 NULL, /* sub */
4445 NULL, /* next */
4446 0, /* static_pass_number */
4447 TV_RELOAD, /* tv_id */
4448 0, /* properties_required */
4449 0, /* properties_provided */
4450 0, /* properties_destroyed */
4451 0, /* todo_flags_start */
4452 TODO_ggc_collect /* todo_flags_finish */