name-lookup.c (lookup_arg_dependent): Use conditional timevars.
[official-gcc.git] / gcc / emit-rtl.c
blobc94e7438c916c21868334a2f7cf938ea5ac07ccd
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 /* Middle-to-low level generation of rtx code and insns.
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "diagnostic-core.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "expr.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "hashtab.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58 #include "tree-pass.h"
59 #include "df.h"
60 #include "params.h"
61 #include "target.h"
62 #include "tree-flow.h"
64 struct target_rtl default_target_rtl;
65 #if SWITCHABLE_TARGET
66 struct target_rtl *this_target_rtl = &default_target_rtl;
67 #endif
69 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
71 /* Commonly used modes. */
73 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
74 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
75 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
76 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
78 /* Datastructures maintained for currently processed function in RTL form. */
80 struct rtl_data x_rtl;
82 /* Indexed by pseudo register number, gives the rtx for that pseudo.
83 Allocated in parallel with regno_pointer_align.
84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
87 rtx * regno_reg_rtx;
89 /* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
92 static GTY(()) int label_num = 1;
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
98 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
100 rtx const_true_rtx;
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
119 /* A hash table storing CONST_INTs whose absolute value is greater
120 than MAX_SAVED_CONST_INT. */
122 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
123 htab_t const_int_htab;
125 /* A hash table storing memory attribute structures. */
126 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
127 htab_t mem_attrs_htab;
129 /* A hash table storing register attribute structures. */
130 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
131 htab_t reg_attrs_htab;
133 /* A hash table storing all CONST_DOUBLEs. */
134 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
135 htab_t const_double_htab;
137 /* A hash table storing all CONST_FIXEDs. */
138 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
139 htab_t const_fixed_htab;
141 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
142 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
143 #define last_location (crtl->emit.x_last_location)
144 #define first_label_num (crtl->emit.x_first_label_num)
146 static rtx make_call_insn_raw (rtx);
147 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
148 static void set_used_decls (tree);
149 static void mark_label_nuses (rtx);
150 static hashval_t const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx lookup_const_double (rtx);
155 static hashval_t const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx lookup_const_fixed (rtx);
158 static hashval_t mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static hashval_t reg_attrs_htab_hash (const void *);
161 static int reg_attrs_htab_eq (const void *, const void *);
162 static reg_attrs *get_reg_attrs (tree, int);
163 static rtx gen_const_vector (enum machine_mode, int);
164 static void copy_rtx_if_shared_1 (rtx *orig);
166 /* Probability of the conditional branch currently proceeded by try_split.
167 Set to -1 otherwise. */
168 int split_branch_probability = -1;
170 /* Returns a hash code for X (which is a really a CONST_INT). */
172 static hashval_t
173 const_int_htab_hash (const void *x)
175 return (hashval_t) INTVAL ((const_rtx) x);
178 /* Returns nonzero if the value represented by X (which is really a
179 CONST_INT) is the same as that given by Y (which is really a
180 HOST_WIDE_INT *). */
182 static int
183 const_int_htab_eq (const void *x, const void *y)
185 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
188 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
189 static hashval_t
190 const_double_htab_hash (const void *x)
192 const_rtx const value = (const_rtx) x;
193 hashval_t h;
195 if (GET_MODE (value) == VOIDmode)
196 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
197 else
199 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
200 /* MODE is used in the comparison, so it should be in the hash. */
201 h ^= GET_MODE (value);
203 return h;
206 /* Returns nonzero if the value represented by X (really a ...)
207 is the same as that represented by Y (really a ...) */
208 static int
209 const_double_htab_eq (const void *x, const void *y)
211 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
213 if (GET_MODE (a) != GET_MODE (b))
214 return 0;
215 if (GET_MODE (a) == VOIDmode)
216 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
217 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
218 else
219 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
220 CONST_DOUBLE_REAL_VALUE (b));
223 /* Returns a hash code for X (which is really a CONST_FIXED). */
225 static hashval_t
226 const_fixed_htab_hash (const void *x)
228 const_rtx const value = (const_rtx) x;
229 hashval_t h;
231 h = fixed_hash (CONST_FIXED_VALUE (value));
232 /* MODE is used in the comparison, so it should be in the hash. */
233 h ^= GET_MODE (value);
234 return h;
237 /* Returns nonzero if the value represented by X (really a ...)
238 is the same as that represented by Y (really a ...). */
240 static int
241 const_fixed_htab_eq (const void *x, const void *y)
243 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
245 if (GET_MODE (a) != GET_MODE (b))
246 return 0;
247 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
250 /* Returns a hash code for X (which is a really a mem_attrs *). */
252 static hashval_t
253 mem_attrs_htab_hash (const void *x)
255 const mem_attrs *const p = (const mem_attrs *) x;
257 return (p->alias ^ (p->align * 1000)
258 ^ (p->addrspace * 4000)
259 ^ ((p->offset_known_p ? p->offset : 0) * 50000)
260 ^ ((p->size_known_p ? p->size : 0) * 2500000)
261 ^ (size_t) iterative_hash_expr (p->expr, 0));
264 /* Return true if the given memory attributes are equal. */
266 static bool
267 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
269 return (p->alias == q->alias
270 && p->offset_known_p == q->offset_known_p
271 && (!p->offset_known_p || p->offset == q->offset)
272 && p->size_known_p == q->size_known_p
273 && (!p->size_known_p || p->size == q->size)
274 && p->align == q->align
275 && p->addrspace == q->addrspace
276 && (p->expr == q->expr
277 || (p->expr != NULL_TREE && q->expr != NULL_TREE
278 && operand_equal_p (p->expr, q->expr, 0))));
281 /* Returns nonzero if the value represented by X (which is really a
282 mem_attrs *) is the same as that given by Y (which is also really a
283 mem_attrs *). */
285 static int
286 mem_attrs_htab_eq (const void *x, const void *y)
288 return mem_attrs_eq_p ((const mem_attrs *) x, (const mem_attrs *) y);
291 /* Set MEM's memory attributes so that they are the same as ATTRS. */
293 static void
294 set_mem_attrs (rtx mem, mem_attrs *attrs)
296 void **slot;
298 /* If everything is the default, we can just clear the attributes. */
299 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
301 MEM_ATTRS (mem) = 0;
302 return;
305 slot = htab_find_slot (mem_attrs_htab, attrs, INSERT);
306 if (*slot == 0)
308 *slot = ggc_alloc_mem_attrs ();
309 memcpy (*slot, attrs, sizeof (mem_attrs));
312 MEM_ATTRS (mem) = (mem_attrs *) *slot;
315 /* Returns a hash code for X (which is a really a reg_attrs *). */
317 static hashval_t
318 reg_attrs_htab_hash (const void *x)
320 const reg_attrs *const p = (const reg_attrs *) x;
322 return ((p->offset * 1000) ^ (intptr_t) p->decl);
325 /* Returns nonzero if the value represented by X (which is really a
326 reg_attrs *) is the same as that given by Y (which is also really a
327 reg_attrs *). */
329 static int
330 reg_attrs_htab_eq (const void *x, const void *y)
332 const reg_attrs *const p = (const reg_attrs *) x;
333 const reg_attrs *const q = (const reg_attrs *) y;
335 return (p->decl == q->decl && p->offset == q->offset);
337 /* Allocate a new reg_attrs structure and insert it into the hash table if
338 one identical to it is not already in the table. We are doing this for
339 MEM of mode MODE. */
341 static reg_attrs *
342 get_reg_attrs (tree decl, int offset)
344 reg_attrs attrs;
345 void **slot;
347 /* If everything is the default, we can just return zero. */
348 if (decl == 0 && offset == 0)
349 return 0;
351 attrs.decl = decl;
352 attrs.offset = offset;
354 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
355 if (*slot == 0)
357 *slot = ggc_alloc_reg_attrs ();
358 memcpy (*slot, &attrs, sizeof (reg_attrs));
361 return (reg_attrs *) *slot;
365 #if !HAVE_blockage
366 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
367 across this insn. */
370 gen_blockage (void)
372 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
373 MEM_VOLATILE_P (x) = true;
374 return x;
376 #endif
379 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
380 don't attempt to share with the various global pieces of rtl (such as
381 frame_pointer_rtx). */
384 gen_raw_REG (enum machine_mode mode, int regno)
386 rtx x = gen_rtx_raw_REG (mode, regno);
387 ORIGINAL_REGNO (x) = regno;
388 return x;
391 /* There are some RTL codes that require special attention; the generation
392 functions do the raw handling. If you add to this list, modify
393 special_rtx in gengenrtl.c as well. */
396 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
398 void **slot;
400 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
401 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
403 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
404 if (const_true_rtx && arg == STORE_FLAG_VALUE)
405 return const_true_rtx;
406 #endif
408 /* Look up the CONST_INT in the hash table. */
409 slot = htab_find_slot_with_hash (const_int_htab, &arg,
410 (hashval_t) arg, INSERT);
411 if (*slot == 0)
412 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
414 return (rtx) *slot;
418 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
420 return GEN_INT (trunc_int_for_mode (c, mode));
423 /* CONST_DOUBLEs might be created from pairs of integers, or from
424 REAL_VALUE_TYPEs. Also, their length is known only at run time,
425 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
427 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
428 hash table. If so, return its counterpart; otherwise add it
429 to the hash table and return it. */
430 static rtx
431 lookup_const_double (rtx real)
433 void **slot = htab_find_slot (const_double_htab, real, INSERT);
434 if (*slot == 0)
435 *slot = real;
437 return (rtx) *slot;
440 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
441 VALUE in mode MODE. */
443 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
445 rtx real = rtx_alloc (CONST_DOUBLE);
446 PUT_MODE (real, mode);
448 real->u.rv = value;
450 return lookup_const_double (real);
453 /* Determine whether FIXED, a CONST_FIXED, already exists in the
454 hash table. If so, return its counterpart; otherwise add it
455 to the hash table and return it. */
457 static rtx
458 lookup_const_fixed (rtx fixed)
460 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
461 if (*slot == 0)
462 *slot = fixed;
464 return (rtx) *slot;
467 /* Return a CONST_FIXED rtx for a fixed-point value specified by
468 VALUE in mode MODE. */
471 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
473 rtx fixed = rtx_alloc (CONST_FIXED);
474 PUT_MODE (fixed, mode);
476 fixed->u.fv = value;
478 return lookup_const_fixed (fixed);
481 /* Constructs double_int from rtx CST. */
483 double_int
484 rtx_to_double_int (const_rtx cst)
486 double_int r;
488 if (CONST_INT_P (cst))
489 r = shwi_to_double_int (INTVAL (cst));
490 else if (CONST_DOUBLE_P (cst) && GET_MODE (cst) == VOIDmode)
492 r.low = CONST_DOUBLE_LOW (cst);
493 r.high = CONST_DOUBLE_HIGH (cst);
495 else
496 gcc_unreachable ();
498 return r;
502 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
503 a double_int. */
506 immed_double_int_const (double_int i, enum machine_mode mode)
508 return immed_double_const (i.low, i.high, mode);
511 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
512 of ints: I0 is the low-order word and I1 is the high-order word.
513 Do not use this routine for non-integer modes; convert to
514 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
517 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
519 rtx value;
520 unsigned int i;
522 /* There are the following cases (note that there are no modes with
523 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
525 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
526 gen_int_mode.
527 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
528 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
529 from copies of the sign bit, and sign of i0 and i1 are the same), then
530 we return a CONST_INT for i0.
531 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
532 if (mode != VOIDmode)
534 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
535 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
536 /* We can get a 0 for an error mark. */
537 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
538 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
540 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
541 return gen_int_mode (i0, mode);
543 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
546 /* If this integer fits in one word, return a CONST_INT. */
547 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
548 return GEN_INT (i0);
550 /* We use VOIDmode for integers. */
551 value = rtx_alloc (CONST_DOUBLE);
552 PUT_MODE (value, VOIDmode);
554 CONST_DOUBLE_LOW (value) = i0;
555 CONST_DOUBLE_HIGH (value) = i1;
557 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
558 XWINT (value, i) = 0;
560 return lookup_const_double (value);
564 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
566 /* In case the MD file explicitly references the frame pointer, have
567 all such references point to the same frame pointer. This is
568 used during frame pointer elimination to distinguish the explicit
569 references to these registers from pseudos that happened to be
570 assigned to them.
572 If we have eliminated the frame pointer or arg pointer, we will
573 be using it as a normal register, for example as a spill
574 register. In such cases, we might be accessing it in a mode that
575 is not Pmode and therefore cannot use the pre-allocated rtx.
577 Also don't do this when we are making new REGs in reload, since
578 we don't want to get confused with the real pointers. */
580 if (mode == Pmode && !reload_in_progress)
582 if (regno == FRAME_POINTER_REGNUM
583 && (!reload_completed || frame_pointer_needed))
584 return frame_pointer_rtx;
585 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
586 if (regno == HARD_FRAME_POINTER_REGNUM
587 && (!reload_completed || frame_pointer_needed))
588 return hard_frame_pointer_rtx;
589 #endif
590 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
591 if (regno == ARG_POINTER_REGNUM)
592 return arg_pointer_rtx;
593 #endif
594 #ifdef RETURN_ADDRESS_POINTER_REGNUM
595 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
596 return return_address_pointer_rtx;
597 #endif
598 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
599 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
600 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
601 return pic_offset_table_rtx;
602 if (regno == STACK_POINTER_REGNUM)
603 return stack_pointer_rtx;
606 #if 0
607 /* If the per-function register table has been set up, try to re-use
608 an existing entry in that table to avoid useless generation of RTL.
610 This code is disabled for now until we can fix the various backends
611 which depend on having non-shared hard registers in some cases. Long
612 term we want to re-enable this code as it can significantly cut down
613 on the amount of useless RTL that gets generated.
615 We'll also need to fix some code that runs after reload that wants to
616 set ORIGINAL_REGNO. */
618 if (cfun
619 && cfun->emit
620 && regno_reg_rtx
621 && regno < FIRST_PSEUDO_REGISTER
622 && reg_raw_mode[regno] == mode)
623 return regno_reg_rtx[regno];
624 #endif
626 return gen_raw_REG (mode, regno);
630 gen_rtx_MEM (enum machine_mode mode, rtx addr)
632 rtx rt = gen_rtx_raw_MEM (mode, addr);
634 /* This field is not cleared by the mere allocation of the rtx, so
635 we clear it here. */
636 MEM_ATTRS (rt) = 0;
638 return rt;
641 /* Generate a memory referring to non-trapping constant memory. */
644 gen_const_mem (enum machine_mode mode, rtx addr)
646 rtx mem = gen_rtx_MEM (mode, addr);
647 MEM_READONLY_P (mem) = 1;
648 MEM_NOTRAP_P (mem) = 1;
649 return mem;
652 /* Generate a MEM referring to fixed portions of the frame, e.g., register
653 save areas. */
656 gen_frame_mem (enum machine_mode mode, rtx addr)
658 rtx mem = gen_rtx_MEM (mode, addr);
659 MEM_NOTRAP_P (mem) = 1;
660 set_mem_alias_set (mem, get_frame_alias_set ());
661 return mem;
664 /* Generate a MEM referring to a temporary use of the stack, not part
665 of the fixed stack frame. For example, something which is pushed
666 by a target splitter. */
668 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
670 rtx mem = gen_rtx_MEM (mode, addr);
671 MEM_NOTRAP_P (mem) = 1;
672 if (!cfun->calls_alloca)
673 set_mem_alias_set (mem, get_frame_alias_set ());
674 return mem;
677 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
678 this construct would be valid, and false otherwise. */
680 bool
681 validate_subreg (enum machine_mode omode, enum machine_mode imode,
682 const_rtx reg, unsigned int offset)
684 unsigned int isize = GET_MODE_SIZE (imode);
685 unsigned int osize = GET_MODE_SIZE (omode);
687 /* All subregs must be aligned. */
688 if (offset % osize != 0)
689 return false;
691 /* The subreg offset cannot be outside the inner object. */
692 if (offset >= isize)
693 return false;
695 /* ??? This should not be here. Temporarily continue to allow word_mode
696 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
697 Generally, backends are doing something sketchy but it'll take time to
698 fix them all. */
699 if (omode == word_mode)
701 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
702 is the culprit here, and not the backends. */
703 else if (osize >= UNITS_PER_WORD && isize >= osize)
705 /* Allow component subregs of complex and vector. Though given the below
706 extraction rules, it's not always clear what that means. */
707 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
708 && GET_MODE_INNER (imode) == omode)
710 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
711 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
712 represent this. It's questionable if this ought to be represented at
713 all -- why can't this all be hidden in post-reload splitters that make
714 arbitrarily mode changes to the registers themselves. */
715 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
717 /* Subregs involving floating point modes are not allowed to
718 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
719 (subreg:SI (reg:DF) 0) isn't. */
720 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
722 if (isize != osize)
723 return false;
726 /* Paradoxical subregs must have offset zero. */
727 if (osize > isize)
728 return offset == 0;
730 /* This is a normal subreg. Verify that the offset is representable. */
732 /* For hard registers, we already have most of these rules collected in
733 subreg_offset_representable_p. */
734 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
736 unsigned int regno = REGNO (reg);
738 #ifdef CANNOT_CHANGE_MODE_CLASS
739 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
740 && GET_MODE_INNER (imode) == omode)
742 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
743 return false;
744 #endif
746 return subreg_offset_representable_p (regno, imode, offset, omode);
749 /* For pseudo registers, we want most of the same checks. Namely:
750 If the register no larger than a word, the subreg must be lowpart.
751 If the register is larger than a word, the subreg must be the lowpart
752 of a subword. A subreg does *not* perform arbitrary bit extraction.
753 Given that we've already checked mode/offset alignment, we only have
754 to check subword subregs here. */
755 if (osize < UNITS_PER_WORD)
757 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
758 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
759 if (offset % UNITS_PER_WORD != low_off)
760 return false;
762 return true;
766 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
768 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
769 return gen_rtx_raw_SUBREG (mode, reg, offset);
772 /* Generate a SUBREG representing the least-significant part of REG if MODE
773 is smaller than mode of REG, otherwise paradoxical SUBREG. */
776 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
778 enum machine_mode inmode;
780 inmode = GET_MODE (reg);
781 if (inmode == VOIDmode)
782 inmode = mode;
783 return gen_rtx_SUBREG (mode, reg,
784 subreg_lowpart_offset (mode, inmode));
788 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
790 rtvec
791 gen_rtvec (int n, ...)
793 int i;
794 rtvec rt_val;
795 va_list p;
797 va_start (p, n);
799 /* Don't allocate an empty rtvec... */
800 if (n == 0)
802 va_end (p);
803 return NULL_RTVEC;
806 rt_val = rtvec_alloc (n);
808 for (i = 0; i < n; i++)
809 rt_val->elem[i] = va_arg (p, rtx);
811 va_end (p);
812 return rt_val;
815 rtvec
816 gen_rtvec_v (int n, rtx *argp)
818 int i;
819 rtvec rt_val;
821 /* Don't allocate an empty rtvec... */
822 if (n == 0)
823 return NULL_RTVEC;
825 rt_val = rtvec_alloc (n);
827 for (i = 0; i < n; i++)
828 rt_val->elem[i] = *argp++;
830 return rt_val;
833 /* Return the number of bytes between the start of an OUTER_MODE
834 in-memory value and the start of an INNER_MODE in-memory value,
835 given that the former is a lowpart of the latter. It may be a
836 paradoxical lowpart, in which case the offset will be negative
837 on big-endian targets. */
840 byte_lowpart_offset (enum machine_mode outer_mode,
841 enum machine_mode inner_mode)
843 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
844 return subreg_lowpart_offset (outer_mode, inner_mode);
845 else
846 return -subreg_lowpart_offset (inner_mode, outer_mode);
849 /* Generate a REG rtx for a new pseudo register of mode MODE.
850 This pseudo is assigned the next sequential register number. */
853 gen_reg_rtx (enum machine_mode mode)
855 rtx val;
856 unsigned int align = GET_MODE_ALIGNMENT (mode);
858 gcc_assert (can_create_pseudo_p ());
860 /* If a virtual register with bigger mode alignment is generated,
861 increase stack alignment estimation because it might be spilled
862 to stack later. */
863 if (SUPPORTS_STACK_ALIGNMENT
864 && crtl->stack_alignment_estimated < align
865 && !crtl->stack_realign_processed)
867 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
868 if (crtl->stack_alignment_estimated < min_align)
869 crtl->stack_alignment_estimated = min_align;
872 if (generating_concat_p
873 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
874 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
876 /* For complex modes, don't make a single pseudo.
877 Instead, make a CONCAT of two pseudos.
878 This allows noncontiguous allocation of the real and imaginary parts,
879 which makes much better code. Besides, allocating DCmode
880 pseudos overstrains reload on some machines like the 386. */
881 rtx realpart, imagpart;
882 enum machine_mode partmode = GET_MODE_INNER (mode);
884 realpart = gen_reg_rtx (partmode);
885 imagpart = gen_reg_rtx (partmode);
886 return gen_rtx_CONCAT (mode, realpart, imagpart);
889 /* Make sure regno_pointer_align, and regno_reg_rtx are large
890 enough to have an element for this pseudo reg number. */
892 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
894 int old_size = crtl->emit.regno_pointer_align_length;
895 char *tmp;
896 rtx *new1;
898 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
899 memset (tmp + old_size, 0, old_size);
900 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
902 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
903 memset (new1 + old_size, 0, old_size * sizeof (rtx));
904 regno_reg_rtx = new1;
906 crtl->emit.regno_pointer_align_length = old_size * 2;
909 val = gen_raw_REG (mode, reg_rtx_no);
910 regno_reg_rtx[reg_rtx_no++] = val;
911 return val;
914 /* Update NEW with the same attributes as REG, but with OFFSET added
915 to the REG_OFFSET. */
917 static void
918 update_reg_offset (rtx new_rtx, rtx reg, int offset)
920 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
921 REG_OFFSET (reg) + offset);
924 /* Generate a register with same attributes as REG, but with OFFSET
925 added to the REG_OFFSET. */
928 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
929 int offset)
931 rtx new_rtx = gen_rtx_REG (mode, regno);
933 update_reg_offset (new_rtx, reg, offset);
934 return new_rtx;
937 /* Generate a new pseudo-register with the same attributes as REG, but
938 with OFFSET added to the REG_OFFSET. */
941 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
943 rtx new_rtx = gen_reg_rtx (mode);
945 update_reg_offset (new_rtx, reg, offset);
946 return new_rtx;
949 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
950 new register is a (possibly paradoxical) lowpart of the old one. */
952 void
953 adjust_reg_mode (rtx reg, enum machine_mode mode)
955 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
956 PUT_MODE (reg, mode);
959 /* Copy REG's attributes from X, if X has any attributes. If REG and X
960 have different modes, REG is a (possibly paradoxical) lowpart of X. */
962 void
963 set_reg_attrs_from_value (rtx reg, rtx x)
965 int offset;
967 /* Hard registers can be reused for multiple purposes within the same
968 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
969 on them is wrong. */
970 if (HARD_REGISTER_P (reg))
971 return;
973 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
974 if (MEM_P (x))
976 if (MEM_OFFSET_KNOWN_P (x))
977 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
978 MEM_OFFSET (x) + offset);
979 if (MEM_POINTER (x))
980 mark_reg_pointer (reg, 0);
982 else if (REG_P (x))
984 if (REG_ATTRS (x))
985 update_reg_offset (reg, x, offset);
986 if (REG_POINTER (x))
987 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
991 /* Generate a REG rtx for a new pseudo register, copying the mode
992 and attributes from X. */
995 gen_reg_rtx_and_attrs (rtx x)
997 rtx reg = gen_reg_rtx (GET_MODE (x));
998 set_reg_attrs_from_value (reg, x);
999 return reg;
1002 /* Set the register attributes for registers contained in PARM_RTX.
1003 Use needed values from memory attributes of MEM. */
1005 void
1006 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1008 if (REG_P (parm_rtx))
1009 set_reg_attrs_from_value (parm_rtx, mem);
1010 else if (GET_CODE (parm_rtx) == PARALLEL)
1012 /* Check for a NULL entry in the first slot, used to indicate that the
1013 parameter goes both on the stack and in registers. */
1014 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1015 for (; i < XVECLEN (parm_rtx, 0); i++)
1017 rtx x = XVECEXP (parm_rtx, 0, i);
1018 if (REG_P (XEXP (x, 0)))
1019 REG_ATTRS (XEXP (x, 0))
1020 = get_reg_attrs (MEM_EXPR (mem),
1021 INTVAL (XEXP (x, 1)));
1026 /* Set the REG_ATTRS for registers in value X, given that X represents
1027 decl T. */
1029 void
1030 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1032 if (GET_CODE (x) == SUBREG)
1034 gcc_assert (subreg_lowpart_p (x));
1035 x = SUBREG_REG (x);
1037 if (REG_P (x))
1038 REG_ATTRS (x)
1039 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1040 DECL_MODE (t)));
1041 if (GET_CODE (x) == CONCAT)
1043 if (REG_P (XEXP (x, 0)))
1044 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1045 if (REG_P (XEXP (x, 1)))
1046 REG_ATTRS (XEXP (x, 1))
1047 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1049 if (GET_CODE (x) == PARALLEL)
1051 int i, start;
1053 /* Check for a NULL entry, used to indicate that the parameter goes
1054 both on the stack and in registers. */
1055 if (XEXP (XVECEXP (x, 0, 0), 0))
1056 start = 0;
1057 else
1058 start = 1;
1060 for (i = start; i < XVECLEN (x, 0); i++)
1062 rtx y = XVECEXP (x, 0, i);
1063 if (REG_P (XEXP (y, 0)))
1064 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1069 /* Assign the RTX X to declaration T. */
1071 void
1072 set_decl_rtl (tree t, rtx x)
1074 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1075 if (x)
1076 set_reg_attrs_for_decl_rtl (t, x);
1079 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1080 if the ABI requires the parameter to be passed by reference. */
1082 void
1083 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1085 DECL_INCOMING_RTL (t) = x;
1086 if (x && !by_reference_p)
1087 set_reg_attrs_for_decl_rtl (t, x);
1090 /* Identify REG (which may be a CONCAT) as a user register. */
1092 void
1093 mark_user_reg (rtx reg)
1095 if (GET_CODE (reg) == CONCAT)
1097 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1098 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1100 else
1102 gcc_assert (REG_P (reg));
1103 REG_USERVAR_P (reg) = 1;
1107 /* Identify REG as a probable pointer register and show its alignment
1108 as ALIGN, if nonzero. */
1110 void
1111 mark_reg_pointer (rtx reg, int align)
1113 if (! REG_POINTER (reg))
1115 REG_POINTER (reg) = 1;
1117 if (align)
1118 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1120 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1121 /* We can no-longer be sure just how aligned this pointer is. */
1122 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1125 /* Return 1 plus largest pseudo reg number used in the current function. */
1128 max_reg_num (void)
1130 return reg_rtx_no;
1133 /* Return 1 + the largest label number used so far in the current function. */
1136 max_label_num (void)
1138 return label_num;
1141 /* Return first label number used in this function (if any were used). */
1144 get_first_label_num (void)
1146 return first_label_num;
1149 /* If the rtx for label was created during the expansion of a nested
1150 function, then first_label_num won't include this label number.
1151 Fix this now so that array indices work later. */
1153 void
1154 maybe_set_first_label_num (rtx x)
1156 if (CODE_LABEL_NUMBER (x) < first_label_num)
1157 first_label_num = CODE_LABEL_NUMBER (x);
1160 /* Return a value representing some low-order bits of X, where the number
1161 of low-order bits is given by MODE. Note that no conversion is done
1162 between floating-point and fixed-point values, rather, the bit
1163 representation is returned.
1165 This function handles the cases in common between gen_lowpart, below,
1166 and two variants in cse.c and combine.c. These are the cases that can
1167 be safely handled at all points in the compilation.
1169 If this is not a case we can handle, return 0. */
1172 gen_lowpart_common (enum machine_mode mode, rtx x)
1174 int msize = GET_MODE_SIZE (mode);
1175 int xsize;
1176 int offset = 0;
1177 enum machine_mode innermode;
1179 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1180 so we have to make one up. Yuk. */
1181 innermode = GET_MODE (x);
1182 if (CONST_INT_P (x)
1183 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1184 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1185 else if (innermode == VOIDmode)
1186 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1188 xsize = GET_MODE_SIZE (innermode);
1190 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1192 if (innermode == mode)
1193 return x;
1195 /* MODE must occupy no more words than the mode of X. */
1196 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1197 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1198 return 0;
1200 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1201 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1202 return 0;
1204 offset = subreg_lowpart_offset (mode, innermode);
1206 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1207 && (GET_MODE_CLASS (mode) == MODE_INT
1208 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1210 /* If we are getting the low-order part of something that has been
1211 sign- or zero-extended, we can either just use the object being
1212 extended or make a narrower extension. If we want an even smaller
1213 piece than the size of the object being extended, call ourselves
1214 recursively.
1216 This case is used mostly by combine and cse. */
1218 if (GET_MODE (XEXP (x, 0)) == mode)
1219 return XEXP (x, 0);
1220 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1221 return gen_lowpart_common (mode, XEXP (x, 0));
1222 else if (msize < xsize)
1223 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1225 else if (GET_CODE (x) == SUBREG || REG_P (x)
1226 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1227 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1228 return simplify_gen_subreg (mode, x, innermode, offset);
1230 /* Otherwise, we can't do this. */
1231 return 0;
1235 gen_highpart (enum machine_mode mode, rtx x)
1237 unsigned int msize = GET_MODE_SIZE (mode);
1238 rtx result;
1240 /* This case loses if X is a subreg. To catch bugs early,
1241 complain if an invalid MODE is used even in other cases. */
1242 gcc_assert (msize <= UNITS_PER_WORD
1243 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1245 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1246 subreg_highpart_offset (mode, GET_MODE (x)));
1247 gcc_assert (result);
1249 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1250 the target if we have a MEM. gen_highpart must return a valid operand,
1251 emitting code if necessary to do so. */
1252 if (MEM_P (result))
1254 result = validize_mem (result);
1255 gcc_assert (result);
1258 return result;
1261 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1262 be VOIDmode constant. */
1264 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1266 if (GET_MODE (exp) != VOIDmode)
1268 gcc_assert (GET_MODE (exp) == innermode);
1269 return gen_highpart (outermode, exp);
1271 return simplify_gen_subreg (outermode, exp, innermode,
1272 subreg_highpart_offset (outermode, innermode));
1275 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1277 unsigned int
1278 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1280 unsigned int offset = 0;
1281 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1283 if (difference > 0)
1285 if (WORDS_BIG_ENDIAN)
1286 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1287 if (BYTES_BIG_ENDIAN)
1288 offset += difference % UNITS_PER_WORD;
1291 return offset;
1294 /* Return offset in bytes to get OUTERMODE high part
1295 of the value in mode INNERMODE stored in memory in target format. */
1296 unsigned int
1297 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1299 unsigned int offset = 0;
1300 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1302 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1304 if (difference > 0)
1306 if (! WORDS_BIG_ENDIAN)
1307 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1308 if (! BYTES_BIG_ENDIAN)
1309 offset += difference % UNITS_PER_WORD;
1312 return offset;
1315 /* Return 1 iff X, assumed to be a SUBREG,
1316 refers to the least significant part of its containing reg.
1317 If X is not a SUBREG, always return 1 (it is its own low part!). */
1320 subreg_lowpart_p (const_rtx x)
1322 if (GET_CODE (x) != SUBREG)
1323 return 1;
1324 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1325 return 0;
1327 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1328 == SUBREG_BYTE (x));
1331 /* Return true if X is a paradoxical subreg, false otherwise. */
1332 bool
1333 paradoxical_subreg_p (const_rtx x)
1335 if (GET_CODE (x) != SUBREG)
1336 return false;
1337 return (GET_MODE_PRECISION (GET_MODE (x))
1338 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1341 /* Return subword OFFSET of operand OP.
1342 The word number, OFFSET, is interpreted as the word number starting
1343 at the low-order address. OFFSET 0 is the low-order word if not
1344 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1346 If we cannot extract the required word, we return zero. Otherwise,
1347 an rtx corresponding to the requested word will be returned.
1349 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1350 reload has completed, a valid address will always be returned. After
1351 reload, if a valid address cannot be returned, we return zero.
1353 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1354 it is the responsibility of the caller.
1356 MODE is the mode of OP in case it is a CONST_INT.
1358 ??? This is still rather broken for some cases. The problem for the
1359 moment is that all callers of this thing provide no 'goal mode' to
1360 tell us to work with. This exists because all callers were written
1361 in a word based SUBREG world.
1362 Now use of this function can be deprecated by simplify_subreg in most
1363 cases.
1367 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1369 if (mode == VOIDmode)
1370 mode = GET_MODE (op);
1372 gcc_assert (mode != VOIDmode);
1374 /* If OP is narrower than a word, fail. */
1375 if (mode != BLKmode
1376 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1377 return 0;
1379 /* If we want a word outside OP, return zero. */
1380 if (mode != BLKmode
1381 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1382 return const0_rtx;
1384 /* Form a new MEM at the requested address. */
1385 if (MEM_P (op))
1387 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1389 if (! validate_address)
1390 return new_rtx;
1392 else if (reload_completed)
1394 if (! strict_memory_address_addr_space_p (word_mode,
1395 XEXP (new_rtx, 0),
1396 MEM_ADDR_SPACE (op)))
1397 return 0;
1399 else
1400 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1403 /* Rest can be handled by simplify_subreg. */
1404 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1407 /* Similar to `operand_subword', but never return 0. If we can't
1408 extract the required subword, put OP into a register and try again.
1409 The second attempt must succeed. We always validate the address in
1410 this case.
1412 MODE is the mode of OP, in case it is CONST_INT. */
1415 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1417 rtx result = operand_subword (op, offset, 1, mode);
1419 if (result)
1420 return result;
1422 if (mode != BLKmode && mode != VOIDmode)
1424 /* If this is a register which can not be accessed by words, copy it
1425 to a pseudo register. */
1426 if (REG_P (op))
1427 op = copy_to_reg (op);
1428 else
1429 op = force_reg (mode, op);
1432 result = operand_subword (op, offset, 1, mode);
1433 gcc_assert (result);
1435 return result;
1438 /* Returns 1 if both MEM_EXPR can be considered equal
1439 and 0 otherwise. */
1442 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1444 if (expr1 == expr2)
1445 return 1;
1447 if (! expr1 || ! expr2)
1448 return 0;
1450 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1451 return 0;
1453 return operand_equal_p (expr1, expr2, 0);
1456 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1457 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1458 -1 if not known. */
1461 get_mem_align_offset (rtx mem, unsigned int align)
1463 tree expr;
1464 unsigned HOST_WIDE_INT offset;
1466 /* This function can't use
1467 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1468 || (MAX (MEM_ALIGN (mem),
1469 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1470 < align))
1471 return -1;
1472 else
1473 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1474 for two reasons:
1475 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1476 for <variable>. get_inner_reference doesn't handle it and
1477 even if it did, the alignment in that case needs to be determined
1478 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1479 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1480 isn't sufficiently aligned, the object it is in might be. */
1481 gcc_assert (MEM_P (mem));
1482 expr = MEM_EXPR (mem);
1483 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1484 return -1;
1486 offset = MEM_OFFSET (mem);
1487 if (DECL_P (expr))
1489 if (DECL_ALIGN (expr) < align)
1490 return -1;
1492 else if (INDIRECT_REF_P (expr))
1494 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1495 return -1;
1497 else if (TREE_CODE (expr) == COMPONENT_REF)
1499 while (1)
1501 tree inner = TREE_OPERAND (expr, 0);
1502 tree field = TREE_OPERAND (expr, 1);
1503 tree byte_offset = component_ref_field_offset (expr);
1504 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1506 if (!byte_offset
1507 || !host_integerp (byte_offset, 1)
1508 || !host_integerp (bit_offset, 1))
1509 return -1;
1511 offset += tree_low_cst (byte_offset, 1);
1512 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1514 if (inner == NULL_TREE)
1516 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1517 < (unsigned int) align)
1518 return -1;
1519 break;
1521 else if (DECL_P (inner))
1523 if (DECL_ALIGN (inner) < align)
1524 return -1;
1525 break;
1527 else if (TREE_CODE (inner) != COMPONENT_REF)
1528 return -1;
1529 expr = inner;
1532 else
1533 return -1;
1535 return offset & ((align / BITS_PER_UNIT) - 1);
1538 /* Given REF (a MEM) and T, either the type of X or the expression
1539 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1540 if we are making a new object of this type. BITPOS is nonzero if
1541 there is an offset outstanding on T that will be applied later. */
1543 void
1544 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1545 HOST_WIDE_INT bitpos)
1547 HOST_WIDE_INT apply_bitpos = 0;
1548 tree type;
1549 struct mem_attrs attrs, *defattrs, *refattrs;
1551 /* It can happen that type_for_mode was given a mode for which there
1552 is no language-level type. In which case it returns NULL, which
1553 we can see here. */
1554 if (t == NULL_TREE)
1555 return;
1557 type = TYPE_P (t) ? t : TREE_TYPE (t);
1558 if (type == error_mark_node)
1559 return;
1561 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1562 wrong answer, as it assumes that DECL_RTL already has the right alias
1563 info. Callers should not set DECL_RTL until after the call to
1564 set_mem_attributes. */
1565 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1567 memset (&attrs, 0, sizeof (attrs));
1569 /* Get the alias set from the expression or type (perhaps using a
1570 front-end routine) and use it. */
1571 attrs.alias = get_alias_set (t);
1573 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1574 MEM_IN_STRUCT_P (ref)
1575 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1576 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1578 /* If we are making an object of this type, or if this is a DECL, we know
1579 that it is a scalar if the type is not an aggregate. */
1580 if ((objectp || DECL_P (t))
1581 && ! AGGREGATE_TYPE_P (type)
1582 && TREE_CODE (type) != COMPLEX_TYPE)
1583 MEM_SCALAR_P (ref) = 1;
1585 /* Default values from pre-existing memory attributes if present. */
1586 refattrs = MEM_ATTRS (ref);
1587 if (refattrs)
1589 /* ??? Can this ever happen? Calling this routine on a MEM that
1590 already carries memory attributes should probably be invalid. */
1591 attrs.expr = refattrs->expr;
1592 attrs.offset_known_p = refattrs->offset_known_p;
1593 attrs.offset = refattrs->offset;
1594 attrs.size_known_p = refattrs->size_known_p;
1595 attrs.size = refattrs->size;
1596 attrs.align = refattrs->align;
1599 /* Otherwise, default values from the mode of the MEM reference. */
1600 else
1602 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1603 gcc_assert (!defattrs->expr);
1604 gcc_assert (!defattrs->offset_known_p);
1606 /* Respect mode size. */
1607 attrs.size_known_p = defattrs->size_known_p;
1608 attrs.size = defattrs->size;
1609 /* ??? Is this really necessary? We probably should always get
1610 the size from the type below. */
1612 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1613 if T is an object, always compute the object alignment below. */
1614 if (TYPE_P (t))
1615 attrs.align = defattrs->align;
1616 else
1617 attrs.align = BITS_PER_UNIT;
1618 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1619 e.g. if the type carries an alignment attribute. Should we be
1620 able to simply always use TYPE_ALIGN? */
1623 /* We can set the alignment from the type if we are making an object,
1624 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1625 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1626 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1628 else if (TREE_CODE (t) == MEM_REF)
1630 tree op0 = TREE_OPERAND (t, 0);
1631 if (TREE_CODE (op0) == ADDR_EXPR
1632 && (DECL_P (TREE_OPERAND (op0, 0))
1633 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
1635 if (DECL_P (TREE_OPERAND (op0, 0)))
1636 attrs.align = DECL_ALIGN (TREE_OPERAND (op0, 0));
1637 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1639 attrs.align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
1640 #ifdef CONSTANT_ALIGNMENT
1641 attrs.align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0),
1642 attrs.align);
1643 #endif
1645 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1647 unsigned HOST_WIDE_INT ioff
1648 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1649 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1650 attrs.align = MIN (aoff, attrs.align);
1653 else
1654 /* ??? This isn't fully correct, we can't set the alignment from the
1655 type in all cases. */
1656 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1659 else if (TREE_CODE (t) == TARGET_MEM_REF)
1660 /* ??? This isn't fully correct, we can't set the alignment from the
1661 type in all cases. */
1662 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1664 /* If the size is known, we can set that. */
1665 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1667 attrs.size_known_p = true;
1668 attrs.size = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
1671 /* If T is not a type, we may be able to deduce some more information about
1672 the expression. */
1673 if (! TYPE_P (t))
1675 tree base;
1676 bool align_computed = false;
1678 if (TREE_THIS_VOLATILE (t))
1679 MEM_VOLATILE_P (ref) = 1;
1681 /* Now remove any conversions: they don't change what the underlying
1682 object is. Likewise for SAVE_EXPR. */
1683 while (CONVERT_EXPR_P (t)
1684 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1685 || TREE_CODE (t) == SAVE_EXPR)
1686 t = TREE_OPERAND (t, 0);
1688 /* Note whether this expression can trap. */
1689 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1691 base = get_base_address (t);
1692 if (base && DECL_P (base)
1693 && TREE_READONLY (base)
1694 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1695 && !TREE_THIS_VOLATILE (base))
1696 MEM_READONLY_P (ref) = 1;
1698 /* If this expression uses it's parent's alias set, mark it such
1699 that we won't change it. */
1700 if (component_uses_parent_alias_set (t))
1701 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1703 /* If this is a decl, set the attributes of the MEM from it. */
1704 if (DECL_P (t))
1706 attrs.expr = t;
1707 attrs.offset_known_p = true;
1708 attrs.offset = 0;
1709 apply_bitpos = bitpos;
1710 if (DECL_SIZE_UNIT (t) && host_integerp (DECL_SIZE_UNIT (t), 1))
1712 attrs.size_known_p = true;
1713 attrs.size = tree_low_cst (DECL_SIZE_UNIT (t), 1);
1715 else
1716 attrs.size_known_p = false;
1717 attrs.align = DECL_ALIGN (t);
1718 align_computed = true;
1721 /* If this is a constant, we know the alignment. */
1722 else if (CONSTANT_CLASS_P (t))
1724 attrs.align = TYPE_ALIGN (type);
1725 #ifdef CONSTANT_ALIGNMENT
1726 attrs.align = CONSTANT_ALIGNMENT (t, attrs.align);
1727 #endif
1728 align_computed = true;
1731 /* If this is a field reference and not a bit-field, record it. */
1732 /* ??? There is some information that can be gleaned from bit-fields,
1733 such as the word offset in the structure that might be modified.
1734 But skip it for now. */
1735 else if (TREE_CODE (t) == COMPONENT_REF
1736 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1738 attrs.expr = t;
1739 attrs.offset_known_p = true;
1740 attrs.offset = 0;
1741 apply_bitpos = bitpos;
1742 /* ??? Any reason the field size would be different than
1743 the size we got from the type? */
1746 /* If this is an array reference, look for an outer field reference. */
1747 else if (TREE_CODE (t) == ARRAY_REF)
1749 tree off_tree = size_zero_node;
1750 /* We can't modify t, because we use it at the end of the
1751 function. */
1752 tree t2 = t;
1756 tree index = TREE_OPERAND (t2, 1);
1757 tree low_bound = array_ref_low_bound (t2);
1758 tree unit_size = array_ref_element_size (t2);
1760 /* We assume all arrays have sizes that are a multiple of a byte.
1761 First subtract the lower bound, if any, in the type of the
1762 index, then convert to sizetype and multiply by the size of
1763 the array element. */
1764 if (! integer_zerop (low_bound))
1765 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1766 index, low_bound);
1768 off_tree = size_binop (PLUS_EXPR,
1769 size_binop (MULT_EXPR,
1770 fold_convert (sizetype,
1771 index),
1772 unit_size),
1773 off_tree);
1774 t2 = TREE_OPERAND (t2, 0);
1776 while (TREE_CODE (t2) == ARRAY_REF);
1778 if (DECL_P (t2))
1780 attrs.expr = t2;
1781 attrs.offset_known_p = false;
1782 if (host_integerp (off_tree, 1))
1784 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1785 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1786 attrs.align = DECL_ALIGN (t2);
1787 if (aoff && (unsigned HOST_WIDE_INT) aoff < attrs.align)
1788 attrs.align = aoff;
1789 align_computed = true;
1790 attrs.offset_known_p = true;
1791 attrs.offset = ioff;
1792 apply_bitpos = bitpos;
1795 else if (TREE_CODE (t2) == COMPONENT_REF)
1797 attrs.expr = t2;
1798 attrs.offset_known_p = false;
1799 if (host_integerp (off_tree, 1))
1801 attrs.offset_known_p = true;
1802 attrs.offset = tree_low_cst (off_tree, 1);
1803 apply_bitpos = bitpos;
1805 /* ??? Any reason the field size would be different than
1806 the size we got from the type? */
1809 /* If this is an indirect reference, record it. */
1810 else if (TREE_CODE (t) == MEM_REF)
1812 attrs.expr = t;
1813 attrs.offset_known_p = true;
1814 attrs.offset = 0;
1815 apply_bitpos = bitpos;
1819 /* If this is an indirect reference, record it. */
1820 else if (TREE_CODE (t) == MEM_REF
1821 || TREE_CODE (t) == TARGET_MEM_REF)
1823 attrs.expr = t;
1824 attrs.offset_known_p = true;
1825 attrs.offset = 0;
1826 apply_bitpos = bitpos;
1829 if (!align_computed)
1831 unsigned int obj_align = get_object_alignment (t);
1832 attrs.align = MAX (attrs.align, obj_align);
1836 /* If we modified OFFSET based on T, then subtract the outstanding
1837 bit position offset. Similarly, increase the size of the accessed
1838 object to contain the negative offset. */
1839 if (apply_bitpos)
1841 gcc_assert (attrs.offset_known_p);
1842 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1843 if (attrs.size_known_p)
1844 attrs.size += apply_bitpos / BITS_PER_UNIT;
1847 /* Now set the attributes we computed above. */
1848 attrs.addrspace = TYPE_ADDR_SPACE (type);
1849 set_mem_attrs (ref, &attrs);
1851 /* If this is already known to be a scalar or aggregate, we are done. */
1852 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1853 return;
1855 /* If it is a reference into an aggregate, this is part of an aggregate.
1856 Otherwise we don't know. */
1857 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1858 || TREE_CODE (t) == ARRAY_RANGE_REF
1859 || TREE_CODE (t) == BIT_FIELD_REF)
1860 MEM_IN_STRUCT_P (ref) = 1;
1863 void
1864 set_mem_attributes (rtx ref, tree t, int objectp)
1866 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1869 /* Set the alias set of MEM to SET. */
1871 void
1872 set_mem_alias_set (rtx mem, alias_set_type set)
1874 struct mem_attrs attrs;
1876 /* If the new and old alias sets don't conflict, something is wrong. */
1877 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1878 attrs = *get_mem_attrs (mem);
1879 attrs.alias = set;
1880 set_mem_attrs (mem, &attrs);
1883 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1885 void
1886 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1888 struct mem_attrs attrs;
1890 attrs = *get_mem_attrs (mem);
1891 attrs.addrspace = addrspace;
1892 set_mem_attrs (mem, &attrs);
1895 /* Set the alignment of MEM to ALIGN bits. */
1897 void
1898 set_mem_align (rtx mem, unsigned int align)
1900 struct mem_attrs attrs;
1902 attrs = *get_mem_attrs (mem);
1903 attrs.align = align;
1904 set_mem_attrs (mem, &attrs);
1907 /* Set the expr for MEM to EXPR. */
1909 void
1910 set_mem_expr (rtx mem, tree expr)
1912 struct mem_attrs attrs;
1914 attrs = *get_mem_attrs (mem);
1915 attrs.expr = expr;
1916 set_mem_attrs (mem, &attrs);
1919 /* Set the offset of MEM to OFFSET. */
1921 void
1922 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1924 struct mem_attrs attrs;
1926 attrs = *get_mem_attrs (mem);
1927 attrs.offset_known_p = true;
1928 attrs.offset = offset;
1929 set_mem_attrs (mem, &attrs);
1932 /* Clear the offset of MEM. */
1934 void
1935 clear_mem_offset (rtx mem)
1937 struct mem_attrs attrs;
1939 attrs = *get_mem_attrs (mem);
1940 attrs.offset_known_p = false;
1941 set_mem_attrs (mem, &attrs);
1944 /* Set the size of MEM to SIZE. */
1946 void
1947 set_mem_size (rtx mem, HOST_WIDE_INT size)
1949 struct mem_attrs attrs;
1951 attrs = *get_mem_attrs (mem);
1952 attrs.size_known_p = true;
1953 attrs.size = size;
1954 set_mem_attrs (mem, &attrs);
1957 /* Clear the size of MEM. */
1959 void
1960 clear_mem_size (rtx mem)
1962 struct mem_attrs attrs;
1964 attrs = *get_mem_attrs (mem);
1965 attrs.size_known_p = false;
1966 set_mem_attrs (mem, &attrs);
1969 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1970 and its address changed to ADDR. (VOIDmode means don't change the mode.
1971 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1972 returned memory location is required to be valid. The memory
1973 attributes are not changed. */
1975 static rtx
1976 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1978 addr_space_t as;
1979 rtx new_rtx;
1981 gcc_assert (MEM_P (memref));
1982 as = MEM_ADDR_SPACE (memref);
1983 if (mode == VOIDmode)
1984 mode = GET_MODE (memref);
1985 if (addr == 0)
1986 addr = XEXP (memref, 0);
1987 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1988 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1989 return memref;
1991 if (validate)
1993 if (reload_in_progress || reload_completed)
1994 gcc_assert (memory_address_addr_space_p (mode, addr, as));
1995 else
1996 addr = memory_address_addr_space (mode, addr, as);
1999 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2000 return memref;
2002 new_rtx = gen_rtx_MEM (mode, addr);
2003 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2004 return new_rtx;
2007 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2008 way we are changing MEMREF, so we only preserve the alias set. */
2011 change_address (rtx memref, enum machine_mode mode, rtx addr)
2013 rtx new_rtx = change_address_1 (memref, mode, addr, 1);
2014 enum machine_mode mmode = GET_MODE (new_rtx);
2015 struct mem_attrs attrs, *defattrs;
2017 attrs = *get_mem_attrs (memref);
2018 defattrs = mode_mem_attrs[(int) mmode];
2019 attrs.expr = NULL_TREE;
2020 attrs.offset_known_p = false;
2021 attrs.size_known_p = defattrs->size_known_p;
2022 attrs.size = defattrs->size;
2023 attrs.align = defattrs->align;
2025 /* If there are no changes, just return the original memory reference. */
2026 if (new_rtx == memref)
2028 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2029 return new_rtx;
2031 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2032 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2035 set_mem_attrs (new_rtx, &attrs);
2036 return new_rtx;
2039 /* Return a memory reference like MEMREF, but with its mode changed
2040 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2041 nonzero, the memory address is forced to be valid.
2042 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2043 and caller is responsible for adjusting MEMREF base register. */
2046 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2047 int validate, int adjust)
2049 rtx addr = XEXP (memref, 0);
2050 rtx new_rtx;
2051 enum machine_mode address_mode;
2052 int pbits;
2053 struct mem_attrs attrs, *defattrs;
2054 unsigned HOST_WIDE_INT max_align;
2056 attrs = *get_mem_attrs (memref);
2058 /* If there are no changes, just return the original memory reference. */
2059 if (mode == GET_MODE (memref) && !offset
2060 && (!validate || memory_address_addr_space_p (mode, addr,
2061 attrs.addrspace)))
2062 return memref;
2064 /* ??? Prefer to create garbage instead of creating shared rtl.
2065 This may happen even if offset is nonzero -- consider
2066 (plus (plus reg reg) const_int) -- so do this always. */
2067 addr = copy_rtx (addr);
2069 /* Convert a possibly large offset to a signed value within the
2070 range of the target address space. */
2071 address_mode = targetm.addr_space.address_mode (attrs.addrspace);
2072 pbits = GET_MODE_BITSIZE (address_mode);
2073 if (HOST_BITS_PER_WIDE_INT > pbits)
2075 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2076 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2077 >> shift);
2080 if (adjust)
2082 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2083 object, we can merge it into the LO_SUM. */
2084 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2085 && offset >= 0
2086 && (unsigned HOST_WIDE_INT) offset
2087 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2088 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2089 plus_constant (XEXP (addr, 1), offset));
2090 else
2091 addr = plus_constant (addr, offset);
2094 new_rtx = change_address_1 (memref, mode, addr, validate);
2096 /* If the address is a REG, change_address_1 rightfully returns memref,
2097 but this would destroy memref's MEM_ATTRS. */
2098 if (new_rtx == memref && offset != 0)
2099 new_rtx = copy_rtx (new_rtx);
2101 /* Compute the new values of the memory attributes due to this adjustment.
2102 We add the offsets and update the alignment. */
2103 if (attrs.offset_known_p)
2104 attrs.offset += offset;
2106 /* Compute the new alignment by taking the MIN of the alignment and the
2107 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2108 if zero. */
2109 if (offset != 0)
2111 max_align = (offset & -offset) * BITS_PER_UNIT;
2112 attrs.align = MIN (attrs.align, max_align);
2115 /* We can compute the size in a number of ways. */
2116 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2117 if (defattrs->size_known_p)
2119 attrs.size_known_p = true;
2120 attrs.size = defattrs->size;
2122 else if (attrs.size_known_p)
2123 attrs.size -= offset;
2125 set_mem_attrs (new_rtx, &attrs);
2127 /* At some point, we should validate that this offset is within the object,
2128 if all the appropriate values are known. */
2129 return new_rtx;
2132 /* Return a memory reference like MEMREF, but with its mode changed
2133 to MODE and its address changed to ADDR, which is assumed to be
2134 MEMREF offset by OFFSET bytes. If VALIDATE is
2135 nonzero, the memory address is forced to be valid. */
2138 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2139 HOST_WIDE_INT offset, int validate)
2141 memref = change_address_1 (memref, VOIDmode, addr, validate);
2142 return adjust_address_1 (memref, mode, offset, validate, 0);
2145 /* Return a memory reference like MEMREF, but whose address is changed by
2146 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2147 known to be in OFFSET (possibly 1). */
2150 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2152 rtx new_rtx, addr = XEXP (memref, 0);
2153 enum machine_mode address_mode;
2154 struct mem_attrs attrs, *defattrs;
2156 attrs = *get_mem_attrs (memref);
2157 address_mode = targetm.addr_space.address_mode (attrs.addrspace);
2158 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2160 /* At this point we don't know _why_ the address is invalid. It
2161 could have secondary memory references, multiplies or anything.
2163 However, if we did go and rearrange things, we can wind up not
2164 being able to recognize the magic around pic_offset_table_rtx.
2165 This stuff is fragile, and is yet another example of why it is
2166 bad to expose PIC machinery too early. */
2167 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2168 attrs.addrspace)
2169 && GET_CODE (addr) == PLUS
2170 && XEXP (addr, 0) == pic_offset_table_rtx)
2172 addr = force_reg (GET_MODE (addr), addr);
2173 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2176 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2177 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2179 /* If there are no changes, just return the original memory reference. */
2180 if (new_rtx == memref)
2181 return new_rtx;
2183 /* Update the alignment to reflect the offset. Reset the offset, which
2184 we don't know. */
2185 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2186 attrs.offset_known_p = false;
2187 attrs.size_known_p = defattrs->size_known_p;
2188 attrs.size = defattrs->size;
2189 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2190 set_mem_attrs (new_rtx, &attrs);
2191 return new_rtx;
2194 /* Return a memory reference like MEMREF, but with its address changed to
2195 ADDR. The caller is asserting that the actual piece of memory pointed
2196 to is the same, just the form of the address is being changed, such as
2197 by putting something into a register. */
2200 replace_equiv_address (rtx memref, rtx addr)
2202 /* change_address_1 copies the memory attribute structure without change
2203 and that's exactly what we want here. */
2204 update_temp_slot_address (XEXP (memref, 0), addr);
2205 return change_address_1 (memref, VOIDmode, addr, 1);
2208 /* Likewise, but the reference is not required to be valid. */
2211 replace_equiv_address_nv (rtx memref, rtx addr)
2213 return change_address_1 (memref, VOIDmode, addr, 0);
2216 /* Return a memory reference like MEMREF, but with its mode widened to
2217 MODE and offset by OFFSET. This would be used by targets that e.g.
2218 cannot issue QImode memory operations and have to use SImode memory
2219 operations plus masking logic. */
2222 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2224 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2225 struct mem_attrs attrs;
2226 unsigned int size = GET_MODE_SIZE (mode);
2228 /* If there are no changes, just return the original memory reference. */
2229 if (new_rtx == memref)
2230 return new_rtx;
2232 attrs = *get_mem_attrs (new_rtx);
2234 /* If we don't know what offset we were at within the expression, then
2235 we can't know if we've overstepped the bounds. */
2236 if (! attrs.offset_known_p)
2237 attrs.expr = NULL_TREE;
2239 while (attrs.expr)
2241 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2243 tree field = TREE_OPERAND (attrs.expr, 1);
2244 tree offset = component_ref_field_offset (attrs.expr);
2246 if (! DECL_SIZE_UNIT (field))
2248 attrs.expr = NULL_TREE;
2249 break;
2252 /* Is the field at least as large as the access? If so, ok,
2253 otherwise strip back to the containing structure. */
2254 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2255 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2256 && attrs.offset >= 0)
2257 break;
2259 if (! host_integerp (offset, 1))
2261 attrs.expr = NULL_TREE;
2262 break;
2265 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2266 attrs.offset += tree_low_cst (offset, 1);
2267 attrs.offset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2268 / BITS_PER_UNIT);
2270 /* Similarly for the decl. */
2271 else if (DECL_P (attrs.expr)
2272 && DECL_SIZE_UNIT (attrs.expr)
2273 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2274 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2275 && (! attrs.offset_known_p || attrs.offset >= 0))
2276 break;
2277 else
2279 /* The widened memory access overflows the expression, which means
2280 that it could alias another expression. Zap it. */
2281 attrs.expr = NULL_TREE;
2282 break;
2286 if (! attrs.expr)
2287 attrs.offset_known_p = false;
2289 /* The widened memory may alias other stuff, so zap the alias set. */
2290 /* ??? Maybe use get_alias_set on any remaining expression. */
2291 attrs.alias = 0;
2292 attrs.size_known_p = true;
2293 attrs.size = size;
2294 set_mem_attrs (new_rtx, &attrs);
2295 return new_rtx;
2298 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2299 static GTY(()) tree spill_slot_decl;
2301 tree
2302 get_spill_slot_decl (bool force_build_p)
2304 tree d = spill_slot_decl;
2305 rtx rd;
2306 struct mem_attrs attrs;
2308 if (d || !force_build_p)
2309 return d;
2311 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2312 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2313 DECL_ARTIFICIAL (d) = 1;
2314 DECL_IGNORED_P (d) = 1;
2315 TREE_USED (d) = 1;
2316 spill_slot_decl = d;
2318 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2319 MEM_NOTRAP_P (rd) = 1;
2320 attrs = *mode_mem_attrs[(int) BLKmode];
2321 attrs.alias = new_alias_set ();
2322 attrs.expr = d;
2323 set_mem_attrs (rd, &attrs);
2324 SET_DECL_RTL (d, rd);
2326 return d;
2329 /* Given MEM, a result from assign_stack_local, fill in the memory
2330 attributes as appropriate for a register allocator spill slot.
2331 These slots are not aliasable by other memory. We arrange for
2332 them all to use a single MEM_EXPR, so that the aliasing code can
2333 work properly in the case of shared spill slots. */
2335 void
2336 set_mem_attrs_for_spill (rtx mem)
2338 struct mem_attrs attrs;
2339 rtx addr;
2341 attrs = *get_mem_attrs (mem);
2342 attrs.expr = get_spill_slot_decl (true);
2343 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2344 attrs.addrspace = ADDR_SPACE_GENERIC;
2346 /* We expect the incoming memory to be of the form:
2347 (mem:MODE (plus (reg sfp) (const_int offset)))
2348 with perhaps the plus missing for offset = 0. */
2349 addr = XEXP (mem, 0);
2350 attrs.offset_known_p = true;
2351 attrs.offset = 0;
2352 if (GET_CODE (addr) == PLUS
2353 && CONST_INT_P (XEXP (addr, 1)))
2354 attrs.offset = INTVAL (XEXP (addr, 1));
2356 set_mem_attrs (mem, &attrs);
2357 MEM_NOTRAP_P (mem) = 1;
2360 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2363 gen_label_rtx (void)
2365 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2366 NULL, label_num++, NULL);
2369 /* For procedure integration. */
2371 /* Install new pointers to the first and last insns in the chain.
2372 Also, set cur_insn_uid to one higher than the last in use.
2373 Used for an inline-procedure after copying the insn chain. */
2375 void
2376 set_new_first_and_last_insn (rtx first, rtx last)
2378 rtx insn;
2380 set_first_insn (first);
2381 set_last_insn (last);
2382 cur_insn_uid = 0;
2384 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2386 int debug_count = 0;
2388 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2389 cur_debug_insn_uid = 0;
2391 for (insn = first; insn; insn = NEXT_INSN (insn))
2392 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2393 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2394 else
2396 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2397 if (DEBUG_INSN_P (insn))
2398 debug_count++;
2401 if (debug_count)
2402 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2403 else
2404 cur_debug_insn_uid++;
2406 else
2407 for (insn = first; insn; insn = NEXT_INSN (insn))
2408 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2410 cur_insn_uid++;
2413 /* Go through all the RTL insn bodies and copy any invalid shared
2414 structure. This routine should only be called once. */
2416 static void
2417 unshare_all_rtl_1 (rtx insn)
2419 /* Unshare just about everything else. */
2420 unshare_all_rtl_in_chain (insn);
2422 /* Make sure the addresses of stack slots found outside the insn chain
2423 (such as, in DECL_RTL of a variable) are not shared
2424 with the insn chain.
2426 This special care is necessary when the stack slot MEM does not
2427 actually appear in the insn chain. If it does appear, its address
2428 is unshared from all else at that point. */
2429 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2432 /* Go through all the RTL insn bodies and copy any invalid shared
2433 structure, again. This is a fairly expensive thing to do so it
2434 should be done sparingly. */
2436 void
2437 unshare_all_rtl_again (rtx insn)
2439 rtx p;
2440 tree decl;
2442 for (p = insn; p; p = NEXT_INSN (p))
2443 if (INSN_P (p))
2445 reset_used_flags (PATTERN (p));
2446 reset_used_flags (REG_NOTES (p));
2447 if (CALL_P (p))
2448 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2451 /* Make sure that virtual stack slots are not shared. */
2452 set_used_decls (DECL_INITIAL (cfun->decl));
2454 /* Make sure that virtual parameters are not shared. */
2455 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2456 set_used_flags (DECL_RTL (decl));
2458 reset_used_flags (stack_slot_list);
2460 unshare_all_rtl_1 (insn);
2463 unsigned int
2464 unshare_all_rtl (void)
2466 unshare_all_rtl_1 (get_insns ());
2467 return 0;
2470 struct rtl_opt_pass pass_unshare_all_rtl =
2473 RTL_PASS,
2474 "unshare", /* name */
2475 NULL, /* gate */
2476 unshare_all_rtl, /* execute */
2477 NULL, /* sub */
2478 NULL, /* next */
2479 0, /* static_pass_number */
2480 TV_NONE, /* tv_id */
2481 0, /* properties_required */
2482 0, /* properties_provided */
2483 0, /* properties_destroyed */
2484 0, /* todo_flags_start */
2485 TODO_verify_rtl_sharing /* todo_flags_finish */
2490 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2491 Recursively does the same for subexpressions. */
2493 static void
2494 verify_rtx_sharing (rtx orig, rtx insn)
2496 rtx x = orig;
2497 int i;
2498 enum rtx_code code;
2499 const char *format_ptr;
2501 if (x == 0)
2502 return;
2504 code = GET_CODE (x);
2506 /* These types may be freely shared. */
2508 switch (code)
2510 case REG:
2511 case DEBUG_EXPR:
2512 case VALUE:
2513 case CONST_INT:
2514 case CONST_DOUBLE:
2515 case CONST_FIXED:
2516 case CONST_VECTOR:
2517 case SYMBOL_REF:
2518 case LABEL_REF:
2519 case CODE_LABEL:
2520 case PC:
2521 case CC0:
2522 case RETURN:
2523 case SIMPLE_RETURN:
2524 case SCRATCH:
2525 return;
2526 /* SCRATCH must be shared because they represent distinct values. */
2527 case CLOBBER:
2528 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2529 return;
2530 break;
2532 case CONST:
2533 if (shared_const_p (orig))
2534 return;
2535 break;
2537 case MEM:
2538 /* A MEM is allowed to be shared if its address is constant. */
2539 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2540 || reload_completed || reload_in_progress)
2541 return;
2543 break;
2545 default:
2546 break;
2549 /* This rtx may not be shared. If it has already been seen,
2550 replace it with a copy of itself. */
2551 #ifdef ENABLE_CHECKING
2552 if (RTX_FLAG (x, used))
2554 error ("invalid rtl sharing found in the insn");
2555 debug_rtx (insn);
2556 error ("shared rtx");
2557 debug_rtx (x);
2558 internal_error ("internal consistency failure");
2560 #endif
2561 gcc_assert (!RTX_FLAG (x, used));
2563 RTX_FLAG (x, used) = 1;
2565 /* Now scan the subexpressions recursively. */
2567 format_ptr = GET_RTX_FORMAT (code);
2569 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2571 switch (*format_ptr++)
2573 case 'e':
2574 verify_rtx_sharing (XEXP (x, i), insn);
2575 break;
2577 case 'E':
2578 if (XVEC (x, i) != NULL)
2580 int j;
2581 int len = XVECLEN (x, i);
2583 for (j = 0; j < len; j++)
2585 /* We allow sharing of ASM_OPERANDS inside single
2586 instruction. */
2587 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2588 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2589 == ASM_OPERANDS))
2590 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2591 else
2592 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2595 break;
2598 return;
2601 /* Go through all the RTL insn bodies and check that there is no unexpected
2602 sharing in between the subexpressions. */
2604 DEBUG_FUNCTION void
2605 verify_rtl_sharing (void)
2607 rtx p;
2609 timevar_push (TV_VERIFY_RTL_SHARING);
2611 for (p = get_insns (); p; p = NEXT_INSN (p))
2612 if (INSN_P (p))
2614 reset_used_flags (PATTERN (p));
2615 reset_used_flags (REG_NOTES (p));
2616 if (CALL_P (p))
2617 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2618 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2620 int i;
2621 rtx q, sequence = PATTERN (p);
2623 for (i = 0; i < XVECLEN (sequence, 0); i++)
2625 q = XVECEXP (sequence, 0, i);
2626 gcc_assert (INSN_P (q));
2627 reset_used_flags (PATTERN (q));
2628 reset_used_flags (REG_NOTES (q));
2629 if (CALL_P (q))
2630 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q));
2635 for (p = get_insns (); p; p = NEXT_INSN (p))
2636 if (INSN_P (p))
2638 verify_rtx_sharing (PATTERN (p), p);
2639 verify_rtx_sharing (REG_NOTES (p), p);
2640 if (CALL_P (p))
2641 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p), p);
2644 timevar_pop (TV_VERIFY_RTL_SHARING);
2647 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2648 Assumes the mark bits are cleared at entry. */
2650 void
2651 unshare_all_rtl_in_chain (rtx insn)
2653 for (; insn; insn = NEXT_INSN (insn))
2654 if (INSN_P (insn))
2656 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2657 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2658 if (CALL_P (insn))
2659 CALL_INSN_FUNCTION_USAGE (insn)
2660 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2664 /* Go through all virtual stack slots of a function and mark them as
2665 shared. We never replace the DECL_RTLs themselves with a copy,
2666 but expressions mentioned into a DECL_RTL cannot be shared with
2667 expressions in the instruction stream.
2669 Note that reload may convert pseudo registers into memories in-place.
2670 Pseudo registers are always shared, but MEMs never are. Thus if we
2671 reset the used flags on MEMs in the instruction stream, we must set
2672 them again on MEMs that appear in DECL_RTLs. */
2674 static void
2675 set_used_decls (tree blk)
2677 tree t;
2679 /* Mark decls. */
2680 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2681 if (DECL_RTL_SET_P (t))
2682 set_used_flags (DECL_RTL (t));
2684 /* Now process sub-blocks. */
2685 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2686 set_used_decls (t);
2689 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2690 Recursively does the same for subexpressions. Uses
2691 copy_rtx_if_shared_1 to reduce stack space. */
2694 copy_rtx_if_shared (rtx orig)
2696 copy_rtx_if_shared_1 (&orig);
2697 return orig;
2700 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2701 use. Recursively does the same for subexpressions. */
2703 static void
2704 copy_rtx_if_shared_1 (rtx *orig1)
2706 rtx x;
2707 int i;
2708 enum rtx_code code;
2709 rtx *last_ptr;
2710 const char *format_ptr;
2711 int copied = 0;
2712 int length;
2714 /* Repeat is used to turn tail-recursion into iteration. */
2715 repeat:
2716 x = *orig1;
2718 if (x == 0)
2719 return;
2721 code = GET_CODE (x);
2723 /* These types may be freely shared. */
2725 switch (code)
2727 case REG:
2728 case DEBUG_EXPR:
2729 case VALUE:
2730 case CONST_INT:
2731 case CONST_DOUBLE:
2732 case CONST_FIXED:
2733 case CONST_VECTOR:
2734 case SYMBOL_REF:
2735 case LABEL_REF:
2736 case CODE_LABEL:
2737 case PC:
2738 case CC0:
2739 case RETURN:
2740 case SIMPLE_RETURN:
2741 case SCRATCH:
2742 /* SCRATCH must be shared because they represent distinct values. */
2743 return;
2744 case CLOBBER:
2745 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2746 return;
2747 break;
2749 case CONST:
2750 if (shared_const_p (x))
2751 return;
2752 break;
2754 case DEBUG_INSN:
2755 case INSN:
2756 case JUMP_INSN:
2757 case CALL_INSN:
2758 case NOTE:
2759 case BARRIER:
2760 /* The chain of insns is not being copied. */
2761 return;
2763 default:
2764 break;
2767 /* This rtx may not be shared. If it has already been seen,
2768 replace it with a copy of itself. */
2770 if (RTX_FLAG (x, used))
2772 x = shallow_copy_rtx (x);
2773 copied = 1;
2775 RTX_FLAG (x, used) = 1;
2777 /* Now scan the subexpressions recursively.
2778 We can store any replaced subexpressions directly into X
2779 since we know X is not shared! Any vectors in X
2780 must be copied if X was copied. */
2782 format_ptr = GET_RTX_FORMAT (code);
2783 length = GET_RTX_LENGTH (code);
2784 last_ptr = NULL;
2786 for (i = 0; i < length; i++)
2788 switch (*format_ptr++)
2790 case 'e':
2791 if (last_ptr)
2792 copy_rtx_if_shared_1 (last_ptr);
2793 last_ptr = &XEXP (x, i);
2794 break;
2796 case 'E':
2797 if (XVEC (x, i) != NULL)
2799 int j;
2800 int len = XVECLEN (x, i);
2802 /* Copy the vector iff I copied the rtx and the length
2803 is nonzero. */
2804 if (copied && len > 0)
2805 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2807 /* Call recursively on all inside the vector. */
2808 for (j = 0; j < len; j++)
2810 if (last_ptr)
2811 copy_rtx_if_shared_1 (last_ptr);
2812 last_ptr = &XVECEXP (x, i, j);
2815 break;
2818 *orig1 = x;
2819 if (last_ptr)
2821 orig1 = last_ptr;
2822 goto repeat;
2824 return;
2827 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2829 static void
2830 mark_used_flags (rtx x, int flag)
2832 int i, j;
2833 enum rtx_code code;
2834 const char *format_ptr;
2835 int length;
2837 /* Repeat is used to turn tail-recursion into iteration. */
2838 repeat:
2839 if (x == 0)
2840 return;
2842 code = GET_CODE (x);
2844 /* These types may be freely shared so we needn't do any resetting
2845 for them. */
2847 switch (code)
2849 case REG:
2850 case DEBUG_EXPR:
2851 case VALUE:
2852 case CONST_INT:
2853 case CONST_DOUBLE:
2854 case CONST_FIXED:
2855 case CONST_VECTOR:
2856 case SYMBOL_REF:
2857 case CODE_LABEL:
2858 case PC:
2859 case CC0:
2860 case RETURN:
2861 case SIMPLE_RETURN:
2862 return;
2864 case DEBUG_INSN:
2865 case INSN:
2866 case JUMP_INSN:
2867 case CALL_INSN:
2868 case NOTE:
2869 case LABEL_REF:
2870 case BARRIER:
2871 /* The chain of insns is not being copied. */
2872 return;
2874 default:
2875 break;
2878 RTX_FLAG (x, used) = flag;
2880 format_ptr = GET_RTX_FORMAT (code);
2881 length = GET_RTX_LENGTH (code);
2883 for (i = 0; i < length; i++)
2885 switch (*format_ptr++)
2887 case 'e':
2888 if (i == length-1)
2890 x = XEXP (x, i);
2891 goto repeat;
2893 mark_used_flags (XEXP (x, i), flag);
2894 break;
2896 case 'E':
2897 for (j = 0; j < XVECLEN (x, i); j++)
2898 mark_used_flags (XVECEXP (x, i, j), flag);
2899 break;
2904 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2905 to look for shared sub-parts. */
2907 void
2908 reset_used_flags (rtx x)
2910 mark_used_flags (x, 0);
2913 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2914 to look for shared sub-parts. */
2916 void
2917 set_used_flags (rtx x)
2919 mark_used_flags (x, 1);
2922 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2923 Return X or the rtx for the pseudo reg the value of X was copied into.
2924 OTHER must be valid as a SET_DEST. */
2927 make_safe_from (rtx x, rtx other)
2929 while (1)
2930 switch (GET_CODE (other))
2932 case SUBREG:
2933 other = SUBREG_REG (other);
2934 break;
2935 case STRICT_LOW_PART:
2936 case SIGN_EXTEND:
2937 case ZERO_EXTEND:
2938 other = XEXP (other, 0);
2939 break;
2940 default:
2941 goto done;
2943 done:
2944 if ((MEM_P (other)
2945 && ! CONSTANT_P (x)
2946 && !REG_P (x)
2947 && GET_CODE (x) != SUBREG)
2948 || (REG_P (other)
2949 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2950 || reg_mentioned_p (other, x))))
2952 rtx temp = gen_reg_rtx (GET_MODE (x));
2953 emit_move_insn (temp, x);
2954 return temp;
2956 return x;
2959 /* Emission of insns (adding them to the doubly-linked list). */
2961 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2964 get_last_insn_anywhere (void)
2966 struct sequence_stack *stack;
2967 if (get_last_insn ())
2968 return get_last_insn ();
2969 for (stack = seq_stack; stack; stack = stack->next)
2970 if (stack->last != 0)
2971 return stack->last;
2972 return 0;
2975 /* Return the first nonnote insn emitted in current sequence or current
2976 function. This routine looks inside SEQUENCEs. */
2979 get_first_nonnote_insn (void)
2981 rtx insn = get_insns ();
2983 if (insn)
2985 if (NOTE_P (insn))
2986 for (insn = next_insn (insn);
2987 insn && NOTE_P (insn);
2988 insn = next_insn (insn))
2989 continue;
2990 else
2992 if (NONJUMP_INSN_P (insn)
2993 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2994 insn = XVECEXP (PATTERN (insn), 0, 0);
2998 return insn;
3001 /* Return the last nonnote insn emitted in current sequence or current
3002 function. This routine looks inside SEQUENCEs. */
3005 get_last_nonnote_insn (void)
3007 rtx insn = get_last_insn ();
3009 if (insn)
3011 if (NOTE_P (insn))
3012 for (insn = previous_insn (insn);
3013 insn && NOTE_P (insn);
3014 insn = previous_insn (insn))
3015 continue;
3016 else
3018 if (NONJUMP_INSN_P (insn)
3019 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3020 insn = XVECEXP (PATTERN (insn), 0,
3021 XVECLEN (PATTERN (insn), 0) - 1);
3025 return insn;
3028 /* Return the number of actual (non-debug) insns emitted in this
3029 function. */
3032 get_max_insn_count (void)
3034 int n = cur_insn_uid;
3036 /* The table size must be stable across -g, to avoid codegen
3037 differences due to debug insns, and not be affected by
3038 -fmin-insn-uid, to avoid excessive table size and to simplify
3039 debugging of -fcompare-debug failures. */
3040 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3041 n -= cur_debug_insn_uid;
3042 else
3043 n -= MIN_NONDEBUG_INSN_UID;
3045 return n;
3049 /* Return the next insn. If it is a SEQUENCE, return the first insn
3050 of the sequence. */
3053 next_insn (rtx insn)
3055 if (insn)
3057 insn = NEXT_INSN (insn);
3058 if (insn && NONJUMP_INSN_P (insn)
3059 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3060 insn = XVECEXP (PATTERN (insn), 0, 0);
3063 return insn;
3066 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3067 of the sequence. */
3070 previous_insn (rtx insn)
3072 if (insn)
3074 insn = PREV_INSN (insn);
3075 if (insn && NONJUMP_INSN_P (insn)
3076 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3077 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3080 return insn;
3083 /* Return the next insn after INSN that is not a NOTE. This routine does not
3084 look inside SEQUENCEs. */
3087 next_nonnote_insn (rtx insn)
3089 while (insn)
3091 insn = NEXT_INSN (insn);
3092 if (insn == 0 || !NOTE_P (insn))
3093 break;
3096 return insn;
3099 /* Return the next insn after INSN that is not a NOTE, but stop the
3100 search before we enter another basic block. This routine does not
3101 look inside SEQUENCEs. */
3104 next_nonnote_insn_bb (rtx insn)
3106 while (insn)
3108 insn = NEXT_INSN (insn);
3109 if (insn == 0 || !NOTE_P (insn))
3110 break;
3111 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3112 return NULL_RTX;
3115 return insn;
3118 /* Return the previous insn before INSN that is not a NOTE. This routine does
3119 not look inside SEQUENCEs. */
3122 prev_nonnote_insn (rtx insn)
3124 while (insn)
3126 insn = PREV_INSN (insn);
3127 if (insn == 0 || !NOTE_P (insn))
3128 break;
3131 return insn;
3134 /* Return the previous insn before INSN that is not a NOTE, but stop
3135 the search before we enter another basic block. This routine does
3136 not look inside SEQUENCEs. */
3139 prev_nonnote_insn_bb (rtx insn)
3141 while (insn)
3143 insn = PREV_INSN (insn);
3144 if (insn == 0 || !NOTE_P (insn))
3145 break;
3146 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3147 return NULL_RTX;
3150 return insn;
3153 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3154 routine does not look inside SEQUENCEs. */
3157 next_nondebug_insn (rtx insn)
3159 while (insn)
3161 insn = NEXT_INSN (insn);
3162 if (insn == 0 || !DEBUG_INSN_P (insn))
3163 break;
3166 return insn;
3169 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3170 This routine does not look inside SEQUENCEs. */
3173 prev_nondebug_insn (rtx insn)
3175 while (insn)
3177 insn = PREV_INSN (insn);
3178 if (insn == 0 || !DEBUG_INSN_P (insn))
3179 break;
3182 return insn;
3185 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3186 This routine does not look inside SEQUENCEs. */
3189 next_nonnote_nondebug_insn (rtx insn)
3191 while (insn)
3193 insn = NEXT_INSN (insn);
3194 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3195 break;
3198 return insn;
3201 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3202 This routine does not look inside SEQUENCEs. */
3205 prev_nonnote_nondebug_insn (rtx insn)
3207 while (insn)
3209 insn = PREV_INSN (insn);
3210 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3211 break;
3214 return insn;
3217 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3218 or 0, if there is none. This routine does not look inside
3219 SEQUENCEs. */
3222 next_real_insn (rtx insn)
3224 while (insn)
3226 insn = NEXT_INSN (insn);
3227 if (insn == 0 || INSN_P (insn))
3228 break;
3231 return insn;
3234 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3235 or 0, if there is none. This routine does not look inside
3236 SEQUENCEs. */
3239 prev_real_insn (rtx insn)
3241 while (insn)
3243 insn = PREV_INSN (insn);
3244 if (insn == 0 || INSN_P (insn))
3245 break;
3248 return insn;
3251 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3252 This routine does not look inside SEQUENCEs. */
3255 last_call_insn (void)
3257 rtx insn;
3259 for (insn = get_last_insn ();
3260 insn && !CALL_P (insn);
3261 insn = PREV_INSN (insn))
3264 return insn;
3267 /* Find the next insn after INSN that really does something. This routine
3268 does not look inside SEQUENCEs. After reload this also skips over
3269 standalone USE and CLOBBER insn. */
3272 active_insn_p (const_rtx insn)
3274 return (CALL_P (insn) || JUMP_P (insn)
3275 || (NONJUMP_INSN_P (insn)
3276 && (! reload_completed
3277 || (GET_CODE (PATTERN (insn)) != USE
3278 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3282 next_active_insn (rtx insn)
3284 while (insn)
3286 insn = NEXT_INSN (insn);
3287 if (insn == 0 || active_insn_p (insn))
3288 break;
3291 return insn;
3294 /* Find the last insn before INSN that really does something. This routine
3295 does not look inside SEQUENCEs. After reload this also skips over
3296 standalone USE and CLOBBER insn. */
3299 prev_active_insn (rtx insn)
3301 while (insn)
3303 insn = PREV_INSN (insn);
3304 if (insn == 0 || active_insn_p (insn))
3305 break;
3308 return insn;
3311 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3314 next_label (rtx insn)
3316 while (insn)
3318 insn = NEXT_INSN (insn);
3319 if (insn == 0 || LABEL_P (insn))
3320 break;
3323 return insn;
3326 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3329 prev_label (rtx insn)
3331 while (insn)
3333 insn = PREV_INSN (insn);
3334 if (insn == 0 || LABEL_P (insn))
3335 break;
3338 return insn;
3341 /* Return the last label to mark the same position as LABEL. Return LABEL
3342 itself if it is null or any return rtx. */
3345 skip_consecutive_labels (rtx label)
3347 rtx insn;
3349 if (label && ANY_RETURN_P (label))
3350 return label;
3352 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3353 if (LABEL_P (insn))
3354 label = insn;
3356 return label;
3359 #ifdef HAVE_cc0
3360 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3361 and REG_CC_USER notes so we can find it. */
3363 void
3364 link_cc0_insns (rtx insn)
3366 rtx user = next_nonnote_insn (insn);
3368 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3369 user = XVECEXP (PATTERN (user), 0, 0);
3371 add_reg_note (user, REG_CC_SETTER, insn);
3372 add_reg_note (insn, REG_CC_USER, user);
3375 /* Return the next insn that uses CC0 after INSN, which is assumed to
3376 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3377 applied to the result of this function should yield INSN).
3379 Normally, this is simply the next insn. However, if a REG_CC_USER note
3380 is present, it contains the insn that uses CC0.
3382 Return 0 if we can't find the insn. */
3385 next_cc0_user (rtx insn)
3387 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3389 if (note)
3390 return XEXP (note, 0);
3392 insn = next_nonnote_insn (insn);
3393 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3394 insn = XVECEXP (PATTERN (insn), 0, 0);
3396 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3397 return insn;
3399 return 0;
3402 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3403 note, it is the previous insn. */
3406 prev_cc0_setter (rtx insn)
3408 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3410 if (note)
3411 return XEXP (note, 0);
3413 insn = prev_nonnote_insn (insn);
3414 gcc_assert (sets_cc0_p (PATTERN (insn)));
3416 return insn;
3418 #endif
3420 #ifdef AUTO_INC_DEC
3421 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3423 static int
3424 find_auto_inc (rtx *xp, void *data)
3426 rtx x = *xp;
3427 rtx reg = (rtx) data;
3429 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3430 return 0;
3432 switch (GET_CODE (x))
3434 case PRE_DEC:
3435 case PRE_INC:
3436 case POST_DEC:
3437 case POST_INC:
3438 case PRE_MODIFY:
3439 case POST_MODIFY:
3440 if (rtx_equal_p (reg, XEXP (x, 0)))
3441 return 1;
3442 break;
3444 default:
3445 gcc_unreachable ();
3447 return -1;
3449 #endif
3451 /* Increment the label uses for all labels present in rtx. */
3453 static void
3454 mark_label_nuses (rtx x)
3456 enum rtx_code code;
3457 int i, j;
3458 const char *fmt;
3460 code = GET_CODE (x);
3461 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3462 LABEL_NUSES (XEXP (x, 0))++;
3464 fmt = GET_RTX_FORMAT (code);
3465 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3467 if (fmt[i] == 'e')
3468 mark_label_nuses (XEXP (x, i));
3469 else if (fmt[i] == 'E')
3470 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3471 mark_label_nuses (XVECEXP (x, i, j));
3476 /* Try splitting insns that can be split for better scheduling.
3477 PAT is the pattern which might split.
3478 TRIAL is the insn providing PAT.
3479 LAST is nonzero if we should return the last insn of the sequence produced.
3481 If this routine succeeds in splitting, it returns the first or last
3482 replacement insn depending on the value of LAST. Otherwise, it
3483 returns TRIAL. If the insn to be returned can be split, it will be. */
3486 try_split (rtx pat, rtx trial, int last)
3488 rtx before = PREV_INSN (trial);
3489 rtx after = NEXT_INSN (trial);
3490 int has_barrier = 0;
3491 rtx note, seq, tem;
3492 int probability;
3493 rtx insn_last, insn;
3494 int njumps = 0;
3496 /* We're not good at redistributing frame information. */
3497 if (RTX_FRAME_RELATED_P (trial))
3498 return trial;
3500 if (any_condjump_p (trial)
3501 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3502 split_branch_probability = INTVAL (XEXP (note, 0));
3503 probability = split_branch_probability;
3505 seq = split_insns (pat, trial);
3507 split_branch_probability = -1;
3509 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3510 We may need to handle this specially. */
3511 if (after && BARRIER_P (after))
3513 has_barrier = 1;
3514 after = NEXT_INSN (after);
3517 if (!seq)
3518 return trial;
3520 /* Avoid infinite loop if any insn of the result matches
3521 the original pattern. */
3522 insn_last = seq;
3523 while (1)
3525 if (INSN_P (insn_last)
3526 && rtx_equal_p (PATTERN (insn_last), pat))
3527 return trial;
3528 if (!NEXT_INSN (insn_last))
3529 break;
3530 insn_last = NEXT_INSN (insn_last);
3533 /* We will be adding the new sequence to the function. The splitters
3534 may have introduced invalid RTL sharing, so unshare the sequence now. */
3535 unshare_all_rtl_in_chain (seq);
3537 /* Mark labels. */
3538 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3540 if (JUMP_P (insn))
3542 mark_jump_label (PATTERN (insn), insn, 0);
3543 njumps++;
3544 if (probability != -1
3545 && any_condjump_p (insn)
3546 && !find_reg_note (insn, REG_BR_PROB, 0))
3548 /* We can preserve the REG_BR_PROB notes only if exactly
3549 one jump is created, otherwise the machine description
3550 is responsible for this step using
3551 split_branch_probability variable. */
3552 gcc_assert (njumps == 1);
3553 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3558 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3559 in SEQ and copy any additional information across. */
3560 if (CALL_P (trial))
3562 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3563 if (CALL_P (insn))
3565 rtx next, *p;
3567 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3568 target may have explicitly specified. */
3569 p = &CALL_INSN_FUNCTION_USAGE (insn);
3570 while (*p)
3571 p = &XEXP (*p, 1);
3572 *p = CALL_INSN_FUNCTION_USAGE (trial);
3574 /* If the old call was a sibling call, the new one must
3575 be too. */
3576 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3578 /* If the new call is the last instruction in the sequence,
3579 it will effectively replace the old call in-situ. Otherwise
3580 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3581 so that it comes immediately after the new call. */
3582 if (NEXT_INSN (insn))
3583 for (next = NEXT_INSN (trial);
3584 next && NOTE_P (next);
3585 next = NEXT_INSN (next))
3586 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3588 remove_insn (next);
3589 add_insn_after (next, insn, NULL);
3590 break;
3595 /* Copy notes, particularly those related to the CFG. */
3596 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3598 switch (REG_NOTE_KIND (note))
3600 case REG_EH_REGION:
3601 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3602 break;
3604 case REG_NORETURN:
3605 case REG_SETJMP:
3606 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3608 if (CALL_P (insn))
3609 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3611 break;
3613 case REG_NON_LOCAL_GOTO:
3614 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3616 if (JUMP_P (insn))
3617 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3619 break;
3621 #ifdef AUTO_INC_DEC
3622 case REG_INC:
3623 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3625 rtx reg = XEXP (note, 0);
3626 if (!FIND_REG_INC_NOTE (insn, reg)
3627 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3628 add_reg_note (insn, REG_INC, reg);
3630 break;
3631 #endif
3633 case REG_ARGS_SIZE:
3634 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3635 break;
3637 default:
3638 break;
3642 /* If there are LABELS inside the split insns increment the
3643 usage count so we don't delete the label. */
3644 if (INSN_P (trial))
3646 insn = insn_last;
3647 while (insn != NULL_RTX)
3649 /* JUMP_P insns have already been "marked" above. */
3650 if (NONJUMP_INSN_P (insn))
3651 mark_label_nuses (PATTERN (insn));
3653 insn = PREV_INSN (insn);
3657 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3659 delete_insn (trial);
3660 if (has_barrier)
3661 emit_barrier_after (tem);
3663 /* Recursively call try_split for each new insn created; by the
3664 time control returns here that insn will be fully split, so
3665 set LAST and continue from the insn after the one returned.
3666 We can't use next_active_insn here since AFTER may be a note.
3667 Ignore deleted insns, which can be occur if not optimizing. */
3668 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3669 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3670 tem = try_split (PATTERN (tem), tem, 1);
3672 /* Return either the first or the last insn, depending on which was
3673 requested. */
3674 return last
3675 ? (after ? PREV_INSN (after) : get_last_insn ())
3676 : NEXT_INSN (before);
3679 /* Make and return an INSN rtx, initializing all its slots.
3680 Store PATTERN in the pattern slots. */
3683 make_insn_raw (rtx pattern)
3685 rtx insn;
3687 insn = rtx_alloc (INSN);
3689 INSN_UID (insn) = cur_insn_uid++;
3690 PATTERN (insn) = pattern;
3691 INSN_CODE (insn) = -1;
3692 REG_NOTES (insn) = NULL;
3693 INSN_LOCATOR (insn) = curr_insn_locator ();
3694 BLOCK_FOR_INSN (insn) = NULL;
3696 #ifdef ENABLE_RTL_CHECKING
3697 if (insn
3698 && INSN_P (insn)
3699 && (returnjump_p (insn)
3700 || (GET_CODE (insn) == SET
3701 && SET_DEST (insn) == pc_rtx)))
3703 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3704 debug_rtx (insn);
3706 #endif
3708 return insn;
3711 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3714 make_debug_insn_raw (rtx pattern)
3716 rtx insn;
3718 insn = rtx_alloc (DEBUG_INSN);
3719 INSN_UID (insn) = cur_debug_insn_uid++;
3720 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3721 INSN_UID (insn) = cur_insn_uid++;
3723 PATTERN (insn) = pattern;
3724 INSN_CODE (insn) = -1;
3725 REG_NOTES (insn) = NULL;
3726 INSN_LOCATOR (insn) = curr_insn_locator ();
3727 BLOCK_FOR_INSN (insn) = NULL;
3729 return insn;
3732 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3735 make_jump_insn_raw (rtx pattern)
3737 rtx insn;
3739 insn = rtx_alloc (JUMP_INSN);
3740 INSN_UID (insn) = cur_insn_uid++;
3742 PATTERN (insn) = pattern;
3743 INSN_CODE (insn) = -1;
3744 REG_NOTES (insn) = NULL;
3745 JUMP_LABEL (insn) = NULL;
3746 INSN_LOCATOR (insn) = curr_insn_locator ();
3747 BLOCK_FOR_INSN (insn) = NULL;
3749 return insn;
3752 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3754 static rtx
3755 make_call_insn_raw (rtx pattern)
3757 rtx insn;
3759 insn = rtx_alloc (CALL_INSN);
3760 INSN_UID (insn) = cur_insn_uid++;
3762 PATTERN (insn) = pattern;
3763 INSN_CODE (insn) = -1;
3764 REG_NOTES (insn) = NULL;
3765 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3766 INSN_LOCATOR (insn) = curr_insn_locator ();
3767 BLOCK_FOR_INSN (insn) = NULL;
3769 return insn;
3772 /* Add INSN to the end of the doubly-linked list.
3773 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3775 void
3776 add_insn (rtx insn)
3778 PREV_INSN (insn) = get_last_insn();
3779 NEXT_INSN (insn) = 0;
3781 if (NULL != get_last_insn())
3782 NEXT_INSN (get_last_insn ()) = insn;
3784 if (NULL == get_insns ())
3785 set_first_insn (insn);
3787 set_last_insn (insn);
3790 /* Add INSN into the doubly-linked list after insn AFTER. This and
3791 the next should be the only functions called to insert an insn once
3792 delay slots have been filled since only they know how to update a
3793 SEQUENCE. */
3795 void
3796 add_insn_after (rtx insn, rtx after, basic_block bb)
3798 rtx next = NEXT_INSN (after);
3800 gcc_assert (!optimize || !INSN_DELETED_P (after));
3802 NEXT_INSN (insn) = next;
3803 PREV_INSN (insn) = after;
3805 if (next)
3807 PREV_INSN (next) = insn;
3808 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3809 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3811 else if (get_last_insn () == after)
3812 set_last_insn (insn);
3813 else
3815 struct sequence_stack *stack = seq_stack;
3816 /* Scan all pending sequences too. */
3817 for (; stack; stack = stack->next)
3818 if (after == stack->last)
3820 stack->last = insn;
3821 break;
3824 gcc_assert (stack);
3827 if (!BARRIER_P (after)
3828 && !BARRIER_P (insn)
3829 && (bb = BLOCK_FOR_INSN (after)))
3831 set_block_for_insn (insn, bb);
3832 if (INSN_P (insn))
3833 df_insn_rescan (insn);
3834 /* Should not happen as first in the BB is always
3835 either NOTE or LABEL. */
3836 if (BB_END (bb) == after
3837 /* Avoid clobbering of structure when creating new BB. */
3838 && !BARRIER_P (insn)
3839 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3840 BB_END (bb) = insn;
3843 NEXT_INSN (after) = insn;
3844 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3846 rtx sequence = PATTERN (after);
3847 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3851 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3852 the previous should be the only functions called to insert an insn
3853 once delay slots have been filled since only they know how to
3854 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3855 bb from before. */
3857 void
3858 add_insn_before (rtx insn, rtx before, basic_block bb)
3860 rtx prev = PREV_INSN (before);
3862 gcc_assert (!optimize || !INSN_DELETED_P (before));
3864 PREV_INSN (insn) = prev;
3865 NEXT_INSN (insn) = before;
3867 if (prev)
3869 NEXT_INSN (prev) = insn;
3870 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3872 rtx sequence = PATTERN (prev);
3873 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3876 else if (get_insns () == before)
3877 set_first_insn (insn);
3878 else
3880 struct sequence_stack *stack = seq_stack;
3881 /* Scan all pending sequences too. */
3882 for (; stack; stack = stack->next)
3883 if (before == stack->first)
3885 stack->first = insn;
3886 break;
3889 gcc_assert (stack);
3892 if (!bb
3893 && !BARRIER_P (before)
3894 && !BARRIER_P (insn))
3895 bb = BLOCK_FOR_INSN (before);
3897 if (bb)
3899 set_block_for_insn (insn, bb);
3900 if (INSN_P (insn))
3901 df_insn_rescan (insn);
3902 /* Should not happen as first in the BB is always either NOTE or
3903 LABEL. */
3904 gcc_assert (BB_HEAD (bb) != insn
3905 /* Avoid clobbering of structure when creating new BB. */
3906 || BARRIER_P (insn)
3907 || NOTE_INSN_BASIC_BLOCK_P (insn));
3910 PREV_INSN (before) = insn;
3911 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3912 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3916 /* Replace insn with an deleted instruction note. */
3918 void
3919 set_insn_deleted (rtx insn)
3921 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3922 PUT_CODE (insn, NOTE);
3923 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3927 /* Remove an insn from its doubly-linked list. This function knows how
3928 to handle sequences. */
3929 void
3930 remove_insn (rtx insn)
3932 rtx next = NEXT_INSN (insn);
3933 rtx prev = PREV_INSN (insn);
3934 basic_block bb;
3936 /* Later in the code, the block will be marked dirty. */
3937 df_insn_delete (NULL, INSN_UID (insn));
3939 if (prev)
3941 NEXT_INSN (prev) = next;
3942 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3944 rtx sequence = PATTERN (prev);
3945 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3948 else if (get_insns () == insn)
3950 if (next)
3951 PREV_INSN (next) = NULL;
3952 set_first_insn (next);
3954 else
3956 struct sequence_stack *stack = seq_stack;
3957 /* Scan all pending sequences too. */
3958 for (; stack; stack = stack->next)
3959 if (insn == stack->first)
3961 stack->first = next;
3962 break;
3965 gcc_assert (stack);
3968 if (next)
3970 PREV_INSN (next) = prev;
3971 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3972 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3974 else if (get_last_insn () == insn)
3975 set_last_insn (prev);
3976 else
3978 struct sequence_stack *stack = seq_stack;
3979 /* Scan all pending sequences too. */
3980 for (; stack; stack = stack->next)
3981 if (insn == stack->last)
3983 stack->last = prev;
3984 break;
3987 gcc_assert (stack);
3989 if (!BARRIER_P (insn)
3990 && (bb = BLOCK_FOR_INSN (insn)))
3992 if (NONDEBUG_INSN_P (insn))
3993 df_set_bb_dirty (bb);
3994 if (BB_HEAD (bb) == insn)
3996 /* Never ever delete the basic block note without deleting whole
3997 basic block. */
3998 gcc_assert (!NOTE_P (insn));
3999 BB_HEAD (bb) = next;
4001 if (BB_END (bb) == insn)
4002 BB_END (bb) = prev;
4006 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4008 void
4009 add_function_usage_to (rtx call_insn, rtx call_fusage)
4011 gcc_assert (call_insn && CALL_P (call_insn));
4013 /* Put the register usage information on the CALL. If there is already
4014 some usage information, put ours at the end. */
4015 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4017 rtx link;
4019 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4020 link = XEXP (link, 1))
4023 XEXP (link, 1) = call_fusage;
4025 else
4026 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4029 /* Delete all insns made since FROM.
4030 FROM becomes the new last instruction. */
4032 void
4033 delete_insns_since (rtx from)
4035 if (from == 0)
4036 set_first_insn (0);
4037 else
4038 NEXT_INSN (from) = 0;
4039 set_last_insn (from);
4042 /* This function is deprecated, please use sequences instead.
4044 Move a consecutive bunch of insns to a different place in the chain.
4045 The insns to be moved are those between FROM and TO.
4046 They are moved to a new position after the insn AFTER.
4047 AFTER must not be FROM or TO or any insn in between.
4049 This function does not know about SEQUENCEs and hence should not be
4050 called after delay-slot filling has been done. */
4052 void
4053 reorder_insns_nobb (rtx from, rtx to, rtx after)
4055 #ifdef ENABLE_CHECKING
4056 rtx x;
4057 for (x = from; x != to; x = NEXT_INSN (x))
4058 gcc_assert (after != x);
4059 gcc_assert (after != to);
4060 #endif
4062 /* Splice this bunch out of where it is now. */
4063 if (PREV_INSN (from))
4064 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4065 if (NEXT_INSN (to))
4066 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4067 if (get_last_insn () == to)
4068 set_last_insn (PREV_INSN (from));
4069 if (get_insns () == from)
4070 set_first_insn (NEXT_INSN (to));
4072 /* Make the new neighbors point to it and it to them. */
4073 if (NEXT_INSN (after))
4074 PREV_INSN (NEXT_INSN (after)) = to;
4076 NEXT_INSN (to) = NEXT_INSN (after);
4077 PREV_INSN (from) = after;
4078 NEXT_INSN (after) = from;
4079 if (after == get_last_insn())
4080 set_last_insn (to);
4083 /* Same as function above, but take care to update BB boundaries. */
4084 void
4085 reorder_insns (rtx from, rtx to, rtx after)
4087 rtx prev = PREV_INSN (from);
4088 basic_block bb, bb2;
4090 reorder_insns_nobb (from, to, after);
4092 if (!BARRIER_P (after)
4093 && (bb = BLOCK_FOR_INSN (after)))
4095 rtx x;
4096 df_set_bb_dirty (bb);
4098 if (!BARRIER_P (from)
4099 && (bb2 = BLOCK_FOR_INSN (from)))
4101 if (BB_END (bb2) == to)
4102 BB_END (bb2) = prev;
4103 df_set_bb_dirty (bb2);
4106 if (BB_END (bb) == after)
4107 BB_END (bb) = to;
4109 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4110 if (!BARRIER_P (x))
4111 df_insn_change_bb (x, bb);
4116 /* Emit insn(s) of given code and pattern
4117 at a specified place within the doubly-linked list.
4119 All of the emit_foo global entry points accept an object
4120 X which is either an insn list or a PATTERN of a single
4121 instruction.
4123 There are thus a few canonical ways to generate code and
4124 emit it at a specific place in the instruction stream. For
4125 example, consider the instruction named SPOT and the fact that
4126 we would like to emit some instructions before SPOT. We might
4127 do it like this:
4129 start_sequence ();
4130 ... emit the new instructions ...
4131 insns_head = get_insns ();
4132 end_sequence ();
4134 emit_insn_before (insns_head, SPOT);
4136 It used to be common to generate SEQUENCE rtl instead, but that
4137 is a relic of the past which no longer occurs. The reason is that
4138 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4139 generated would almost certainly die right after it was created. */
4141 static rtx
4142 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4143 rtx (*make_raw) (rtx))
4145 rtx insn;
4147 gcc_assert (before);
4149 if (x == NULL_RTX)
4150 return last;
4152 switch (GET_CODE (x))
4154 case DEBUG_INSN:
4155 case INSN:
4156 case JUMP_INSN:
4157 case CALL_INSN:
4158 case CODE_LABEL:
4159 case BARRIER:
4160 case NOTE:
4161 insn = x;
4162 while (insn)
4164 rtx next = NEXT_INSN (insn);
4165 add_insn_before (insn, before, bb);
4166 last = insn;
4167 insn = next;
4169 break;
4171 #ifdef ENABLE_RTL_CHECKING
4172 case SEQUENCE:
4173 gcc_unreachable ();
4174 break;
4175 #endif
4177 default:
4178 last = (*make_raw) (x);
4179 add_insn_before (last, before, bb);
4180 break;
4183 return last;
4186 /* Make X be output before the instruction BEFORE. */
4189 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4191 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4194 /* Make an instruction with body X and code JUMP_INSN
4195 and output it before the instruction BEFORE. */
4198 emit_jump_insn_before_noloc (rtx x, rtx before)
4200 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4201 make_jump_insn_raw);
4204 /* Make an instruction with body X and code CALL_INSN
4205 and output it before the instruction BEFORE. */
4208 emit_call_insn_before_noloc (rtx x, rtx before)
4210 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4211 make_call_insn_raw);
4214 /* Make an instruction with body X and code DEBUG_INSN
4215 and output it before the instruction BEFORE. */
4218 emit_debug_insn_before_noloc (rtx x, rtx before)
4220 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4221 make_debug_insn_raw);
4224 /* Make an insn of code BARRIER
4225 and output it before the insn BEFORE. */
4228 emit_barrier_before (rtx before)
4230 rtx insn = rtx_alloc (BARRIER);
4232 INSN_UID (insn) = cur_insn_uid++;
4234 add_insn_before (insn, before, NULL);
4235 return insn;
4238 /* Emit the label LABEL before the insn BEFORE. */
4241 emit_label_before (rtx label, rtx before)
4243 /* This can be called twice for the same label as a result of the
4244 confusion that follows a syntax error! So make it harmless. */
4245 if (INSN_UID (label) == 0)
4247 INSN_UID (label) = cur_insn_uid++;
4248 add_insn_before (label, before, NULL);
4251 return label;
4254 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4257 emit_note_before (enum insn_note subtype, rtx before)
4259 rtx note = rtx_alloc (NOTE);
4260 INSN_UID (note) = cur_insn_uid++;
4261 NOTE_KIND (note) = subtype;
4262 BLOCK_FOR_INSN (note) = NULL;
4263 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4265 add_insn_before (note, before, NULL);
4266 return note;
4269 /* Helper for emit_insn_after, handles lists of instructions
4270 efficiently. */
4272 static rtx
4273 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4275 rtx last;
4276 rtx after_after;
4277 if (!bb && !BARRIER_P (after))
4278 bb = BLOCK_FOR_INSN (after);
4280 if (bb)
4282 df_set_bb_dirty (bb);
4283 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4284 if (!BARRIER_P (last))
4286 set_block_for_insn (last, bb);
4287 df_insn_rescan (last);
4289 if (!BARRIER_P (last))
4291 set_block_for_insn (last, bb);
4292 df_insn_rescan (last);
4294 if (BB_END (bb) == after)
4295 BB_END (bb) = last;
4297 else
4298 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4299 continue;
4301 after_after = NEXT_INSN (after);
4303 NEXT_INSN (after) = first;
4304 PREV_INSN (first) = after;
4305 NEXT_INSN (last) = after_after;
4306 if (after_after)
4307 PREV_INSN (after_after) = last;
4309 if (after == get_last_insn())
4310 set_last_insn (last);
4312 return last;
4315 static rtx
4316 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4317 rtx (*make_raw)(rtx))
4319 rtx last = after;
4321 gcc_assert (after);
4323 if (x == NULL_RTX)
4324 return last;
4326 switch (GET_CODE (x))
4328 case DEBUG_INSN:
4329 case INSN:
4330 case JUMP_INSN:
4331 case CALL_INSN:
4332 case CODE_LABEL:
4333 case BARRIER:
4334 case NOTE:
4335 last = emit_insn_after_1 (x, after, bb);
4336 break;
4338 #ifdef ENABLE_RTL_CHECKING
4339 case SEQUENCE:
4340 gcc_unreachable ();
4341 break;
4342 #endif
4344 default:
4345 last = (*make_raw) (x);
4346 add_insn_after (last, after, bb);
4347 break;
4350 return last;
4353 /* Make X be output after the insn AFTER and set the BB of insn. If
4354 BB is NULL, an attempt is made to infer the BB from AFTER. */
4357 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4359 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4363 /* Make an insn of code JUMP_INSN with body X
4364 and output it after the insn AFTER. */
4367 emit_jump_insn_after_noloc (rtx x, rtx after)
4369 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4372 /* Make an instruction with body X and code CALL_INSN
4373 and output it after the instruction AFTER. */
4376 emit_call_insn_after_noloc (rtx x, rtx after)
4378 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4381 /* Make an instruction with body X and code CALL_INSN
4382 and output it after the instruction AFTER. */
4385 emit_debug_insn_after_noloc (rtx x, rtx after)
4387 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4390 /* Make an insn of code BARRIER
4391 and output it after the insn AFTER. */
4394 emit_barrier_after (rtx after)
4396 rtx insn = rtx_alloc (BARRIER);
4398 INSN_UID (insn) = cur_insn_uid++;
4400 add_insn_after (insn, after, NULL);
4401 return insn;
4404 /* Emit the label LABEL after the insn AFTER. */
4407 emit_label_after (rtx label, rtx after)
4409 /* This can be called twice for the same label
4410 as a result of the confusion that follows a syntax error!
4411 So make it harmless. */
4412 if (INSN_UID (label) == 0)
4414 INSN_UID (label) = cur_insn_uid++;
4415 add_insn_after (label, after, NULL);
4418 return label;
4421 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4424 emit_note_after (enum insn_note subtype, rtx after)
4426 rtx note = rtx_alloc (NOTE);
4427 INSN_UID (note) = cur_insn_uid++;
4428 NOTE_KIND (note) = subtype;
4429 BLOCK_FOR_INSN (note) = NULL;
4430 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4431 add_insn_after (note, after, NULL);
4432 return note;
4435 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4436 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4438 static rtx
4439 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4440 rtx (*make_raw) (rtx))
4442 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4444 if (pattern == NULL_RTX || !loc)
4445 return last;
4447 after = NEXT_INSN (after);
4448 while (1)
4450 if (active_insn_p (after) && !INSN_LOCATOR (after))
4451 INSN_LOCATOR (after) = loc;
4452 if (after == last)
4453 break;
4454 after = NEXT_INSN (after);
4456 return last;
4459 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4460 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4461 any DEBUG_INSNs. */
4463 static rtx
4464 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4465 rtx (*make_raw) (rtx))
4467 rtx prev = after;
4469 if (skip_debug_insns)
4470 while (DEBUG_INSN_P (prev))
4471 prev = PREV_INSN (prev);
4473 if (INSN_P (prev))
4474 return emit_pattern_after_setloc (pattern, after, INSN_LOCATOR (prev),
4475 make_raw);
4476 else
4477 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4480 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4482 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4484 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4487 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4489 emit_insn_after (rtx pattern, rtx after)
4491 return emit_pattern_after (pattern, after, true, make_insn_raw);
4494 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4496 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4498 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4501 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4503 emit_jump_insn_after (rtx pattern, rtx after)
4505 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4508 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4510 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4512 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4515 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4517 emit_call_insn_after (rtx pattern, rtx after)
4519 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4522 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4524 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4526 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4529 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4531 emit_debug_insn_after (rtx pattern, rtx after)
4533 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4536 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4537 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4538 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4539 CALL_INSN, etc. */
4541 static rtx
4542 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4543 rtx (*make_raw) (rtx))
4545 rtx first = PREV_INSN (before);
4546 rtx last = emit_pattern_before_noloc (pattern, before,
4547 insnp ? before : NULL_RTX,
4548 NULL, make_raw);
4550 if (pattern == NULL_RTX || !loc)
4551 return last;
4553 if (!first)
4554 first = get_insns ();
4555 else
4556 first = NEXT_INSN (first);
4557 while (1)
4559 if (active_insn_p (first) && !INSN_LOCATOR (first))
4560 INSN_LOCATOR (first) = loc;
4561 if (first == last)
4562 break;
4563 first = NEXT_INSN (first);
4565 return last;
4568 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4569 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4570 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4571 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4573 static rtx
4574 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4575 bool insnp, rtx (*make_raw) (rtx))
4577 rtx next = before;
4579 if (skip_debug_insns)
4580 while (DEBUG_INSN_P (next))
4581 next = PREV_INSN (next);
4583 if (INSN_P (next))
4584 return emit_pattern_before_setloc (pattern, before, INSN_LOCATOR (next),
4585 insnp, make_raw);
4586 else
4587 return emit_pattern_before_noloc (pattern, before,
4588 insnp ? before : NULL_RTX,
4589 NULL, make_raw);
4592 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4594 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4596 return emit_pattern_before_setloc (pattern, before, loc, true,
4597 make_insn_raw);
4600 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4602 emit_insn_before (rtx pattern, rtx before)
4604 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4607 /* like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4609 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4611 return emit_pattern_before_setloc (pattern, before, loc, false,
4612 make_jump_insn_raw);
4615 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4617 emit_jump_insn_before (rtx pattern, rtx before)
4619 return emit_pattern_before (pattern, before, true, false,
4620 make_jump_insn_raw);
4623 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4625 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4627 return emit_pattern_before_setloc (pattern, before, loc, false,
4628 make_call_insn_raw);
4631 /* Like emit_call_insn_before_noloc,
4632 but set insn_locator according to BEFORE. */
4634 emit_call_insn_before (rtx pattern, rtx before)
4636 return emit_pattern_before (pattern, before, true, false,
4637 make_call_insn_raw);
4640 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4642 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4644 return emit_pattern_before_setloc (pattern, before, loc, false,
4645 make_debug_insn_raw);
4648 /* Like emit_debug_insn_before_noloc,
4649 but set insn_locator according to BEFORE. */
4651 emit_debug_insn_before (rtx pattern, rtx before)
4653 return emit_pattern_before (pattern, before, false, false,
4654 make_debug_insn_raw);
4657 /* Take X and emit it at the end of the doubly-linked
4658 INSN list.
4660 Returns the last insn emitted. */
4663 emit_insn (rtx x)
4665 rtx last = get_last_insn();
4666 rtx insn;
4668 if (x == NULL_RTX)
4669 return last;
4671 switch (GET_CODE (x))
4673 case DEBUG_INSN:
4674 case INSN:
4675 case JUMP_INSN:
4676 case CALL_INSN:
4677 case CODE_LABEL:
4678 case BARRIER:
4679 case NOTE:
4680 insn = x;
4681 while (insn)
4683 rtx next = NEXT_INSN (insn);
4684 add_insn (insn);
4685 last = insn;
4686 insn = next;
4688 break;
4690 #ifdef ENABLE_RTL_CHECKING
4691 case SEQUENCE:
4692 gcc_unreachable ();
4693 break;
4694 #endif
4696 default:
4697 last = make_insn_raw (x);
4698 add_insn (last);
4699 break;
4702 return last;
4705 /* Make an insn of code DEBUG_INSN with pattern X
4706 and add it to the end of the doubly-linked list. */
4709 emit_debug_insn (rtx x)
4711 rtx last = get_last_insn();
4712 rtx insn;
4714 if (x == NULL_RTX)
4715 return last;
4717 switch (GET_CODE (x))
4719 case DEBUG_INSN:
4720 case INSN:
4721 case JUMP_INSN:
4722 case CALL_INSN:
4723 case CODE_LABEL:
4724 case BARRIER:
4725 case NOTE:
4726 insn = x;
4727 while (insn)
4729 rtx next = NEXT_INSN (insn);
4730 add_insn (insn);
4731 last = insn;
4732 insn = next;
4734 break;
4736 #ifdef ENABLE_RTL_CHECKING
4737 case SEQUENCE:
4738 gcc_unreachable ();
4739 break;
4740 #endif
4742 default:
4743 last = make_debug_insn_raw (x);
4744 add_insn (last);
4745 break;
4748 return last;
4751 /* Make an insn of code JUMP_INSN with pattern X
4752 and add it to the end of the doubly-linked list. */
4755 emit_jump_insn (rtx x)
4757 rtx last = NULL_RTX, insn;
4759 switch (GET_CODE (x))
4761 case DEBUG_INSN:
4762 case INSN:
4763 case JUMP_INSN:
4764 case CALL_INSN:
4765 case CODE_LABEL:
4766 case BARRIER:
4767 case NOTE:
4768 insn = x;
4769 while (insn)
4771 rtx next = NEXT_INSN (insn);
4772 add_insn (insn);
4773 last = insn;
4774 insn = next;
4776 break;
4778 #ifdef ENABLE_RTL_CHECKING
4779 case SEQUENCE:
4780 gcc_unreachable ();
4781 break;
4782 #endif
4784 default:
4785 last = make_jump_insn_raw (x);
4786 add_insn (last);
4787 break;
4790 return last;
4793 /* Make an insn of code CALL_INSN with pattern X
4794 and add it to the end of the doubly-linked list. */
4797 emit_call_insn (rtx x)
4799 rtx insn;
4801 switch (GET_CODE (x))
4803 case DEBUG_INSN:
4804 case INSN:
4805 case JUMP_INSN:
4806 case CALL_INSN:
4807 case CODE_LABEL:
4808 case BARRIER:
4809 case NOTE:
4810 insn = emit_insn (x);
4811 break;
4813 #ifdef ENABLE_RTL_CHECKING
4814 case SEQUENCE:
4815 gcc_unreachable ();
4816 break;
4817 #endif
4819 default:
4820 insn = make_call_insn_raw (x);
4821 add_insn (insn);
4822 break;
4825 return insn;
4828 /* Add the label LABEL to the end of the doubly-linked list. */
4831 emit_label (rtx label)
4833 /* This can be called twice for the same label
4834 as a result of the confusion that follows a syntax error!
4835 So make it harmless. */
4836 if (INSN_UID (label) == 0)
4838 INSN_UID (label) = cur_insn_uid++;
4839 add_insn (label);
4841 return label;
4844 /* Make an insn of code BARRIER
4845 and add it to the end of the doubly-linked list. */
4848 emit_barrier (void)
4850 rtx barrier = rtx_alloc (BARRIER);
4851 INSN_UID (barrier) = cur_insn_uid++;
4852 add_insn (barrier);
4853 return barrier;
4856 /* Emit a copy of note ORIG. */
4859 emit_note_copy (rtx orig)
4861 rtx note;
4863 note = rtx_alloc (NOTE);
4865 INSN_UID (note) = cur_insn_uid++;
4866 NOTE_DATA (note) = NOTE_DATA (orig);
4867 NOTE_KIND (note) = NOTE_KIND (orig);
4868 BLOCK_FOR_INSN (note) = NULL;
4869 add_insn (note);
4871 return note;
4874 /* Make an insn of code NOTE or type NOTE_NO
4875 and add it to the end of the doubly-linked list. */
4878 emit_note (enum insn_note kind)
4880 rtx note;
4882 note = rtx_alloc (NOTE);
4883 INSN_UID (note) = cur_insn_uid++;
4884 NOTE_KIND (note) = kind;
4885 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4886 BLOCK_FOR_INSN (note) = NULL;
4887 add_insn (note);
4888 return note;
4891 /* Emit a clobber of lvalue X. */
4894 emit_clobber (rtx x)
4896 /* CONCATs should not appear in the insn stream. */
4897 if (GET_CODE (x) == CONCAT)
4899 emit_clobber (XEXP (x, 0));
4900 return emit_clobber (XEXP (x, 1));
4902 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4905 /* Return a sequence of insns to clobber lvalue X. */
4908 gen_clobber (rtx x)
4910 rtx seq;
4912 start_sequence ();
4913 emit_clobber (x);
4914 seq = get_insns ();
4915 end_sequence ();
4916 return seq;
4919 /* Emit a use of rvalue X. */
4922 emit_use (rtx x)
4924 /* CONCATs should not appear in the insn stream. */
4925 if (GET_CODE (x) == CONCAT)
4927 emit_use (XEXP (x, 0));
4928 return emit_use (XEXP (x, 1));
4930 return emit_insn (gen_rtx_USE (VOIDmode, x));
4933 /* Return a sequence of insns to use rvalue X. */
4936 gen_use (rtx x)
4938 rtx seq;
4940 start_sequence ();
4941 emit_use (x);
4942 seq = get_insns ();
4943 end_sequence ();
4944 return seq;
4947 /* Cause next statement to emit a line note even if the line number
4948 has not changed. */
4950 void
4951 force_next_line_note (void)
4953 last_location = -1;
4956 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4957 note of this type already exists, remove it first. */
4960 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4962 rtx note = find_reg_note (insn, kind, NULL_RTX);
4964 switch (kind)
4966 case REG_EQUAL:
4967 case REG_EQUIV:
4968 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4969 has multiple sets (some callers assume single_set
4970 means the insn only has one set, when in fact it
4971 means the insn only has one * useful * set). */
4972 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4974 gcc_assert (!note);
4975 return NULL_RTX;
4978 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4979 It serves no useful purpose and breaks eliminate_regs. */
4980 if (GET_CODE (datum) == ASM_OPERANDS)
4981 return NULL_RTX;
4983 if (note)
4985 XEXP (note, 0) = datum;
4986 df_notes_rescan (insn);
4987 return note;
4989 break;
4991 default:
4992 if (note)
4994 XEXP (note, 0) = datum;
4995 return note;
4997 break;
5000 add_reg_note (insn, kind, datum);
5002 switch (kind)
5004 case REG_EQUAL:
5005 case REG_EQUIV:
5006 df_notes_rescan (insn);
5007 break;
5008 default:
5009 break;
5012 return REG_NOTES (insn);
5015 /* Return an indication of which type of insn should have X as a body.
5016 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5018 static enum rtx_code
5019 classify_insn (rtx x)
5021 if (LABEL_P (x))
5022 return CODE_LABEL;
5023 if (GET_CODE (x) == CALL)
5024 return CALL_INSN;
5025 if (ANY_RETURN_P (x))
5026 return JUMP_INSN;
5027 if (GET_CODE (x) == SET)
5029 if (SET_DEST (x) == pc_rtx)
5030 return JUMP_INSN;
5031 else if (GET_CODE (SET_SRC (x)) == CALL)
5032 return CALL_INSN;
5033 else
5034 return INSN;
5036 if (GET_CODE (x) == PARALLEL)
5038 int j;
5039 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5040 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5041 return CALL_INSN;
5042 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5043 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5044 return JUMP_INSN;
5045 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5046 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5047 return CALL_INSN;
5049 return INSN;
5052 /* Emit the rtl pattern X as an appropriate kind of insn.
5053 If X is a label, it is simply added into the insn chain. */
5056 emit (rtx x)
5058 enum rtx_code code = classify_insn (x);
5060 switch (code)
5062 case CODE_LABEL:
5063 return emit_label (x);
5064 case INSN:
5065 return emit_insn (x);
5066 case JUMP_INSN:
5068 rtx insn = emit_jump_insn (x);
5069 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5070 return emit_barrier ();
5071 return insn;
5073 case CALL_INSN:
5074 return emit_call_insn (x);
5075 case DEBUG_INSN:
5076 return emit_debug_insn (x);
5077 default:
5078 gcc_unreachable ();
5082 /* Space for free sequence stack entries. */
5083 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5085 /* Begin emitting insns to a sequence. If this sequence will contain
5086 something that might cause the compiler to pop arguments to function
5087 calls (because those pops have previously been deferred; see
5088 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5089 before calling this function. That will ensure that the deferred
5090 pops are not accidentally emitted in the middle of this sequence. */
5092 void
5093 start_sequence (void)
5095 struct sequence_stack *tem;
5097 if (free_sequence_stack != NULL)
5099 tem = free_sequence_stack;
5100 free_sequence_stack = tem->next;
5102 else
5103 tem = ggc_alloc_sequence_stack ();
5105 tem->next = seq_stack;
5106 tem->first = get_insns ();
5107 tem->last = get_last_insn ();
5109 seq_stack = tem;
5111 set_first_insn (0);
5112 set_last_insn (0);
5115 /* Set up the insn chain starting with FIRST as the current sequence,
5116 saving the previously current one. See the documentation for
5117 start_sequence for more information about how to use this function. */
5119 void
5120 push_to_sequence (rtx first)
5122 rtx last;
5124 start_sequence ();
5126 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5129 set_first_insn (first);
5130 set_last_insn (last);
5133 /* Like push_to_sequence, but take the last insn as an argument to avoid
5134 looping through the list. */
5136 void
5137 push_to_sequence2 (rtx first, rtx last)
5139 start_sequence ();
5141 set_first_insn (first);
5142 set_last_insn (last);
5145 /* Set up the outer-level insn chain
5146 as the current sequence, saving the previously current one. */
5148 void
5149 push_topmost_sequence (void)
5151 struct sequence_stack *stack, *top = NULL;
5153 start_sequence ();
5155 for (stack = seq_stack; stack; stack = stack->next)
5156 top = stack;
5158 set_first_insn (top->first);
5159 set_last_insn (top->last);
5162 /* After emitting to the outer-level insn chain, update the outer-level
5163 insn chain, and restore the previous saved state. */
5165 void
5166 pop_topmost_sequence (void)
5168 struct sequence_stack *stack, *top = NULL;
5170 for (stack = seq_stack; stack; stack = stack->next)
5171 top = stack;
5173 top->first = get_insns ();
5174 top->last = get_last_insn ();
5176 end_sequence ();
5179 /* After emitting to a sequence, restore previous saved state.
5181 To get the contents of the sequence just made, you must call
5182 `get_insns' *before* calling here.
5184 If the compiler might have deferred popping arguments while
5185 generating this sequence, and this sequence will not be immediately
5186 inserted into the instruction stream, use do_pending_stack_adjust
5187 before calling get_insns. That will ensure that the deferred
5188 pops are inserted into this sequence, and not into some random
5189 location in the instruction stream. See INHIBIT_DEFER_POP for more
5190 information about deferred popping of arguments. */
5192 void
5193 end_sequence (void)
5195 struct sequence_stack *tem = seq_stack;
5197 set_first_insn (tem->first);
5198 set_last_insn (tem->last);
5199 seq_stack = tem->next;
5201 memset (tem, 0, sizeof (*tem));
5202 tem->next = free_sequence_stack;
5203 free_sequence_stack = tem;
5206 /* Return 1 if currently emitting into a sequence. */
5209 in_sequence_p (void)
5211 return seq_stack != 0;
5214 /* Put the various virtual registers into REGNO_REG_RTX. */
5216 static void
5217 init_virtual_regs (void)
5219 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5220 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5221 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5222 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5223 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5224 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5225 = virtual_preferred_stack_boundary_rtx;
5229 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5230 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5231 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5232 static int copy_insn_n_scratches;
5234 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5235 copied an ASM_OPERANDS.
5236 In that case, it is the original input-operand vector. */
5237 static rtvec orig_asm_operands_vector;
5239 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5240 copied an ASM_OPERANDS.
5241 In that case, it is the copied input-operand vector. */
5242 static rtvec copy_asm_operands_vector;
5244 /* Likewise for the constraints vector. */
5245 static rtvec orig_asm_constraints_vector;
5246 static rtvec copy_asm_constraints_vector;
5248 /* Recursively create a new copy of an rtx for copy_insn.
5249 This function differs from copy_rtx in that it handles SCRATCHes and
5250 ASM_OPERANDs properly.
5251 Normally, this function is not used directly; use copy_insn as front end.
5252 However, you could first copy an insn pattern with copy_insn and then use
5253 this function afterwards to properly copy any REG_NOTEs containing
5254 SCRATCHes. */
5257 copy_insn_1 (rtx orig)
5259 rtx copy;
5260 int i, j;
5261 RTX_CODE code;
5262 const char *format_ptr;
5264 if (orig == NULL)
5265 return NULL;
5267 code = GET_CODE (orig);
5269 switch (code)
5271 case REG:
5272 case CONST_INT:
5273 case CONST_DOUBLE:
5274 case CONST_FIXED:
5275 case CONST_VECTOR:
5276 case SYMBOL_REF:
5277 case CODE_LABEL:
5278 case PC:
5279 case CC0:
5280 case RETURN:
5281 case SIMPLE_RETURN:
5282 return orig;
5283 case CLOBBER:
5284 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5285 return orig;
5286 break;
5288 case SCRATCH:
5289 for (i = 0; i < copy_insn_n_scratches; i++)
5290 if (copy_insn_scratch_in[i] == orig)
5291 return copy_insn_scratch_out[i];
5292 break;
5294 case CONST:
5295 if (shared_const_p (orig))
5296 return orig;
5297 break;
5299 /* A MEM with a constant address is not sharable. The problem is that
5300 the constant address may need to be reloaded. If the mem is shared,
5301 then reloading one copy of this mem will cause all copies to appear
5302 to have been reloaded. */
5304 default:
5305 break;
5308 /* Copy the various flags, fields, and other information. We assume
5309 that all fields need copying, and then clear the fields that should
5310 not be copied. That is the sensible default behavior, and forces
5311 us to explicitly document why we are *not* copying a flag. */
5312 copy = shallow_copy_rtx (orig);
5314 /* We do not copy the USED flag, which is used as a mark bit during
5315 walks over the RTL. */
5316 RTX_FLAG (copy, used) = 0;
5318 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5319 if (INSN_P (orig))
5321 RTX_FLAG (copy, jump) = 0;
5322 RTX_FLAG (copy, call) = 0;
5323 RTX_FLAG (copy, frame_related) = 0;
5326 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5328 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5329 switch (*format_ptr++)
5331 case 'e':
5332 if (XEXP (orig, i) != NULL)
5333 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5334 break;
5336 case 'E':
5337 case 'V':
5338 if (XVEC (orig, i) == orig_asm_constraints_vector)
5339 XVEC (copy, i) = copy_asm_constraints_vector;
5340 else if (XVEC (orig, i) == orig_asm_operands_vector)
5341 XVEC (copy, i) = copy_asm_operands_vector;
5342 else if (XVEC (orig, i) != NULL)
5344 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5345 for (j = 0; j < XVECLEN (copy, i); j++)
5346 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5348 break;
5350 case 't':
5351 case 'w':
5352 case 'i':
5353 case 's':
5354 case 'S':
5355 case 'u':
5356 case '0':
5357 /* These are left unchanged. */
5358 break;
5360 default:
5361 gcc_unreachable ();
5364 if (code == SCRATCH)
5366 i = copy_insn_n_scratches++;
5367 gcc_assert (i < MAX_RECOG_OPERANDS);
5368 copy_insn_scratch_in[i] = orig;
5369 copy_insn_scratch_out[i] = copy;
5371 else if (code == ASM_OPERANDS)
5373 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5374 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5375 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5376 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5379 return copy;
5382 /* Create a new copy of an rtx.
5383 This function differs from copy_rtx in that it handles SCRATCHes and
5384 ASM_OPERANDs properly.
5385 INSN doesn't really have to be a full INSN; it could be just the
5386 pattern. */
5388 copy_insn (rtx insn)
5390 copy_insn_n_scratches = 0;
5391 orig_asm_operands_vector = 0;
5392 orig_asm_constraints_vector = 0;
5393 copy_asm_operands_vector = 0;
5394 copy_asm_constraints_vector = 0;
5395 return copy_insn_1 (insn);
5398 /* Initialize data structures and variables in this file
5399 before generating rtl for each function. */
5401 void
5402 init_emit (void)
5404 set_first_insn (NULL);
5405 set_last_insn (NULL);
5406 if (MIN_NONDEBUG_INSN_UID)
5407 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5408 else
5409 cur_insn_uid = 1;
5410 cur_debug_insn_uid = 1;
5411 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5412 last_location = UNKNOWN_LOCATION;
5413 first_label_num = label_num;
5414 seq_stack = NULL;
5416 /* Init the tables that describe all the pseudo regs. */
5418 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5420 crtl->emit.regno_pointer_align
5421 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5423 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5425 /* Put copies of all the hard registers into regno_reg_rtx. */
5426 memcpy (regno_reg_rtx,
5427 initial_regno_reg_rtx,
5428 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5430 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5431 init_virtual_regs ();
5433 /* Indicate that the virtual registers and stack locations are
5434 all pointers. */
5435 REG_POINTER (stack_pointer_rtx) = 1;
5436 REG_POINTER (frame_pointer_rtx) = 1;
5437 REG_POINTER (hard_frame_pointer_rtx) = 1;
5438 REG_POINTER (arg_pointer_rtx) = 1;
5440 REG_POINTER (virtual_incoming_args_rtx) = 1;
5441 REG_POINTER (virtual_stack_vars_rtx) = 1;
5442 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5443 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5444 REG_POINTER (virtual_cfa_rtx) = 1;
5446 #ifdef STACK_BOUNDARY
5447 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5448 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5449 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5450 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5452 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5453 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5454 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5455 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5456 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5457 #endif
5459 #ifdef INIT_EXPANDERS
5460 INIT_EXPANDERS;
5461 #endif
5464 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5466 static rtx
5467 gen_const_vector (enum machine_mode mode, int constant)
5469 rtx tem;
5470 rtvec v;
5471 int units, i;
5472 enum machine_mode inner;
5474 units = GET_MODE_NUNITS (mode);
5475 inner = GET_MODE_INNER (mode);
5477 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5479 v = rtvec_alloc (units);
5481 /* We need to call this function after we set the scalar const_tiny_rtx
5482 entries. */
5483 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5485 for (i = 0; i < units; ++i)
5486 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5488 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5489 return tem;
5492 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5493 all elements are zero, and the one vector when all elements are one. */
5495 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5497 enum machine_mode inner = GET_MODE_INNER (mode);
5498 int nunits = GET_MODE_NUNITS (mode);
5499 rtx x;
5500 int i;
5502 /* Check to see if all of the elements have the same value. */
5503 x = RTVEC_ELT (v, nunits - 1);
5504 for (i = nunits - 2; i >= 0; i--)
5505 if (RTVEC_ELT (v, i) != x)
5506 break;
5508 /* If the values are all the same, check to see if we can use one of the
5509 standard constant vectors. */
5510 if (i == -1)
5512 if (x == CONST0_RTX (inner))
5513 return CONST0_RTX (mode);
5514 else if (x == CONST1_RTX (inner))
5515 return CONST1_RTX (mode);
5518 return gen_rtx_raw_CONST_VECTOR (mode, v);
5521 /* Initialise global register information required by all functions. */
5523 void
5524 init_emit_regs (void)
5526 int i;
5527 enum machine_mode mode;
5528 mem_attrs *attrs;
5530 /* Reset register attributes */
5531 htab_empty (reg_attrs_htab);
5533 /* We need reg_raw_mode, so initialize the modes now. */
5534 init_reg_modes_target ();
5536 /* Assign register numbers to the globally defined register rtx. */
5537 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
5538 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
5539 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
5540 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
5541 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5542 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5543 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5544 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5545 virtual_incoming_args_rtx =
5546 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5547 virtual_stack_vars_rtx =
5548 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5549 virtual_stack_dynamic_rtx =
5550 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5551 virtual_outgoing_args_rtx =
5552 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5553 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5554 virtual_preferred_stack_boundary_rtx =
5555 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5557 /* Initialize RTL for commonly used hard registers. These are
5558 copied into regno_reg_rtx as we begin to compile each function. */
5559 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5560 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5562 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5563 return_address_pointer_rtx
5564 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5565 #endif
5567 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5568 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5569 else
5570 pic_offset_table_rtx = NULL_RTX;
5572 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5574 mode = (enum machine_mode) i;
5575 attrs = ggc_alloc_cleared_mem_attrs ();
5576 attrs->align = BITS_PER_UNIT;
5577 attrs->addrspace = ADDR_SPACE_GENERIC;
5578 if (mode != BLKmode)
5580 attrs->size_known_p = true;
5581 attrs->size = GET_MODE_SIZE (mode);
5582 if (STRICT_ALIGNMENT)
5583 attrs->align = GET_MODE_ALIGNMENT (mode);
5585 mode_mem_attrs[i] = attrs;
5589 /* Create some permanent unique rtl objects shared between all functions. */
5591 void
5592 init_emit_once (void)
5594 int i;
5595 enum machine_mode mode;
5596 enum machine_mode double_mode;
5598 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5599 hash tables. */
5600 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5601 const_int_htab_eq, NULL);
5603 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5604 const_double_htab_eq, NULL);
5606 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5607 const_fixed_htab_eq, NULL);
5609 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5610 mem_attrs_htab_eq, NULL);
5611 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5612 reg_attrs_htab_eq, NULL);
5614 /* Compute the word and byte modes. */
5616 byte_mode = VOIDmode;
5617 word_mode = VOIDmode;
5618 double_mode = VOIDmode;
5620 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5621 mode != VOIDmode;
5622 mode = GET_MODE_WIDER_MODE (mode))
5624 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5625 && byte_mode == VOIDmode)
5626 byte_mode = mode;
5628 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5629 && word_mode == VOIDmode)
5630 word_mode = mode;
5633 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5634 mode != VOIDmode;
5635 mode = GET_MODE_WIDER_MODE (mode))
5637 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5638 && double_mode == VOIDmode)
5639 double_mode = mode;
5642 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5644 #ifdef INIT_EXPANDERS
5645 /* This is to initialize {init|mark|free}_machine_status before the first
5646 call to push_function_context_to. This is needed by the Chill front
5647 end which calls push_function_context_to before the first call to
5648 init_function_start. */
5649 INIT_EXPANDERS;
5650 #endif
5652 /* Create the unique rtx's for certain rtx codes and operand values. */
5654 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5655 tries to use these variables. */
5656 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5657 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5658 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5660 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5661 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5662 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5663 else
5664 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5666 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5667 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5668 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5670 dconstm1 = dconst1;
5671 dconstm1.sign = 1;
5673 dconsthalf = dconst1;
5674 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5676 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5678 const REAL_VALUE_TYPE *const r =
5679 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5681 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5682 mode != VOIDmode;
5683 mode = GET_MODE_WIDER_MODE (mode))
5684 const_tiny_rtx[i][(int) mode] =
5685 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5687 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5688 mode != VOIDmode;
5689 mode = GET_MODE_WIDER_MODE (mode))
5690 const_tiny_rtx[i][(int) mode] =
5691 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5693 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5695 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5696 mode != VOIDmode;
5697 mode = GET_MODE_WIDER_MODE (mode))
5698 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5700 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5701 mode != VOIDmode;
5702 mode = GET_MODE_WIDER_MODE (mode))
5703 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5706 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5707 mode != VOIDmode;
5708 mode = GET_MODE_WIDER_MODE (mode))
5710 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5711 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5714 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5715 mode != VOIDmode;
5716 mode = GET_MODE_WIDER_MODE (mode))
5718 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5719 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5722 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5723 mode != VOIDmode;
5724 mode = GET_MODE_WIDER_MODE (mode))
5726 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5727 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5730 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5731 mode != VOIDmode;
5732 mode = GET_MODE_WIDER_MODE (mode))
5734 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5735 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5738 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5739 mode != VOIDmode;
5740 mode = GET_MODE_WIDER_MODE (mode))
5742 FCONST0(mode).data.high = 0;
5743 FCONST0(mode).data.low = 0;
5744 FCONST0(mode).mode = mode;
5745 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5746 FCONST0 (mode), mode);
5749 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5750 mode != VOIDmode;
5751 mode = GET_MODE_WIDER_MODE (mode))
5753 FCONST0(mode).data.high = 0;
5754 FCONST0(mode).data.low = 0;
5755 FCONST0(mode).mode = mode;
5756 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5757 FCONST0 (mode), mode);
5760 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5761 mode != VOIDmode;
5762 mode = GET_MODE_WIDER_MODE (mode))
5764 FCONST0(mode).data.high = 0;
5765 FCONST0(mode).data.low = 0;
5766 FCONST0(mode).mode = mode;
5767 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5768 FCONST0 (mode), mode);
5770 /* We store the value 1. */
5771 FCONST1(mode).data.high = 0;
5772 FCONST1(mode).data.low = 0;
5773 FCONST1(mode).mode = mode;
5774 lshift_double (1, 0, GET_MODE_FBIT (mode),
5775 2 * HOST_BITS_PER_WIDE_INT,
5776 &FCONST1(mode).data.low,
5777 &FCONST1(mode).data.high,
5778 SIGNED_FIXED_POINT_MODE_P (mode));
5779 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5780 FCONST1 (mode), mode);
5783 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5784 mode != VOIDmode;
5785 mode = GET_MODE_WIDER_MODE (mode))
5787 FCONST0(mode).data.high = 0;
5788 FCONST0(mode).data.low = 0;
5789 FCONST0(mode).mode = mode;
5790 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5791 FCONST0 (mode), mode);
5793 /* We store the value 1. */
5794 FCONST1(mode).data.high = 0;
5795 FCONST1(mode).data.low = 0;
5796 FCONST1(mode).mode = mode;
5797 lshift_double (1, 0, GET_MODE_FBIT (mode),
5798 2 * HOST_BITS_PER_WIDE_INT,
5799 &FCONST1(mode).data.low,
5800 &FCONST1(mode).data.high,
5801 SIGNED_FIXED_POINT_MODE_P (mode));
5802 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5803 FCONST1 (mode), mode);
5806 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5807 mode != VOIDmode;
5808 mode = GET_MODE_WIDER_MODE (mode))
5810 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5813 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5814 mode != VOIDmode;
5815 mode = GET_MODE_WIDER_MODE (mode))
5817 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5820 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5821 mode != VOIDmode;
5822 mode = GET_MODE_WIDER_MODE (mode))
5824 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5825 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5828 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5829 mode != VOIDmode;
5830 mode = GET_MODE_WIDER_MODE (mode))
5832 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5833 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5836 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5837 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5838 const_tiny_rtx[0][i] = const0_rtx;
5840 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5841 if (STORE_FLAG_VALUE == 1)
5842 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5845 /* Produce exact duplicate of insn INSN after AFTER.
5846 Care updating of libcall regions if present. */
5849 emit_copy_of_insn_after (rtx insn, rtx after)
5851 rtx new_rtx, link;
5853 switch (GET_CODE (insn))
5855 case INSN:
5856 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5857 break;
5859 case JUMP_INSN:
5860 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5861 break;
5863 case DEBUG_INSN:
5864 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5865 break;
5867 case CALL_INSN:
5868 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5869 if (CALL_INSN_FUNCTION_USAGE (insn))
5870 CALL_INSN_FUNCTION_USAGE (new_rtx)
5871 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5872 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5873 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5874 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5875 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5876 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5877 break;
5879 default:
5880 gcc_unreachable ();
5883 /* Update LABEL_NUSES. */
5884 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5886 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5888 /* If the old insn is frame related, then so is the new one. This is
5889 primarily needed for IA-64 unwind info which marks epilogue insns,
5890 which may be duplicated by the basic block reordering code. */
5891 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5893 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5894 will make them. REG_LABEL_TARGETs are created there too, but are
5895 supposed to be sticky, so we copy them. */
5896 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5897 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5899 if (GET_CODE (link) == EXPR_LIST)
5900 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5901 copy_insn_1 (XEXP (link, 0)));
5902 else
5903 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5906 INSN_CODE (new_rtx) = INSN_CODE (insn);
5907 return new_rtx;
5910 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5912 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5914 if (hard_reg_clobbers[mode][regno])
5915 return hard_reg_clobbers[mode][regno];
5916 else
5917 return (hard_reg_clobbers[mode][regno] =
5918 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5921 #include "gt-emit-rtl.h"