alias.c (get_alias_set): Remove handling of PLACEHOLDER_EXPR.
[official-gcc.git] / gcc / explow.c
blob1eec943eb26e9e5e8281283622d94897df48ee65
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
41 static rtx break_out_memory_refs (rtx);
42 static void emit_stack_probe (rtx);
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
47 HOST_WIDE_INT
48 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
50 int width = GET_MODE_BITSIZE (mode);
52 /* You want to truncate to a _what_? */
53 if (! SCALAR_INT_MODE_P (mode))
54 abort ();
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
60 /* Sign-extend for the requested mode. */
62 if (width < HOST_BITS_PER_WIDE_INT)
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
71 return c;
74 /* Return an rtx for the sum of X and the integer C.
76 This function should be used via the `plus_constant' macro. */
78 rtx
79 plus_constant_wide (rtx x, HOST_WIDE_INT c)
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
87 if (c == 0)
88 return x;
90 restart:
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
96 switch (code)
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
101 case CONST_DOUBLE:
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
110 add_double (l1, h1, l2, h2, &lv, &hv);
112 return immed_double_const (lv, hv, VOIDmode);
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
129 break;
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
156 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
158 c += INTVAL (XEXP (x, 1));
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
163 x = XEXP (x, 0);
164 goto restart;
166 else if (CONSTANT_P (XEXP (x, 1)))
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
171 else if (find_constant_term_loc (&y))
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
182 break;
184 default:
185 break;
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
205 eliminate_constant_term (rtx x, rtx *constptr)
207 rtx x0, x1;
208 rtx tem;
210 if (GET_CODE (x) != PLUS)
211 return x;
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x, 1)) == CONST_INT
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && GET_CODE (tem) == CONST_INT)
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && GET_CODE (tem) == CONST_INT)
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
235 return x;
238 /* Return an rtx for the size in bytes of the value of EXP. */
241 expr_size (tree exp)
243 tree size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
245 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
248 /* Return a wide integer for the size in bytes of the value of EXP, or -1
249 if the size can vary or is larger than an integer. */
251 HOST_WIDE_INT
252 int_expr_size (tree exp)
254 tree t = lang_hooks.expr_size (exp);
256 if (t == 0
257 || TREE_CODE (t) != INTEGER_CST
258 || TREE_OVERFLOW (t)
259 || TREE_INT_CST_HIGH (t) != 0
260 /* If the result would appear negative, it's too big to represent. */
261 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
262 return -1;
264 return TREE_INT_CST_LOW (t);
267 /* Return a copy of X in which all memory references
268 and all constants that involve symbol refs
269 have been replaced with new temporary registers.
270 Also emit code to load the memory locations and constants
271 into those registers.
273 If X contains no such constants or memory references,
274 X itself (not a copy) is returned.
276 If a constant is found in the address that is not a legitimate constant
277 in an insn, it is left alone in the hope that it might be valid in the
278 address.
280 X may contain no arithmetic except addition, subtraction and multiplication.
281 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
283 static rtx
284 break_out_memory_refs (rtx x)
286 if (GET_CODE (x) == MEM
287 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
288 && GET_MODE (x) != VOIDmode))
289 x = force_reg (GET_MODE (x), x);
290 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
291 || GET_CODE (x) == MULT)
293 rtx op0 = break_out_memory_refs (XEXP (x, 0));
294 rtx op1 = break_out_memory_refs (XEXP (x, 1));
296 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
297 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
300 return x;
303 /* Given X, a memory address in ptr_mode, convert it to an address
304 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
305 the fact that pointers are not allowed to overflow by commuting arithmetic
306 operations over conversions so that address arithmetic insns can be
307 used. */
310 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
311 rtx x)
313 #ifndef POINTERS_EXTEND_UNSIGNED
314 return x;
315 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
316 enum machine_mode from_mode;
317 rtx temp;
318 enum rtx_code code;
320 /* If X already has the right mode, just return it. */
321 if (GET_MODE (x) == to_mode)
322 return x;
324 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
326 /* Here we handle some special cases. If none of them apply, fall through
327 to the default case. */
328 switch (GET_CODE (x))
330 case CONST_INT:
331 case CONST_DOUBLE:
332 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
333 code = TRUNCATE;
334 else if (POINTERS_EXTEND_UNSIGNED < 0)
335 break;
336 else if (POINTERS_EXTEND_UNSIGNED > 0)
337 code = ZERO_EXTEND;
338 else
339 code = SIGN_EXTEND;
340 temp = simplify_unary_operation (code, to_mode, x, from_mode);
341 if (temp)
342 return temp;
343 break;
345 case SUBREG:
346 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
347 && GET_MODE (SUBREG_REG (x)) == to_mode)
348 return SUBREG_REG (x);
349 break;
351 case LABEL_REF:
352 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
353 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
354 return temp;
355 break;
357 case SYMBOL_REF:
358 temp = shallow_copy_rtx (x);
359 PUT_MODE (temp, to_mode);
360 return temp;
361 break;
363 case CONST:
364 return gen_rtx_CONST (to_mode,
365 convert_memory_address (to_mode, XEXP (x, 0)));
366 break;
368 case PLUS:
369 case MULT:
370 /* For addition we can safely permute the conversion and addition
371 operation if one operand is a constant and converting the constant
372 does not change it. We can always safely permute them if we are
373 making the address narrower. */
374 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
375 || (GET_CODE (x) == PLUS
376 && GET_CODE (XEXP (x, 1)) == CONST_INT
377 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
378 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
379 convert_memory_address (to_mode, XEXP (x, 0)),
380 XEXP (x, 1));
381 break;
383 default:
384 break;
387 return convert_modes (to_mode, from_mode,
388 x, POINTERS_EXTEND_UNSIGNED);
389 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
392 /* Given a memory address or facsimile X, construct a new address,
393 currently equivalent, that is stable: future stores won't change it.
395 X must be composed of constants, register and memory references
396 combined with addition, subtraction and multiplication:
397 in other words, just what you can get from expand_expr if sum_ok is 1.
399 Works by making copies of all regs and memory locations used
400 by X and combining them the same way X does.
401 You could also stabilize the reference to this address
402 by copying the address to a register with copy_to_reg;
403 but then you wouldn't get indexed addressing in the reference. */
406 copy_all_regs (rtx x)
408 if (GET_CODE (x) == REG)
410 if (REGNO (x) != FRAME_POINTER_REGNUM
411 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
412 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
413 #endif
415 x = copy_to_reg (x);
417 else if (GET_CODE (x) == MEM)
418 x = copy_to_reg (x);
419 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
420 || GET_CODE (x) == MULT)
422 rtx op0 = copy_all_regs (XEXP (x, 0));
423 rtx op1 = copy_all_regs (XEXP (x, 1));
424 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
425 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
427 return x;
430 /* Return something equivalent to X but valid as a memory address
431 for something of mode MODE. When X is not itself valid, this
432 works by copying X or subexpressions of it into registers. */
435 memory_address (enum machine_mode mode, rtx x)
437 rtx oldx = x;
439 if (GET_CODE (x) == ADDRESSOF)
440 return x;
442 x = convert_memory_address (Pmode, x);
444 /* By passing constant addresses through registers
445 we get a chance to cse them. */
446 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
447 x = force_reg (Pmode, x);
449 /* Accept a QUEUED that refers to a REG
450 even though that isn't a valid address.
451 On attempting to put this in an insn we will call protect_from_queue
452 which will turn it into a REG, which is valid. */
453 else if (GET_CODE (x) == QUEUED
454 && GET_CODE (QUEUED_VAR (x)) == REG)
457 /* We get better cse by rejecting indirect addressing at this stage.
458 Let the combiner create indirect addresses where appropriate.
459 For now, generate the code so that the subexpressions useful to share
460 are visible. But not if cse won't be done! */
461 else
463 if (! cse_not_expected && GET_CODE (x) != REG)
464 x = break_out_memory_refs (x);
466 /* At this point, any valid address is accepted. */
467 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
469 /* If it was valid before but breaking out memory refs invalidated it,
470 use it the old way. */
471 if (memory_address_p (mode, oldx))
472 goto win2;
474 /* Perform machine-dependent transformations on X
475 in certain cases. This is not necessary since the code
476 below can handle all possible cases, but machine-dependent
477 transformations can make better code. */
478 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
480 /* PLUS and MULT can appear in special ways
481 as the result of attempts to make an address usable for indexing.
482 Usually they are dealt with by calling force_operand, below.
483 But a sum containing constant terms is special
484 if removing them makes the sum a valid address:
485 then we generate that address in a register
486 and index off of it. We do this because it often makes
487 shorter code, and because the addresses thus generated
488 in registers often become common subexpressions. */
489 if (GET_CODE (x) == PLUS)
491 rtx constant_term = const0_rtx;
492 rtx y = eliminate_constant_term (x, &constant_term);
493 if (constant_term == const0_rtx
494 || ! memory_address_p (mode, y))
495 x = force_operand (x, NULL_RTX);
496 else
498 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
499 if (! memory_address_p (mode, y))
500 x = force_operand (x, NULL_RTX);
501 else
502 x = y;
506 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
507 x = force_operand (x, NULL_RTX);
509 /* If we have a register that's an invalid address,
510 it must be a hard reg of the wrong class. Copy it to a pseudo. */
511 else if (GET_CODE (x) == REG)
512 x = copy_to_reg (x);
514 /* Last resort: copy the value to a register, since
515 the register is a valid address. */
516 else
517 x = force_reg (Pmode, x);
519 goto done;
521 win2:
522 x = oldx;
523 win:
524 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
525 /* Don't copy an addr via a reg if it is one of our stack slots. */
526 && ! (GET_CODE (x) == PLUS
527 && (XEXP (x, 0) == virtual_stack_vars_rtx
528 || XEXP (x, 0) == virtual_incoming_args_rtx)))
530 if (general_operand (x, Pmode))
531 x = force_reg (Pmode, x);
532 else
533 x = force_operand (x, NULL_RTX);
537 done:
539 /* If we didn't change the address, we are done. Otherwise, mark
540 a reg as a pointer if we have REG or REG + CONST_INT. */
541 if (oldx == x)
542 return x;
543 else if (GET_CODE (x) == REG)
544 mark_reg_pointer (x, BITS_PER_UNIT);
545 else if (GET_CODE (x) == PLUS
546 && GET_CODE (XEXP (x, 0)) == REG
547 && GET_CODE (XEXP (x, 1)) == CONST_INT)
548 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
550 /* OLDX may have been the address on a temporary. Update the address
551 to indicate that X is now used. */
552 update_temp_slot_address (oldx, x);
554 return x;
557 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
560 memory_address_noforce (enum machine_mode mode, rtx x)
562 int ambient_force_addr = flag_force_addr;
563 rtx val;
565 flag_force_addr = 0;
566 val = memory_address (mode, x);
567 flag_force_addr = ambient_force_addr;
568 return val;
571 /* Convert a mem ref into one with a valid memory address.
572 Pass through anything else unchanged. */
575 validize_mem (rtx ref)
577 if (GET_CODE (ref) != MEM)
578 return ref;
579 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
580 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
581 return ref;
583 /* Don't alter REF itself, since that is probably a stack slot. */
584 return replace_equiv_address (ref, XEXP (ref, 0));
587 /* Given REF, either a MEM or a REG, and T, either the type of X or
588 the expression corresponding to REF, set RTX_UNCHANGING_P if
589 appropriate. */
591 void
592 maybe_set_unchanging (rtx ref, tree t)
594 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
595 initialization is only executed once, or whose initializer always
596 has the same value. Currently we simplify this to PARM_DECLs in the
597 first case, and decls with TREE_CONSTANT initializers in the second.
599 We cannot do this for non-static aggregates, because of the double
600 writes that can be generated by store_constructor, depending on the
601 contents of the initializer. Yes, this does eliminate a good fraction
602 of the number of uses of RTX_UNCHANGING_P for a language like Ada.
603 It also eliminates a good quantity of bugs. Let this be incentive to
604 eliminate RTX_UNCHANGING_P entirely in favor of a more reliable
605 solution, perhaps based on alias sets. */
607 if ((TREE_READONLY (t) && DECL_P (t)
608 && (TREE_STATIC (t) || ! AGGREGATE_TYPE_P (TREE_TYPE (t)))
609 && (TREE_CODE (t) == PARM_DECL
610 || (DECL_INITIAL (t) && TREE_CONSTANT (DECL_INITIAL (t)))))
611 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
612 RTX_UNCHANGING_P (ref) = 1;
615 /* Return a modified copy of X with its memory address copied
616 into a temporary register to protect it from side effects.
617 If X is not a MEM, it is returned unchanged (and not copied).
618 Perhaps even if it is a MEM, if there is no need to change it. */
621 stabilize (rtx x)
623 if (GET_CODE (x) != MEM
624 || ! rtx_unstable_p (XEXP (x, 0)))
625 return x;
627 return
628 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
631 /* Copy the value or contents of X to a new temp reg and return that reg. */
634 copy_to_reg (rtx x)
636 rtx temp = gen_reg_rtx (GET_MODE (x));
638 /* If not an operand, must be an address with PLUS and MULT so
639 do the computation. */
640 if (! general_operand (x, VOIDmode))
641 x = force_operand (x, temp);
643 if (x != temp)
644 emit_move_insn (temp, x);
646 return temp;
649 /* Like copy_to_reg but always give the new register mode Pmode
650 in case X is a constant. */
653 copy_addr_to_reg (rtx x)
655 return copy_to_mode_reg (Pmode, x);
658 /* Like copy_to_reg but always give the new register mode MODE
659 in case X is a constant. */
662 copy_to_mode_reg (enum machine_mode mode, rtx x)
664 rtx temp = gen_reg_rtx (mode);
666 /* If not an operand, must be an address with PLUS and MULT so
667 do the computation. */
668 if (! general_operand (x, VOIDmode))
669 x = force_operand (x, temp);
671 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
672 abort ();
673 if (x != temp)
674 emit_move_insn (temp, x);
675 return temp;
678 /* Load X into a register if it is not already one.
679 Use mode MODE for the register.
680 X should be valid for mode MODE, but it may be a constant which
681 is valid for all integer modes; that's why caller must specify MODE.
683 The caller must not alter the value in the register we return,
684 since we mark it as a "constant" register. */
687 force_reg (enum machine_mode mode, rtx x)
689 rtx temp, insn, set;
691 if (GET_CODE (x) == REG)
692 return x;
694 if (general_operand (x, mode))
696 temp = gen_reg_rtx (mode);
697 insn = emit_move_insn (temp, x);
699 else
701 temp = force_operand (x, NULL_RTX);
702 if (GET_CODE (temp) == REG)
703 insn = get_last_insn ();
704 else
706 rtx temp2 = gen_reg_rtx (mode);
707 insn = emit_move_insn (temp2, temp);
708 temp = temp2;
712 /* Let optimizers know that TEMP's value never changes
713 and that X can be substituted for it. Don't get confused
714 if INSN set something else (such as a SUBREG of TEMP). */
715 if (CONSTANT_P (x)
716 && (set = single_set (insn)) != 0
717 && SET_DEST (set) == temp
718 && ! rtx_equal_p (x, SET_SRC (set)))
719 set_unique_reg_note (insn, REG_EQUAL, x);
721 /* Let optimizers know that TEMP is a pointer, and if so, the
722 known alignment of that pointer. */
724 unsigned align = 0;
725 if (GET_CODE (x) == SYMBOL_REF)
727 align = BITS_PER_UNIT;
728 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
729 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
731 else if (GET_CODE (x) == LABEL_REF)
732 align = BITS_PER_UNIT;
733 else if (GET_CODE (x) == CONST
734 && GET_CODE (XEXP (x, 0)) == PLUS
735 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
736 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
738 rtx s = XEXP (XEXP (x, 0), 0);
739 rtx c = XEXP (XEXP (x, 0), 1);
740 unsigned sa, ca;
742 sa = BITS_PER_UNIT;
743 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
744 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
746 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
748 align = MIN (sa, ca);
751 if (align)
752 mark_reg_pointer (temp, align);
755 return temp;
758 /* If X is a memory ref, copy its contents to a new temp reg and return
759 that reg. Otherwise, return X. */
762 force_not_mem (rtx x)
764 rtx temp;
766 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
767 return x;
769 temp = gen_reg_rtx (GET_MODE (x));
771 if (MEM_POINTER (x))
772 REG_POINTER (temp) = 1;
774 emit_move_insn (temp, x);
775 return temp;
778 /* Copy X to TARGET (if it's nonzero and a reg)
779 or to a new temp reg and return that reg.
780 MODE is the mode to use for X in case it is a constant. */
783 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
785 rtx temp;
787 if (target && GET_CODE (target) == REG)
788 temp = target;
789 else
790 temp = gen_reg_rtx (mode);
792 emit_move_insn (temp, x);
793 return temp;
796 /* Return the mode to use to store a scalar of TYPE and MODE.
797 PUNSIGNEDP points to the signedness of the type and may be adjusted
798 to show what signedness to use on extension operations.
800 FOR_CALL is nonzero if this call is promoting args for a call. */
802 enum machine_mode
803 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
804 int for_call ATTRIBUTE_UNUSED)
806 enum tree_code code = TREE_CODE (type);
807 int unsignedp = *punsignedp;
809 #ifdef PROMOTE_FOR_CALL_ONLY
810 if (! for_call)
811 return mode;
812 #endif
814 switch (code)
816 #ifdef PROMOTE_MODE
817 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
818 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
819 PROMOTE_MODE (mode, unsignedp, type);
820 break;
821 #endif
823 #ifdef POINTERS_EXTEND_UNSIGNED
824 case REFERENCE_TYPE:
825 case POINTER_TYPE:
826 mode = Pmode;
827 unsignedp = POINTERS_EXTEND_UNSIGNED;
828 break;
829 #endif
831 default:
832 break;
835 *punsignedp = unsignedp;
836 return mode;
839 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
840 This pops when ADJUST is positive. ADJUST need not be constant. */
842 void
843 adjust_stack (rtx adjust)
845 rtx temp;
846 adjust = protect_from_queue (adjust, 0);
848 if (adjust == const0_rtx)
849 return;
851 /* We expect all variable sized adjustments to be multiple of
852 PREFERRED_STACK_BOUNDARY. */
853 if (GET_CODE (adjust) == CONST_INT)
854 stack_pointer_delta -= INTVAL (adjust);
856 temp = expand_binop (Pmode,
857 #ifdef STACK_GROWS_DOWNWARD
858 add_optab,
859 #else
860 sub_optab,
861 #endif
862 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
863 OPTAB_LIB_WIDEN);
865 if (temp != stack_pointer_rtx)
866 emit_move_insn (stack_pointer_rtx, temp);
869 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
870 This pushes when ADJUST is positive. ADJUST need not be constant. */
872 void
873 anti_adjust_stack (rtx adjust)
875 rtx temp;
876 adjust = protect_from_queue (adjust, 0);
878 if (adjust == const0_rtx)
879 return;
881 /* We expect all variable sized adjustments to be multiple of
882 PREFERRED_STACK_BOUNDARY. */
883 if (GET_CODE (adjust) == CONST_INT)
884 stack_pointer_delta += INTVAL (adjust);
886 temp = expand_binop (Pmode,
887 #ifdef STACK_GROWS_DOWNWARD
888 sub_optab,
889 #else
890 add_optab,
891 #endif
892 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
893 OPTAB_LIB_WIDEN);
895 if (temp != stack_pointer_rtx)
896 emit_move_insn (stack_pointer_rtx, temp);
899 /* Round the size of a block to be pushed up to the boundary required
900 by this machine. SIZE is the desired size, which need not be constant. */
903 round_push (rtx size)
905 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
907 if (align == 1)
908 return size;
910 if (GET_CODE (size) == CONST_INT)
912 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
914 if (INTVAL (size) != new)
915 size = GEN_INT (new);
917 else
919 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
920 but we know it can't. So add ourselves and then do
921 TRUNC_DIV_EXPR. */
922 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
923 NULL_RTX, 1, OPTAB_LIB_WIDEN);
924 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
925 NULL_RTX, 1);
926 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
929 return size;
932 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
933 to a previously-created save area. If no save area has been allocated,
934 this function will allocate one. If a save area is specified, it
935 must be of the proper mode.
937 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
938 are emitted at the current position. */
940 void
941 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
943 rtx sa = *psave;
944 /* The default is that we use a move insn and save in a Pmode object. */
945 rtx (*fcn) (rtx, rtx) = gen_move_insn;
946 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
948 /* See if this machine has anything special to do for this kind of save. */
949 switch (save_level)
951 #ifdef HAVE_save_stack_block
952 case SAVE_BLOCK:
953 if (HAVE_save_stack_block)
954 fcn = gen_save_stack_block;
955 break;
956 #endif
957 #ifdef HAVE_save_stack_function
958 case SAVE_FUNCTION:
959 if (HAVE_save_stack_function)
960 fcn = gen_save_stack_function;
961 break;
962 #endif
963 #ifdef HAVE_save_stack_nonlocal
964 case SAVE_NONLOCAL:
965 if (HAVE_save_stack_nonlocal)
966 fcn = gen_save_stack_nonlocal;
967 break;
968 #endif
969 default:
970 break;
973 /* If there is no save area and we have to allocate one, do so. Otherwise
974 verify the save area is the proper mode. */
976 if (sa == 0)
978 if (mode != VOIDmode)
980 if (save_level == SAVE_NONLOCAL)
981 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
982 else
983 *psave = sa = gen_reg_rtx (mode);
986 else
988 if (mode == VOIDmode || GET_MODE (sa) != mode)
989 abort ();
992 if (after)
994 rtx seq;
996 start_sequence ();
997 /* We must validize inside the sequence, to ensure that any instructions
998 created by the validize call also get moved to the right place. */
999 if (sa != 0)
1000 sa = validize_mem (sa);
1001 emit_insn (fcn (sa, stack_pointer_rtx));
1002 seq = get_insns ();
1003 end_sequence ();
1004 emit_insn_after (seq, after);
1006 else
1008 if (sa != 0)
1009 sa = validize_mem (sa);
1010 emit_insn (fcn (sa, stack_pointer_rtx));
1014 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1015 area made by emit_stack_save. If it is zero, we have nothing to do.
1017 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1018 current position. */
1020 void
1021 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
1023 /* The default is that we use a move insn. */
1024 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1026 /* See if this machine has anything special to do for this kind of save. */
1027 switch (save_level)
1029 #ifdef HAVE_restore_stack_block
1030 case SAVE_BLOCK:
1031 if (HAVE_restore_stack_block)
1032 fcn = gen_restore_stack_block;
1033 break;
1034 #endif
1035 #ifdef HAVE_restore_stack_function
1036 case SAVE_FUNCTION:
1037 if (HAVE_restore_stack_function)
1038 fcn = gen_restore_stack_function;
1039 break;
1040 #endif
1041 #ifdef HAVE_restore_stack_nonlocal
1042 case SAVE_NONLOCAL:
1043 if (HAVE_restore_stack_nonlocal)
1044 fcn = gen_restore_stack_nonlocal;
1045 break;
1046 #endif
1047 default:
1048 break;
1051 if (sa != 0)
1053 sa = validize_mem (sa);
1054 /* These clobbers prevent the scheduler from moving
1055 references to variable arrays below the code
1056 that deletes (pops) the arrays. */
1057 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1058 gen_rtx_MEM (BLKmode,
1059 gen_rtx_SCRATCH (VOIDmode))));
1060 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1061 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1064 if (after)
1066 rtx seq;
1068 start_sequence ();
1069 emit_insn (fcn (stack_pointer_rtx, sa));
1070 seq = get_insns ();
1071 end_sequence ();
1072 emit_insn_after (seq, after);
1074 else
1075 emit_insn (fcn (stack_pointer_rtx, sa));
1078 #ifdef SETJMP_VIA_SAVE_AREA
1079 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1080 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1081 platforms, the dynamic stack space used can corrupt the original
1082 frame, thus causing a crash if a longjmp unwinds to it. */
1084 void
1085 optimize_save_area_alloca (rtx insns)
1087 rtx insn;
1089 for (insn = insns; insn; insn = NEXT_INSN(insn))
1091 rtx note;
1093 if (GET_CODE (insn) != INSN)
1094 continue;
1096 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1098 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1099 continue;
1101 if (!current_function_calls_setjmp)
1103 rtx pat = PATTERN (insn);
1105 /* If we do not see the note in a pattern matching
1106 these precise characteristics, we did something
1107 entirely wrong in allocate_dynamic_stack_space.
1109 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1110 was defined on a machine where stacks grow towards higher
1111 addresses.
1113 Right now only supported port with stack that grow upward
1114 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1115 if (GET_CODE (pat) != SET
1116 || SET_DEST (pat) != stack_pointer_rtx
1117 || GET_CODE (SET_SRC (pat)) != MINUS
1118 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1119 abort ();
1121 /* This will now be transformed into a (set REG REG)
1122 so we can just blow away all the other notes. */
1123 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1124 REG_NOTES (insn) = NULL_RTX;
1126 else
1128 /* setjmp was called, we must remove the REG_SAVE_AREA
1129 note so that later passes do not get confused by its
1130 presence. */
1131 if (note == REG_NOTES (insn))
1133 REG_NOTES (insn) = XEXP (note, 1);
1135 else
1137 rtx srch;
1139 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1140 if (XEXP (srch, 1) == note)
1141 break;
1143 if (srch == NULL_RTX)
1144 abort ();
1146 XEXP (srch, 1) = XEXP (note, 1);
1149 /* Once we've seen the note of interest, we need not look at
1150 the rest of them. */
1151 break;
1155 #endif /* SETJMP_VIA_SAVE_AREA */
1157 /* Return an rtx representing the address of an area of memory dynamically
1158 pushed on the stack. This region of memory is always aligned to
1159 a multiple of BIGGEST_ALIGNMENT.
1161 Any required stack pointer alignment is preserved.
1163 SIZE is an rtx representing the size of the area.
1164 TARGET is a place in which the address can be placed.
1166 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1169 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1171 #ifdef SETJMP_VIA_SAVE_AREA
1172 rtx setjmpless_size = NULL_RTX;
1173 #endif
1175 /* If we're asking for zero bytes, it doesn't matter what we point
1176 to since we can't dereference it. But return a reasonable
1177 address anyway. */
1178 if (size == const0_rtx)
1179 return virtual_stack_dynamic_rtx;
1181 /* Otherwise, show we're calling alloca or equivalent. */
1182 current_function_calls_alloca = 1;
1184 /* Ensure the size is in the proper mode. */
1185 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1186 size = convert_to_mode (Pmode, size, 1);
1188 /* We can't attempt to minimize alignment necessary, because we don't
1189 know the final value of preferred_stack_boundary yet while executing
1190 this code. */
1191 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1193 /* We will need to ensure that the address we return is aligned to
1194 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1195 always know its final value at this point in the compilation (it
1196 might depend on the size of the outgoing parameter lists, for
1197 example), so we must align the value to be returned in that case.
1198 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1199 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1200 We must also do an alignment operation on the returned value if
1201 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1203 If we have to align, we must leave space in SIZE for the hole
1204 that might result from the alignment operation. */
1206 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1207 #define MUST_ALIGN 1
1208 #else
1209 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1210 #endif
1212 if (MUST_ALIGN)
1213 size
1214 = force_operand (plus_constant (size,
1215 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1216 NULL_RTX);
1218 #ifdef SETJMP_VIA_SAVE_AREA
1219 /* If setjmp restores regs from a save area in the stack frame,
1220 avoid clobbering the reg save area. Note that the offset of
1221 virtual_incoming_args_rtx includes the preallocated stack args space.
1222 It would be no problem to clobber that, but it's on the wrong side
1223 of the old save area. */
1225 rtx dynamic_offset
1226 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1227 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1229 if (!current_function_calls_setjmp)
1231 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1233 /* See optimize_save_area_alloca to understand what is being
1234 set up here. */
1236 /* ??? Code below assumes that the save area needs maximal
1237 alignment. This constraint may be too strong. */
1238 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1239 abort ();
1241 if (GET_CODE (size) == CONST_INT)
1243 HOST_WIDE_INT new = INTVAL (size) / align * align;
1245 if (INTVAL (size) != new)
1246 setjmpless_size = GEN_INT (new);
1247 else
1248 setjmpless_size = size;
1250 else
1252 /* Since we know overflow is not possible, we avoid using
1253 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1254 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1255 GEN_INT (align), NULL_RTX, 1);
1256 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1257 GEN_INT (align), NULL_RTX, 1);
1259 /* Our optimization works based upon being able to perform a simple
1260 transformation of this RTL into a (set REG REG) so make sure things
1261 did in fact end up in a REG. */
1262 if (!register_operand (setjmpless_size, Pmode))
1263 setjmpless_size = force_reg (Pmode, setjmpless_size);
1266 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1267 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1269 #endif /* SETJMP_VIA_SAVE_AREA */
1271 /* Round the size to a multiple of the required stack alignment.
1272 Since the stack if presumed to be rounded before this allocation,
1273 this will maintain the required alignment.
1275 If the stack grows downward, we could save an insn by subtracting
1276 SIZE from the stack pointer and then aligning the stack pointer.
1277 The problem with this is that the stack pointer may be unaligned
1278 between the execution of the subtraction and alignment insns and
1279 some machines do not allow this. Even on those that do, some
1280 signal handlers malfunction if a signal should occur between those
1281 insns. Since this is an extremely rare event, we have no reliable
1282 way of knowing which systems have this problem. So we avoid even
1283 momentarily mis-aligning the stack. */
1285 /* If we added a variable amount to SIZE,
1286 we can no longer assume it is aligned. */
1287 #if !defined (SETJMP_VIA_SAVE_AREA)
1288 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1289 #endif
1290 size = round_push (size);
1292 do_pending_stack_adjust ();
1294 /* We ought to be called always on the toplevel and stack ought to be aligned
1295 properly. */
1296 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1297 abort ();
1299 /* If needed, check that we have the required amount of stack. Take into
1300 account what has already been checked. */
1301 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1302 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1304 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1305 if (target == 0 || GET_CODE (target) != REG
1306 || REGNO (target) < FIRST_PSEUDO_REGISTER
1307 || GET_MODE (target) != Pmode)
1308 target = gen_reg_rtx (Pmode);
1310 mark_reg_pointer (target, known_align);
1312 /* Perform the required allocation from the stack. Some systems do
1313 this differently than simply incrementing/decrementing from the
1314 stack pointer, such as acquiring the space by calling malloc(). */
1315 #ifdef HAVE_allocate_stack
1316 if (HAVE_allocate_stack)
1318 enum machine_mode mode = STACK_SIZE_MODE;
1319 insn_operand_predicate_fn pred;
1321 /* We don't have to check against the predicate for operand 0 since
1322 TARGET is known to be a pseudo of the proper mode, which must
1323 be valid for the operand. For operand 1, convert to the
1324 proper mode and validate. */
1325 if (mode == VOIDmode)
1326 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1328 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1329 if (pred && ! ((*pred) (size, mode)))
1330 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1332 emit_insn (gen_allocate_stack (target, size));
1334 else
1335 #endif
1337 #ifndef STACK_GROWS_DOWNWARD
1338 emit_move_insn (target, virtual_stack_dynamic_rtx);
1339 #endif
1341 /* Check stack bounds if necessary. */
1342 if (current_function_limit_stack)
1344 rtx available;
1345 rtx space_available = gen_label_rtx ();
1346 #ifdef STACK_GROWS_DOWNWARD
1347 available = expand_binop (Pmode, sub_optab,
1348 stack_pointer_rtx, stack_limit_rtx,
1349 NULL_RTX, 1, OPTAB_WIDEN);
1350 #else
1351 available = expand_binop (Pmode, sub_optab,
1352 stack_limit_rtx, stack_pointer_rtx,
1353 NULL_RTX, 1, OPTAB_WIDEN);
1354 #endif
1355 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1356 space_available);
1357 #ifdef HAVE_trap
1358 if (HAVE_trap)
1359 emit_insn (gen_trap ());
1360 else
1361 #endif
1362 error ("stack limits not supported on this target");
1363 emit_barrier ();
1364 emit_label (space_available);
1367 anti_adjust_stack (size);
1368 #ifdef SETJMP_VIA_SAVE_AREA
1369 if (setjmpless_size != NULL_RTX)
1371 rtx note_target = get_last_insn ();
1373 REG_NOTES (note_target)
1374 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1375 REG_NOTES (note_target));
1377 #endif /* SETJMP_VIA_SAVE_AREA */
1379 #ifdef STACK_GROWS_DOWNWARD
1380 emit_move_insn (target, virtual_stack_dynamic_rtx);
1381 #endif
1384 if (MUST_ALIGN)
1386 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1387 but we know it can't. So add ourselves and then do
1388 TRUNC_DIV_EXPR. */
1389 target = expand_binop (Pmode, add_optab, target,
1390 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1391 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1392 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1393 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1394 NULL_RTX, 1);
1395 target = expand_mult (Pmode, target,
1396 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1397 NULL_RTX, 1);
1400 /* Record the new stack level for nonlocal gotos. */
1401 if (nonlocal_goto_handler_slots != 0)
1402 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1404 return target;
1407 /* A front end may want to override GCC's stack checking by providing a
1408 run-time routine to call to check the stack, so provide a mechanism for
1409 calling that routine. */
1411 static GTY(()) rtx stack_check_libfunc;
1413 void
1414 set_stack_check_libfunc (rtx libfunc)
1416 stack_check_libfunc = libfunc;
1419 /* Emit one stack probe at ADDRESS, an address within the stack. */
1421 static void
1422 emit_stack_probe (rtx address)
1424 rtx memref = gen_rtx_MEM (word_mode, address);
1426 MEM_VOLATILE_P (memref) = 1;
1428 if (STACK_CHECK_PROBE_LOAD)
1429 emit_move_insn (gen_reg_rtx (word_mode), memref);
1430 else
1431 emit_move_insn (memref, const0_rtx);
1434 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1435 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1436 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1437 subtract from the stack. If SIZE is constant, this is done
1438 with a fixed number of probes. Otherwise, we must make a loop. */
1440 #ifdef STACK_GROWS_DOWNWARD
1441 #define STACK_GROW_OP MINUS
1442 #else
1443 #define STACK_GROW_OP PLUS
1444 #endif
1446 void
1447 probe_stack_range (HOST_WIDE_INT first, rtx size)
1449 /* First ensure SIZE is Pmode. */
1450 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1451 size = convert_to_mode (Pmode, size, 1);
1453 /* Next see if the front end has set up a function for us to call to
1454 check the stack. */
1455 if (stack_check_libfunc != 0)
1457 rtx addr = memory_address (QImode,
1458 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1459 stack_pointer_rtx,
1460 plus_constant (size, first)));
1462 addr = convert_memory_address (ptr_mode, addr);
1463 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1464 ptr_mode);
1467 /* Next see if we have an insn to check the stack. Use it if so. */
1468 #ifdef HAVE_check_stack
1469 else if (HAVE_check_stack)
1471 insn_operand_predicate_fn pred;
1472 rtx last_addr
1473 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1474 stack_pointer_rtx,
1475 plus_constant (size, first)),
1476 NULL_RTX);
1478 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1479 if (pred && ! ((*pred) (last_addr, Pmode)))
1480 last_addr = copy_to_mode_reg (Pmode, last_addr);
1482 emit_insn (gen_check_stack (last_addr));
1484 #endif
1486 /* If we have to generate explicit probes, see if we have a constant
1487 small number of them to generate. If so, that's the easy case. */
1488 else if (GET_CODE (size) == CONST_INT
1489 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1491 HOST_WIDE_INT offset;
1493 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1494 for values of N from 1 until it exceeds LAST. If only one
1495 probe is needed, this will not generate any code. Then probe
1496 at LAST. */
1497 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1498 offset < INTVAL (size);
1499 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1500 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1501 stack_pointer_rtx,
1502 GEN_INT (offset)));
1504 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1505 stack_pointer_rtx,
1506 plus_constant (size, first)));
1509 /* In the variable case, do the same as above, but in a loop. We emit loop
1510 notes so that loop optimization can be done. */
1511 else
1513 rtx test_addr
1514 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1515 stack_pointer_rtx,
1516 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1517 NULL_RTX);
1518 rtx last_addr
1519 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1520 stack_pointer_rtx,
1521 plus_constant (size, first)),
1522 NULL_RTX);
1523 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1524 rtx loop_lab = gen_label_rtx ();
1525 rtx test_lab = gen_label_rtx ();
1526 rtx end_lab = gen_label_rtx ();
1527 rtx temp;
1529 if (GET_CODE (test_addr) != REG
1530 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1531 test_addr = force_reg (Pmode, test_addr);
1533 emit_note (NOTE_INSN_LOOP_BEG);
1534 emit_jump (test_lab);
1536 emit_label (loop_lab);
1537 emit_stack_probe (test_addr);
1539 emit_note (NOTE_INSN_LOOP_CONT);
1541 #ifdef STACK_GROWS_DOWNWARD
1542 #define CMP_OPCODE GTU
1543 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1544 1, OPTAB_WIDEN);
1545 #else
1546 #define CMP_OPCODE LTU
1547 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1548 1, OPTAB_WIDEN);
1549 #endif
1551 if (temp != test_addr)
1552 abort ();
1554 emit_label (test_lab);
1555 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1556 NULL_RTX, Pmode, 1, loop_lab);
1557 emit_jump (end_lab);
1558 emit_note (NOTE_INSN_LOOP_END);
1559 emit_label (end_lab);
1561 emit_stack_probe (last_addr);
1565 /* Return an rtx representing the register or memory location
1566 in which a scalar value of data type VALTYPE
1567 was returned by a function call to function FUNC.
1568 FUNC is a FUNCTION_DECL node if the precise function is known,
1569 otherwise 0.
1570 OUTGOING is 1 if on a machine with register windows this function
1571 should return the register in which the function will put its result
1572 and 0 otherwise. */
1575 hard_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
1576 int outgoing ATTRIBUTE_UNUSED)
1578 rtx val;
1580 #ifdef FUNCTION_OUTGOING_VALUE
1581 if (outgoing)
1582 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1583 else
1584 #endif
1585 val = FUNCTION_VALUE (valtype, func);
1587 if (GET_CODE (val) == REG
1588 && GET_MODE (val) == BLKmode)
1590 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1591 enum machine_mode tmpmode;
1593 /* int_size_in_bytes can return -1. We don't need a check here
1594 since the value of bytes will be large enough that no mode
1595 will match and we will abort later in this function. */
1597 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1598 tmpmode != VOIDmode;
1599 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1601 /* Have we found a large enough mode? */
1602 if (GET_MODE_SIZE (tmpmode) >= bytes)
1603 break;
1606 /* No suitable mode found. */
1607 if (tmpmode == VOIDmode)
1608 abort ();
1610 PUT_MODE (val, tmpmode);
1612 return val;
1615 /* Return an rtx representing the register or memory location
1616 in which a scalar value of mode MODE was returned by a library call. */
1619 hard_libcall_value (enum machine_mode mode)
1621 return LIBCALL_VALUE (mode);
1624 /* Look up the tree code for a given rtx code
1625 to provide the arithmetic operation for REAL_ARITHMETIC.
1626 The function returns an int because the caller may not know
1627 what `enum tree_code' means. */
1630 rtx_to_tree_code (enum rtx_code code)
1632 enum tree_code tcode;
1634 switch (code)
1636 case PLUS:
1637 tcode = PLUS_EXPR;
1638 break;
1639 case MINUS:
1640 tcode = MINUS_EXPR;
1641 break;
1642 case MULT:
1643 tcode = MULT_EXPR;
1644 break;
1645 case DIV:
1646 tcode = RDIV_EXPR;
1647 break;
1648 case SMIN:
1649 tcode = MIN_EXPR;
1650 break;
1651 case SMAX:
1652 tcode = MAX_EXPR;
1653 break;
1654 default:
1655 tcode = LAST_AND_UNUSED_TREE_CODE;
1656 break;
1658 return ((int) tcode);
1661 #include "gt-explow.h"