Daily bump.
[official-gcc.git] / gcc / var-tracking.c
blobde996acd963050f52bc2b70b40bcf9fb018ae5a4
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < set < clobber < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "hard-reg-set.h"
95 #include "basic-block.h"
96 #include "flags.h"
97 #include "output.h"
98 #include "insn-config.h"
99 #include "reload.h"
100 #include "sbitmap.h"
101 #include "alloc-pool.h"
102 #include "fibheap.h"
103 #include "hashtab.h"
104 #include "regs.h"
105 #include "expr.h"
106 #include "timevar.h"
107 #include "tree-pass.h"
109 /* Type of micro operation. */
110 enum micro_operation_type
112 MO_USE, /* Use location (REG or MEM). */
113 MO_USE_NO_VAR,/* Use location which is not associated with a variable
114 or the variable is not trackable. */
115 MO_SET, /* Set location. */
116 MO_COPY, /* Copy the same portion of a variable from one
117 location to another. */
118 MO_CLOBBER, /* Clobber location. */
119 MO_CALL, /* Call insn. */
120 MO_ADJUST /* Adjust stack pointer. */
123 /* Where shall the note be emitted? BEFORE or AFTER the instruction. */
124 enum emit_note_where
126 EMIT_NOTE_BEFORE_INSN,
127 EMIT_NOTE_AFTER_INSN
130 /* Structure holding information about micro operation. */
131 typedef struct micro_operation_def
133 /* Type of micro operation. */
134 enum micro_operation_type type;
136 union {
137 /* Location. For MO_SET and MO_COPY, this is the SET that performs
138 the assignment, if known, otherwise it is the target of the
139 assignment. */
140 rtx loc;
142 /* Stack adjustment. */
143 HOST_WIDE_INT adjust;
144 } u;
146 /* The instruction which the micro operation is in, for MO_USE,
147 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
148 instruction or note in the original flow (before any var-tracking
149 notes are inserted, to simplify emission of notes), for MO_SET
150 and MO_CLOBBER. */
151 rtx insn;
152 } micro_operation;
154 /* Structure for passing some other parameters to function
155 emit_note_insn_var_location. */
156 typedef struct emit_note_data_def
158 /* The instruction which the note will be emitted before/after. */
159 rtx insn;
161 /* Where the note will be emitted (before/after insn)? */
162 enum emit_note_where where;
163 } emit_note_data;
165 /* Description of location of a part of a variable. The content of a physical
166 register is described by a chain of these structures.
167 The chains are pretty short (usually 1 or 2 elements) and thus
168 chain is the best data structure. */
169 typedef struct attrs_def
171 /* Pointer to next member of the list. */
172 struct attrs_def *next;
174 /* The rtx of register. */
175 rtx loc;
177 /* The declaration corresponding to LOC. */
178 tree decl;
180 /* Offset from start of DECL. */
181 HOST_WIDE_INT offset;
182 } *attrs;
184 /* Structure holding the IN or OUT set for a basic block. */
185 typedef struct dataflow_set_def
187 /* Adjustment of stack offset. */
188 HOST_WIDE_INT stack_adjust;
190 /* Attributes for registers (lists of attrs). */
191 attrs regs[FIRST_PSEUDO_REGISTER];
193 /* Variable locations. */
194 htab_t vars;
195 } dataflow_set;
197 /* The structure (one for each basic block) containing the information
198 needed for variable tracking. */
199 typedef struct variable_tracking_info_def
201 /* Number of micro operations stored in the MOS array. */
202 int n_mos;
204 /* The array of micro operations. */
205 micro_operation *mos;
207 /* The IN and OUT set for dataflow analysis. */
208 dataflow_set in;
209 dataflow_set out;
211 /* Has the block been visited in DFS? */
212 bool visited;
213 } *variable_tracking_info;
215 /* Structure for chaining the locations. */
216 typedef struct location_chain_def
218 /* Next element in the chain. */
219 struct location_chain_def *next;
221 /* The location (REG or MEM). */
222 rtx loc;
224 /* The "value" stored in this location. */
225 rtx set_src;
227 /* Initialized? */
228 enum var_init_status init;
229 } *location_chain;
231 /* Structure describing one part of variable. */
232 typedef struct variable_part_def
234 /* Chain of locations of the part. */
235 location_chain loc_chain;
237 /* Location which was last emitted to location list. */
238 rtx cur_loc;
240 /* The offset in the variable. */
241 HOST_WIDE_INT offset;
242 } variable_part;
244 /* Maximum number of location parts. */
245 #define MAX_VAR_PARTS 16
247 /* Structure describing where the variable is located. */
248 typedef struct variable_def
250 /* The declaration of the variable. */
251 tree decl;
253 /* Reference count. */
254 int refcount;
256 /* Number of variable parts. */
257 int n_var_parts;
259 /* The variable parts. */
260 variable_part var_part[MAX_VAR_PARTS];
261 } *variable;
262 typedef const struct variable_def *const_variable;
264 /* Hash function for DECL for VARIABLE_HTAB. */
265 #define VARIABLE_HASH_VAL(decl) (DECL_UID (decl))
267 /* Pointer to the BB's information specific to variable tracking pass. */
268 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
270 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
271 #define INT_MEM_OFFSET(mem) (MEM_OFFSET (mem) ? INTVAL (MEM_OFFSET (mem)) : 0)
273 /* Alloc pool for struct attrs_def. */
274 static alloc_pool attrs_pool;
276 /* Alloc pool for struct variable_def. */
277 static alloc_pool var_pool;
279 /* Alloc pool for struct location_chain_def. */
280 static alloc_pool loc_chain_pool;
282 /* Changed variables, notes will be emitted for them. */
283 static htab_t changed_variables;
285 /* Shall notes be emitted? */
286 static bool emit_notes;
288 /* Local function prototypes. */
289 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
290 HOST_WIDE_INT *);
291 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
292 HOST_WIDE_INT *);
293 static void bb_stack_adjust_offset (basic_block);
294 static bool vt_stack_adjustments (void);
295 static rtx adjust_stack_reference (rtx, HOST_WIDE_INT);
296 static hashval_t variable_htab_hash (const void *);
297 static int variable_htab_eq (const void *, const void *);
298 static void variable_htab_free (void *);
300 static void init_attrs_list_set (attrs *);
301 static void attrs_list_clear (attrs *);
302 static attrs attrs_list_member (attrs, tree, HOST_WIDE_INT);
303 static void attrs_list_insert (attrs *, tree, HOST_WIDE_INT, rtx);
304 static void attrs_list_copy (attrs *, attrs);
305 static void attrs_list_union (attrs *, attrs);
307 static void vars_clear (htab_t);
308 static variable unshare_variable (dataflow_set *set, variable var,
309 enum var_init_status);
310 static int vars_copy_1 (void **, void *);
311 static void vars_copy (htab_t, htab_t);
312 static tree var_debug_decl (tree);
313 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
314 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
315 enum var_init_status, rtx);
316 static void var_reg_delete (dataflow_set *, rtx, bool);
317 static void var_regno_delete (dataflow_set *, int);
318 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
319 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
320 enum var_init_status, rtx);
321 static void var_mem_delete (dataflow_set *, rtx, bool);
323 static void dataflow_set_init (dataflow_set *, int);
324 static void dataflow_set_clear (dataflow_set *);
325 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
326 static int variable_union_info_cmp_pos (const void *, const void *);
327 static int variable_union (void **, void *);
328 static void dataflow_set_union (dataflow_set *, dataflow_set *);
329 static bool variable_part_different_p (variable_part *, variable_part *);
330 static bool variable_different_p (variable, variable, bool);
331 static int dataflow_set_different_1 (void **, void *);
332 static int dataflow_set_different_2 (void **, void *);
333 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
334 static void dataflow_set_destroy (dataflow_set *);
336 static bool contains_symbol_ref (rtx);
337 static bool track_expr_p (tree);
338 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
339 static int count_uses (rtx *, void *);
340 static void count_uses_1 (rtx *, void *);
341 static void count_stores (rtx, const_rtx, void *);
342 static int add_uses (rtx *, void *);
343 static void add_uses_1 (rtx *, void *);
344 static void add_stores (rtx, const_rtx, void *);
345 static bool compute_bb_dataflow (basic_block);
346 static void vt_find_locations (void);
348 static void dump_attrs_list (attrs);
349 static int dump_variable (void **, void *);
350 static void dump_vars (htab_t);
351 static void dump_dataflow_set (dataflow_set *);
352 static void dump_dataflow_sets (void);
354 static void variable_was_changed (variable, htab_t);
355 static void set_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT,
356 enum var_init_status, rtx);
357 static void clobber_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT,
358 rtx);
359 static void delete_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT);
360 static int emit_note_insn_var_location (void **, void *);
361 static void emit_notes_for_changes (rtx, enum emit_note_where);
362 static int emit_notes_for_differences_1 (void **, void *);
363 static int emit_notes_for_differences_2 (void **, void *);
364 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
365 static void emit_notes_in_bb (basic_block);
366 static void vt_emit_notes (void);
368 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
369 static void vt_add_function_parameters (void);
370 static void vt_initialize (void);
371 static void vt_finalize (void);
373 /* Given a SET, calculate the amount of stack adjustment it contains
374 PRE- and POST-modifying stack pointer.
375 This function is similar to stack_adjust_offset. */
377 static void
378 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
379 HOST_WIDE_INT *post)
381 rtx src = SET_SRC (pattern);
382 rtx dest = SET_DEST (pattern);
383 enum rtx_code code;
385 if (dest == stack_pointer_rtx)
387 /* (set (reg sp) (plus (reg sp) (const_int))) */
388 code = GET_CODE (src);
389 if (! (code == PLUS || code == MINUS)
390 || XEXP (src, 0) != stack_pointer_rtx
391 || GET_CODE (XEXP (src, 1)) != CONST_INT)
392 return;
394 if (code == MINUS)
395 *post += INTVAL (XEXP (src, 1));
396 else
397 *post -= INTVAL (XEXP (src, 1));
399 else if (MEM_P (dest))
401 /* (set (mem (pre_dec (reg sp))) (foo)) */
402 src = XEXP (dest, 0);
403 code = GET_CODE (src);
405 switch (code)
407 case PRE_MODIFY:
408 case POST_MODIFY:
409 if (XEXP (src, 0) == stack_pointer_rtx)
411 rtx val = XEXP (XEXP (src, 1), 1);
412 /* We handle only adjustments by constant amount. */
413 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
414 GET_CODE (val) == CONST_INT);
416 if (code == PRE_MODIFY)
417 *pre -= INTVAL (val);
418 else
419 *post -= INTVAL (val);
420 break;
422 return;
424 case PRE_DEC:
425 if (XEXP (src, 0) == stack_pointer_rtx)
427 *pre += GET_MODE_SIZE (GET_MODE (dest));
428 break;
430 return;
432 case POST_DEC:
433 if (XEXP (src, 0) == stack_pointer_rtx)
435 *post += GET_MODE_SIZE (GET_MODE (dest));
436 break;
438 return;
440 case PRE_INC:
441 if (XEXP (src, 0) == stack_pointer_rtx)
443 *pre -= GET_MODE_SIZE (GET_MODE (dest));
444 break;
446 return;
448 case POST_INC:
449 if (XEXP (src, 0) == stack_pointer_rtx)
451 *post -= GET_MODE_SIZE (GET_MODE (dest));
452 break;
454 return;
456 default:
457 return;
462 /* Given an INSN, calculate the amount of stack adjustment it contains
463 PRE- and POST-modifying stack pointer. */
465 static void
466 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
467 HOST_WIDE_INT *post)
469 *pre = 0;
470 *post = 0;
472 if (GET_CODE (PATTERN (insn)) == SET)
473 stack_adjust_offset_pre_post (PATTERN (insn), pre, post);
474 else if (GET_CODE (PATTERN (insn)) == PARALLEL
475 || GET_CODE (PATTERN (insn)) == SEQUENCE)
477 int i;
479 /* There may be stack adjustments inside compound insns. Search
480 for them. */
481 for ( i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
482 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
483 stack_adjust_offset_pre_post (XVECEXP (PATTERN (insn), 0, i),
484 pre, post);
488 /* Compute stack adjustment in basic block BB. */
490 static void
491 bb_stack_adjust_offset (basic_block bb)
493 HOST_WIDE_INT offset;
494 int i;
496 offset = VTI (bb)->in.stack_adjust;
497 for (i = 0; i < VTI (bb)->n_mos; i++)
499 if (VTI (bb)->mos[i].type == MO_ADJUST)
500 offset += VTI (bb)->mos[i].u.adjust;
501 else if (VTI (bb)->mos[i].type != MO_CALL)
503 if (MEM_P (VTI (bb)->mos[i].u.loc))
505 VTI (bb)->mos[i].u.loc
506 = adjust_stack_reference (VTI (bb)->mos[i].u.loc, -offset);
510 VTI (bb)->out.stack_adjust = offset;
513 /* Compute stack adjustments for all blocks by traversing DFS tree.
514 Return true when the adjustments on all incoming edges are consistent.
515 Heavily borrowed from pre_and_rev_post_order_compute. */
517 static bool
518 vt_stack_adjustments (void)
520 edge_iterator *stack;
521 int sp;
523 /* Initialize entry block. */
524 VTI (ENTRY_BLOCK_PTR)->visited = true;
525 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = INCOMING_FRAME_SP_OFFSET;
527 /* Allocate stack for back-tracking up CFG. */
528 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
529 sp = 0;
531 /* Push the first edge on to the stack. */
532 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
534 while (sp)
536 edge_iterator ei;
537 basic_block src;
538 basic_block dest;
540 /* Look at the edge on the top of the stack. */
541 ei = stack[sp - 1];
542 src = ei_edge (ei)->src;
543 dest = ei_edge (ei)->dest;
545 /* Check if the edge destination has been visited yet. */
546 if (!VTI (dest)->visited)
548 VTI (dest)->visited = true;
549 VTI (dest)->in.stack_adjust = VTI (src)->out.stack_adjust;
550 bb_stack_adjust_offset (dest);
552 if (EDGE_COUNT (dest->succs) > 0)
553 /* Since the DEST node has been visited for the first
554 time, check its successors. */
555 stack[sp++] = ei_start (dest->succs);
557 else
559 /* Check whether the adjustments on the edges are the same. */
560 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
562 free (stack);
563 return false;
566 if (! ei_one_before_end_p (ei))
567 /* Go to the next edge. */
568 ei_next (&stack[sp - 1]);
569 else
570 /* Return to previous level if there are no more edges. */
571 sp--;
575 free (stack);
576 return true;
579 /* Adjust stack reference MEM by ADJUSTMENT bytes and make it relative
580 to the argument pointer. Return the new rtx. */
582 static rtx
583 adjust_stack_reference (rtx mem, HOST_WIDE_INT adjustment)
585 rtx addr, cfa, tmp;
587 #ifdef FRAME_POINTER_CFA_OFFSET
588 adjustment -= FRAME_POINTER_CFA_OFFSET (current_function_decl);
589 cfa = plus_constant (frame_pointer_rtx, adjustment);
590 #else
591 adjustment -= ARG_POINTER_CFA_OFFSET (current_function_decl);
592 cfa = plus_constant (arg_pointer_rtx, adjustment);
593 #endif
595 addr = replace_rtx (copy_rtx (XEXP (mem, 0)), stack_pointer_rtx, cfa);
596 tmp = simplify_rtx (addr);
597 if (tmp)
598 addr = tmp;
600 return replace_equiv_address_nv (mem, addr);
603 /* The hash function for variable_htab, computes the hash value
604 from the declaration of variable X. */
606 static hashval_t
607 variable_htab_hash (const void *x)
609 const_variable const v = (const_variable) x;
611 return (VARIABLE_HASH_VAL (v->decl));
614 /* Compare the declaration of variable X with declaration Y. */
616 static int
617 variable_htab_eq (const void *x, const void *y)
619 const_variable const v = (const_variable) x;
620 const_tree const decl = (const_tree) y;
622 return (VARIABLE_HASH_VAL (v->decl) == VARIABLE_HASH_VAL (decl));
625 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
627 static void
628 variable_htab_free (void *elem)
630 int i;
631 variable var = (variable) elem;
632 location_chain node, next;
634 gcc_assert (var->refcount > 0);
636 var->refcount--;
637 if (var->refcount > 0)
638 return;
640 for (i = 0; i < var->n_var_parts; i++)
642 for (node = var->var_part[i].loc_chain; node; node = next)
644 next = node->next;
645 pool_free (loc_chain_pool, node);
647 var->var_part[i].loc_chain = NULL;
649 pool_free (var_pool, var);
652 /* Initialize the set (array) SET of attrs to empty lists. */
654 static void
655 init_attrs_list_set (attrs *set)
657 int i;
659 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
660 set[i] = NULL;
663 /* Make the list *LISTP empty. */
665 static void
666 attrs_list_clear (attrs *listp)
668 attrs list, next;
670 for (list = *listp; list; list = next)
672 next = list->next;
673 pool_free (attrs_pool, list);
675 *listp = NULL;
678 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
680 static attrs
681 attrs_list_member (attrs list, tree decl, HOST_WIDE_INT offset)
683 for (; list; list = list->next)
684 if (list->decl == decl && list->offset == offset)
685 return list;
686 return NULL;
689 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
691 static void
692 attrs_list_insert (attrs *listp, tree decl, HOST_WIDE_INT offset, rtx loc)
694 attrs list;
696 list = pool_alloc (attrs_pool);
697 list->loc = loc;
698 list->decl = decl;
699 list->offset = offset;
700 list->next = *listp;
701 *listp = list;
704 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
706 static void
707 attrs_list_copy (attrs *dstp, attrs src)
709 attrs n;
711 attrs_list_clear (dstp);
712 for (; src; src = src->next)
714 n = pool_alloc (attrs_pool);
715 n->loc = src->loc;
716 n->decl = src->decl;
717 n->offset = src->offset;
718 n->next = *dstp;
719 *dstp = n;
723 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
725 static void
726 attrs_list_union (attrs *dstp, attrs src)
728 for (; src; src = src->next)
730 if (!attrs_list_member (*dstp, src->decl, src->offset))
731 attrs_list_insert (dstp, src->decl, src->offset, src->loc);
735 /* Delete all variables from hash table VARS. */
737 static void
738 vars_clear (htab_t vars)
740 htab_empty (vars);
743 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
745 static variable
746 unshare_variable (dataflow_set *set, variable var,
747 enum var_init_status initialized)
749 void **slot;
750 variable new_var;
751 int i;
753 new_var = pool_alloc (var_pool);
754 new_var->decl = var->decl;
755 new_var->refcount = 1;
756 var->refcount--;
757 new_var->n_var_parts = var->n_var_parts;
759 for (i = 0; i < var->n_var_parts; i++)
761 location_chain node;
762 location_chain *nextp;
764 new_var->var_part[i].offset = var->var_part[i].offset;
765 nextp = &new_var->var_part[i].loc_chain;
766 for (node = var->var_part[i].loc_chain; node; node = node->next)
768 location_chain new_lc;
770 new_lc = pool_alloc (loc_chain_pool);
771 new_lc->next = NULL;
772 if (node->init > initialized)
773 new_lc->init = node->init;
774 else
775 new_lc->init = initialized;
776 if (node->set_src && !(MEM_P (node->set_src)))
777 new_lc->set_src = node->set_src;
778 else
779 new_lc->set_src = NULL;
780 new_lc->loc = node->loc;
782 *nextp = new_lc;
783 nextp = &new_lc->next;
786 /* We are at the basic block boundary when copying variable description
787 so set the CUR_LOC to be the first element of the chain. */
788 if (new_var->var_part[i].loc_chain)
789 new_var->var_part[i].cur_loc = new_var->var_part[i].loc_chain->loc;
790 else
791 new_var->var_part[i].cur_loc = NULL;
794 slot = htab_find_slot_with_hash (set->vars, new_var->decl,
795 VARIABLE_HASH_VAL (new_var->decl),
796 INSERT);
797 *slot = new_var;
798 return new_var;
801 /* Add a variable from *SLOT to hash table DATA and increase its reference
802 count. */
804 static int
805 vars_copy_1 (void **slot, void *data)
807 htab_t dst = (htab_t) data;
808 variable src, *dstp;
810 src = *(variable *) slot;
811 src->refcount++;
813 dstp = (variable *) htab_find_slot_with_hash (dst, src->decl,
814 VARIABLE_HASH_VAL (src->decl),
815 INSERT);
816 *dstp = src;
818 /* Continue traversing the hash table. */
819 return 1;
822 /* Copy all variables from hash table SRC to hash table DST. */
824 static void
825 vars_copy (htab_t dst, htab_t src)
827 vars_clear (dst);
828 htab_traverse (src, vars_copy_1, dst);
831 /* Map a decl to its main debug decl. */
833 static inline tree
834 var_debug_decl (tree decl)
836 if (decl && DECL_P (decl)
837 && DECL_DEBUG_EXPR_IS_FROM (decl) && DECL_DEBUG_EXPR (decl)
838 && DECL_P (DECL_DEBUG_EXPR (decl)))
839 decl = DECL_DEBUG_EXPR (decl);
841 return decl;
844 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
846 static void
847 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
848 rtx set_src)
850 tree decl = REG_EXPR (loc);
851 HOST_WIDE_INT offset = REG_OFFSET (loc);
852 attrs node;
854 decl = var_debug_decl (decl);
856 for (node = set->regs[REGNO (loc)]; node; node = node->next)
857 if (node->decl == decl && node->offset == offset)
858 break;
859 if (!node)
860 attrs_list_insert (&set->regs[REGNO (loc)], decl, offset, loc);
861 set_variable_part (set, loc, decl, offset, initialized, set_src);
864 static int
865 get_init_value (dataflow_set *set, rtx loc, tree decl)
867 void **slot;
868 variable var;
869 int i;
870 int ret_val = VAR_INIT_STATUS_UNKNOWN;
872 if (! flag_var_tracking_uninit)
873 return VAR_INIT_STATUS_INITIALIZED;
875 slot = htab_find_slot_with_hash (set->vars, decl, VARIABLE_HASH_VAL (decl),
876 NO_INSERT);
877 if (slot)
879 var = * (variable *) slot;
880 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
882 location_chain nextp;
883 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
884 if (rtx_equal_p (nextp->loc, loc))
886 ret_val = nextp->init;
887 break;
892 return ret_val;
895 /* Delete current content of register LOC in dataflow set SET and set
896 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
897 MODIFY is true, any other live copies of the same variable part are
898 also deleted from the dataflow set, otherwise the variable part is
899 assumed to be copied from another location holding the same
900 part. */
902 static void
903 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
904 enum var_init_status initialized, rtx set_src)
906 tree decl = REG_EXPR (loc);
907 HOST_WIDE_INT offset = REG_OFFSET (loc);
908 attrs node, next;
909 attrs *nextp;
911 decl = var_debug_decl (decl);
913 if (initialized == VAR_INIT_STATUS_UNKNOWN)
914 initialized = get_init_value (set, loc, decl);
916 nextp = &set->regs[REGNO (loc)];
917 for (node = *nextp; node; node = next)
919 next = node->next;
920 if (node->decl != decl || node->offset != offset)
922 delete_variable_part (set, node->loc, node->decl, node->offset);
923 pool_free (attrs_pool, node);
924 *nextp = next;
926 else
928 node->loc = loc;
929 nextp = &node->next;
932 if (modify)
933 clobber_variable_part (set, loc, decl, offset, set_src);
934 var_reg_set (set, loc, initialized, set_src);
937 /* Delete current content of register LOC in dataflow set SET. If
938 CLOBBER is true, also delete any other live copies of the same
939 variable part. */
941 static void
942 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
944 attrs *reg = &set->regs[REGNO (loc)];
945 attrs node, next;
947 if (clobber)
949 tree decl = REG_EXPR (loc);
950 HOST_WIDE_INT offset = REG_OFFSET (loc);
952 decl = var_debug_decl (decl);
954 clobber_variable_part (set, NULL, decl, offset, NULL);
957 for (node = *reg; node; node = next)
959 next = node->next;
960 delete_variable_part (set, node->loc, node->decl, node->offset);
961 pool_free (attrs_pool, node);
963 *reg = NULL;
966 /* Delete content of register with number REGNO in dataflow set SET. */
968 static void
969 var_regno_delete (dataflow_set *set, int regno)
971 attrs *reg = &set->regs[regno];
972 attrs node, next;
974 for (node = *reg; node; node = next)
976 next = node->next;
977 delete_variable_part (set, node->loc, node->decl, node->offset);
978 pool_free (attrs_pool, node);
980 *reg = NULL;
983 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
984 SET to LOC.
985 Adjust the address first if it is stack pointer based. */
987 static void
988 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
989 rtx set_src)
991 tree decl = MEM_EXPR (loc);
992 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
994 decl = var_debug_decl (decl);
996 set_variable_part (set, loc, decl, offset, initialized, set_src);
999 /* Delete and set the location part of variable MEM_EXPR (LOC) in
1000 dataflow set SET to LOC. If MODIFY is true, any other live copies
1001 of the same variable part are also deleted from the dataflow set,
1002 otherwise the variable part is assumed to be copied from another
1003 location holding the same part.
1004 Adjust the address first if it is stack pointer based. */
1006 static void
1007 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1008 enum var_init_status initialized, rtx set_src)
1010 tree decl = MEM_EXPR (loc);
1011 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1013 decl = var_debug_decl (decl);
1015 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1016 initialized = get_init_value (set, loc, decl);
1018 if (modify)
1019 clobber_variable_part (set, NULL, decl, offset, set_src);
1020 var_mem_set (set, loc, initialized, set_src);
1023 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
1024 true, also delete any other live copies of the same variable part.
1025 Adjust the address first if it is stack pointer based. */
1027 static void
1028 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
1030 tree decl = MEM_EXPR (loc);
1031 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1033 decl = var_debug_decl (decl);
1034 if (clobber)
1035 clobber_variable_part (set, NULL, decl, offset, NULL);
1036 delete_variable_part (set, loc, decl, offset);
1039 /* Initialize dataflow set SET to be empty.
1040 VARS_SIZE is the initial size of hash table VARS. */
1042 static void
1043 dataflow_set_init (dataflow_set *set, int vars_size)
1045 init_attrs_list_set (set->regs);
1046 set->vars = htab_create (vars_size, variable_htab_hash, variable_htab_eq,
1047 variable_htab_free);
1048 set->stack_adjust = 0;
1051 /* Delete the contents of dataflow set SET. */
1053 static void
1054 dataflow_set_clear (dataflow_set *set)
1056 int i;
1058 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1059 attrs_list_clear (&set->regs[i]);
1061 vars_clear (set->vars);
1064 /* Copy the contents of dataflow set SRC to DST. */
1066 static void
1067 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
1069 int i;
1071 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1072 attrs_list_copy (&dst->regs[i], src->regs[i]);
1074 vars_copy (dst->vars, src->vars);
1075 dst->stack_adjust = src->stack_adjust;
1078 /* Information for merging lists of locations for a given offset of variable.
1080 struct variable_union_info
1082 /* Node of the location chain. */
1083 location_chain lc;
1085 /* The sum of positions in the input chains. */
1086 int pos;
1088 /* The position in the chains of SRC and DST dataflow sets. */
1089 int pos_src;
1090 int pos_dst;
1093 /* Compare function for qsort, order the structures by POS element. */
1095 static int
1096 variable_union_info_cmp_pos (const void *n1, const void *n2)
1098 const struct variable_union_info *i1 = n1;
1099 const struct variable_union_info *i2 = n2;
1101 if (i1->pos != i2->pos)
1102 return i1->pos - i2->pos;
1104 return (i1->pos_dst - i2->pos_dst);
1107 /* Compute union of location parts of variable *SLOT and the same variable
1108 from hash table DATA. Compute "sorted" union of the location chains
1109 for common offsets, i.e. the locations of a variable part are sorted by
1110 a priority where the priority is the sum of the positions in the 2 chains
1111 (if a location is only in one list the position in the second list is
1112 defined to be larger than the length of the chains).
1113 When we are updating the location parts the newest location is in the
1114 beginning of the chain, so when we do the described "sorted" union
1115 we keep the newest locations in the beginning. */
1117 static int
1118 variable_union (void **slot, void *data)
1120 variable src, dst, *dstp;
1121 dataflow_set *set = (dataflow_set *) data;
1122 int i, j, k;
1124 src = *(variable *) slot;
1125 dstp = (variable *) htab_find_slot_with_hash (set->vars, src->decl,
1126 VARIABLE_HASH_VAL (src->decl),
1127 INSERT);
1128 if (!*dstp)
1130 src->refcount++;
1132 /* If CUR_LOC of some variable part is not the first element of
1133 the location chain we are going to change it so we have to make
1134 a copy of the variable. */
1135 for (k = 0; k < src->n_var_parts; k++)
1137 gcc_assert (!src->var_part[k].loc_chain
1138 == !src->var_part[k].cur_loc);
1139 if (src->var_part[k].loc_chain)
1141 gcc_assert (src->var_part[k].cur_loc);
1142 if (src->var_part[k].cur_loc != src->var_part[k].loc_chain->loc)
1143 break;
1146 if (k < src->n_var_parts)
1148 enum var_init_status status = VAR_INIT_STATUS_UNKNOWN;
1150 if (! flag_var_tracking_uninit)
1151 status = VAR_INIT_STATUS_INITIALIZED;
1153 unshare_variable (set, src, status);
1155 else
1156 *dstp = src;
1158 /* Continue traversing the hash table. */
1159 return 1;
1161 else
1162 dst = *dstp;
1164 gcc_assert (src->n_var_parts);
1166 /* Count the number of location parts, result is K. */
1167 for (i = 0, j = 0, k = 0;
1168 i < src->n_var_parts && j < dst->n_var_parts; k++)
1170 if (src->var_part[i].offset == dst->var_part[j].offset)
1172 i++;
1173 j++;
1175 else if (src->var_part[i].offset < dst->var_part[j].offset)
1176 i++;
1177 else
1178 j++;
1180 k += src->n_var_parts - i;
1181 k += dst->n_var_parts - j;
1183 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
1184 thus there are at most MAX_VAR_PARTS different offsets. */
1185 gcc_assert (k <= MAX_VAR_PARTS);
1187 if (dst->refcount > 1 && dst->n_var_parts != k)
1189 enum var_init_status status = VAR_INIT_STATUS_UNKNOWN;
1191 if (! flag_var_tracking_uninit)
1192 status = VAR_INIT_STATUS_INITIALIZED;
1193 dst = unshare_variable (set, dst, status);
1196 i = src->n_var_parts - 1;
1197 j = dst->n_var_parts - 1;
1198 dst->n_var_parts = k;
1200 for (k--; k >= 0; k--)
1202 location_chain node, node2;
1204 if (i >= 0 && j >= 0
1205 && src->var_part[i].offset == dst->var_part[j].offset)
1207 /* Compute the "sorted" union of the chains, i.e. the locations which
1208 are in both chains go first, they are sorted by the sum of
1209 positions in the chains. */
1210 int dst_l, src_l;
1211 int ii, jj, n;
1212 struct variable_union_info *vui;
1214 /* If DST is shared compare the location chains.
1215 If they are different we will modify the chain in DST with
1216 high probability so make a copy of DST. */
1217 if (dst->refcount > 1)
1219 for (node = src->var_part[i].loc_chain,
1220 node2 = dst->var_part[j].loc_chain; node && node2;
1221 node = node->next, node2 = node2->next)
1223 if (!((REG_P (node2->loc)
1224 && REG_P (node->loc)
1225 && REGNO (node2->loc) == REGNO (node->loc))
1226 || rtx_equal_p (node2->loc, node->loc)))
1228 if (node2->init < node->init)
1229 node2->init = node->init;
1230 break;
1233 if (node || node2)
1234 dst = unshare_variable (set, dst, VAR_INIT_STATUS_UNKNOWN);
1237 src_l = 0;
1238 for (node = src->var_part[i].loc_chain; node; node = node->next)
1239 src_l++;
1240 dst_l = 0;
1241 for (node = dst->var_part[j].loc_chain; node; node = node->next)
1242 dst_l++;
1243 vui = XCNEWVEC (struct variable_union_info, src_l + dst_l);
1245 /* Fill in the locations from DST. */
1246 for (node = dst->var_part[j].loc_chain, jj = 0; node;
1247 node = node->next, jj++)
1249 vui[jj].lc = node;
1250 vui[jj].pos_dst = jj;
1252 /* Value larger than a sum of 2 valid positions. */
1253 vui[jj].pos_src = src_l + dst_l;
1256 /* Fill in the locations from SRC. */
1257 n = dst_l;
1258 for (node = src->var_part[i].loc_chain, ii = 0; node;
1259 node = node->next, ii++)
1261 /* Find location from NODE. */
1262 for (jj = 0; jj < dst_l; jj++)
1264 if ((REG_P (vui[jj].lc->loc)
1265 && REG_P (node->loc)
1266 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
1267 || rtx_equal_p (vui[jj].lc->loc, node->loc))
1269 vui[jj].pos_src = ii;
1270 break;
1273 if (jj >= dst_l) /* The location has not been found. */
1275 location_chain new_node;
1277 /* Copy the location from SRC. */
1278 new_node = pool_alloc (loc_chain_pool);
1279 new_node->loc = node->loc;
1280 new_node->init = node->init;
1281 if (!node->set_src || MEM_P (node->set_src))
1282 new_node->set_src = NULL;
1283 else
1284 new_node->set_src = node->set_src;
1285 vui[n].lc = new_node;
1286 vui[n].pos_src = ii;
1287 vui[n].pos_dst = src_l + dst_l;
1288 n++;
1292 for (ii = 0; ii < src_l + dst_l; ii++)
1293 vui[ii].pos = vui[ii].pos_src + vui[ii].pos_dst;
1295 qsort (vui, n, sizeof (struct variable_union_info),
1296 variable_union_info_cmp_pos);
1298 /* Reconnect the nodes in sorted order. */
1299 for (ii = 1; ii < n; ii++)
1300 vui[ii - 1].lc->next = vui[ii].lc;
1301 vui[n - 1].lc->next = NULL;
1303 dst->var_part[k].loc_chain = vui[0].lc;
1304 dst->var_part[k].offset = dst->var_part[j].offset;
1306 free (vui);
1307 i--;
1308 j--;
1310 else if ((i >= 0 && j >= 0
1311 && src->var_part[i].offset < dst->var_part[j].offset)
1312 || i < 0)
1314 dst->var_part[k] = dst->var_part[j];
1315 j--;
1317 else if ((i >= 0 && j >= 0
1318 && src->var_part[i].offset > dst->var_part[j].offset)
1319 || j < 0)
1321 location_chain *nextp;
1323 /* Copy the chain from SRC. */
1324 nextp = &dst->var_part[k].loc_chain;
1325 for (node = src->var_part[i].loc_chain; node; node = node->next)
1327 location_chain new_lc;
1329 new_lc = pool_alloc (loc_chain_pool);
1330 new_lc->next = NULL;
1331 new_lc->init = node->init;
1332 if (!node->set_src || MEM_P (node->set_src))
1333 new_lc->set_src = NULL;
1334 else
1335 new_lc->set_src = node->set_src;
1336 new_lc->loc = node->loc;
1338 *nextp = new_lc;
1339 nextp = &new_lc->next;
1342 dst->var_part[k].offset = src->var_part[i].offset;
1343 i--;
1346 /* We are at the basic block boundary when computing union
1347 so set the CUR_LOC to be the first element of the chain. */
1348 if (dst->var_part[k].loc_chain)
1349 dst->var_part[k].cur_loc = dst->var_part[k].loc_chain->loc;
1350 else
1351 dst->var_part[k].cur_loc = NULL;
1354 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
1356 location_chain node, node2;
1357 for (node = src->var_part[i].loc_chain; node; node = node->next)
1358 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
1359 if (rtx_equal_p (node->loc, node2->loc))
1361 if (node->init > node2->init)
1362 node2->init = node->init;
1366 /* Continue traversing the hash table. */
1367 return 1;
1370 /* Compute union of dataflow sets SRC and DST and store it to DST. */
1372 static void
1373 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
1375 int i;
1377 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1378 attrs_list_union (&dst->regs[i], src->regs[i]);
1380 htab_traverse (src->vars, variable_union, dst);
1383 /* Flag whether two dataflow sets being compared contain different data. */
1384 static bool
1385 dataflow_set_different_value;
1387 static bool
1388 variable_part_different_p (variable_part *vp1, variable_part *vp2)
1390 location_chain lc1, lc2;
1392 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
1394 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
1396 if (REG_P (lc1->loc) && REG_P (lc2->loc))
1398 if (REGNO (lc1->loc) == REGNO (lc2->loc))
1399 break;
1401 if (rtx_equal_p (lc1->loc, lc2->loc))
1402 break;
1404 if (!lc2)
1405 return true;
1407 return false;
1410 /* Return true if variables VAR1 and VAR2 are different.
1411 If COMPARE_CURRENT_LOCATION is true compare also the cur_loc of each
1412 variable part. */
1414 static bool
1415 variable_different_p (variable var1, variable var2,
1416 bool compare_current_location)
1418 int i;
1420 if (var1 == var2)
1421 return false;
1423 if (var1->n_var_parts != var2->n_var_parts)
1424 return true;
1426 for (i = 0; i < var1->n_var_parts; i++)
1428 if (var1->var_part[i].offset != var2->var_part[i].offset)
1429 return true;
1430 if (compare_current_location)
1432 if (!((REG_P (var1->var_part[i].cur_loc)
1433 && REG_P (var2->var_part[i].cur_loc)
1434 && (REGNO (var1->var_part[i].cur_loc)
1435 == REGNO (var2->var_part[i].cur_loc)))
1436 || rtx_equal_p (var1->var_part[i].cur_loc,
1437 var2->var_part[i].cur_loc)))
1438 return true;
1440 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
1441 return true;
1442 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
1443 return true;
1445 return false;
1448 /* Compare variable *SLOT with the same variable in hash table DATA
1449 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1451 static int
1452 dataflow_set_different_1 (void **slot, void *data)
1454 htab_t htab = (htab_t) data;
1455 variable var1, var2;
1457 var1 = *(variable *) slot;
1458 var2 = htab_find_with_hash (htab, var1->decl,
1459 VARIABLE_HASH_VAL (var1->decl));
1460 if (!var2)
1462 dataflow_set_different_value = true;
1464 /* Stop traversing the hash table. */
1465 return 0;
1468 if (variable_different_p (var1, var2, false))
1470 dataflow_set_different_value = true;
1472 /* Stop traversing the hash table. */
1473 return 0;
1476 /* Continue traversing the hash table. */
1477 return 1;
1480 /* Compare variable *SLOT with the same variable in hash table DATA
1481 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1483 static int
1484 dataflow_set_different_2 (void **slot, void *data)
1486 htab_t htab = (htab_t) data;
1487 variable var1, var2;
1489 var1 = *(variable *) slot;
1490 var2 = htab_find_with_hash (htab, var1->decl,
1491 VARIABLE_HASH_VAL (var1->decl));
1492 if (!var2)
1494 dataflow_set_different_value = true;
1496 /* Stop traversing the hash table. */
1497 return 0;
1500 /* If both variables are defined they have been already checked for
1501 equivalence. */
1502 gcc_assert (!variable_different_p (var1, var2, false));
1504 /* Continue traversing the hash table. */
1505 return 1;
1508 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
1510 static bool
1511 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
1513 dataflow_set_different_value = false;
1515 htab_traverse (old_set->vars, dataflow_set_different_1, new_set->vars);
1516 if (!dataflow_set_different_value)
1518 /* We have compared the variables which are in both hash tables
1519 so now only check whether there are some variables in NEW_SET->VARS
1520 which are not in OLD_SET->VARS. */
1521 htab_traverse (new_set->vars, dataflow_set_different_2, old_set->vars);
1523 return dataflow_set_different_value;
1526 /* Free the contents of dataflow set SET. */
1528 static void
1529 dataflow_set_destroy (dataflow_set *set)
1531 int i;
1533 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1534 attrs_list_clear (&set->regs[i]);
1536 htab_delete (set->vars);
1537 set->vars = NULL;
1540 /* Return true if RTL X contains a SYMBOL_REF. */
1542 static bool
1543 contains_symbol_ref (rtx x)
1545 const char *fmt;
1546 RTX_CODE code;
1547 int i;
1549 if (!x)
1550 return false;
1552 code = GET_CODE (x);
1553 if (code == SYMBOL_REF)
1554 return true;
1556 fmt = GET_RTX_FORMAT (code);
1557 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1559 if (fmt[i] == 'e')
1561 if (contains_symbol_ref (XEXP (x, i)))
1562 return true;
1564 else if (fmt[i] == 'E')
1566 int j;
1567 for (j = 0; j < XVECLEN (x, i); j++)
1568 if (contains_symbol_ref (XVECEXP (x, i, j)))
1569 return true;
1573 return false;
1576 /* Shall EXPR be tracked? */
1578 static bool
1579 track_expr_p (tree expr)
1581 rtx decl_rtl;
1582 tree realdecl;
1584 /* If EXPR is not a parameter or a variable do not track it. */
1585 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
1586 return 0;
1588 /* It also must have a name... */
1589 if (!DECL_NAME (expr))
1590 return 0;
1592 /* ... and a RTL assigned to it. */
1593 decl_rtl = DECL_RTL_IF_SET (expr);
1594 if (!decl_rtl)
1595 return 0;
1597 /* If this expression is really a debug alias of some other declaration, we
1598 don't need to track this expression if the ultimate declaration is
1599 ignored. */
1600 realdecl = expr;
1601 if (DECL_DEBUG_EXPR_IS_FROM (realdecl) && DECL_DEBUG_EXPR (realdecl))
1603 realdecl = DECL_DEBUG_EXPR (realdecl);
1604 /* ??? We don't yet know how to emit DW_OP_piece for variable
1605 that has been SRA'ed. */
1606 if (!DECL_P (realdecl))
1607 return 0;
1610 /* Do not track EXPR if REALDECL it should be ignored for debugging
1611 purposes. */
1612 if (DECL_IGNORED_P (realdecl))
1613 return 0;
1615 /* Do not track global variables until we are able to emit correct location
1616 list for them. */
1617 if (TREE_STATIC (realdecl))
1618 return 0;
1620 /* When the EXPR is a DECL for alias of some variable (see example)
1621 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
1622 DECL_RTL contains SYMBOL_REF.
1624 Example:
1625 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
1626 char **_dl_argv;
1628 if (MEM_P (decl_rtl)
1629 && contains_symbol_ref (XEXP (decl_rtl, 0)))
1630 return 0;
1632 /* If RTX is a memory it should not be very large (because it would be
1633 an array or struct). */
1634 if (MEM_P (decl_rtl))
1636 /* Do not track structures and arrays. */
1637 if (GET_MODE (decl_rtl) == BLKmode
1638 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
1639 return 0;
1640 if (MEM_SIZE (decl_rtl)
1641 && INTVAL (MEM_SIZE (decl_rtl)) > MAX_VAR_PARTS)
1642 return 0;
1645 return 1;
1648 /* Determine whether a given LOC refers to the same variable part as
1649 EXPR+OFFSET. */
1651 static bool
1652 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
1654 tree expr2;
1655 HOST_WIDE_INT offset2;
1657 if (! DECL_P (expr))
1658 return false;
1660 if (REG_P (loc))
1662 expr2 = REG_EXPR (loc);
1663 offset2 = REG_OFFSET (loc);
1665 else if (MEM_P (loc))
1667 expr2 = MEM_EXPR (loc);
1668 offset2 = INT_MEM_OFFSET (loc);
1670 else
1671 return false;
1673 if (! expr2 || ! DECL_P (expr2))
1674 return false;
1676 expr = var_debug_decl (expr);
1677 expr2 = var_debug_decl (expr2);
1679 return (expr == expr2 && offset == offset2);
1682 /* LOC is a REG or MEM that we would like to track if possible.
1683 If EXPR is null, we don't know what expression LOC refers to,
1684 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
1685 LOC is an lvalue register.
1687 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
1688 is something we can track. When returning true, store the mode of
1689 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
1690 from EXPR in *OFFSET_OUT (if nonnull). */
1692 static bool
1693 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
1694 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
1696 enum machine_mode mode;
1698 if (expr == NULL || !track_expr_p (expr))
1699 return false;
1701 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
1702 whole subreg, but only the old inner part is really relevant. */
1703 mode = GET_MODE (loc);
1704 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
1706 enum machine_mode pseudo_mode;
1708 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
1709 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
1711 offset += byte_lowpart_offset (pseudo_mode, mode);
1712 mode = pseudo_mode;
1716 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
1717 Do the same if we are storing to a register and EXPR occupies
1718 the whole of register LOC; in that case, the whole of EXPR is
1719 being changed. We exclude complex modes from the second case
1720 because the real and imaginary parts are represented as separate
1721 pseudo registers, even if the whole complex value fits into one
1722 hard register. */
1723 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
1724 || (store_reg_p
1725 && !COMPLEX_MODE_P (DECL_MODE (expr))
1726 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
1727 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
1729 mode = DECL_MODE (expr);
1730 offset = 0;
1733 if (offset < 0 || offset >= MAX_VAR_PARTS)
1734 return false;
1736 if (mode_out)
1737 *mode_out = mode;
1738 if (offset_out)
1739 *offset_out = offset;
1740 return true;
1743 /* Return the MODE lowpart of LOC, or null if LOC is not something we
1744 want to track. When returning nonnull, make sure that the attributes
1745 on the returned value are updated. */
1747 static rtx
1748 var_lowpart (enum machine_mode mode, rtx loc)
1750 unsigned int offset, reg_offset, regno;
1752 if (!REG_P (loc) && !MEM_P (loc))
1753 return NULL;
1755 if (GET_MODE (loc) == mode)
1756 return loc;
1758 offset = byte_lowpart_offset (mode, GET_MODE (loc));
1760 if (MEM_P (loc))
1761 return adjust_address_nv (loc, mode, offset);
1763 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
1764 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
1765 reg_offset, mode);
1766 return gen_rtx_REG_offset (loc, mode, regno, offset);
1769 /* Count uses (register and memory references) LOC which will be tracked.
1770 INSN is instruction which the LOC is part of. */
1772 static int
1773 count_uses (rtx *loc, void *insn)
1775 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1777 if (REG_P (*loc))
1779 gcc_assert (REGNO (*loc) < FIRST_PSEUDO_REGISTER);
1780 VTI (bb)->n_mos++;
1782 else if (MEM_P (*loc)
1783 && track_loc_p (*loc, MEM_EXPR (*loc), INT_MEM_OFFSET (*loc),
1784 false, NULL, NULL))
1786 VTI (bb)->n_mos++;
1789 return 0;
1792 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1794 static void
1795 count_uses_1 (rtx *x, void *insn)
1797 for_each_rtx (x, count_uses, insn);
1800 /* Count stores (register and memory references) LOC which will be tracked.
1801 INSN is instruction which the LOC is part of. */
1803 static void
1804 count_stores (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *insn)
1806 count_uses (&loc, insn);
1809 /* Add uses (register and memory references) LOC which will be tracked
1810 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
1812 static int
1813 add_uses (rtx *loc, void *insn)
1815 enum machine_mode mode;
1817 if (REG_P (*loc))
1819 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1820 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1822 if (track_loc_p (*loc, REG_EXPR (*loc), REG_OFFSET (*loc),
1823 false, &mode, NULL))
1825 mo->type = MO_USE;
1826 mo->u.loc = var_lowpart (mode, *loc);
1828 else
1830 mo->type = MO_USE_NO_VAR;
1831 mo->u.loc = *loc;
1833 mo->insn = (rtx) insn;
1835 else if (MEM_P (*loc)
1836 && track_loc_p (*loc, MEM_EXPR (*loc), INT_MEM_OFFSET (*loc),
1837 false, &mode, NULL))
1839 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1840 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1842 mo->type = MO_USE;
1843 mo->u.loc = var_lowpart (mode, *loc);
1844 mo->insn = (rtx) insn;
1847 return 0;
1850 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1852 static void
1853 add_uses_1 (rtx *x, void *insn)
1855 for_each_rtx (x, add_uses, insn);
1858 /* Add stores (register and memory references) LOC which will be tracked
1859 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
1860 INSN is instruction which the LOC is part of. */
1862 static void
1863 add_stores (rtx loc, const_rtx expr, void *insn)
1865 enum machine_mode mode;
1867 if (REG_P (loc))
1869 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1870 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1872 if (GET_CODE (expr) == CLOBBER
1873 || !track_loc_p (loc, REG_EXPR (loc), REG_OFFSET (loc),
1874 true, &mode, NULL))
1876 mo->type = MO_CLOBBER;
1877 mo->u.loc = loc;
1879 else
1881 rtx src = NULL;
1883 if (GET_CODE (expr) == SET && SET_DEST (expr) == loc)
1884 src = var_lowpart (mode, SET_SRC (expr));
1885 loc = var_lowpart (mode, loc);
1887 if (src == NULL)
1889 mo->type = MO_SET;
1890 mo->u.loc = loc;
1892 else
1894 if (SET_SRC (expr) != src)
1895 expr = gen_rtx_SET (VOIDmode, loc, src);
1896 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
1897 mo->type = MO_COPY;
1898 else
1899 mo->type = MO_SET;
1900 mo->u.loc = CONST_CAST_RTX (expr);
1903 mo->insn = (rtx) insn;
1905 else if (MEM_P (loc)
1906 && track_loc_p (loc, MEM_EXPR (loc), INT_MEM_OFFSET (loc),
1907 false, &mode, NULL))
1909 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1910 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1912 if (GET_CODE (expr) == CLOBBER)
1914 mo->type = MO_CLOBBER;
1915 mo->u.loc = var_lowpart (mode, loc);
1917 else
1919 rtx src = NULL;
1921 if (GET_CODE (expr) == SET && SET_DEST (expr) == loc)
1922 src = var_lowpart (mode, SET_SRC (expr));
1923 loc = var_lowpart (mode, loc);
1925 if (src == NULL)
1927 mo->type = MO_SET;
1928 mo->u.loc = loc;
1930 else
1932 if (SET_SRC (expr) != src)
1933 expr = gen_rtx_SET (VOIDmode, loc, src);
1934 if (same_variable_part_p (SET_SRC (expr),
1935 MEM_EXPR (loc),
1936 INT_MEM_OFFSET (loc)))
1937 mo->type = MO_COPY;
1938 else
1939 mo->type = MO_SET;
1940 mo->u.loc = CONST_CAST_RTX (expr);
1943 mo->insn = (rtx) insn;
1947 static enum var_init_status
1948 find_src_status (dataflow_set *in, rtx src)
1950 tree decl = NULL_TREE;
1951 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
1953 if (! flag_var_tracking_uninit)
1954 status = VAR_INIT_STATUS_INITIALIZED;
1956 if (src && REG_P (src))
1957 decl = var_debug_decl (REG_EXPR (src));
1958 else if (src && MEM_P (src))
1959 decl = var_debug_decl (MEM_EXPR (src));
1961 if (src && decl)
1962 status = get_init_value (in, src, decl);
1964 return status;
1967 /* SRC is the source of an assignment. Use SET to try to find what
1968 was ultimately assigned to SRC. Return that value if known,
1969 otherwise return SRC itself. */
1971 static rtx
1972 find_src_set_src (dataflow_set *set, rtx src)
1974 tree decl = NULL_TREE; /* The variable being copied around. */
1975 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
1976 void **slot;
1977 variable var;
1978 location_chain nextp;
1979 int i;
1980 bool found;
1982 if (src && REG_P (src))
1983 decl = var_debug_decl (REG_EXPR (src));
1984 else if (src && MEM_P (src))
1985 decl = var_debug_decl (MEM_EXPR (src));
1987 if (src && decl)
1989 slot = htab_find_slot_with_hash (set->vars, decl,
1990 VARIABLE_HASH_VAL (decl), NO_INSERT);
1992 if (slot)
1994 var = *(variable *) slot;
1995 found = false;
1996 for (i = 0; i < var->n_var_parts && !found; i++)
1997 for (nextp = var->var_part[i].loc_chain; nextp && !found;
1998 nextp = nextp->next)
1999 if (rtx_equal_p (nextp->loc, src))
2001 set_src = nextp->set_src;
2002 found = true;
2008 return set_src;
2011 /* Compute the changes of variable locations in the basic block BB. */
2013 static bool
2014 compute_bb_dataflow (basic_block bb)
2016 int i, n, r;
2017 bool changed;
2018 dataflow_set old_out;
2019 dataflow_set *in = &VTI (bb)->in;
2020 dataflow_set *out = &VTI (bb)->out;
2022 dataflow_set_init (&old_out, htab_elements (VTI (bb)->out.vars) + 3);
2023 dataflow_set_copy (&old_out, out);
2024 dataflow_set_copy (out, in);
2026 n = VTI (bb)->n_mos;
2027 for (i = 0; i < n; i++)
2029 switch (VTI (bb)->mos[i].type)
2031 case MO_CALL:
2032 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
2033 if (TEST_HARD_REG_BIT (call_used_reg_set, r))
2034 var_regno_delete (out, r);
2035 break;
2037 case MO_USE:
2039 rtx loc = VTI (bb)->mos[i].u.loc;
2040 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
2042 if (! flag_var_tracking_uninit)
2043 status = VAR_INIT_STATUS_INITIALIZED;
2045 if (GET_CODE (loc) == REG)
2046 var_reg_set (out, loc, status, NULL);
2047 else if (GET_CODE (loc) == MEM)
2048 var_mem_set (out, loc, status, NULL);
2050 break;
2052 case MO_SET:
2054 rtx loc = VTI (bb)->mos[i].u.loc;
2055 rtx set_src = NULL;
2057 if (GET_CODE (loc) == SET)
2059 set_src = SET_SRC (loc);
2060 loc = SET_DEST (loc);
2063 if (REG_P (loc))
2064 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
2065 set_src);
2066 else if (MEM_P (loc))
2067 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
2068 set_src);
2070 break;
2072 case MO_COPY:
2074 rtx loc = VTI (bb)->mos[i].u.loc;
2075 enum var_init_status src_status;
2076 rtx set_src = NULL;
2078 if (GET_CODE (loc) == SET)
2080 set_src = SET_SRC (loc);
2081 loc = SET_DEST (loc);
2084 if (! flag_var_tracking_uninit)
2085 src_status = VAR_INIT_STATUS_INITIALIZED;
2086 else
2087 src_status = find_src_status (in, set_src);
2089 if (src_status == VAR_INIT_STATUS_UNKNOWN)
2090 src_status = find_src_status (out, set_src);
2092 set_src = find_src_set_src (in, set_src);
2094 if (REG_P (loc))
2095 var_reg_delete_and_set (out, loc, false, src_status, set_src);
2096 else if (MEM_P (loc))
2097 var_mem_delete_and_set (out, loc, false, src_status, set_src);
2099 break;
2101 case MO_USE_NO_VAR:
2103 rtx loc = VTI (bb)->mos[i].u.loc;
2105 if (REG_P (loc))
2106 var_reg_delete (out, loc, false);
2107 else if (MEM_P (loc))
2108 var_mem_delete (out, loc, false);
2110 break;
2112 case MO_CLOBBER:
2114 rtx loc = VTI (bb)->mos[i].u.loc;
2116 if (REG_P (loc))
2117 var_reg_delete (out, loc, true);
2118 else if (MEM_P (loc))
2119 var_mem_delete (out, loc, true);
2121 break;
2123 case MO_ADJUST:
2124 out->stack_adjust += VTI (bb)->mos[i].u.adjust;
2125 break;
2129 changed = dataflow_set_different (&old_out, out);
2130 dataflow_set_destroy (&old_out);
2131 return changed;
2134 /* Find the locations of variables in the whole function. */
2136 static void
2137 vt_find_locations (void)
2139 fibheap_t worklist, pending, fibheap_swap;
2140 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
2141 basic_block bb;
2142 edge e;
2143 int *bb_order;
2144 int *rc_order;
2145 int i;
2147 /* Compute reverse completion order of depth first search of the CFG
2148 so that the data-flow runs faster. */
2149 rc_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
2150 bb_order = XNEWVEC (int, last_basic_block);
2151 pre_and_rev_post_order_compute (NULL, rc_order, false);
2152 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
2153 bb_order[rc_order[i]] = i;
2154 free (rc_order);
2156 worklist = fibheap_new ();
2157 pending = fibheap_new ();
2158 visited = sbitmap_alloc (last_basic_block);
2159 in_worklist = sbitmap_alloc (last_basic_block);
2160 in_pending = sbitmap_alloc (last_basic_block);
2161 sbitmap_zero (in_worklist);
2163 FOR_EACH_BB (bb)
2164 fibheap_insert (pending, bb_order[bb->index], bb);
2165 sbitmap_ones (in_pending);
2167 while (!fibheap_empty (pending))
2169 fibheap_swap = pending;
2170 pending = worklist;
2171 worklist = fibheap_swap;
2172 sbitmap_swap = in_pending;
2173 in_pending = in_worklist;
2174 in_worklist = sbitmap_swap;
2176 sbitmap_zero (visited);
2178 while (!fibheap_empty (worklist))
2180 bb = fibheap_extract_min (worklist);
2181 RESET_BIT (in_worklist, bb->index);
2182 if (!TEST_BIT (visited, bb->index))
2184 bool changed;
2185 edge_iterator ei;
2187 SET_BIT (visited, bb->index);
2189 /* Calculate the IN set as union of predecessor OUT sets. */
2190 dataflow_set_clear (&VTI (bb)->in);
2191 FOR_EACH_EDGE (e, ei, bb->preds)
2193 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
2196 changed = compute_bb_dataflow (bb);
2197 if (changed)
2199 FOR_EACH_EDGE (e, ei, bb->succs)
2201 if (e->dest == EXIT_BLOCK_PTR)
2202 continue;
2204 if (e->dest == bb)
2205 continue;
2207 if (TEST_BIT (visited, e->dest->index))
2209 if (!TEST_BIT (in_pending, e->dest->index))
2211 /* Send E->DEST to next round. */
2212 SET_BIT (in_pending, e->dest->index);
2213 fibheap_insert (pending,
2214 bb_order[e->dest->index],
2215 e->dest);
2218 else if (!TEST_BIT (in_worklist, e->dest->index))
2220 /* Add E->DEST to current round. */
2221 SET_BIT (in_worklist, e->dest->index);
2222 fibheap_insert (worklist, bb_order[e->dest->index],
2223 e->dest);
2231 free (bb_order);
2232 fibheap_delete (worklist);
2233 fibheap_delete (pending);
2234 sbitmap_free (visited);
2235 sbitmap_free (in_worklist);
2236 sbitmap_free (in_pending);
2239 /* Print the content of the LIST to dump file. */
2241 static void
2242 dump_attrs_list (attrs list)
2244 for (; list; list = list->next)
2246 print_mem_expr (dump_file, list->decl);
2247 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
2249 fprintf (dump_file, "\n");
2252 /* Print the information about variable *SLOT to dump file. */
2254 static int
2255 dump_variable (void **slot, void *data ATTRIBUTE_UNUSED)
2257 variable var = *(variable *) slot;
2258 int i;
2259 location_chain node;
2261 fprintf (dump_file, " name: %s",
2262 IDENTIFIER_POINTER (DECL_NAME (var->decl)));
2263 if (dump_flags & TDF_UID)
2264 fprintf (dump_file, " D.%u\n", DECL_UID (var->decl));
2265 else
2266 fprintf (dump_file, "\n");
2268 for (i = 0; i < var->n_var_parts; i++)
2270 fprintf (dump_file, " offset %ld\n",
2271 (long) var->var_part[i].offset);
2272 for (node = var->var_part[i].loc_chain; node; node = node->next)
2274 fprintf (dump_file, " ");
2275 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
2276 fprintf (dump_file, "[uninit]");
2277 print_rtl_single (dump_file, node->loc);
2281 /* Continue traversing the hash table. */
2282 return 1;
2285 /* Print the information about variables from hash table VARS to dump file. */
2287 static void
2288 dump_vars (htab_t vars)
2290 if (htab_elements (vars) > 0)
2292 fprintf (dump_file, "Variables:\n");
2293 htab_traverse (vars, dump_variable, NULL);
2297 /* Print the dataflow set SET to dump file. */
2299 static void
2300 dump_dataflow_set (dataflow_set *set)
2302 int i;
2304 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
2305 set->stack_adjust);
2306 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2308 if (set->regs[i])
2310 fprintf (dump_file, "Reg %d:", i);
2311 dump_attrs_list (set->regs[i]);
2314 dump_vars (set->vars);
2315 fprintf (dump_file, "\n");
2318 /* Print the IN and OUT sets for each basic block to dump file. */
2320 static void
2321 dump_dataflow_sets (void)
2323 basic_block bb;
2325 FOR_EACH_BB (bb)
2327 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
2328 fprintf (dump_file, "IN:\n");
2329 dump_dataflow_set (&VTI (bb)->in);
2330 fprintf (dump_file, "OUT:\n");
2331 dump_dataflow_set (&VTI (bb)->out);
2335 /* Add variable VAR to the hash table of changed variables and
2336 if it has no locations delete it from hash table HTAB. */
2338 static void
2339 variable_was_changed (variable var, htab_t htab)
2341 hashval_t hash = VARIABLE_HASH_VAL (var->decl);
2343 if (emit_notes)
2345 variable *slot;
2347 slot = (variable *) htab_find_slot_with_hash (changed_variables,
2348 var->decl, hash, INSERT);
2350 if (htab && var->n_var_parts == 0)
2352 variable empty_var;
2353 void **old;
2355 empty_var = pool_alloc (var_pool);
2356 empty_var->decl = var->decl;
2357 empty_var->refcount = 1;
2358 empty_var->n_var_parts = 0;
2359 *slot = empty_var;
2361 old = htab_find_slot_with_hash (htab, var->decl, hash,
2362 NO_INSERT);
2363 if (old)
2364 htab_clear_slot (htab, old);
2366 else
2368 *slot = var;
2371 else
2373 gcc_assert (htab);
2374 if (var->n_var_parts == 0)
2376 void **slot = htab_find_slot_with_hash (htab, var->decl, hash,
2377 NO_INSERT);
2378 if (slot)
2379 htab_clear_slot (htab, slot);
2384 /* Look for the index in VAR->var_part corresponding to OFFSET.
2385 Return -1 if not found. If INSERTION_POINT is non-NULL, the
2386 referenced int will be set to the index that the part has or should
2387 have, if it should be inserted. */
2389 static inline int
2390 find_variable_location_part (variable var, HOST_WIDE_INT offset,
2391 int *insertion_point)
2393 int pos, low, high;
2395 /* Find the location part. */
2396 low = 0;
2397 high = var->n_var_parts;
2398 while (low != high)
2400 pos = (low + high) / 2;
2401 if (var->var_part[pos].offset < offset)
2402 low = pos + 1;
2403 else
2404 high = pos;
2406 pos = low;
2408 if (insertion_point)
2409 *insertion_point = pos;
2411 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
2412 return pos;
2414 return -1;
2417 /* Set the part of variable's location in the dataflow set SET. The variable
2418 part is specified by variable's declaration DECL and offset OFFSET and the
2419 part's location by LOC. */
2421 static void
2422 set_variable_part (dataflow_set *set, rtx loc, tree decl, HOST_WIDE_INT offset,
2423 enum var_init_status initialized, rtx set_src)
2425 int pos;
2426 location_chain node, next;
2427 location_chain *nextp;
2428 variable var;
2429 void **slot;
2431 slot = htab_find_slot_with_hash (set->vars, decl,
2432 VARIABLE_HASH_VAL (decl), INSERT);
2433 if (!*slot)
2435 /* Create new variable information. */
2436 var = pool_alloc (var_pool);
2437 var->decl = decl;
2438 var->refcount = 1;
2439 var->n_var_parts = 1;
2440 var->var_part[0].offset = offset;
2441 var->var_part[0].loc_chain = NULL;
2442 var->var_part[0].cur_loc = NULL;
2443 *slot = var;
2444 pos = 0;
2446 else
2448 int inspos = 0;
2450 var = (variable) *slot;
2452 pos = find_variable_location_part (var, offset, &inspos);
2454 if (pos >= 0)
2456 node = var->var_part[pos].loc_chain;
2458 if (node
2459 && ((REG_P (node->loc) && REG_P (loc)
2460 && REGNO (node->loc) == REGNO (loc))
2461 || rtx_equal_p (node->loc, loc)))
2463 /* LOC is in the beginning of the chain so we have nothing
2464 to do. */
2465 if (node->init < initialized)
2466 node->init = initialized;
2467 if (set_src != NULL)
2468 node->set_src = set_src;
2470 *slot = var;
2471 return;
2473 else
2475 /* We have to make a copy of a shared variable. */
2476 if (var->refcount > 1)
2477 var = unshare_variable (set, var, initialized);
2480 else
2482 /* We have not found the location part, new one will be created. */
2484 /* We have to make a copy of the shared variable. */
2485 if (var->refcount > 1)
2486 var = unshare_variable (set, var, initialized);
2488 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2489 thus there are at most MAX_VAR_PARTS different offsets. */
2490 gcc_assert (var->n_var_parts < MAX_VAR_PARTS);
2492 /* We have to move the elements of array starting at index
2493 inspos to the next position. */
2494 for (pos = var->n_var_parts; pos > inspos; pos--)
2495 var->var_part[pos] = var->var_part[pos - 1];
2497 var->n_var_parts++;
2498 var->var_part[pos].offset = offset;
2499 var->var_part[pos].loc_chain = NULL;
2500 var->var_part[pos].cur_loc = NULL;
2504 /* Delete the location from the list. */
2505 nextp = &var->var_part[pos].loc_chain;
2506 for (node = var->var_part[pos].loc_chain; node; node = next)
2508 next = node->next;
2509 if ((REG_P (node->loc) && REG_P (loc)
2510 && REGNO (node->loc) == REGNO (loc))
2511 || rtx_equal_p (node->loc, loc))
2513 /* Save these values, to assign to the new node, before
2514 deleting this one. */
2515 if (node->init > initialized)
2516 initialized = node->init;
2517 if (node->set_src != NULL && set_src == NULL)
2518 set_src = node->set_src;
2519 pool_free (loc_chain_pool, node);
2520 *nextp = next;
2521 break;
2523 else
2524 nextp = &node->next;
2527 /* Add the location to the beginning. */
2528 node = pool_alloc (loc_chain_pool);
2529 node->loc = loc;
2530 node->init = initialized;
2531 node->set_src = set_src;
2532 node->next = var->var_part[pos].loc_chain;
2533 var->var_part[pos].loc_chain = node;
2535 /* If no location was emitted do so. */
2536 if (var->var_part[pos].cur_loc == NULL)
2538 var->var_part[pos].cur_loc = loc;
2539 variable_was_changed (var, set->vars);
2543 /* Remove all recorded register locations for the given variable part
2544 from dataflow set SET, except for those that are identical to loc.
2545 The variable part is specified by variable's declaration DECL and
2546 offset OFFSET. */
2548 static void
2549 clobber_variable_part (dataflow_set *set, rtx loc, tree decl,
2550 HOST_WIDE_INT offset, rtx set_src)
2552 void **slot;
2554 if (! decl || ! DECL_P (decl))
2555 return;
2557 slot = htab_find_slot_with_hash (set->vars, decl, VARIABLE_HASH_VAL (decl),
2558 NO_INSERT);
2559 if (slot)
2561 variable var = (variable) *slot;
2562 int pos = find_variable_location_part (var, offset, NULL);
2564 if (pos >= 0)
2566 location_chain node, next;
2568 /* Remove the register locations from the dataflow set. */
2569 next = var->var_part[pos].loc_chain;
2570 for (node = next; node; node = next)
2572 next = node->next;
2573 if (node->loc != loc
2574 && (!flag_var_tracking_uninit
2575 || !set_src
2576 || MEM_P (set_src)
2577 || !rtx_equal_p (set_src, node->set_src)))
2579 if (REG_P (node->loc))
2581 attrs anode, anext;
2582 attrs *anextp;
2584 /* Remove the variable part from the register's
2585 list, but preserve any other variable parts
2586 that might be regarded as live in that same
2587 register. */
2588 anextp = &set->regs[REGNO (node->loc)];
2589 for (anode = *anextp; anode; anode = anext)
2591 anext = anode->next;
2592 if (anode->decl == decl
2593 && anode->offset == offset)
2595 pool_free (attrs_pool, anode);
2596 *anextp = anext;
2598 else
2599 anextp = &anode->next;
2603 delete_variable_part (set, node->loc, decl, offset);
2610 /* Delete the part of variable's location from dataflow set SET. The variable
2611 part is specified by variable's declaration DECL and offset OFFSET and the
2612 part's location by LOC. */
2614 static void
2615 delete_variable_part (dataflow_set *set, rtx loc, tree decl,
2616 HOST_WIDE_INT offset)
2618 void **slot;
2620 slot = htab_find_slot_with_hash (set->vars, decl, VARIABLE_HASH_VAL (decl),
2621 NO_INSERT);
2622 if (slot)
2624 variable var = (variable) *slot;
2625 int pos = find_variable_location_part (var, offset, NULL);
2627 if (pos >= 0)
2629 location_chain node, next;
2630 location_chain *nextp;
2631 bool changed;
2633 if (var->refcount > 1)
2635 /* If the variable contains the location part we have to
2636 make a copy of the variable. */
2637 for (node = var->var_part[pos].loc_chain; node;
2638 node = node->next)
2640 if ((REG_P (node->loc) && REG_P (loc)
2641 && REGNO (node->loc) == REGNO (loc))
2642 || rtx_equal_p (node->loc, loc))
2644 enum var_init_status status = VAR_INIT_STATUS_UNKNOWN;
2645 if (! flag_var_tracking_uninit)
2646 status = VAR_INIT_STATUS_INITIALIZED;
2647 var = unshare_variable (set, var, status);
2648 break;
2653 /* Delete the location part. */
2654 nextp = &var->var_part[pos].loc_chain;
2655 for (node = *nextp; node; node = next)
2657 next = node->next;
2658 if ((REG_P (node->loc) && REG_P (loc)
2659 && REGNO (node->loc) == REGNO (loc))
2660 || rtx_equal_p (node->loc, loc))
2662 pool_free (loc_chain_pool, node);
2663 *nextp = next;
2664 break;
2666 else
2667 nextp = &node->next;
2670 /* If we have deleted the location which was last emitted
2671 we have to emit new location so add the variable to set
2672 of changed variables. */
2673 if (var->var_part[pos].cur_loc
2674 && ((REG_P (loc)
2675 && REG_P (var->var_part[pos].cur_loc)
2676 && REGNO (loc) == REGNO (var->var_part[pos].cur_loc))
2677 || rtx_equal_p (loc, var->var_part[pos].cur_loc)))
2679 changed = true;
2680 if (var->var_part[pos].loc_chain)
2681 var->var_part[pos].cur_loc = var->var_part[pos].loc_chain->loc;
2683 else
2684 changed = false;
2686 if (var->var_part[pos].loc_chain == NULL)
2688 var->n_var_parts--;
2689 while (pos < var->n_var_parts)
2691 var->var_part[pos] = var->var_part[pos + 1];
2692 pos++;
2695 if (changed)
2696 variable_was_changed (var, set->vars);
2701 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
2702 additional parameters: WHERE specifies whether the note shall be emitted
2703 before of after instruction INSN. */
2705 static int
2706 emit_note_insn_var_location (void **varp, void *data)
2708 variable var = *(variable *) varp;
2709 rtx insn = ((emit_note_data *)data)->insn;
2710 enum emit_note_where where = ((emit_note_data *)data)->where;
2711 rtx note;
2712 int i, j, n_var_parts;
2713 bool complete;
2714 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
2715 HOST_WIDE_INT last_limit;
2716 tree type_size_unit;
2717 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
2718 rtx loc[MAX_VAR_PARTS];
2720 gcc_assert (var->decl);
2722 if (! flag_var_tracking_uninit)
2723 initialized = VAR_INIT_STATUS_INITIALIZED;
2725 complete = true;
2726 last_limit = 0;
2727 n_var_parts = 0;
2728 for (i = 0; i < var->n_var_parts; i++)
2730 enum machine_mode mode, wider_mode;
2732 if (last_limit < var->var_part[i].offset)
2734 complete = false;
2735 break;
2737 else if (last_limit > var->var_part[i].offset)
2738 continue;
2739 offsets[n_var_parts] = var->var_part[i].offset;
2740 loc[n_var_parts] = var->var_part[i].loc_chain->loc;
2741 mode = GET_MODE (loc[n_var_parts]);
2742 initialized = var->var_part[i].loc_chain->init;
2743 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
2745 /* Attempt to merge adjacent registers or memory. */
2746 wider_mode = GET_MODE_WIDER_MODE (mode);
2747 for (j = i + 1; j < var->n_var_parts; j++)
2748 if (last_limit <= var->var_part[j].offset)
2749 break;
2750 if (j < var->n_var_parts
2751 && wider_mode != VOIDmode
2752 && GET_CODE (loc[n_var_parts])
2753 == GET_CODE (var->var_part[j].loc_chain->loc)
2754 && mode == GET_MODE (var->var_part[j].loc_chain->loc)
2755 && last_limit == var->var_part[j].offset)
2757 rtx new_loc = NULL;
2758 rtx loc2 = var->var_part[j].loc_chain->loc;
2760 if (REG_P (loc[n_var_parts])
2761 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
2762 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
2763 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
2764 == REGNO (loc2))
2766 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
2767 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
2768 mode, 0);
2769 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
2770 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
2771 if (new_loc)
2773 if (!REG_P (new_loc)
2774 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
2775 new_loc = NULL;
2776 else
2777 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
2780 else if (MEM_P (loc[n_var_parts])
2781 && GET_CODE (XEXP (loc2, 0)) == PLUS
2782 && GET_CODE (XEXP (XEXP (loc2, 0), 0)) == REG
2783 && GET_CODE (XEXP (XEXP (loc2, 0), 1)) == CONST_INT)
2785 if ((GET_CODE (XEXP (loc[n_var_parts], 0)) == REG
2786 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
2787 XEXP (XEXP (loc2, 0), 0))
2788 && INTVAL (XEXP (XEXP (loc2, 0), 1))
2789 == GET_MODE_SIZE (mode))
2790 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
2791 && GET_CODE (XEXP (XEXP (loc[n_var_parts], 0), 1))
2792 == CONST_INT
2793 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
2794 XEXP (XEXP (loc2, 0), 0))
2795 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
2796 + GET_MODE_SIZE (mode)
2797 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
2798 new_loc = adjust_address_nv (loc[n_var_parts],
2799 wider_mode, 0);
2802 if (new_loc)
2804 loc[n_var_parts] = new_loc;
2805 mode = wider_mode;
2806 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
2807 i = j;
2810 ++n_var_parts;
2812 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (var->decl));
2813 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
2814 complete = false;
2816 if (where == EMIT_NOTE_AFTER_INSN)
2817 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
2818 else
2819 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
2821 if (! flag_var_tracking_uninit)
2822 initialized = VAR_INIT_STATUS_INITIALIZED;
2824 if (!complete)
2826 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2827 NULL_RTX, (int) initialized);
2829 else if (n_var_parts == 1)
2831 rtx expr_list
2832 = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
2834 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2835 expr_list,
2836 (int) initialized);
2838 else if (n_var_parts)
2840 rtx parallel;
2842 for (i = 0; i < n_var_parts; i++)
2843 loc[i]
2844 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
2846 parallel = gen_rtx_PARALLEL (VOIDmode,
2847 gen_rtvec_v (n_var_parts, loc));
2848 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2849 parallel,
2850 (int) initialized);
2853 htab_clear_slot (changed_variables, varp);
2855 /* When there are no location parts the variable has been already
2856 removed from hash table and a new empty variable was created.
2857 Free the empty variable. */
2858 if (var->n_var_parts == 0)
2860 pool_free (var_pool, var);
2863 /* Continue traversing the hash table. */
2864 return 1;
2867 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
2868 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
2869 shall be emitted before of after instruction INSN. */
2871 static void
2872 emit_notes_for_changes (rtx insn, enum emit_note_where where)
2874 emit_note_data data;
2876 data.insn = insn;
2877 data.where = where;
2878 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
2881 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
2882 same variable in hash table DATA or is not there at all. */
2884 static int
2885 emit_notes_for_differences_1 (void **slot, void *data)
2887 htab_t new_vars = (htab_t) data;
2888 variable old_var, new_var;
2890 old_var = *(variable *) slot;
2891 new_var = htab_find_with_hash (new_vars, old_var->decl,
2892 VARIABLE_HASH_VAL (old_var->decl));
2894 if (!new_var)
2896 /* Variable has disappeared. */
2897 variable empty_var;
2899 empty_var = pool_alloc (var_pool);
2900 empty_var->decl = old_var->decl;
2901 empty_var->refcount = 1;
2902 empty_var->n_var_parts = 0;
2903 variable_was_changed (empty_var, NULL);
2905 else if (variable_different_p (old_var, new_var, true))
2907 variable_was_changed (new_var, NULL);
2910 /* Continue traversing the hash table. */
2911 return 1;
2914 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
2915 table DATA. */
2917 static int
2918 emit_notes_for_differences_2 (void **slot, void *data)
2920 htab_t old_vars = (htab_t) data;
2921 variable old_var, new_var;
2923 new_var = *(variable *) slot;
2924 old_var = htab_find_with_hash (old_vars, new_var->decl,
2925 VARIABLE_HASH_VAL (new_var->decl));
2926 if (!old_var)
2928 /* Variable has appeared. */
2929 variable_was_changed (new_var, NULL);
2932 /* Continue traversing the hash table. */
2933 return 1;
2936 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
2937 NEW_SET. */
2939 static void
2940 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
2941 dataflow_set *new_set)
2943 htab_traverse (old_set->vars, emit_notes_for_differences_1, new_set->vars);
2944 htab_traverse (new_set->vars, emit_notes_for_differences_2, old_set->vars);
2945 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2948 /* Emit the notes for changes of location parts in the basic block BB. */
2950 static void
2951 emit_notes_in_bb (basic_block bb)
2953 int i;
2954 dataflow_set set;
2956 dataflow_set_init (&set, htab_elements (VTI (bb)->in.vars) + 3);
2957 dataflow_set_copy (&set, &VTI (bb)->in);
2959 for (i = 0; i < VTI (bb)->n_mos; i++)
2961 rtx insn = VTI (bb)->mos[i].insn;
2963 switch (VTI (bb)->mos[i].type)
2965 case MO_CALL:
2967 int r;
2969 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
2970 if (TEST_HARD_REG_BIT (call_used_reg_set, r))
2972 var_regno_delete (&set, r);
2974 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2976 break;
2978 case MO_USE:
2980 rtx loc = VTI (bb)->mos[i].u.loc;
2982 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
2983 if (! flag_var_tracking_uninit)
2984 status = VAR_INIT_STATUS_INITIALIZED;
2985 if (GET_CODE (loc) == REG)
2986 var_reg_set (&set, loc, status, NULL);
2987 else
2988 var_mem_set (&set, loc, status, NULL);
2990 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2992 break;
2994 case MO_SET:
2996 rtx loc = VTI (bb)->mos[i].u.loc;
2997 rtx set_src = NULL;
2999 if (GET_CODE (loc) == SET)
3001 set_src = SET_SRC (loc);
3002 loc = SET_DEST (loc);
3005 if (REG_P (loc))
3006 var_reg_delete_and_set (&set, loc, true, VAR_INIT_STATUS_INITIALIZED,
3007 set_src);
3008 else
3009 var_mem_delete_and_set (&set, loc, true, VAR_INIT_STATUS_INITIALIZED,
3010 set_src);
3012 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN);
3014 break;
3016 case MO_COPY:
3018 rtx loc = VTI (bb)->mos[i].u.loc;
3019 enum var_init_status src_status;
3020 rtx set_src = NULL;
3022 if (GET_CODE (loc) == SET)
3024 set_src = SET_SRC (loc);
3025 loc = SET_DEST (loc);
3028 src_status = find_src_status (&set, set_src);
3029 set_src = find_src_set_src (&set, set_src);
3031 if (REG_P (loc))
3032 var_reg_delete_and_set (&set, loc, false, src_status, set_src);
3033 else
3034 var_mem_delete_and_set (&set, loc, false, src_status, set_src);
3036 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN);
3038 break;
3040 case MO_USE_NO_VAR:
3042 rtx loc = VTI (bb)->mos[i].u.loc;
3044 if (REG_P (loc))
3045 var_reg_delete (&set, loc, false);
3046 else
3047 var_mem_delete (&set, loc, false);
3049 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
3051 break;
3053 case MO_CLOBBER:
3055 rtx loc = VTI (bb)->mos[i].u.loc;
3057 if (REG_P (loc))
3058 var_reg_delete (&set, loc, true);
3059 else
3060 var_mem_delete (&set, loc, true);
3062 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN);
3064 break;
3066 case MO_ADJUST:
3067 set.stack_adjust += VTI (bb)->mos[i].u.adjust;
3068 break;
3071 dataflow_set_destroy (&set);
3074 /* Emit notes for the whole function. */
3076 static void
3077 vt_emit_notes (void)
3079 basic_block bb;
3080 dataflow_set *last_out;
3081 dataflow_set empty;
3083 gcc_assert (!htab_elements (changed_variables));
3085 /* Enable emitting notes by functions (mainly by set_variable_part and
3086 delete_variable_part). */
3087 emit_notes = true;
3089 dataflow_set_init (&empty, 7);
3090 last_out = &empty;
3092 FOR_EACH_BB (bb)
3094 /* Emit the notes for changes of variable locations between two
3095 subsequent basic blocks. */
3096 emit_notes_for_differences (BB_HEAD (bb), last_out, &VTI (bb)->in);
3098 /* Emit the notes for the changes in the basic block itself. */
3099 emit_notes_in_bb (bb);
3101 last_out = &VTI (bb)->out;
3103 dataflow_set_destroy (&empty);
3104 emit_notes = false;
3107 /* If there is a declaration and offset associated with register/memory RTL
3108 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
3110 static bool
3111 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
3113 if (REG_P (rtl))
3115 if (REG_ATTRS (rtl))
3117 *declp = REG_EXPR (rtl);
3118 *offsetp = REG_OFFSET (rtl);
3119 return true;
3122 else if (MEM_P (rtl))
3124 if (MEM_ATTRS (rtl))
3126 *declp = MEM_EXPR (rtl);
3127 *offsetp = INT_MEM_OFFSET (rtl);
3128 return true;
3131 return false;
3134 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
3136 static void
3137 vt_add_function_parameters (void)
3139 tree parm;
3141 for (parm = DECL_ARGUMENTS (current_function_decl);
3142 parm; parm = TREE_CHAIN (parm))
3144 rtx decl_rtl = DECL_RTL_IF_SET (parm);
3145 rtx incoming = DECL_INCOMING_RTL (parm);
3146 tree decl;
3147 enum machine_mode mode;
3148 HOST_WIDE_INT offset;
3149 dataflow_set *out;
3151 if (TREE_CODE (parm) != PARM_DECL)
3152 continue;
3154 if (!DECL_NAME (parm))
3155 continue;
3157 if (!decl_rtl || !incoming)
3158 continue;
3160 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
3161 continue;
3163 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
3165 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
3166 continue;
3167 offset += byte_lowpart_offset (GET_MODE (incoming),
3168 GET_MODE (decl_rtl));
3171 if (!decl)
3172 continue;
3174 gcc_assert (parm == decl);
3176 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
3177 continue;
3179 out = &VTI (ENTRY_BLOCK_PTR)->out;
3181 if (REG_P (incoming))
3183 incoming = var_lowpart (mode, incoming);
3184 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
3185 attrs_list_insert (&out->regs[REGNO (incoming)],
3186 parm, offset, incoming);
3187 set_variable_part (out, incoming, parm, offset, VAR_INIT_STATUS_INITIALIZED,
3188 NULL);
3190 else if (MEM_P (incoming))
3192 incoming = var_lowpart (mode, incoming);
3193 set_variable_part (out, incoming, parm, offset,
3194 VAR_INIT_STATUS_INITIALIZED, NULL);
3199 /* Allocate and initialize the data structures for variable tracking
3200 and parse the RTL to get the micro operations. */
3202 static void
3203 vt_initialize (void)
3205 basic_block bb;
3207 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
3209 FOR_EACH_BB (bb)
3211 rtx insn;
3212 HOST_WIDE_INT pre, post = 0;
3214 /* Count the number of micro operations. */
3215 VTI (bb)->n_mos = 0;
3216 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
3217 insn = NEXT_INSN (insn))
3219 if (INSN_P (insn))
3221 if (!frame_pointer_needed)
3223 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
3224 if (pre)
3225 VTI (bb)->n_mos++;
3226 if (post)
3227 VTI (bb)->n_mos++;
3229 note_uses (&PATTERN (insn), count_uses_1, insn);
3230 note_stores (PATTERN (insn), count_stores, insn);
3231 if (CALL_P (insn))
3232 VTI (bb)->n_mos++;
3236 /* Add the micro-operations to the array. */
3237 VTI (bb)->mos = XNEWVEC (micro_operation, VTI (bb)->n_mos);
3238 VTI (bb)->n_mos = 0;
3239 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
3240 insn = NEXT_INSN (insn))
3242 if (INSN_P (insn))
3244 int n1, n2;
3246 if (!frame_pointer_needed)
3248 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
3249 if (pre)
3251 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
3253 mo->type = MO_ADJUST;
3254 mo->u.adjust = pre;
3255 mo->insn = insn;
3259 n1 = VTI (bb)->n_mos;
3260 note_uses (&PATTERN (insn), add_uses_1, insn);
3261 n2 = VTI (bb)->n_mos - 1;
3263 /* Order the MO_USEs to be before MO_USE_NO_VARs. */
3264 while (n1 < n2)
3266 while (n1 < n2 && VTI (bb)->mos[n1].type == MO_USE)
3267 n1++;
3268 while (n1 < n2 && VTI (bb)->mos[n2].type == MO_USE_NO_VAR)
3269 n2--;
3270 if (n1 < n2)
3272 micro_operation sw;
3274 sw = VTI (bb)->mos[n1];
3275 VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
3276 VTI (bb)->mos[n2] = sw;
3280 if (CALL_P (insn))
3282 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
3284 mo->type = MO_CALL;
3285 mo->insn = insn;
3288 n1 = VTI (bb)->n_mos;
3289 /* This will record NEXT_INSN (insn), such that we can
3290 insert notes before it without worrying about any
3291 notes that MO_USEs might emit after the insn. */
3292 note_stores (PATTERN (insn), add_stores, insn);
3293 n2 = VTI (bb)->n_mos - 1;
3295 /* Order the MO_CLOBBERs to be before MO_SETs. */
3296 while (n1 < n2)
3298 while (n1 < n2 && VTI (bb)->mos[n1].type == MO_CLOBBER)
3299 n1++;
3300 while (n1 < n2 && (VTI (bb)->mos[n2].type == MO_SET
3301 || VTI (bb)->mos[n2].type == MO_COPY))
3302 n2--;
3303 if (n1 < n2)
3305 micro_operation sw;
3307 sw = VTI (bb)->mos[n1];
3308 VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
3309 VTI (bb)->mos[n2] = sw;
3313 if (!frame_pointer_needed && post)
3315 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
3317 mo->type = MO_ADJUST;
3318 mo->u.adjust = post;
3319 mo->insn = insn;
3325 /* Init the IN and OUT sets. */
3326 FOR_ALL_BB (bb)
3328 VTI (bb)->visited = false;
3329 dataflow_set_init (&VTI (bb)->in, 7);
3330 dataflow_set_init (&VTI (bb)->out, 7);
3333 attrs_pool = create_alloc_pool ("attrs_def pool",
3334 sizeof (struct attrs_def), 1024);
3335 var_pool = create_alloc_pool ("variable_def pool",
3336 sizeof (struct variable_def), 64);
3337 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
3338 sizeof (struct location_chain_def),
3339 1024);
3340 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
3341 NULL);
3342 vt_add_function_parameters ();
3345 /* Free the data structures needed for variable tracking. */
3347 static void
3348 vt_finalize (void)
3350 basic_block bb;
3352 FOR_EACH_BB (bb)
3354 free (VTI (bb)->mos);
3357 FOR_ALL_BB (bb)
3359 dataflow_set_destroy (&VTI (bb)->in);
3360 dataflow_set_destroy (&VTI (bb)->out);
3362 free_aux_for_blocks ();
3363 free_alloc_pool (attrs_pool);
3364 free_alloc_pool (var_pool);
3365 free_alloc_pool (loc_chain_pool);
3366 htab_delete (changed_variables);
3369 /* The entry point to variable tracking pass. */
3371 unsigned int
3372 variable_tracking_main (void)
3374 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
3375 return 0;
3377 mark_dfs_back_edges ();
3378 vt_initialize ();
3379 if (!frame_pointer_needed)
3381 if (!vt_stack_adjustments ())
3383 vt_finalize ();
3384 return 0;
3388 vt_find_locations ();
3389 vt_emit_notes ();
3391 if (dump_file && (dump_flags & TDF_DETAILS))
3393 dump_dataflow_sets ();
3394 dump_flow_info (dump_file, dump_flags);
3397 vt_finalize ();
3398 return 0;
3401 static bool
3402 gate_handle_var_tracking (void)
3404 return (flag_var_tracking);
3409 struct rtl_opt_pass pass_variable_tracking =
3412 RTL_PASS,
3413 "vartrack", /* name */
3414 gate_handle_var_tracking, /* gate */
3415 variable_tracking_main, /* execute */
3416 NULL, /* sub */
3417 NULL, /* next */
3418 0, /* static_pass_number */
3419 TV_VAR_TRACKING, /* tv_id */
3420 0, /* properties_required */
3421 0, /* properties_provided */
3422 0, /* properties_destroyed */
3423 0, /* todo_flags_start */
3424 TODO_dump_func | TODO_verify_rtl_sharing/* todo_flags_finish */