1 /* real.c - software floating point emulation.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2002, 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
4 Contributed by Stephen L. Moshier (moshier@world.std.com).
5 Re-written by Richard Henderson <rth@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
33 /* The floating point model used internally is not exactly IEEE 754
34 compliant, and close to the description in the ISO C99 standard,
35 section 5.2.4.2.2 Characteristics of floating types.
39 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
43 b = base or radix, here always 2
45 p = precision (the number of base-b digits in the significand)
46 f_k = the digits of the significand.
48 We differ from typical IEEE 754 encodings in that the entire
49 significand is fractional. Normalized significands are in the
52 A requirement of the model is that P be larger than the largest
53 supported target floating-point type by at least 2 bits. This gives
54 us proper rounding when we truncate to the target type. In addition,
55 E must be large enough to hold the smallest supported denormal number
58 Both of these requirements are easily satisfied. The largest target
59 significand is 113 bits; we store at least 160. The smallest
60 denormal number fits in 17 exponent bits; we store 27.
62 Note that the decimal string conversion routines are sensitive to
63 rounding errors. Since the raw arithmetic routines do not themselves
64 have guard digits or rounding, the computation of 10**exp can
65 accumulate more than a few digits of error. The previous incarnation
66 of real.c successfully used a 144-bit fraction; given the current
67 layout of REAL_VALUE_TYPE we're forced to expand to at least 160 bits. */
70 /* Used to classify two numbers simultaneously. */
71 #define CLASS2(A, B) ((A) << 2 | (B))
73 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
74 #error "Some constant folding done by hand to avoid shift count warnings"
77 static void get_zero (REAL_VALUE_TYPE
*, int);
78 static void get_canonical_qnan (REAL_VALUE_TYPE
*, int);
79 static void get_canonical_snan (REAL_VALUE_TYPE
*, int);
80 static void get_inf (REAL_VALUE_TYPE
*, int);
81 static bool sticky_rshift_significand (REAL_VALUE_TYPE
*,
82 const REAL_VALUE_TYPE
*, unsigned int);
83 static void rshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
85 static void lshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
87 static void lshift_significand_1 (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
88 static bool add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*,
89 const REAL_VALUE_TYPE
*);
90 static bool sub_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
91 const REAL_VALUE_TYPE
*, int);
92 static void neg_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
93 static int cmp_significands (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
94 static int cmp_significand_0 (const REAL_VALUE_TYPE
*);
95 static void set_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
96 static void clear_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
97 static bool test_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
98 static void clear_significand_below (REAL_VALUE_TYPE
*, unsigned int);
99 static bool div_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
100 const REAL_VALUE_TYPE
*);
101 static void normalize (REAL_VALUE_TYPE
*);
103 static bool do_add (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
104 const REAL_VALUE_TYPE
*, int);
105 static bool do_multiply (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
106 const REAL_VALUE_TYPE
*);
107 static bool do_divide (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
108 const REAL_VALUE_TYPE
*);
109 static int do_compare (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*, int);
110 static void do_fix_trunc (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
112 static unsigned long rtd_divmod (REAL_VALUE_TYPE
*, REAL_VALUE_TYPE
*);
114 static const REAL_VALUE_TYPE
* ten_to_ptwo (int);
115 static const REAL_VALUE_TYPE
* ten_to_mptwo (int);
116 static const REAL_VALUE_TYPE
* real_digit (int);
117 static void times_pten (REAL_VALUE_TYPE
*, int);
119 static void round_for_format (const struct real_format
*, REAL_VALUE_TYPE
*);
121 /* Initialize R with a positive zero. */
124 get_zero (REAL_VALUE_TYPE
*r
, int sign
)
126 memset (r
, 0, sizeof (*r
));
130 /* Initialize R with the canonical quiet NaN. */
133 get_canonical_qnan (REAL_VALUE_TYPE
*r
, int sign
)
135 memset (r
, 0, sizeof (*r
));
142 get_canonical_snan (REAL_VALUE_TYPE
*r
, int sign
)
144 memset (r
, 0, sizeof (*r
));
152 get_inf (REAL_VALUE_TYPE
*r
, int sign
)
154 memset (r
, 0, sizeof (*r
));
160 /* Right-shift the significand of A by N bits; put the result in the
161 significand of R. If any one bits are shifted out, return true. */
164 sticky_rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
167 unsigned long sticky
= 0;
168 unsigned int i
, ofs
= 0;
170 if (n
>= HOST_BITS_PER_LONG
)
172 for (i
= 0, ofs
= n
/ HOST_BITS_PER_LONG
; i
< ofs
; ++i
)
174 n
&= HOST_BITS_PER_LONG
- 1;
179 sticky
|= a
->sig
[ofs
] & (((unsigned long)1 << n
) - 1);
180 for (i
= 0; i
< SIGSZ
; ++i
)
183 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
184 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
185 << (HOST_BITS_PER_LONG
- n
)));
190 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
191 r
->sig
[i
] = a
->sig
[ofs
+ i
];
192 for (; i
< SIGSZ
; ++i
)
199 /* Right-shift the significand of A by N bits; put the result in the
203 rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
206 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
208 n
&= HOST_BITS_PER_LONG
- 1;
211 for (i
= 0; i
< SIGSZ
; ++i
)
214 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
215 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
216 << (HOST_BITS_PER_LONG
- n
)));
221 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
222 r
->sig
[i
] = a
->sig
[ofs
+ i
];
223 for (; i
< SIGSZ
; ++i
)
228 /* Left-shift the significand of A by N bits; put the result in the
232 lshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
235 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
237 n
&= HOST_BITS_PER_LONG
- 1;
240 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
241 r
->sig
[SIGSZ
-1-i
] = a
->sig
[SIGSZ
-1-i
-ofs
];
242 for (; i
< SIGSZ
; ++i
)
243 r
->sig
[SIGSZ
-1-i
] = 0;
246 for (i
= 0; i
< SIGSZ
; ++i
)
249 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
]) << n
)
250 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
-1])
251 >> (HOST_BITS_PER_LONG
- n
)));
255 /* Likewise, but N is specialized to 1. */
258 lshift_significand_1 (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
262 for (i
= SIGSZ
- 1; i
> 0; --i
)
263 r
->sig
[i
] = (a
->sig
[i
] << 1) | (a
->sig
[i
-1] >> (HOST_BITS_PER_LONG
- 1));
264 r
->sig
[0] = a
->sig
[0] << 1;
267 /* Add the significands of A and B, placing the result in R. Return
268 true if there was carry out of the most significant word. */
271 add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
272 const REAL_VALUE_TYPE
*b
)
277 for (i
= 0; i
< SIGSZ
; ++i
)
279 unsigned long ai
= a
->sig
[i
];
280 unsigned long ri
= ai
+ b
->sig
[i
];
296 /* Subtract the significands of A and B, placing the result in R. CARRY is
297 true if there's a borrow incoming to the least significant word.
298 Return true if there was borrow out of the most significant word. */
301 sub_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
302 const REAL_VALUE_TYPE
*b
, int carry
)
306 for (i
= 0; i
< SIGSZ
; ++i
)
308 unsigned long ai
= a
->sig
[i
];
309 unsigned long ri
= ai
- b
->sig
[i
];
325 /* Negate the significand A, placing the result in R. */
328 neg_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
333 for (i
= 0; i
< SIGSZ
; ++i
)
335 unsigned long ri
, ai
= a
->sig
[i
];
354 /* Compare significands. Return tri-state vs zero. */
357 cmp_significands (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
361 for (i
= SIGSZ
- 1; i
>= 0; --i
)
363 unsigned long ai
= a
->sig
[i
];
364 unsigned long bi
= b
->sig
[i
];
375 /* Return true if A is nonzero. */
378 cmp_significand_0 (const REAL_VALUE_TYPE
*a
)
382 for (i
= SIGSZ
- 1; i
>= 0; --i
)
389 /* Set bit N of the significand of R. */
392 set_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
394 r
->sig
[n
/ HOST_BITS_PER_LONG
]
395 |= (unsigned long)1 << (n
% HOST_BITS_PER_LONG
);
398 /* Clear bit N of the significand of R. */
401 clear_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
403 r
->sig
[n
/ HOST_BITS_PER_LONG
]
404 &= ~((unsigned long)1 << (n
% HOST_BITS_PER_LONG
));
407 /* Test bit N of the significand of R. */
410 test_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
412 /* ??? Compiler bug here if we return this expression directly.
413 The conversion to bool strips the "&1" and we wind up testing
414 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
415 int t
= (r
->sig
[n
/ HOST_BITS_PER_LONG
] >> (n
% HOST_BITS_PER_LONG
)) & 1;
419 /* Clear bits 0..N-1 of the significand of R. */
422 clear_significand_below (REAL_VALUE_TYPE
*r
, unsigned int n
)
424 int i
, w
= n
/ HOST_BITS_PER_LONG
;
426 for (i
= 0; i
< w
; ++i
)
429 r
->sig
[w
] &= ~(((unsigned long)1 << (n
% HOST_BITS_PER_LONG
)) - 1);
432 /* Divide the significands of A and B, placing the result in R. Return
433 true if the division was inexact. */
436 div_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
437 const REAL_VALUE_TYPE
*b
)
440 int i
, bit
= SIGNIFICAND_BITS
- 1;
441 unsigned long msb
, inexact
;
444 memset (r
->sig
, 0, sizeof (r
->sig
));
450 msb
= u
.sig
[SIGSZ
-1] & SIG_MSB
;
451 lshift_significand_1 (&u
, &u
);
453 if (msb
|| cmp_significands (&u
, b
) >= 0)
455 sub_significands (&u
, &u
, b
, 0);
456 set_significand_bit (r
, bit
);
461 for (i
= 0, inexact
= 0; i
< SIGSZ
; i
++)
467 /* Adjust the exponent and significand of R such that the most
468 significant bit is set. We underflow to zero and overflow to
469 infinity here, without denormals. (The intermediate representation
470 exponent is large enough to handle target denormals normalized.) */
473 normalize (REAL_VALUE_TYPE
*r
)
481 /* Find the first word that is nonzero. */
482 for (i
= SIGSZ
- 1; i
>= 0; i
--)
484 shift
+= HOST_BITS_PER_LONG
;
488 /* Zero significand flushes to zero. */
496 /* Find the first bit that is nonzero. */
498 if (r
->sig
[i
] & ((unsigned long)1 << (HOST_BITS_PER_LONG
- 1 - j
)))
504 exp
= REAL_EXP (r
) - shift
;
506 get_inf (r
, r
->sign
);
507 else if (exp
< -MAX_EXP
)
508 get_zero (r
, r
->sign
);
511 SET_REAL_EXP (r
, exp
);
512 lshift_significand (r
, r
, shift
);
517 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
518 result may be inexact due to a loss of precision. */
521 do_add (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
522 const REAL_VALUE_TYPE
*b
, int subtract_p
)
526 bool inexact
= false;
528 /* Determine if we need to add or subtract. */
530 subtract_p
= (sign
^ b
->sign
) ^ subtract_p
;
532 switch (CLASS2 (a
->cl
, b
->cl
))
534 case CLASS2 (rvc_zero
, rvc_zero
):
535 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
536 get_zero (r
, sign
& !subtract_p
);
539 case CLASS2 (rvc_zero
, rvc_normal
):
540 case CLASS2 (rvc_zero
, rvc_inf
):
541 case CLASS2 (rvc_zero
, rvc_nan
):
543 case CLASS2 (rvc_normal
, rvc_nan
):
544 case CLASS2 (rvc_inf
, rvc_nan
):
545 case CLASS2 (rvc_nan
, rvc_nan
):
546 /* ANY + NaN = NaN. */
547 case CLASS2 (rvc_normal
, rvc_inf
):
550 r
->sign
= sign
^ subtract_p
;
553 case CLASS2 (rvc_normal
, rvc_zero
):
554 case CLASS2 (rvc_inf
, rvc_zero
):
555 case CLASS2 (rvc_nan
, rvc_zero
):
557 case CLASS2 (rvc_nan
, rvc_normal
):
558 case CLASS2 (rvc_nan
, rvc_inf
):
559 /* NaN + ANY = NaN. */
560 case CLASS2 (rvc_inf
, rvc_normal
):
565 case CLASS2 (rvc_inf
, rvc_inf
):
567 /* Inf - Inf = NaN. */
568 get_canonical_qnan (r
, 0);
570 /* Inf + Inf = Inf. */
574 case CLASS2 (rvc_normal
, rvc_normal
):
581 /* Swap the arguments such that A has the larger exponent. */
582 dexp
= REAL_EXP (a
) - REAL_EXP (b
);
585 const REAL_VALUE_TYPE
*t
;
592 /* If the exponents are not identical, we need to shift the
593 significand of B down. */
596 /* If the exponents are too far apart, the significands
597 do not overlap, which makes the subtraction a noop. */
598 if (dexp
>= SIGNIFICAND_BITS
)
605 inexact
|= sticky_rshift_significand (&t
, b
, dexp
);
611 if (sub_significands (r
, a
, b
, inexact
))
613 /* We got a borrow out of the subtraction. That means that
614 A and B had the same exponent, and B had the larger
615 significand. We need to swap the sign and negate the
618 neg_significand (r
, r
);
623 if (add_significands (r
, a
, b
))
625 /* We got carry out of the addition. This means we need to
626 shift the significand back down one bit and increase the
628 inexact
|= sticky_rshift_significand (r
, r
, 1);
629 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
640 SET_REAL_EXP (r
, exp
);
641 /* Zero out the remaining fields. */
646 /* Re-normalize the result. */
649 /* Special case: if the subtraction results in zero, the result
651 if (r
->cl
== rvc_zero
)
654 r
->sig
[0] |= inexact
;
659 /* Calculate R = A * B. Return true if the result may be inexact. */
662 do_multiply (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
663 const REAL_VALUE_TYPE
*b
)
665 REAL_VALUE_TYPE u
, t
, *rr
;
666 unsigned int i
, j
, k
;
667 int sign
= a
->sign
^ b
->sign
;
668 bool inexact
= false;
670 switch (CLASS2 (a
->cl
, b
->cl
))
672 case CLASS2 (rvc_zero
, rvc_zero
):
673 case CLASS2 (rvc_zero
, rvc_normal
):
674 case CLASS2 (rvc_normal
, rvc_zero
):
675 /* +-0 * ANY = 0 with appropriate sign. */
679 case CLASS2 (rvc_zero
, rvc_nan
):
680 case CLASS2 (rvc_normal
, rvc_nan
):
681 case CLASS2 (rvc_inf
, rvc_nan
):
682 case CLASS2 (rvc_nan
, rvc_nan
):
683 /* ANY * NaN = NaN. */
688 case CLASS2 (rvc_nan
, rvc_zero
):
689 case CLASS2 (rvc_nan
, rvc_normal
):
690 case CLASS2 (rvc_nan
, rvc_inf
):
691 /* NaN * ANY = NaN. */
696 case CLASS2 (rvc_zero
, rvc_inf
):
697 case CLASS2 (rvc_inf
, rvc_zero
):
699 get_canonical_qnan (r
, sign
);
702 case CLASS2 (rvc_inf
, rvc_inf
):
703 case CLASS2 (rvc_normal
, rvc_inf
):
704 case CLASS2 (rvc_inf
, rvc_normal
):
705 /* Inf * Inf = Inf, R * Inf = Inf */
709 case CLASS2 (rvc_normal
, rvc_normal
):
716 if (r
== a
|| r
== b
)
722 /* Collect all the partial products. Since we don't have sure access
723 to a widening multiply, we split each long into two half-words.
725 Consider the long-hand form of a four half-word multiplication:
735 We construct partial products of the widened half-word products
736 that are known to not overlap, e.g. DF+DH. Each such partial
737 product is given its proper exponent, which allows us to sum them
738 and obtain the finished product. */
740 for (i
= 0; i
< SIGSZ
* 2; ++i
)
742 unsigned long ai
= a
->sig
[i
/ 2];
744 ai
>>= HOST_BITS_PER_LONG
/ 2;
746 ai
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
751 for (j
= 0; j
< 2; ++j
)
753 int exp
= (REAL_EXP (a
) - (2*SIGSZ
-1-i
)*(HOST_BITS_PER_LONG
/2)
754 + (REAL_EXP (b
) - (1-j
)*(HOST_BITS_PER_LONG
/2)));
763 /* Would underflow to zero, which we shouldn't bother adding. */
768 memset (&u
, 0, sizeof (u
));
770 SET_REAL_EXP (&u
, exp
);
772 for (k
= j
; k
< SIGSZ
* 2; k
+= 2)
774 unsigned long bi
= b
->sig
[k
/ 2];
776 bi
>>= HOST_BITS_PER_LONG
/ 2;
778 bi
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
780 u
.sig
[k
/ 2] = ai
* bi
;
784 inexact
|= do_add (rr
, rr
, &u
, 0);
795 /* Calculate R = A / B. Return true if the result may be inexact. */
798 do_divide (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
799 const REAL_VALUE_TYPE
*b
)
801 int exp
, sign
= a
->sign
^ b
->sign
;
802 REAL_VALUE_TYPE t
, *rr
;
805 switch (CLASS2 (a
->cl
, b
->cl
))
807 case CLASS2 (rvc_zero
, rvc_zero
):
809 case CLASS2 (rvc_inf
, rvc_inf
):
810 /* Inf / Inf = NaN. */
811 get_canonical_qnan (r
, sign
);
814 case CLASS2 (rvc_zero
, rvc_normal
):
815 case CLASS2 (rvc_zero
, rvc_inf
):
817 case CLASS2 (rvc_normal
, rvc_inf
):
822 case CLASS2 (rvc_normal
, rvc_zero
):
824 case CLASS2 (rvc_inf
, rvc_zero
):
829 case CLASS2 (rvc_zero
, rvc_nan
):
830 case CLASS2 (rvc_normal
, rvc_nan
):
831 case CLASS2 (rvc_inf
, rvc_nan
):
832 case CLASS2 (rvc_nan
, rvc_nan
):
833 /* ANY / NaN = NaN. */
838 case CLASS2 (rvc_nan
, rvc_zero
):
839 case CLASS2 (rvc_nan
, rvc_normal
):
840 case CLASS2 (rvc_nan
, rvc_inf
):
841 /* NaN / ANY = NaN. */
846 case CLASS2 (rvc_inf
, rvc_normal
):
851 case CLASS2 (rvc_normal
, rvc_normal
):
858 if (r
== a
|| r
== b
)
863 /* Make sure all fields in the result are initialized. */
868 exp
= REAL_EXP (a
) - REAL_EXP (b
) + 1;
879 SET_REAL_EXP (rr
, exp
);
881 inexact
= div_significands (rr
, a
, b
);
883 /* Re-normalize the result. */
885 rr
->sig
[0] |= inexact
;
893 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
894 one of the two operands is a NaN. */
897 do_compare (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
,
902 switch (CLASS2 (a
->cl
, b
->cl
))
904 case CLASS2 (rvc_zero
, rvc_zero
):
905 /* Sign of zero doesn't matter for compares. */
908 case CLASS2 (rvc_inf
, rvc_zero
):
909 case CLASS2 (rvc_inf
, rvc_normal
):
910 case CLASS2 (rvc_normal
, rvc_zero
):
911 return (a
->sign
? -1 : 1);
913 case CLASS2 (rvc_inf
, rvc_inf
):
914 return -a
->sign
- -b
->sign
;
916 case CLASS2 (rvc_zero
, rvc_normal
):
917 case CLASS2 (rvc_zero
, rvc_inf
):
918 case CLASS2 (rvc_normal
, rvc_inf
):
919 return (b
->sign
? 1 : -1);
921 case CLASS2 (rvc_zero
, rvc_nan
):
922 case CLASS2 (rvc_normal
, rvc_nan
):
923 case CLASS2 (rvc_inf
, rvc_nan
):
924 case CLASS2 (rvc_nan
, rvc_nan
):
925 case CLASS2 (rvc_nan
, rvc_zero
):
926 case CLASS2 (rvc_nan
, rvc_normal
):
927 case CLASS2 (rvc_nan
, rvc_inf
):
930 case CLASS2 (rvc_normal
, rvc_normal
):
937 if (a
->sign
!= b
->sign
)
938 return -a
->sign
- -b
->sign
;
940 if (a
->decimal
|| b
->decimal
)
941 return decimal_do_compare (a
, b
, nan_result
);
943 if (REAL_EXP (a
) > REAL_EXP (b
))
945 else if (REAL_EXP (a
) < REAL_EXP (b
))
948 ret
= cmp_significands (a
, b
);
950 return (a
->sign
? -ret
: ret
);
953 /* Return A truncated to an integral value toward zero. */
956 do_fix_trunc (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
970 decimal_do_fix_trunc (r
, a
);
973 if (REAL_EXP (r
) <= 0)
974 get_zero (r
, r
->sign
);
975 else if (REAL_EXP (r
) < SIGNIFICAND_BITS
)
976 clear_significand_below (r
, SIGNIFICAND_BITS
- REAL_EXP (r
));
984 /* Perform the binary or unary operation described by CODE.
985 For a unary operation, leave OP1 NULL. This function returns
986 true if the result may be inexact due to loss of precision. */
989 real_arithmetic (REAL_VALUE_TYPE
*r
, int icode
, const REAL_VALUE_TYPE
*op0
,
990 const REAL_VALUE_TYPE
*op1
)
992 enum tree_code code
= icode
;
994 if (op0
->decimal
|| (op1
&& op1
->decimal
))
995 return decimal_real_arithmetic (r
, icode
, op0
, op1
);
1000 return do_add (r
, op0
, op1
, 0);
1003 return do_add (r
, op0
, op1
, 1);
1006 return do_multiply (r
, op0
, op1
);
1009 return do_divide (r
, op0
, op1
);
1012 if (op1
->cl
== rvc_nan
)
1014 else if (do_compare (op0
, op1
, -1) < 0)
1021 if (op1
->cl
== rvc_nan
)
1023 else if (do_compare (op0
, op1
, 1) < 0)
1039 case FIX_TRUNC_EXPR
:
1040 do_fix_trunc (r
, op0
);
1049 /* Legacy. Similar, but return the result directly. */
1052 real_arithmetic2 (int icode
, const REAL_VALUE_TYPE
*op0
,
1053 const REAL_VALUE_TYPE
*op1
)
1056 real_arithmetic (&r
, icode
, op0
, op1
);
1061 real_compare (int icode
, const REAL_VALUE_TYPE
*op0
,
1062 const REAL_VALUE_TYPE
*op1
)
1064 enum tree_code code
= icode
;
1069 return do_compare (op0
, op1
, 1) < 0;
1071 return do_compare (op0
, op1
, 1) <= 0;
1073 return do_compare (op0
, op1
, -1) > 0;
1075 return do_compare (op0
, op1
, -1) >= 0;
1077 return do_compare (op0
, op1
, -1) == 0;
1079 return do_compare (op0
, op1
, -1) != 0;
1080 case UNORDERED_EXPR
:
1081 return op0
->cl
== rvc_nan
|| op1
->cl
== rvc_nan
;
1083 return op0
->cl
!= rvc_nan
&& op1
->cl
!= rvc_nan
;
1085 return do_compare (op0
, op1
, -1) < 0;
1087 return do_compare (op0
, op1
, -1) <= 0;
1089 return do_compare (op0
, op1
, 1) > 0;
1091 return do_compare (op0
, op1
, 1) >= 0;
1093 return do_compare (op0
, op1
, 0) == 0;
1095 return do_compare (op0
, op1
, 0) != 0;
1102 /* Return floor log2(R). */
1105 real_exponent (const REAL_VALUE_TYPE
*r
)
1113 return (unsigned int)-1 >> 1;
1115 return REAL_EXP (r
);
1121 /* R = OP0 * 2**EXP. */
1124 real_ldexp (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*op0
, int exp
)
1135 exp
+= REAL_EXP (op0
);
1137 get_inf (r
, r
->sign
);
1138 else if (exp
< -MAX_EXP
)
1139 get_zero (r
, r
->sign
);
1141 SET_REAL_EXP (r
, exp
);
1149 /* Determine whether a floating-point value X is infinite. */
1152 real_isinf (const REAL_VALUE_TYPE
*r
)
1154 return (r
->cl
== rvc_inf
);
1157 /* Determine whether a floating-point value X is a NaN. */
1160 real_isnan (const REAL_VALUE_TYPE
*r
)
1162 return (r
->cl
== rvc_nan
);
1165 /* Determine whether a floating-point value X is finite. */
1168 real_isfinite (const REAL_VALUE_TYPE
*r
)
1170 return (r
->cl
!= rvc_nan
) && (r
->cl
!= rvc_inf
);
1173 /* Determine whether a floating-point value X is negative. */
1176 real_isneg (const REAL_VALUE_TYPE
*r
)
1181 /* Determine whether a floating-point value X is minus zero. */
1184 real_isnegzero (const REAL_VALUE_TYPE
*r
)
1186 return r
->sign
&& r
->cl
== rvc_zero
;
1189 /* Compare two floating-point objects for bitwise identity. */
1192 real_identical (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
1198 if (a
->sign
!= b
->sign
)
1208 if (a
->decimal
!= b
->decimal
)
1210 if (REAL_EXP (a
) != REAL_EXP (b
))
1215 if (a
->signalling
!= b
->signalling
)
1217 /* The significand is ignored for canonical NaNs. */
1218 if (a
->canonical
|| b
->canonical
)
1219 return a
->canonical
== b
->canonical
;
1226 for (i
= 0; i
< SIGSZ
; ++i
)
1227 if (a
->sig
[i
] != b
->sig
[i
])
1233 /* Try to change R into its exact multiplicative inverse in machine
1234 mode MODE. Return true if successful. */
1237 exact_real_inverse (enum machine_mode mode
, REAL_VALUE_TYPE
*r
)
1239 const REAL_VALUE_TYPE
*one
= real_digit (1);
1243 if (r
->cl
!= rvc_normal
)
1246 /* Check for a power of two: all significand bits zero except the MSB. */
1247 for (i
= 0; i
< SIGSZ
-1; ++i
)
1250 if (r
->sig
[SIGSZ
-1] != SIG_MSB
)
1253 /* Find the inverse and truncate to the required mode. */
1254 do_divide (&u
, one
, r
);
1255 real_convert (&u
, mode
, &u
);
1257 /* The rounding may have overflowed. */
1258 if (u
.cl
!= rvc_normal
)
1260 for (i
= 0; i
< SIGSZ
-1; ++i
)
1263 if (u
.sig
[SIGSZ
-1] != SIG_MSB
)
1270 /* Render R as an integer. */
1273 real_to_integer (const REAL_VALUE_TYPE
*r
)
1275 unsigned HOST_WIDE_INT i
;
1286 i
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
1293 return decimal_real_to_integer (r
);
1295 if (REAL_EXP (r
) <= 0)
1297 /* Only force overflow for unsigned overflow. Signed overflow is
1298 undefined, so it doesn't matter what we return, and some callers
1299 expect to be able to use this routine for both signed and
1300 unsigned conversions. */
1301 if (REAL_EXP (r
) > HOST_BITS_PER_WIDE_INT
)
1304 if (HOST_BITS_PER_WIDE_INT
== HOST_BITS_PER_LONG
)
1305 i
= r
->sig
[SIGSZ
-1];
1308 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2 * HOST_BITS_PER_LONG
);
1309 i
= r
->sig
[SIGSZ
-1];
1310 i
= i
<< (HOST_BITS_PER_LONG
- 1) << 1;
1311 i
|= r
->sig
[SIGSZ
-2];
1314 i
>>= HOST_BITS_PER_WIDE_INT
- REAL_EXP (r
);
1325 /* Likewise, but to an integer pair, HI+LOW. */
1328 real_to_integer2 (HOST_WIDE_INT
*plow
, HOST_WIDE_INT
*phigh
,
1329 const REAL_VALUE_TYPE
*r
)
1332 HOST_WIDE_INT low
, high
;
1345 high
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
1358 decimal_real_to_integer2 (plow
, phigh
, r
);
1365 /* Only force overflow for unsigned overflow. Signed overflow is
1366 undefined, so it doesn't matter what we return, and some callers
1367 expect to be able to use this routine for both signed and
1368 unsigned conversions. */
1369 if (exp
> 2*HOST_BITS_PER_WIDE_INT
)
1372 rshift_significand (&t
, r
, 2*HOST_BITS_PER_WIDE_INT
- exp
);
1373 if (HOST_BITS_PER_WIDE_INT
== HOST_BITS_PER_LONG
)
1375 high
= t
.sig
[SIGSZ
-1];
1376 low
= t
.sig
[SIGSZ
-2];
1380 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2*HOST_BITS_PER_LONG
);
1381 high
= t
.sig
[SIGSZ
-1];
1382 high
= high
<< (HOST_BITS_PER_LONG
- 1) << 1;
1383 high
|= t
.sig
[SIGSZ
-2];
1385 low
= t
.sig
[SIGSZ
-3];
1386 low
= low
<< (HOST_BITS_PER_LONG
- 1) << 1;
1387 low
|= t
.sig
[SIGSZ
-4];
1395 low
= -low
, high
= ~high
;
1407 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1408 of NUM / DEN. Return the quotient and place the remainder in NUM.
1409 It is expected that NUM / DEN are close enough that the quotient is
1412 static unsigned long
1413 rtd_divmod (REAL_VALUE_TYPE
*num
, REAL_VALUE_TYPE
*den
)
1415 unsigned long q
, msb
;
1416 int expn
= REAL_EXP (num
), expd
= REAL_EXP (den
);
1425 msb
= num
->sig
[SIGSZ
-1] & SIG_MSB
;
1427 lshift_significand_1 (num
, num
);
1429 if (msb
|| cmp_significands (num
, den
) >= 0)
1431 sub_significands (num
, num
, den
, 0);
1435 while (--expn
>= expd
);
1437 SET_REAL_EXP (num
, expd
);
1443 /* Render R as a decimal floating point constant. Emit DIGITS significant
1444 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1445 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1448 #define M_LOG10_2 0.30102999566398119521
1451 real_to_decimal (char *str
, const REAL_VALUE_TYPE
*r_orig
, size_t buf_size
,
1452 size_t digits
, int crop_trailing_zeros
)
1454 const REAL_VALUE_TYPE
*one
, *ten
;
1455 REAL_VALUE_TYPE r
, pten
, u
, v
;
1456 int dec_exp
, cmp_one
, digit
;
1458 char *p
, *first
, *last
;
1465 strcpy (str
, (r
.sign
? "-0.0" : "0.0"));
1470 strcpy (str
, (r
.sign
? "-Inf" : "+Inf"));
1473 /* ??? Print the significand as well, if not canonical? */
1474 strcpy (str
, (r
.sign
? "-NaN" : "+NaN"));
1482 decimal_real_to_decimal (str
, &r
, buf_size
, digits
, crop_trailing_zeros
);
1486 /* Bound the number of digits printed by the size of the representation. */
1487 max_digits
= SIGNIFICAND_BITS
* M_LOG10_2
;
1488 if (digits
== 0 || digits
> max_digits
)
1489 digits
= max_digits
;
1491 /* Estimate the decimal exponent, and compute the length of the string it
1492 will print as. Be conservative and add one to account for possible
1493 overflow or rounding error. */
1494 dec_exp
= REAL_EXP (&r
) * M_LOG10_2
;
1495 for (max_digits
= 1; dec_exp
; max_digits
++)
1498 /* Bound the number of digits printed by the size of the output buffer. */
1499 max_digits
= buf_size
- 1 - 1 - 2 - max_digits
- 1;
1500 gcc_assert (max_digits
<= buf_size
);
1501 if (digits
> max_digits
)
1502 digits
= max_digits
;
1504 one
= real_digit (1);
1505 ten
= ten_to_ptwo (0);
1513 cmp_one
= do_compare (&r
, one
, 0);
1518 /* Number is greater than one. Convert significand to an integer
1519 and strip trailing decimal zeros. */
1522 SET_REAL_EXP (&u
, SIGNIFICAND_BITS
- 1);
1524 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1525 m
= floor_log2 (max_digits
);
1527 /* Iterate over the bits of the possible powers of 10 that might
1528 be present in U and eliminate them. That is, if we find that
1529 10**2**M divides U evenly, keep the division and increase
1535 do_divide (&t
, &u
, ten_to_ptwo (m
));
1536 do_fix_trunc (&v
, &t
);
1537 if (cmp_significands (&v
, &t
) == 0)
1545 /* Revert the scaling to integer that we performed earlier. */
1546 SET_REAL_EXP (&u
, REAL_EXP (&u
) + REAL_EXP (&r
)
1547 - (SIGNIFICAND_BITS
- 1));
1550 /* Find power of 10. Do this by dividing out 10**2**M when
1551 this is larger than the current remainder. Fill PTEN with
1552 the power of 10 that we compute. */
1553 if (REAL_EXP (&r
) > 0)
1555 m
= floor_log2 ((int)(REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1558 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1559 if (do_compare (&u
, ptentwo
, 0) >= 0)
1561 do_divide (&u
, &u
, ptentwo
);
1562 do_multiply (&pten
, &pten
, ptentwo
);
1569 /* We managed to divide off enough tens in the above reduction
1570 loop that we've now got a negative exponent. Fall into the
1571 less-than-one code to compute the proper value for PTEN. */
1578 /* Number is less than one. Pad significand with leading
1584 /* Stop if we'd shift bits off the bottom. */
1588 do_multiply (&u
, &v
, ten
);
1590 /* Stop if we're now >= 1. */
1591 if (REAL_EXP (&u
) > 0)
1599 /* Find power of 10. Do this by multiplying in P=10**2**M when
1600 the current remainder is smaller than 1/P. Fill PTEN with the
1601 power of 10 that we compute. */
1602 m
= floor_log2 ((int)(-REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1605 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1606 const REAL_VALUE_TYPE
*ptenmtwo
= ten_to_mptwo (m
);
1608 if (do_compare (&v
, ptenmtwo
, 0) <= 0)
1610 do_multiply (&v
, &v
, ptentwo
);
1611 do_multiply (&pten
, &pten
, ptentwo
);
1617 /* Invert the positive power of 10 that we've collected so far. */
1618 do_divide (&pten
, one
, &pten
);
1626 /* At this point, PTEN should contain the nearest power of 10 smaller
1627 than R, such that this division produces the first digit.
1629 Using a divide-step primitive that returns the complete integral
1630 remainder avoids the rounding error that would be produced if
1631 we were to use do_divide here and then simply multiply by 10 for
1632 each subsequent digit. */
1634 digit
= rtd_divmod (&r
, &pten
);
1636 /* Be prepared for error in that division via underflow ... */
1637 if (digit
== 0 && cmp_significand_0 (&r
))
1639 /* Multiply by 10 and try again. */
1640 do_multiply (&r
, &r
, ten
);
1641 digit
= rtd_divmod (&r
, &pten
);
1643 gcc_assert (digit
!= 0);
1646 /* ... or overflow. */
1656 gcc_assert (digit
<= 10);
1660 /* Generate subsequent digits. */
1661 while (--digits
> 0)
1663 do_multiply (&r
, &r
, ten
);
1664 digit
= rtd_divmod (&r
, &pten
);
1669 /* Generate one more digit with which to do rounding. */
1670 do_multiply (&r
, &r
, ten
);
1671 digit
= rtd_divmod (&r
, &pten
);
1673 /* Round the result. */
1676 /* Round to nearest. If R is nonzero there are additional
1677 nonzero digits to be extracted. */
1678 if (cmp_significand_0 (&r
))
1680 /* Round to even. */
1681 else if ((p
[-1] - '0') & 1)
1698 /* Carry out of the first digit. This means we had all 9's and
1699 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1707 /* Insert the decimal point. */
1708 first
[0] = first
[1];
1711 /* If requested, drop trailing zeros. Never crop past "1.0". */
1712 if (crop_trailing_zeros
)
1713 while (last
> first
+ 3 && last
[-1] == '0')
1716 /* Append the exponent. */
1717 sprintf (last
, "e%+d", dec_exp
);
1720 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1721 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1722 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1723 strip trailing zeros. */
1726 real_to_hexadecimal (char *str
, const REAL_VALUE_TYPE
*r
, size_t buf_size
,
1727 size_t digits
, int crop_trailing_zeros
)
1729 int i
, j
, exp
= REAL_EXP (r
);
1742 strcpy (str
, (r
->sign
? "-Inf" : "+Inf"));
1745 /* ??? Print the significand as well, if not canonical? */
1746 strcpy (str
, (r
->sign
? "-NaN" : "+NaN"));
1754 /* Hexadecimal format for decimal floats is not interesting. */
1755 strcpy (str
, "N/A");
1760 digits
= SIGNIFICAND_BITS
/ 4;
1762 /* Bound the number of digits printed by the size of the output buffer. */
1764 sprintf (exp_buf
, "p%+d", exp
);
1765 max_digits
= buf_size
- strlen (exp_buf
) - r
->sign
- 4 - 1;
1766 gcc_assert (max_digits
<= buf_size
);
1767 if (digits
> max_digits
)
1768 digits
= max_digits
;
1779 for (i
= SIGSZ
- 1; i
>= 0; --i
)
1780 for (j
= HOST_BITS_PER_LONG
- 4; j
>= 0; j
-= 4)
1782 *p
++ = "0123456789abcdef"[(r
->sig
[i
] >> j
) & 15];
1788 if (crop_trailing_zeros
)
1789 while (p
> first
+ 1 && p
[-1] == '0')
1792 sprintf (p
, "p%+d", exp
);
1795 /* Initialize R from a decimal or hexadecimal string. The string is
1796 assumed to have been syntax checked already. Return -1 if the
1797 value underflows, +1 if overflows, and 0 otherwise. */
1800 real_from_string (REAL_VALUE_TYPE
*r
, const char *str
)
1812 else if (*str
== '+')
1815 if (str
[0] == '0' && (str
[1] == 'x' || str
[1] == 'X'))
1817 /* Hexadecimal floating point. */
1818 int pos
= SIGNIFICAND_BITS
- 4, d
;
1826 d
= hex_value (*str
);
1831 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
1832 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
1836 /* Ensure correct rounding by setting last bit if there is
1837 a subsequent nonzero digit. */
1845 if (pos
== SIGNIFICAND_BITS
- 4)
1852 d
= hex_value (*str
);
1857 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
1858 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
1862 /* Ensure correct rounding by setting last bit if there is
1863 a subsequent nonzero digit. */
1869 /* If the mantissa is zero, ignore the exponent. */
1870 if (!cmp_significand_0 (r
))
1873 if (*str
== 'p' || *str
== 'P')
1875 bool exp_neg
= false;
1883 else if (*str
== '+')
1887 while (ISDIGIT (*str
))
1893 /* Overflowed the exponent. */
1908 SET_REAL_EXP (r
, exp
);
1914 /* Decimal floating point. */
1915 const REAL_VALUE_TYPE
*ten
= ten_to_ptwo (0);
1920 while (ISDIGIT (*str
))
1923 do_multiply (r
, r
, ten
);
1925 do_add (r
, r
, real_digit (d
), 0);
1930 if (r
->cl
== rvc_zero
)
1935 while (ISDIGIT (*str
))
1938 do_multiply (r
, r
, ten
);
1940 do_add (r
, r
, real_digit (d
), 0);
1945 /* If the mantissa is zero, ignore the exponent. */
1946 if (r
->cl
== rvc_zero
)
1949 if (*str
== 'e' || *str
== 'E')
1951 bool exp_neg
= false;
1959 else if (*str
== '+')
1963 while (ISDIGIT (*str
))
1969 /* Overflowed the exponent. */
1983 times_pten (r
, exp
);
2002 /* Legacy. Similar, but return the result directly. */
2005 real_from_string2 (const char *s
, enum machine_mode mode
)
2009 real_from_string (&r
, s
);
2010 if (mode
!= VOIDmode
)
2011 real_convert (&r
, mode
, &r
);
2016 /* Initialize R from string S and desired MODE. */
2019 real_from_string3 (REAL_VALUE_TYPE
*r
, const char *s
, enum machine_mode mode
)
2021 if (DECIMAL_FLOAT_MODE_P (mode
))
2022 decimal_real_from_string (r
, s
);
2024 real_from_string (r
, s
);
2026 if (mode
!= VOIDmode
)
2027 real_convert (r
, mode
, r
);
2030 /* Initialize R from the integer pair HIGH+LOW. */
2033 real_from_integer (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
2034 unsigned HOST_WIDE_INT low
, HOST_WIDE_INT high
,
2037 if (low
== 0 && high
== 0)
2041 memset (r
, 0, sizeof (*r
));
2043 r
->sign
= high
< 0 && !unsigned_p
;
2044 SET_REAL_EXP (r
, 2 * HOST_BITS_PER_WIDE_INT
);
2055 if (HOST_BITS_PER_LONG
== HOST_BITS_PER_WIDE_INT
)
2057 r
->sig
[SIGSZ
-1] = high
;
2058 r
->sig
[SIGSZ
-2] = low
;
2062 gcc_assert (HOST_BITS_PER_LONG
*2 == HOST_BITS_PER_WIDE_INT
);
2063 r
->sig
[SIGSZ
-1] = high
>> (HOST_BITS_PER_LONG
- 1) >> 1;
2064 r
->sig
[SIGSZ
-2] = high
;
2065 r
->sig
[SIGSZ
-3] = low
>> (HOST_BITS_PER_LONG
- 1) >> 1;
2066 r
->sig
[SIGSZ
-4] = low
;
2072 if (mode
!= VOIDmode
)
2073 real_convert (r
, mode
, r
);
2076 /* Returns 10**2**N. */
2078 static const REAL_VALUE_TYPE
*
2081 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2083 gcc_assert (n
>= 0);
2084 gcc_assert (n
< EXP_BITS
);
2086 if (tens
[n
].cl
== rvc_zero
)
2088 if (n
< (HOST_BITS_PER_WIDE_INT
== 64 ? 5 : 4))
2090 HOST_WIDE_INT t
= 10;
2093 for (i
= 0; i
< n
; ++i
)
2096 real_from_integer (&tens
[n
], VOIDmode
, t
, 0, 1);
2100 const REAL_VALUE_TYPE
*t
= ten_to_ptwo (n
- 1);
2101 do_multiply (&tens
[n
], t
, t
);
2108 /* Returns 10**(-2**N). */
2110 static const REAL_VALUE_TYPE
*
2111 ten_to_mptwo (int n
)
2113 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2115 gcc_assert (n
>= 0);
2116 gcc_assert (n
< EXP_BITS
);
2118 if (tens
[n
].cl
== rvc_zero
)
2119 do_divide (&tens
[n
], real_digit (1), ten_to_ptwo (n
));
2126 static const REAL_VALUE_TYPE
*
2129 static REAL_VALUE_TYPE num
[10];
2131 gcc_assert (n
>= 0);
2132 gcc_assert (n
<= 9);
2134 if (n
> 0 && num
[n
].cl
== rvc_zero
)
2135 real_from_integer (&num
[n
], VOIDmode
, n
, 0, 1);
2140 /* Multiply R by 10**EXP. */
2143 times_pten (REAL_VALUE_TYPE
*r
, int exp
)
2145 REAL_VALUE_TYPE pten
, *rr
;
2146 bool negative
= (exp
< 0);
2152 pten
= *real_digit (1);
2158 for (i
= 0; exp
> 0; ++i
, exp
>>= 1)
2160 do_multiply (rr
, rr
, ten_to_ptwo (i
));
2163 do_divide (r
, r
, &pten
);
2166 /* Returns the special REAL_VALUE_TYPE enumerated by E. */
2168 const REAL_VALUE_TYPE
*
2169 get_real_const (enum real_value_const e
)
2171 static REAL_VALUE_TYPE value
[rv_max
];
2173 gcc_assert (e
< rv_max
);
2175 /* Initialize mathematical constants for constant folding builtins.
2176 These constants need to be given to at least 160 bits precision. */
2177 if (value
[e
].cl
== rvc_zero
)
2183 mpfr_init2 (m
, SIGNIFICAND_BITS
);
2184 mpfr_set_ui (m
, 1, GMP_RNDN
);
2185 mpfr_exp (m
, m
, GMP_RNDN
);
2186 real_from_mpfr (&value
[e
], m
, NULL_TREE
, GMP_RNDN
);
2191 real_arithmetic (&value
[e
], RDIV_EXPR
, &dconst1
, real_digit (3));
2196 mpfr_init2 (m
, SIGNIFICAND_BITS
);
2197 mpfr_sqrt_ui (m
, 2, GMP_RNDN
);
2198 real_from_mpfr (&value
[e
], m
, NULL_TREE
, GMP_RNDN
);
2209 /* Fills R with +Inf. */
2212 real_inf (REAL_VALUE_TYPE
*r
)
2217 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2218 we force a QNaN, else we force an SNaN. The string, if not empty,
2219 is parsed as a number and placed in the significand. Return true
2220 if the string was successfully parsed. */
2223 real_nan (REAL_VALUE_TYPE
*r
, const char *str
, int quiet
,
2224 enum machine_mode mode
)
2226 const struct real_format
*fmt
;
2228 fmt
= REAL_MODE_FORMAT (mode
);
2234 get_canonical_qnan (r
, 0);
2236 get_canonical_snan (r
, 0);
2242 memset (r
, 0, sizeof (*r
));
2245 /* Parse akin to strtol into the significand of R. */
2247 while (ISSPACE (*str
))
2251 else if (*str
== '+')
2256 if (*str
== 'x' || *str
== 'X')
2265 while ((d
= hex_value (*str
)) < base
)
2272 lshift_significand (r
, r
, 3);
2275 lshift_significand (r
, r
, 4);
2278 lshift_significand_1 (&u
, r
);
2279 lshift_significand (r
, r
, 3);
2280 add_significands (r
, r
, &u
);
2288 add_significands (r
, r
, &u
);
2293 /* Must have consumed the entire string for success. */
2297 /* Shift the significand into place such that the bits
2298 are in the most significant bits for the format. */
2299 lshift_significand (r
, r
, SIGNIFICAND_BITS
- fmt
->pnan
);
2301 /* Our MSB is always unset for NaNs. */
2302 r
->sig
[SIGSZ
-1] &= ~SIG_MSB
;
2304 /* Force quiet or signalling NaN. */
2305 r
->signalling
= !quiet
;
2311 /* Fills R with the largest finite value representable in mode MODE.
2312 If SIGN is nonzero, R is set to the most negative finite value. */
2315 real_maxval (REAL_VALUE_TYPE
*r
, int sign
, enum machine_mode mode
)
2317 const struct real_format
*fmt
;
2320 fmt
= REAL_MODE_FORMAT (mode
);
2322 memset (r
, 0, sizeof (*r
));
2325 decimal_real_maxval (r
, sign
, mode
);
2330 SET_REAL_EXP (r
, fmt
->emax
);
2332 np2
= SIGNIFICAND_BITS
- fmt
->p
;
2333 memset (r
->sig
, -1, SIGSZ
* sizeof (unsigned long));
2334 clear_significand_below (r
, np2
);
2336 if (fmt
->pnan
< fmt
->p
)
2337 /* This is an IBM extended double format made up of two IEEE
2338 doubles. The value of the long double is the sum of the
2339 values of the two parts. The most significant part is
2340 required to be the value of the long double rounded to the
2341 nearest double. Rounding means we need a slightly smaller
2342 value for LDBL_MAX. */
2343 clear_significand_bit (r
, SIGNIFICAND_BITS
- fmt
->pnan
);
2347 /* Fills R with 2**N. */
2350 real_2expN (REAL_VALUE_TYPE
*r
, int n
, enum machine_mode fmode
)
2352 memset (r
, 0, sizeof (*r
));
2357 else if (n
< -MAX_EXP
)
2362 SET_REAL_EXP (r
, n
);
2363 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2365 if (DECIMAL_FLOAT_MODE_P (fmode
))
2366 decimal_real_convert (r
, fmode
, r
);
2371 round_for_format (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
)
2374 unsigned long sticky
;
2382 decimal_round_for_format (fmt
, r
);
2385 /* FIXME. We can come here via fp_easy_constant
2386 (e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
2387 investigated whether this convert needs to be here, or
2388 something else is missing. */
2389 decimal_real_convert (r
, DFmode
, r
);
2393 emin2m1
= fmt
->emin
- 1;
2396 np2
= SIGNIFICAND_BITS
- p2
;
2400 get_zero (r
, r
->sign
);
2402 if (!fmt
->has_signed_zero
)
2407 get_inf (r
, r
->sign
);
2412 clear_significand_below (r
, np2
);
2422 /* Check the range of the exponent. If we're out of range,
2423 either underflow or overflow. */
2424 if (REAL_EXP (r
) > emax2
)
2426 else if (REAL_EXP (r
) <= emin2m1
)
2430 if (!fmt
->has_denorm
)
2432 /* Don't underflow completely until we've had a chance to round. */
2433 if (REAL_EXP (r
) < emin2m1
)
2438 diff
= emin2m1
- REAL_EXP (r
) + 1;
2442 /* De-normalize the significand. */
2443 r
->sig
[0] |= sticky_rshift_significand (r
, r
, diff
);
2444 SET_REAL_EXP (r
, REAL_EXP (r
) + diff
);
2448 /* There are P2 true significand bits, followed by one guard bit,
2449 followed by one sticky bit, followed by stuff. Fold nonzero
2450 stuff into the sticky bit. */
2453 for (i
= 0, w
= (np2
- 1) / HOST_BITS_PER_LONG
; i
< w
; ++i
)
2454 sticky
|= r
->sig
[i
];
2456 r
->sig
[w
] & (((unsigned long)1 << ((np2
- 1) % HOST_BITS_PER_LONG
)) - 1);
2458 guard
= test_significand_bit (r
, np2
- 1);
2459 lsb
= test_significand_bit (r
, np2
);
2461 /* Round to even. */
2462 if (guard
&& (sticky
|| lsb
))
2466 set_significand_bit (&u
, np2
);
2468 if (add_significands (r
, r
, &u
))
2470 /* Overflow. Means the significand had been all ones, and
2471 is now all zeros. Need to increase the exponent, and
2472 possibly re-normalize it. */
2473 SET_REAL_EXP (r
, REAL_EXP (r
) + 1);
2474 if (REAL_EXP (r
) > emax2
)
2476 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2480 /* Catch underflow that we deferred until after rounding. */
2481 if (REAL_EXP (r
) <= emin2m1
)
2484 /* Clear out trailing garbage. */
2485 clear_significand_below (r
, np2
);
2488 /* Extend or truncate to a new mode. */
2491 real_convert (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
2492 const REAL_VALUE_TYPE
*a
)
2494 const struct real_format
*fmt
;
2496 fmt
= REAL_MODE_FORMAT (mode
);
2501 if (a
->decimal
|| fmt
->b
== 10)
2502 decimal_real_convert (r
, mode
, a
);
2504 round_for_format (fmt
, r
);
2506 /* round_for_format de-normalizes denormals. Undo just that part. */
2507 if (r
->cl
== rvc_normal
)
2511 /* Legacy. Likewise, except return the struct directly. */
2514 real_value_truncate (enum machine_mode mode
, REAL_VALUE_TYPE a
)
2517 real_convert (&r
, mode
, &a
);
2521 /* Return true if truncating to MODE is exact. */
2524 exact_real_truncate (enum machine_mode mode
, const REAL_VALUE_TYPE
*a
)
2526 const struct real_format
*fmt
;
2530 fmt
= REAL_MODE_FORMAT (mode
);
2533 /* Don't allow conversion to denormals. */
2534 emin2m1
= fmt
->emin
- 1;
2535 if (REAL_EXP (a
) <= emin2m1
)
2538 /* After conversion to the new mode, the value must be identical. */
2539 real_convert (&t
, mode
, a
);
2540 return real_identical (&t
, a
);
2543 /* Write R to the given target format. Place the words of the result
2544 in target word order in BUF. There are always 32 bits in each
2545 long, no matter the size of the host long.
2547 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2550 real_to_target_fmt (long *buf
, const REAL_VALUE_TYPE
*r_orig
,
2551 const struct real_format
*fmt
)
2557 round_for_format (fmt
, &r
);
2561 (*fmt
->encode
) (fmt
, buf
, &r
);
2566 /* Similar, but look up the format from MODE. */
2569 real_to_target (long *buf
, const REAL_VALUE_TYPE
*r
, enum machine_mode mode
)
2571 const struct real_format
*fmt
;
2573 fmt
= REAL_MODE_FORMAT (mode
);
2576 return real_to_target_fmt (buf
, r
, fmt
);
2579 /* Read R from the given target format. Read the words of the result
2580 in target word order in BUF. There are always 32 bits in each
2581 long, no matter the size of the host long. */
2584 real_from_target_fmt (REAL_VALUE_TYPE
*r
, const long *buf
,
2585 const struct real_format
*fmt
)
2587 (*fmt
->decode
) (fmt
, r
, buf
);
2590 /* Similar, but look up the format from MODE. */
2593 real_from_target (REAL_VALUE_TYPE
*r
, const long *buf
, enum machine_mode mode
)
2595 const struct real_format
*fmt
;
2597 fmt
= REAL_MODE_FORMAT (mode
);
2600 (*fmt
->decode
) (fmt
, r
, buf
);
2603 /* Return the number of bits of the largest binary value that the
2604 significand of MODE will hold. */
2605 /* ??? Legacy. Should get access to real_format directly. */
2608 significand_size (enum machine_mode mode
)
2610 const struct real_format
*fmt
;
2612 fmt
= REAL_MODE_FORMAT (mode
);
2618 /* Return the size in bits of the largest binary value that can be
2619 held by the decimal coefficient for this mode. This is one more
2620 than the number of bits required to hold the largest coefficient
2622 double log2_10
= 3.3219281;
2623 return fmt
->p
* log2_10
;
2628 /* Return a hash value for the given real value. */
2629 /* ??? The "unsigned int" return value is intended to be hashval_t,
2630 but I didn't want to pull hashtab.h into real.h. */
2633 real_hash (const REAL_VALUE_TYPE
*r
)
2638 h
= r
->cl
| (r
->sign
<< 2);
2646 h
|= REAL_EXP (r
) << 3;
2651 h
^= (unsigned int)-1;
2660 if (sizeof(unsigned long) > sizeof(unsigned int))
2661 for (i
= 0; i
< SIGSZ
; ++i
)
2663 unsigned long s
= r
->sig
[i
];
2664 h
^= s
^ (s
>> (HOST_BITS_PER_LONG
/ 2));
2667 for (i
= 0; i
< SIGSZ
; ++i
)
2673 /* IEEE single-precision format. */
2675 static void encode_ieee_single (const struct real_format
*fmt
,
2676 long *, const REAL_VALUE_TYPE
*);
2677 static void decode_ieee_single (const struct real_format
*,
2678 REAL_VALUE_TYPE
*, const long *);
2681 encode_ieee_single (const struct real_format
*fmt
, long *buf
,
2682 const REAL_VALUE_TYPE
*r
)
2684 unsigned long image
, sig
, exp
;
2685 unsigned long sign
= r
->sign
;
2686 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2689 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
2700 image
|= 0x7fffffff;
2707 sig
= (fmt
->canonical_nan_lsbs_set
? (1 << 22) - 1 : 0);
2708 if (r
->signalling
== fmt
->qnan_msb_set
)
2719 image
|= 0x7fffffff;
2723 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2724 whereas the intermediate representation is 0.F x 2**exp.
2725 Which means we're off by one. */
2729 exp
= REAL_EXP (r
) + 127 - 1;
2742 decode_ieee_single (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
2745 unsigned long image
= buf
[0] & 0xffffffff;
2746 bool sign
= (image
>> 31) & 1;
2747 int exp
= (image
>> 23) & 0xff;
2749 memset (r
, 0, sizeof (*r
));
2750 image
<<= HOST_BITS_PER_LONG
- 24;
2755 if (image
&& fmt
->has_denorm
)
2759 SET_REAL_EXP (r
, -126);
2760 r
->sig
[SIGSZ
-1] = image
<< 1;
2763 else if (fmt
->has_signed_zero
)
2766 else if (exp
== 255 && (fmt
->has_nans
|| fmt
->has_inf
))
2772 r
->signalling
= (((image
>> (HOST_BITS_PER_LONG
- 2)) & 1)
2773 ^ fmt
->qnan_msb_set
);
2774 r
->sig
[SIGSZ
-1] = image
;
2786 SET_REAL_EXP (r
, exp
- 127 + 1);
2787 r
->sig
[SIGSZ
-1] = image
| SIG_MSB
;
2791 const struct real_format ieee_single_format
=
2810 const struct real_format mips_single_format
=
2829 const struct real_format motorola_single_format
=
2848 /* IEEE double-precision format. */
2850 static void encode_ieee_double (const struct real_format
*fmt
,
2851 long *, const REAL_VALUE_TYPE
*);
2852 static void decode_ieee_double (const struct real_format
*,
2853 REAL_VALUE_TYPE
*, const long *);
2856 encode_ieee_double (const struct real_format
*fmt
, long *buf
,
2857 const REAL_VALUE_TYPE
*r
)
2859 unsigned long image_lo
, image_hi
, sig_lo
, sig_hi
, exp
;
2860 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2862 image_hi
= r
->sign
<< 31;
2865 if (HOST_BITS_PER_LONG
== 64)
2867 sig_hi
= r
->sig
[SIGSZ
-1];
2868 sig_lo
= (sig_hi
>> (64 - 53)) & 0xffffffff;
2869 sig_hi
= (sig_hi
>> (64 - 53 + 1) >> 31) & 0xfffff;
2873 sig_hi
= r
->sig
[SIGSZ
-1];
2874 sig_lo
= r
->sig
[SIGSZ
-2];
2875 sig_lo
= (sig_hi
<< 21) | (sig_lo
>> 11);
2876 sig_hi
= (sig_hi
>> 11) & 0xfffff;
2886 image_hi
|= 2047 << 20;
2889 image_hi
|= 0x7fffffff;
2890 image_lo
= 0xffffffff;
2899 if (fmt
->canonical_nan_lsbs_set
)
2901 sig_hi
= (1 << 19) - 1;
2902 sig_lo
= 0xffffffff;
2910 if (r
->signalling
== fmt
->qnan_msb_set
)
2911 sig_hi
&= ~(1 << 19);
2914 if (sig_hi
== 0 && sig_lo
== 0)
2917 image_hi
|= 2047 << 20;
2923 image_hi
|= 0x7fffffff;
2924 image_lo
= 0xffffffff;
2929 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2930 whereas the intermediate representation is 0.F x 2**exp.
2931 Which means we're off by one. */
2935 exp
= REAL_EXP (r
) + 1023 - 1;
2936 image_hi
|= exp
<< 20;
2945 if (FLOAT_WORDS_BIG_ENDIAN
)
2946 buf
[0] = image_hi
, buf
[1] = image_lo
;
2948 buf
[0] = image_lo
, buf
[1] = image_hi
;
2952 decode_ieee_double (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
2955 unsigned long image_hi
, image_lo
;
2959 if (FLOAT_WORDS_BIG_ENDIAN
)
2960 image_hi
= buf
[0], image_lo
= buf
[1];
2962 image_lo
= buf
[0], image_hi
= buf
[1];
2963 image_lo
&= 0xffffffff;
2964 image_hi
&= 0xffffffff;
2966 sign
= (image_hi
>> 31) & 1;
2967 exp
= (image_hi
>> 20) & 0x7ff;
2969 memset (r
, 0, sizeof (*r
));
2971 image_hi
<<= 32 - 21;
2972 image_hi
|= image_lo
>> 21;
2973 image_hi
&= 0x7fffffff;
2974 image_lo
<<= 32 - 21;
2978 if ((image_hi
|| image_lo
) && fmt
->has_denorm
)
2982 SET_REAL_EXP (r
, -1022);
2983 if (HOST_BITS_PER_LONG
== 32)
2985 image_hi
= (image_hi
<< 1) | (image_lo
>> 31);
2987 r
->sig
[SIGSZ
-1] = image_hi
;
2988 r
->sig
[SIGSZ
-2] = image_lo
;
2992 image_hi
= (image_hi
<< 31 << 2) | (image_lo
<< 1);
2993 r
->sig
[SIGSZ
-1] = image_hi
;
2997 else if (fmt
->has_signed_zero
)
3000 else if (exp
== 2047 && (fmt
->has_nans
|| fmt
->has_inf
))
3002 if (image_hi
|| image_lo
)
3006 r
->signalling
= ((image_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
3007 if (HOST_BITS_PER_LONG
== 32)
3009 r
->sig
[SIGSZ
-1] = image_hi
;
3010 r
->sig
[SIGSZ
-2] = image_lo
;
3013 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
;
3025 SET_REAL_EXP (r
, exp
- 1023 + 1);
3026 if (HOST_BITS_PER_LONG
== 32)
3028 r
->sig
[SIGSZ
-1] = image_hi
| SIG_MSB
;
3029 r
->sig
[SIGSZ
-2] = image_lo
;
3032 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
| SIG_MSB
;
3036 const struct real_format ieee_double_format
=
3055 const struct real_format mips_double_format
=
3074 const struct real_format motorola_double_format
=
3093 /* IEEE extended real format. This comes in three flavors: Intel's as
3094 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
3095 12- and 16-byte images may be big- or little endian; Motorola's is
3096 always big endian. */
3098 /* Helper subroutine which converts from the internal format to the
3099 12-byte little-endian Intel format. Functions below adjust this
3100 for the other possible formats. */
3102 encode_ieee_extended (const struct real_format
*fmt
, long *buf
,
3103 const REAL_VALUE_TYPE
*r
)
3105 unsigned long image_hi
, sig_hi
, sig_lo
;
3106 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
3108 image_hi
= r
->sign
<< 15;
3109 sig_hi
= sig_lo
= 0;
3121 /* Intel requires the explicit integer bit to be set, otherwise
3122 it considers the value a "pseudo-infinity". Motorola docs
3123 say it doesn't care. */
3124 sig_hi
= 0x80000000;
3129 sig_lo
= sig_hi
= 0xffffffff;
3139 if (fmt
->canonical_nan_lsbs_set
)
3141 sig_hi
= (1 << 30) - 1;
3142 sig_lo
= 0xffffffff;
3145 else if (HOST_BITS_PER_LONG
== 32)
3147 sig_hi
= r
->sig
[SIGSZ
-1];
3148 sig_lo
= r
->sig
[SIGSZ
-2];
3152 sig_lo
= r
->sig
[SIGSZ
-1];
3153 sig_hi
= sig_lo
>> 31 >> 1;
3154 sig_lo
&= 0xffffffff;
3156 if (r
->signalling
== fmt
->qnan_msb_set
)
3157 sig_hi
&= ~(1 << 30);
3160 if ((sig_hi
& 0x7fffffff) == 0 && sig_lo
== 0)
3163 /* Intel requires the explicit integer bit to be set, otherwise
3164 it considers the value a "pseudo-nan". Motorola docs say it
3166 sig_hi
|= 0x80000000;
3171 sig_lo
= sig_hi
= 0xffffffff;
3177 int exp
= REAL_EXP (r
);
3179 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3180 whereas the intermediate representation is 0.F x 2**exp.
3181 Which means we're off by one.
3183 Except for Motorola, which consider exp=0 and explicit
3184 integer bit set to continue to be normalized. In theory
3185 this discrepancy has been taken care of by the difference
3186 in fmt->emin in round_for_format. */
3193 gcc_assert (exp
>= 0);
3197 if (HOST_BITS_PER_LONG
== 32)
3199 sig_hi
= r
->sig
[SIGSZ
-1];
3200 sig_lo
= r
->sig
[SIGSZ
-2];
3204 sig_lo
= r
->sig
[SIGSZ
-1];
3205 sig_hi
= sig_lo
>> 31 >> 1;
3206 sig_lo
&= 0xffffffff;
3215 buf
[0] = sig_lo
, buf
[1] = sig_hi
, buf
[2] = image_hi
;
3218 /* Convert from the internal format to the 12-byte Motorola format
3219 for an IEEE extended real. */
3221 encode_ieee_extended_motorola (const struct real_format
*fmt
, long *buf
,
3222 const REAL_VALUE_TYPE
*r
)
3225 encode_ieee_extended (fmt
, intermed
, r
);
3227 /* Motorola chips are assumed always to be big-endian. Also, the
3228 padding in a Motorola extended real goes between the exponent and
3229 the mantissa. At this point the mantissa is entirely within
3230 elements 0 and 1 of intermed, and the exponent entirely within
3231 element 2, so all we have to do is swap the order around, and
3232 shift element 2 left 16 bits. */
3233 buf
[0] = intermed
[2] << 16;
3234 buf
[1] = intermed
[1];
3235 buf
[2] = intermed
[0];
3238 /* Convert from the internal format to the 12-byte Intel format for
3239 an IEEE extended real. */
3241 encode_ieee_extended_intel_96 (const struct real_format
*fmt
, long *buf
,
3242 const REAL_VALUE_TYPE
*r
)
3244 if (FLOAT_WORDS_BIG_ENDIAN
)
3246 /* All the padding in an Intel-format extended real goes at the high
3247 end, which in this case is after the mantissa, not the exponent.
3248 Therefore we must shift everything down 16 bits. */
3250 encode_ieee_extended (fmt
, intermed
, r
);
3251 buf
[0] = ((intermed
[2] << 16) | ((unsigned long)(intermed
[1] & 0xFFFF0000) >> 16));
3252 buf
[1] = ((intermed
[1] << 16) | ((unsigned long)(intermed
[0] & 0xFFFF0000) >> 16));
3253 buf
[2] = (intermed
[0] << 16);
3256 /* encode_ieee_extended produces what we want directly. */
3257 encode_ieee_extended (fmt
, buf
, r
);
3260 /* Convert from the internal format to the 16-byte Intel format for
3261 an IEEE extended real. */
3263 encode_ieee_extended_intel_128 (const struct real_format
*fmt
, long *buf
,
3264 const REAL_VALUE_TYPE
*r
)
3266 /* All the padding in an Intel-format extended real goes at the high end. */
3267 encode_ieee_extended_intel_96 (fmt
, buf
, r
);
3271 /* As above, we have a helper function which converts from 12-byte
3272 little-endian Intel format to internal format. Functions below
3273 adjust for the other possible formats. */
3275 decode_ieee_extended (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3278 unsigned long image_hi
, sig_hi
, sig_lo
;
3282 sig_lo
= buf
[0], sig_hi
= buf
[1], image_hi
= buf
[2];
3283 sig_lo
&= 0xffffffff;
3284 sig_hi
&= 0xffffffff;
3285 image_hi
&= 0xffffffff;
3287 sign
= (image_hi
>> 15) & 1;
3288 exp
= image_hi
& 0x7fff;
3290 memset (r
, 0, sizeof (*r
));
3294 if ((sig_hi
|| sig_lo
) && fmt
->has_denorm
)
3299 /* When the IEEE format contains a hidden bit, we know that
3300 it's zero at this point, and so shift up the significand
3301 and decrease the exponent to match. In this case, Motorola
3302 defines the explicit integer bit to be valid, so we don't
3303 know whether the msb is set or not. */
3304 SET_REAL_EXP (r
, fmt
->emin
);
3305 if (HOST_BITS_PER_LONG
== 32)
3307 r
->sig
[SIGSZ
-1] = sig_hi
;
3308 r
->sig
[SIGSZ
-2] = sig_lo
;
3311 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3315 else if (fmt
->has_signed_zero
)
3318 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
3320 /* See above re "pseudo-infinities" and "pseudo-nans".
3321 Short summary is that the MSB will likely always be
3322 set, and that we don't care about it. */
3323 sig_hi
&= 0x7fffffff;
3325 if (sig_hi
|| sig_lo
)
3329 r
->signalling
= ((sig_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
3330 if (HOST_BITS_PER_LONG
== 32)
3332 r
->sig
[SIGSZ
-1] = sig_hi
;
3333 r
->sig
[SIGSZ
-2] = sig_lo
;
3336 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3348 SET_REAL_EXP (r
, exp
- 16383 + 1);
3349 if (HOST_BITS_PER_LONG
== 32)
3351 r
->sig
[SIGSZ
-1] = sig_hi
;
3352 r
->sig
[SIGSZ
-2] = sig_lo
;
3355 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3359 /* Convert from the internal format to the 12-byte Motorola format
3360 for an IEEE extended real. */
3362 decode_ieee_extended_motorola (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3367 /* Motorola chips are assumed always to be big-endian. Also, the
3368 padding in a Motorola extended real goes between the exponent and
3369 the mantissa; remove it. */
3370 intermed
[0] = buf
[2];
3371 intermed
[1] = buf
[1];
3372 intermed
[2] = (unsigned long)buf
[0] >> 16;
3374 decode_ieee_extended (fmt
, r
, intermed
);
3377 /* Convert from the internal format to the 12-byte Intel format for
3378 an IEEE extended real. */
3380 decode_ieee_extended_intel_96 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3383 if (FLOAT_WORDS_BIG_ENDIAN
)
3385 /* All the padding in an Intel-format extended real goes at the high
3386 end, which in this case is after the mantissa, not the exponent.
3387 Therefore we must shift everything up 16 bits. */
3390 intermed
[0] = (((unsigned long)buf
[2] >> 16) | (buf
[1] << 16));
3391 intermed
[1] = (((unsigned long)buf
[1] >> 16) | (buf
[0] << 16));
3392 intermed
[2] = ((unsigned long)buf
[0] >> 16);
3394 decode_ieee_extended (fmt
, r
, intermed
);
3397 /* decode_ieee_extended produces what we want directly. */
3398 decode_ieee_extended (fmt
, r
, buf
);
3401 /* Convert from the internal format to the 16-byte Intel format for
3402 an IEEE extended real. */
3404 decode_ieee_extended_intel_128 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3407 /* All the padding in an Intel-format extended real goes at the high end. */
3408 decode_ieee_extended_intel_96 (fmt
, r
, buf
);
3411 const struct real_format ieee_extended_motorola_format
=
3413 encode_ieee_extended_motorola
,
3414 decode_ieee_extended_motorola
,
3430 const struct real_format ieee_extended_intel_96_format
=
3432 encode_ieee_extended_intel_96
,
3433 decode_ieee_extended_intel_96
,
3449 const struct real_format ieee_extended_intel_128_format
=
3451 encode_ieee_extended_intel_128
,
3452 decode_ieee_extended_intel_128
,
3468 /* The following caters to i386 systems that set the rounding precision
3469 to 53 bits instead of 64, e.g. FreeBSD. */
3470 const struct real_format ieee_extended_intel_96_round_53_format
=
3472 encode_ieee_extended_intel_96
,
3473 decode_ieee_extended_intel_96
,
3489 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3490 numbers whose sum is equal to the extended precision value. The number
3491 with greater magnitude is first. This format has the same magnitude
3492 range as an IEEE double precision value, but effectively 106 bits of
3493 significand precision. Infinity and NaN are represented by their IEEE
3494 double precision value stored in the first number, the second number is
3495 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3497 static void encode_ibm_extended (const struct real_format
*fmt
,
3498 long *, const REAL_VALUE_TYPE
*);
3499 static void decode_ibm_extended (const struct real_format
*,
3500 REAL_VALUE_TYPE
*, const long *);
3503 encode_ibm_extended (const struct real_format
*fmt
, long *buf
,
3504 const REAL_VALUE_TYPE
*r
)
3506 REAL_VALUE_TYPE u
, normr
, v
;
3507 const struct real_format
*base_fmt
;
3509 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3511 /* Renormlize R before doing any arithmetic on it. */
3513 if (normr
.cl
== rvc_normal
)
3516 /* u = IEEE double precision portion of significand. */
3518 round_for_format (base_fmt
, &u
);
3519 encode_ieee_double (base_fmt
, &buf
[0], &u
);
3521 if (u
.cl
== rvc_normal
)
3523 do_add (&v
, &normr
, &u
, 1);
3524 /* Call round_for_format since we might need to denormalize. */
3525 round_for_format (base_fmt
, &v
);
3526 encode_ieee_double (base_fmt
, &buf
[2], &v
);
3530 /* Inf, NaN, 0 are all representable as doubles, so the
3531 least-significant part can be 0.0. */
3538 decode_ibm_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
, REAL_VALUE_TYPE
*r
,
3541 REAL_VALUE_TYPE u
, v
;
3542 const struct real_format
*base_fmt
;
3544 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3545 decode_ieee_double (base_fmt
, &u
, &buf
[0]);
3547 if (u
.cl
!= rvc_zero
&& u
.cl
!= rvc_inf
&& u
.cl
!= rvc_nan
)
3549 decode_ieee_double (base_fmt
, &v
, &buf
[2]);
3550 do_add (r
, &u
, &v
, 0);
3556 const struct real_format ibm_extended_format
=
3558 encode_ibm_extended
,
3559 decode_ibm_extended
,
3575 const struct real_format mips_extended_format
=
3577 encode_ibm_extended
,
3578 decode_ibm_extended
,
3595 /* IEEE quad precision format. */
3597 static void encode_ieee_quad (const struct real_format
*fmt
,
3598 long *, const REAL_VALUE_TYPE
*);
3599 static void decode_ieee_quad (const struct real_format
*,
3600 REAL_VALUE_TYPE
*, const long *);
3603 encode_ieee_quad (const struct real_format
*fmt
, long *buf
,
3604 const REAL_VALUE_TYPE
*r
)
3606 unsigned long image3
, image2
, image1
, image0
, exp
;
3607 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
3610 image3
= r
->sign
<< 31;
3615 rshift_significand (&u
, r
, SIGNIFICAND_BITS
- 113);
3624 image3
|= 32767 << 16;
3627 image3
|= 0x7fffffff;
3628 image2
= 0xffffffff;
3629 image1
= 0xffffffff;
3630 image0
= 0xffffffff;
3637 image3
|= 32767 << 16;
3641 if (fmt
->canonical_nan_lsbs_set
)
3644 image2
= image1
= image0
= 0xffffffff;
3647 else if (HOST_BITS_PER_LONG
== 32)
3652 image3
|= u
.sig
[3] & 0xffff;
3657 image1
= image0
>> 31 >> 1;
3659 image3
|= (image2
>> 31 >> 1) & 0xffff;
3660 image0
&= 0xffffffff;
3661 image2
&= 0xffffffff;
3663 if (r
->signalling
== fmt
->qnan_msb_set
)
3667 if (((image3
& 0xffff) | image2
| image1
| image0
) == 0)
3672 image3
|= 0x7fffffff;
3673 image2
= 0xffffffff;
3674 image1
= 0xffffffff;
3675 image0
= 0xffffffff;
3680 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3681 whereas the intermediate representation is 0.F x 2**exp.
3682 Which means we're off by one. */
3686 exp
= REAL_EXP (r
) + 16383 - 1;
3687 image3
|= exp
<< 16;
3689 if (HOST_BITS_PER_LONG
== 32)
3694 image3
|= u
.sig
[3] & 0xffff;
3699 image1
= image0
>> 31 >> 1;
3701 image3
|= (image2
>> 31 >> 1) & 0xffff;
3702 image0
&= 0xffffffff;
3703 image2
&= 0xffffffff;
3711 if (FLOAT_WORDS_BIG_ENDIAN
)
3728 decode_ieee_quad (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3731 unsigned long image3
, image2
, image1
, image0
;
3735 if (FLOAT_WORDS_BIG_ENDIAN
)
3749 image0
&= 0xffffffff;
3750 image1
&= 0xffffffff;
3751 image2
&= 0xffffffff;
3753 sign
= (image3
>> 31) & 1;
3754 exp
= (image3
>> 16) & 0x7fff;
3757 memset (r
, 0, sizeof (*r
));
3761 if ((image3
| image2
| image1
| image0
) && fmt
->has_denorm
)
3766 SET_REAL_EXP (r
, -16382 + (SIGNIFICAND_BITS
- 112));
3767 if (HOST_BITS_PER_LONG
== 32)
3776 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3777 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3782 else if (fmt
->has_signed_zero
)
3785 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
3787 if (image3
| image2
| image1
| image0
)
3791 r
->signalling
= ((image3
>> 15) & 1) ^ fmt
->qnan_msb_set
;
3793 if (HOST_BITS_PER_LONG
== 32)
3802 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3803 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3805 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
3817 SET_REAL_EXP (r
, exp
- 16383 + 1);
3819 if (HOST_BITS_PER_LONG
== 32)
3828 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3829 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3831 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
3832 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
3836 const struct real_format ieee_quad_format
=
3855 const struct real_format mips_quad_format
=
3874 /* Descriptions of VAX floating point formats can be found beginning at
3876 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
3878 The thing to remember is that they're almost IEEE, except for word
3879 order, exponent bias, and the lack of infinities, nans, and denormals.
3881 We don't implement the H_floating format here, simply because neither
3882 the VAX or Alpha ports use it. */
3884 static void encode_vax_f (const struct real_format
*fmt
,
3885 long *, const REAL_VALUE_TYPE
*);
3886 static void decode_vax_f (const struct real_format
*,
3887 REAL_VALUE_TYPE
*, const long *);
3888 static void encode_vax_d (const struct real_format
*fmt
,
3889 long *, const REAL_VALUE_TYPE
*);
3890 static void decode_vax_d (const struct real_format
*,
3891 REAL_VALUE_TYPE
*, const long *);
3892 static void encode_vax_g (const struct real_format
*fmt
,
3893 long *, const REAL_VALUE_TYPE
*);
3894 static void decode_vax_g (const struct real_format
*,
3895 REAL_VALUE_TYPE
*, const long *);
3898 encode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
3899 const REAL_VALUE_TYPE
*r
)
3901 unsigned long sign
, exp
, sig
, image
;
3903 sign
= r
->sign
<< 15;
3913 image
= 0xffff7fff | sign
;
3917 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
3918 exp
= REAL_EXP (r
) + 128;
3920 image
= (sig
<< 16) & 0xffff0000;
3934 decode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
3935 REAL_VALUE_TYPE
*r
, const long *buf
)
3937 unsigned long image
= buf
[0] & 0xffffffff;
3938 int exp
= (image
>> 7) & 0xff;
3940 memset (r
, 0, sizeof (*r
));
3945 r
->sign
= (image
>> 15) & 1;
3946 SET_REAL_EXP (r
, exp
- 128);
3948 image
= ((image
& 0x7f) << 16) | ((image
>> 16) & 0xffff);
3949 r
->sig
[SIGSZ
-1] = (image
<< (HOST_BITS_PER_LONG
- 24)) | SIG_MSB
;
3954 encode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
3955 const REAL_VALUE_TYPE
*r
)
3957 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
3962 image0
= image1
= 0;
3967 image0
= 0xffff7fff | sign
;
3968 image1
= 0xffffffff;
3972 /* Extract the significand into straight hi:lo. */
3973 if (HOST_BITS_PER_LONG
== 64)
3975 image0
= r
->sig
[SIGSZ
-1];
3976 image1
= (image0
>> (64 - 56)) & 0xffffffff;
3977 image0
= (image0
>> (64 - 56 + 1) >> 31) & 0x7fffff;
3981 image0
= r
->sig
[SIGSZ
-1];
3982 image1
= r
->sig
[SIGSZ
-2];
3983 image1
= (image0
<< 24) | (image1
>> 8);
3984 image0
= (image0
>> 8) & 0xffffff;
3987 /* Rearrange the half-words of the significand to match the
3989 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff007f;
3990 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
3992 /* Add the sign and exponent. */
3994 image0
|= (REAL_EXP (r
) + 128) << 7;
4001 if (FLOAT_WORDS_BIG_ENDIAN
)
4002 buf
[0] = image1
, buf
[1] = image0
;
4004 buf
[0] = image0
, buf
[1] = image1
;
4008 decode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4009 REAL_VALUE_TYPE
*r
, const long *buf
)
4011 unsigned long image0
, image1
;
4014 if (FLOAT_WORDS_BIG_ENDIAN
)
4015 image1
= buf
[0], image0
= buf
[1];
4017 image0
= buf
[0], image1
= buf
[1];
4018 image0
&= 0xffffffff;
4019 image1
&= 0xffffffff;
4021 exp
= (image0
>> 7) & 0xff;
4023 memset (r
, 0, sizeof (*r
));
4028 r
->sign
= (image0
>> 15) & 1;
4029 SET_REAL_EXP (r
, exp
- 128);
4031 /* Rearrange the half-words of the external format into
4032 proper ascending order. */
4033 image0
= ((image0
& 0x7f) << 16) | ((image0
>> 16) & 0xffff);
4034 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
4036 if (HOST_BITS_PER_LONG
== 64)
4038 image0
= (image0
<< 31 << 1) | image1
;
4041 r
->sig
[SIGSZ
-1] = image0
;
4045 r
->sig
[SIGSZ
-1] = image0
;
4046 r
->sig
[SIGSZ
-2] = image1
;
4047 lshift_significand (r
, r
, 2*HOST_BITS_PER_LONG
- 56);
4048 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
4054 encode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4055 const REAL_VALUE_TYPE
*r
)
4057 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
4062 image0
= image1
= 0;
4067 image0
= 0xffff7fff | sign
;
4068 image1
= 0xffffffff;
4072 /* Extract the significand into straight hi:lo. */
4073 if (HOST_BITS_PER_LONG
== 64)
4075 image0
= r
->sig
[SIGSZ
-1];
4076 image1
= (image0
>> (64 - 53)) & 0xffffffff;
4077 image0
= (image0
>> (64 - 53 + 1) >> 31) & 0xfffff;
4081 image0
= r
->sig
[SIGSZ
-1];
4082 image1
= r
->sig
[SIGSZ
-2];
4083 image1
= (image0
<< 21) | (image1
>> 11);
4084 image0
= (image0
>> 11) & 0xfffff;
4087 /* Rearrange the half-words of the significand to match the
4089 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff000f;
4090 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
4092 /* Add the sign and exponent. */
4094 image0
|= (REAL_EXP (r
) + 1024) << 4;
4101 if (FLOAT_WORDS_BIG_ENDIAN
)
4102 buf
[0] = image1
, buf
[1] = image0
;
4104 buf
[0] = image0
, buf
[1] = image1
;
4108 decode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4109 REAL_VALUE_TYPE
*r
, const long *buf
)
4111 unsigned long image0
, image1
;
4114 if (FLOAT_WORDS_BIG_ENDIAN
)
4115 image1
= buf
[0], image0
= buf
[1];
4117 image0
= buf
[0], image1
= buf
[1];
4118 image0
&= 0xffffffff;
4119 image1
&= 0xffffffff;
4121 exp
= (image0
>> 4) & 0x7ff;
4123 memset (r
, 0, sizeof (*r
));
4128 r
->sign
= (image0
>> 15) & 1;
4129 SET_REAL_EXP (r
, exp
- 1024);
4131 /* Rearrange the half-words of the external format into
4132 proper ascending order. */
4133 image0
= ((image0
& 0xf) << 16) | ((image0
>> 16) & 0xffff);
4134 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
4136 if (HOST_BITS_PER_LONG
== 64)
4138 image0
= (image0
<< 31 << 1) | image1
;
4141 r
->sig
[SIGSZ
-1] = image0
;
4145 r
->sig
[SIGSZ
-1] = image0
;
4146 r
->sig
[SIGSZ
-2] = image1
;
4147 lshift_significand (r
, r
, 64 - 53);
4148 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
4153 const struct real_format vax_f_format
=
4172 const struct real_format vax_d_format
=
4191 const struct real_format vax_g_format
=
4210 /* Encode real R into a single precision DFP value in BUF. */
4212 encode_decimal_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4213 long *buf ATTRIBUTE_UNUSED
,
4214 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4216 encode_decimal32 (fmt
, buf
, r
);
4219 /* Decode a single precision DFP value in BUF into a real R. */
4221 decode_decimal_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4222 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4223 const long *buf ATTRIBUTE_UNUSED
)
4225 decode_decimal32 (fmt
, r
, buf
);
4228 /* Encode real R into a double precision DFP value in BUF. */
4230 encode_decimal_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4231 long *buf ATTRIBUTE_UNUSED
,
4232 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4234 encode_decimal64 (fmt
, buf
, r
);
4237 /* Decode a double precision DFP value in BUF into a real R. */
4239 decode_decimal_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4240 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4241 const long *buf ATTRIBUTE_UNUSED
)
4243 decode_decimal64 (fmt
, r
, buf
);
4246 /* Encode real R into a quad precision DFP value in BUF. */
4248 encode_decimal_quad (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4249 long *buf ATTRIBUTE_UNUSED
,
4250 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4252 encode_decimal128 (fmt
, buf
, r
);
4255 /* Decode a quad precision DFP value in BUF into a real R. */
4257 decode_decimal_quad (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4258 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4259 const long *buf ATTRIBUTE_UNUSED
)
4261 decode_decimal128 (fmt
, r
, buf
);
4264 /* Single precision decimal floating point (IEEE 754R). */
4265 const struct real_format decimal_single_format
=
4267 encode_decimal_single
,
4268 decode_decimal_single
,
4284 /* Double precision decimal floating point (IEEE 754R). */
4285 const struct real_format decimal_double_format
=
4287 encode_decimal_double
,
4288 decode_decimal_double
,
4304 /* Quad precision decimal floating point (IEEE 754R). */
4305 const struct real_format decimal_quad_format
=
4307 encode_decimal_quad
,
4308 decode_decimal_quad
,
4324 /* A synthetic "format" for internal arithmetic. It's the size of the
4325 internal significand minus the two bits needed for proper rounding.
4326 The encode and decode routines exist only to satisfy our paranoia
4329 static void encode_internal (const struct real_format
*fmt
,
4330 long *, const REAL_VALUE_TYPE
*);
4331 static void decode_internal (const struct real_format
*,
4332 REAL_VALUE_TYPE
*, const long *);
4335 encode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4336 const REAL_VALUE_TYPE
*r
)
4338 memcpy (buf
, r
, sizeof (*r
));
4342 decode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4343 REAL_VALUE_TYPE
*r
, const long *buf
)
4345 memcpy (r
, buf
, sizeof (*r
));
4348 const struct real_format real_internal_format
=
4353 SIGNIFICAND_BITS
- 2,
4354 SIGNIFICAND_BITS
- 2,
4367 /* Calculate the square root of X in mode MODE, and store the result
4368 in R. Return TRUE if the operation does not raise an exception.
4369 For details see "High Precision Division and Square Root",
4370 Alan H. Karp and Peter Markstein, HP Lab Report 93-93-42, June
4371 1993. http://www.hpl.hp.com/techreports/93/HPL-93-42.pdf. */
4374 real_sqrt (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4375 const REAL_VALUE_TYPE
*x
)
4377 static REAL_VALUE_TYPE halfthree
;
4378 static bool init
= false;
4379 REAL_VALUE_TYPE h
, t
, i
;
4382 /* sqrt(-0.0) is -0.0. */
4383 if (real_isnegzero (x
))
4389 /* Negative arguments return NaN. */
4392 get_canonical_qnan (r
, 0);
4396 /* Infinity and NaN return themselves. */
4397 if (!real_isfinite (x
))
4405 do_add (&halfthree
, &dconst1
, &dconsthalf
, 0);
4409 /* Initial guess for reciprocal sqrt, i. */
4410 exp
= real_exponent (x
);
4411 real_ldexp (&i
, &dconst1
, -exp
/2);
4413 /* Newton's iteration for reciprocal sqrt, i. */
4414 for (iter
= 0; iter
< 16; iter
++)
4416 /* i(n+1) = i(n) * (1.5 - 0.5*i(n)*i(n)*x). */
4417 do_multiply (&t
, x
, &i
);
4418 do_multiply (&h
, &t
, &i
);
4419 do_multiply (&t
, &h
, &dconsthalf
);
4420 do_add (&h
, &halfthree
, &t
, 1);
4421 do_multiply (&t
, &i
, &h
);
4423 /* Check for early convergence. */
4424 if (iter
>= 6 && real_identical (&i
, &t
))
4427 /* ??? Unroll loop to avoid copying. */
4431 /* Final iteration: r = i*x + 0.5*i*x*(1.0 - i*(i*x)). */
4432 do_multiply (&t
, x
, &i
);
4433 do_multiply (&h
, &t
, &i
);
4434 do_add (&i
, &dconst1
, &h
, 1);
4435 do_multiply (&h
, &t
, &i
);
4436 do_multiply (&i
, &dconsthalf
, &h
);
4437 do_add (&h
, &t
, &i
, 0);
4439 /* ??? We need a Tuckerman test to get the last bit. */
4441 real_convert (r
, mode
, &h
);
4445 /* Calculate X raised to the integer exponent N in mode MODE and store
4446 the result in R. Return true if the result may be inexact due to
4447 loss of precision. The algorithm is the classic "left-to-right binary
4448 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4449 Algorithms", "The Art of Computer Programming", Volume 2. */
4452 real_powi (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4453 const REAL_VALUE_TYPE
*x
, HOST_WIDE_INT n
)
4455 unsigned HOST_WIDE_INT bit
;
4457 bool inexact
= false;
4469 /* Don't worry about overflow, from now on n is unsigned. */
4477 bit
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
4478 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
; i
++)
4482 inexact
|= do_multiply (&t
, &t
, &t
);
4484 inexact
|= do_multiply (&t
, &t
, x
);
4492 inexact
|= do_divide (&t
, &dconst1
, &t
);
4494 real_convert (r
, mode
, &t
);
4498 /* Round X to the nearest integer not larger in absolute value, i.e.
4499 towards zero, placing the result in R in mode MODE. */
4502 real_trunc (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4503 const REAL_VALUE_TYPE
*x
)
4505 do_fix_trunc (r
, x
);
4506 if (mode
!= VOIDmode
)
4507 real_convert (r
, mode
, r
);
4510 /* Round X to the largest integer not greater in value, i.e. round
4511 down, placing the result in R in mode MODE. */
4514 real_floor (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4515 const REAL_VALUE_TYPE
*x
)
4519 do_fix_trunc (&t
, x
);
4520 if (! real_identical (&t
, x
) && x
->sign
)
4521 do_add (&t
, &t
, &dconstm1
, 0);
4522 if (mode
!= VOIDmode
)
4523 real_convert (r
, mode
, &t
);
4528 /* Round X to the smallest integer not less then argument, i.e. round
4529 up, placing the result in R in mode MODE. */
4532 real_ceil (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4533 const REAL_VALUE_TYPE
*x
)
4537 do_fix_trunc (&t
, x
);
4538 if (! real_identical (&t
, x
) && ! x
->sign
)
4539 do_add (&t
, &t
, &dconst1
, 0);
4540 if (mode
!= VOIDmode
)
4541 real_convert (r
, mode
, &t
);
4546 /* Round X to the nearest integer, but round halfway cases away from
4550 real_round (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4551 const REAL_VALUE_TYPE
*x
)
4553 do_add (r
, x
, &dconsthalf
, x
->sign
);
4554 do_fix_trunc (r
, r
);
4555 if (mode
!= VOIDmode
)
4556 real_convert (r
, mode
, r
);
4559 /* Set the sign of R to the sign of X. */
4562 real_copysign (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*x
)
4567 /* Convert from REAL_VALUE_TYPE to MPFR. The caller is responsible
4568 for initializing and clearing the MPFR parameter. */
4571 mpfr_from_real (mpfr_ptr m
, const REAL_VALUE_TYPE
*r
, mp_rnd_t rndmode
)
4573 /* We use a string as an intermediate type. */
4577 /* Take care of Infinity and NaN. */
4578 if (r
->cl
== rvc_inf
)
4580 mpfr_set_inf (m
, r
->sign
== 1 ? -1 : 1);
4584 if (r
->cl
== rvc_nan
)
4590 real_to_hexadecimal (buf
, r
, sizeof (buf
), 0, 1);
4591 /* mpfr_set_str() parses hexadecimal floats from strings in the same
4592 format that GCC will output them. Nothing extra is needed. */
4593 ret
= mpfr_set_str (m
, buf
, 16, rndmode
);
4594 gcc_assert (ret
== 0);
4597 /* Convert from MPFR to REAL_VALUE_TYPE, for a given type TYPE and rounding
4598 mode RNDMODE. TYPE is only relevant if M is a NaN. */
4601 real_from_mpfr (REAL_VALUE_TYPE
*r
, mpfr_srcptr m
, tree type
, mp_rnd_t rndmode
)
4603 /* We use a string as an intermediate type. */
4604 char buf
[128], *rstr
;
4607 /* Take care of Infinity and NaN. */
4611 if (mpfr_sgn (m
) < 0)
4612 *r
= REAL_VALUE_NEGATE (*r
);
4618 real_nan (r
, "", 1, TYPE_MODE (type
));
4622 rstr
= mpfr_get_str (NULL
, &exp
, 16, 0, m
, rndmode
);
4624 /* The additional 12 chars add space for the sprintf below. This
4625 leaves 6 digits for the exponent which is supposedly enough. */
4626 gcc_assert (rstr
!= NULL
&& strlen (rstr
) < sizeof (buf
) - 12);
4628 /* REAL_VALUE_ATOF expects the exponent for mantissa * 2**exp,
4629 mpfr_get_str returns the exponent for mantissa * 16**exp, adjust
4634 sprintf (buf
, "-0x.%sp%d", &rstr
[1], (int) exp
);
4636 sprintf (buf
, "0x.%sp%d", rstr
, (int) exp
);
4638 mpfr_free_str (rstr
);
4640 real_from_string (r
, buf
);
4643 /* Check whether the real constant value given is an integer. */
4646 real_isinteger (const REAL_VALUE_TYPE
*c
, enum machine_mode mode
)
4648 REAL_VALUE_TYPE cint
;
4650 real_trunc (&cint
, mode
, c
);
4651 return real_identical (c
, &cint
);
4654 /* Write into BUF the maximum representable finite floating-point
4655 number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
4656 float string. LEN is the size of BUF, and the buffer must be large
4657 enough to contain the resulting string. */
4660 get_max_float (const struct real_format
*fmt
, char *buf
, size_t len
)
4665 strcpy (buf
, "0x0.");
4667 for (i
= 0, p
= buf
+ 4; i
+ 3 < n
; i
+= 4)
4670 *p
++ = "08ce"[n
- i
];
4671 sprintf (p
, "p%d", fmt
->emax
);
4672 if (fmt
->pnan
< fmt
->p
)
4674 /* This is an IBM extended double format made up of two IEEE
4675 doubles. The value of the long double is the sum of the
4676 values of the two parts. The most significant part is
4677 required to be the value of the long double rounded to the
4678 nearest double. Rounding means we need a slightly smaller
4679 value for LDBL_MAX. */
4680 buf
[4 + fmt
->pnan
/ 4] = "7bde"[fmt
->pnan
% 4];
4683 gcc_assert (strlen (buf
) < len
);