[ARM] Add source mode to coprocessor pattern SETs
[official-gcc.git] / gcc / tree-ssa-loop-ivopts.c
blobd5bd0362f25ad31d8907de186e77f16e7e3d7cc9
1 /* Induction variable optimizations.
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass tries to find the optimal set of induction variables for the loop.
21 It optimizes just the basic linear induction variables (although adding
22 support for other types should not be too hard). It includes the
23 optimizations commonly known as strength reduction, induction variable
24 coalescing and induction variable elimination. It does it in the
25 following steps:
27 1) The interesting uses of induction variables are found. This includes
29 -- uses of induction variables in non-linear expressions
30 -- addresses of arrays
31 -- comparisons of induction variables
33 Note the interesting uses are categorized and handled in group.
34 Generally, address type uses are grouped together if their iv bases
35 are different in constant offset.
37 2) Candidates for the induction variables are found. This includes
39 -- old induction variables
40 -- the variables defined by expressions derived from the "interesting
41 groups/uses" above
43 3) The optimal (w.r. to a cost function) set of variables is chosen. The
44 cost function assigns a cost to sets of induction variables and consists
45 of three parts:
47 -- The group/use costs. Each of the interesting groups/uses chooses
48 the best induction variable in the set and adds its cost to the sum.
49 The cost reflects the time spent on modifying the induction variables
50 value to be usable for the given purpose (adding base and offset for
51 arrays, etc.).
52 -- The variable costs. Each of the variables has a cost assigned that
53 reflects the costs associated with incrementing the value of the
54 variable. The original variables are somewhat preferred.
55 -- The set cost. Depending on the size of the set, extra cost may be
56 added to reflect register pressure.
58 All the costs are defined in a machine-specific way, using the target
59 hooks and machine descriptions to determine them.
61 4) The trees are transformed to use the new variables, the dead code is
62 removed.
64 All of this is done loop by loop. Doing it globally is theoretically
65 possible, it might give a better performance and it might enable us
66 to decide costs more precisely, but getting all the interactions right
67 would be complicated. */
69 #include "config.h"
70 #include "system.h"
71 #include "coretypes.h"
72 #include "backend.h"
73 #include "rtl.h"
74 #include "tree.h"
75 #include "gimple.h"
76 #include "cfghooks.h"
77 #include "tree-pass.h"
78 #include "memmodel.h"
79 #include "tm_p.h"
80 #include "ssa.h"
81 #include "expmed.h"
82 #include "insn-config.h"
83 #include "emit-rtl.h"
84 #include "recog.h"
85 #include "cgraph.h"
86 #include "gimple-pretty-print.h"
87 #include "alias.h"
88 #include "fold-const.h"
89 #include "stor-layout.h"
90 #include "tree-eh.h"
91 #include "gimplify.h"
92 #include "gimple-iterator.h"
93 #include "gimplify-me.h"
94 #include "tree-cfg.h"
95 #include "tree-ssa-loop-ivopts.h"
96 #include "tree-ssa-loop-manip.h"
97 #include "tree-ssa-loop-niter.h"
98 #include "tree-ssa-loop.h"
99 #include "explow.h"
100 #include "expr.h"
101 #include "tree-dfa.h"
102 #include "tree-ssa.h"
103 #include "cfgloop.h"
104 #include "tree-scalar-evolution.h"
105 #include "params.h"
106 #include "tree-affine.h"
107 #include "tree-ssa-propagate.h"
108 #include "tree-ssa-address.h"
109 #include "builtins.h"
110 #include "tree-vectorizer.h"
112 /* FIXME: Expressions are expanded to RTL in this pass to determine the
113 cost of different addressing modes. This should be moved to a TBD
114 interface between the GIMPLE and RTL worlds. */
116 /* The infinite cost. */
117 #define INFTY 10000000
119 /* Returns the expected number of loop iterations for LOOP.
120 The average trip count is computed from profile data if it
121 exists. */
123 static inline HOST_WIDE_INT
124 avg_loop_niter (struct loop *loop)
126 HOST_WIDE_INT niter = estimated_stmt_executions_int (loop);
127 if (niter == -1)
129 niter = likely_max_stmt_executions_int (loop);
131 if (niter == -1 || niter > PARAM_VALUE (PARAM_AVG_LOOP_NITER))
132 return PARAM_VALUE (PARAM_AVG_LOOP_NITER);
135 return niter;
138 struct iv_use;
140 /* Representation of the induction variable. */
141 struct iv
143 tree base; /* Initial value of the iv. */
144 tree base_object; /* A memory object to that the induction variable points. */
145 tree step; /* Step of the iv (constant only). */
146 tree ssa_name; /* The ssa name with the value. */
147 struct iv_use *nonlin_use; /* The identifier in the use if it is the case. */
148 bool biv_p; /* Is it a biv? */
149 bool no_overflow; /* True if the iv doesn't overflow. */
150 bool have_address_use;/* For biv, indicate if it's used in any address
151 type use. */
154 /* Per-ssa version information (induction variable descriptions, etc.). */
155 struct version_info
157 tree name; /* The ssa name. */
158 struct iv *iv; /* Induction variable description. */
159 bool has_nonlin_use; /* For a loop-level invariant, whether it is used in
160 an expression that is not an induction variable. */
161 bool preserve_biv; /* For the original biv, whether to preserve it. */
162 unsigned inv_id; /* Id of an invariant. */
165 /* Types of uses. */
166 enum use_type
168 USE_NONLINEAR_EXPR, /* Use in a nonlinear expression. */
169 USE_ADDRESS, /* Use in an address. */
170 USE_COMPARE /* Use is a compare. */
173 /* Cost of a computation. */
174 struct comp_cost
176 comp_cost (): cost (0), complexity (0), scratch (0)
179 comp_cost (int cost, unsigned complexity, int scratch = 0)
180 : cost (cost), complexity (complexity), scratch (scratch)
183 /* Returns true if COST is infinite. */
184 bool infinite_cost_p ();
186 /* Adds costs COST1 and COST2. */
187 friend comp_cost operator+ (comp_cost cost1, comp_cost cost2);
189 /* Adds COST to the comp_cost. */
190 comp_cost operator+= (comp_cost cost);
192 /* Adds constant C to this comp_cost. */
193 comp_cost operator+= (HOST_WIDE_INT c);
195 /* Subtracts constant C to this comp_cost. */
196 comp_cost operator-= (HOST_WIDE_INT c);
198 /* Divide the comp_cost by constant C. */
199 comp_cost operator/= (HOST_WIDE_INT c);
201 /* Multiply the comp_cost by constant C. */
202 comp_cost operator*= (HOST_WIDE_INT c);
204 /* Subtracts costs COST1 and COST2. */
205 friend comp_cost operator- (comp_cost cost1, comp_cost cost2);
207 /* Subtracts COST from this comp_cost. */
208 comp_cost operator-= (comp_cost cost);
210 /* Returns true if COST1 is smaller than COST2. */
211 friend bool operator< (comp_cost cost1, comp_cost cost2);
213 /* Returns true if COST1 and COST2 are equal. */
214 friend bool operator== (comp_cost cost1, comp_cost cost2);
216 /* Returns true if COST1 is smaller or equal than COST2. */
217 friend bool operator<= (comp_cost cost1, comp_cost cost2);
219 int cost; /* The runtime cost. */
220 unsigned complexity; /* The estimate of the complexity of the code for
221 the computation (in no concrete units --
222 complexity field should be larger for more
223 complex expressions and addressing modes). */
224 int scratch; /* Scratch used during cost computation. */
227 static const comp_cost no_cost;
228 static const comp_cost infinite_cost (INFTY, INFTY, INFTY);
230 bool
231 comp_cost::infinite_cost_p ()
233 return cost == INFTY;
236 comp_cost
237 operator+ (comp_cost cost1, comp_cost cost2)
239 if (cost1.infinite_cost_p () || cost2.infinite_cost_p ())
240 return infinite_cost;
242 cost1.cost += cost2.cost;
243 cost1.complexity += cost2.complexity;
245 return cost1;
248 comp_cost
249 operator- (comp_cost cost1, comp_cost cost2)
251 if (cost1.infinite_cost_p ())
252 return infinite_cost;
254 gcc_assert (!cost2.infinite_cost_p ());
256 cost1.cost -= cost2.cost;
257 cost1.complexity -= cost2.complexity;
259 return cost1;
262 comp_cost
263 comp_cost::operator+= (comp_cost cost)
265 *this = *this + cost;
266 return *this;
269 comp_cost
270 comp_cost::operator+= (HOST_WIDE_INT c)
272 if (infinite_cost_p ())
273 return *this;
275 this->cost += c;
277 return *this;
280 comp_cost
281 comp_cost::operator-= (HOST_WIDE_INT c)
283 if (infinite_cost_p ())
284 return *this;
286 this->cost -= c;
288 return *this;
291 comp_cost
292 comp_cost::operator/= (HOST_WIDE_INT c)
294 if (infinite_cost_p ())
295 return *this;
297 this->cost /= c;
299 return *this;
302 comp_cost
303 comp_cost::operator*= (HOST_WIDE_INT c)
305 if (infinite_cost_p ())
306 return *this;
308 this->cost *= c;
310 return *this;
313 comp_cost
314 comp_cost::operator-= (comp_cost cost)
316 *this = *this - cost;
317 return *this;
320 bool
321 operator< (comp_cost cost1, comp_cost cost2)
323 if (cost1.cost == cost2.cost)
324 return cost1.complexity < cost2.complexity;
326 return cost1.cost < cost2.cost;
329 bool
330 operator== (comp_cost cost1, comp_cost cost2)
332 return cost1.cost == cost2.cost
333 && cost1.complexity == cost2.complexity;
336 bool
337 operator<= (comp_cost cost1, comp_cost cost2)
339 return cost1 < cost2 || cost1 == cost2;
342 struct iv_inv_expr_ent;
344 /* The candidate - cost pair. */
345 struct cost_pair
347 struct iv_cand *cand; /* The candidate. */
348 comp_cost cost; /* The cost. */
349 enum tree_code comp; /* For iv elimination, the comparison. */
350 bitmap depends_on; /* The list of invariants that have to be
351 preserved. */
352 tree value; /* For final value elimination, the expression for
353 the final value of the iv. For iv elimination,
354 the new bound to compare with. */
355 iv_inv_expr_ent *inv_expr; /* Loop invariant expression. */
358 /* Use. */
359 struct iv_use
361 unsigned id; /* The id of the use. */
362 unsigned group_id; /* The group id the use belongs to. */
363 enum use_type type; /* Type of the use. */
364 struct iv *iv; /* The induction variable it is based on. */
365 gimple *stmt; /* Statement in that it occurs. */
366 tree *op_p; /* The place where it occurs. */
368 tree addr_base; /* Base address with const offset stripped. */
369 unsigned HOST_WIDE_INT addr_offset;
370 /* Const offset stripped from base address. */
373 /* Group of uses. */
374 struct iv_group
376 /* The id of the group. */
377 unsigned id;
378 /* Uses of the group are of the same type. */
379 enum use_type type;
380 /* The set of "related" IV candidates, plus the important ones. */
381 bitmap related_cands;
382 /* Number of IV candidates in the cost_map. */
383 unsigned n_map_members;
384 /* The costs wrto the iv candidates. */
385 struct cost_pair *cost_map;
386 /* The selected candidate for the group. */
387 struct iv_cand *selected;
388 /* Uses in the group. */
389 vec<struct iv_use *> vuses;
392 /* The position where the iv is computed. */
393 enum iv_position
395 IP_NORMAL, /* At the end, just before the exit condition. */
396 IP_END, /* At the end of the latch block. */
397 IP_BEFORE_USE, /* Immediately before a specific use. */
398 IP_AFTER_USE, /* Immediately after a specific use. */
399 IP_ORIGINAL /* The original biv. */
402 /* The induction variable candidate. */
403 struct iv_cand
405 unsigned id; /* The number of the candidate. */
406 bool important; /* Whether this is an "important" candidate, i.e. such
407 that it should be considered by all uses. */
408 ENUM_BITFIELD(iv_position) pos : 8; /* Where it is computed. */
409 gimple *incremented_at;/* For original biv, the statement where it is
410 incremented. */
411 tree var_before; /* The variable used for it before increment. */
412 tree var_after; /* The variable used for it after increment. */
413 struct iv *iv; /* The value of the candidate. NULL for
414 "pseudocandidate" used to indicate the possibility
415 to replace the final value of an iv by direct
416 computation of the value. */
417 unsigned cost; /* Cost of the candidate. */
418 unsigned cost_step; /* Cost of the candidate's increment operation. */
419 struct iv_use *ainc_use; /* For IP_{BEFORE,AFTER}_USE candidates, the place
420 where it is incremented. */
421 bitmap depends_on; /* The list of invariants that are used in step of the
422 biv. */
423 struct iv *orig_iv; /* The original iv if this cand is added from biv with
424 smaller type. */
427 /* Hashtable entry for common candidate derived from iv uses. */
428 struct iv_common_cand
430 tree base;
431 tree step;
432 /* IV uses from which this common candidate is derived. */
433 auto_vec<struct iv_use *> uses;
434 hashval_t hash;
437 /* Hashtable helpers. */
439 struct iv_common_cand_hasher : delete_ptr_hash <iv_common_cand>
441 static inline hashval_t hash (const iv_common_cand *);
442 static inline bool equal (const iv_common_cand *, const iv_common_cand *);
445 /* Hash function for possible common candidates. */
447 inline hashval_t
448 iv_common_cand_hasher::hash (const iv_common_cand *ccand)
450 return ccand->hash;
453 /* Hash table equality function for common candidates. */
455 inline bool
456 iv_common_cand_hasher::equal (const iv_common_cand *ccand1,
457 const iv_common_cand *ccand2)
459 return (ccand1->hash == ccand2->hash
460 && operand_equal_p (ccand1->base, ccand2->base, 0)
461 && operand_equal_p (ccand1->step, ccand2->step, 0)
462 && (TYPE_PRECISION (TREE_TYPE (ccand1->base))
463 == TYPE_PRECISION (TREE_TYPE (ccand2->base))));
466 /* Loop invariant expression hashtable entry. */
468 struct iv_inv_expr_ent
470 /* Tree expression of the entry. */
471 tree expr;
472 /* Unique indentifier. */
473 int id;
474 /* Hash value. */
475 hashval_t hash;
478 /* Sort iv_inv_expr_ent pair A and B by id field. */
480 static int
481 sort_iv_inv_expr_ent (const void *a, const void *b)
483 const iv_inv_expr_ent * const *e1 = (const iv_inv_expr_ent * const *) (a);
484 const iv_inv_expr_ent * const *e2 = (const iv_inv_expr_ent * const *) (b);
486 unsigned id1 = (*e1)->id;
487 unsigned id2 = (*e2)->id;
489 if (id1 < id2)
490 return -1;
491 else if (id1 > id2)
492 return 1;
493 else
494 return 0;
497 /* Hashtable helpers. */
499 struct iv_inv_expr_hasher : free_ptr_hash <iv_inv_expr_ent>
501 static inline hashval_t hash (const iv_inv_expr_ent *);
502 static inline bool equal (const iv_inv_expr_ent *, const iv_inv_expr_ent *);
505 /* Hash function for loop invariant expressions. */
507 inline hashval_t
508 iv_inv_expr_hasher::hash (const iv_inv_expr_ent *expr)
510 return expr->hash;
513 /* Hash table equality function for expressions. */
515 inline bool
516 iv_inv_expr_hasher::equal (const iv_inv_expr_ent *expr1,
517 const iv_inv_expr_ent *expr2)
519 return expr1->hash == expr2->hash
520 && operand_equal_p (expr1->expr, expr2->expr, 0);
523 struct ivopts_data
525 /* The currently optimized loop. */
526 struct loop *current_loop;
527 source_location loop_loc;
529 /* Numbers of iterations for all exits of the current loop. */
530 hash_map<edge, tree_niter_desc *> *niters;
532 /* Number of registers used in it. */
533 unsigned regs_used;
535 /* The size of version_info array allocated. */
536 unsigned version_info_size;
538 /* The array of information for the ssa names. */
539 struct version_info *version_info;
541 /* The hashtable of loop invariant expressions created
542 by ivopt. */
543 hash_table<iv_inv_expr_hasher> *inv_expr_tab;
545 /* Loop invariant expression id. */
546 int max_inv_expr_id;
548 /* The bitmap of indices in version_info whose value was changed. */
549 bitmap relevant;
551 /* The uses of induction variables. */
552 vec<iv_group *> vgroups;
554 /* The candidates. */
555 vec<iv_cand *> vcands;
557 /* A bitmap of important candidates. */
558 bitmap important_candidates;
560 /* Cache used by tree_to_aff_combination_expand. */
561 hash_map<tree, name_expansion *> *name_expansion_cache;
563 /* The hashtable of common candidates derived from iv uses. */
564 hash_table<iv_common_cand_hasher> *iv_common_cand_tab;
566 /* The common candidates. */
567 vec<iv_common_cand *> iv_common_cands;
569 /* The maximum invariant id. */
570 unsigned max_inv_id;
572 /* Number of no_overflow BIVs which are not used in memory address. */
573 unsigned bivs_not_used_in_addr;
575 /* Obstack for iv structure. */
576 struct obstack iv_obstack;
578 /* Whether to consider just related and important candidates when replacing a
579 use. */
580 bool consider_all_candidates;
582 /* Are we optimizing for speed? */
583 bool speed;
585 /* Whether the loop body includes any function calls. */
586 bool body_includes_call;
588 /* Whether the loop body can only be exited via single exit. */
589 bool loop_single_exit_p;
592 /* An assignment of iv candidates to uses. */
594 struct iv_ca
596 /* The number of uses covered by the assignment. */
597 unsigned upto;
599 /* Number of uses that cannot be expressed by the candidates in the set. */
600 unsigned bad_groups;
602 /* Candidate assigned to a use, together with the related costs. */
603 struct cost_pair **cand_for_group;
605 /* Number of times each candidate is used. */
606 unsigned *n_cand_uses;
608 /* The candidates used. */
609 bitmap cands;
611 /* The number of candidates in the set. */
612 unsigned n_cands;
614 /* Total number of registers needed. */
615 unsigned n_regs;
617 /* Total cost of expressing uses. */
618 comp_cost cand_use_cost;
620 /* Total cost of candidates. */
621 unsigned cand_cost;
623 /* Number of times each invariant is used. */
624 unsigned *n_invariant_uses;
626 /* Hash set with used invariant expression. */
627 hash_map <iv_inv_expr_ent *, unsigned> *used_inv_exprs;
629 /* Total cost of the assignment. */
630 comp_cost cost;
633 /* Difference of two iv candidate assignments. */
635 struct iv_ca_delta
637 /* Changed group. */
638 struct iv_group *group;
640 /* An old assignment (for rollback purposes). */
641 struct cost_pair *old_cp;
643 /* A new assignment. */
644 struct cost_pair *new_cp;
646 /* Next change in the list. */
647 struct iv_ca_delta *next;
650 /* Bound on number of candidates below that all candidates are considered. */
652 #define CONSIDER_ALL_CANDIDATES_BOUND \
653 ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
655 /* If there are more iv occurrences, we just give up (it is quite unlikely that
656 optimizing such a loop would help, and it would take ages). */
658 #define MAX_CONSIDERED_GROUPS \
659 ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
661 /* If there are at most this number of ivs in the set, try removing unnecessary
662 ivs from the set always. */
664 #define ALWAYS_PRUNE_CAND_SET_BOUND \
665 ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
667 /* The list of trees for that the decl_rtl field must be reset is stored
668 here. */
670 static vec<tree> decl_rtl_to_reset;
672 static comp_cost force_expr_to_var_cost (tree, bool);
674 /* The single loop exit if it dominates the latch, NULL otherwise. */
676 edge
677 single_dom_exit (struct loop *loop)
679 edge exit = single_exit (loop);
681 if (!exit)
682 return NULL;
684 if (!just_once_each_iteration_p (loop, exit->src))
685 return NULL;
687 return exit;
690 /* Dumps information about the induction variable IV to FILE. Don't dump
691 variable's name if DUMP_NAME is FALSE. The information is dumped with
692 preceding spaces indicated by INDENT_LEVEL. */
694 void
695 dump_iv (FILE *file, struct iv *iv, bool dump_name, unsigned indent_level)
697 const char *p;
698 const char spaces[9] = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '\0'};
700 if (indent_level > 4)
701 indent_level = 4;
702 p = spaces + 8 - (indent_level << 1);
704 fprintf (file, "%sIV struct:\n", p);
705 if (iv->ssa_name && dump_name)
707 fprintf (file, "%s SSA_NAME:\t", p);
708 print_generic_expr (file, iv->ssa_name, TDF_SLIM);
709 fprintf (file, "\n");
712 fprintf (file, "%s Type:\t", p);
713 print_generic_expr (file, TREE_TYPE (iv->base), TDF_SLIM);
714 fprintf (file, "\n");
716 fprintf (file, "%s Base:\t", p);
717 print_generic_expr (file, iv->base, TDF_SLIM);
718 fprintf (file, "\n");
720 fprintf (file, "%s Step:\t", p);
721 print_generic_expr (file, iv->step, TDF_SLIM);
722 fprintf (file, "\n");
724 if (iv->base_object)
726 fprintf (file, "%s Object:\t", p);
727 print_generic_expr (file, iv->base_object, TDF_SLIM);
728 fprintf (file, "\n");
731 fprintf (file, "%s Biv:\t%c\n", p, iv->biv_p ? 'Y' : 'N');
733 fprintf (file, "%s Overflowness wrto loop niter:\t%s\n",
734 p, iv->no_overflow ? "No-overflow" : "Overflow");
737 /* Dumps information about the USE to FILE. */
739 void
740 dump_use (FILE *file, struct iv_use *use)
742 fprintf (file, " Use %d.%d:\n", use->group_id, use->id);
743 fprintf (file, " At stmt:\t");
744 print_gimple_stmt (file, use->stmt, 0, 0);
745 fprintf (file, " At pos:\t");
746 if (use->op_p)
747 print_generic_expr (file, *use->op_p, TDF_SLIM);
748 fprintf (file, "\n");
749 dump_iv (file, use->iv, false, 2);
752 /* Dumps information about the uses to FILE. */
754 void
755 dump_groups (FILE *file, struct ivopts_data *data)
757 unsigned i, j;
758 struct iv_group *group;
760 for (i = 0; i < data->vgroups.length (); i++)
762 group = data->vgroups[i];
763 fprintf (file, "Group %d:\n", group->id);
764 if (group->type == USE_NONLINEAR_EXPR)
765 fprintf (file, " Type:\tGENERIC\n");
766 else if (group->type == USE_ADDRESS)
767 fprintf (file, " Type:\tADDRESS\n");
768 else
770 gcc_assert (group->type == USE_COMPARE);
771 fprintf (file, " Type:\tCOMPARE\n");
773 for (j = 0; j < group->vuses.length (); j++)
774 dump_use (file, group->vuses[j]);
778 /* Dumps information about induction variable candidate CAND to FILE. */
780 void
781 dump_cand (FILE *file, struct iv_cand *cand)
783 struct iv *iv = cand->iv;
785 fprintf (file, "Candidate %d:\n", cand->id);
786 if (cand->depends_on)
788 fprintf (file, " Depend on: ");
789 dump_bitmap (file, cand->depends_on);
792 if (cand->var_before)
794 fprintf (file, " Var befor: ");
795 print_generic_expr (file, cand->var_before, TDF_SLIM);
796 fprintf (file, "\n");
798 if (cand->var_after)
800 fprintf (file, " Var after: ");
801 print_generic_expr (file, cand->var_after, TDF_SLIM);
802 fprintf (file, "\n");
805 switch (cand->pos)
807 case IP_NORMAL:
808 fprintf (file, " Incr POS: before exit test\n");
809 break;
811 case IP_BEFORE_USE:
812 fprintf (file, " Incr POS: before use %d\n", cand->ainc_use->id);
813 break;
815 case IP_AFTER_USE:
816 fprintf (file, " Incr POS: after use %d\n", cand->ainc_use->id);
817 break;
819 case IP_END:
820 fprintf (file, " Incr POS: at end\n");
821 break;
823 case IP_ORIGINAL:
824 fprintf (file, " Incr POS: orig biv\n");
825 break;
828 dump_iv (file, iv, false, 1);
831 /* Returns the info for ssa version VER. */
833 static inline struct version_info *
834 ver_info (struct ivopts_data *data, unsigned ver)
836 return data->version_info + ver;
839 /* Returns the info for ssa name NAME. */
841 static inline struct version_info *
842 name_info (struct ivopts_data *data, tree name)
844 return ver_info (data, SSA_NAME_VERSION (name));
847 /* Returns true if STMT is after the place where the IP_NORMAL ivs will be
848 emitted in LOOP. */
850 static bool
851 stmt_after_ip_normal_pos (struct loop *loop, gimple *stmt)
853 basic_block bb = ip_normal_pos (loop), sbb = gimple_bb (stmt);
855 gcc_assert (bb);
857 if (sbb == loop->latch)
858 return true;
860 if (sbb != bb)
861 return false;
863 return stmt == last_stmt (bb);
866 /* Returns true if STMT if after the place where the original induction
867 variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true
868 if the positions are identical. */
870 static bool
871 stmt_after_inc_pos (struct iv_cand *cand, gimple *stmt, bool true_if_equal)
873 basic_block cand_bb = gimple_bb (cand->incremented_at);
874 basic_block stmt_bb = gimple_bb (stmt);
876 if (!dominated_by_p (CDI_DOMINATORS, stmt_bb, cand_bb))
877 return false;
879 if (stmt_bb != cand_bb)
880 return true;
882 if (true_if_equal
883 && gimple_uid (stmt) == gimple_uid (cand->incremented_at))
884 return true;
885 return gimple_uid (stmt) > gimple_uid (cand->incremented_at);
888 /* Returns true if STMT if after the place where the induction variable
889 CAND is incremented in LOOP. */
891 static bool
892 stmt_after_increment (struct loop *loop, struct iv_cand *cand, gimple *stmt)
894 switch (cand->pos)
896 case IP_END:
897 return false;
899 case IP_NORMAL:
900 return stmt_after_ip_normal_pos (loop, stmt);
902 case IP_ORIGINAL:
903 case IP_AFTER_USE:
904 return stmt_after_inc_pos (cand, stmt, false);
906 case IP_BEFORE_USE:
907 return stmt_after_inc_pos (cand, stmt, true);
909 default:
910 gcc_unreachable ();
914 /* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
916 static bool
917 abnormal_ssa_name_p (tree exp)
919 if (!exp)
920 return false;
922 if (TREE_CODE (exp) != SSA_NAME)
923 return false;
925 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp) != 0;
928 /* Returns false if BASE or INDEX contains a ssa name that occurs in an
929 abnormal phi node. Callback for for_each_index. */
931 static bool
932 idx_contains_abnormal_ssa_name_p (tree base, tree *index,
933 void *data ATTRIBUTE_UNUSED)
935 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
937 if (abnormal_ssa_name_p (TREE_OPERAND (base, 2)))
938 return false;
939 if (abnormal_ssa_name_p (TREE_OPERAND (base, 3)))
940 return false;
943 return !abnormal_ssa_name_p (*index);
946 /* Returns true if EXPR contains a ssa name that occurs in an
947 abnormal phi node. */
949 bool
950 contains_abnormal_ssa_name_p (tree expr)
952 enum tree_code code;
953 enum tree_code_class codeclass;
955 if (!expr)
956 return false;
958 code = TREE_CODE (expr);
959 codeclass = TREE_CODE_CLASS (code);
961 if (code == SSA_NAME)
962 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr) != 0;
964 if (code == INTEGER_CST
965 || is_gimple_min_invariant (expr))
966 return false;
968 if (code == ADDR_EXPR)
969 return !for_each_index (&TREE_OPERAND (expr, 0),
970 idx_contains_abnormal_ssa_name_p,
971 NULL);
973 if (code == COND_EXPR)
974 return contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0))
975 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1))
976 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 2));
978 switch (codeclass)
980 case tcc_binary:
981 case tcc_comparison:
982 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1)))
983 return true;
985 /* Fallthru. */
986 case tcc_unary:
987 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0)))
988 return true;
990 break;
992 default:
993 gcc_unreachable ();
996 return false;
999 /* Returns the structure describing number of iterations determined from
1000 EXIT of DATA->current_loop, or NULL if something goes wrong. */
1002 static struct tree_niter_desc *
1003 niter_for_exit (struct ivopts_data *data, edge exit)
1005 struct tree_niter_desc *desc;
1006 tree_niter_desc **slot;
1008 if (!data->niters)
1010 data->niters = new hash_map<edge, tree_niter_desc *>;
1011 slot = NULL;
1013 else
1014 slot = data->niters->get (exit);
1016 if (!slot)
1018 /* Try to determine number of iterations. We cannot safely work with ssa
1019 names that appear in phi nodes on abnormal edges, so that we do not
1020 create overlapping life ranges for them (PR 27283). */
1021 desc = XNEW (struct tree_niter_desc);
1022 if (!number_of_iterations_exit (data->current_loop,
1023 exit, desc, true)
1024 || contains_abnormal_ssa_name_p (desc->niter))
1026 XDELETE (desc);
1027 desc = NULL;
1029 data->niters->put (exit, desc);
1031 else
1032 desc = *slot;
1034 return desc;
1037 /* Returns the structure describing number of iterations determined from
1038 single dominating exit of DATA->current_loop, or NULL if something
1039 goes wrong. */
1041 static struct tree_niter_desc *
1042 niter_for_single_dom_exit (struct ivopts_data *data)
1044 edge exit = single_dom_exit (data->current_loop);
1046 if (!exit)
1047 return NULL;
1049 return niter_for_exit (data, exit);
1052 /* Initializes data structures used by the iv optimization pass, stored
1053 in DATA. */
1055 static void
1056 tree_ssa_iv_optimize_init (struct ivopts_data *data)
1058 data->version_info_size = 2 * num_ssa_names;
1059 data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
1060 data->relevant = BITMAP_ALLOC (NULL);
1061 data->important_candidates = BITMAP_ALLOC (NULL);
1062 data->max_inv_id = 0;
1063 data->niters = NULL;
1064 data->vgroups.create (20);
1065 data->vcands.create (20);
1066 data->inv_expr_tab = new hash_table<iv_inv_expr_hasher> (10);
1067 data->max_inv_expr_id = 0;
1068 data->name_expansion_cache = NULL;
1069 data->iv_common_cand_tab = new hash_table<iv_common_cand_hasher> (10);
1070 data->iv_common_cands.create (20);
1071 decl_rtl_to_reset.create (20);
1072 gcc_obstack_init (&data->iv_obstack);
1075 /* Returns a memory object to that EXPR points. In case we are able to
1076 determine that it does not point to any such object, NULL is returned. */
1078 static tree
1079 determine_base_object (tree expr)
1081 enum tree_code code = TREE_CODE (expr);
1082 tree base, obj;
1084 /* If this is a pointer casted to any type, we need to determine
1085 the base object for the pointer; so handle conversions before
1086 throwing away non-pointer expressions. */
1087 if (CONVERT_EXPR_P (expr))
1088 return determine_base_object (TREE_OPERAND (expr, 0));
1090 if (!POINTER_TYPE_P (TREE_TYPE (expr)))
1091 return NULL_TREE;
1093 switch (code)
1095 case INTEGER_CST:
1096 return NULL_TREE;
1098 case ADDR_EXPR:
1099 obj = TREE_OPERAND (expr, 0);
1100 base = get_base_address (obj);
1102 if (!base)
1103 return expr;
1105 if (TREE_CODE (base) == MEM_REF)
1106 return determine_base_object (TREE_OPERAND (base, 0));
1108 return fold_convert (ptr_type_node,
1109 build_fold_addr_expr (base));
1111 case POINTER_PLUS_EXPR:
1112 return determine_base_object (TREE_OPERAND (expr, 0));
1114 case PLUS_EXPR:
1115 case MINUS_EXPR:
1116 /* Pointer addition is done solely using POINTER_PLUS_EXPR. */
1117 gcc_unreachable ();
1119 default:
1120 return fold_convert (ptr_type_node, expr);
1124 /* Return true if address expression with non-DECL_P operand appears
1125 in EXPR. */
1127 static bool
1128 contain_complex_addr_expr (tree expr)
1130 bool res = false;
1132 STRIP_NOPS (expr);
1133 switch (TREE_CODE (expr))
1135 case POINTER_PLUS_EXPR:
1136 case PLUS_EXPR:
1137 case MINUS_EXPR:
1138 res |= contain_complex_addr_expr (TREE_OPERAND (expr, 0));
1139 res |= contain_complex_addr_expr (TREE_OPERAND (expr, 1));
1140 break;
1142 case ADDR_EXPR:
1143 return (!DECL_P (TREE_OPERAND (expr, 0)));
1145 default:
1146 return false;
1149 return res;
1152 /* Allocates an induction variable with given initial value BASE and step STEP
1153 for loop LOOP. NO_OVERFLOW implies the iv doesn't overflow. */
1155 static struct iv *
1156 alloc_iv (struct ivopts_data *data, tree base, tree step,
1157 bool no_overflow = false)
1159 tree expr = base;
1160 struct iv *iv = (struct iv*) obstack_alloc (&data->iv_obstack,
1161 sizeof (struct iv));
1162 gcc_assert (step != NULL_TREE);
1164 /* Lower address expression in base except ones with DECL_P as operand.
1165 By doing this:
1166 1) More accurate cost can be computed for address expressions;
1167 2) Duplicate candidates won't be created for bases in different
1168 forms, like &a[0] and &a. */
1169 STRIP_NOPS (expr);
1170 if ((TREE_CODE (expr) == ADDR_EXPR && !DECL_P (TREE_OPERAND (expr, 0)))
1171 || contain_complex_addr_expr (expr))
1173 aff_tree comb;
1174 tree_to_aff_combination (expr, TREE_TYPE (base), &comb);
1175 base = fold_convert (TREE_TYPE (base), aff_combination_to_tree (&comb));
1178 iv->base = base;
1179 iv->base_object = determine_base_object (base);
1180 iv->step = step;
1181 iv->biv_p = false;
1182 iv->nonlin_use = NULL;
1183 iv->ssa_name = NULL_TREE;
1184 if (!no_overflow
1185 && !iv_can_overflow_p (data->current_loop, TREE_TYPE (base),
1186 base, step))
1187 no_overflow = true;
1188 iv->no_overflow = no_overflow;
1189 iv->have_address_use = false;
1191 return iv;
1194 /* Sets STEP and BASE for induction variable IV. NO_OVERFLOW implies the IV
1195 doesn't overflow. */
1197 static void
1198 set_iv (struct ivopts_data *data, tree iv, tree base, tree step,
1199 bool no_overflow)
1201 struct version_info *info = name_info (data, iv);
1203 gcc_assert (!info->iv);
1205 bitmap_set_bit (data->relevant, SSA_NAME_VERSION (iv));
1206 info->iv = alloc_iv (data, base, step, no_overflow);
1207 info->iv->ssa_name = iv;
1210 /* Finds induction variable declaration for VAR. */
1212 static struct iv *
1213 get_iv (struct ivopts_data *data, tree var)
1215 basic_block bb;
1216 tree type = TREE_TYPE (var);
1218 if (!POINTER_TYPE_P (type)
1219 && !INTEGRAL_TYPE_P (type))
1220 return NULL;
1222 if (!name_info (data, var)->iv)
1224 bb = gimple_bb (SSA_NAME_DEF_STMT (var));
1226 if (!bb
1227 || !flow_bb_inside_loop_p (data->current_loop, bb))
1228 set_iv (data, var, var, build_int_cst (type, 0), true);
1231 return name_info (data, var)->iv;
1234 /* Return the first non-invariant ssa var found in EXPR. */
1236 static tree
1237 extract_single_var_from_expr (tree expr)
1239 int i, n;
1240 tree tmp;
1241 enum tree_code code;
1243 if (!expr || is_gimple_min_invariant (expr))
1244 return NULL;
1246 code = TREE_CODE (expr);
1247 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1249 n = TREE_OPERAND_LENGTH (expr);
1250 for (i = 0; i < n; i++)
1252 tmp = extract_single_var_from_expr (TREE_OPERAND (expr, i));
1254 if (tmp)
1255 return tmp;
1258 return (TREE_CODE (expr) == SSA_NAME) ? expr : NULL;
1261 /* Finds basic ivs. */
1263 static bool
1264 find_bivs (struct ivopts_data *data)
1266 gphi *phi;
1267 affine_iv iv;
1268 tree step, type, base, stop;
1269 bool found = false;
1270 struct loop *loop = data->current_loop;
1271 gphi_iterator psi;
1273 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1275 phi = psi.phi ();
1277 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
1278 continue;
1280 if (virtual_operand_p (PHI_RESULT (phi)))
1281 continue;
1283 if (!simple_iv (loop, loop, PHI_RESULT (phi), &iv, true))
1284 continue;
1286 if (integer_zerop (iv.step))
1287 continue;
1289 step = iv.step;
1290 base = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1291 /* Stop expanding iv base at the first ssa var referred by iv step.
1292 Ideally we should stop at any ssa var, because that's expensive
1293 and unusual to happen, we just do it on the first one.
1295 See PR64705 for the rationale. */
1296 stop = extract_single_var_from_expr (step);
1297 base = expand_simple_operations (base, stop);
1298 if (contains_abnormal_ssa_name_p (base)
1299 || contains_abnormal_ssa_name_p (step))
1300 continue;
1302 type = TREE_TYPE (PHI_RESULT (phi));
1303 base = fold_convert (type, base);
1304 if (step)
1306 if (POINTER_TYPE_P (type))
1307 step = convert_to_ptrofftype (step);
1308 else
1309 step = fold_convert (type, step);
1312 set_iv (data, PHI_RESULT (phi), base, step, iv.no_overflow);
1313 found = true;
1316 return found;
1319 /* Marks basic ivs. */
1321 static void
1322 mark_bivs (struct ivopts_data *data)
1324 gphi *phi;
1325 gimple *def;
1326 tree var;
1327 struct iv *iv, *incr_iv;
1328 struct loop *loop = data->current_loop;
1329 basic_block incr_bb;
1330 gphi_iterator psi;
1332 data->bivs_not_used_in_addr = 0;
1333 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1335 phi = psi.phi ();
1337 iv = get_iv (data, PHI_RESULT (phi));
1338 if (!iv)
1339 continue;
1341 var = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
1342 def = SSA_NAME_DEF_STMT (var);
1343 /* Don't mark iv peeled from other one as biv. */
1344 if (def
1345 && gimple_code (def) == GIMPLE_PHI
1346 && gimple_bb (def) == loop->header)
1347 continue;
1349 incr_iv = get_iv (data, var);
1350 if (!incr_iv)
1351 continue;
1353 /* If the increment is in the subloop, ignore it. */
1354 incr_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
1355 if (incr_bb->loop_father != data->current_loop
1356 || (incr_bb->flags & BB_IRREDUCIBLE_LOOP))
1357 continue;
1359 iv->biv_p = true;
1360 incr_iv->biv_p = true;
1361 if (iv->no_overflow)
1362 data->bivs_not_used_in_addr++;
1363 if (incr_iv->no_overflow)
1364 data->bivs_not_used_in_addr++;
1368 /* Checks whether STMT defines a linear induction variable and stores its
1369 parameters to IV. */
1371 static bool
1372 find_givs_in_stmt_scev (struct ivopts_data *data, gimple *stmt, affine_iv *iv)
1374 tree lhs, stop;
1375 struct loop *loop = data->current_loop;
1377 iv->base = NULL_TREE;
1378 iv->step = NULL_TREE;
1380 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1381 return false;
1383 lhs = gimple_assign_lhs (stmt);
1384 if (TREE_CODE (lhs) != SSA_NAME)
1385 return false;
1387 if (!simple_iv (loop, loop_containing_stmt (stmt), lhs, iv, true))
1388 return false;
1390 /* Stop expanding iv base at the first ssa var referred by iv step.
1391 Ideally we should stop at any ssa var, because that's expensive
1392 and unusual to happen, we just do it on the first one.
1394 See PR64705 for the rationale. */
1395 stop = extract_single_var_from_expr (iv->step);
1396 iv->base = expand_simple_operations (iv->base, stop);
1397 if (contains_abnormal_ssa_name_p (iv->base)
1398 || contains_abnormal_ssa_name_p (iv->step))
1399 return false;
1401 /* If STMT could throw, then do not consider STMT as defining a GIV.
1402 While this will suppress optimizations, we can not safely delete this
1403 GIV and associated statements, even if it appears it is not used. */
1404 if (stmt_could_throw_p (stmt))
1405 return false;
1407 return true;
1410 /* Finds general ivs in statement STMT. */
1412 static void
1413 find_givs_in_stmt (struct ivopts_data *data, gimple *stmt)
1415 affine_iv iv;
1417 if (!find_givs_in_stmt_scev (data, stmt, &iv))
1418 return;
1420 set_iv (data, gimple_assign_lhs (stmt), iv.base, iv.step, iv.no_overflow);
1423 /* Finds general ivs in basic block BB. */
1425 static void
1426 find_givs_in_bb (struct ivopts_data *data, basic_block bb)
1428 gimple_stmt_iterator bsi;
1430 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1431 find_givs_in_stmt (data, gsi_stmt (bsi));
1434 /* Finds general ivs. */
1436 static void
1437 find_givs (struct ivopts_data *data)
1439 struct loop *loop = data->current_loop;
1440 basic_block *body = get_loop_body_in_dom_order (loop);
1441 unsigned i;
1443 for (i = 0; i < loop->num_nodes; i++)
1444 find_givs_in_bb (data, body[i]);
1445 free (body);
1448 /* For each ssa name defined in LOOP determines whether it is an induction
1449 variable and if so, its initial value and step. */
1451 static bool
1452 find_induction_variables (struct ivopts_data *data)
1454 unsigned i;
1455 bitmap_iterator bi;
1457 if (!find_bivs (data))
1458 return false;
1460 find_givs (data);
1461 mark_bivs (data);
1463 if (dump_file && (dump_flags & TDF_DETAILS))
1465 struct tree_niter_desc *niter = niter_for_single_dom_exit (data);
1467 if (niter)
1469 fprintf (dump_file, " number of iterations ");
1470 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1471 if (!integer_zerop (niter->may_be_zero))
1473 fprintf (dump_file, "; zero if ");
1474 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1476 fprintf (dump_file, "\n");
1479 fprintf (dump_file, "\n<Induction Vars>:\n");
1480 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
1482 struct version_info *info = ver_info (data, i);
1483 if (info->iv && info->iv->step && !integer_zerop (info->iv->step))
1484 dump_iv (dump_file, ver_info (data, i)->iv, true, 0);
1488 return true;
1491 /* Records a use of TYPE at *USE_P in STMT whose value is IV in GROUP.
1492 For address type use, ADDR_BASE is the stripped IV base, ADDR_OFFSET
1493 is the const offset stripped from IV base; for other types use, both
1494 are zero by default. */
1496 static struct iv_use *
1497 record_use (struct iv_group *group, tree *use_p, struct iv *iv,
1498 gimple *stmt, enum use_type type, tree addr_base,
1499 unsigned HOST_WIDE_INT addr_offset)
1501 struct iv_use *use = XCNEW (struct iv_use);
1503 use->id = group->vuses.length ();
1504 use->group_id = group->id;
1505 use->type = type;
1506 use->iv = iv;
1507 use->stmt = stmt;
1508 use->op_p = use_p;
1509 use->addr_base = addr_base;
1510 use->addr_offset = addr_offset;
1512 group->vuses.safe_push (use);
1513 return use;
1516 /* Checks whether OP is a loop-level invariant and if so, records it.
1517 NONLINEAR_USE is true if the invariant is used in a way we do not
1518 handle specially. */
1520 static void
1521 record_invariant (struct ivopts_data *data, tree op, bool nonlinear_use)
1523 basic_block bb;
1524 struct version_info *info;
1526 if (TREE_CODE (op) != SSA_NAME
1527 || virtual_operand_p (op))
1528 return;
1530 bb = gimple_bb (SSA_NAME_DEF_STMT (op));
1531 if (bb
1532 && flow_bb_inside_loop_p (data->current_loop, bb))
1533 return;
1535 info = name_info (data, op);
1536 info->name = op;
1537 info->has_nonlin_use |= nonlinear_use;
1538 if (!info->inv_id)
1539 info->inv_id = ++data->max_inv_id;
1540 bitmap_set_bit (data->relevant, SSA_NAME_VERSION (op));
1543 static tree
1544 strip_offset (tree expr, unsigned HOST_WIDE_INT *offset);
1546 /* Record a group of TYPE. */
1548 static struct iv_group *
1549 record_group (struct ivopts_data *data, enum use_type type)
1551 struct iv_group *group = XCNEW (struct iv_group);
1553 group->id = data->vgroups.length ();
1554 group->type = type;
1555 group->related_cands = BITMAP_ALLOC (NULL);
1556 group->vuses.create (1);
1558 data->vgroups.safe_push (group);
1559 return group;
1562 /* Record a use of TYPE at *USE_P in STMT whose value is IV in a group.
1563 New group will be created if there is no existing group for the use. */
1565 static struct iv_use *
1566 record_group_use (struct ivopts_data *data, tree *use_p,
1567 struct iv *iv, gimple *stmt, enum use_type type)
1569 tree addr_base = NULL;
1570 struct iv_group *group = NULL;
1571 unsigned HOST_WIDE_INT addr_offset = 0;
1573 /* Record non address type use in a new group. */
1574 if (type == USE_ADDRESS && iv->base_object)
1576 unsigned int i;
1578 addr_base = strip_offset (iv->base, &addr_offset);
1579 for (i = 0; i < data->vgroups.length (); i++)
1581 struct iv_use *use;
1583 group = data->vgroups[i];
1584 use = group->vuses[0];
1585 if (use->type != USE_ADDRESS || !use->iv->base_object)
1586 continue;
1588 /* Check if it has the same stripped base and step. */
1589 if (operand_equal_p (iv->base_object, use->iv->base_object, 0)
1590 && operand_equal_p (iv->step, use->iv->step, 0)
1591 && operand_equal_p (addr_base, use->addr_base, 0))
1592 break;
1594 if (i == data->vgroups.length ())
1595 group = NULL;
1598 if (!group)
1599 group = record_group (data, type);
1601 return record_use (group, use_p, iv, stmt, type, addr_base, addr_offset);
1604 /* Checks whether the use OP is interesting and if so, records it. */
1606 static struct iv_use *
1607 find_interesting_uses_op (struct ivopts_data *data, tree op)
1609 struct iv *iv;
1610 gimple *stmt;
1611 struct iv_use *use;
1613 if (TREE_CODE (op) != SSA_NAME)
1614 return NULL;
1616 iv = get_iv (data, op);
1617 if (!iv)
1618 return NULL;
1620 if (iv->nonlin_use)
1622 gcc_assert (iv->nonlin_use->type == USE_NONLINEAR_EXPR);
1623 return iv->nonlin_use;
1626 if (integer_zerop (iv->step))
1628 record_invariant (data, op, true);
1629 return NULL;
1632 stmt = SSA_NAME_DEF_STMT (op);
1633 gcc_assert (gimple_code (stmt) == GIMPLE_PHI || is_gimple_assign (stmt));
1635 use = record_group_use (data, NULL, iv, stmt, USE_NONLINEAR_EXPR);
1636 iv->nonlin_use = use;
1637 return use;
1640 /* Given a condition in statement STMT, checks whether it is a compare
1641 of an induction variable and an invariant. If this is the case,
1642 CONTROL_VAR is set to location of the iv, BOUND to the location of
1643 the invariant, IV_VAR and IV_BOUND are set to the corresponding
1644 induction variable descriptions, and true is returned. If this is not
1645 the case, CONTROL_VAR and BOUND are set to the arguments of the
1646 condition and false is returned. */
1648 static bool
1649 extract_cond_operands (struct ivopts_data *data, gimple *stmt,
1650 tree **control_var, tree **bound,
1651 struct iv **iv_var, struct iv **iv_bound)
1653 /* The objects returned when COND has constant operands. */
1654 static struct iv const_iv;
1655 static tree zero;
1656 tree *op0 = &zero, *op1 = &zero;
1657 struct iv *iv0 = &const_iv, *iv1 = &const_iv;
1658 bool ret = false;
1660 if (gimple_code (stmt) == GIMPLE_COND)
1662 gcond *cond_stmt = as_a <gcond *> (stmt);
1663 op0 = gimple_cond_lhs_ptr (cond_stmt);
1664 op1 = gimple_cond_rhs_ptr (cond_stmt);
1666 else
1668 op0 = gimple_assign_rhs1_ptr (stmt);
1669 op1 = gimple_assign_rhs2_ptr (stmt);
1672 zero = integer_zero_node;
1673 const_iv.step = integer_zero_node;
1675 if (TREE_CODE (*op0) == SSA_NAME)
1676 iv0 = get_iv (data, *op0);
1677 if (TREE_CODE (*op1) == SSA_NAME)
1678 iv1 = get_iv (data, *op1);
1680 /* Exactly one of the compared values must be an iv, and the other one must
1681 be an invariant. */
1682 if (!iv0 || !iv1)
1683 goto end;
1685 if (integer_zerop (iv0->step))
1687 /* Control variable may be on the other side. */
1688 std::swap (op0, op1);
1689 std::swap (iv0, iv1);
1691 ret = !integer_zerop (iv0->step) && integer_zerop (iv1->step);
1693 end:
1694 if (control_var)
1695 *control_var = op0;
1696 if (iv_var)
1697 *iv_var = iv0;
1698 if (bound)
1699 *bound = op1;
1700 if (iv_bound)
1701 *iv_bound = iv1;
1703 return ret;
1706 /* Checks whether the condition in STMT is interesting and if so,
1707 records it. */
1709 static void
1710 find_interesting_uses_cond (struct ivopts_data *data, gimple *stmt)
1712 tree *var_p, *bound_p;
1713 struct iv *var_iv;
1715 if (!extract_cond_operands (data, stmt, &var_p, &bound_p, &var_iv, NULL))
1717 find_interesting_uses_op (data, *var_p);
1718 find_interesting_uses_op (data, *bound_p);
1719 return;
1722 record_group_use (data, NULL, var_iv, stmt, USE_COMPARE);
1725 /* Returns the outermost loop EXPR is obviously invariant in
1726 relative to the loop LOOP, i.e. if all its operands are defined
1727 outside of the returned loop. Returns NULL if EXPR is not
1728 even obviously invariant in LOOP. */
1730 struct loop *
1731 outermost_invariant_loop_for_expr (struct loop *loop, tree expr)
1733 basic_block def_bb;
1734 unsigned i, len;
1736 if (is_gimple_min_invariant (expr))
1737 return current_loops->tree_root;
1739 if (TREE_CODE (expr) == SSA_NAME)
1741 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
1742 if (def_bb)
1744 if (flow_bb_inside_loop_p (loop, def_bb))
1745 return NULL;
1746 return superloop_at_depth (loop,
1747 loop_depth (def_bb->loop_father) + 1);
1750 return current_loops->tree_root;
1753 if (!EXPR_P (expr))
1754 return NULL;
1756 unsigned maxdepth = 0;
1757 len = TREE_OPERAND_LENGTH (expr);
1758 for (i = 0; i < len; i++)
1760 struct loop *ivloop;
1761 if (!TREE_OPERAND (expr, i))
1762 continue;
1764 ivloop = outermost_invariant_loop_for_expr (loop, TREE_OPERAND (expr, i));
1765 if (!ivloop)
1766 return NULL;
1767 maxdepth = MAX (maxdepth, loop_depth (ivloop));
1770 return superloop_at_depth (loop, maxdepth);
1773 /* Returns true if expression EXPR is obviously invariant in LOOP,
1774 i.e. if all its operands are defined outside of the LOOP. LOOP
1775 should not be the function body. */
1777 bool
1778 expr_invariant_in_loop_p (struct loop *loop, tree expr)
1780 basic_block def_bb;
1781 unsigned i, len;
1783 gcc_assert (loop_depth (loop) > 0);
1785 if (is_gimple_min_invariant (expr))
1786 return true;
1788 if (TREE_CODE (expr) == SSA_NAME)
1790 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
1791 if (def_bb
1792 && flow_bb_inside_loop_p (loop, def_bb))
1793 return false;
1795 return true;
1798 if (!EXPR_P (expr))
1799 return false;
1801 len = TREE_OPERAND_LENGTH (expr);
1802 for (i = 0; i < len; i++)
1803 if (TREE_OPERAND (expr, i)
1804 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (expr, i)))
1805 return false;
1807 return true;
1810 /* Given expression EXPR which computes inductive values with respect
1811 to loop recorded in DATA, this function returns biv from which EXPR
1812 is derived by tracing definition chains of ssa variables in EXPR. */
1814 static struct iv*
1815 find_deriving_biv_for_expr (struct ivopts_data *data, tree expr)
1817 struct iv *iv;
1818 unsigned i, n;
1819 tree e2, e1;
1820 enum tree_code code;
1821 gimple *stmt;
1823 if (expr == NULL_TREE)
1824 return NULL;
1826 if (is_gimple_min_invariant (expr))
1827 return NULL;
1829 code = TREE_CODE (expr);
1830 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1832 n = TREE_OPERAND_LENGTH (expr);
1833 for (i = 0; i < n; i++)
1835 iv = find_deriving_biv_for_expr (data, TREE_OPERAND (expr, i));
1836 if (iv)
1837 return iv;
1841 /* Stop if it's not ssa name. */
1842 if (code != SSA_NAME)
1843 return NULL;
1845 iv = get_iv (data, expr);
1846 if (!iv || integer_zerop (iv->step))
1847 return NULL;
1848 else if (iv->biv_p)
1849 return iv;
1851 stmt = SSA_NAME_DEF_STMT (expr);
1852 if (gphi *phi = dyn_cast <gphi *> (stmt))
1854 ssa_op_iter iter;
1855 use_operand_p use_p;
1856 basic_block phi_bb = gimple_bb (phi);
1858 /* Skip loop header PHI that doesn't define biv. */
1859 if (phi_bb->loop_father == data->current_loop)
1860 return NULL;
1862 if (virtual_operand_p (gimple_phi_result (phi)))
1863 return NULL;
1865 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
1867 tree use = USE_FROM_PTR (use_p);
1868 iv = find_deriving_biv_for_expr (data, use);
1869 if (iv)
1870 return iv;
1872 return NULL;
1874 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1875 return NULL;
1877 e1 = gimple_assign_rhs1 (stmt);
1878 code = gimple_assign_rhs_code (stmt);
1879 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1880 return find_deriving_biv_for_expr (data, e1);
1882 switch (code)
1884 case MULT_EXPR:
1885 case PLUS_EXPR:
1886 case MINUS_EXPR:
1887 case POINTER_PLUS_EXPR:
1888 /* Increments, decrements and multiplications by a constant
1889 are simple. */
1890 e2 = gimple_assign_rhs2 (stmt);
1891 iv = find_deriving_biv_for_expr (data, e2);
1892 if (iv)
1893 return iv;
1894 gcc_fallthrough ();
1896 CASE_CONVERT:
1897 /* Casts are simple. */
1898 return find_deriving_biv_for_expr (data, e1);
1900 default:
1901 break;
1904 return NULL;
1907 /* Record BIV, its predecessor and successor that they are used in
1908 address type uses. */
1910 static void
1911 record_biv_for_address_use (struct ivopts_data *data, struct iv *biv)
1913 unsigned i;
1914 tree type, base_1, base_2;
1915 bitmap_iterator bi;
1917 if (!biv || !biv->biv_p || integer_zerop (biv->step)
1918 || biv->have_address_use || !biv->no_overflow)
1919 return;
1921 type = TREE_TYPE (biv->base);
1922 if (!INTEGRAL_TYPE_P (type))
1923 return;
1925 biv->have_address_use = true;
1926 data->bivs_not_used_in_addr--;
1927 base_1 = fold_build2 (PLUS_EXPR, type, biv->base, biv->step);
1928 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
1930 struct iv *iv = ver_info (data, i)->iv;
1932 if (!iv || !iv->biv_p || integer_zerop (iv->step)
1933 || iv->have_address_use || !iv->no_overflow)
1934 continue;
1936 if (type != TREE_TYPE (iv->base)
1937 || !INTEGRAL_TYPE_P (TREE_TYPE (iv->base)))
1938 continue;
1940 if (!operand_equal_p (biv->step, iv->step, 0))
1941 continue;
1943 base_2 = fold_build2 (PLUS_EXPR, type, iv->base, iv->step);
1944 if (operand_equal_p (base_1, iv->base, 0)
1945 || operand_equal_p (base_2, biv->base, 0))
1947 iv->have_address_use = true;
1948 data->bivs_not_used_in_addr--;
1953 /* Cumulates the steps of indices into DATA and replaces their values with the
1954 initial ones. Returns false when the value of the index cannot be determined.
1955 Callback for for_each_index. */
1957 struct ifs_ivopts_data
1959 struct ivopts_data *ivopts_data;
1960 gimple *stmt;
1961 tree step;
1964 static bool
1965 idx_find_step (tree base, tree *idx, void *data)
1967 struct ifs_ivopts_data *dta = (struct ifs_ivopts_data *) data;
1968 struct iv *iv;
1969 bool use_overflow_semantics = false;
1970 tree step, iv_base, iv_step, lbound, off;
1971 struct loop *loop = dta->ivopts_data->current_loop;
1973 /* If base is a component ref, require that the offset of the reference
1974 be invariant. */
1975 if (TREE_CODE (base) == COMPONENT_REF)
1977 off = component_ref_field_offset (base);
1978 return expr_invariant_in_loop_p (loop, off);
1981 /* If base is array, first check whether we will be able to move the
1982 reference out of the loop (in order to take its address in strength
1983 reduction). In order for this to work we need both lower bound
1984 and step to be loop invariants. */
1985 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
1987 /* Moreover, for a range, the size needs to be invariant as well. */
1988 if (TREE_CODE (base) == ARRAY_RANGE_REF
1989 && !expr_invariant_in_loop_p (loop, TYPE_SIZE (TREE_TYPE (base))))
1990 return false;
1992 step = array_ref_element_size (base);
1993 lbound = array_ref_low_bound (base);
1995 if (!expr_invariant_in_loop_p (loop, step)
1996 || !expr_invariant_in_loop_p (loop, lbound))
1997 return false;
2000 if (TREE_CODE (*idx) != SSA_NAME)
2001 return true;
2003 iv = get_iv (dta->ivopts_data, *idx);
2004 if (!iv)
2005 return false;
2007 /* XXX We produce for a base of *D42 with iv->base being &x[0]
2008 *&x[0], which is not folded and does not trigger the
2009 ARRAY_REF path below. */
2010 *idx = iv->base;
2012 if (integer_zerop (iv->step))
2013 return true;
2015 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
2017 step = array_ref_element_size (base);
2019 /* We only handle addresses whose step is an integer constant. */
2020 if (TREE_CODE (step) != INTEGER_CST)
2021 return false;
2023 else
2024 /* The step for pointer arithmetics already is 1 byte. */
2025 step = size_one_node;
2027 iv_base = iv->base;
2028 iv_step = iv->step;
2029 if (iv->no_overflow && nowrap_type_p (TREE_TYPE (iv_step)))
2030 use_overflow_semantics = true;
2032 if (!convert_affine_scev (dta->ivopts_data->current_loop,
2033 sizetype, &iv_base, &iv_step, dta->stmt,
2034 use_overflow_semantics))
2036 /* The index might wrap. */
2037 return false;
2040 step = fold_build2 (MULT_EXPR, sizetype, step, iv_step);
2041 dta->step = fold_build2 (PLUS_EXPR, sizetype, dta->step, step);
2043 if (dta->ivopts_data->bivs_not_used_in_addr)
2045 if (!iv->biv_p)
2046 iv = find_deriving_biv_for_expr (dta->ivopts_data, iv->ssa_name);
2048 record_biv_for_address_use (dta->ivopts_data, iv);
2050 return true;
2053 /* Records use in index IDX. Callback for for_each_index. Ivopts data
2054 object is passed to it in DATA. */
2056 static bool
2057 idx_record_use (tree base, tree *idx,
2058 void *vdata)
2060 struct ivopts_data *data = (struct ivopts_data *) vdata;
2061 find_interesting_uses_op (data, *idx);
2062 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
2064 find_interesting_uses_op (data, array_ref_element_size (base));
2065 find_interesting_uses_op (data, array_ref_low_bound (base));
2067 return true;
2070 /* If we can prove that TOP = cst * BOT for some constant cst,
2071 store cst to MUL and return true. Otherwise return false.
2072 The returned value is always sign-extended, regardless of the
2073 signedness of TOP and BOT. */
2075 static bool
2076 constant_multiple_of (tree top, tree bot, widest_int *mul)
2078 tree mby;
2079 enum tree_code code;
2080 unsigned precision = TYPE_PRECISION (TREE_TYPE (top));
2081 widest_int res, p0, p1;
2083 STRIP_NOPS (top);
2084 STRIP_NOPS (bot);
2086 if (operand_equal_p (top, bot, 0))
2088 *mul = 1;
2089 return true;
2092 code = TREE_CODE (top);
2093 switch (code)
2095 case MULT_EXPR:
2096 mby = TREE_OPERAND (top, 1);
2097 if (TREE_CODE (mby) != INTEGER_CST)
2098 return false;
2100 if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &res))
2101 return false;
2103 *mul = wi::sext (res * wi::to_widest (mby), precision);
2104 return true;
2106 case PLUS_EXPR:
2107 case MINUS_EXPR:
2108 if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &p0)
2109 || !constant_multiple_of (TREE_OPERAND (top, 1), bot, &p1))
2110 return false;
2112 if (code == MINUS_EXPR)
2113 p1 = -p1;
2114 *mul = wi::sext (p0 + p1, precision);
2115 return true;
2117 case INTEGER_CST:
2118 if (TREE_CODE (bot) != INTEGER_CST)
2119 return false;
2121 p0 = widest_int::from (top, SIGNED);
2122 p1 = widest_int::from (bot, SIGNED);
2123 if (p1 == 0)
2124 return false;
2125 *mul = wi::sext (wi::divmod_trunc (p0, p1, SIGNED, &res), precision);
2126 return res == 0;
2128 default:
2129 return false;
2133 /* Return true if memory reference REF with step STEP may be unaligned. */
2135 static bool
2136 may_be_unaligned_p (tree ref, tree step)
2138 /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
2139 thus they are not misaligned. */
2140 if (TREE_CODE (ref) == TARGET_MEM_REF)
2141 return false;
2143 unsigned int align = TYPE_ALIGN (TREE_TYPE (ref));
2144 if (GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref))) > align)
2145 align = GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref)));
2147 unsigned HOST_WIDE_INT bitpos;
2148 unsigned int ref_align;
2149 get_object_alignment_1 (ref, &ref_align, &bitpos);
2150 if (ref_align < align
2151 || (bitpos % align) != 0
2152 || (bitpos % BITS_PER_UNIT) != 0)
2153 return true;
2155 unsigned int trailing_zeros = tree_ctz (step);
2156 if (trailing_zeros < HOST_BITS_PER_INT
2157 && (1U << trailing_zeros) * BITS_PER_UNIT < align)
2158 return true;
2160 return false;
2163 /* Return true if EXPR may be non-addressable. */
2165 bool
2166 may_be_nonaddressable_p (tree expr)
2168 switch (TREE_CODE (expr))
2170 case TARGET_MEM_REF:
2171 /* TARGET_MEM_REFs are translated directly to valid MEMs on the
2172 target, thus they are always addressable. */
2173 return false;
2175 case MEM_REF:
2176 /* Likewise for MEM_REFs, modulo the storage order. */
2177 return REF_REVERSE_STORAGE_ORDER (expr);
2179 case BIT_FIELD_REF:
2180 if (REF_REVERSE_STORAGE_ORDER (expr))
2181 return true;
2182 return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
2184 case COMPONENT_REF:
2185 if (TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (TREE_OPERAND (expr, 0))))
2186 return true;
2187 return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1))
2188 || may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
2190 case ARRAY_REF:
2191 case ARRAY_RANGE_REF:
2192 if (TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (TREE_OPERAND (expr, 0))))
2193 return true;
2194 return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
2196 case VIEW_CONVERT_EXPR:
2197 /* This kind of view-conversions may wrap non-addressable objects
2198 and make them look addressable. After some processing the
2199 non-addressability may be uncovered again, causing ADDR_EXPRs
2200 of inappropriate objects to be built. */
2201 if (is_gimple_reg (TREE_OPERAND (expr, 0))
2202 || !is_gimple_addressable (TREE_OPERAND (expr, 0)))
2203 return true;
2204 return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
2206 CASE_CONVERT:
2207 return true;
2209 default:
2210 break;
2213 return false;
2216 /* Finds addresses in *OP_P inside STMT. */
2218 static void
2219 find_interesting_uses_address (struct ivopts_data *data, gimple *stmt,
2220 tree *op_p)
2222 tree base = *op_p, step = size_zero_node;
2223 struct iv *civ;
2224 struct ifs_ivopts_data ifs_ivopts_data;
2226 /* Do not play with volatile memory references. A bit too conservative,
2227 perhaps, but safe. */
2228 if (gimple_has_volatile_ops (stmt))
2229 goto fail;
2231 /* Ignore bitfields for now. Not really something terribly complicated
2232 to handle. TODO. */
2233 if (TREE_CODE (base) == BIT_FIELD_REF)
2234 goto fail;
2236 base = unshare_expr (base);
2238 if (TREE_CODE (base) == TARGET_MEM_REF)
2240 tree type = build_pointer_type (TREE_TYPE (base));
2241 tree astep;
2243 if (TMR_BASE (base)
2244 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)
2246 civ = get_iv (data, TMR_BASE (base));
2247 if (!civ)
2248 goto fail;
2250 TMR_BASE (base) = civ->base;
2251 step = civ->step;
2253 if (TMR_INDEX2 (base)
2254 && TREE_CODE (TMR_INDEX2 (base)) == SSA_NAME)
2256 civ = get_iv (data, TMR_INDEX2 (base));
2257 if (!civ)
2258 goto fail;
2260 TMR_INDEX2 (base) = civ->base;
2261 step = civ->step;
2263 if (TMR_INDEX (base)
2264 && TREE_CODE (TMR_INDEX (base)) == SSA_NAME)
2266 civ = get_iv (data, TMR_INDEX (base));
2267 if (!civ)
2268 goto fail;
2270 TMR_INDEX (base) = civ->base;
2271 astep = civ->step;
2273 if (astep)
2275 if (TMR_STEP (base))
2276 astep = fold_build2 (MULT_EXPR, type, TMR_STEP (base), astep);
2278 step = fold_build2 (PLUS_EXPR, type, step, astep);
2282 if (integer_zerop (step))
2283 goto fail;
2284 base = tree_mem_ref_addr (type, base);
2286 else
2288 ifs_ivopts_data.ivopts_data = data;
2289 ifs_ivopts_data.stmt = stmt;
2290 ifs_ivopts_data.step = size_zero_node;
2291 if (!for_each_index (&base, idx_find_step, &ifs_ivopts_data)
2292 || integer_zerop (ifs_ivopts_data.step))
2293 goto fail;
2294 step = ifs_ivopts_data.step;
2296 /* Check that the base expression is addressable. This needs
2297 to be done after substituting bases of IVs into it. */
2298 if (may_be_nonaddressable_p (base))
2299 goto fail;
2301 /* Moreover, on strict alignment platforms, check that it is
2302 sufficiently aligned. */
2303 if (STRICT_ALIGNMENT && may_be_unaligned_p (base, step))
2304 goto fail;
2306 base = build_fold_addr_expr (base);
2308 /* Substituting bases of IVs into the base expression might
2309 have caused folding opportunities. */
2310 if (TREE_CODE (base) == ADDR_EXPR)
2312 tree *ref = &TREE_OPERAND (base, 0);
2313 while (handled_component_p (*ref))
2314 ref = &TREE_OPERAND (*ref, 0);
2315 if (TREE_CODE (*ref) == MEM_REF)
2317 tree tem = fold_binary (MEM_REF, TREE_TYPE (*ref),
2318 TREE_OPERAND (*ref, 0),
2319 TREE_OPERAND (*ref, 1));
2320 if (tem)
2321 *ref = tem;
2326 civ = alloc_iv (data, base, step);
2327 /* Fail if base object of this memory reference is unknown. */
2328 if (civ->base_object == NULL_TREE)
2329 goto fail;
2331 record_group_use (data, op_p, civ, stmt, USE_ADDRESS);
2332 return;
2334 fail:
2335 for_each_index (op_p, idx_record_use, data);
2338 /* Finds and records invariants used in STMT. */
2340 static void
2341 find_invariants_stmt (struct ivopts_data *data, gimple *stmt)
2343 ssa_op_iter iter;
2344 use_operand_p use_p;
2345 tree op;
2347 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
2349 op = USE_FROM_PTR (use_p);
2350 record_invariant (data, op, false);
2354 /* Finds interesting uses of induction variables in the statement STMT. */
2356 static void
2357 find_interesting_uses_stmt (struct ivopts_data *data, gimple *stmt)
2359 struct iv *iv;
2360 tree op, *lhs, *rhs;
2361 ssa_op_iter iter;
2362 use_operand_p use_p;
2363 enum tree_code code;
2365 find_invariants_stmt (data, stmt);
2367 if (gimple_code (stmt) == GIMPLE_COND)
2369 find_interesting_uses_cond (data, stmt);
2370 return;
2373 if (is_gimple_assign (stmt))
2375 lhs = gimple_assign_lhs_ptr (stmt);
2376 rhs = gimple_assign_rhs1_ptr (stmt);
2378 if (TREE_CODE (*lhs) == SSA_NAME)
2380 /* If the statement defines an induction variable, the uses are not
2381 interesting by themselves. */
2383 iv = get_iv (data, *lhs);
2385 if (iv && !integer_zerop (iv->step))
2386 return;
2389 code = gimple_assign_rhs_code (stmt);
2390 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
2391 && (REFERENCE_CLASS_P (*rhs)
2392 || is_gimple_val (*rhs)))
2394 if (REFERENCE_CLASS_P (*rhs))
2395 find_interesting_uses_address (data, stmt, rhs);
2396 else
2397 find_interesting_uses_op (data, *rhs);
2399 if (REFERENCE_CLASS_P (*lhs))
2400 find_interesting_uses_address (data, stmt, lhs);
2401 return;
2403 else if (TREE_CODE_CLASS (code) == tcc_comparison)
2405 find_interesting_uses_cond (data, stmt);
2406 return;
2409 /* TODO -- we should also handle address uses of type
2411 memory = call (whatever);
2415 call (memory). */
2418 if (gimple_code (stmt) == GIMPLE_PHI
2419 && gimple_bb (stmt) == data->current_loop->header)
2421 iv = get_iv (data, PHI_RESULT (stmt));
2423 if (iv && !integer_zerop (iv->step))
2424 return;
2427 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
2429 op = USE_FROM_PTR (use_p);
2431 if (TREE_CODE (op) != SSA_NAME)
2432 continue;
2434 iv = get_iv (data, op);
2435 if (!iv)
2436 continue;
2438 find_interesting_uses_op (data, op);
2442 /* Finds interesting uses of induction variables outside of loops
2443 on loop exit edge EXIT. */
2445 static void
2446 find_interesting_uses_outside (struct ivopts_data *data, edge exit)
2448 gphi *phi;
2449 gphi_iterator psi;
2450 tree def;
2452 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2454 phi = psi.phi ();
2455 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2456 if (!virtual_operand_p (def))
2457 find_interesting_uses_op (data, def);
2461 /* Compute maximum offset of [base + offset] addressing mode
2462 for memory reference represented by USE. */
2464 static HOST_WIDE_INT
2465 compute_max_addr_offset (struct iv_use *use)
2467 int width;
2468 rtx reg, addr;
2469 HOST_WIDE_INT i, off;
2470 unsigned list_index, num;
2471 addr_space_t as;
2472 machine_mode mem_mode, addr_mode;
2473 static vec<HOST_WIDE_INT> max_offset_list;
2475 as = TYPE_ADDR_SPACE (TREE_TYPE (use->iv->base));
2476 mem_mode = TYPE_MODE (TREE_TYPE (*use->op_p));
2478 num = max_offset_list.length ();
2479 list_index = (unsigned) as * MAX_MACHINE_MODE + (unsigned) mem_mode;
2480 if (list_index >= num)
2482 max_offset_list.safe_grow (list_index + MAX_MACHINE_MODE);
2483 for (; num < max_offset_list.length (); num++)
2484 max_offset_list[num] = -1;
2487 off = max_offset_list[list_index];
2488 if (off != -1)
2489 return off;
2491 addr_mode = targetm.addr_space.address_mode (as);
2492 reg = gen_raw_REG (addr_mode, LAST_VIRTUAL_REGISTER + 1);
2493 addr = gen_rtx_fmt_ee (PLUS, addr_mode, reg, NULL_RTX);
2495 width = GET_MODE_BITSIZE (addr_mode) - 1;
2496 if (width > (HOST_BITS_PER_WIDE_INT - 1))
2497 width = HOST_BITS_PER_WIDE_INT - 1;
2499 for (i = width; i > 0; i--)
2501 off = (HOST_WIDE_INT_1U << i) - 1;
2502 XEXP (addr, 1) = gen_int_mode (off, addr_mode);
2503 if (memory_address_addr_space_p (mem_mode, addr, as))
2504 break;
2506 /* For some strict-alignment targets, the offset must be naturally
2507 aligned. Try an aligned offset if mem_mode is not QImode. */
2508 off = (HOST_WIDE_INT_1U << i);
2509 if (off > GET_MODE_SIZE (mem_mode) && mem_mode != QImode)
2511 off -= GET_MODE_SIZE (mem_mode);
2512 XEXP (addr, 1) = gen_int_mode (off, addr_mode);
2513 if (memory_address_addr_space_p (mem_mode, addr, as))
2514 break;
2517 if (i == 0)
2518 off = 0;
2520 max_offset_list[list_index] = off;
2521 return off;
2524 /* Comparison function to sort group in ascending order of addr_offset. */
2526 static int
2527 group_compare_offset (const void *a, const void *b)
2529 const struct iv_use *const *u1 = (const struct iv_use *const *) a;
2530 const struct iv_use *const *u2 = (const struct iv_use *const *) b;
2532 if ((*u1)->addr_offset != (*u2)->addr_offset)
2533 return (*u1)->addr_offset < (*u2)->addr_offset ? -1 : 1;
2534 else
2535 return 0;
2538 /* Check if small groups should be split. Return true if no group
2539 contains more than two uses with distinct addr_offsets. Return
2540 false otherwise. We want to split such groups because:
2542 1) Small groups don't have much benefit and may interfer with
2543 general candidate selection.
2544 2) Size for problem with only small groups is usually small and
2545 general algorithm can handle it well.
2547 TODO -- Above claim may not hold when we want to merge memory
2548 accesses with conseuctive addresses. */
2550 static bool
2551 split_small_address_groups_p (struct ivopts_data *data)
2553 unsigned int i, j, distinct = 1;
2554 struct iv_use *pre;
2555 struct iv_group *group;
2557 for (i = 0; i < data->vgroups.length (); i++)
2559 group = data->vgroups[i];
2560 if (group->vuses.length () == 1)
2561 continue;
2563 gcc_assert (group->type == USE_ADDRESS);
2564 if (group->vuses.length () == 2)
2566 if (group->vuses[0]->addr_offset > group->vuses[1]->addr_offset)
2567 std::swap (group->vuses[0], group->vuses[1]);
2569 else
2570 group->vuses.qsort (group_compare_offset);
2572 if (distinct > 2)
2573 continue;
2575 distinct = 1;
2576 for (pre = group->vuses[0], j = 1; j < group->vuses.length (); j++)
2578 if (group->vuses[j]->addr_offset != pre->addr_offset)
2580 pre = group->vuses[j];
2581 distinct++;
2584 if (distinct > 2)
2585 break;
2589 return (distinct <= 2);
2592 /* For each group of address type uses, this function further groups
2593 these uses according to the maximum offset supported by target's
2594 [base + offset] addressing mode. */
2596 static void
2597 split_address_groups (struct ivopts_data *data)
2599 unsigned int i, j;
2600 HOST_WIDE_INT max_offset = -1;
2602 /* Reset max offset to split all small groups. */
2603 if (split_small_address_groups_p (data))
2604 max_offset = 0;
2606 for (i = 0; i < data->vgroups.length (); i++)
2608 struct iv_group *group = data->vgroups[i];
2609 struct iv_use *use = group->vuses[0];
2611 use->id = 0;
2612 use->group_id = group->id;
2613 if (group->vuses.length () == 1)
2614 continue;
2616 if (max_offset != 0)
2617 max_offset = compute_max_addr_offset (use);
2619 for (j = 1; j < group->vuses.length (); j++)
2621 struct iv_use *next = group->vuses[j];
2623 /* Only uses with offset that can fit in offset part against
2624 the first use can be grouped together. */
2625 if (next->addr_offset - use->addr_offset
2626 > (unsigned HOST_WIDE_INT) max_offset)
2627 break;
2629 next->id = j;
2630 next->group_id = group->id;
2632 /* Split group. */
2633 if (j < group->vuses.length ())
2635 struct iv_group *new_group = record_group (data, group->type);
2636 new_group->vuses.safe_splice (group->vuses);
2637 new_group->vuses.block_remove (0, j);
2638 group->vuses.truncate (j);
2643 /* Finds uses of the induction variables that are interesting. */
2645 static void
2646 find_interesting_uses (struct ivopts_data *data)
2648 basic_block bb;
2649 gimple_stmt_iterator bsi;
2650 basic_block *body = get_loop_body (data->current_loop);
2651 unsigned i;
2652 edge e;
2654 for (i = 0; i < data->current_loop->num_nodes; i++)
2656 edge_iterator ei;
2657 bb = body[i];
2659 FOR_EACH_EDGE (e, ei, bb->succs)
2660 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2661 && !flow_bb_inside_loop_p (data->current_loop, e->dest))
2662 find_interesting_uses_outside (data, e);
2664 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2665 find_interesting_uses_stmt (data, gsi_stmt (bsi));
2666 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2667 if (!is_gimple_debug (gsi_stmt (bsi)))
2668 find_interesting_uses_stmt (data, gsi_stmt (bsi));
2671 split_address_groups (data);
2673 if (dump_file && (dump_flags & TDF_DETAILS))
2675 bitmap_iterator bi;
2677 fprintf (dump_file, "\n<Invariant Vars>:\n");
2678 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
2680 struct version_info *info = ver_info (data, i);
2681 if (info->inv_id)
2683 fprintf (dump_file, "Inv %d:\t", info->inv_id);
2684 print_generic_expr (dump_file, info->name, TDF_SLIM);
2685 fprintf (dump_file, "%s\n",
2686 info->has_nonlin_use ? "" : "\t(eliminable)");
2690 fprintf (dump_file, "\n<IV Groups>:\n");
2691 dump_groups (dump_file, data);
2692 fprintf (dump_file, "\n");
2695 free (body);
2698 /* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
2699 is true, assume we are inside an address. If TOP_COMPREF is true, assume
2700 we are at the top-level of the processed address. */
2702 static tree
2703 strip_offset_1 (tree expr, bool inside_addr, bool top_compref,
2704 HOST_WIDE_INT *offset)
2706 tree op0 = NULL_TREE, op1 = NULL_TREE, tmp, step;
2707 enum tree_code code;
2708 tree type, orig_type = TREE_TYPE (expr);
2709 HOST_WIDE_INT off0, off1, st;
2710 tree orig_expr = expr;
2712 STRIP_NOPS (expr);
2714 type = TREE_TYPE (expr);
2715 code = TREE_CODE (expr);
2716 *offset = 0;
2718 switch (code)
2720 case INTEGER_CST:
2721 if (!cst_and_fits_in_hwi (expr)
2722 || integer_zerop (expr))
2723 return orig_expr;
2725 *offset = int_cst_value (expr);
2726 return build_int_cst (orig_type, 0);
2728 case POINTER_PLUS_EXPR:
2729 case PLUS_EXPR:
2730 case MINUS_EXPR:
2731 op0 = TREE_OPERAND (expr, 0);
2732 op1 = TREE_OPERAND (expr, 1);
2734 op0 = strip_offset_1 (op0, false, false, &off0);
2735 op1 = strip_offset_1 (op1, false, false, &off1);
2737 *offset = (code == MINUS_EXPR ? off0 - off1 : off0 + off1);
2738 if (op0 == TREE_OPERAND (expr, 0)
2739 && op1 == TREE_OPERAND (expr, 1))
2740 return orig_expr;
2742 if (integer_zerop (op1))
2743 expr = op0;
2744 else if (integer_zerop (op0))
2746 if (code == MINUS_EXPR)
2747 expr = fold_build1 (NEGATE_EXPR, type, op1);
2748 else
2749 expr = op1;
2751 else
2752 expr = fold_build2 (code, type, op0, op1);
2754 return fold_convert (orig_type, expr);
2756 case MULT_EXPR:
2757 op1 = TREE_OPERAND (expr, 1);
2758 if (!cst_and_fits_in_hwi (op1))
2759 return orig_expr;
2761 op0 = TREE_OPERAND (expr, 0);
2762 op0 = strip_offset_1 (op0, false, false, &off0);
2763 if (op0 == TREE_OPERAND (expr, 0))
2764 return orig_expr;
2766 *offset = off0 * int_cst_value (op1);
2767 if (integer_zerop (op0))
2768 expr = op0;
2769 else
2770 expr = fold_build2 (MULT_EXPR, type, op0, op1);
2772 return fold_convert (orig_type, expr);
2774 case ARRAY_REF:
2775 case ARRAY_RANGE_REF:
2776 if (!inside_addr)
2777 return orig_expr;
2779 step = array_ref_element_size (expr);
2780 if (!cst_and_fits_in_hwi (step))
2781 break;
2783 st = int_cst_value (step);
2784 op1 = TREE_OPERAND (expr, 1);
2785 op1 = strip_offset_1 (op1, false, false, &off1);
2786 *offset = off1 * st;
2788 if (top_compref
2789 && integer_zerop (op1))
2791 /* Strip the component reference completely. */
2792 op0 = TREE_OPERAND (expr, 0);
2793 op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
2794 *offset += off0;
2795 return op0;
2797 break;
2799 case COMPONENT_REF:
2801 tree field;
2803 if (!inside_addr)
2804 return orig_expr;
2806 tmp = component_ref_field_offset (expr);
2807 field = TREE_OPERAND (expr, 1);
2808 if (top_compref
2809 && cst_and_fits_in_hwi (tmp)
2810 && cst_and_fits_in_hwi (DECL_FIELD_BIT_OFFSET (field)))
2812 HOST_WIDE_INT boffset, abs_off;
2814 /* Strip the component reference completely. */
2815 op0 = TREE_OPERAND (expr, 0);
2816 op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
2817 boffset = int_cst_value (DECL_FIELD_BIT_OFFSET (field));
2818 abs_off = abs_hwi (boffset) / BITS_PER_UNIT;
2819 if (boffset < 0)
2820 abs_off = -abs_off;
2822 *offset = off0 + int_cst_value (tmp) + abs_off;
2823 return op0;
2826 break;
2828 case ADDR_EXPR:
2829 op0 = TREE_OPERAND (expr, 0);
2830 op0 = strip_offset_1 (op0, true, true, &off0);
2831 *offset += off0;
2833 if (op0 == TREE_OPERAND (expr, 0))
2834 return orig_expr;
2836 expr = build_fold_addr_expr (op0);
2837 return fold_convert (orig_type, expr);
2839 case MEM_REF:
2840 /* ??? Offset operand? */
2841 inside_addr = false;
2842 break;
2844 default:
2845 return orig_expr;
2848 /* Default handling of expressions for that we want to recurse into
2849 the first operand. */
2850 op0 = TREE_OPERAND (expr, 0);
2851 op0 = strip_offset_1 (op0, inside_addr, false, &off0);
2852 *offset += off0;
2854 if (op0 == TREE_OPERAND (expr, 0)
2855 && (!op1 || op1 == TREE_OPERAND (expr, 1)))
2856 return orig_expr;
2858 expr = copy_node (expr);
2859 TREE_OPERAND (expr, 0) = op0;
2860 if (op1)
2861 TREE_OPERAND (expr, 1) = op1;
2863 /* Inside address, we might strip the top level component references,
2864 thus changing type of the expression. Handling of ADDR_EXPR
2865 will fix that. */
2866 expr = fold_convert (orig_type, expr);
2868 return expr;
2871 /* Strips constant offsets from EXPR and stores them to OFFSET. */
2873 static tree
2874 strip_offset (tree expr, unsigned HOST_WIDE_INT *offset)
2876 HOST_WIDE_INT off;
2877 tree core = strip_offset_1 (expr, false, false, &off);
2878 *offset = off;
2879 return core;
2882 /* Returns variant of TYPE that can be used as base for different uses.
2883 We return unsigned type with the same precision, which avoids problems
2884 with overflows. */
2886 static tree
2887 generic_type_for (tree type)
2889 if (POINTER_TYPE_P (type))
2890 return unsigned_type_for (type);
2892 if (TYPE_UNSIGNED (type))
2893 return type;
2895 return unsigned_type_for (type);
2898 /* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
2899 the bitmap to that we should store it. */
2901 static struct ivopts_data *fd_ivopts_data;
2902 static tree
2903 find_depends (tree *expr_p, int *ws ATTRIBUTE_UNUSED, void *data)
2905 bitmap *depends_on = (bitmap *) data;
2906 struct version_info *info;
2908 if (TREE_CODE (*expr_p) != SSA_NAME)
2909 return NULL_TREE;
2910 info = name_info (fd_ivopts_data, *expr_p);
2912 if (!info->inv_id || info->has_nonlin_use)
2913 return NULL_TREE;
2915 if (!*depends_on)
2916 *depends_on = BITMAP_ALLOC (NULL);
2917 bitmap_set_bit (*depends_on, info->inv_id);
2919 return NULL_TREE;
2922 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2923 position to POS. If USE is not NULL, the candidate is set as related to
2924 it. If both BASE and STEP are NULL, we add a pseudocandidate for the
2925 replacement of the final value of the iv by a direct computation. */
2927 static struct iv_cand *
2928 add_candidate_1 (struct ivopts_data *data,
2929 tree base, tree step, bool important, enum iv_position pos,
2930 struct iv_use *use, gimple *incremented_at,
2931 struct iv *orig_iv = NULL)
2933 unsigned i;
2934 struct iv_cand *cand = NULL;
2935 tree type, orig_type;
2937 gcc_assert (base && step);
2939 /* -fkeep-gc-roots-live means that we have to keep a real pointer
2940 live, but the ivopts code may replace a real pointer with one
2941 pointing before or after the memory block that is then adjusted
2942 into the memory block during the loop. FIXME: It would likely be
2943 better to actually force the pointer live and still use ivopts;
2944 for example, it would be enough to write the pointer into memory
2945 and keep it there until after the loop. */
2946 if (flag_keep_gc_roots_live && POINTER_TYPE_P (TREE_TYPE (base)))
2947 return NULL;
2949 /* For non-original variables, make sure their values are computed in a type
2950 that does not invoke undefined behavior on overflows (since in general,
2951 we cannot prove that these induction variables are non-wrapping). */
2952 if (pos != IP_ORIGINAL)
2954 orig_type = TREE_TYPE (base);
2955 type = generic_type_for (orig_type);
2956 if (type != orig_type)
2958 base = fold_convert (type, base);
2959 step = fold_convert (type, step);
2963 for (i = 0; i < data->vcands.length (); i++)
2965 cand = data->vcands[i];
2967 if (cand->pos != pos)
2968 continue;
2970 if (cand->incremented_at != incremented_at
2971 || ((pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
2972 && cand->ainc_use != use))
2973 continue;
2975 if (operand_equal_p (base, cand->iv->base, 0)
2976 && operand_equal_p (step, cand->iv->step, 0)
2977 && (TYPE_PRECISION (TREE_TYPE (base))
2978 == TYPE_PRECISION (TREE_TYPE (cand->iv->base))))
2979 break;
2982 if (i == data->vcands.length ())
2984 cand = XCNEW (struct iv_cand);
2985 cand->id = i;
2986 cand->iv = alloc_iv (data, base, step);
2987 cand->pos = pos;
2988 if (pos != IP_ORIGINAL)
2990 cand->var_before = create_tmp_var_raw (TREE_TYPE (base), "ivtmp");
2991 cand->var_after = cand->var_before;
2993 cand->important = important;
2994 cand->incremented_at = incremented_at;
2995 data->vcands.safe_push (cand);
2997 if (TREE_CODE (step) != INTEGER_CST)
2999 fd_ivopts_data = data;
3000 walk_tree (&step, find_depends, &cand->depends_on, NULL);
3003 if (pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
3004 cand->ainc_use = use;
3005 else
3006 cand->ainc_use = NULL;
3008 cand->orig_iv = orig_iv;
3009 if (dump_file && (dump_flags & TDF_DETAILS))
3010 dump_cand (dump_file, cand);
3013 cand->important |= important;
3015 /* Relate candidate to the group for which it is added. */
3016 if (use)
3017 bitmap_set_bit (data->vgroups[use->group_id]->related_cands, i);
3019 return cand;
3022 /* Returns true if incrementing the induction variable at the end of the LOOP
3023 is allowed.
3025 The purpose is to avoid splitting latch edge with a biv increment, thus
3026 creating a jump, possibly confusing other optimization passes and leaving
3027 less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
3028 is not available (so we do not have a better alternative), or if the latch
3029 edge is already nonempty. */
3031 static bool
3032 allow_ip_end_pos_p (struct loop *loop)
3034 if (!ip_normal_pos (loop))
3035 return true;
3037 if (!empty_block_p (ip_end_pos (loop)))
3038 return true;
3040 return false;
3043 /* If possible, adds autoincrement candidates BASE + STEP * i based on use USE.
3044 Important field is set to IMPORTANT. */
3046 static void
3047 add_autoinc_candidates (struct ivopts_data *data, tree base, tree step,
3048 bool important, struct iv_use *use)
3050 basic_block use_bb = gimple_bb (use->stmt);
3051 machine_mode mem_mode;
3052 unsigned HOST_WIDE_INT cstepi;
3054 /* If we insert the increment in any position other than the standard
3055 ones, we must ensure that it is incremented once per iteration.
3056 It must not be in an inner nested loop, or one side of an if
3057 statement. */
3058 if (use_bb->loop_father != data->current_loop
3059 || !dominated_by_p (CDI_DOMINATORS, data->current_loop->latch, use_bb)
3060 || stmt_could_throw_p (use->stmt)
3061 || !cst_and_fits_in_hwi (step))
3062 return;
3064 cstepi = int_cst_value (step);
3066 mem_mode = TYPE_MODE (TREE_TYPE (*use->op_p));
3067 if (((USE_LOAD_PRE_INCREMENT (mem_mode)
3068 || USE_STORE_PRE_INCREMENT (mem_mode))
3069 && GET_MODE_SIZE (mem_mode) == cstepi)
3070 || ((USE_LOAD_PRE_DECREMENT (mem_mode)
3071 || USE_STORE_PRE_DECREMENT (mem_mode))
3072 && GET_MODE_SIZE (mem_mode) == -cstepi))
3074 enum tree_code code = MINUS_EXPR;
3075 tree new_base;
3076 tree new_step = step;
3078 if (POINTER_TYPE_P (TREE_TYPE (base)))
3080 new_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
3081 code = POINTER_PLUS_EXPR;
3083 else
3084 new_step = fold_convert (TREE_TYPE (base), new_step);
3085 new_base = fold_build2 (code, TREE_TYPE (base), base, new_step);
3086 add_candidate_1 (data, new_base, step, important, IP_BEFORE_USE, use,
3087 use->stmt);
3089 if (((USE_LOAD_POST_INCREMENT (mem_mode)
3090 || USE_STORE_POST_INCREMENT (mem_mode))
3091 && GET_MODE_SIZE (mem_mode) == cstepi)
3092 || ((USE_LOAD_POST_DECREMENT (mem_mode)
3093 || USE_STORE_POST_DECREMENT (mem_mode))
3094 && GET_MODE_SIZE (mem_mode) == -cstepi))
3096 add_candidate_1 (data, base, step, important, IP_AFTER_USE, use,
3097 use->stmt);
3101 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
3102 position to POS. If USE is not NULL, the candidate is set as related to
3103 it. The candidate computation is scheduled before exit condition and at
3104 the end of loop. */
3106 static void
3107 add_candidate (struct ivopts_data *data,
3108 tree base, tree step, bool important, struct iv_use *use,
3109 struct iv *orig_iv = NULL)
3111 if (ip_normal_pos (data->current_loop))
3112 add_candidate_1 (data, base, step, important,
3113 IP_NORMAL, use, NULL, orig_iv);
3114 if (ip_end_pos (data->current_loop)
3115 && allow_ip_end_pos_p (data->current_loop))
3116 add_candidate_1 (data, base, step, important, IP_END, use, NULL, orig_iv);
3119 /* Adds standard iv candidates. */
3121 static void
3122 add_standard_iv_candidates (struct ivopts_data *data)
3124 add_candidate (data, integer_zero_node, integer_one_node, true, NULL);
3126 /* The same for a double-integer type if it is still fast enough. */
3127 if (TYPE_PRECISION
3128 (long_integer_type_node) > TYPE_PRECISION (integer_type_node)
3129 && TYPE_PRECISION (long_integer_type_node) <= BITS_PER_WORD)
3130 add_candidate (data, build_int_cst (long_integer_type_node, 0),
3131 build_int_cst (long_integer_type_node, 1), true, NULL);
3133 /* The same for a double-integer type if it is still fast enough. */
3134 if (TYPE_PRECISION
3135 (long_long_integer_type_node) > TYPE_PRECISION (long_integer_type_node)
3136 && TYPE_PRECISION (long_long_integer_type_node) <= BITS_PER_WORD)
3137 add_candidate (data, build_int_cst (long_long_integer_type_node, 0),
3138 build_int_cst (long_long_integer_type_node, 1), true, NULL);
3142 /* Adds candidates bases on the old induction variable IV. */
3144 static void
3145 add_iv_candidate_for_biv (struct ivopts_data *data, struct iv *iv)
3147 gimple *phi;
3148 tree def;
3149 struct iv_cand *cand;
3151 /* Check if this biv is used in address type use. */
3152 if (iv->no_overflow && iv->have_address_use
3153 && INTEGRAL_TYPE_P (TREE_TYPE (iv->base))
3154 && TYPE_PRECISION (TREE_TYPE (iv->base)) < TYPE_PRECISION (sizetype))
3156 tree base = fold_convert (sizetype, iv->base);
3157 tree step = fold_convert (sizetype, iv->step);
3159 /* Add iv cand of same precision as index part in TARGET_MEM_REF. */
3160 add_candidate (data, base, step, true, NULL, iv);
3161 /* Add iv cand of the original type only if it has nonlinear use. */
3162 if (iv->nonlin_use)
3163 add_candidate (data, iv->base, iv->step, true, NULL);
3165 else
3166 add_candidate (data, iv->base, iv->step, true, NULL);
3168 /* The same, but with initial value zero. */
3169 if (POINTER_TYPE_P (TREE_TYPE (iv->base)))
3170 add_candidate (data, size_int (0), iv->step, true, NULL);
3171 else
3172 add_candidate (data, build_int_cst (TREE_TYPE (iv->base), 0),
3173 iv->step, true, NULL);
3175 phi = SSA_NAME_DEF_STMT (iv->ssa_name);
3176 if (gimple_code (phi) == GIMPLE_PHI)
3178 /* Additionally record the possibility of leaving the original iv
3179 untouched. */
3180 def = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (data->current_loop));
3181 /* Don't add candidate if it's from another PHI node because
3182 it's an affine iv appearing in the form of PEELED_CHREC. */
3183 phi = SSA_NAME_DEF_STMT (def);
3184 if (gimple_code (phi) != GIMPLE_PHI)
3186 cand = add_candidate_1 (data,
3187 iv->base, iv->step, true, IP_ORIGINAL, NULL,
3188 SSA_NAME_DEF_STMT (def));
3189 if (cand)
3191 cand->var_before = iv->ssa_name;
3192 cand->var_after = def;
3195 else
3196 gcc_assert (gimple_bb (phi) == data->current_loop->header);
3200 /* Adds candidates based on the old induction variables. */
3202 static void
3203 add_iv_candidate_for_bivs (struct ivopts_data *data)
3205 unsigned i;
3206 struct iv *iv;
3207 bitmap_iterator bi;
3209 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
3211 iv = ver_info (data, i)->iv;
3212 if (iv && iv->biv_p && !integer_zerop (iv->step))
3213 add_iv_candidate_for_biv (data, iv);
3217 /* Record common candidate {BASE, STEP} derived from USE in hashtable. */
3219 static void
3220 record_common_cand (struct ivopts_data *data, tree base,
3221 tree step, struct iv_use *use)
3223 struct iv_common_cand ent;
3224 struct iv_common_cand **slot;
3226 ent.base = base;
3227 ent.step = step;
3228 ent.hash = iterative_hash_expr (base, 0);
3229 ent.hash = iterative_hash_expr (step, ent.hash);
3231 slot = data->iv_common_cand_tab->find_slot (&ent, INSERT);
3232 if (*slot == NULL)
3234 *slot = new iv_common_cand ();
3235 (*slot)->base = base;
3236 (*slot)->step = step;
3237 (*slot)->uses.create (8);
3238 (*slot)->hash = ent.hash;
3239 data->iv_common_cands.safe_push ((*slot));
3242 gcc_assert (use != NULL);
3243 (*slot)->uses.safe_push (use);
3244 return;
3247 /* Comparison function used to sort common candidates. */
3249 static int
3250 common_cand_cmp (const void *p1, const void *p2)
3252 unsigned n1, n2;
3253 const struct iv_common_cand *const *const ccand1
3254 = (const struct iv_common_cand *const *)p1;
3255 const struct iv_common_cand *const *const ccand2
3256 = (const struct iv_common_cand *const *)p2;
3258 n1 = (*ccand1)->uses.length ();
3259 n2 = (*ccand2)->uses.length ();
3260 return n2 - n1;
3263 /* Adds IV candidates based on common candidated recorded. */
3265 static void
3266 add_iv_candidate_derived_from_uses (struct ivopts_data *data)
3268 unsigned i, j;
3269 struct iv_cand *cand_1, *cand_2;
3271 data->iv_common_cands.qsort (common_cand_cmp);
3272 for (i = 0; i < data->iv_common_cands.length (); i++)
3274 struct iv_common_cand *ptr = data->iv_common_cands[i];
3276 /* Only add IV candidate if it's derived from multiple uses. */
3277 if (ptr->uses.length () <= 1)
3278 break;
3280 cand_1 = NULL;
3281 cand_2 = NULL;
3282 if (ip_normal_pos (data->current_loop))
3283 cand_1 = add_candidate_1 (data, ptr->base, ptr->step,
3284 false, IP_NORMAL, NULL, NULL);
3286 if (ip_end_pos (data->current_loop)
3287 && allow_ip_end_pos_p (data->current_loop))
3288 cand_2 = add_candidate_1 (data, ptr->base, ptr->step,
3289 false, IP_END, NULL, NULL);
3291 /* Bind deriving uses and the new candidates. */
3292 for (j = 0; j < ptr->uses.length (); j++)
3294 struct iv_group *group = data->vgroups[ptr->uses[j]->group_id];
3295 if (cand_1)
3296 bitmap_set_bit (group->related_cands, cand_1->id);
3297 if (cand_2)
3298 bitmap_set_bit (group->related_cands, cand_2->id);
3302 /* Release data since it is useless from this point. */
3303 data->iv_common_cand_tab->empty ();
3304 data->iv_common_cands.truncate (0);
3307 /* Adds candidates based on the value of USE's iv. */
3309 static void
3310 add_iv_candidate_for_use (struct ivopts_data *data, struct iv_use *use)
3312 unsigned HOST_WIDE_INT offset;
3313 tree base;
3314 tree basetype;
3315 struct iv *iv = use->iv;
3317 add_candidate (data, iv->base, iv->step, false, use);
3319 /* Record common candidate for use in case it can be shared by others. */
3320 record_common_cand (data, iv->base, iv->step, use);
3322 /* Record common candidate with initial value zero. */
3323 basetype = TREE_TYPE (iv->base);
3324 if (POINTER_TYPE_P (basetype))
3325 basetype = sizetype;
3326 record_common_cand (data, build_int_cst (basetype, 0), iv->step, use);
3328 /* Record common candidate with constant offset stripped in base.
3329 Like the use itself, we also add candidate directly for it. */
3330 base = strip_offset (iv->base, &offset);
3331 if (offset || base != iv->base)
3333 record_common_cand (data, base, iv->step, use);
3334 add_candidate (data, base, iv->step, false, use);
3337 /* Record common candidate with base_object removed in base. */
3338 if (iv->base_object != NULL)
3340 unsigned i;
3341 aff_tree aff_base;
3342 tree step, base_object = iv->base_object;
3344 base = iv->base;
3345 step = iv->step;
3346 STRIP_NOPS (base);
3347 STRIP_NOPS (step);
3348 STRIP_NOPS (base_object);
3349 tree_to_aff_combination (base, TREE_TYPE (base), &aff_base);
3350 for (i = 0; i < aff_base.n; i++)
3352 if (aff_base.elts[i].coef != 1)
3353 continue;
3355 if (operand_equal_p (aff_base.elts[i].val, base_object, 0))
3356 break;
3358 if (i < aff_base.n)
3360 aff_combination_remove_elt (&aff_base, i);
3361 base = aff_combination_to_tree (&aff_base);
3362 basetype = TREE_TYPE (base);
3363 if (POINTER_TYPE_P (basetype))
3364 basetype = sizetype;
3366 step = fold_convert (basetype, step);
3367 record_common_cand (data, base, step, use);
3368 /* Also record common candidate with offset stripped. */
3369 base = strip_offset (base, &offset);
3370 if (offset)
3371 record_common_cand (data, base, step, use);
3375 /* At last, add auto-incremental candidates. Make such variables
3376 important since other iv uses with same base object may be based
3377 on it. */
3378 if (use != NULL && use->type == USE_ADDRESS)
3379 add_autoinc_candidates (data, iv->base, iv->step, true, use);
3382 /* Adds candidates based on the uses. */
3384 static void
3385 add_iv_candidate_for_groups (struct ivopts_data *data)
3387 unsigned i;
3389 /* Only add candidate for the first use in group. */
3390 for (i = 0; i < data->vgroups.length (); i++)
3392 struct iv_group *group = data->vgroups[i];
3394 gcc_assert (group->vuses[0] != NULL);
3395 add_iv_candidate_for_use (data, group->vuses[0]);
3397 add_iv_candidate_derived_from_uses (data);
3400 /* Record important candidates and add them to related_cands bitmaps. */
3402 static void
3403 record_important_candidates (struct ivopts_data *data)
3405 unsigned i;
3406 struct iv_group *group;
3408 for (i = 0; i < data->vcands.length (); i++)
3410 struct iv_cand *cand = data->vcands[i];
3412 if (cand->important)
3413 bitmap_set_bit (data->important_candidates, i);
3416 data->consider_all_candidates = (data->vcands.length ()
3417 <= CONSIDER_ALL_CANDIDATES_BOUND);
3419 /* Add important candidates to groups' related_cands bitmaps. */
3420 for (i = 0; i < data->vgroups.length (); i++)
3422 group = data->vgroups[i];
3423 bitmap_ior_into (group->related_cands, data->important_candidates);
3427 /* Allocates the data structure mapping the (use, candidate) pairs to costs.
3428 If consider_all_candidates is true, we use a two-dimensional array, otherwise
3429 we allocate a simple list to every use. */
3431 static void
3432 alloc_use_cost_map (struct ivopts_data *data)
3434 unsigned i, size, s;
3436 for (i = 0; i < data->vgroups.length (); i++)
3438 struct iv_group *group = data->vgroups[i];
3440 if (data->consider_all_candidates)
3441 size = data->vcands.length ();
3442 else
3444 s = bitmap_count_bits (group->related_cands);
3446 /* Round up to the power of two, so that moduling by it is fast. */
3447 size = s ? (1 << ceil_log2 (s)) : 1;
3450 group->n_map_members = size;
3451 group->cost_map = XCNEWVEC (struct cost_pair, size);
3455 /* Sets cost of (GROUP, CAND) pair to COST and record that it depends
3456 on invariants DEPENDS_ON and that the value used in expressing it
3457 is VALUE, and in case of iv elimination the comparison operator is COMP. */
3459 static void
3460 set_group_iv_cost (struct ivopts_data *data,
3461 struct iv_group *group, struct iv_cand *cand,
3462 comp_cost cost, bitmap depends_on, tree value,
3463 enum tree_code comp, iv_inv_expr_ent *inv_expr)
3465 unsigned i, s;
3467 if (cost.infinite_cost_p ())
3469 BITMAP_FREE (depends_on);
3470 return;
3473 if (data->consider_all_candidates)
3475 group->cost_map[cand->id].cand = cand;
3476 group->cost_map[cand->id].cost = cost;
3477 group->cost_map[cand->id].depends_on = depends_on;
3478 group->cost_map[cand->id].value = value;
3479 group->cost_map[cand->id].comp = comp;
3480 group->cost_map[cand->id].inv_expr = inv_expr;
3481 return;
3484 /* n_map_members is a power of two, so this computes modulo. */
3485 s = cand->id & (group->n_map_members - 1);
3486 for (i = s; i < group->n_map_members; i++)
3487 if (!group->cost_map[i].cand)
3488 goto found;
3489 for (i = 0; i < s; i++)
3490 if (!group->cost_map[i].cand)
3491 goto found;
3493 gcc_unreachable ();
3495 found:
3496 group->cost_map[i].cand = cand;
3497 group->cost_map[i].cost = cost;
3498 group->cost_map[i].depends_on = depends_on;
3499 group->cost_map[i].value = value;
3500 group->cost_map[i].comp = comp;
3501 group->cost_map[i].inv_expr = inv_expr;
3504 /* Gets cost of (GROUP, CAND) pair. */
3506 static struct cost_pair *
3507 get_group_iv_cost (struct ivopts_data *data, struct iv_group *group,
3508 struct iv_cand *cand)
3510 unsigned i, s;
3511 struct cost_pair *ret;
3513 if (!cand)
3514 return NULL;
3516 if (data->consider_all_candidates)
3518 ret = group->cost_map + cand->id;
3519 if (!ret->cand)
3520 return NULL;
3522 return ret;
3525 /* n_map_members is a power of two, so this computes modulo. */
3526 s = cand->id & (group->n_map_members - 1);
3527 for (i = s; i < group->n_map_members; i++)
3528 if (group->cost_map[i].cand == cand)
3529 return group->cost_map + i;
3530 else if (group->cost_map[i].cand == NULL)
3531 return NULL;
3532 for (i = 0; i < s; i++)
3533 if (group->cost_map[i].cand == cand)
3534 return group->cost_map + i;
3535 else if (group->cost_map[i].cand == NULL)
3536 return NULL;
3538 return NULL;
3541 /* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
3542 static rtx
3543 produce_memory_decl_rtl (tree obj, int *regno)
3545 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (obj));
3546 machine_mode address_mode = targetm.addr_space.address_mode (as);
3547 rtx x;
3549 gcc_assert (obj);
3550 if (TREE_STATIC (obj) || DECL_EXTERNAL (obj))
3552 const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj));
3553 x = gen_rtx_SYMBOL_REF (address_mode, name);
3554 SET_SYMBOL_REF_DECL (x, obj);
3555 x = gen_rtx_MEM (DECL_MODE (obj), x);
3556 set_mem_addr_space (x, as);
3557 targetm.encode_section_info (obj, x, true);
3559 else
3561 x = gen_raw_REG (address_mode, (*regno)++);
3562 x = gen_rtx_MEM (DECL_MODE (obj), x);
3563 set_mem_addr_space (x, as);
3566 return x;
3569 /* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
3570 walk_tree. DATA contains the actual fake register number. */
3572 static tree
3573 prepare_decl_rtl (tree *expr_p, int *ws, void *data)
3575 tree obj = NULL_TREE;
3576 rtx x = NULL_RTX;
3577 int *regno = (int *) data;
3579 switch (TREE_CODE (*expr_p))
3581 case ADDR_EXPR:
3582 for (expr_p = &TREE_OPERAND (*expr_p, 0);
3583 handled_component_p (*expr_p);
3584 expr_p = &TREE_OPERAND (*expr_p, 0))
3585 continue;
3586 obj = *expr_p;
3587 if (DECL_P (obj) && HAS_RTL_P (obj) && !DECL_RTL_SET_P (obj))
3588 x = produce_memory_decl_rtl (obj, regno);
3589 break;
3591 case SSA_NAME:
3592 *ws = 0;
3593 obj = SSA_NAME_VAR (*expr_p);
3594 /* Defer handling of anonymous SSA_NAMEs to the expander. */
3595 if (!obj)
3596 return NULL_TREE;
3597 if (!DECL_RTL_SET_P (obj))
3598 x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
3599 break;
3601 case VAR_DECL:
3602 case PARM_DECL:
3603 case RESULT_DECL:
3604 *ws = 0;
3605 obj = *expr_p;
3607 if (DECL_RTL_SET_P (obj))
3608 break;
3610 if (DECL_MODE (obj) == BLKmode)
3611 x = produce_memory_decl_rtl (obj, regno);
3612 else
3613 x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
3615 break;
3617 default:
3618 break;
3621 if (x)
3623 decl_rtl_to_reset.safe_push (obj);
3624 SET_DECL_RTL (obj, x);
3627 return NULL_TREE;
3630 /* Determines cost of the computation of EXPR. */
3632 static unsigned
3633 computation_cost (tree expr, bool speed)
3635 rtx_insn *seq;
3636 rtx rslt;
3637 tree type = TREE_TYPE (expr);
3638 unsigned cost;
3639 /* Avoid using hard regs in ways which may be unsupported. */
3640 int regno = LAST_VIRTUAL_REGISTER + 1;
3641 struct cgraph_node *node = cgraph_node::get (current_function_decl);
3642 enum node_frequency real_frequency = node->frequency;
3644 node->frequency = NODE_FREQUENCY_NORMAL;
3645 crtl->maybe_hot_insn_p = speed;
3646 walk_tree (&expr, prepare_decl_rtl, &regno, NULL);
3647 start_sequence ();
3648 rslt = expand_expr (expr, NULL_RTX, TYPE_MODE (type), EXPAND_NORMAL);
3649 seq = get_insns ();
3650 end_sequence ();
3651 default_rtl_profile ();
3652 node->frequency = real_frequency;
3654 cost = seq_cost (seq, speed);
3655 if (MEM_P (rslt))
3656 cost += address_cost (XEXP (rslt, 0), TYPE_MODE (type),
3657 TYPE_ADDR_SPACE (type), speed);
3658 else if (!REG_P (rslt))
3659 cost += set_src_cost (rslt, TYPE_MODE (type), speed);
3661 return cost;
3664 /* Returns variable containing the value of candidate CAND at statement AT. */
3666 static tree
3667 var_at_stmt (struct loop *loop, struct iv_cand *cand, gimple *stmt)
3669 if (stmt_after_increment (loop, cand, stmt))
3670 return cand->var_after;
3671 else
3672 return cand->var_before;
3675 /* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
3676 same precision that is at least as wide as the precision of TYPE, stores
3677 BA to A and BB to B, and returns the type of BA. Otherwise, returns the
3678 type of A and B. */
3680 static tree
3681 determine_common_wider_type (tree *a, tree *b)
3683 tree wider_type = NULL;
3684 tree suba, subb;
3685 tree atype = TREE_TYPE (*a);
3687 if (CONVERT_EXPR_P (*a))
3689 suba = TREE_OPERAND (*a, 0);
3690 wider_type = TREE_TYPE (suba);
3691 if (TYPE_PRECISION (wider_type) < TYPE_PRECISION (atype))
3692 return atype;
3694 else
3695 return atype;
3697 if (CONVERT_EXPR_P (*b))
3699 subb = TREE_OPERAND (*b, 0);
3700 if (TYPE_PRECISION (wider_type) != TYPE_PRECISION (TREE_TYPE (subb)))
3701 return atype;
3703 else
3704 return atype;
3706 *a = suba;
3707 *b = subb;
3708 return wider_type;
3711 /* Determines the expression by that USE is expressed from induction variable
3712 CAND at statement AT in LOOP. The expression is stored in a decomposed
3713 form into AFF. Returns false if USE cannot be expressed using CAND. */
3715 static bool
3716 get_computation_aff (struct loop *loop,
3717 struct iv_use *use, struct iv_cand *cand, gimple *at,
3718 struct aff_tree *aff)
3720 tree ubase = use->iv->base;
3721 tree ustep = use->iv->step;
3722 tree cbase = cand->iv->base;
3723 tree cstep = cand->iv->step, cstep_common;
3724 tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase);
3725 tree common_type, var;
3726 tree uutype;
3727 aff_tree cbase_aff, var_aff;
3728 widest_int rat;
3730 if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
3732 /* We do not have a precision to express the values of use. */
3733 return false;
3736 var = var_at_stmt (loop, cand, at);
3737 uutype = unsigned_type_for (utype);
3739 /* If the conversion is not noop, perform it. */
3740 if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
3742 if (cand->orig_iv != NULL && CONVERT_EXPR_P (cbase)
3743 && (CONVERT_EXPR_P (cstep) || TREE_CODE (cstep) == INTEGER_CST))
3745 tree inner_base, inner_step, inner_type;
3746 inner_base = TREE_OPERAND (cbase, 0);
3747 if (CONVERT_EXPR_P (cstep))
3748 inner_step = TREE_OPERAND (cstep, 0);
3749 else
3750 inner_step = cstep;
3752 inner_type = TREE_TYPE (inner_base);
3753 /* If candidate is added from a biv whose type is smaller than
3754 ctype, we know both candidate and the biv won't overflow.
3755 In this case, it's safe to skip the convertion in candidate.
3756 As an example, (unsigned short)((unsigned long)A) equals to
3757 (unsigned short)A, if A has a type no larger than short. */
3758 if (TYPE_PRECISION (inner_type) <= TYPE_PRECISION (uutype))
3760 cbase = inner_base;
3761 cstep = inner_step;
3764 cstep = fold_convert (uutype, cstep);
3765 cbase = fold_convert (uutype, cbase);
3766 var = fold_convert (uutype, var);
3769 /* Ratio is 1 when computing the value of biv cand by itself.
3770 We can't rely on constant_multiple_of in this case because the
3771 use is created after the original biv is selected. The call
3772 could fail because of inconsistent fold behavior. See PR68021
3773 for more information. */
3774 if (cand->pos == IP_ORIGINAL && cand->incremented_at == use->stmt)
3776 gcc_assert (is_gimple_assign (use->stmt));
3777 gcc_assert (use->iv->ssa_name == cand->var_after);
3778 gcc_assert (gimple_assign_lhs (use->stmt) == cand->var_after);
3779 rat = 1;
3781 else if (!constant_multiple_of (ustep, cstep, &rat))
3782 return false;
3784 /* In case both UBASE and CBASE are shortened to UUTYPE from some common
3785 type, we achieve better folding by computing their difference in this
3786 wider type, and cast the result to UUTYPE. We do not need to worry about
3787 overflows, as all the arithmetics will in the end be performed in UUTYPE
3788 anyway. */
3789 common_type = determine_common_wider_type (&ubase, &cbase);
3791 /* use = ubase - ratio * cbase + ratio * var. */
3792 tree_to_aff_combination (ubase, common_type, aff);
3793 tree_to_aff_combination (cbase, common_type, &cbase_aff);
3794 tree_to_aff_combination (var, uutype, &var_aff);
3796 /* We need to shift the value if we are after the increment. */
3797 if (stmt_after_increment (loop, cand, at))
3799 aff_tree cstep_aff;
3801 if (common_type != uutype)
3802 cstep_common = fold_convert (common_type, cstep);
3803 else
3804 cstep_common = cstep;
3806 tree_to_aff_combination (cstep_common, common_type, &cstep_aff);
3807 aff_combination_add (&cbase_aff, &cstep_aff);
3810 aff_combination_scale (&cbase_aff, -rat);
3811 aff_combination_add (aff, &cbase_aff);
3812 if (common_type != uutype)
3813 aff_combination_convert (aff, uutype);
3815 aff_combination_scale (&var_aff, rat);
3816 aff_combination_add (aff, &var_aff);
3818 return true;
3821 /* Return the type of USE. */
3823 static tree
3824 get_use_type (struct iv_use *use)
3826 tree base_type = TREE_TYPE (use->iv->base);
3827 tree type;
3829 if (use->type == USE_ADDRESS)
3831 /* The base_type may be a void pointer. Create a pointer type based on
3832 the mem_ref instead. */
3833 type = build_pointer_type (TREE_TYPE (*use->op_p));
3834 gcc_assert (TYPE_ADDR_SPACE (TREE_TYPE (type))
3835 == TYPE_ADDR_SPACE (TREE_TYPE (base_type)));
3837 else
3838 type = base_type;
3840 return type;
3843 /* Determines the expression by that USE is expressed from induction variable
3844 CAND at statement AT in LOOP. The computation is unshared. */
3846 static tree
3847 get_computation_at (struct loop *loop,
3848 struct iv_use *use, struct iv_cand *cand, gimple *at)
3850 aff_tree aff;
3851 tree type = get_use_type (use);
3853 if (!get_computation_aff (loop, use, cand, at, &aff))
3854 return NULL_TREE;
3855 unshare_aff_combination (&aff);
3856 return fold_convert (type, aff_combination_to_tree (&aff));
3859 /* Determines the expression by that USE is expressed from induction variable
3860 CAND in LOOP. The computation is unshared. */
3862 static tree
3863 get_computation (struct loop *loop, struct iv_use *use, struct iv_cand *cand)
3865 return get_computation_at (loop, use, cand, use->stmt);
3868 /* Adjust the cost COST for being in loop setup rather than loop body.
3869 If we're optimizing for space, the loop setup overhead is constant;
3870 if we're optimizing for speed, amortize it over the per-iteration cost. */
3871 static unsigned
3872 adjust_setup_cost (struct ivopts_data *data, unsigned cost)
3874 if (cost == INFTY)
3875 return cost;
3876 else if (optimize_loop_for_speed_p (data->current_loop))
3877 return cost / avg_loop_niter (data->current_loop);
3878 else
3879 return cost;
3882 /* Returns true if multiplying by RATIO is allowed in an address. Test the
3883 validity for a memory reference accessing memory of mode MODE in
3884 address space AS. */
3887 bool
3888 multiplier_allowed_in_address_p (HOST_WIDE_INT ratio, machine_mode mode,
3889 addr_space_t as)
3891 #define MAX_RATIO 128
3892 unsigned int data_index = (int) as * MAX_MACHINE_MODE + (int) mode;
3893 static vec<sbitmap> valid_mult_list;
3894 sbitmap valid_mult;
3896 if (data_index >= valid_mult_list.length ())
3897 valid_mult_list.safe_grow_cleared (data_index + 1);
3899 valid_mult = valid_mult_list[data_index];
3900 if (!valid_mult)
3902 machine_mode address_mode = targetm.addr_space.address_mode (as);
3903 rtx reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
3904 rtx reg2 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 2);
3905 rtx addr, scaled;
3906 HOST_WIDE_INT i;
3908 valid_mult = sbitmap_alloc (2 * MAX_RATIO + 1);
3909 bitmap_clear (valid_mult);
3910 scaled = gen_rtx_fmt_ee (MULT, address_mode, reg1, NULL_RTX);
3911 addr = gen_rtx_fmt_ee (PLUS, address_mode, scaled, reg2);
3912 for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
3914 XEXP (scaled, 1) = gen_int_mode (i, address_mode);
3915 if (memory_address_addr_space_p (mode, addr, as)
3916 || memory_address_addr_space_p (mode, scaled, as))
3917 bitmap_set_bit (valid_mult, i + MAX_RATIO);
3920 if (dump_file && (dump_flags & TDF_DETAILS))
3922 fprintf (dump_file, " allowed multipliers:");
3923 for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
3924 if (bitmap_bit_p (valid_mult, i + MAX_RATIO))
3925 fprintf (dump_file, " %d", (int) i);
3926 fprintf (dump_file, "\n");
3927 fprintf (dump_file, "\n");
3930 valid_mult_list[data_index] = valid_mult;
3933 if (ratio > MAX_RATIO || ratio < -MAX_RATIO)
3934 return false;
3936 return bitmap_bit_p (valid_mult, ratio + MAX_RATIO);
3939 /* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
3940 If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
3941 variable is omitted. Compute the cost for a memory reference that accesses
3942 a memory location of mode MEM_MODE in address space AS.
3944 MAY_AUTOINC is set to true if the autoincrement (increasing index by
3945 size of MEM_MODE / RATIO) is available. To make this determination, we
3946 look at the size of the increment to be made, which is given in CSTEP.
3947 CSTEP may be zero if the step is unknown.
3948 STMT_AFTER_INC is true iff the statement we're looking at is after the
3949 increment of the original biv.
3951 TODO -- there must be some better way. This all is quite crude. */
3953 enum ainc_type
3955 AINC_PRE_INC, /* Pre increment. */
3956 AINC_PRE_DEC, /* Pre decrement. */
3957 AINC_POST_INC, /* Post increment. */
3958 AINC_POST_DEC, /* Post decrement. */
3959 AINC_NONE /* Also the number of auto increment types. */
3962 struct address_cost_data
3964 HOST_WIDE_INT min_offset, max_offset;
3965 unsigned costs[2][2][2][2];
3966 unsigned ainc_costs[AINC_NONE];
3970 static comp_cost
3971 get_address_cost (bool symbol_present, bool var_present,
3972 unsigned HOST_WIDE_INT offset, HOST_WIDE_INT ratio,
3973 HOST_WIDE_INT cstep, machine_mode mem_mode,
3974 addr_space_t as, bool speed,
3975 bool stmt_after_inc, bool *may_autoinc)
3977 machine_mode address_mode = targetm.addr_space.address_mode (as);
3978 static vec<address_cost_data *> address_cost_data_list;
3979 unsigned int data_index = (int) as * MAX_MACHINE_MODE + (int) mem_mode;
3980 address_cost_data *data;
3981 static bool has_preinc[MAX_MACHINE_MODE], has_postinc[MAX_MACHINE_MODE];
3982 static bool has_predec[MAX_MACHINE_MODE], has_postdec[MAX_MACHINE_MODE];
3983 unsigned cost, acost, complexity;
3984 enum ainc_type autoinc_type;
3985 bool offset_p, ratio_p, autoinc;
3986 HOST_WIDE_INT s_offset, autoinc_offset, msize;
3987 unsigned HOST_WIDE_INT mask;
3988 unsigned bits;
3990 if (data_index >= address_cost_data_list.length ())
3991 address_cost_data_list.safe_grow_cleared (data_index + 1);
3993 data = address_cost_data_list[data_index];
3994 if (!data)
3996 HOST_WIDE_INT i;
3997 HOST_WIDE_INT rat, off = 0;
3998 int old_cse_not_expected, width;
3999 unsigned sym_p, var_p, off_p, rat_p, add_c;
4000 rtx_insn *seq;
4001 rtx addr, base;
4002 rtx reg0, reg1;
4004 data = (address_cost_data *) xcalloc (1, sizeof (*data));
4006 reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
4008 width = GET_MODE_BITSIZE (address_mode) - 1;
4009 if (width > (HOST_BITS_PER_WIDE_INT - 1))
4010 width = HOST_BITS_PER_WIDE_INT - 1;
4011 addr = gen_rtx_fmt_ee (PLUS, address_mode, reg1, NULL_RTX);
4013 for (i = width; i >= 0; i--)
4015 off = -(HOST_WIDE_INT_1U << i);
4016 XEXP (addr, 1) = gen_int_mode (off, address_mode);
4017 if (memory_address_addr_space_p (mem_mode, addr, as))
4018 break;
4020 data->min_offset = (i == -1? 0 : off);
4022 for (i = width; i >= 0; i--)
4024 off = (HOST_WIDE_INT_1U << i) - 1;
4025 XEXP (addr, 1) = gen_int_mode (off, address_mode);
4026 if (memory_address_addr_space_p (mem_mode, addr, as))
4027 break;
4028 /* For some strict-alignment targets, the offset must be naturally
4029 aligned. Try an aligned offset if mem_mode is not QImode. */
4030 off = mem_mode != QImode
4031 ? (HOST_WIDE_INT_1U << i)
4032 - GET_MODE_SIZE (mem_mode)
4033 : 0;
4034 if (off > 0)
4036 XEXP (addr, 1) = gen_int_mode (off, address_mode);
4037 if (memory_address_addr_space_p (mem_mode, addr, as))
4038 break;
4041 if (i == -1)
4042 off = 0;
4043 data->max_offset = off;
4045 if (dump_file && (dump_flags & TDF_DETAILS))
4047 fprintf (dump_file, "get_address_cost:\n");
4048 fprintf (dump_file, " min offset %s " HOST_WIDE_INT_PRINT_DEC "\n",
4049 GET_MODE_NAME (mem_mode),
4050 data->min_offset);
4051 fprintf (dump_file, " max offset %s " HOST_WIDE_INT_PRINT_DEC "\n",
4052 GET_MODE_NAME (mem_mode),
4053 data->max_offset);
4056 rat = 1;
4057 for (i = 2; i <= MAX_RATIO; i++)
4058 if (multiplier_allowed_in_address_p (i, mem_mode, as))
4060 rat = i;
4061 break;
4064 /* Compute the cost of various addressing modes. */
4065 acost = 0;
4066 reg0 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
4067 reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 2);
4069 if (USE_LOAD_PRE_DECREMENT (mem_mode)
4070 || USE_STORE_PRE_DECREMENT (mem_mode))
4072 addr = gen_rtx_PRE_DEC (address_mode, reg0);
4073 has_predec[mem_mode]
4074 = memory_address_addr_space_p (mem_mode, addr, as);
4076 if (has_predec[mem_mode])
4077 data->ainc_costs[AINC_PRE_DEC]
4078 = address_cost (addr, mem_mode, as, speed);
4080 if (USE_LOAD_POST_DECREMENT (mem_mode)
4081 || USE_STORE_POST_DECREMENT (mem_mode))
4083 addr = gen_rtx_POST_DEC (address_mode, reg0);
4084 has_postdec[mem_mode]
4085 = memory_address_addr_space_p (mem_mode, addr, as);
4087 if (has_postdec[mem_mode])
4088 data->ainc_costs[AINC_POST_DEC]
4089 = address_cost (addr, mem_mode, as, speed);
4091 if (USE_LOAD_PRE_INCREMENT (mem_mode)
4092 || USE_STORE_PRE_DECREMENT (mem_mode))
4094 addr = gen_rtx_PRE_INC (address_mode, reg0);
4095 has_preinc[mem_mode]
4096 = memory_address_addr_space_p (mem_mode, addr, as);
4098 if (has_preinc[mem_mode])
4099 data->ainc_costs[AINC_PRE_INC]
4100 = address_cost (addr, mem_mode, as, speed);
4102 if (USE_LOAD_POST_INCREMENT (mem_mode)
4103 || USE_STORE_POST_INCREMENT (mem_mode))
4105 addr = gen_rtx_POST_INC (address_mode, reg0);
4106 has_postinc[mem_mode]
4107 = memory_address_addr_space_p (mem_mode, addr, as);
4109 if (has_postinc[mem_mode])
4110 data->ainc_costs[AINC_POST_INC]
4111 = address_cost (addr, mem_mode, as, speed);
4113 for (i = 0; i < 16; i++)
4115 sym_p = i & 1;
4116 var_p = (i >> 1) & 1;
4117 off_p = (i >> 2) & 1;
4118 rat_p = (i >> 3) & 1;
4120 addr = reg0;
4121 if (rat_p)
4122 addr = gen_rtx_fmt_ee (MULT, address_mode, addr,
4123 gen_int_mode (rat, address_mode));
4125 if (var_p)
4126 addr = gen_rtx_fmt_ee (PLUS, address_mode, addr, reg1);
4128 if (sym_p)
4130 base = gen_rtx_SYMBOL_REF (address_mode, ggc_strdup (""));
4131 /* ??? We can run into trouble with some backends by presenting
4132 it with symbols which haven't been properly passed through
4133 targetm.encode_section_info. By setting the local bit, we
4134 enhance the probability of things working. */
4135 SYMBOL_REF_FLAGS (base) = SYMBOL_FLAG_LOCAL;
4137 if (off_p)
4138 base = gen_rtx_fmt_e (CONST, address_mode,
4139 gen_rtx_fmt_ee
4140 (PLUS, address_mode, base,
4141 gen_int_mode (off, address_mode)));
4143 else if (off_p)
4144 base = gen_int_mode (off, address_mode);
4145 else
4146 base = NULL_RTX;
4148 if (base)
4149 addr = gen_rtx_fmt_ee (PLUS, address_mode, addr, base);
4151 start_sequence ();
4152 /* To avoid splitting addressing modes, pretend that no cse will
4153 follow. */
4154 old_cse_not_expected = cse_not_expected;
4155 cse_not_expected = true;
4156 addr = memory_address_addr_space (mem_mode, addr, as);
4157 cse_not_expected = old_cse_not_expected;
4158 seq = get_insns ();
4159 end_sequence ();
4161 acost = seq_cost (seq, speed);
4162 acost += address_cost (addr, mem_mode, as, speed);
4164 if (!acost)
4165 acost = 1;
4166 data->costs[sym_p][var_p][off_p][rat_p] = acost;
4169 /* On some targets, it is quite expensive to load symbol to a register,
4170 which makes addresses that contain symbols look much more expensive.
4171 However, the symbol will have to be loaded in any case before the
4172 loop (and quite likely we have it in register already), so it does not
4173 make much sense to penalize them too heavily. So make some final
4174 tweaks for the SYMBOL_PRESENT modes:
4176 If VAR_PRESENT is false, and the mode obtained by changing symbol to
4177 var is cheaper, use this mode with small penalty.
4178 If VAR_PRESENT is true, try whether the mode with
4179 SYMBOL_PRESENT = false is cheaper even with cost of addition, and
4180 if this is the case, use it. */
4181 add_c = add_cost (speed, address_mode);
4182 for (i = 0; i < 8; i++)
4184 var_p = i & 1;
4185 off_p = (i >> 1) & 1;
4186 rat_p = (i >> 2) & 1;
4188 acost = data->costs[0][1][off_p][rat_p] + 1;
4189 if (var_p)
4190 acost += add_c;
4192 if (acost < data->costs[1][var_p][off_p][rat_p])
4193 data->costs[1][var_p][off_p][rat_p] = acost;
4196 if (dump_file && (dump_flags & TDF_DETAILS))
4198 fprintf (dump_file, "<Address Costs>:\n");
4200 for (i = 0; i < 16; i++)
4202 sym_p = i & 1;
4203 var_p = (i >> 1) & 1;
4204 off_p = (i >> 2) & 1;
4205 rat_p = (i >> 3) & 1;
4207 fprintf (dump_file, " ");
4208 if (sym_p)
4209 fprintf (dump_file, "sym + ");
4210 if (var_p)
4211 fprintf (dump_file, "var + ");
4212 if (off_p)
4213 fprintf (dump_file, "cst + ");
4214 if (rat_p)
4215 fprintf (dump_file, "rat * ");
4217 acost = data->costs[sym_p][var_p][off_p][rat_p];
4218 fprintf (dump_file, "index costs %d\n", acost);
4220 if (has_predec[mem_mode] || has_postdec[mem_mode]
4221 || has_preinc[mem_mode] || has_postinc[mem_mode])
4222 fprintf (dump_file, " May include autoinc/dec\n");
4223 fprintf (dump_file, "\n");
4226 address_cost_data_list[data_index] = data;
4229 bits = GET_MODE_BITSIZE (address_mode);
4230 mask = ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
4231 offset &= mask;
4232 if ((offset >> (bits - 1) & 1))
4233 offset |= ~mask;
4234 s_offset = offset;
4236 autoinc = false;
4237 autoinc_type = AINC_NONE;
4238 msize = GET_MODE_SIZE (mem_mode);
4239 autoinc_offset = offset;
4240 if (stmt_after_inc)
4241 autoinc_offset += ratio * cstep;
4242 if (symbol_present || var_present || ratio != 1)
4243 autoinc = false;
4244 else
4246 if (has_postinc[mem_mode] && autoinc_offset == 0
4247 && msize == cstep)
4248 autoinc_type = AINC_POST_INC;
4249 else if (has_postdec[mem_mode] && autoinc_offset == 0
4250 && msize == -cstep)
4251 autoinc_type = AINC_POST_DEC;
4252 else if (has_preinc[mem_mode] && autoinc_offset == msize
4253 && msize == cstep)
4254 autoinc_type = AINC_PRE_INC;
4255 else if (has_predec[mem_mode] && autoinc_offset == -msize
4256 && msize == -cstep)
4257 autoinc_type = AINC_PRE_DEC;
4259 if (autoinc_type != AINC_NONE)
4260 autoinc = true;
4263 cost = 0;
4264 offset_p = (s_offset != 0
4265 && data->min_offset <= s_offset
4266 && s_offset <= data->max_offset);
4267 ratio_p = (ratio != 1
4268 && multiplier_allowed_in_address_p (ratio, mem_mode, as));
4270 if (ratio != 1 && !ratio_p)
4271 cost += mult_by_coeff_cost (ratio, address_mode, speed);
4273 if (s_offset && !offset_p && !symbol_present)
4274 cost += add_cost (speed, address_mode);
4276 if (may_autoinc)
4277 *may_autoinc = autoinc;
4278 if (autoinc)
4279 acost = data->ainc_costs[autoinc_type];
4280 else
4281 acost = data->costs[symbol_present][var_present][offset_p][ratio_p];
4282 complexity = (symbol_present != 0) + (var_present != 0) + offset_p + ratio_p;
4283 return comp_cost (cost + acost, complexity);
4286 /* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
4287 EXPR operand holding the shift. COST0 and COST1 are the costs for
4288 calculating the operands of EXPR. Returns true if successful, and returns
4289 the cost in COST. */
4291 static bool
4292 get_shiftadd_cost (tree expr, machine_mode mode, comp_cost cost0,
4293 comp_cost cost1, tree mult, bool speed, comp_cost *cost)
4295 comp_cost res;
4296 tree op1 = TREE_OPERAND (expr, 1);
4297 tree cst = TREE_OPERAND (mult, 1);
4298 tree multop = TREE_OPERAND (mult, 0);
4299 int m = exact_log2 (int_cst_value (cst));
4300 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
4301 int as_cost, sa_cost;
4302 bool mult_in_op1;
4304 if (!(m >= 0 && m < maxm))
4305 return false;
4307 STRIP_NOPS (op1);
4308 mult_in_op1 = operand_equal_p (op1, mult, 0);
4310 as_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
4312 /* If the target has a cheap shift-and-add or shift-and-sub instruction,
4313 use that in preference to a shift insn followed by an add insn. */
4314 sa_cost = (TREE_CODE (expr) != MINUS_EXPR
4315 ? shiftadd_cost (speed, mode, m)
4316 : (mult_in_op1
4317 ? shiftsub1_cost (speed, mode, m)
4318 : shiftsub0_cost (speed, mode, m)));
4320 res = comp_cost (MIN (as_cost, sa_cost), 0);
4321 res += (mult_in_op1 ? cost0 : cost1);
4323 STRIP_NOPS (multop);
4324 if (!is_gimple_val (multop))
4325 res += force_expr_to_var_cost (multop, speed);
4327 *cost = res;
4328 return true;
4331 /* Estimates cost of forcing expression EXPR into a variable. */
4333 static comp_cost
4334 force_expr_to_var_cost (tree expr, bool speed)
4336 static bool costs_initialized = false;
4337 static unsigned integer_cost [2];
4338 static unsigned symbol_cost [2];
4339 static unsigned address_cost [2];
4340 tree op0, op1;
4341 comp_cost cost0, cost1, cost;
4342 machine_mode mode;
4344 if (!costs_initialized)
4346 tree type = build_pointer_type (integer_type_node);
4347 tree var, addr;
4348 rtx x;
4349 int i;
4351 var = create_tmp_var_raw (integer_type_node, "test_var");
4352 TREE_STATIC (var) = 1;
4353 x = produce_memory_decl_rtl (var, NULL);
4354 SET_DECL_RTL (var, x);
4356 addr = build1 (ADDR_EXPR, type, var);
4359 for (i = 0; i < 2; i++)
4361 integer_cost[i] = computation_cost (build_int_cst (integer_type_node,
4362 2000), i);
4364 symbol_cost[i] = computation_cost (addr, i) + 1;
4366 address_cost[i]
4367 = computation_cost (fold_build_pointer_plus_hwi (addr, 2000), i) + 1;
4368 if (dump_file && (dump_flags & TDF_DETAILS))
4370 fprintf (dump_file, "force_expr_to_var_cost %s costs:\n", i ? "speed" : "size");
4371 fprintf (dump_file, " integer %d\n", (int) integer_cost[i]);
4372 fprintf (dump_file, " symbol %d\n", (int) symbol_cost[i]);
4373 fprintf (dump_file, " address %d\n", (int) address_cost[i]);
4374 fprintf (dump_file, " other %d\n", (int) target_spill_cost[i]);
4375 fprintf (dump_file, "\n");
4379 costs_initialized = true;
4382 STRIP_NOPS (expr);
4384 if (SSA_VAR_P (expr))
4385 return no_cost;
4387 if (is_gimple_min_invariant (expr))
4389 if (TREE_CODE (expr) == INTEGER_CST)
4390 return comp_cost (integer_cost [speed], 0);
4392 if (TREE_CODE (expr) == ADDR_EXPR)
4394 tree obj = TREE_OPERAND (expr, 0);
4396 if (VAR_P (obj)
4397 || TREE_CODE (obj) == PARM_DECL
4398 || TREE_CODE (obj) == RESULT_DECL)
4399 return comp_cost (symbol_cost [speed], 0);
4402 return comp_cost (address_cost [speed], 0);
4405 switch (TREE_CODE (expr))
4407 case POINTER_PLUS_EXPR:
4408 case PLUS_EXPR:
4409 case MINUS_EXPR:
4410 case MULT_EXPR:
4411 op0 = TREE_OPERAND (expr, 0);
4412 op1 = TREE_OPERAND (expr, 1);
4413 STRIP_NOPS (op0);
4414 STRIP_NOPS (op1);
4415 break;
4417 CASE_CONVERT:
4418 case NEGATE_EXPR:
4419 op0 = TREE_OPERAND (expr, 0);
4420 STRIP_NOPS (op0);
4421 op1 = NULL_TREE;
4422 break;
4424 default:
4425 /* Just an arbitrary value, FIXME. */
4426 return comp_cost (target_spill_cost[speed], 0);
4429 if (op0 == NULL_TREE
4430 || TREE_CODE (op0) == SSA_NAME || CONSTANT_CLASS_P (op0))
4431 cost0 = no_cost;
4432 else
4433 cost0 = force_expr_to_var_cost (op0, speed);
4435 if (op1 == NULL_TREE
4436 || TREE_CODE (op1) == SSA_NAME || CONSTANT_CLASS_P (op1))
4437 cost1 = no_cost;
4438 else
4439 cost1 = force_expr_to_var_cost (op1, speed);
4441 mode = TYPE_MODE (TREE_TYPE (expr));
4442 switch (TREE_CODE (expr))
4444 case POINTER_PLUS_EXPR:
4445 case PLUS_EXPR:
4446 case MINUS_EXPR:
4447 case NEGATE_EXPR:
4448 cost = comp_cost (add_cost (speed, mode), 0);
4449 if (TREE_CODE (expr) != NEGATE_EXPR)
4451 tree mult = NULL_TREE;
4452 comp_cost sa_cost;
4453 if (TREE_CODE (op1) == MULT_EXPR)
4454 mult = op1;
4455 else if (TREE_CODE (op0) == MULT_EXPR)
4456 mult = op0;
4458 if (mult != NULL_TREE
4459 && cst_and_fits_in_hwi (TREE_OPERAND (mult, 1))
4460 && get_shiftadd_cost (expr, mode, cost0, cost1, mult,
4461 speed, &sa_cost))
4462 return sa_cost;
4464 break;
4466 CASE_CONVERT:
4468 tree inner_mode, outer_mode;
4469 outer_mode = TREE_TYPE (expr);
4470 inner_mode = TREE_TYPE (op0);
4471 cost = comp_cost (convert_cost (TYPE_MODE (outer_mode),
4472 TYPE_MODE (inner_mode), speed), 0);
4474 break;
4476 case MULT_EXPR:
4477 if (cst_and_fits_in_hwi (op0))
4478 cost = comp_cost (mult_by_coeff_cost (int_cst_value (op0),
4479 mode, speed), 0);
4480 else if (cst_and_fits_in_hwi (op1))
4481 cost = comp_cost (mult_by_coeff_cost (int_cst_value (op1),
4482 mode, speed), 0);
4483 else
4484 return comp_cost (target_spill_cost [speed], 0);
4485 break;
4487 default:
4488 gcc_unreachable ();
4491 cost += cost0;
4492 cost += cost1;
4494 /* Bound the cost by target_spill_cost. The parts of complicated
4495 computations often are either loop invariant or at least can
4496 be shared between several iv uses, so letting this grow without
4497 limits would not give reasonable results. */
4498 if (cost.cost > (int) target_spill_cost [speed])
4499 cost.cost = target_spill_cost [speed];
4501 return cost;
4504 /* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
4505 invariants the computation depends on. */
4507 static comp_cost
4508 force_var_cost (struct ivopts_data *data,
4509 tree expr, bitmap *depends_on)
4511 if (depends_on)
4513 fd_ivopts_data = data;
4514 walk_tree (&expr, find_depends, depends_on, NULL);
4517 return force_expr_to_var_cost (expr, data->speed);
4520 /* Estimates cost of expressing address ADDR as var + symbol + offset. The
4521 value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
4522 to false if the corresponding part is missing. DEPENDS_ON is a set of the
4523 invariants the computation depends on. */
4525 static comp_cost
4526 split_address_cost (struct ivopts_data *data,
4527 tree addr, bool *symbol_present, bool *var_present,
4528 unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
4530 tree core;
4531 HOST_WIDE_INT bitsize;
4532 HOST_WIDE_INT bitpos;
4533 tree toffset;
4534 machine_mode mode;
4535 int unsignedp, reversep, volatilep;
4537 core = get_inner_reference (addr, &bitsize, &bitpos, &toffset, &mode,
4538 &unsignedp, &reversep, &volatilep);
4540 if (toffset != 0
4541 || bitpos % BITS_PER_UNIT != 0
4542 || reversep
4543 || !VAR_P (core))
4545 *symbol_present = false;
4546 *var_present = true;
4547 fd_ivopts_data = data;
4548 if (depends_on)
4549 walk_tree (&addr, find_depends, depends_on, NULL);
4551 return comp_cost (target_spill_cost[data->speed], 0);
4554 *offset += bitpos / BITS_PER_UNIT;
4555 if (TREE_STATIC (core)
4556 || DECL_EXTERNAL (core))
4558 *symbol_present = true;
4559 *var_present = false;
4560 return no_cost;
4563 *symbol_present = false;
4564 *var_present = true;
4565 return no_cost;
4568 /* Estimates cost of expressing difference of addresses E1 - E2 as
4569 var + symbol + offset. The value of offset is added to OFFSET,
4570 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
4571 part is missing. DEPENDS_ON is a set of the invariants the computation
4572 depends on. */
4574 static comp_cost
4575 ptr_difference_cost (struct ivopts_data *data,
4576 tree e1, tree e2, bool *symbol_present, bool *var_present,
4577 unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
4579 HOST_WIDE_INT diff = 0;
4580 aff_tree aff_e1, aff_e2;
4581 tree type;
4583 gcc_assert (TREE_CODE (e1) == ADDR_EXPR);
4585 if (ptr_difference_const (e1, e2, &diff))
4587 *offset += diff;
4588 *symbol_present = false;
4589 *var_present = false;
4590 return no_cost;
4593 if (integer_zerop (e2))
4594 return split_address_cost (data, TREE_OPERAND (e1, 0),
4595 symbol_present, var_present, offset, depends_on);
4597 *symbol_present = false;
4598 *var_present = true;
4600 type = signed_type_for (TREE_TYPE (e1));
4601 tree_to_aff_combination (e1, type, &aff_e1);
4602 tree_to_aff_combination (e2, type, &aff_e2);
4603 aff_combination_scale (&aff_e2, -1);
4604 aff_combination_add (&aff_e1, &aff_e2);
4606 return force_var_cost (data, aff_combination_to_tree (&aff_e1), depends_on);
4609 /* Estimates cost of expressing difference E1 - E2 as
4610 var + symbol + offset. The value of offset is added to OFFSET,
4611 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
4612 part is missing. DEPENDS_ON is a set of the invariants the computation
4613 depends on. */
4615 static comp_cost
4616 difference_cost (struct ivopts_data *data,
4617 tree e1, tree e2, bool *symbol_present, bool *var_present,
4618 unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
4620 machine_mode mode = TYPE_MODE (TREE_TYPE (e1));
4621 unsigned HOST_WIDE_INT off1, off2;
4622 aff_tree aff_e1, aff_e2;
4623 tree type;
4625 e1 = strip_offset (e1, &off1);
4626 e2 = strip_offset (e2, &off2);
4627 *offset += off1 - off2;
4629 STRIP_NOPS (e1);
4630 STRIP_NOPS (e2);
4632 if (TREE_CODE (e1) == ADDR_EXPR)
4633 return ptr_difference_cost (data, e1, e2, symbol_present, var_present,
4634 offset, depends_on);
4635 *symbol_present = false;
4637 if (operand_equal_p (e1, e2, 0))
4639 *var_present = false;
4640 return no_cost;
4643 *var_present = true;
4645 if (integer_zerop (e2))
4646 return force_var_cost (data, e1, depends_on);
4648 if (integer_zerop (e1))
4650 comp_cost cost = force_var_cost (data, e2, depends_on);
4651 cost += mult_by_coeff_cost (-1, mode, data->speed);
4652 return cost;
4655 type = signed_type_for (TREE_TYPE (e1));
4656 tree_to_aff_combination (e1, type, &aff_e1);
4657 tree_to_aff_combination (e2, type, &aff_e2);
4658 aff_combination_scale (&aff_e2, -1);
4659 aff_combination_add (&aff_e1, &aff_e2);
4661 return force_var_cost (data, aff_combination_to_tree (&aff_e1), depends_on);
4664 /* Returns true if AFF1 and AFF2 are identical. */
4666 static bool
4667 compare_aff_trees (aff_tree *aff1, aff_tree *aff2)
4669 unsigned i;
4671 if (aff1->n != aff2->n)
4672 return false;
4674 for (i = 0; i < aff1->n; i++)
4676 if (aff1->elts[i].coef != aff2->elts[i].coef)
4677 return false;
4679 if (!operand_equal_p (aff1->elts[i].val, aff2->elts[i].val, 0))
4680 return false;
4682 return true;
4685 /* Stores EXPR in DATA->inv_expr_tab, return pointer to iv_inv_expr_ent. */
4687 static iv_inv_expr_ent *
4688 record_inv_expr (struct ivopts_data *data, tree expr)
4690 struct iv_inv_expr_ent ent;
4691 struct iv_inv_expr_ent **slot;
4693 ent.expr = expr;
4694 ent.hash = iterative_hash_expr (expr, 0);
4695 slot = data->inv_expr_tab->find_slot (&ent, INSERT);
4697 if (!*slot)
4699 *slot = XNEW (struct iv_inv_expr_ent);
4700 (*slot)->expr = expr;
4701 (*slot)->hash = ent.hash;
4702 (*slot)->id = data->max_inv_expr_id++;
4705 return *slot;
4708 /* Returns the invariant expression if expression UBASE - RATIO * CBASE
4709 requires a new compiler generated temporary. Returns -1 otherwise.
4710 ADDRESS_P is a flag indicating if the expression is for address
4711 computation. */
4713 static iv_inv_expr_ent *
4714 get_loop_invariant_expr (struct ivopts_data *data, tree ubase,
4715 tree cbase, HOST_WIDE_INT ratio,
4716 bool address_p)
4718 aff_tree ubase_aff, cbase_aff;
4719 tree expr, ub, cb;
4721 STRIP_NOPS (ubase);
4722 STRIP_NOPS (cbase);
4723 ub = ubase;
4724 cb = cbase;
4726 if ((TREE_CODE (ubase) == INTEGER_CST)
4727 && (TREE_CODE (cbase) == INTEGER_CST))
4728 return NULL;
4730 /* Strips the constant part. */
4731 if (TREE_CODE (ubase) == PLUS_EXPR
4732 || TREE_CODE (ubase) == MINUS_EXPR
4733 || TREE_CODE (ubase) == POINTER_PLUS_EXPR)
4735 if (TREE_CODE (TREE_OPERAND (ubase, 1)) == INTEGER_CST)
4736 ubase = TREE_OPERAND (ubase, 0);
4739 /* Strips the constant part. */
4740 if (TREE_CODE (cbase) == PLUS_EXPR
4741 || TREE_CODE (cbase) == MINUS_EXPR
4742 || TREE_CODE (cbase) == POINTER_PLUS_EXPR)
4744 if (TREE_CODE (TREE_OPERAND (cbase, 1)) == INTEGER_CST)
4745 cbase = TREE_OPERAND (cbase, 0);
4748 if (address_p)
4750 if (((TREE_CODE (ubase) == SSA_NAME)
4751 || (TREE_CODE (ubase) == ADDR_EXPR
4752 && is_gimple_min_invariant (ubase)))
4753 && (TREE_CODE (cbase) == INTEGER_CST))
4754 return NULL;
4756 if (((TREE_CODE (cbase) == SSA_NAME)
4757 || (TREE_CODE (cbase) == ADDR_EXPR
4758 && is_gimple_min_invariant (cbase)))
4759 && (TREE_CODE (ubase) == INTEGER_CST))
4760 return NULL;
4763 if (ratio == 1)
4765 if (operand_equal_p (ubase, cbase, 0))
4766 return NULL;
4768 if (TREE_CODE (ubase) == ADDR_EXPR
4769 && TREE_CODE (cbase) == ADDR_EXPR)
4771 tree usym, csym;
4773 usym = TREE_OPERAND (ubase, 0);
4774 csym = TREE_OPERAND (cbase, 0);
4775 if (TREE_CODE (usym) == ARRAY_REF)
4777 tree ind = TREE_OPERAND (usym, 1);
4778 if (TREE_CODE (ind) == INTEGER_CST
4779 && tree_fits_shwi_p (ind)
4780 && tree_to_shwi (ind) == 0)
4781 usym = TREE_OPERAND (usym, 0);
4783 if (TREE_CODE (csym) == ARRAY_REF)
4785 tree ind = TREE_OPERAND (csym, 1);
4786 if (TREE_CODE (ind) == INTEGER_CST
4787 && tree_fits_shwi_p (ind)
4788 && tree_to_shwi (ind) == 0)
4789 csym = TREE_OPERAND (csym, 0);
4791 if (operand_equal_p (usym, csym, 0))
4792 return NULL;
4794 /* Now do more complex comparison */
4795 tree_to_aff_combination (ubase, TREE_TYPE (ubase), &ubase_aff);
4796 tree_to_aff_combination (cbase, TREE_TYPE (cbase), &cbase_aff);
4797 if (compare_aff_trees (&ubase_aff, &cbase_aff))
4798 return NULL;
4801 tree_to_aff_combination (ub, TREE_TYPE (ub), &ubase_aff);
4802 tree_to_aff_combination (cb, TREE_TYPE (cb), &cbase_aff);
4804 aff_combination_scale (&cbase_aff, -1 * ratio);
4805 aff_combination_add (&ubase_aff, &cbase_aff);
4806 expr = aff_combination_to_tree (&ubase_aff);
4807 return record_inv_expr (data, expr);
4810 /* Scale (multiply) the computed COST (except scratch part that should be
4811 hoisted out a loop) by header->frequency / AT->frequency,
4812 which makes expected cost more accurate. */
4814 static comp_cost
4815 get_scaled_computation_cost_at (ivopts_data *data, gimple *at, iv_cand *cand,
4816 comp_cost cost)
4818 int loop_freq = data->current_loop->header->frequency;
4819 int bb_freq = gimple_bb (at)->frequency;
4820 if (loop_freq != 0)
4822 gcc_assert (cost.scratch <= cost.cost);
4823 int scaled_cost
4824 = cost.scratch + (cost.cost - cost.scratch) * bb_freq / loop_freq;
4826 if (dump_file && (dump_flags & TDF_DETAILS))
4827 fprintf (dump_file, "Scaling iv_use based on cand %d "
4828 "by %2.2f: %d (scratch: %d) -> %d (%d/%d)\n",
4829 cand->id, 1.0f * bb_freq / loop_freq, cost.cost,
4830 cost.scratch, scaled_cost, bb_freq, loop_freq);
4832 cost.cost = scaled_cost;
4835 return cost;
4838 /* Determines the cost of the computation by that USE is expressed
4839 from induction variable CAND. If ADDRESS_P is true, we just need
4840 to create an address from it, otherwise we want to get it into
4841 register. A set of invariants we depend on is stored in
4842 DEPENDS_ON. AT is the statement at that the value is computed.
4843 If CAN_AUTOINC is nonnull, use it to record whether autoinc
4844 addressing is likely. */
4846 static comp_cost
4847 get_computation_cost_at (struct ivopts_data *data,
4848 struct iv_use *use, struct iv_cand *cand,
4849 bool address_p, bitmap *depends_on, gimple *at,
4850 bool *can_autoinc,
4851 iv_inv_expr_ent **inv_expr)
4853 tree ubase = use->iv->base, ustep = use->iv->step;
4854 tree cbase, cstep;
4855 tree utype = TREE_TYPE (ubase), ctype;
4856 unsigned HOST_WIDE_INT cstepi, offset = 0;
4857 HOST_WIDE_INT ratio, aratio;
4858 bool var_present, symbol_present, stmt_is_after_inc;
4859 comp_cost cost;
4860 widest_int rat;
4861 bool speed = optimize_bb_for_speed_p (gimple_bb (at));
4862 machine_mode mem_mode = (address_p
4863 ? TYPE_MODE (TREE_TYPE (*use->op_p))
4864 : VOIDmode);
4866 if (depends_on)
4867 *depends_on = NULL;
4869 /* Only consider real candidates. */
4870 if (!cand->iv)
4871 return infinite_cost;
4873 cbase = cand->iv->base;
4874 cstep = cand->iv->step;
4875 ctype = TREE_TYPE (cbase);
4877 if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
4879 /* We do not have a precision to express the values of use. */
4880 return infinite_cost;
4883 if (address_p
4884 || (use->iv->base_object
4885 && cand->iv->base_object
4886 && POINTER_TYPE_P (TREE_TYPE (use->iv->base_object))
4887 && POINTER_TYPE_P (TREE_TYPE (cand->iv->base_object))))
4889 /* Do not try to express address of an object with computation based
4890 on address of a different object. This may cause problems in rtl
4891 level alias analysis (that does not expect this to be happening,
4892 as this is illegal in C), and would be unlikely to be useful
4893 anyway. */
4894 if (use->iv->base_object
4895 && cand->iv->base_object
4896 && !operand_equal_p (use->iv->base_object, cand->iv->base_object, 0))
4897 return infinite_cost;
4900 if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
4902 /* TODO -- add direct handling of this case. */
4903 goto fallback;
4906 /* CSTEPI is removed from the offset in case statement is after the
4907 increment. If the step is not constant, we use zero instead.
4908 This is a bit imprecise (there is the extra addition), but
4909 redundancy elimination is likely to transform the code so that
4910 it uses value of the variable before increment anyway,
4911 so it is not that much unrealistic. */
4912 if (cst_and_fits_in_hwi (cstep))
4913 cstepi = int_cst_value (cstep);
4914 else
4915 cstepi = 0;
4917 if (!constant_multiple_of (ustep, cstep, &rat))
4918 return infinite_cost;
4920 if (wi::fits_shwi_p (rat))
4921 ratio = rat.to_shwi ();
4922 else
4923 return infinite_cost;
4925 STRIP_NOPS (cbase);
4926 ctype = TREE_TYPE (cbase);
4928 stmt_is_after_inc = stmt_after_increment (data->current_loop, cand, at);
4930 /* use = ubase + ratio * (var - cbase). If either cbase is a constant
4931 or ratio == 1, it is better to handle this like
4933 ubase - ratio * cbase + ratio * var
4935 (also holds in the case ratio == -1, TODO. */
4937 if (cst_and_fits_in_hwi (cbase))
4939 offset = - ratio * (unsigned HOST_WIDE_INT) int_cst_value (cbase);
4940 cost = difference_cost (data,
4941 ubase, build_int_cst (utype, 0),
4942 &symbol_present, &var_present, &offset,
4943 depends_on);
4944 cost /= avg_loop_niter (data->current_loop);
4946 else if (ratio == 1)
4948 tree real_cbase = cbase;
4950 /* Check to see if any adjustment is needed. */
4951 if (cstepi == 0 && stmt_is_after_inc)
4953 aff_tree real_cbase_aff;
4954 aff_tree cstep_aff;
4956 tree_to_aff_combination (cbase, TREE_TYPE (real_cbase),
4957 &real_cbase_aff);
4958 tree_to_aff_combination (cstep, TREE_TYPE (cstep), &cstep_aff);
4960 aff_combination_add (&real_cbase_aff, &cstep_aff);
4961 real_cbase = aff_combination_to_tree (&real_cbase_aff);
4964 cost = difference_cost (data,
4965 ubase, real_cbase,
4966 &symbol_present, &var_present, &offset,
4967 depends_on);
4968 cost /= avg_loop_niter (data->current_loop);
4970 else if (address_p
4971 && !POINTER_TYPE_P (ctype)
4972 && multiplier_allowed_in_address_p
4973 (ratio, mem_mode,
4974 TYPE_ADDR_SPACE (TREE_TYPE (utype))))
4976 tree real_cbase = cbase;
4978 if (cstepi == 0 && stmt_is_after_inc)
4980 if (POINTER_TYPE_P (ctype))
4981 real_cbase = fold_build2 (POINTER_PLUS_EXPR, ctype, cbase, cstep);
4982 else
4983 real_cbase = fold_build2 (PLUS_EXPR, ctype, cbase, cstep);
4985 real_cbase = fold_build2 (MULT_EXPR, ctype, real_cbase,
4986 build_int_cst (ctype, ratio));
4987 cost = difference_cost (data,
4988 ubase, real_cbase,
4989 &symbol_present, &var_present, &offset,
4990 depends_on);
4991 cost /= avg_loop_niter (data->current_loop);
4993 else
4995 cost = force_var_cost (data, cbase, depends_on);
4996 cost += difference_cost (data, ubase, build_int_cst (utype, 0),
4997 &symbol_present, &var_present, &offset,
4998 depends_on);
4999 cost /= avg_loop_niter (data->current_loop);
5000 cost += add_cost (data->speed, TYPE_MODE (ctype));
5003 /* Record setup cost in scratch field. */
5004 cost.scratch = cost.cost;
5006 if (inv_expr && depends_on && *depends_on)
5008 *inv_expr = get_loop_invariant_expr (data, ubase, cbase, ratio,
5009 address_p);
5010 /* Clear depends on. */
5011 if (*inv_expr != NULL)
5012 bitmap_clear (*depends_on);
5015 /* If we are after the increment, the value of the candidate is higher by
5016 one iteration. */
5017 if (stmt_is_after_inc)
5018 offset -= ratio * cstepi;
5020 /* Now the computation is in shape symbol + var1 + const + ratio * var2.
5021 (symbol/var1/const parts may be omitted). If we are looking for an
5022 address, find the cost of addressing this. */
5023 if (address_p)
5025 cost += get_address_cost (symbol_present, var_present,
5026 offset, ratio, cstepi,
5027 mem_mode,
5028 TYPE_ADDR_SPACE (TREE_TYPE (utype)),
5029 speed, stmt_is_after_inc, can_autoinc);
5030 return get_scaled_computation_cost_at (data, at, cand, cost);
5033 /* Otherwise estimate the costs for computing the expression. */
5034 if (!symbol_present && !var_present && !offset)
5036 if (ratio != 1)
5037 cost += mult_by_coeff_cost (ratio, TYPE_MODE (ctype), speed);
5038 return get_scaled_computation_cost_at (data, at, cand, cost);
5041 /* Symbol + offset should be compile-time computable so consider that they
5042 are added once to the variable, if present. */
5043 if (var_present && (symbol_present || offset))
5044 cost += adjust_setup_cost (data,
5045 add_cost (speed, TYPE_MODE (ctype)));
5047 /* Having offset does not affect runtime cost in case it is added to
5048 symbol, but it increases complexity. */
5049 if (offset)
5050 cost.complexity++;
5052 cost += add_cost (speed, TYPE_MODE (ctype));
5054 aratio = ratio > 0 ? ratio : -ratio;
5055 if (aratio != 1)
5056 cost += mult_by_coeff_cost (aratio, TYPE_MODE (ctype), speed);
5058 return get_scaled_computation_cost_at (data, at, cand, cost);
5060 fallback:
5061 if (can_autoinc)
5062 *can_autoinc = false;
5064 /* Just get the expression, expand it and measure the cost. */
5065 tree comp = get_computation_at (data->current_loop, use, cand, at);
5067 if (!comp)
5068 return infinite_cost;
5070 if (address_p)
5071 comp = build_simple_mem_ref (comp);
5073 cost = comp_cost (computation_cost (comp, speed), 0);
5075 return get_scaled_computation_cost_at (data, at, cand, cost);
5078 /* Determines the cost of the computation by that USE is expressed
5079 from induction variable CAND. If ADDRESS_P is true, we just need
5080 to create an address from it, otherwise we want to get it into
5081 register. A set of invariants we depend on is stored in
5082 DEPENDS_ON. If CAN_AUTOINC is nonnull, use it to record whether
5083 autoinc addressing is likely. */
5085 static comp_cost
5086 get_computation_cost (struct ivopts_data *data,
5087 struct iv_use *use, struct iv_cand *cand,
5088 bool address_p, bitmap *depends_on,
5089 bool *can_autoinc, iv_inv_expr_ent **inv_expr)
5091 return get_computation_cost_at (data,
5092 use, cand, address_p, depends_on, use->stmt,
5093 can_autoinc, inv_expr);
5096 /* Determines cost of computing the use in GROUP with CAND in a generic
5097 expression. */
5099 static bool
5100 determine_group_iv_cost_generic (struct ivopts_data *data,
5101 struct iv_group *group, struct iv_cand *cand)
5103 comp_cost cost;
5104 iv_inv_expr_ent *inv_expr = NULL;
5105 bitmap depends_on = NULL;
5106 struct iv_use *use = group->vuses[0];
5108 /* The simple case first -- if we need to express value of the preserved
5109 original biv, the cost is 0. This also prevents us from counting the
5110 cost of increment twice -- once at this use and once in the cost of
5111 the candidate. */
5112 if (cand->pos == IP_ORIGINAL && cand->incremented_at == use->stmt)
5113 cost = no_cost;
5114 else
5115 cost = get_computation_cost (data, use, cand, false,
5116 &depends_on, NULL, &inv_expr);
5118 set_group_iv_cost (data, group, cand, cost, depends_on,
5119 NULL_TREE, ERROR_MARK, inv_expr);
5120 return !cost.infinite_cost_p ();
5123 /* Determines cost of computing uses in GROUP with CAND in addresses. */
5125 static bool
5126 determine_group_iv_cost_address (struct ivopts_data *data,
5127 struct iv_group *group, struct iv_cand *cand)
5129 unsigned i;
5130 bitmap depends_on;
5131 bool can_autoinc;
5132 iv_inv_expr_ent *inv_expr = NULL;
5133 struct iv_use *use = group->vuses[0];
5134 comp_cost sum_cost = no_cost, cost;
5136 cost = get_computation_cost (data, use, cand, true,
5137 &depends_on, &can_autoinc, &inv_expr);
5139 sum_cost = cost;
5140 if (!sum_cost.infinite_cost_p () && cand->ainc_use == use)
5142 if (can_autoinc)
5143 sum_cost -= cand->cost_step;
5144 /* If we generated the candidate solely for exploiting autoincrement
5145 opportunities, and it turns out it can't be used, set the cost to
5146 infinity to make sure we ignore it. */
5147 else if (cand->pos == IP_AFTER_USE || cand->pos == IP_BEFORE_USE)
5148 sum_cost = infinite_cost;
5151 /* Uses in a group can share setup code, so only add setup cost once. */
5152 cost -= cost.scratch;
5153 /* Compute and add costs for rest uses of this group. */
5154 for (i = 1; i < group->vuses.length () && !sum_cost.infinite_cost_p (); i++)
5156 struct iv_use *next = group->vuses[i];
5158 /* TODO: We could skip computing cost for sub iv_use when it has the
5159 same cost as the first iv_use, but the cost really depends on the
5160 offset and where the iv_use is. */
5161 cost = get_computation_cost (data, next, cand, true,
5162 NULL, &can_autoinc, NULL);
5163 sum_cost += cost;
5165 set_group_iv_cost (data, group, cand, sum_cost, depends_on,
5166 NULL_TREE, ERROR_MARK, inv_expr);
5168 return !sum_cost.infinite_cost_p ();
5171 /* Computes value of candidate CAND at position AT in iteration NITER, and
5172 stores it to VAL. */
5174 static void
5175 cand_value_at (struct loop *loop, struct iv_cand *cand, gimple *at, tree niter,
5176 aff_tree *val)
5178 aff_tree step, delta, nit;
5179 struct iv *iv = cand->iv;
5180 tree type = TREE_TYPE (iv->base);
5181 tree steptype;
5182 if (POINTER_TYPE_P (type))
5183 steptype = sizetype;
5184 else
5185 steptype = unsigned_type_for (type);
5187 tree_to_aff_combination (iv->step, TREE_TYPE (iv->step), &step);
5188 aff_combination_convert (&step, steptype);
5189 tree_to_aff_combination (niter, TREE_TYPE (niter), &nit);
5190 aff_combination_convert (&nit, steptype);
5191 aff_combination_mult (&nit, &step, &delta);
5192 if (stmt_after_increment (loop, cand, at))
5193 aff_combination_add (&delta, &step);
5195 tree_to_aff_combination (iv->base, type, val);
5196 if (!POINTER_TYPE_P (type))
5197 aff_combination_convert (val, steptype);
5198 aff_combination_add (val, &delta);
5201 /* Returns period of induction variable iv. */
5203 static tree
5204 iv_period (struct iv *iv)
5206 tree step = iv->step, period, type;
5207 tree pow2div;
5209 gcc_assert (step && TREE_CODE (step) == INTEGER_CST);
5211 type = unsigned_type_for (TREE_TYPE (step));
5212 /* Period of the iv is lcm (step, type_range)/step -1,
5213 i.e., N*type_range/step - 1. Since type range is power
5214 of two, N == (step >> num_of_ending_zeros_binary (step),
5215 so the final result is
5217 (type_range >> num_of_ending_zeros_binary (step)) - 1
5220 pow2div = num_ending_zeros (step);
5222 period = build_low_bits_mask (type,
5223 (TYPE_PRECISION (type)
5224 - tree_to_uhwi (pow2div)));
5226 return period;
5229 /* Returns the comparison operator used when eliminating the iv USE. */
5231 static enum tree_code
5232 iv_elimination_compare (struct ivopts_data *data, struct iv_use *use)
5234 struct loop *loop = data->current_loop;
5235 basic_block ex_bb;
5236 edge exit;
5238 ex_bb = gimple_bb (use->stmt);
5239 exit = EDGE_SUCC (ex_bb, 0);
5240 if (flow_bb_inside_loop_p (loop, exit->dest))
5241 exit = EDGE_SUCC (ex_bb, 1);
5243 return (exit->flags & EDGE_TRUE_VALUE ? EQ_EXPR : NE_EXPR);
5246 /* Returns true if we can prove that BASE - OFFSET does not overflow. For now,
5247 we only detect the situation that BASE = SOMETHING + OFFSET, where the
5248 calculation is performed in non-wrapping type.
5250 TODO: More generally, we could test for the situation that
5251 BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero.
5252 This would require knowing the sign of OFFSET. */
5254 static bool
5255 difference_cannot_overflow_p (struct ivopts_data *data, tree base, tree offset)
5257 enum tree_code code;
5258 tree e1, e2;
5259 aff_tree aff_e1, aff_e2, aff_offset;
5261 if (!nowrap_type_p (TREE_TYPE (base)))
5262 return false;
5264 base = expand_simple_operations (base);
5266 if (TREE_CODE (base) == SSA_NAME)
5268 gimple *stmt = SSA_NAME_DEF_STMT (base);
5270 if (gimple_code (stmt) != GIMPLE_ASSIGN)
5271 return false;
5273 code = gimple_assign_rhs_code (stmt);
5274 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
5275 return false;
5277 e1 = gimple_assign_rhs1 (stmt);
5278 e2 = gimple_assign_rhs2 (stmt);
5280 else
5282 code = TREE_CODE (base);
5283 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
5284 return false;
5285 e1 = TREE_OPERAND (base, 0);
5286 e2 = TREE_OPERAND (base, 1);
5289 /* Use affine expansion as deeper inspection to prove the equality. */
5290 tree_to_aff_combination_expand (e2, TREE_TYPE (e2),
5291 &aff_e2, &data->name_expansion_cache);
5292 tree_to_aff_combination_expand (offset, TREE_TYPE (offset),
5293 &aff_offset, &data->name_expansion_cache);
5294 aff_combination_scale (&aff_offset, -1);
5295 switch (code)
5297 case PLUS_EXPR:
5298 aff_combination_add (&aff_e2, &aff_offset);
5299 if (aff_combination_zero_p (&aff_e2))
5300 return true;
5302 tree_to_aff_combination_expand (e1, TREE_TYPE (e1),
5303 &aff_e1, &data->name_expansion_cache);
5304 aff_combination_add (&aff_e1, &aff_offset);
5305 return aff_combination_zero_p (&aff_e1);
5307 case POINTER_PLUS_EXPR:
5308 aff_combination_add (&aff_e2, &aff_offset);
5309 return aff_combination_zero_p (&aff_e2);
5311 default:
5312 return false;
5316 /* Tries to replace loop exit by one formulated in terms of a LT_EXPR
5317 comparison with CAND. NITER describes the number of iterations of
5318 the loops. If successful, the comparison in COMP_P is altered accordingly.
5320 We aim to handle the following situation:
5322 sometype *base, *p;
5323 int a, b, i;
5325 i = a;
5326 p = p_0 = base + a;
5330 bla (*p);
5331 p++;
5332 i++;
5334 while (i < b);
5336 Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1.
5337 We aim to optimize this to
5339 p = p_0 = base + a;
5342 bla (*p);
5343 p++;
5345 while (p < p_0 - a + b);
5347 This preserves the correctness, since the pointer arithmetics does not
5348 overflow. More precisely:
5350 1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no
5351 overflow in computing it or the values of p.
5352 2) if a + 1 > b, then we need to verify that the expression p_0 - a does not
5353 overflow. To prove this, we use the fact that p_0 = base + a. */
5355 static bool
5356 iv_elimination_compare_lt (struct ivopts_data *data,
5357 struct iv_cand *cand, enum tree_code *comp_p,
5358 struct tree_niter_desc *niter)
5360 tree cand_type, a, b, mbz, nit_type = TREE_TYPE (niter->niter), offset;
5361 struct aff_tree nit, tmpa, tmpb;
5362 enum tree_code comp;
5363 HOST_WIDE_INT step;
5365 /* We need to know that the candidate induction variable does not overflow.
5366 While more complex analysis may be used to prove this, for now just
5367 check that the variable appears in the original program and that it
5368 is computed in a type that guarantees no overflows. */
5369 cand_type = TREE_TYPE (cand->iv->base);
5370 if (cand->pos != IP_ORIGINAL || !nowrap_type_p (cand_type))
5371 return false;
5373 /* Make sure that the loop iterates till the loop bound is hit, as otherwise
5374 the calculation of the BOUND could overflow, making the comparison
5375 invalid. */
5376 if (!data->loop_single_exit_p)
5377 return false;
5379 /* We need to be able to decide whether candidate is increasing or decreasing
5380 in order to choose the right comparison operator. */
5381 if (!cst_and_fits_in_hwi (cand->iv->step))
5382 return false;
5383 step = int_cst_value (cand->iv->step);
5385 /* Check that the number of iterations matches the expected pattern:
5386 a + 1 > b ? 0 : b - a - 1. */
5387 mbz = niter->may_be_zero;
5388 if (TREE_CODE (mbz) == GT_EXPR)
5390 /* Handle a + 1 > b. */
5391 tree op0 = TREE_OPERAND (mbz, 0);
5392 if (TREE_CODE (op0) == PLUS_EXPR && integer_onep (TREE_OPERAND (op0, 1)))
5394 a = TREE_OPERAND (op0, 0);
5395 b = TREE_OPERAND (mbz, 1);
5397 else
5398 return false;
5400 else if (TREE_CODE (mbz) == LT_EXPR)
5402 tree op1 = TREE_OPERAND (mbz, 1);
5404 /* Handle b < a + 1. */
5405 if (TREE_CODE (op1) == PLUS_EXPR && integer_onep (TREE_OPERAND (op1, 1)))
5407 a = TREE_OPERAND (op1, 0);
5408 b = TREE_OPERAND (mbz, 0);
5410 else
5411 return false;
5413 else
5414 return false;
5416 /* Expected number of iterations is B - A - 1. Check that it matches
5417 the actual number, i.e., that B - A - NITER = 1. */
5418 tree_to_aff_combination (niter->niter, nit_type, &nit);
5419 tree_to_aff_combination (fold_convert (nit_type, a), nit_type, &tmpa);
5420 tree_to_aff_combination (fold_convert (nit_type, b), nit_type, &tmpb);
5421 aff_combination_scale (&nit, -1);
5422 aff_combination_scale (&tmpa, -1);
5423 aff_combination_add (&tmpb, &tmpa);
5424 aff_combination_add (&tmpb, &nit);
5425 if (tmpb.n != 0 || tmpb.offset != 1)
5426 return false;
5428 /* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
5429 overflow. */
5430 offset = fold_build2 (MULT_EXPR, TREE_TYPE (cand->iv->step),
5431 cand->iv->step,
5432 fold_convert (TREE_TYPE (cand->iv->step), a));
5433 if (!difference_cannot_overflow_p (data, cand->iv->base, offset))
5434 return false;
5436 /* Determine the new comparison operator. */
5437 comp = step < 0 ? GT_EXPR : LT_EXPR;
5438 if (*comp_p == NE_EXPR)
5439 *comp_p = comp;
5440 else if (*comp_p == EQ_EXPR)
5441 *comp_p = invert_tree_comparison (comp, false);
5442 else
5443 gcc_unreachable ();
5445 return true;
5448 /* Check whether it is possible to express the condition in USE by comparison
5449 of candidate CAND. If so, store the value compared with to BOUND, and the
5450 comparison operator to COMP. */
5452 static bool
5453 may_eliminate_iv (struct ivopts_data *data,
5454 struct iv_use *use, struct iv_cand *cand, tree *bound,
5455 enum tree_code *comp)
5457 basic_block ex_bb;
5458 edge exit;
5459 tree period;
5460 struct loop *loop = data->current_loop;
5461 aff_tree bnd;
5462 struct tree_niter_desc *desc = NULL;
5464 if (TREE_CODE (cand->iv->step) != INTEGER_CST)
5465 return false;
5467 /* For now works only for exits that dominate the loop latch.
5468 TODO: extend to other conditions inside loop body. */
5469 ex_bb = gimple_bb (use->stmt);
5470 if (use->stmt != last_stmt (ex_bb)
5471 || gimple_code (use->stmt) != GIMPLE_COND
5472 || !dominated_by_p (CDI_DOMINATORS, loop->latch, ex_bb))
5473 return false;
5475 exit = EDGE_SUCC (ex_bb, 0);
5476 if (flow_bb_inside_loop_p (loop, exit->dest))
5477 exit = EDGE_SUCC (ex_bb, 1);
5478 if (flow_bb_inside_loop_p (loop, exit->dest))
5479 return false;
5481 desc = niter_for_exit (data, exit);
5482 if (!desc)
5483 return false;
5485 /* Determine whether we can use the variable to test the exit condition.
5486 This is the case iff the period of the induction variable is greater
5487 than the number of iterations for which the exit condition is true. */
5488 period = iv_period (cand->iv);
5490 /* If the number of iterations is constant, compare against it directly. */
5491 if (TREE_CODE (desc->niter) == INTEGER_CST)
5493 /* See cand_value_at. */
5494 if (stmt_after_increment (loop, cand, use->stmt))
5496 if (!tree_int_cst_lt (desc->niter, period))
5497 return false;
5499 else
5501 if (tree_int_cst_lt (period, desc->niter))
5502 return false;
5506 /* If not, and if this is the only possible exit of the loop, see whether
5507 we can get a conservative estimate on the number of iterations of the
5508 entire loop and compare against that instead. */
5509 else
5511 widest_int period_value, max_niter;
5513 max_niter = desc->max;
5514 if (stmt_after_increment (loop, cand, use->stmt))
5515 max_niter += 1;
5516 period_value = wi::to_widest (period);
5517 if (wi::gtu_p (max_niter, period_value))
5519 /* See if we can take advantage of inferred loop bound
5520 information. */
5521 if (data->loop_single_exit_p)
5523 if (!max_loop_iterations (loop, &max_niter))
5524 return false;
5525 /* The loop bound is already adjusted by adding 1. */
5526 if (wi::gtu_p (max_niter, period_value))
5527 return false;
5529 else
5530 return false;
5534 cand_value_at (loop, cand, use->stmt, desc->niter, &bnd);
5536 *bound = fold_convert (TREE_TYPE (cand->iv->base),
5537 aff_combination_to_tree (&bnd));
5538 *comp = iv_elimination_compare (data, use);
5540 /* It is unlikely that computing the number of iterations using division
5541 would be more profitable than keeping the original induction variable. */
5542 if (expression_expensive_p (*bound))
5543 return false;
5545 /* Sometimes, it is possible to handle the situation that the number of
5546 iterations may be zero unless additional assumptions by using <
5547 instead of != in the exit condition.
5549 TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and
5550 base the exit condition on it. However, that is often too
5551 expensive. */
5552 if (!integer_zerop (desc->may_be_zero))
5553 return iv_elimination_compare_lt (data, cand, comp, desc);
5555 return true;
5558 /* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must
5559 be copied, if it is used in the loop body and DATA->body_includes_call. */
5561 static int
5562 parm_decl_cost (struct ivopts_data *data, tree bound)
5564 tree sbound = bound;
5565 STRIP_NOPS (sbound);
5567 if (TREE_CODE (sbound) == SSA_NAME
5568 && SSA_NAME_IS_DEFAULT_DEF (sbound)
5569 && TREE_CODE (SSA_NAME_VAR (sbound)) == PARM_DECL
5570 && data->body_includes_call)
5571 return COSTS_N_INSNS (1);
5573 return 0;
5576 /* Determines cost of computing the use in GROUP with CAND in a condition. */
5578 static bool
5579 determine_group_iv_cost_cond (struct ivopts_data *data,
5580 struct iv_group *group, struct iv_cand *cand)
5582 tree bound = NULL_TREE;
5583 struct iv *cmp_iv;
5584 bitmap depends_on_elim = NULL, depends_on_express = NULL, depends_on;
5585 comp_cost elim_cost, express_cost, cost, bound_cost;
5586 bool ok;
5587 iv_inv_expr_ent *elim_inv_expr = NULL, *express_inv_expr = NULL, *inv_expr;
5588 tree *control_var, *bound_cst;
5589 enum tree_code comp = ERROR_MARK;
5590 struct iv_use *use = group->vuses[0];
5592 gcc_assert (cand->iv);
5594 /* Try iv elimination. */
5595 if (may_eliminate_iv (data, use, cand, &bound, &comp))
5597 elim_cost = force_var_cost (data, bound, &depends_on_elim);
5598 if (elim_cost.cost == 0)
5599 elim_cost.cost = parm_decl_cost (data, bound);
5600 else if (TREE_CODE (bound) == INTEGER_CST)
5601 elim_cost.cost = 0;
5602 /* If we replace a loop condition 'i < n' with 'p < base + n',
5603 depends_on_elim will have 'base' and 'n' set, which implies
5604 that both 'base' and 'n' will be live during the loop. More likely,
5605 'base + n' will be loop invariant, resulting in only one live value
5606 during the loop. So in that case we clear depends_on_elim and set
5607 elim_inv_expr_id instead. */
5608 if (depends_on_elim && bitmap_count_bits (depends_on_elim) > 1)
5610 elim_inv_expr = record_inv_expr (data, bound);
5611 bitmap_clear (depends_on_elim);
5613 /* The bound is a loop invariant, so it will be only computed
5614 once. */
5615 elim_cost.cost = adjust_setup_cost (data, elim_cost.cost);
5617 else
5618 elim_cost = infinite_cost;
5620 /* Try expressing the original giv. If it is compared with an invariant,
5621 note that we cannot get rid of it. */
5622 ok = extract_cond_operands (data, use->stmt, &control_var, &bound_cst,
5623 NULL, &cmp_iv);
5624 gcc_assert (ok);
5626 /* When the condition is a comparison of the candidate IV against
5627 zero, prefer this IV.
5629 TODO: The constant that we're subtracting from the cost should
5630 be target-dependent. This information should be added to the
5631 target costs for each backend. */
5632 if (!elim_cost.infinite_cost_p () /* Do not try to decrease infinite! */
5633 && integer_zerop (*bound_cst)
5634 && (operand_equal_p (*control_var, cand->var_after, 0)
5635 || operand_equal_p (*control_var, cand->var_before, 0)))
5636 elim_cost -= 1;
5638 express_cost = get_computation_cost (data, use, cand, false,
5639 &depends_on_express, NULL,
5640 &express_inv_expr);
5641 fd_ivopts_data = data;
5642 walk_tree (&cmp_iv->base, find_depends, &depends_on_express, NULL);
5644 /* Count the cost of the original bound as well. */
5645 bound_cost = force_var_cost (data, *bound_cst, NULL);
5646 if (bound_cost.cost == 0)
5647 bound_cost.cost = parm_decl_cost (data, *bound_cst);
5648 else if (TREE_CODE (*bound_cst) == INTEGER_CST)
5649 bound_cost.cost = 0;
5650 express_cost += bound_cost;
5652 /* Choose the better approach, preferring the eliminated IV. */
5653 if (elim_cost <= express_cost)
5655 cost = elim_cost;
5656 depends_on = depends_on_elim;
5657 depends_on_elim = NULL;
5658 inv_expr = elim_inv_expr;
5660 else
5662 cost = express_cost;
5663 depends_on = depends_on_express;
5664 depends_on_express = NULL;
5665 bound = NULL_TREE;
5666 comp = ERROR_MARK;
5667 inv_expr = express_inv_expr;
5670 set_group_iv_cost (data, group, cand, cost,
5671 depends_on, bound, comp, inv_expr);
5673 if (depends_on_elim)
5674 BITMAP_FREE (depends_on_elim);
5675 if (depends_on_express)
5676 BITMAP_FREE (depends_on_express);
5678 return !cost.infinite_cost_p ();
5681 /* Determines cost of computing uses in GROUP with CAND. Returns false
5682 if USE cannot be represented with CAND. */
5684 static bool
5685 determine_group_iv_cost (struct ivopts_data *data,
5686 struct iv_group *group, struct iv_cand *cand)
5688 switch (group->type)
5690 case USE_NONLINEAR_EXPR:
5691 return determine_group_iv_cost_generic (data, group, cand);
5693 case USE_ADDRESS:
5694 return determine_group_iv_cost_address (data, group, cand);
5696 case USE_COMPARE:
5697 return determine_group_iv_cost_cond (data, group, cand);
5699 default:
5700 gcc_unreachable ();
5704 /* Return true if get_computation_cost indicates that autoincrement is
5705 a possibility for the pair of USE and CAND, false otherwise. */
5707 static bool
5708 autoinc_possible_for_pair (struct ivopts_data *data, struct iv_use *use,
5709 struct iv_cand *cand)
5711 bitmap depends_on;
5712 bool can_autoinc;
5713 comp_cost cost;
5715 if (use->type != USE_ADDRESS)
5716 return false;
5718 cost = get_computation_cost (data, use, cand, true, &depends_on,
5719 &can_autoinc, NULL);
5721 BITMAP_FREE (depends_on);
5723 return !cost.infinite_cost_p () && can_autoinc;
5726 /* Examine IP_ORIGINAL candidates to see if they are incremented next to a
5727 use that allows autoincrement, and set their AINC_USE if possible. */
5729 static void
5730 set_autoinc_for_original_candidates (struct ivopts_data *data)
5732 unsigned i, j;
5734 for (i = 0; i < data->vcands.length (); i++)
5736 struct iv_cand *cand = data->vcands[i];
5737 struct iv_use *closest_before = NULL;
5738 struct iv_use *closest_after = NULL;
5739 if (cand->pos != IP_ORIGINAL)
5740 continue;
5742 for (j = 0; j < data->vgroups.length (); j++)
5744 struct iv_group *group = data->vgroups[j];
5745 struct iv_use *use = group->vuses[0];
5746 unsigned uid = gimple_uid (use->stmt);
5748 if (gimple_bb (use->stmt) != gimple_bb (cand->incremented_at))
5749 continue;
5751 if (uid < gimple_uid (cand->incremented_at)
5752 && (closest_before == NULL
5753 || uid > gimple_uid (closest_before->stmt)))
5754 closest_before = use;
5756 if (uid > gimple_uid (cand->incremented_at)
5757 && (closest_after == NULL
5758 || uid < gimple_uid (closest_after->stmt)))
5759 closest_after = use;
5762 if (closest_before != NULL
5763 && autoinc_possible_for_pair (data, closest_before, cand))
5764 cand->ainc_use = closest_before;
5765 else if (closest_after != NULL
5766 && autoinc_possible_for_pair (data, closest_after, cand))
5767 cand->ainc_use = closest_after;
5771 /* Finds the candidates for the induction variables. */
5773 static void
5774 find_iv_candidates (struct ivopts_data *data)
5776 /* Add commonly used ivs. */
5777 add_standard_iv_candidates (data);
5779 /* Add old induction variables. */
5780 add_iv_candidate_for_bivs (data);
5782 /* Add induction variables derived from uses. */
5783 add_iv_candidate_for_groups (data);
5785 set_autoinc_for_original_candidates (data);
5787 /* Record the important candidates. */
5788 record_important_candidates (data);
5790 if (dump_file && (dump_flags & TDF_DETAILS))
5792 unsigned i;
5794 fprintf (dump_file, "\n<Important Candidates>:\t");
5795 for (i = 0; i < data->vcands.length (); i++)
5796 if (data->vcands[i]->important)
5797 fprintf (dump_file, " %d,", data->vcands[i]->id);
5798 fprintf (dump_file, "\n");
5800 fprintf (dump_file, "\n<Group, Cand> Related:\n");
5801 for (i = 0; i < data->vgroups.length (); i++)
5803 struct iv_group *group = data->vgroups[i];
5805 if (group->related_cands)
5807 fprintf (dump_file, " Group %d:\t", group->id);
5808 dump_bitmap (dump_file, group->related_cands);
5811 fprintf (dump_file, "\n");
5815 /* Determines costs of computing use of iv with an iv candidate. */
5817 static void
5818 determine_group_iv_costs (struct ivopts_data *data)
5820 unsigned i, j;
5821 struct iv_cand *cand;
5822 struct iv_group *group;
5823 bitmap to_clear = BITMAP_ALLOC (NULL);
5825 alloc_use_cost_map (data);
5827 for (i = 0; i < data->vgroups.length (); i++)
5829 group = data->vgroups[i];
5831 if (data->consider_all_candidates)
5833 for (j = 0; j < data->vcands.length (); j++)
5835 cand = data->vcands[j];
5836 determine_group_iv_cost (data, group, cand);
5839 else
5841 bitmap_iterator bi;
5843 EXECUTE_IF_SET_IN_BITMAP (group->related_cands, 0, j, bi)
5845 cand = data->vcands[j];
5846 if (!determine_group_iv_cost (data, group, cand))
5847 bitmap_set_bit (to_clear, j);
5850 /* Remove the candidates for that the cost is infinite from
5851 the list of related candidates. */
5852 bitmap_and_compl_into (group->related_cands, to_clear);
5853 bitmap_clear (to_clear);
5857 BITMAP_FREE (to_clear);
5859 if (dump_file && (dump_flags & TDF_DETAILS))
5861 fprintf (dump_file, "\n<Invariant Expressions>:\n");
5862 auto_vec <iv_inv_expr_ent *> list (data->inv_expr_tab->elements ());
5864 for (hash_table<iv_inv_expr_hasher>::iterator it
5865 = data->inv_expr_tab->begin (); it != data->inv_expr_tab->end ();
5866 ++it)
5867 list.safe_push (*it);
5869 list.qsort (sort_iv_inv_expr_ent);
5871 for (i = 0; i < list.length (); ++i)
5873 fprintf (dump_file, "inv_expr %d: \t", i);
5874 print_generic_expr (dump_file, list[i]->expr, TDF_SLIM);
5875 fprintf (dump_file, "\n");
5878 fprintf (dump_file, "\n<Group-candidate Costs>:\n");
5880 for (i = 0; i < data->vgroups.length (); i++)
5882 group = data->vgroups[i];
5884 fprintf (dump_file, "Group %d:\n", i);
5885 fprintf (dump_file, " cand\tcost\tcompl.\tinv.ex.\tdepends on\n");
5886 for (j = 0; j < group->n_map_members; j++)
5888 if (!group->cost_map[j].cand
5889 || group->cost_map[j].cost.infinite_cost_p ())
5890 continue;
5892 fprintf (dump_file, " %d\t%d\t%d\t",
5893 group->cost_map[j].cand->id,
5894 group->cost_map[j].cost.cost,
5895 group->cost_map[j].cost.complexity);
5896 if (group->cost_map[j].inv_expr != NULL)
5897 fprintf (dump_file, "%d\t",
5898 group->cost_map[j].inv_expr->id);
5899 else
5900 fprintf (dump_file, "\t");
5901 if (group->cost_map[j].depends_on)
5902 bitmap_print (dump_file,
5903 group->cost_map[j].depends_on, "","");
5904 fprintf (dump_file, "\n");
5907 fprintf (dump_file, "\n");
5909 fprintf (dump_file, "\n");
5913 /* Determines cost of the candidate CAND. */
5915 static void
5916 determine_iv_cost (struct ivopts_data *data, struct iv_cand *cand)
5918 comp_cost cost_base;
5919 unsigned cost, cost_step;
5920 tree base;
5922 if (!cand->iv)
5924 cand->cost = 0;
5925 return;
5928 /* There are two costs associated with the candidate -- its increment
5929 and its initialization. The second is almost negligible for any loop
5930 that rolls enough, so we take it just very little into account. */
5932 base = cand->iv->base;
5933 cost_base = force_var_cost (data, base, NULL);
5934 /* It will be exceptional that the iv register happens to be initialized with
5935 the proper value at no cost. In general, there will at least be a regcopy
5936 or a const set. */
5937 if (cost_base.cost == 0)
5938 cost_base.cost = COSTS_N_INSNS (1);
5939 cost_step = add_cost (data->speed, TYPE_MODE (TREE_TYPE (base)));
5941 cost = cost_step + adjust_setup_cost (data, cost_base.cost);
5943 /* Prefer the original ivs unless we may gain something by replacing it.
5944 The reason is to make debugging simpler; so this is not relevant for
5945 artificial ivs created by other optimization passes. */
5946 if (cand->pos != IP_ORIGINAL
5947 || !SSA_NAME_VAR (cand->var_before)
5948 || DECL_ARTIFICIAL (SSA_NAME_VAR (cand->var_before)))
5949 cost++;
5951 /* Prefer not to insert statements into latch unless there are some
5952 already (so that we do not create unnecessary jumps). */
5953 if (cand->pos == IP_END
5954 && empty_block_p (ip_end_pos (data->current_loop)))
5955 cost++;
5957 cand->cost = cost;
5958 cand->cost_step = cost_step;
5961 /* Determines costs of computation of the candidates. */
5963 static void
5964 determine_iv_costs (struct ivopts_data *data)
5966 unsigned i;
5968 if (dump_file && (dump_flags & TDF_DETAILS))
5970 fprintf (dump_file, "<Candidate Costs>:\n");
5971 fprintf (dump_file, " cand\tcost\n");
5974 for (i = 0; i < data->vcands.length (); i++)
5976 struct iv_cand *cand = data->vcands[i];
5978 determine_iv_cost (data, cand);
5980 if (dump_file && (dump_flags & TDF_DETAILS))
5981 fprintf (dump_file, " %d\t%d\n", i, cand->cost);
5984 if (dump_file && (dump_flags & TDF_DETAILS))
5985 fprintf (dump_file, "\n");
5988 /* Calculates cost for having SIZE induction variables. */
5990 static unsigned
5991 ivopts_global_cost_for_size (struct ivopts_data *data, unsigned size)
5993 /* We add size to the cost, so that we prefer eliminating ivs
5994 if possible. */
5995 return size + estimate_reg_pressure_cost (size, data->regs_used, data->speed,
5996 data->body_includes_call);
5999 /* For each size of the induction variable set determine the penalty. */
6001 static void
6002 determine_set_costs (struct ivopts_data *data)
6004 unsigned j, n;
6005 gphi *phi;
6006 gphi_iterator psi;
6007 tree op;
6008 struct loop *loop = data->current_loop;
6009 bitmap_iterator bi;
6011 if (dump_file && (dump_flags & TDF_DETAILS))
6013 fprintf (dump_file, "<Global Costs>:\n");
6014 fprintf (dump_file, " target_avail_regs %d\n", target_avail_regs);
6015 fprintf (dump_file, " target_clobbered_regs %d\n", target_clobbered_regs);
6016 fprintf (dump_file, " target_reg_cost %d\n", target_reg_cost[data->speed]);
6017 fprintf (dump_file, " target_spill_cost %d\n", target_spill_cost[data->speed]);
6020 n = 0;
6021 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
6023 phi = psi.phi ();
6024 op = PHI_RESULT (phi);
6026 if (virtual_operand_p (op))
6027 continue;
6029 if (get_iv (data, op))
6030 continue;
6032 n++;
6035 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
6037 struct version_info *info = ver_info (data, j);
6039 if (info->inv_id && info->has_nonlin_use)
6040 n++;
6043 data->regs_used = n;
6044 if (dump_file && (dump_flags & TDF_DETAILS))
6045 fprintf (dump_file, " regs_used %d\n", n);
6047 if (dump_file && (dump_flags & TDF_DETAILS))
6049 fprintf (dump_file, " cost for size:\n");
6050 fprintf (dump_file, " ivs\tcost\n");
6051 for (j = 0; j <= 2 * target_avail_regs; j++)
6052 fprintf (dump_file, " %d\t%d\n", j,
6053 ivopts_global_cost_for_size (data, j));
6054 fprintf (dump_file, "\n");
6058 /* Returns true if A is a cheaper cost pair than B. */
6060 static bool
6061 cheaper_cost_pair (struct cost_pair *a, struct cost_pair *b)
6063 if (!a)
6064 return false;
6066 if (!b)
6067 return true;
6069 if (a->cost < b->cost)
6070 return true;
6072 if (b->cost < a->cost)
6073 return false;
6075 /* In case the costs are the same, prefer the cheaper candidate. */
6076 if (a->cand->cost < b->cand->cost)
6077 return true;
6079 return false;
6083 /* Returns candidate by that USE is expressed in IVS. */
6085 static struct cost_pair *
6086 iv_ca_cand_for_group (struct iv_ca *ivs, struct iv_group *group)
6088 return ivs->cand_for_group[group->id];
6091 /* Computes the cost field of IVS structure. */
6093 static void
6094 iv_ca_recount_cost (struct ivopts_data *data, struct iv_ca *ivs)
6096 comp_cost cost = ivs->cand_use_cost;
6098 cost += ivs->cand_cost;
6100 cost += ivopts_global_cost_for_size (data,
6101 ivs->n_regs
6102 + ivs->used_inv_exprs->elements ());
6104 ivs->cost = cost;
6107 /* Remove invariants in set INVS to set IVS. */
6109 static void
6110 iv_ca_set_remove_invariants (struct iv_ca *ivs, bitmap invs)
6112 bitmap_iterator bi;
6113 unsigned iid;
6115 if (!invs)
6116 return;
6118 EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
6120 ivs->n_invariant_uses[iid]--;
6121 if (ivs->n_invariant_uses[iid] == 0)
6122 ivs->n_regs--;
6126 /* Set USE not to be expressed by any candidate in IVS. */
6128 static void
6129 iv_ca_set_no_cp (struct ivopts_data *data, struct iv_ca *ivs,
6130 struct iv_group *group)
6132 unsigned gid = group->id, cid;
6133 struct cost_pair *cp;
6135 cp = ivs->cand_for_group[gid];
6136 if (!cp)
6137 return;
6138 cid = cp->cand->id;
6140 ivs->bad_groups++;
6141 ivs->cand_for_group[gid] = NULL;
6142 ivs->n_cand_uses[cid]--;
6144 if (ivs->n_cand_uses[cid] == 0)
6146 bitmap_clear_bit (ivs->cands, cid);
6147 /* Do not count the pseudocandidates. */
6148 if (cp->cand->iv)
6149 ivs->n_regs--;
6150 ivs->n_cands--;
6151 ivs->cand_cost -= cp->cand->cost;
6153 iv_ca_set_remove_invariants (ivs, cp->cand->depends_on);
6156 ivs->cand_use_cost -= cp->cost;
6158 iv_ca_set_remove_invariants (ivs, cp->depends_on);
6160 if (cp->inv_expr != NULL)
6162 unsigned *slot = ivs->used_inv_exprs->get (cp->inv_expr);
6163 --(*slot);
6164 if (*slot == 0)
6165 ivs->used_inv_exprs->remove (cp->inv_expr);
6167 iv_ca_recount_cost (data, ivs);
6170 /* Add invariants in set INVS to set IVS. */
6172 static void
6173 iv_ca_set_add_invariants (struct iv_ca *ivs, bitmap invs)
6175 bitmap_iterator bi;
6176 unsigned iid;
6178 if (!invs)
6179 return;
6181 EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
6183 ivs->n_invariant_uses[iid]++;
6184 if (ivs->n_invariant_uses[iid] == 1)
6185 ivs->n_regs++;
6189 /* Set cost pair for GROUP in set IVS to CP. */
6191 static void
6192 iv_ca_set_cp (struct ivopts_data *data, struct iv_ca *ivs,
6193 struct iv_group *group, struct cost_pair *cp)
6195 unsigned gid = group->id, cid;
6197 if (ivs->cand_for_group[gid] == cp)
6198 return;
6200 if (ivs->cand_for_group[gid])
6201 iv_ca_set_no_cp (data, ivs, group);
6203 if (cp)
6205 cid = cp->cand->id;
6207 ivs->bad_groups--;
6208 ivs->cand_for_group[gid] = cp;
6209 ivs->n_cand_uses[cid]++;
6210 if (ivs->n_cand_uses[cid] == 1)
6212 bitmap_set_bit (ivs->cands, cid);
6213 /* Do not count the pseudocandidates. */
6214 if (cp->cand->iv)
6215 ivs->n_regs++;
6216 ivs->n_cands++;
6217 ivs->cand_cost += cp->cand->cost;
6219 iv_ca_set_add_invariants (ivs, cp->cand->depends_on);
6222 ivs->cand_use_cost += cp->cost;
6223 iv_ca_set_add_invariants (ivs, cp->depends_on);
6225 if (cp->inv_expr != NULL)
6227 unsigned *slot = &ivs->used_inv_exprs->get_or_insert (cp->inv_expr);
6228 ++(*slot);
6230 iv_ca_recount_cost (data, ivs);
6234 /* Extend set IVS by expressing USE by some of the candidates in it
6235 if possible. Consider all important candidates if candidates in
6236 set IVS don't give any result. */
6238 static void
6239 iv_ca_add_group (struct ivopts_data *data, struct iv_ca *ivs,
6240 struct iv_group *group)
6242 struct cost_pair *best_cp = NULL, *cp;
6243 bitmap_iterator bi;
6244 unsigned i;
6245 struct iv_cand *cand;
6247 gcc_assert (ivs->upto >= group->id);
6248 ivs->upto++;
6249 ivs->bad_groups++;
6251 EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
6253 cand = data->vcands[i];
6254 cp = get_group_iv_cost (data, group, cand);
6255 if (cheaper_cost_pair (cp, best_cp))
6256 best_cp = cp;
6259 if (best_cp == NULL)
6261 EXECUTE_IF_SET_IN_BITMAP (data->important_candidates, 0, i, bi)
6263 cand = data->vcands[i];
6264 cp = get_group_iv_cost (data, group, cand);
6265 if (cheaper_cost_pair (cp, best_cp))
6266 best_cp = cp;
6270 iv_ca_set_cp (data, ivs, group, best_cp);
6273 /* Get cost for assignment IVS. */
6275 static comp_cost
6276 iv_ca_cost (struct iv_ca *ivs)
6278 /* This was a conditional expression but it triggered a bug in
6279 Sun C 5.5. */
6280 if (ivs->bad_groups)
6281 return infinite_cost;
6282 else
6283 return ivs->cost;
6286 /* Returns true if all dependences of CP are among invariants in IVS. */
6288 static bool
6289 iv_ca_has_deps (struct iv_ca *ivs, struct cost_pair *cp)
6291 unsigned i;
6292 bitmap_iterator bi;
6294 if (!cp->depends_on)
6295 return true;
6297 EXECUTE_IF_SET_IN_BITMAP (cp->depends_on, 0, i, bi)
6299 if (ivs->n_invariant_uses[i] == 0)
6300 return false;
6303 return true;
6306 /* Creates change of expressing GROUP by NEW_CP instead of OLD_CP and chains
6307 it before NEXT. */
6309 static struct iv_ca_delta *
6310 iv_ca_delta_add (struct iv_group *group, struct cost_pair *old_cp,
6311 struct cost_pair *new_cp, struct iv_ca_delta *next)
6313 struct iv_ca_delta *change = XNEW (struct iv_ca_delta);
6315 change->group = group;
6316 change->old_cp = old_cp;
6317 change->new_cp = new_cp;
6318 change->next = next;
6320 return change;
6323 /* Joins two lists of changes L1 and L2. Destructive -- old lists
6324 are rewritten. */
6326 static struct iv_ca_delta *
6327 iv_ca_delta_join (struct iv_ca_delta *l1, struct iv_ca_delta *l2)
6329 struct iv_ca_delta *last;
6331 if (!l2)
6332 return l1;
6334 if (!l1)
6335 return l2;
6337 for (last = l1; last->next; last = last->next)
6338 continue;
6339 last->next = l2;
6341 return l1;
6344 /* Reverse the list of changes DELTA, forming the inverse to it. */
6346 static struct iv_ca_delta *
6347 iv_ca_delta_reverse (struct iv_ca_delta *delta)
6349 struct iv_ca_delta *act, *next, *prev = NULL;
6351 for (act = delta; act; act = next)
6353 next = act->next;
6354 act->next = prev;
6355 prev = act;
6357 std::swap (act->old_cp, act->new_cp);
6360 return prev;
6363 /* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
6364 reverted instead. */
6366 static void
6367 iv_ca_delta_commit (struct ivopts_data *data, struct iv_ca *ivs,
6368 struct iv_ca_delta *delta, bool forward)
6370 struct cost_pair *from, *to;
6371 struct iv_ca_delta *act;
6373 if (!forward)
6374 delta = iv_ca_delta_reverse (delta);
6376 for (act = delta; act; act = act->next)
6378 from = act->old_cp;
6379 to = act->new_cp;
6380 gcc_assert (iv_ca_cand_for_group (ivs, act->group) == from);
6381 iv_ca_set_cp (data, ivs, act->group, to);
6384 if (!forward)
6385 iv_ca_delta_reverse (delta);
6388 /* Returns true if CAND is used in IVS. */
6390 static bool
6391 iv_ca_cand_used_p (struct iv_ca *ivs, struct iv_cand *cand)
6393 return ivs->n_cand_uses[cand->id] > 0;
6396 /* Returns number of induction variable candidates in the set IVS. */
6398 static unsigned
6399 iv_ca_n_cands (struct iv_ca *ivs)
6401 return ivs->n_cands;
6404 /* Free the list of changes DELTA. */
6406 static void
6407 iv_ca_delta_free (struct iv_ca_delta **delta)
6409 struct iv_ca_delta *act, *next;
6411 for (act = *delta; act; act = next)
6413 next = act->next;
6414 free (act);
6417 *delta = NULL;
6420 /* Allocates new iv candidates assignment. */
6422 static struct iv_ca *
6423 iv_ca_new (struct ivopts_data *data)
6425 struct iv_ca *nw = XNEW (struct iv_ca);
6427 nw->upto = 0;
6428 nw->bad_groups = 0;
6429 nw->cand_for_group = XCNEWVEC (struct cost_pair *,
6430 data->vgroups.length ());
6431 nw->n_cand_uses = XCNEWVEC (unsigned, data->vcands.length ());
6432 nw->cands = BITMAP_ALLOC (NULL);
6433 nw->n_cands = 0;
6434 nw->n_regs = 0;
6435 nw->cand_use_cost = no_cost;
6436 nw->cand_cost = 0;
6437 nw->n_invariant_uses = XCNEWVEC (unsigned, data->max_inv_id + 1);
6438 nw->used_inv_exprs = new hash_map <iv_inv_expr_ent *, unsigned> (13);
6439 nw->cost = no_cost;
6441 return nw;
6444 /* Free memory occupied by the set IVS. */
6446 static void
6447 iv_ca_free (struct iv_ca **ivs)
6449 free ((*ivs)->cand_for_group);
6450 free ((*ivs)->n_cand_uses);
6451 BITMAP_FREE ((*ivs)->cands);
6452 free ((*ivs)->n_invariant_uses);
6453 delete ((*ivs)->used_inv_exprs);
6454 free (*ivs);
6455 *ivs = NULL;
6458 /* Dumps IVS to FILE. */
6460 static void
6461 iv_ca_dump (struct ivopts_data *data, FILE *file, struct iv_ca *ivs)
6463 unsigned i;
6464 comp_cost cost = iv_ca_cost (ivs);
6466 fprintf (file, " cost: %d (complexity %d)\n", cost.cost,
6467 cost.complexity);
6468 fprintf (file, " cand_cost: %d\n cand_group_cost: %d (complexity %d)\n",
6469 ivs->cand_cost, ivs->cand_use_cost.cost,
6470 ivs->cand_use_cost.complexity);
6471 bitmap_print (file, ivs->cands, " candidates: ","\n");
6473 for (i = 0; i < ivs->upto; i++)
6475 struct iv_group *group = data->vgroups[i];
6476 struct cost_pair *cp = iv_ca_cand_for_group (ivs, group);
6477 if (cp)
6478 fprintf (file, " group:%d --> iv_cand:%d, cost=(%d,%d)\n",
6479 group->id, cp->cand->id, cp->cost.cost,
6480 cp->cost.complexity);
6481 else
6482 fprintf (file, " group:%d --> ??\n", group->id);
6485 const char *pref = "";
6486 fprintf (file, " invariant variables: ");
6487 for (i = 1; i <= data->max_inv_id; i++)
6488 if (ivs->n_invariant_uses[i])
6490 fprintf (file, "%s%d", pref, i);
6491 pref = ", ";
6494 pref = "";
6495 fprintf (file, "\n invariant expressions: ");
6496 for (hash_map<iv_inv_expr_ent *, unsigned>::iterator it
6497 = ivs->used_inv_exprs->begin (); it != ivs->used_inv_exprs->end (); ++it)
6499 fprintf (file, "%s%d", pref, (*it).first->id);
6500 pref = ", ";
6503 fprintf (file, "\n\n");
6506 /* Try changing candidate in IVS to CAND for each use. Return cost of the
6507 new set, and store differences in DELTA. Number of induction variables
6508 in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true
6509 the function will try to find a solution with mimimal iv candidates. */
6511 static comp_cost
6512 iv_ca_extend (struct ivopts_data *data, struct iv_ca *ivs,
6513 struct iv_cand *cand, struct iv_ca_delta **delta,
6514 unsigned *n_ivs, bool min_ncand)
6516 unsigned i;
6517 comp_cost cost;
6518 struct iv_group *group;
6519 struct cost_pair *old_cp, *new_cp;
6521 *delta = NULL;
6522 for (i = 0; i < ivs->upto; i++)
6524 group = data->vgroups[i];
6525 old_cp = iv_ca_cand_for_group (ivs, group);
6527 if (old_cp
6528 && old_cp->cand == cand)
6529 continue;
6531 new_cp = get_group_iv_cost (data, group, cand);
6532 if (!new_cp)
6533 continue;
6535 if (!min_ncand && !iv_ca_has_deps (ivs, new_cp))
6536 continue;
6538 if (!min_ncand && !cheaper_cost_pair (new_cp, old_cp))
6539 continue;
6541 *delta = iv_ca_delta_add (group, old_cp, new_cp, *delta);
6544 iv_ca_delta_commit (data, ivs, *delta, true);
6545 cost = iv_ca_cost (ivs);
6546 if (n_ivs)
6547 *n_ivs = iv_ca_n_cands (ivs);
6548 iv_ca_delta_commit (data, ivs, *delta, false);
6550 return cost;
6553 /* Try narrowing set IVS by removing CAND. Return the cost of
6554 the new set and store the differences in DELTA. START is
6555 the candidate with which we start narrowing. */
6557 static comp_cost
6558 iv_ca_narrow (struct ivopts_data *data, struct iv_ca *ivs,
6559 struct iv_cand *cand, struct iv_cand *start,
6560 struct iv_ca_delta **delta)
6562 unsigned i, ci;
6563 struct iv_group *group;
6564 struct cost_pair *old_cp, *new_cp, *cp;
6565 bitmap_iterator bi;
6566 struct iv_cand *cnd;
6567 comp_cost cost, best_cost, acost;
6569 *delta = NULL;
6570 for (i = 0; i < data->vgroups.length (); i++)
6572 group = data->vgroups[i];
6574 old_cp = iv_ca_cand_for_group (ivs, group);
6575 if (old_cp->cand != cand)
6576 continue;
6578 best_cost = iv_ca_cost (ivs);
6579 /* Start narrowing with START. */
6580 new_cp = get_group_iv_cost (data, group, start);
6582 if (data->consider_all_candidates)
6584 EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, ci, bi)
6586 if (ci == cand->id || (start && ci == start->id))
6587 continue;
6589 cnd = data->vcands[ci];
6591 cp = get_group_iv_cost (data, group, cnd);
6592 if (!cp)
6593 continue;
6595 iv_ca_set_cp (data, ivs, group, cp);
6596 acost = iv_ca_cost (ivs);
6598 if (acost < best_cost)
6600 best_cost = acost;
6601 new_cp = cp;
6605 else
6607 EXECUTE_IF_AND_IN_BITMAP (group->related_cands, ivs->cands, 0, ci, bi)
6609 if (ci == cand->id || (start && ci == start->id))
6610 continue;
6612 cnd = data->vcands[ci];
6614 cp = get_group_iv_cost (data, group, cnd);
6615 if (!cp)
6616 continue;
6618 iv_ca_set_cp (data, ivs, group, cp);
6619 acost = iv_ca_cost (ivs);
6621 if (acost < best_cost)
6623 best_cost = acost;
6624 new_cp = cp;
6628 /* Restore to old cp for use. */
6629 iv_ca_set_cp (data, ivs, group, old_cp);
6631 if (!new_cp)
6633 iv_ca_delta_free (delta);
6634 return infinite_cost;
6637 *delta = iv_ca_delta_add (group, old_cp, new_cp, *delta);
6640 iv_ca_delta_commit (data, ivs, *delta, true);
6641 cost = iv_ca_cost (ivs);
6642 iv_ca_delta_commit (data, ivs, *delta, false);
6644 return cost;
6647 /* Try optimizing the set of candidates IVS by removing candidates different
6648 from to EXCEPT_CAND from it. Return cost of the new set, and store
6649 differences in DELTA. */
6651 static comp_cost
6652 iv_ca_prune (struct ivopts_data *data, struct iv_ca *ivs,
6653 struct iv_cand *except_cand, struct iv_ca_delta **delta)
6655 bitmap_iterator bi;
6656 struct iv_ca_delta *act_delta, *best_delta;
6657 unsigned i;
6658 comp_cost best_cost, acost;
6659 struct iv_cand *cand;
6661 best_delta = NULL;
6662 best_cost = iv_ca_cost (ivs);
6664 EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
6666 cand = data->vcands[i];
6668 if (cand == except_cand)
6669 continue;
6671 acost = iv_ca_narrow (data, ivs, cand, except_cand, &act_delta);
6673 if (acost < best_cost)
6675 best_cost = acost;
6676 iv_ca_delta_free (&best_delta);
6677 best_delta = act_delta;
6679 else
6680 iv_ca_delta_free (&act_delta);
6683 if (!best_delta)
6685 *delta = NULL;
6686 return best_cost;
6689 /* Recurse to possibly remove other unnecessary ivs. */
6690 iv_ca_delta_commit (data, ivs, best_delta, true);
6691 best_cost = iv_ca_prune (data, ivs, except_cand, delta);
6692 iv_ca_delta_commit (data, ivs, best_delta, false);
6693 *delta = iv_ca_delta_join (best_delta, *delta);
6694 return best_cost;
6697 /* Check if CAND_IDX is a candidate other than OLD_CAND and has
6698 cheaper local cost for GROUP than BEST_CP. Return pointer to
6699 the corresponding cost_pair, otherwise just return BEST_CP. */
6701 static struct cost_pair*
6702 cheaper_cost_with_cand (struct ivopts_data *data, struct iv_group *group,
6703 unsigned int cand_idx, struct iv_cand *old_cand,
6704 struct cost_pair *best_cp)
6706 struct iv_cand *cand;
6707 struct cost_pair *cp;
6709 gcc_assert (old_cand != NULL && best_cp != NULL);
6710 if (cand_idx == old_cand->id)
6711 return best_cp;
6713 cand = data->vcands[cand_idx];
6714 cp = get_group_iv_cost (data, group, cand);
6715 if (cp != NULL && cheaper_cost_pair (cp, best_cp))
6716 return cp;
6718 return best_cp;
6721 /* Try breaking local optimal fixed-point for IVS by replacing candidates
6722 which are used by more than one iv uses. For each of those candidates,
6723 this function tries to represent iv uses under that candidate using
6724 other ones with lower local cost, then tries to prune the new set.
6725 If the new set has lower cost, It returns the new cost after recording
6726 candidate replacement in list DELTA. */
6728 static comp_cost
6729 iv_ca_replace (struct ivopts_data *data, struct iv_ca *ivs,
6730 struct iv_ca_delta **delta)
6732 bitmap_iterator bi, bj;
6733 unsigned int i, j, k;
6734 struct iv_cand *cand;
6735 comp_cost orig_cost, acost;
6736 struct iv_ca_delta *act_delta, *tmp_delta;
6737 struct cost_pair *old_cp, *best_cp = NULL;
6739 *delta = NULL;
6740 orig_cost = iv_ca_cost (ivs);
6742 EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
6744 if (ivs->n_cand_uses[i] == 1
6745 || ivs->n_cand_uses[i] > ALWAYS_PRUNE_CAND_SET_BOUND)
6746 continue;
6748 cand = data->vcands[i];
6750 act_delta = NULL;
6751 /* Represent uses under current candidate using other ones with
6752 lower local cost. */
6753 for (j = 0; j < ivs->upto; j++)
6755 struct iv_group *group = data->vgroups[j];
6756 old_cp = iv_ca_cand_for_group (ivs, group);
6758 if (old_cp->cand != cand)
6759 continue;
6761 best_cp = old_cp;
6762 if (data->consider_all_candidates)
6763 for (k = 0; k < data->vcands.length (); k++)
6764 best_cp = cheaper_cost_with_cand (data, group, k,
6765 old_cp->cand, best_cp);
6766 else
6767 EXECUTE_IF_SET_IN_BITMAP (group->related_cands, 0, k, bj)
6768 best_cp = cheaper_cost_with_cand (data, group, k,
6769 old_cp->cand, best_cp);
6771 if (best_cp == old_cp)
6772 continue;
6774 act_delta = iv_ca_delta_add (group, old_cp, best_cp, act_delta);
6776 /* No need for further prune. */
6777 if (!act_delta)
6778 continue;
6780 /* Prune the new candidate set. */
6781 iv_ca_delta_commit (data, ivs, act_delta, true);
6782 acost = iv_ca_prune (data, ivs, NULL, &tmp_delta);
6783 iv_ca_delta_commit (data, ivs, act_delta, false);
6784 act_delta = iv_ca_delta_join (act_delta, tmp_delta);
6786 if (acost < orig_cost)
6788 *delta = act_delta;
6789 return acost;
6791 else
6792 iv_ca_delta_free (&act_delta);
6795 return orig_cost;
6798 /* Tries to extend the sets IVS in the best possible way in order to
6799 express the GROUP. If ORIGINALP is true, prefer candidates from
6800 the original set of IVs, otherwise favor important candidates not
6801 based on any memory object. */
6803 static bool
6804 try_add_cand_for (struct ivopts_data *data, struct iv_ca *ivs,
6805 struct iv_group *group, bool originalp)
6807 comp_cost best_cost, act_cost;
6808 unsigned i;
6809 bitmap_iterator bi;
6810 struct iv_cand *cand;
6811 struct iv_ca_delta *best_delta = NULL, *act_delta;
6812 struct cost_pair *cp;
6814 iv_ca_add_group (data, ivs, group);
6815 best_cost = iv_ca_cost (ivs);
6816 cp = iv_ca_cand_for_group (ivs, group);
6817 if (cp)
6819 best_delta = iv_ca_delta_add (group, NULL, cp, NULL);
6820 iv_ca_set_no_cp (data, ivs, group);
6823 /* If ORIGINALP is true, try to find the original IV for the use. Otherwise
6824 first try important candidates not based on any memory object. Only if
6825 this fails, try the specific ones. Rationale -- in loops with many
6826 variables the best choice often is to use just one generic biv. If we
6827 added here many ivs specific to the uses, the optimization algorithm later
6828 would be likely to get stuck in a local minimum, thus causing us to create
6829 too many ivs. The approach from few ivs to more seems more likely to be
6830 successful -- starting from few ivs, replacing an expensive use by a
6831 specific iv should always be a win. */
6832 EXECUTE_IF_SET_IN_BITMAP (group->related_cands, 0, i, bi)
6834 cand = data->vcands[i];
6836 if (originalp && cand->pos !=IP_ORIGINAL)
6837 continue;
6839 if (!originalp && cand->iv->base_object != NULL_TREE)
6840 continue;
6842 if (iv_ca_cand_used_p (ivs, cand))
6843 continue;
6845 cp = get_group_iv_cost (data, group, cand);
6846 if (!cp)
6847 continue;
6849 iv_ca_set_cp (data, ivs, group, cp);
6850 act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL,
6851 true);
6852 iv_ca_set_no_cp (data, ivs, group);
6853 act_delta = iv_ca_delta_add (group, NULL, cp, act_delta);
6855 if (act_cost < best_cost)
6857 best_cost = act_cost;
6859 iv_ca_delta_free (&best_delta);
6860 best_delta = act_delta;
6862 else
6863 iv_ca_delta_free (&act_delta);
6866 if (best_cost.infinite_cost_p ())
6868 for (i = 0; i < group->n_map_members; i++)
6870 cp = group->cost_map + i;
6871 cand = cp->cand;
6872 if (!cand)
6873 continue;
6875 /* Already tried this. */
6876 if (cand->important)
6878 if (originalp && cand->pos == IP_ORIGINAL)
6879 continue;
6880 if (!originalp && cand->iv->base_object == NULL_TREE)
6881 continue;
6884 if (iv_ca_cand_used_p (ivs, cand))
6885 continue;
6887 act_delta = NULL;
6888 iv_ca_set_cp (data, ivs, group, cp);
6889 act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL, true);
6890 iv_ca_set_no_cp (data, ivs, group);
6891 act_delta = iv_ca_delta_add (group,
6892 iv_ca_cand_for_group (ivs, group),
6893 cp, act_delta);
6895 if (act_cost < best_cost)
6897 best_cost = act_cost;
6899 if (best_delta)
6900 iv_ca_delta_free (&best_delta);
6901 best_delta = act_delta;
6903 else
6904 iv_ca_delta_free (&act_delta);
6908 iv_ca_delta_commit (data, ivs, best_delta, true);
6909 iv_ca_delta_free (&best_delta);
6911 return !best_cost.infinite_cost_p ();
6914 /* Finds an initial assignment of candidates to uses. */
6916 static struct iv_ca *
6917 get_initial_solution (struct ivopts_data *data, bool originalp)
6919 unsigned i;
6920 struct iv_ca *ivs = iv_ca_new (data);
6922 for (i = 0; i < data->vgroups.length (); i++)
6923 if (!try_add_cand_for (data, ivs, data->vgroups[i], originalp))
6925 iv_ca_free (&ivs);
6926 return NULL;
6929 return ivs;
6932 /* Tries to improve set of induction variables IVS. TRY_REPLACE_P
6933 points to a bool variable, this function tries to break local
6934 optimal fixed-point by replacing candidates in IVS if it's true. */
6936 static bool
6937 try_improve_iv_set (struct ivopts_data *data,
6938 struct iv_ca *ivs, bool *try_replace_p)
6940 unsigned i, n_ivs;
6941 comp_cost acost, best_cost = iv_ca_cost (ivs);
6942 struct iv_ca_delta *best_delta = NULL, *act_delta, *tmp_delta;
6943 struct iv_cand *cand;
6945 /* Try extending the set of induction variables by one. */
6946 for (i = 0; i < data->vcands.length (); i++)
6948 cand = data->vcands[i];
6950 if (iv_ca_cand_used_p (ivs, cand))
6951 continue;
6953 acost = iv_ca_extend (data, ivs, cand, &act_delta, &n_ivs, false);
6954 if (!act_delta)
6955 continue;
6957 /* If we successfully added the candidate and the set is small enough,
6958 try optimizing it by removing other candidates. */
6959 if (n_ivs <= ALWAYS_PRUNE_CAND_SET_BOUND)
6961 iv_ca_delta_commit (data, ivs, act_delta, true);
6962 acost = iv_ca_prune (data, ivs, cand, &tmp_delta);
6963 iv_ca_delta_commit (data, ivs, act_delta, false);
6964 act_delta = iv_ca_delta_join (act_delta, tmp_delta);
6967 if (acost < best_cost)
6969 best_cost = acost;
6970 iv_ca_delta_free (&best_delta);
6971 best_delta = act_delta;
6973 else
6974 iv_ca_delta_free (&act_delta);
6977 if (!best_delta)
6979 /* Try removing the candidates from the set instead. */
6980 best_cost = iv_ca_prune (data, ivs, NULL, &best_delta);
6982 if (!best_delta && *try_replace_p)
6984 *try_replace_p = false;
6985 /* So far candidate selecting algorithm tends to choose fewer IVs
6986 so that it can handle cases in which loops have many variables
6987 but the best choice is often to use only one general biv. One
6988 weakness is it can't handle opposite cases, in which different
6989 candidates should be chosen with respect to each use. To solve
6990 the problem, we replace candidates in a manner described by the
6991 comments of iv_ca_replace, thus give general algorithm a chance
6992 to break local optimal fixed-point in these cases. */
6993 best_cost = iv_ca_replace (data, ivs, &best_delta);
6996 if (!best_delta)
6997 return false;
7000 iv_ca_delta_commit (data, ivs, best_delta, true);
7001 gcc_assert (best_cost == iv_ca_cost (ivs));
7002 iv_ca_delta_free (&best_delta);
7003 return true;
7006 /* Attempts to find the optimal set of induction variables. We do simple
7007 greedy heuristic -- we try to replace at most one candidate in the selected
7008 solution and remove the unused ivs while this improves the cost. */
7010 static struct iv_ca *
7011 find_optimal_iv_set_1 (struct ivopts_data *data, bool originalp)
7013 struct iv_ca *set;
7014 bool try_replace_p = true;
7016 /* Get the initial solution. */
7017 set = get_initial_solution (data, originalp);
7018 if (!set)
7020 if (dump_file && (dump_flags & TDF_DETAILS))
7021 fprintf (dump_file, "Unable to substitute for ivs, failed.\n");
7022 return NULL;
7025 if (dump_file && (dump_flags & TDF_DETAILS))
7027 fprintf (dump_file, "Initial set of candidates:\n");
7028 iv_ca_dump (data, dump_file, set);
7031 while (try_improve_iv_set (data, set, &try_replace_p))
7033 if (dump_file && (dump_flags & TDF_DETAILS))
7035 fprintf (dump_file, "Improved to:\n");
7036 iv_ca_dump (data, dump_file, set);
7040 return set;
7043 static struct iv_ca *
7044 find_optimal_iv_set (struct ivopts_data *data)
7046 unsigned i;
7047 comp_cost cost, origcost;
7048 struct iv_ca *set, *origset;
7050 /* Determine the cost based on a strategy that starts with original IVs,
7051 and try again using a strategy that prefers candidates not based
7052 on any IVs. */
7053 origset = find_optimal_iv_set_1 (data, true);
7054 set = find_optimal_iv_set_1 (data, false);
7056 if (!origset && !set)
7057 return NULL;
7059 origcost = origset ? iv_ca_cost (origset) : infinite_cost;
7060 cost = set ? iv_ca_cost (set) : infinite_cost;
7062 if (dump_file && (dump_flags & TDF_DETAILS))
7064 fprintf (dump_file, "Original cost %d (complexity %d)\n\n",
7065 origcost.cost, origcost.complexity);
7066 fprintf (dump_file, "Final cost %d (complexity %d)\n\n",
7067 cost.cost, cost.complexity);
7070 /* Choose the one with the best cost. */
7071 if (origcost <= cost)
7073 if (set)
7074 iv_ca_free (&set);
7075 set = origset;
7077 else if (origset)
7078 iv_ca_free (&origset);
7080 for (i = 0; i < data->vgroups.length (); i++)
7082 struct iv_group *group = data->vgroups[i];
7083 group->selected = iv_ca_cand_for_group (set, group)->cand;
7086 return set;
7089 /* Creates a new induction variable corresponding to CAND. */
7091 static void
7092 create_new_iv (struct ivopts_data *data, struct iv_cand *cand)
7094 gimple_stmt_iterator incr_pos;
7095 tree base;
7096 struct iv_use *use;
7097 struct iv_group *group;
7098 bool after = false;
7100 if (!cand->iv)
7101 return;
7103 switch (cand->pos)
7105 case IP_NORMAL:
7106 incr_pos = gsi_last_bb (ip_normal_pos (data->current_loop));
7107 break;
7109 case IP_END:
7110 incr_pos = gsi_last_bb (ip_end_pos (data->current_loop));
7111 after = true;
7112 break;
7114 case IP_AFTER_USE:
7115 after = true;
7116 /* fall through */
7117 case IP_BEFORE_USE:
7118 incr_pos = gsi_for_stmt (cand->incremented_at);
7119 break;
7121 case IP_ORIGINAL:
7122 /* Mark that the iv is preserved. */
7123 name_info (data, cand->var_before)->preserve_biv = true;
7124 name_info (data, cand->var_after)->preserve_biv = true;
7126 /* Rewrite the increment so that it uses var_before directly. */
7127 use = find_interesting_uses_op (data, cand->var_after);
7128 group = data->vgroups[use->group_id];
7129 group->selected = cand;
7130 return;
7133 gimple_add_tmp_var (cand->var_before);
7135 base = unshare_expr (cand->iv->base);
7137 create_iv (base, unshare_expr (cand->iv->step),
7138 cand->var_before, data->current_loop,
7139 &incr_pos, after, &cand->var_before, &cand->var_after);
7142 /* Creates new induction variables described in SET. */
7144 static void
7145 create_new_ivs (struct ivopts_data *data, struct iv_ca *set)
7147 unsigned i;
7148 struct iv_cand *cand;
7149 bitmap_iterator bi;
7151 EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
7153 cand = data->vcands[i];
7154 create_new_iv (data, cand);
7157 if (dump_file && (dump_flags & TDF_DETAILS))
7159 fprintf (dump_file, "Selected IV set for loop %d",
7160 data->current_loop->num);
7161 if (data->loop_loc != UNKNOWN_LOCATION)
7162 fprintf (dump_file, " at %s:%d", LOCATION_FILE (data->loop_loc),
7163 LOCATION_LINE (data->loop_loc));
7164 fprintf (dump_file, ", " HOST_WIDE_INT_PRINT_DEC " avg niters",
7165 avg_loop_niter (data->current_loop));
7166 fprintf (dump_file, ", " HOST_WIDE_INT_PRINT_UNSIGNED " expressions",
7167 (unsigned HOST_WIDE_INT) set->used_inv_exprs->elements ());
7168 fprintf (dump_file, ", %lu IVs:\n", bitmap_count_bits (set->cands));
7169 EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
7171 cand = data->vcands[i];
7172 dump_cand (dump_file, cand);
7174 fprintf (dump_file, "\n");
7178 /* Rewrites USE (definition of iv used in a nonlinear expression)
7179 using candidate CAND. */
7181 static void
7182 rewrite_use_nonlinear_expr (struct ivopts_data *data,
7183 struct iv_use *use, struct iv_cand *cand)
7185 tree comp;
7186 tree op, tgt;
7187 gassign *ass;
7188 gimple_stmt_iterator bsi;
7190 /* An important special case -- if we are asked to express value of
7191 the original iv by itself, just exit; there is no need to
7192 introduce a new computation (that might also need casting the
7193 variable to unsigned and back). */
7194 if (cand->pos == IP_ORIGINAL
7195 && cand->incremented_at == use->stmt)
7197 enum tree_code stmt_code;
7199 gcc_assert (is_gimple_assign (use->stmt));
7200 gcc_assert (gimple_assign_lhs (use->stmt) == cand->var_after);
7202 /* Check whether we may leave the computation unchanged.
7203 This is the case only if it does not rely on other
7204 computations in the loop -- otherwise, the computation
7205 we rely upon may be removed in remove_unused_ivs,
7206 thus leading to ICE. */
7207 stmt_code = gimple_assign_rhs_code (use->stmt);
7208 if (stmt_code == PLUS_EXPR
7209 || stmt_code == MINUS_EXPR
7210 || stmt_code == POINTER_PLUS_EXPR)
7212 if (gimple_assign_rhs1 (use->stmt) == cand->var_before)
7213 op = gimple_assign_rhs2 (use->stmt);
7214 else if (gimple_assign_rhs2 (use->stmt) == cand->var_before)
7215 op = gimple_assign_rhs1 (use->stmt);
7216 else
7217 op = NULL_TREE;
7219 else
7220 op = NULL_TREE;
7222 if (op && expr_invariant_in_loop_p (data->current_loop, op))
7223 return;
7226 comp = get_computation (data->current_loop, use, cand);
7227 gcc_assert (comp != NULL_TREE);
7229 switch (gimple_code (use->stmt))
7231 case GIMPLE_PHI:
7232 tgt = PHI_RESULT (use->stmt);
7234 /* If we should keep the biv, do not replace it. */
7235 if (name_info (data, tgt)->preserve_biv)
7236 return;
7238 bsi = gsi_after_labels (gimple_bb (use->stmt));
7239 break;
7241 case GIMPLE_ASSIGN:
7242 tgt = gimple_assign_lhs (use->stmt);
7243 bsi = gsi_for_stmt (use->stmt);
7244 break;
7246 default:
7247 gcc_unreachable ();
7250 if (!valid_gimple_rhs_p (comp)
7251 || (gimple_code (use->stmt) != GIMPLE_PHI
7252 /* We can't allow re-allocating the stmt as it might be pointed
7253 to still. */
7254 && (get_gimple_rhs_num_ops (TREE_CODE (comp))
7255 >= gimple_num_ops (gsi_stmt (bsi)))))
7257 comp = force_gimple_operand_gsi (&bsi, comp, true, NULL_TREE,
7258 true, GSI_SAME_STMT);
7259 if (POINTER_TYPE_P (TREE_TYPE (tgt)))
7261 duplicate_ssa_name_ptr_info (comp, SSA_NAME_PTR_INFO (tgt));
7262 /* As this isn't a plain copy we have to reset alignment
7263 information. */
7264 if (SSA_NAME_PTR_INFO (comp))
7265 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (comp));
7269 if (gimple_code (use->stmt) == GIMPLE_PHI)
7271 ass = gimple_build_assign (tgt, comp);
7272 gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
7274 bsi = gsi_for_stmt (use->stmt);
7275 remove_phi_node (&bsi, false);
7277 else
7279 gimple_assign_set_rhs_from_tree (&bsi, comp);
7280 use->stmt = gsi_stmt (bsi);
7284 /* Performs a peephole optimization to reorder the iv update statement with
7285 a mem ref to enable instruction combining in later phases. The mem ref uses
7286 the iv value before the update, so the reordering transformation requires
7287 adjustment of the offset. CAND is the selected IV_CAND.
7289 Example:
7291 t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
7292 iv2 = iv1 + 1;
7294 if (t < val) (1)
7295 goto L;
7296 goto Head;
7299 directly propagating t over to (1) will introduce overlapping live range
7300 thus increase register pressure. This peephole transform it into:
7303 iv2 = iv1 + 1;
7304 t = MEM_REF (base, iv2, 8, 8);
7305 if (t < val)
7306 goto L;
7307 goto Head;
7310 static void
7311 adjust_iv_update_pos (struct iv_cand *cand, struct iv_use *use)
7313 tree var_after;
7314 gimple *iv_update, *stmt;
7315 basic_block bb;
7316 gimple_stmt_iterator gsi, gsi_iv;
7318 if (cand->pos != IP_NORMAL)
7319 return;
7321 var_after = cand->var_after;
7322 iv_update = SSA_NAME_DEF_STMT (var_after);
7324 bb = gimple_bb (iv_update);
7325 gsi = gsi_last_nondebug_bb (bb);
7326 stmt = gsi_stmt (gsi);
7328 /* Only handle conditional statement for now. */
7329 if (gimple_code (stmt) != GIMPLE_COND)
7330 return;
7332 gsi_prev_nondebug (&gsi);
7333 stmt = gsi_stmt (gsi);
7334 if (stmt != iv_update)
7335 return;
7337 gsi_prev_nondebug (&gsi);
7338 if (gsi_end_p (gsi))
7339 return;
7341 stmt = gsi_stmt (gsi);
7342 if (gimple_code (stmt) != GIMPLE_ASSIGN)
7343 return;
7345 if (stmt != use->stmt)
7346 return;
7348 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
7349 return;
7351 if (dump_file && (dump_flags & TDF_DETAILS))
7353 fprintf (dump_file, "Reordering \n");
7354 print_gimple_stmt (dump_file, iv_update, 0, 0);
7355 print_gimple_stmt (dump_file, use->stmt, 0, 0);
7356 fprintf (dump_file, "\n");
7359 gsi = gsi_for_stmt (use->stmt);
7360 gsi_iv = gsi_for_stmt (iv_update);
7361 gsi_move_before (&gsi_iv, &gsi);
7363 cand->pos = IP_BEFORE_USE;
7364 cand->incremented_at = use->stmt;
7367 /* Rewrites USE (address that is an iv) using candidate CAND. */
7369 static void
7370 rewrite_use_address (struct ivopts_data *data,
7371 struct iv_use *use, struct iv_cand *cand)
7373 aff_tree aff;
7374 gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
7375 tree base_hint = NULL_TREE;
7376 tree ref, iv;
7377 bool ok;
7379 adjust_iv_update_pos (cand, use);
7380 ok = get_computation_aff (data->current_loop, use, cand, use->stmt, &aff);
7381 gcc_assert (ok);
7382 unshare_aff_combination (&aff);
7384 /* To avoid undefined overflow problems, all IV candidates use unsigned
7385 integer types. The drawback is that this makes it impossible for
7386 create_mem_ref to distinguish an IV that is based on a memory object
7387 from one that represents simply an offset.
7389 To work around this problem, we pass a hint to create_mem_ref that
7390 indicates which variable (if any) in aff is an IV based on a memory
7391 object. Note that we only consider the candidate. If this is not
7392 based on an object, the base of the reference is in some subexpression
7393 of the use -- but these will use pointer types, so they are recognized
7394 by the create_mem_ref heuristics anyway. */
7395 if (cand->iv->base_object)
7396 base_hint = var_at_stmt (data->current_loop, cand, use->stmt);
7398 iv = var_at_stmt (data->current_loop, cand, use->stmt);
7399 tree type = TREE_TYPE (*use->op_p);
7400 unsigned int align = get_object_alignment (*use->op_p);
7401 if (align != TYPE_ALIGN (type))
7402 type = build_aligned_type (type, align);
7403 ref = create_mem_ref (&bsi, type, &aff,
7404 reference_alias_ptr_type (*use->op_p),
7405 iv, base_hint, data->speed);
7406 copy_ref_info (ref, *use->op_p);
7407 *use->op_p = ref;
7410 /* Rewrites USE (the condition such that one of the arguments is an iv) using
7411 candidate CAND. */
7413 static void
7414 rewrite_use_compare (struct ivopts_data *data,
7415 struct iv_use *use, struct iv_cand *cand)
7417 tree comp, *var_p, op, bound;
7418 gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
7419 enum tree_code compare;
7420 struct iv_group *group = data->vgroups[use->group_id];
7421 struct cost_pair *cp = get_group_iv_cost (data, group, cand);
7422 bool ok;
7424 bound = cp->value;
7425 if (bound)
7427 tree var = var_at_stmt (data->current_loop, cand, use->stmt);
7428 tree var_type = TREE_TYPE (var);
7429 gimple_seq stmts;
7431 if (dump_file && (dump_flags & TDF_DETAILS))
7433 fprintf (dump_file, "Replacing exit test: ");
7434 print_gimple_stmt (dump_file, use->stmt, 0, TDF_SLIM);
7436 compare = cp->comp;
7437 bound = unshare_expr (fold_convert (var_type, bound));
7438 op = force_gimple_operand (bound, &stmts, true, NULL_TREE);
7439 if (stmts)
7440 gsi_insert_seq_on_edge_immediate (
7441 loop_preheader_edge (data->current_loop),
7442 stmts);
7444 gcond *cond_stmt = as_a <gcond *> (use->stmt);
7445 gimple_cond_set_lhs (cond_stmt, var);
7446 gimple_cond_set_code (cond_stmt, compare);
7447 gimple_cond_set_rhs (cond_stmt, op);
7448 return;
7451 /* The induction variable elimination failed; just express the original
7452 giv. */
7453 comp = get_computation (data->current_loop, use, cand);
7454 gcc_assert (comp != NULL_TREE);
7456 ok = extract_cond_operands (data, use->stmt, &var_p, NULL, NULL, NULL);
7457 gcc_assert (ok);
7459 *var_p = force_gimple_operand_gsi (&bsi, comp, true, SSA_NAME_VAR (*var_p),
7460 true, GSI_SAME_STMT);
7463 /* Rewrite the groups using the selected induction variables. */
7465 static void
7466 rewrite_groups (struct ivopts_data *data)
7468 unsigned i, j;
7470 for (i = 0; i < data->vgroups.length (); i++)
7472 struct iv_group *group = data->vgroups[i];
7473 struct iv_cand *cand = group->selected;
7475 gcc_assert (cand);
7477 if (group->type == USE_NONLINEAR_EXPR)
7479 for (j = 0; j < group->vuses.length (); j++)
7481 rewrite_use_nonlinear_expr (data, group->vuses[j], cand);
7482 update_stmt (group->vuses[j]->stmt);
7485 else if (group->type == USE_ADDRESS)
7487 for (j = 0; j < group->vuses.length (); j++)
7489 rewrite_use_address (data, group->vuses[j], cand);
7490 update_stmt (group->vuses[j]->stmt);
7493 else
7495 gcc_assert (group->type == USE_COMPARE);
7497 for (j = 0; j < group->vuses.length (); j++)
7499 rewrite_use_compare (data, group->vuses[j], cand);
7500 update_stmt (group->vuses[j]->stmt);
7506 /* Removes the ivs that are not used after rewriting. */
7508 static void
7509 remove_unused_ivs (struct ivopts_data *data)
7511 unsigned j;
7512 bitmap_iterator bi;
7513 bitmap toremove = BITMAP_ALLOC (NULL);
7515 /* Figure out an order in which to release SSA DEFs so that we don't
7516 release something that we'd have to propagate into a debug stmt
7517 afterwards. */
7518 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
7520 struct version_info *info;
7522 info = ver_info (data, j);
7523 if (info->iv
7524 && !integer_zerop (info->iv->step)
7525 && !info->inv_id
7526 && !info->iv->nonlin_use
7527 && !info->preserve_biv)
7529 bitmap_set_bit (toremove, SSA_NAME_VERSION (info->iv->ssa_name));
7531 tree def = info->iv->ssa_name;
7533 if (MAY_HAVE_DEBUG_STMTS && SSA_NAME_DEF_STMT (def))
7535 imm_use_iterator imm_iter;
7536 use_operand_p use_p;
7537 gimple *stmt;
7538 int count = 0;
7540 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, def)
7542 if (!gimple_debug_bind_p (stmt))
7543 continue;
7545 /* We just want to determine whether to do nothing
7546 (count == 0), to substitute the computed
7547 expression into a single use of the SSA DEF by
7548 itself (count == 1), or to use a debug temp
7549 because the SSA DEF is used multiple times or as
7550 part of a larger expression (count > 1). */
7551 count++;
7552 if (gimple_debug_bind_get_value (stmt) != def)
7553 count++;
7555 if (count > 1)
7556 BREAK_FROM_IMM_USE_STMT (imm_iter);
7559 if (!count)
7560 continue;
7562 struct iv_use dummy_use;
7563 struct iv_cand *best_cand = NULL, *cand;
7564 unsigned i, best_pref = 0, cand_pref;
7566 memset (&dummy_use, 0, sizeof (dummy_use));
7567 dummy_use.iv = info->iv;
7568 for (i = 0; i < data->vgroups.length () && i < 64; i++)
7570 cand = data->vgroups[i]->selected;
7571 if (cand == best_cand)
7572 continue;
7573 cand_pref = operand_equal_p (cand->iv->step,
7574 info->iv->step, 0)
7575 ? 4 : 0;
7576 cand_pref
7577 += TYPE_MODE (TREE_TYPE (cand->iv->base))
7578 == TYPE_MODE (TREE_TYPE (info->iv->base))
7579 ? 2 : 0;
7580 cand_pref
7581 += TREE_CODE (cand->iv->base) == INTEGER_CST
7582 ? 1 : 0;
7583 if (best_cand == NULL || best_pref < cand_pref)
7585 best_cand = cand;
7586 best_pref = cand_pref;
7590 if (!best_cand)
7591 continue;
7593 tree comp = get_computation_at (data->current_loop,
7594 &dummy_use, best_cand,
7595 SSA_NAME_DEF_STMT (def));
7596 if (!comp)
7597 continue;
7599 if (count > 1)
7601 tree vexpr = make_node (DEBUG_EXPR_DECL);
7602 DECL_ARTIFICIAL (vexpr) = 1;
7603 TREE_TYPE (vexpr) = TREE_TYPE (comp);
7604 if (SSA_NAME_VAR (def))
7605 SET_DECL_MODE (vexpr, DECL_MODE (SSA_NAME_VAR (def)));
7606 else
7607 SET_DECL_MODE (vexpr, TYPE_MODE (TREE_TYPE (vexpr)));
7608 gdebug *def_temp
7609 = gimple_build_debug_bind (vexpr, comp, NULL);
7610 gimple_stmt_iterator gsi;
7612 if (gimple_code (SSA_NAME_DEF_STMT (def)) == GIMPLE_PHI)
7613 gsi = gsi_after_labels (gimple_bb
7614 (SSA_NAME_DEF_STMT (def)));
7615 else
7616 gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (def));
7618 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
7619 comp = vexpr;
7622 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, def)
7624 if (!gimple_debug_bind_p (stmt))
7625 continue;
7627 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
7628 SET_USE (use_p, comp);
7630 update_stmt (stmt);
7636 release_defs_bitset (toremove);
7638 BITMAP_FREE (toremove);
7641 /* Frees memory occupied by struct tree_niter_desc in *VALUE. Callback
7642 for hash_map::traverse. */
7644 bool
7645 free_tree_niter_desc (edge const &, tree_niter_desc *const &value, void *)
7647 free (value);
7648 return true;
7651 /* Frees data allocated by the optimization of a single loop. */
7653 static void
7654 free_loop_data (struct ivopts_data *data)
7656 unsigned i, j;
7657 bitmap_iterator bi;
7658 tree obj;
7660 if (data->niters)
7662 data->niters->traverse<void *, free_tree_niter_desc> (NULL);
7663 delete data->niters;
7664 data->niters = NULL;
7667 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
7669 struct version_info *info;
7671 info = ver_info (data, i);
7672 info->iv = NULL;
7673 info->has_nonlin_use = false;
7674 info->preserve_biv = false;
7675 info->inv_id = 0;
7677 bitmap_clear (data->relevant);
7678 bitmap_clear (data->important_candidates);
7680 for (i = 0; i < data->vgroups.length (); i++)
7682 struct iv_group *group = data->vgroups[i];
7684 for (j = 0; j < group->vuses.length (); j++)
7685 free (group->vuses[j]);
7686 group->vuses.release ();
7688 BITMAP_FREE (group->related_cands);
7689 for (j = 0; j < group->n_map_members; j++)
7690 if (group->cost_map[j].depends_on)
7691 BITMAP_FREE (group->cost_map[j].depends_on);
7693 free (group->cost_map);
7694 free (group);
7696 data->vgroups.truncate (0);
7698 for (i = 0; i < data->vcands.length (); i++)
7700 struct iv_cand *cand = data->vcands[i];
7702 if (cand->depends_on)
7703 BITMAP_FREE (cand->depends_on);
7704 free (cand);
7706 data->vcands.truncate (0);
7708 if (data->version_info_size < num_ssa_names)
7710 data->version_info_size = 2 * num_ssa_names;
7711 free (data->version_info);
7712 data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
7715 data->max_inv_id = 0;
7717 FOR_EACH_VEC_ELT (decl_rtl_to_reset, i, obj)
7718 SET_DECL_RTL (obj, NULL_RTX);
7720 decl_rtl_to_reset.truncate (0);
7722 data->inv_expr_tab->empty ();
7723 data->max_inv_expr_id = 0;
7725 data->iv_common_cand_tab->empty ();
7726 data->iv_common_cands.truncate (0);
7729 /* Finalizes data structures used by the iv optimization pass. LOOPS is the
7730 loop tree. */
7732 static void
7733 tree_ssa_iv_optimize_finalize (struct ivopts_data *data)
7735 free_loop_data (data);
7736 free (data->version_info);
7737 BITMAP_FREE (data->relevant);
7738 BITMAP_FREE (data->important_candidates);
7740 decl_rtl_to_reset.release ();
7741 data->vgroups.release ();
7742 data->vcands.release ();
7743 delete data->inv_expr_tab;
7744 data->inv_expr_tab = NULL;
7745 free_affine_expand_cache (&data->name_expansion_cache);
7746 delete data->iv_common_cand_tab;
7747 data->iv_common_cand_tab = NULL;
7748 data->iv_common_cands.release ();
7749 obstack_free (&data->iv_obstack, NULL);
7752 /* Returns true if the loop body BODY includes any function calls. */
7754 static bool
7755 loop_body_includes_call (basic_block *body, unsigned num_nodes)
7757 gimple_stmt_iterator gsi;
7758 unsigned i;
7760 for (i = 0; i < num_nodes; i++)
7761 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi))
7763 gimple *stmt = gsi_stmt (gsi);
7764 if (is_gimple_call (stmt)
7765 && !gimple_call_internal_p (stmt)
7766 && !is_inexpensive_builtin (gimple_call_fndecl (stmt)))
7767 return true;
7769 return false;
7772 /* Optimizes the LOOP. Returns true if anything changed. */
7774 static bool
7775 tree_ssa_iv_optimize_loop (struct ivopts_data *data, struct loop *loop)
7777 bool changed = false;
7778 struct iv_ca *iv_ca;
7779 edge exit = single_dom_exit (loop);
7780 basic_block *body;
7782 gcc_assert (!data->niters);
7783 data->current_loop = loop;
7784 data->loop_loc = find_loop_location (loop);
7785 data->speed = optimize_loop_for_speed_p (loop);
7787 if (dump_file && (dump_flags & TDF_DETAILS))
7789 fprintf (dump_file, "Processing loop %d", loop->num);
7790 if (data->loop_loc != UNKNOWN_LOCATION)
7791 fprintf (dump_file, " at %s:%d", LOCATION_FILE (data->loop_loc),
7792 LOCATION_LINE (data->loop_loc));
7793 fprintf (dump_file, "\n");
7795 if (exit)
7797 fprintf (dump_file, " single exit %d -> %d, exit condition ",
7798 exit->src->index, exit->dest->index);
7799 print_gimple_stmt (dump_file, last_stmt (exit->src), 0, TDF_SLIM);
7800 fprintf (dump_file, "\n");
7803 fprintf (dump_file, "\n");
7806 body = get_loop_body (loop);
7807 data->body_includes_call = loop_body_includes_call (body, loop->num_nodes);
7808 renumber_gimple_stmt_uids_in_blocks (body, loop->num_nodes);
7809 free (body);
7811 data->loop_single_exit_p = exit != NULL && loop_only_exit_p (loop, exit);
7813 /* For each ssa name determines whether it behaves as an induction variable
7814 in some loop. */
7815 if (!find_induction_variables (data))
7816 goto finish;
7818 /* Finds interesting uses (item 1). */
7819 find_interesting_uses (data);
7820 if (data->vgroups.length () > MAX_CONSIDERED_GROUPS)
7821 goto finish;
7823 /* Finds candidates for the induction variables (item 2). */
7824 find_iv_candidates (data);
7826 /* Calculates the costs (item 3, part 1). */
7827 determine_iv_costs (data);
7828 determine_group_iv_costs (data);
7829 determine_set_costs (data);
7831 /* Find the optimal set of induction variables (item 3, part 2). */
7832 iv_ca = find_optimal_iv_set (data);
7833 if (!iv_ca)
7834 goto finish;
7835 changed = true;
7837 /* Create the new induction variables (item 4, part 1). */
7838 create_new_ivs (data, iv_ca);
7839 iv_ca_free (&iv_ca);
7841 /* Rewrite the uses (item 4, part 2). */
7842 rewrite_groups (data);
7844 /* Remove the ivs that are unused after rewriting. */
7845 remove_unused_ivs (data);
7847 /* We have changed the structure of induction variables; it might happen
7848 that definitions in the scev database refer to some of them that were
7849 eliminated. */
7850 scev_reset ();
7852 finish:
7853 free_loop_data (data);
7855 return changed;
7858 /* Main entry point. Optimizes induction variables in loops. */
7860 void
7861 tree_ssa_iv_optimize (void)
7863 struct loop *loop;
7864 struct ivopts_data data;
7866 tree_ssa_iv_optimize_init (&data);
7868 /* Optimize the loops starting with the innermost ones. */
7869 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
7871 if (dump_file && (dump_flags & TDF_DETAILS))
7872 flow_loop_dump (loop, dump_file, NULL, 1);
7874 tree_ssa_iv_optimize_loop (&data, loop);
7877 tree_ssa_iv_optimize_finalize (&data);